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Message from the General Chair

It is my pleasure to welcome you to the proceedings of TridentCom 2012, the
8th International ICST Conference on Testbeds and Research Infrastructures
for the Development of Networks and Communities. I was truly honored to
organize Tridentcom 2012 in Thessaloniki, Greece, during June 11–13, 2012, with
the vision bringing together technical experts and researchers from academia,
industry, and government from all around the world to discuss experimental
research infrastructures of the Future Internet.

This year’s Tridentcom was very exciting. We set up a single-track techni-
cal program with 21 high-quality paper presentations on experimentation and
testbeds in the field of wired and wireless networks, cloud, measurements, rout-
ing, and sensors. Apart from the regular paper presentations, Tridentcom 2012
featured a rich variety of other activities. A record number of 33 demos and
posters were hosted in the demo section of the conference, presenting live the
last trends on experimentation activities all over the world. Two keynote speak-
ers, Piet Demeester from University of Ghent in Belgium and Jeff Chase from
Duke University in the US, gave very interesting talks on research infrastruc-
tures and deployment platforms. The program included a fascinating tutorial
on state-of-the-art tools for accessing and using federated research testbeds in
a systematic way. Last but not least, the Infinity workshop was collocated with
Tridentcom 2012, with the aim of gathering information on the existing research
testbeds in Europe.

Tridentcom 2012 would not have been a success without the invaluable efforts
of the Organizing Committee. I would like to thank Max Ott from NICTA and
Michael Zink from the University of Massachusetts in Amherst for putting to-
gether an excellent technical program. Ivan Seskar from Rutgers University did
a great job setting up a demo and poster section full of innovative ideas and im-
plementations. I am grateful to Leandros Tassiulas from University of Thessaly
for his significant support on several organization issues. Timur Friedman from
UPMC and Aki Nakao from University of Tokyo worked hard on the publicity
of the conference. The very nice website of this year’s Tridentcom was a result of
the creative work of Stratos Keranidis from CERTH. Gentian Jakllari from the
University of Toulouse helped really in putting together the proceedings of the
conference right on time. A big thank you to Stavroula Maglavera from CERTH
for her tireless help with the complicated but exciting local arrangements. This
year, for the first time, we launched student travel grants for Tridentcom. I
would like to thank Serge Fdida from UPMC for his enormous work to secure
resources in order to make these travel grants a success. Finally, I would like to
thank Ruzanna Najaryan and Elisa Mendini from EAI for their collaboration on
the organization of the conference.

Thanasis Korakis



Preface

Welcome to the proceedings of the 8th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communi-
ties, which was held in Thessaloniki, Greece. The conference comprised four days
of workshops, conference sessions, keynote presentations, poster discussions, net-
working, and most importantly, a good time among fellow researchers.

Every year Tridentcom grows in reputation and stature and has become a
very selective venue for research publications in the broad area of methods and
techniques for experimental-based networking research, After a careful and rig-
orous review process, 21 high-quality papers were selected among submissions
from Europe, North America, Africa, Australia, Brazil, China, Japan, Korea,
and Singapore.

The conference program this year consisted of six single-track sessions cover-
ing a diverse range of very timely topics such as wireless, clouds and networks,
measurements, sensor networks, routing, and testbeds.

The main conference also featured two excellent and thought provoking keynotes
from Piet Demester and Jeff Chase. Given the nature of the Tridentcom com-
munity, the poster and demo session, organized by Ivan Seskar, was one of the
highlights of the conference and showcased the latest achievements in the field
of testbeds and experimentation.

The technical program is the result of the dedicated and hard work of many
people. We are most grateful to the authors who submitted their work to Tri-
dentCom 2012, as well as to the reviewers, who generously contributed their
time and expertise to the review process. We also want to thank the conference
Steering Committee and the General Chair for their guidance as well as the local
Organizing Committee members in Thessaloniki for the smooth running of the
conference.

It was a privilege to work with so many excellent and knowledgeable peo-
ple leading up to the conference and a joy to engage in so many interesting
conversations throughout the conference.

Max Ott
Michael Zink
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A Satellite Network Emulation Platform  
for Implementation and Testing of TCP/IP Applications 

Michele Luglio, Cesare Roseti, and Francesco Zampgnaro 

Univeristà di Roma Tor Vergata –Electronics Engineering Dpt. 
Via del Politecnico, 1 – 00133 Roma, Italy 

{luglio,cesare.roseti,francesco.zampognaro}@uniroma2.it 

Abstract. In order to assess the performance of TCP/IP based applications and 
protocols for communication over heterogeneous networks, simulation and 
emulation activities are of great importance. In particular, real time emulation 
provides the opportunity to reproduce realistic environment thanks to the 
implementation in laboratory of real architectures and protocols, avoiding 
utilizing real networks and in a controlled environment. We developed a 
broadband satellite real-time emulation platform called SNEP, designed to 
match the DVB-RCS European standards. The SNEP reproduces with great 
details the architecture and behavior of a real satellite broadband network, 
where it is possible to attach end-user PCs and use real protocols and 
applications. In this way, real network applications can be benchmarked in 
laboratory as in the real scenario of broadband satellite communications, at the 
same time proposing alternative solutions and optimizations. Furthermore with 
the SNEP the integration of satellite platforms with further terrestrial networks 
is also possible, both real and simulated/emulated, in order to extend the scope 
for testing. 

Keywords: DVB-RCS, Broadband Satellite networks, IP, testbed emulation. 

1 Satellite Network Emulation Platform (SNEP) 

The SNEP is a cluster of PCs designed to reproduce the characteristics of access to a real 
Satellite Broadband Network, compliant with the DVB-RCS standards [1]. In particular, 
one side of the SNEP contains the Network Control Center (NCC)/Gateway-HUB 
functionalities of the satellite network, and can be connected to the Internet. The other 
side includes emulated Satellite Terminals (ST, or satellite modems) and user terminals, 
where applications and real protocols and external hardware are installed. A simplified 
architecture of the testbed is presented in fig. 1. The whole emulator is built with several 
virtual machines into a Virtual Environment, and can fully emulate several concurrent 
Satellite Terminals. Each machine can be connected to resemble the Satellite System real 
architecture (star/mesh), and performs the same logical operations to recreate the 
behavior of the real system (e.g., ST is performing login and sync operations, bandwidth 
on demand and traffic classification/shaping). All lower layers models (e.g., physical 
delay, interferences, etc.) has been evaluated offline and included in the platform as IP 
level operations. 



2 M. Luglio, C. Roseti, and F. Zampgnaro 

 

 

Fig. 1. SNEP logical architecture with real hardware interconnections 

The SNEP in particular reproduces all signaling and effects of Bandwidth on 
Demand used in DVB-RCS to optimize the bandwidth utilization at the cost of 
introducing additional access delays (which can be much greater than 1 s). The 
Bandwidth on demand (called DAMA) and all other simulated blocks (error model, 
QoS, MAC framing and encapsulation, etc.) greatly impact on TCP/IP applications 
and protocols, than can underperform or misbehave in such challenging environment. 

2 TCP/IP Applications Testing on the SNEP Platform 

Since the SNEP testbed gives the possibility of controlling and monitoring all the system 
parameters (not only at network layer, but also below), one of its application can be the 
execution of real commercial applications (e.g., teleconferencing with Skype), to be 
assessed and validated before the use on a real system. In addition, the platform has been 
lately used to verify the impact of cyber-attacks (e.g., malware, eavesdropping, DoS from 
external STs, etc.) to a satellite network. Using the SNEP makes possible to install ad-
hoc malware, which is producing TCP/IP unwanted traffic, or alter the behavior of some 
nodes. In this way it is possible to better understand possible anomalies in the network 
propose countermeasures and verify their validity. In particular one of the attacks tested 
deals with security for heterogeneous and inter-operable networks including a satellite 
segment. The mandatory presence of Performance Enhancing Proxies (PEPs [2]) at the 
edges of satellite links, justified to improve TCP performance, opens the way to several 
proxy-related classic attacks. In this case the focus has been on how to implement an 
Intrusion Detection System (IDS) and develop software countermeasure in strict relation 
to the emulated satellite environment. 
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Abstract. The GAIA Extended Research Infrastructure is located at the southeast
of Spain. It targets the research of Future Internet architectures and comprises sev-
eral facilities from the University of Murcia and the Spanish government. It offers
a vertical infrastructure, composed of a backend with high capacity of data stor-
age, communication, and processing, together with a frontend with an extended
set of multidisciplinary testbeds, deployments, and living labs for the ubiquitous
monitoring, sensing, and processing. That said, it offers a highly flexible frame-
work for experimentation with architectures and protocols for the Future Internet.
In fact, it has been used in many research projects to evaluate their outputs from
the communications and telematics point of view.

Keywords: Research, Experimentation, Testbed, Living Labs, Future Internet.

1 Infrastructure Description

The GAIA Extended Research Infrastructure, as illustrated in Figure 1, is composed
of several deployments, living labs, and multidisciplinary scenarios based on mobile
communications, ubiquitous computing and Internet of Things (IoT). All of them are
focused on the Future Internet and supported by our backend infrastructure.

The backend, as depicted in the inner sub-figure of Figure 1, is built by a computer
cluster of 22 nodes with high processing capacity, connected to a storage area network
(SAN) to provide high capacity/speed remote storage based on the Fiber Channel tech-
nology. The SAN is provisioned with a total capacity of 2 TiB.

In addition, the GAIA infrastructure offers many experimentation machines, intercon-
nected by a Gigabit Ethernet (GE) network. Moreover, the experimentation infrastructure
has a dedicated CWDM network to evaluate elements destined to backbone networks.
Furthermore, the infrastructure also has a WiMAX network deployed throughout the uni-
versity campus and connected to the main network by dedicated VLANs.

Apart from the central GAIA facilities, the research infrastructure is extended with a
set of multidisciplinary deployments focused on sensor networks and monitoring plat-
forms. They target Intelligent Transport Systems, environmental monitoring, mobile
health, and buildings automation. Specifically, these deployments are:

– Building Automation: Many facilities, including a complete building from the Fuente
Alamo Technology Park (FATP), are managed by over 50 multiprotocol cards de-
veloped by our research lab. These platforms are focused on energy sustainability to
reach positive-net building with the deployed solar power plants.

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 3–4, 2012.
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Fig. 1. GAIA extended infrastructure with the living labs and deployments

– Internet of Things (IoT): Our building at FATP also presents an IoT network with a
weather station, 20 parking spots, 20 air-quality sensors located at the streetlights,
50 environmental sensors (temperature, humidity, pressure), and 50 activity sen-
sors.

– Environmental Monitoring: We have a real-time monitoring system for the main
drainage basin of the watercourse (in Albujon), covering an area of 550km2. These
platforms are mainly focused on watercourse improvement and flood forecast.

– Clinical Technology: The clinical research lab is also located at FATP, in two ded-
icated rooms: an Ambient Assisted Living room with 15 personal and wearable
clinical devices, and a hospital room with 5 patient monitors.

– Vehicle fleet: The vehicle fleet of the University of Murcia, composed of 48 cars
destined to personnel mobility and various internal services of the university, has
integrated a platform for location and tracking developed and interconnected with
our research lab. For instance, this permits us to track the vehicles when experi-
menting with WiMAX mobility scenarios.

Finally, it is worth to mention that this infrastructure has been used for many EU
projects, like SWIFT and DAIDALOS, and it is currently used for experimentation
within the IoT6 project and prospectively within the OpenLab project.

Acknowledgments. This work is partially supported by the European Commission’s
Seventh Framework Programme (FP7/2007-2013) project GN3, by the Ministry of Ed-
ucation of Spain under the FPU program grant AP2010-0576, by the Program for Re-
search Groups of Excellence of the Séneca Foundation under grant 04552/GERM/06,
and the European Regional Development Fund (ERDF) in the frame of Proces@2 (PCT-
430000-2010-006) and LABCONECT@2 (PCT-430000-2010-005) grants.
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Abstract. CropInfra is a development and testing platform for future agricultural 
production, information and knowledge management infrastructure. 

1 History and Motivation of MTT CropInfra 

Farmers around the world and especially in the western world have for decades faced 
growing pressure to increase the efficiency of their production, because of rising 
prices in production inputs and environmental requirements. Administrative tasks 
have also increased the work load of the farmer. Recently also the food processing 
and retail industry and consumers are imposing new and continuous requirements for 
producers to produce more sustainable products and to provide information about the 
products for the food production chain as well as to consumers. 

To manage resources efficiently, the ideology of precision farming was formed. In 
precision farming each production unit, is treated individually according to its needs. 
Precision agriculture has not made a true breakthrough. A reason for this is the lack of 
efficient data management, equipment interoperability and knowledge models to take 
advantage of precision agriculture machinery. 

A Nordic InfoXT project studied the infrastructure needs for agricultural 
production and precision farming. The project proposed a web based distributed and 
networked production infrastructure. [1] The description of this infrastructure laid the 
ground work for CropInfra platform.  

2 Description of MTT CropInfra 

CropInfra is constructed at MTT Vakola’s farm, which is a research farm located in 
the Southern Finland. MTT Vakola’s farm has 150 ha arable farm that produces 
cereals and silage grass. CropInfra infrastructure consists of MTT Vakola’s research 
and testing infrastructure; MTT Vakola’s fields and farming machinery, Soil weather 
sensor network and the local monitoring sensor networks. 

Research outputs produced in MTT are implemented into CropInfra platform to be 
tested in, and used in actual farming operations. These implementations include 
outputs from the machine automation research as well as results of information and 
knowledge management research. 
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CropInfra platform is used to gather and store information about field operations 
and environment, like the fertility of the land, the state of the land, meteorological 
information, water flows, and nutrients in leaching waters. CropInfra platform is also 
used to plan farming operations. Specific services are created to merge, aggregate and 
utilize the collected farm data, an example is the plant decease forecast and alarm 
service. CropInfra platform also assists in execution of farming operations. CropInfra 
platform stores and distributes work tasks to farm machinery, monitors and 
documents the execution of given tasks, creating data to be used in planning of the 
future farming operations. The massive work-data collection makes it possible to 
simulate, test and develop different data modeling, proofing, refining, filtering and 
aggregation methods and systems. Also, the level of information and performance 
accuracy can be studied.  

Principles of networked systems in farm management information systems were 
further studied in European FutureFarm project. The Project concluded that the future 
system will be distributed system of services and repositories. [2] 

CropInfra’s information management is built according to SOA-principles as a 
distributed networked system, as suggested by research views. In CropInfra data is 
collected into databases and a web service layer is built on top of these databases. 
Web services are tailored and used to create assisting services for planning, 
development and execution of farming operations, which are required for enabling 
precision agriculture practices. Figure 1 illustrates structure and functionalities of 
MTT CropInfra information infrastructure.  

 

Fig. 1. MTT CropInfra platform information infrastructure and services 
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Abstract. The w-iLab.t is a large-scale generic wireless experimenta-
tion facility. Over 260 wireless nodes are installed at two different lo-
cations. Every single wireless node is equipped with multiple wireless
technologies, namely IEEE 802.15.4, Wi-Fi a/b/g(/n), and on some de-
vices also Bluetooth. Additionally, w-iLab.t provides access to software
defined radio platforms and also uses them to characterize the wireless
environment during an experiment. The w-iLab.t flexibility and its tools
enable experimenters to design and schedule a wide range of wireless
experiments, and to collect and process results in a user-friendly way.

Keywords: experimentation, wireless, sensor, mesh, Wi-Fi, cognitive,
testbed.

1 Hardware and Tools Available in w-iLab.t

There are two operational testbed locations in w-iLab.t. The biggest installation,
w-iLab.t Office, hosts wireless hardware on 200 locations spread across three
floors of an office environment in Ghent, Belgium. In a more recent deployment
in Zwijnaarde (close to Ghent), another 60 fixed and 20 mobile nodes are located
in an unmanned utility room. A schematic overview of the Zwijnaarde architec-
ture is provided in Figure 1. The w-iLab.t Office has a similar architecture but
uses power over Ethernet in the control network. The figure shows the hardware
available at every location: an embedded PC that doubles as Wi-Fi node with
two wireless interfaces, (at least) one 802.15.4 sensor node, and a so-called ‘envi-
ronment emulator’, which can be used for advanced control and monitoring of the
sensor node (including power emulation, analog/digital IO, synchronized logging
of results). The nodes in the Zwijnaarde testbed are additionally equipped with
a Bluetooth 3.0 interface. Experimenters can choose to use any one of the avail-
able interfaces of the wireless nodes (or use of multiple interfaces simultaneously)
during their experiments, in any way (e.g. for Wi-Fi: station, client, ad-hoc, cus-
tom driver,. . . ). In the scope of the FP7-CREW project [www.crew-project.eu],
a number of cognitive radio platforms and spectrum scanners have been made
available in Zwijnaarde. While in the office environment, the wireless medium
is also used for day-to-day activities of the employees (wireless LAN, DECT,
microwave ovens), there is very limited or no wireless activity in Zwijnaarde.
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Fig. 1. Architecture of the w-iLab.t Zwijnaarde (simplified; only 1 node is shown)

In addition to the hardware, w-iLab.t offers a set of tools to experimenters,
supporting the entire experimentation lifecycle: installation of the devices (im-
ages for the embedded PC and/or firmware for the sensor nodes), configuration
of the wireless nodes, scheduling experiments, event-based interaction during
experiments (e.g. emulate power failure, shut down node, trigger an event on
the I/O pins of the sensor node), collecting and storing of results (this is a
generic system, configurable by the experimenter), and processing and visual-
izing results (2D graphs and/or visualization on a testbed map). The w-iLab.t
Office tools are based on Motelab software [http://motelab.eecs.harvard.edu/]
but were extended to support more advanced sensor node through support for
the environment emulator, and to support Wi-Fi enabled experiments. The Zwi-
jnaarde testbed tools are based on OMF [http://omf.mytestbed.net/]; OMF and
the w-iLab.t OMF updates are available as open source software.

2 Use of w-iLab.t and Access Info

While it is impossible to list all possibilities of w-iLab.t in this abstract, it is
important to understand that the w-iLab.t is called a generic testbed, because
the configuration possibilities allow the experimenter to use the testbed for ‘any’
(wireless) application. As a rule of thumb: whatever experiment an experimenter
would be able to execute using the testbed hardware and his/her own laptop on
his/her desk, can also be executed on the w-iLab.t in an organized way. Similarly,
any type of data that could be collected from a wireless networking set-up e.g.
during a small-scale experiment on an experimenter’s desk, can in nearly all cases
also be effortlessly collected from a large-scale set-up on the w-iLab.t testbed.

The w-iLab.t testbed control interface, nodes and tools are remotely acces-
sible over the Internet via an OpenVPN connection. Use of w-iLab.t is free of
charge for non-commercial use. Commercial use is possible, but other terms may
apply. For more information and to apply for an account, please consult the
iLab.t homepage http://ilabt.ibbt.be, the CREW project’s information portal
at www.crew-project.eu/portal/wilabdoc, or contact the authors.

The research leading to these results has received funding from various national

funds, and from the European Union’s Seventh Framework Programme (FP7/2007-

2013) under grant agreements nr 258301 (CREW) and nr 287581 (OpenLab).
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Abstract. UMA (University of Malaga) is developing a testing facil-
ity to provide support for the complete development process of Internet
services in mobile networks. The platform enables the execution of data
services on instrumented mobiles and will offer a remote access to carry
out unattended measurement campaigns in commercial and emulated
cellular networks. The facility mainly targets data connectivity and per-
formance over cellular networks (GSM, GPRS, UMTS, HSPA and LTE),
mobility procedure analysis, IP traffic monitoring, energy consumption
and location.

Keywords: cellular networks, performance measurements, quality of
service, experimental testbed.

1 Introduction

In this paper we introduce the experimental testbed implemented by our research
group1 to carry out mobile experiments in a real context and to extract the
correlation between radios access configurations and QoS parameters perceived
at the application level. The execution of exhaustive measurements campaigns
using this testbed will enable the identification of specific performance counters
and used cases for QoS and QoE optimization in mobile networks [1].

Concretely UMA testbed is expected to be used in the following scenarios:

– to measure KPI (Key Performance Indicators) related to radio access, ap-
plications performance and QoS perceived by final users

– to support the testing of new radio access configurations
– to deploy experiments in live cellular network to test the performance of new

services, applications and mobile application protocols
– to evaluate the performance of LTE as radio access technology in FI-PPP

scenarios.

2 Testbed Configuration

As we can see in Figure 1, the testbed include an eNodeB emulator which pro-
vides high performance protocol and radio capabilities to emulate a LTE access

1 This work has been funded by Spanish projects TIN 2008-05932 and WITLE2 IDI-
20090382, by the Andalusian project P07-TIC3131 and ERDF from the European
Commission.
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network, COSTmobile devices where new applications, services and protocols can
be deployed, servers for deploying services, monitoring tools and post-processing
facilities.

The emulator supports the connections of real LTE devices and the transport
of IP traffic generated by commercial applications.It also includes features such
as emulation of channel propagation that allows modeling fading and additive
white gaussian noise impairments and configuration of cell load, in addition to
a high degree of configurability of the LTE stack. The COST devices includes
monitoring tools developed by UMA. The monitoring software is available for
Symbian [2], Android[3] and Blackberry OS platforms. Current functionality
focuses on the monitoring of network parameters, data traffic, battery and loca-
tion. Mobile devices can be connected to commercial cellular networks deployed
in Spain or to the LTE base station emulator.

Post-processing tools available at the UMA facility enable the testing and
identification of IP connectivity issues in cellular connections, objectives and
subjective performance parameters.

eNodeB Emulator  

Post Processing Tool 
chain 

LTE info & stats 

Local Services         

TestelDroid 

Monitoring logs 

         

Internet 
Remote Services         

GPRS/UMTS/HSDPA live networks       

Fig. 1. UMA testing facility setup
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Abstract. CESNET’s main role is to run, maintain and provide services for 
users of Czech NREN called CESNET2. It has more than 5 thousand kilometres 
of leased fibres of which 360 kilometres are represented by the Experimental 
Facility. Connection to other NRENs (mostly represented by GÉANT 
members) has capacity of 10Gbit, with exception of cz.NIC, where CESNET 
has 2x 10Gbit. Beyond this, CESNET also operates single fibre bidirectional 
transmission lines and offer several advanced services, mostly coming from its 
R&D activities. One example could be photonic service, based on pure fibre 
optic network advantages. Services such as wireless, security, storage, grid and 
others are mostly represented by particular CESNET departments.  

Keywords: Experimental Facility, Testbed, CESNET, Optics, Networking, 
NREN, Czech, Photonic, Research. 

1 Introduction 

CESNET was established in 1996 as non-profit association of legal entities 
(represented by all public Universities and Czech Academy of Sciences). It operates 
Czech NREN and Dark Fibre Experimental Facility. It has high optical fibre density 
among NRENs of about 65 fibre meters per square kilometre. Production network 
covers more than 4700 km of all leased fibres. The rest belongs to the Experimental 
Facility, which will be explained in greater detail later on. About one thousand 
kilometres of all leased fibres are single bidirectional transmission fibres. For the 
detailed topology scheme see Figure 1. CESNET also offers some advanced services 
based on photonic transmissions (see chapter 3). 

2 CESNET Infrastructure 

Main connection to GEÁNT, which node CESNET hosts directly in its HQ in Prague 
has capacity of 10Gbit. Other key NRENs have the same connection speed to Czech 
NREN, including SANET (.sk), ACONET (.at) and PIONIER (.pl). To another Czech 
ISPs, CESNET is peering with 2x 10Gbit through NIX.cz association. CESNET 
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experimental facility connection to GLIF has also 10Gbps. GLIF helps CESNET not 
only to promote advantages and importance of photonic services but also with 
research in lambda networking. Overseas connection to US has capacity of 2,5Gbps at 
the time of writing. CESNET infrastructure is made of leased dark fibres. They are 
lighted up by Open DWDM system designed and developed in CESNET (CzechLight 
family) or by Cisco.  

Big advantage of the fully leased fibre network is that CESNET does not have to 
maintain and take care of the fibres. But of course CESNET has its 24/7 monitoring 
services, which supervises the link states. 

 

Fig. 1. CESNET Topology 

CESNET was also one the first propagators of single fibre bidirectional transmission 
(hereafter “SFBC”), saving costs up to 40%, while keeping the same performance for 
typical NREN traffic. This approach can be used in case of lack of fibres and also as a 
backup solution to access provider’s POPs. There are more than 1000 km of these lines 
in the topology. CESNET started with SFBC back in 2002, when proved its functionality 
for the first time. 

Cross border fibres started back in 2004, while making significant contribution on 
cross border experiments such as atomic clock synchronization.  

NREN infrastructure project is called CESNET large infrastructure, which will be 
connected to other e-infrastructure projects like those which are part of ESFRI 
infrastructure roadmap. Because of this, CESNET infrastructure is under 
improvement, started with upgrading of its national GRID infrastructure and PoPs 
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main DWDM devices. One example could be ESFRI infrastructure for biological data 
called project called ELIXIR. 

2.1 CzechLight Devices and Optical Lab 

CzechLight (hereafter “CL”) is a trademark for CESNET’s devices intend to use in 
optical networks. It is outcome of its optical R&D activities. They include range of 
optical amplifiers (based on EDFA), CL Raman amplifiers (only for long distances 
and not widely used), fully tuneable chromatic dispersion compensators and photonics 
cross-connects (optical switches).  

Department of Optical Networks also has two optical labs for its research purposes. 
Here the newly developed devices are tested and also this lab is used to do real 
network simulations, signal quality, chromatic dispersion and signal attenuation 
monitoring. This lab could be considered as a part of CESNET’s Experimental 
Facility (more in chapter 4). 

3 Advanced Services 

In cooperation with GEÁNT CESNET started to promote term “photonic service” 
which leads to the new type of advanced service based on pure photonics. It covers 
critical and “real-time” applications in areas of metrology, seismology, remote 
instrument control and other emergency usage. Generally all advanced services that 
need fixed and low latency. Another example of new type services can be “lit fibre”, 
which is based on CL devices family. Customer can order lit fibre, fully lighted up by 
CL devices and can use it for various tests and new technology prototypes 
verification. The photonic services could be user controlled by using fully tuneable 
CL devices.  

The application area where CESNET network could benefit in and use its gained 
experience from GN3 activities is ENVIROFI case project (its Atmospheric 
Condition part respectively) of FI-PPP. However, CESNET its self does not have 
experience in “smart” project scenarios. Its infrastructure is prepared for these issues, 
but in most cases these applications also require mobile network. CESNET does not 
own or lease such kind of networks. On the other hand, it is an issue that is being 
under consideration at the time of writing. 

Other services focus on transparent L2 like Carrier Ethernet. Common services 
includes Eduroam wireless network1, data storage infrastructure and network security 
group called CSIRT. This security group monitors and resolves security incidents in 
whole AS 2852. Some of common security issues are: 

•  Intensive Scanning.  
•  Spam.  
•  Copyright issues.  
•  Phishing 

                                                           
1 http://eduroam.cz/doku.php?id=en:start 
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CESNET also has its dedicated GRID infrastructure called “Metacentrum”2. At the 
time of writing it consists of more than 4000 cores overall. Approximately half of 
them belong to CESNET, half to connected organizations. Its purpose is to offer 
computation power and software resources to CESNET users and members. Software 
installations cover those which allow parallelism and other functionalities which 
could be beneficial in various research areas (bioinformatics, computation chemistry 
etc.). Hardware equipment is heterogeneous to be more flexible to user and software 
needs. Metacentrum infrastructure and its connected institutions can be found in the 
following figure. 

 

Fig. 2. Metacentrum Infrastructure 

3.1 Certain Experiments 

Highly accurate clock synchronization has been demonstrated to show potential of 
modern photonic networks. As written in [1], accuracy of 1 ns has been archived over 
distance of more than 500 km without OEO in the path and over production DWDM 
network. This Czech-Austrian experiment has been done between CESNET and its 
counterpart ACOnet and relied on prototypes of time signal transfer adapters 
developed by CESNET. Involved national time and frequency labs in Prague and 
Vienna: IPE (Institute of Photonics and Electronics of Academy of Sciences of the 
Czech Republic) and BEV (Bundesamt für Eich- und Vermessungswesen). The 
development of methods for accurate time signal transfer and the research into all-
optical networks are parts of research activities put through by CESNET within the 
framework of its research project Optical National Research Network and Its New 
Applications. 

Another demonstration of low-latency photonic service was unique real-time 
3D Full HD stereo broadcast of a kidney surgery performed by a “da Vinci robot” [2].  
 

                                                           
2 http://www.metacentrum.cz/en/ 
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This experiment has been made between Masaryk Hospital in Ústí nad Labem and 
CESNET headquarter in Prague. The broadcast went through 10-gigabit link with 
fibre distance over 130 km and it was a part of standard production infrastructure. 
Signal delay along the transmission stream was less than 1 ms, enabling a truly real-
time 3D Full HD stereo broadcast. In this experiment the images from the surgery 
were produced by CESNET’s F10 AS3D ProjectionDesign stereo-projector. 

4 Experimental Facility 

CESNET testbed3 consists of fully leased open dark fibres for experimental usage and 
testing of new technologies. They are lighted up by CL devices and the infrastructure 
has connection of 10Gbps to GLIF. It also has 10G connection to Netherland’s 
Netherlight, which is one of GLIF Open Lightpath Exchanges. CESNET also 
provides dedicated Experimental Facility (hereafter “EF”) for Physicists and thank to 
its Large Infrastructure project it is open and ready to provide means for 
interconnection of any modern European infrastructure project. 

 

Fig. 3. Experimental Facility 

The facility is now mainly used for testing of new photonic devices developed by 
CESNET and also for testing of new network technologies in cooperation with our 
partners and in international research projects. 100Gbps Alcatel-Lucent transmission 
system has been tested recently [3]. These test proved that CESNET optical 

                                                           
3 CESNET prefers to use term “Experimental Facility”, which refers to multi-purpose, long 

term and less technology/vendor dependent than regular testbed. 
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infrastructure is prepared to adopt 100GB signal speed, not only on its backbone lines 
[4].  

CESNET uses EF for: 

•  Testing of new CL devices and new photonic products. 
•  Building and operation of testbeds. 
•  Disruptive experiments with new services and products before deployment. 
•  Support of experiments with new applications and research. 
•  Collaboration. 
•  First mile solutions testing. 

 

Fig. 4. Experimental Facility Utilization 

CESNET’s Optical Network Department also has metropolitan testbed in Prague 
(see Figure 5), which provides research cooperation with connected universities and 
their labs. This allows spreading optical research and project collaboration with 
CESNET partners. Also allows real-time demonstrations of modern optical network 
possibilities to university students. This EF is intended for E2E connections. 

 

Fig. 5. Metropolitan Experimental Facility in Prague 
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Abstract. Long-Term Evolution (LTE) standard merges an all IP voice
and data communications with dynamic spectrum resource scheduling.
The resource scheduler must balance the QoS requirements, traffic de-
mands, and physical channel conditions to create desirable wireless end-
user performance. The purpose of our research and the focus of this paper
is a development of a unified testbed platform based on Emulab that can
be used to examine the key aspects of an LTE system in realtime, in-
cluding real time uplink and downlink scheduling, QoS parameters, and
Android end-user applications. Our validation studies demonstrate that
the testbed is capable of achieving delay, loss, and jitter that can be as-
sociated with an LTE communication system, and can be easily used to
study a variety of LTE scheduling algorithms.

1 Introduction

Over the past several years, mobile carriers began the transition towards the
3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) stan-
dard. The LTE standard relies on Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA) for the downlink radio access. The uplink in LTE utilizes the
Single-Carrier FDMA (SC-FDMA) radio access scheme. Both the uplink and
the downlink can support multiple users concurrently by allowing the users to
be partitioned in time and frequency. A centralized resource scheduler is required
to create the time and frequency mappings for the users and the base station for
the uplink and the downlink. LTE differs from the previous 3GPP standards as
all of the communications are Internet Protocol (IP)-based, including the regu-
lar phone calls. The all-IP based nature of the communications requires Quality
of Service (QoS) to ensure that realtime traffic such as voice gets priority over
non-realtime traffic such as HyperText Transfer Protocol (HTTP). This feature
of LTE means that the scheduler must be cross-layer-aware and must consider
physical channel conditions as well as the Layer 3 QoS requirements.

A great breadth of research has been conducted regarding LTE up and down-
link scheduling. However, the majority of works rely either on pure simula-
tion [1,2] or on specialized hardware emulators [3]. The problem with simulation
approaches is that the simulation does not allow the complete high-fidelity sim-
ulation of a real-world LTE system (end users, services, base station, etc.) as

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 18–32, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



LTE Emulation over Wired Ethernet 19

the complexity severely impacts validation and simulation times. In addition, a
simulation approach requires rewriting the handset and server applications for
the simulation environment. Naturally, this approach requires extensive valida-
tion to ensure that the rewritten applications follow the same behavior as their
real-world counter parts. The hardware-based emulation solutions can emulate
the entire system, but the hardware settings might be closed to the experi-
menter because of the proprietary nature of the hardware emulator. Hardware
emulation systems typically suffer from scalability problems as they are primar-
ily designed for testing and troubleshooting. Finally, the emulation hardware
can be prohibitively expensive to some experimenters. In order to address these
two limitations, we sought to create an LTE emulation system that incorpo-
rates (1) end-user handset IP stacks and applications, (2) QoS management, (3)
real-world services, and (4) up/downlink LTE scheduling. Finally, the emulation
system must allow for repeatable and reproducible experiments, use commodity
hardware, and scale to several hundred or more users.

An LTE network is a system of systems, where the individual systems can
have a direct impact on other systems. Hence, we were interested in creating
a complete LTE emulator that could support the following types of scenarios:
“How would an Android application, or the cloud service X react to the QoS or
scheduler changes on the up/down LTE link?” “What is an impact of application
Y in a heavily congested cell?” “What are the measurable impacts of multicast
video distribution in an LTE network?” “What is an optimal QoS and pricing
strategy for a carrier for a given network and end-user applications?”

As the foundation for the emulator, we have chosen to use the Emulab
(http://www.emulab.net) [4] testbed platform from University of Utah. The
testbed is composed of several hundred commodity PCs with multiple network
cards and Cisco 6000 series enterprise switches. The high degree of connectiv-
ity between the commodity PCs coupled with custom switch Virtual Local Area
Network (VLAN) management software allows experimenters to create arbitrary
networks. Because of this capability, the Emulab testbed is well known in the
networking community for its flexibility in creating arbitrary network topologies
and its ability to conduct repeatable and reproducible experiments. Another no-
table feature of Emulab is that the testbed management source code is freely
available for download, meaning that anybody can create an Emulab instance
given sufficient hardware.

The other components of our LTE emulator were built around the Click Mod-
ular Router [5] (referred as Click from now on), Android Software Development
Kit (SDK), and the Linux operating system. All of the chosen components are
open source, thus allowing us to perform any necessary modifications. The result-
ing LTE emulation system is capable of running Android-based “soft” handsets,
using highly configurable QoS settings, utilizing any Linux-based service (httpd,
Session Initiation Protocol (SIP) proxy, etc.), and performing realtime uplink and
downlink LTE scheduling duties. The majority of this paper focuses on the em-
ulator architecture and the validation of the emulator. However, we did perform

http://www.emulab.net


20 R. Chertov, J. Kim, and J. Chen

several showcase experiments that demonstrate the interaction between the LTE
uplink scheduling, QoS settings, and the end-user application performance.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the related work. Section 3 describes our emulation architecture.
Section 4 tests the fidelity of the emulation. Section 5 presents the results of our
experiments. Finally, Section 6 concludes this paper.

2 Related Work

Several prominent scientific instrumentation companies such as Rohde & Schwarz,
Agilent Technologies, and Nomor Research provide products that can integrate
LTE hardware-based emulators with the user-supplied equipment to test end-
to-end performance in the LTE environment [6,7,8]. The two main drawbacks
of the hardware-based testers are the high price of the devices and the closed
nature of the equipment. From a research standpoint, the proprietary nature
of the LTE testers can possibly prevent experimenters from implementing and
testing their own scheduling algorithms.

The closest works in the literature that is comparable to our LTE emulator
is the Mobility Satellite Emulation Testbed (MSET) developed by Chertov et
al. [10] and the OpenAir LTE emulator [9]. MSET was primarily designed to
emulate single-carrier satellite Time Division Multiple Access (TDMA) links
and did not implement a dynamic scheduling scheme that could operate on 10
ms time boundaries. Additionally, MSET did not provide a highly configurable
QoS management system that is supported by our LTE emulator. The OpenAir
LTE emulator developed by EURECOM is capable of emulating LTE physical
and Media Access Control (MAC) layers over Ethernet, but it is more geared
towards modeling the radio channel, while our system makes more emphasis on
the scheduling aspects of LTE.

3 Architecture

The following section describes the components of the architecture that we have
developed to run a complete emulated LTE network on The Aerospace Corpora-
tion testbed. Our testbed is based on Emulab [4] and utilizes 150 nodes. Emulab
control software allows an experimenter to reserve a number of nodes and create
an arbitrary network via Virtual Local Area Network (VLAN) manipulation on
the experimental switches, which interconnect the testbed nodes. In addition,
each reserved node is solely dedicated to the experiment owner who has root
privileges. On Emulab, Base Stations (BSs) and end-user handsets can be im-
plemented by using testbed nodes connected by a Local Area Network (LAN),
as shown on Figure 1. In addition, all of the nodes utilize a separate 1 Gbps
network interface for control traffic only to ensure that experimental and control
packets do not interfere with each other. The rest of the section described the
individual components that are necessary to turn an Emulab-type testbed into
an LTE emulator.
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Fig. 1. Emulated LTE topology, where the base station and the end-user handset
functions are performed by commodity PCs

3.1 LTE Radio Emulation

Radio emulation is the foremost critical component of our framework. The radio
emulator is what allows the access point or the end-user handsets to control
the bandwidth, jitter, and latency of the LTE network. In Figures 2(a) and 2(b),
the LTE Radio Emulator component is responsible for the LTE radio emulation.
Currently, the radio emulator does not model any physical layer parameters such
as noise, multipath, etc. The primary function of the radio emulator is to ensure
that the right number of bits is sent during an appropriate time slot. However,
the radio emulation element can be easily modified to read from scenario files
that specify Block Error Rate (BLER) for a given time instance in order to
determine if packets need to be corrupted or not. The BLER scenario files can
be derived by running physical layer simulations that take into account fading,
multipath, antenna parameters and interference over a given time period.

Figure 3 shows a sample 10-subframe LTE uplink schedule where the dark
gray blocks denote Transport Block (TB) allocations to a particular user. In an
LTE schedule, if a user is assigned a set of K TBs in a frame, then the sum
of the transmitted bits can be computed by adding up the usable bits for each

(a) Uplink (b) Downlink

Fig. 2. End-user handset and base station emulation
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TB in the set K. Lets assume that each assigned TB uses the 16 Quadrature
Amplitude Modulation (16QAM) modulation with a code rate of 1

2 . This coding
when using an LTE waveform translates to 336 bits per TB1. This would imply
that the user can transmit 672 bits during subframe 0, 1008 bits during sub-
frame 5, and 1344 during subframe 9. Since a radio emulator permits the user or
the base station to transmit only the assigned number of bits during the allotted
subframes, the bandwidth, jitter, and latency will be affected as a result.

Fig. 3. Sample LTE schedule

We implemented the LTE radio emulation as Click element just like in the
previous work on satellite TDMA emulation [10]. The radio emulation element in
the emulated handset dequeues bits from an upstream queue only if the current
LTE scheduler assigned TB(s) to the current user. The queues in Click are
packet-based, hence we implemented an accounting scheme to keep track of how
many bits of the current packet have been sent. Once all of the TBs assigned
to the current packet have been “sent”, the packet is dequeued from the queue
and sent over the Ethernet. This accounting approach allows a packet to span
several TBs, subframes, or even schedules. Alternatively, a single TB can hold
multiple packets if its usable bit volume is high enough. It is easy to see that
the time it takes to transmit a given packet is entirely dependent on the LTE
scheduler and the allocations it creates for a given user. Therefore, the radio
emulator can influence the network effects such as delay and jitter solely based
on the schedule allocations just like the real-world LTE network. In this version
of the emulator, we did not implement the Hybrid Automatic Repeat Request
(HARQ) retransmission scheme, but we do plan to add it in the future.

The downlink can be emulated using the same radio emulation Click element
such that the base station emulates only the downlink (packets to be transmitted
to the end users). This arrangement allows for a complete LTE emulated network
to run on the testbed.

3.2 QoS Queue Management

Instead of using a simple drop-tail Queue, we opted to develop a highly cus-
tomizable queue management Click element, which is labeled as QoS Queue in

1 7 symbol
subcarrier

× 12 subcarrier
RB

× 4 bits
symbol

∗ 1
2
∗ 2RB

TB
= 336 bits, (each TB is composed of

two Resource Blocks (RB)).
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Figures 2(a) and 2(b). The queue management element was designed to allow
priority queues based on Differentiated Services Code Point (DSCP) values. The
queue management element permits any user-specified mapping of DSCP code
points into N priority queues, where queue zero is the highest priority and queue
N − 1 is the lowest. The queues have an adjustable queue depth. Finally, each
priority queue can be configured to delete packets that have been enqueued for
more than X seconds. This feature can be useful when experimenting with real-
time traffic, where packets that have experienced severe queuing delays might as
well be dropped. Since the end-user handsets send packets to the base station,
the queue management element maintains a set of priority queues only for the
base station, as shown in Figure 2(a). On the base station, however, the queue
management element creates a set of priority queues for each individual end user
as shown in Figure 2(b).

The queue management element is tied to the LTE radio emulator element,
such that the radio element pulls the packets out of the highest priority queue
first, when the user has been allocated LTE resources. Alternatively, the LTE
radio emulator can specify from which queue to dequeue if such information is
provided in the schedule. Finally, the queue manager can provide a variety of
statistics, such as queue depth, bytes seen, bytes dropped, etc., via the Click
read handler.

3.3 Schedule Management

One of the key aspects of an LTE network is the centralized scheduler that
creates up and downlink schedules. The scheduler is responsible for responding
to user demands and assigning non-overlapping frequency and time resources
to the users. In the real-world LTE network, the control channels are used to
convey user channel quality conditions and traffic demands to the scheduler. In
our emulated LTE architecture, we also utilize a control channel in the form
of an Ethernet LAN that is separate from the experimental Ethernet LAN.
Figure 2(a) shows the relationship between the end-user emulated handsets and
the uplink scheduler. The emulated handsets submit the queue statistics to the
uplink scheduler by accessing the Click read handler of the queue management
element. The uplink scheduler aggregates all of the individual queue reports and
submits them to the currently selected uplink scheduling algorithm. The uplink
scheduler considers the aggregated queue statistics, Channel Quality Indication
(CQI) values, scheduler parameters (end-user priorities, traffic type preferences,
etc.) and then creates a global schedule that is transmitted to the emulated end-
user handsets. The emulated end-user handsets in turn install the new schedule
such that the LTE radio emulator can follow the new schedule. The downlink
schedule management functions in exactly the same fashion. Figure 2(b) shows
the relationship between the base station and the downlink scheduler. The CQI
values for uplink and downlink can be derived in the same off-line simulation
fashion as the BLER values used by the radio emulation element.

The schedule management system is created by using a client and server
architecture that relies on Stream Control Transmission Protocol (SCTP) for
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communication. The handset or the base station managers can interact with the
Click elements via the read/write handlers. The scheduler manager’s primary
goal is to aggregate the data from the clients and then submit the data to a
scheduling algorithm. The output of the scheduling algorithm can then be dis-
seminated to the handset or the base station managers. The scheduler manager
architecture allows for the scheduling algorithm to be chosen at startup via a
command line argument. This feature allows the user to rapidly experiment with
a variety of schedulers just by restarting the scheduler manager. We have opted
to use SCTP over Transmission Control Protocol (TCP) to ensure that queue
aggregation, schedule creation, and schedule dissemination cycle can occur in
under 10 ms. Additionally, we disabled the delayed transmissions to force SCTP
to transmit the data immediately. This setting change was necessary to achieve
the aggregation of end-user traffic demands and creation of a new LTE schedule
in the 10 ms time frame.

The schedule management system also has the ability to time-synchronize
the handset managers (not applicable for the downlink as there is only one base
station). The time synchronization uses a technique similar to the Network Time
Protocol (NTP) to measure the offset between the scheduler and the clients [11].
However, the clients do not change their local clocks to match the clock of the
server. The clients adjust the start time of the next schedule based on the offset
between the server by telling the LTE radio emulation element to either increase
or decrease the start time of the next LTE frame. Such an approach can ensure
that the clients synchronize their packet transmissions according to the global
uplink schedule.

3.4 “Soft” Handsets

As one of the primary goals of our emulation effort was to run real-world cell
phone applications, we have installed the Android emulator SDK on our testbed
nodes. The Android emulator runs the actual Android firmware on a Qemu
(http://www.qemu.org) Advanced RISC Machine (ARM) emulator. When run-
ning, the Android soft handset uses Qemu to send packets via the Linux IP stack.
Using Click, we created a fake Ethernet device2 called LTE, which receives all of
the packets from the Linux IP stack destined for the experimental IP subnet. In
turn, the fake Ethernet device injects packets into the kernel-level Click, which
then uses our QoS queue and LTE radio elements to emulate the LTE MAC
layer (see Figures 2(a) and 2(b)).

3.5 Admission Control and Mobility

Admission control can be accomplished by having a scheduler for a given base
station deny a connection attempt by an end user in case there is a resource
shortage. If the experimental scenario specifies that the end user is in reach of

2 FromHost Click Modular Router element.

http://www.qemu.org
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several base stations, then end user can be scripted to try the base stations in
order until a connection can be established.

Our architecture allows for creating experiments where the users can migrate
from one base station to another and the schedulers for the base station can
admit or not admit new users. In our system, base station migration is nothing
more than establishing a connection to a scheduler instance that manages a
particular base station. In addition, the handset emulator needs to start utilizing
an Ethernet MAC that corresponds to a new base station. MAC addressing
ensures that the packets will be delivered only to the newly associated base
station.

4 Emulator Validation

It was important to ensure, prior to conducting the experiments, that the emu-
lation components produced the expected results. This required running a suite
of calibration experiments to ensure that the specified delay, loss, and jitter of
a given LTE network were achieved.

4.1 Experimental Layout

For our validation experiments, we have used the topology shown in Figure 1.
The topology has 40 testbed nodes that run Fedora14 and use the Android
emulator with Android firmware version 2.3.3. Even though the testbed supports
150 nodes, only 40 nodes were available to us as other nodes were down for
maintenance or were used by other experimenters. One node serves as a base
station. All of the nodes use Click Modular Router 2.0 and use our custom
Click elements described in Section 3. For the validation experiments, we have
chosen to concentrate on the uplink as it is more challenging from the emulation
perspective: forty nodes must perform in unison to abide by the global uplink
schedule versus just the base station shaping its own downlink. The schedule
manager was configured to check the timing offsets between the base station
node and the handset nodes every 500 ms and could adjust the frame offset by
as little as 0.01 ms. In addition, an Exponential Moving Average (EMA) was
used to keep track of the time offset between the handset node and the base
station.

4.2 Validation Results

The uplink LTE emulator can be deemed successful if it achieves timing syn-
chronization between the participants and the correct delay and jitter effects are
produced. To test the uplink emulation, we have used a proportional schedule
(equal allocation to each handset), shown in Figure 4. The proportional schedule
evenly divides an LTE 10-ms frame with 6 TB rows among 30 handsets. Each
handset gets two TBs (6030 = 2). The schedule in Figure 4 also shows to which
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Fig. 4. Proportional LTE schedule that assigns two TBs per handset

handset ID the TBs are assigned. For example, handset IDs 12, 13, and 14 can
transmit bits only during the fifth millisecond of the 10-ms frame.

We have used the 16QAM modulation with a code rate of 1
2 (one of the

allowed LTE uplink settings), which equates to 672 bits per handset per frame
(see Section 3.1). With a 672-bit allotment, each handset can transmit an 84-
byte packet every 10 ms. Even though a proportional scheduler is used, every
handset submits its queue statistics to the uplink scheduler, which disseminates
the global schedule. This was done to ensure that all parts of the emulation were
active.

The nodes that emulated the handsets were configured to transmit 84-byte
UDP packets (includes Ethernet/IP/UDP headers) at 200 packets per second
to the base station node for 100 seconds. The packet transmission rate was
intentionally set too high, to determine if the LTE emulation shaping would
take effect. The base station node used Click’s StoreUDPTimeSeqNum element
to embed time stamps into the packets as soon as they arrived and then used
ToDump element to save the captured packets to disk in Packet CAPture (PCAP)
format.

The packet inter-arrival times computed from the base station node’s time
reference point have the following statistics: mean – 10.0 ms, 5th percentile –
9.97 ms, 50th percentile – 9.985 ms, and 95th percentile – 10.036 ms. The inter-
arrival statistics do indeed show that LTE emulation allowed only one packet
per handset every 10 ms.

A much more interesting test is to determine if all the 30 handset nodes were
synchronized on the uplink, and if the packet arrival times coincided with the
global uplink schedule. The packet arrival times of the individual handset nodes
were compared against a static repeating 10 ms schedule shown in Figure 4.
We computed the time delta between the observed packet arrival time and its
logical slot location in the schedule. The time deltas for all 30 handset nodes
have the following statistics: mean – 0.279 ms, 5th percentile – 0.108 ms, 50th
percentile – 0.23 ms, and 95th percentile – 0.623 ms. Visually, the data can be
represented as shown in Figure 5. The numbers and their position represent the
IDs of the handset nodes and the time of the packet arrival from that node, the
solid vertical lines signify start/end of a 10-ms frame, and the dashed vertical
lines signify 1-ms subframes. The data almost exactly matches the schedule
shown in Figure 4 except for the time shift of around 0.23 ms (50th percentile
time delta). Even though there is a small violation in the schedule, the fact
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that 30 handset nodes were able to almost exactly synchronize with the global
schedule shows great promise in the emulator’s capability. In the future, we can
improve the timing by using Precision Time Protocol (PTP) or by coupling
Global Positioning System (GPS) devices to the testbed nodes [10].
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Fig. 5. Packet arrival times overlaid with an uplink LTE schedule

5 Experiments

In this section, we present several uplink experiments that show the interaction
between scheduling, QoS, and end-user application performance. For the exper-
iments, we used all 40 handset nodes and used the same LTE parameters as in
Section 4, which equates to an uplink capacity of just over 2 Mbps. The primary
goal of the experiments was to show that the interactions can be quite significant
and warrant more detailed future studies.

5.1 HTTP Performance

To study the performance of HTTP from the end user’s perspective, we have
written a simple Android application that can time how long it takes to load a
given webpage. Using this application and the Android Debug Bridge (ADB),
we created a framework where we could instruct a handset to visit a web page,
wait until it loads, and log the result to a log file.

As we were using a closed test environment, we developed a suite of nine
synthetic web pages that included graphics and text. The pages were sized to
mimic the webpage distribution observed by Google crawlers [12]. The base
station node was configured to run an Apache web server and was loaded with the
synthetic web pages. The handset nodes were configured to visit the web pages
at random for 900 seconds, and used an exponential “reading” time with a mean
of 30 seconds before visiting the next web page. The “reading” time distribution
was taken from the IEEE C802.16m-07/074r1 evaluation document [13].

For this test, we have used two LTE uplink schedulers: proportional and on-
demand round robin. Just like in the validation section, the proportional sched-
uler simply allocates � 60

40� TBs per handset and does consider the queue reports.
On the other hand, the on-demand round robin scheduler allocates the resources
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to the handsets only if they report non-zero queues. The allocations are per-
formed in a first fit fashion such that the first subframe must get filled before
the TBs in the next subframe can be allocated. Finally, the handset scanning
order is round robin to ensure fairness.

Figure 6 shows the average, min, and max web page load times when using
only 1 Gbps Ethernet, LTE uplink proportional scheduling, and LTE uplink
round robin on demand scheduling. It is interesting to see that the web page
load times for on-demand LTE scheduling is comparable to the no-emulation
results. Not surprisingly, the proportional scheduling does not perform as well,
primarily because the resources are assigned to the handset nodes even when
no HTTP get requests are issued, thus disallowing active handset nodes to take
advantage of the unused resources.
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5.2 VoIP Performance

As cellular networks are primarily used for voice communications, we have per-
formed several experiments with only VoIP calls. In our experiments, we used
a Constant Bit Rate (CBR) application to generate UDP packets such that the
packet size and the packet rate was representative of the G.711 codec [14]. The
G.711 codec averages around 87 Kbps on Ethernet and the packets cover 20
ms of voice data, which equates to 50, 217-byte (including headers) packets per
second. We chose the G.711 codes as it offers relatively high fidelity and can
occupy a significant part of the uplink bandwidth.

To generate realistic call duration times observed by a single base station,
we used the lognormal distribution with μ = 3.287 and σ = 0.891, as was
observed by F. Barcelo and J. Jordan [15]. We chose the lognormal instead of
the recommended lognormal-3 distribution as we wanted to utilize the readily
available Perl probability packages. For the call arrival times, we have chosen a
Poisson distribution and varied the 1

λ (inter arrival mean) parameter between
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60, 30, and 20 seconds. The expected number of concurrent calls can be derived
from the following equation:

E[C] = N × E[D]

E[D] + 1
λ

where E[D] = eμ+
1
2σ

2

. The 1
λ values of 60, 30, and 20 equate to 16, 22.85, and

26.66 expected concurrent calls, respectively, for our 40-node topology.
Prior to conducting experiments with the LTE uplink emulation, we ran the

voice scenario on the testbed for 10 minutes without any emulation using the
arrival 1

λ = 60 to measure jitter and loss values. As the VoIP protocol is most
sensitive to jitter (inter arrival times) and packet loss ratios, we primarily concen-
trated on these network statistics. The inter arrival times for the VoIP packets
were measured and the following statistics were recorded: mean – 20 ms, 5th
percentile – 19.967 ms, 50th percentile – 20.017 ms, and 95th percentile – 20.018
ms. Just as expected, the inter arrival times were almost exactly 20 ms (50 pps)
and there were no losses.

Next, we enabled LTE uplink emulation with an on-demand round robin
scheduler and configured the queue manager to drop voice packets that sat in
the uplink queue for more than one second. Additionally, the uplink queues were
sized to hold 64 packets as it is a typical size for many network cards. Table 1
shows the obtained inter arrival times for call arrival 1

λ values of 60, 30, and
20. It is interesting to note that some losses occurred and that even though the
mean inter-arrival values are almost 20 ms, the 5th, 50th, and 95th percentile
values indicate increased levels of jitter compared to the pure Ethernet scenario.
Scheduling is one of the primary reasons for jitter, as packets cannot be sent
from a handset node until the scheduler grants the resources, and this can take
10 ms at a minimum. Additionally, even though the average call volume band-
width does not exceed the 2 Mbps up link capacity, there can be instances when
too many calls are in the system, thus leading to queue-based delays and queue
overflows.

5.3 HTTP and VoIP

For the final set of experiments, we have combined HTTP and VoIP traffic. The
handset nodes were configured to browse web pages and make VoIP calls as was
described in the above sections. The HTTP and VoIP calls were allowed to occur
independently of each other to mimic users that can browse and call at the same
time.

As the handset nodes were allowed to browse and call at the same time, we
have conducted two sets of experiments where we have given priority to VoIP over
HTTP and where VoIP and HTTP were treated equally. Just like before, we ran
the experiments for 10 minutes where 40 handset nodes requested webpages and
made phone calls. To ensure a heavily loaded up link, we have used the call arrival
1
λ value of 20 sec. Also, the uplink LTE scheduler was configured to provide on-
demand round robin allocations, and the queue manager was set to time-out
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Table 1. VoIP Inter-Packet Delays (ms)

Call arrival 1
λ

60 sec 30 sec 20 sec

5th 0.998 0.999 0.998

50th 19.968 19.967 19.967

95th 38.968 39.985 40.031

mean 20.344 20.316 20.257

loss ratio 0.015 0.015 0.012

Table 2. VoIP Inter-Packet Delays (ms) in the Presence of HTTP

Priority No Priority

5th 0.997 0.995

50th 17.972 19.02

95th 42.979 41.032

mean 20.257 20.505

loss ratio 0.012 0.021

priority traffic after one second. Both of the priority and best-effort queues were
configured to allow 64 packets before dropping any additional incoming packets.

Table 2 shows the VoIP packet inter arrival times when VoIP was given priority
and when it was treated the same as HTTP. The jitter values for priority and
non priority cases are quite similar. The main difference between priority and
non priority cases was the loss ratios. As expected, the non priority experiment
produced more VoIP packet losses on the uplink. Also, the results in Table 2
are similar to the results in Table 1. The slightly lower 50th percentile values in
Table 2 can be attributed to a somewhat higher volume of random VoIP traffic
during the experimental runs, which led to an increased amount of jitter.

Figure 7 shows the web page loading times when no VoIP is present, VoIP is
given priority, and VoIP has the same priority as HTTP. When VoIP is given
priority, the web page load times are considerably longer compared to when no
VoIP is present. In addition, HTTP page load times experience a large amount of
variance as HTTP get requests can be processed only after all of the VoIP queues
have been drained. The HTTP page load times when VoIP was not given priority
are similar to when no VoIP was used. This is the case because HTTP traffic on
the uplink is primarily composed out of TCP SYN/ACK and HTTP get request
messages. Since the HTTP uplink traffic is light, the VoIP loss ratios and jitter
values are not significantly impacted, as Table 2 demonstrates. Based on this
observation, a cellular provider can choose not to prioritize voice-over HTTP
in order to significantly improve web page loading times while not significantly
affecting VoIP communications.
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Fig. 7. Web page loading times in the presence of VoIP

6 Conclusion

In this paper, we have described an Emulab-compatible LTE emulation system
that relies on commodity PCs and wired Ethernet. The emulation system is ca-
pable of emulating the LTE radio, LTE scheduler, QoS management, and the
Android handsets and scales with the number of the available PC nodes. The
all-encompassing aspect of the system permits experimentation with a wide va-
riety of components: (1) end-user handset IP stacks and applications, (2) QoS
management, (3) real-world services, and (4) up/downlink LTE scheduling. Our
validation experiments have shown that the LTE emulation system can accu-
rately produce network-level effects that are expected from an LTE setting in-
cluding data transmissions on 10 ms time boundaries. Finally, our limited set
of experiments has shown that scheduling and QoS settings can have a signifi-
cant impact on end user performance. In our future work, we plan to investigate
scheduling approaches that take into consideration CQI and BLER values, ex-
pected traffic arrival rates, and QoS settings. We plan to extend the emulator to
allow mobility, an HARQ mechanism, and increase the number of possible end
users by four fold via Xen virtualization (http://xen.org). Finally, we plan to
run experiments that utilize several base stations and allow for user mobility
between the stations.
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Abstract. Current digital packet-switching communications involves more 
cross-layer trade-offs than legacy wireless communications. Conventionally, 
each network layer is studied separately, and then the total system is evaluated 
in field tests. However, the results are always specific to the particular 
environmental conditions during the test and are not reproducible. Here we 
propose an architecture for an environment-independent virtual wireless 
testbed. We describe the implementation and validation results for a 
programmable wireless propagation emulator—the key component of the 
testbed. It was found that the system could emulate wireless propagation over at 
least 10 wireless nodes in real time using 10 field-programmable gate arrays 
with programmable parameters consisting of the channel model, path loss 
model, antenna model, and emulation scenario. Thus, the system is promising 
as a replacement for conventional field tests. 

Keywords: Wireless testbed, Wireless emulator, Virtual networking. 

1 Introduction 

Today, digital broadband communication systems often rely on a combination of 
wireless and wired network technologies. Furthermore, systems are rapidly switching 
from single-purpose (such as voice specific) to general-purpose (IP) services by 
adopting packet switching. These packet-switching systems employ more cross-layer 
collaboration than conventional networks, such as TCP retransmission for quality of 
service (QoS) control and Mobile IP for transparency. 

Conventionally, the wireless layer is evaluated without taking into consideration 
the upper-layer protocols, which are largely evaluated with wireless simulators or 
specific existing wireless technologies (i.e., LTE, Wi-Fi, or Wi-MAX). Therefore, a 
comprehensive evaluation of any new network technology requires a complete field 
test. However, the results of any field test are always specific to the environmental 
conditions during the test (geographic location, physical specifications, MAC, link-
layer protocols, radio licensing terms, etc.) and are therefore not easy to reproduce.  

Here we describe an environment-independent virtual wireless testbed that is fully 
programmable, from the physical layer to the application layer, and can interface with 
external network devices in real time while allowing easy reproducibility. In this 
section, we describe the current state of today's wireless testbed and the advantages of 
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an environment-independent system. Then, in Sections 2 and 3, we describe the 
proposed architecture and an implementation of the main component, the 
programmable wireless propagation emulator. Section 4 presents the results of an 
evaluation of the emulator, and Section 5 lists our conclusions. 

1.1 Current State of the Art 

In the field of network research, several wireless testbeds have been developed, but 
none allow complete environment-independent evaluation without a field test. 
GNURADIO [1], for example, is a software-defined radio (SDR) that provides 
programmable capability for the PHY and MAC layers. However, it has specific RF 
units. This necessitates the use of a propagation simulator or a field test for total 
evaluation. The ORBIT Radio Grid Testbed [2] provides an evaluation environment 
for upper-layer protocols such as for mesh networks comprising established 
IEEE802.11 wireless LANs and IEEE802.16 Wi-MAX stations on a grid. However, 
only a fixed environment is provided for path loss and delay spread, and the lower 
network layers (MAC and PHY) are not reconfigurable. In addition, the CMU 
wireless emulator [3] includes a digital signal processor (DSP) for user-defined 
propagation between specific wireless units in real time, but it does not include 
wireless radios.  

Thus, the existing wireless testbeds are restricted to particular environments 
(propagation, channel, etc.), device characteristics (frequency, power, 
modulation/demodulation, antenna, etc.), and upper-layer protocols (multiplex, 
duplex, packet congestion control, etc.). The consequences of these restrictions are 
quite significant in practice. For example, we spent much time and money to test a 
high-speed hand-over protocol over Wi-Fi at an actual motor sports course with a 
professional driver and a racing car. However, this only demonstrated the 
performance under a particular set of conditions (2.4 GHz, DSS, single vehicle, and 
closed-circuit environment). If we needed to perform the same evaluation using 
different preconditions (OFDM, 5.8 GHz, multiple vehicles, etc.), we would have to 
spend the same amount of resources again.  

1.2 Advantages of Virtual Wireless Testbed 

The proposed environment-independent virtual wireless testbed is fully programmable 
from the physical layer to the application layer and can interface with external network 
devices in real time for easy reproducibility. Because of the wide adaptability of the 
proposed architecture, there are numerous prospective uses with no regulatory 
limitations. This will allow users to evaluate their own new concepts without requiring 
radio licenses and test fields. The use case shown in Fig. 1 is one possible example. The 
testbed is a typical use case of network virtualization.  

Most new ideas on the future of the Internet are evaluated over the testbed that has 
been deployed over a layer provided by virtual technologies.  
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The adaptivity of the virtual network provides an effective evaluation environment. 
However, only the wireless part depends on particular technologies.  
Therefore, we hope to use this virtual wireless testbed as part of a virtual network 

that provides network service functions such as flow control, mobility control, and 
authentication.  

For example, with a heterogeneous network system with a different wireless network, 
a user can configure each wireless node to employ different wireless technologies. In 
addition, the propagation environment is also programmable; this makes it easy to 
evaluate systems in different environments such as urban, rural, and indoor settings. 

Although this system does not dispense with all experimental tests, the user can 
reproduce the experimental environment by inputting the data gathered during the 
experiment. In addition, and most importantly, the user only needs to program or 
configure the target part to be evaluated—all other parts would be described by ideal 
parameters. For example, if a user wants to evaluate a new concept for an antenna, it is 
only necessary to program the antenna characteristics, while selectable predetermined 
values are provided for all of the other layers: PHY, MAC, LINK, and transport. 

  

Fig. 1. Prospective use case for proposed virtual wireless testbed 

2 Proposed Architecture 

As shown in Fig. 2, the proposed testbed incorporates a scenario generator, several 
reconfigurable wireless nodes, and a programmable wireless propagation emulator. 
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Fig. 2. Architecture of environment-independent virtual wireless testbed 

2.1 Scenario Generator 

The scenario generator provides the user interface, allows resource management 
(setting/selecting parameters and scenarios), and calculates the dynamic propagation 
scenario that would be executed by the emulator. A commercial off-the-shelf personal 
computer is used as the scenario generator. 

2.2 Wireless Nodes 

The wireless nodes, as shown in Fig. 3, are implemented on field-programmable gate 
arrays (FPGAs) and provide a fully reconfigurable PHY, MAC, and Frontend (roll-off  
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Fig. 3. Reconfigurable wireless node 

filter, AGC, etc.). In addition, they incorporate an embedded computer, which is used 
for the Link or higher-layer control. For a virtual network, a user may also implement 
a virtual host on this embedded computer. 

2.3 Programmable Wireless Propagation Emulator 

As shown in Fig. 4, this system emulates the propagation path between wireless 
nodes. The channel and path loss models are implemented using a finite impulse 
response (FIR) filter on FPGA hardware. All wireless propagation behavior can be 
described as a combination of delay, amplitude, and phase. The channel model is 
implemented with a seven-tap FIR that also emulates frequency-selective fading. The 
multiplication value (Kn and dn in Fig. 4) for the signal is calculated beforehand using 
the scenario generator, and the values are updated based on the time and the user-
defined scenario. All the wireless nodes are connected to each other through this 

propagation emulator using I/Q complex signals. Therefore, 2n − n( ) propagation 

paths are required for this propagation emulator.  

 

Fig. 4. Programmable wireless propagation emulator 
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3 Implementation of Programmable Wireless Propagation 
Emulator 

We implemented the scenario generator and programmable wireless propagation 
emulator for 10 wireless nodes. The scenario generator was implemented in software 
on a Linux system, and the programmable wireless propagation emulator was 
implemented using a hardware board that integrates FPGAs. Gigabit Ethernet 
connects the scenario generator and programmable wireless propagation emulator, as 
shown in Fig.5. 

Fi 5 S i
 

Fig. 5. System overview 

3.1 Scenario Generator  

The scenario generator software comprises the following components: 

3.1.1  GUI 
We implemented the entire user interface in Adobe Flash and PHP, and considered 
system sharing. This GUI provides a user-friendly interface that shows the scenario 
behavior and all the parameters of the wireless nodes. 

3.1.2  Propagation Characteristics Generation 
The scenario generator calculates the propagation fluctuation parameter using the 
conditions provided by the user through the GUI. The implemented prototype 
supports the configurable conditions for the propagation path shown in Table. 1. 
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Table 1. Configurable conditions 

Path loss model Channel ITU-R M.1225 Fading Model Antenna 
Two-way ray Indoor A/B Classic Isotopic 
COST-231Hata Pedestrian A/B Flat Dipole 
 Vehicular A/B User defined ITU-R M.2135 
 PDSekm  ITU-R M.1245 
 User defined  User defined 

3.1.3  Path Loss Calculation 
The scenario generator calculates the path loss between nodes using the conventional 
formulas described in the following. In the case of the two-ray model, the path loss is 
given by (1) for sufficiently short distances and by (2) otherwise. 

L = 20log10

4πd

λ






                    (1) 

L = 40 log10 d( )− 20 log10 ht( )− 20 log10 hr( )              (2) 

For the COST-231 Hata model, the path loss is given by 
 

L = 46.3+ 33.9log( f )−13.82log(ht )−a(hr )+ 44.9−6.55log(ht )[ ]log(d)+ 3

a(hr) = (1.1log( f )−0.7)hr − (1.56log( f )−0.8)
 (3) 

 

where L represents the path loss in decibels; d represents the distance, λ represents the 
wavelength, and ht and hr are the antenna heights all in meters; and f denotes the 
frequency in megahertz. 

3.1.4  Fading Calculation 
The scenario generator calculates the vector data for the Rayleigh fading wave r(t) as  

r(t) = x(t) + j ∗ y(t)
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where d is the maximum fading frequency in hertz and N1 is the number of FIR taps. 
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3.1.5  Emulation Scenario 
The emulation scenario is defined by the time and location (x, y, z, and azimuth) of the 
wireless nodes using the GUI, as shown in Fig. 6. The scenario generator calculates the 
time-based fluctuation of the propagation using the process described above. 

Fig. 6. Emulation scenario GUI 

3.2 Programmable Wireless Propagation Emulator 

The programmable wireless propagation emulator was implemented in hardware 
using 10 FPGAs (Vertex-6 XC6VLX130T, 1156 pin, 200 MHz). We implemented 
this 10-node capability in the virtual wireless space with a 49% slice, 74% DSP, and 
60% RAM consumption. 

After calculating the vector data of the path loss and channel model using the 
scenario generator, the data were transferred to the programmable wireless 
propagation emulator over Gigabit Ethernet. The programmable wireless propagation 
emulator operates in real time by combining the delay memory and complex 
multipliers, as shown in Fig. 7. 

In this proposed architecture, 215 adders and 360 multiplexers emulate wireless 
propagation with 200-MHz clocks. In addition, the required number of I/O pins P 
between the wireless nodes and propagation emulator is given by 
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P = n × N × k                                (5) 

where n is the number of wireless nodes, N is the bit depth or signal resolution, and  
k = 4 (I,Q, +,-). 

In other words, the scalability of the proposed architecture depends on the clock 
speed of the FPGA, signal resolution, and the number of I/O pins.  

  

Fig. 7. Block diagram of programmable wireless propagation emulator 

4 Evaluation of Programmable Wireless Propagation Emulator 

We evaluated the accuracy, process delay, and behavior of the implemented 
programmable wireless propagation emulator. In this section, the evaluation 
methodology is explained first, and then the results of the evaluation are described. 

4.1 Evaluation Methodology 

Here we used existing legacy radio measurement equipment such as a spectrum 
analyzer, signal generator, and commercial Wi-Fi products. Because the 
programmable wireless emulator only had digital I/Q interfaces, it was not amenable 
to visible inspection. Therefore, we employed analog-digital (A/D) and digital-analog 
(D/A) converters for use between the measurement equipment and programmable 
wireless emulator. In addition, the throughput was measured with iPerf on a personal 
computer connected to the both ends of the wireless LAN device. 

4.2 Path Loss Characteristics  

We measured the throughput between 2.4-GHz wireless LAN access points (AP) and 
stations (STA) using the emulator and an RF attenuator, as shown in Fig. 8. The 



42 H. Mano 

 

results of this measurement showed that differences exist between the emulator and 
RF attenuator, as pointed in Fig.9. 

The difference in the low-attenuation range is caused by saturation of the analog 
circuit, and the difference in the high-attenuation range is caused by noise in the 
analog circuit. As a result, we confirmed that the implemented emulator can replace 
the RF circuit in adding attenuation to the signal path with the desired scenario but 
does not have the characteristics of analog circuits. Further, we confirmed that the 
accuracy of attenuation to a static signal was +/- 1.0dB in comparison to the RF 
attenuator. In addition, the signal delay of the emulator was confirmed to be only 1 µs 
by pulse reply. 

  

Fig. 8. Measurement scheme for path loss characteristics 

 

Fig. 9. Throughput for path loss 

4.3 Desired/Undesired Signal Characteristics 

We measured the desired/undesired (D/U) ratio at 10% outage throughput of a wireless 
LAN link with an added undesired CW or OFDM signal, as shown in Fig. 10. From the 
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measurement results shown in Fig. 12, we see that the D/U characteristics over the 
emulator and RF attenuator are in close agreement. In addition, it was confirmed that the 
emulator added signals with different propagation paths. 

  

Fig. 10. Measurement scheme for D/U signal ratio 

 

Fig. 11. D/U signal ratio over programmable wireless propagation emulator 
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4.4 Fading Signal Characteristics 

Using the same measurement scheme as that shown in Fig. 10, we added a particular 
fading channel model to the wireless LAN link between the AP and STA. By 
monitoring the signal at port 4, we confirmed that a signal occurred over the 
propagation path, as shown in Fig. 13. 

 

Fig. 12. Fading effect: flat/classic 

4.5 Dynamic Emulation of Moving Station 

We programmed a vehicle scenario in which the distance between two wireless nodes 
increases and decreases with time. We then measured the attenuated signal level with 
the CW signal as shown in Fig. 14 and Fig. 15.  

 

Fig. 13. Signal output level for vehicle scenario with two-way ray model 
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Fig. 14. Signal output level for vehicle scenario with COST-231 Hata model 

4.6 Error Vector Magnitude Measurement 

We measured the internal effect on the error vector magnitude (EVM) using an ideal 
OFDM signal. Table 2 lists the measured EVM data for the original signal and the 
signal after passing through the emulator path shown in Fig. 16. As seen from these 
measured data, the EVM indeed degraded. However, it is reasonable to assume that 
these changes were caused by the characteristics of the analog conversion because the 
emulator performs only digital operations, and the typical digital operation error is not 
as small as that measured. In addition, the results showed that there was no significant 
quality change that would violate the IEEE802.11 standard. 

 

Fig. 15. EVM through programmable wireless propagation emulator 
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Table 2. EVM of programmable wireless propagation emulator 

Item Measurement point Difference Unit IEEE802.11 
Limit 

Input Output 

EVM All Carr. 1.03 2.95 +1.92 % 5.62 
-39.76 -30.61 -9.15 dB -25.00 

EVM Data Carr. 1.04 2.98 +1.90 % 5.62 

-39.69 -30.53 -8.84 -25.00 -25.00 

EMV Pilot Carr 0.91 2.57 -1.6 % 39.81 

-40.77 -31.80 -9.46 dB -8.00 

IQ Offset -69.50 -58.08 -11.42 dB -15.00 

Gain Imbalance -0.09 -0.07 -0.02 % - 

-0.01 -0.01 0 dB - 

Quadrature Err. 0.00 -0.04 0.02   

Freq Err -149.13 -152.60 -3.60 Hz +/-48840 

Symb Clock Err. 0.09 -0.03 0.12 ppm +/-20 

5 Conclusions 

In this paper, we proposed an environment-independent virtual wireless testbed 
architecture and reported the implementation of a wireless propagation emulator.  

The results of the actual implementation of the programmable wireless propagation 
emulator showed the following: 

• The wireless propagation emulator emulates wireless propagation with sufficient 
accuracy (±1.0 dB). 

• The emulation delay is small enough for this system to be used as a real-time air 
interface (1.0 µs). 

• The wireless propagation emulator emulates the typical behavior of flat fading and 
frequency-selective fading. 

• Complex vector signals with at least an 85-MHz bandwidth can be emulated 
simultaneously. 

• A 10-node emulator can be realized using existing commercial FPGA products. 
 

The results of this implementation demonstrated that the combination of a scenario 
generator and the propagation emulator is capable of performing propagation 
emulation with wide adaptability. Compared with existing testbeds, the proposed 
programmable wireless propagation emulator can be implemented without depending 
on wireless node characteristics (PHY, MAC, Link, and upper layers). 

The number of I/O pins of the FPGA limits the scalability to a large number of 
nodes because we divided each propagation module into 10 FPGAs. However, a 
greater integration of FPGAs may help solve this scalability problem by reducing the 
number of discrete components. 
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In conclusion, the technical feasibility of the proposed architecture for an 
environment-independent virtual wireless testbed was demonstrated through an actual 
implementation. The performance of the programmable wireless propagation 
emulator was sufficient for real-time applications. The reconfigurable wireless node, 
the last remaining part of the proposed testbed, will be implemented in subsequent 
work. In addition, we intend to evaluate our concept for a fast initial link setup 
protocol, which will be proposed as IEEE802.11ai, using the virtual wireless testbed. 
For IEEE802.11ai, we must evaluate a large number of STA-to-AP connections using 
a vehicle model, which is the typical use case for a virtual wireless testbed. 
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Abstract. Wireless sensor testbeds lack the flexibility for topology con-
trol and the accuracy for interference generation. Once the testbed is
set up, the topology becomes fixed. Due to the nature of the wireless
environment, experimenters often suffer from unpredictable background
interference, while at the same time, find it hard to get accurate and
repeatable interference sources.

The wireless link emulator addresses these issues by replacing the un-
controllable wireless link by a well-controlled and programmable hard-
wired medium. A radio interface is then made to behave according to the
link configuration, thus offering flexibility for both topology and inter-
ference control. This paper describes the implementation of the wireless
link emulator based on a number of low-cost Xilinx FPGAs. The system
is verified experimentally and compared to existing emulation systems.

Keywords: Topology control, interference control, FPGA, wireless link
emulation.

1 Introduction

Over the years, more and more researchers have realized that simulation results
alone are not sufficient to guarantee the proper function of wireless network
applications in a real-life environment. Hence many universities and research
groups have setup their own testbeds [1] [2]. Such a testbed often consists of
a large number of actual sensor nodes which can be programmed remotely. It
is a common practice to install the sensor nodes at fixed locations. Therefore
once the testbed is setup, the topology of the network is fixed. In addition, many
testbeds are deployed within the office environment, the experiments often suffer
from unpredictable interference, such as WIFI, Bluetooth or even microwave
oven.

Network simulators are generally flexible and predictable, however, they ig-
nore many aspects of the real hardware platforms. A testbed offers real hardware
behavior but lacks flexibility and controllability. Is there a way to combine the
advantages of both systems? The answer is yes: use emulation instead of simu-
lation and at the lower level, emulate only the wireless ether behavior, not the
sensor node itself. This is the solution integrated into WiLab — the wireless
sensor network testbed of Gent University [4].

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 48–63, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012
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Fig. 1. The original TelosB node Fig. 2. The modified TelosB node

The WiLab testbed is deployed in an office building of 12x80m and is spread
out of three floors. It consists of more than 200 sensor nodes. The sensor node
is based upon the TelosB mote [3] (Fig 1). The TelosB mote is an ultra low
power wireless module for use in sensor networks. It mainly consists of integrated
sensors, a microcontroller and a radio module (Fig 2). The radio module is based
on the Chipcon CC2420 radiochip [5]. The CC2420 is a true single-chip 2.4
Ghz IEEE802.15.4 compliant RF transceiver designed for low-power and low-
voltage wireless applications. On the TelosB mote, the CC2420 is controlled by
TI MSP430 microcontroller.

We extend the WiLab testbed with a group of special nodes. These nodes are
also TelosB compatible, however, they communicate via an emulated network
instead of the wireless ether (Fig 3, Fig 4). In another word, we introduce a group
of nodes with their “private ether” into the testbed. An interface is offered to
control the “private ether”. For the experimenters of the testbed, those special
nodes can be programmed in an identical way as the original nodes.

Fig. 3. The wireless network Fig. 4. The emulated wireless network

To implement the wireless link emulator three steps are needed : first, sep-
arate the radio from the rest of the hardware on the sensor node. Second, a
radio interface is made to maintain the radio functionality. Finally, a hardwire
programmable link to other nodes is implemented to replace the ether. In reality
this is realized by replacing the radio and its antenna with an interface that
connects the MSP430 processor to this private ether. All the ether behavior is
emulated with low cost FPGA .

The remaining part of the paper is organized as follows: Part 2 discusses
the system implementation in detail. Part 3 describes the principles of physical
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layer emulation. Part 4 presents the experimental validation of our system. Part
5 compares our emulator with other emulation systems and Part 6 concludes
this paper.

2 System Implementation

2.1 Requirements for a Wireless Network Emulator

The emulator of WiLab takes a different approach compared to most existing
emulation systems. The idea is to remove the wireless ether completely, and
replace it by a well-controlled programmable medium. The requirements for
such an emulator are :

– The software running on the modified sensor node should behave exactly the
same as if it was executed on the original TelosB mote.

– The electrical characteristics of the radio (CC2420) should be maintained,
including the SPI commnication to the local processor and the interface
signals (CCA, SFD, FIFO,FIFOP, Vref, RST).

– The transmitting and receiving functionality of the radio should be main-
tained.

– Similar latency as the radio physical layer is mandatory for the emulator.
– Programmable topology.
– Programmable interference.

Among all the requirements, the latency is the most challenging. Electromagnetic
waves travel at the speed of light in the air. By nature, the wireless environment
is a broadcast medium with extremely low latency. According to the data sheet
of CC2420 [5], there is approximately 2 us latency between the transmitter and
the receiver due to the bandwidth limitations on both sides. The emulator only
needs to behave as well as the radio, hence the actual latency requirement is 2
us. The detailed calculation related to latency is written in Part 2.5.

2.2 A New Proposal: The Wired Emulator to Test a Wireless
Network

In order to achieve reliable low level interconnection, wires are used as the phys-
ical medium for the emulator. The “private ether” is now a wired network in
which all nodes are connected together by wires. The question is, what is the
most suitable physical topology for the emulator to meet all the requirements?
One option is to use a full meshed topology, where every node can communicate
to every other node, Figure 5 . A Master node is required to control the commu-
nication parameters of the mesh while the effective data is directly transmitted
between the slaves. The definition of the Master node (to manage the ring) and
the Slave node (the real transceiver) is used all over in this paper.

It is obvious that such a topology offers the largest bandwidth, but at the same
time it also has the largest amount of connections. For a network of N nodes,
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Fig. 5. Full mesh topology Fig. 6. Bus topology

a total N × (N − 1)/2 connections are required. This could be a considerable
number for a complex emulator.

Another option is to connect all the nodes in a common bus topology (Figure
6). All nodes can still communicate to each other, but a complex arbitrator on
the bus is required. This could be a serious limitation to the system bandwidth.
From a electrical point of view, the more nodes present on the bus, the higher
the parasitic capacitance (every node adds some capacitance), and accordingly
the lower the switching speed of the bus will be.

The star topology (Figure 7) is a point-to-point network that does not suffer
from the accumulation of parasitic capacitance. However, the master node needs
to have enough processing power to handle all the incoming and outgoing data
to meet the low latency requirement.

Fig. 7. Star topology Fig. 8. Ring topology

The ring topology of Figure 8 has some appealing features. It is a point-to-
point network, so every link can run at high speed. Although it does not offer
direct link between every single node (Slave), the available high speed and an
appropriate protocol can compensate for it. The ring topology has an inherent
pipelined behavior, which further increases the total network bandwidth. The
pipelined architecture allows for simultaneous data transfer between every two
neighboring nodes. For example, at the same time instant, while Slave 2 is com-
municating with Slave 3, Slave 3 can also communicate with Slave 4. This offers
a huge advantage over the bus topology. Therefore, we decide to take the ring
topology as the physical topology of the emulator.
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2.3 The Low Level Protocol

A flow of packets are circulating unidirectionally through the ring. At any mo-
ment every single node is receiving a frame from its left neighbor and at the same
time is transmitting a frame to its right neighbor. The packet flow is formed by
frames (Figure 9 ). Each frame is allocated to one node (Master, Slave). A node
is only allowed to write data into its own frame. When receiving a frame from
another node, the content of the frame is retransmitted; when receiving a frame
from the node itself, either new data or a dummy empty frame is transmitted.
Hence a given frame can circulate only once on the ring. Thanks to the frame
structure and inherent pipelining, the ring effectively behaves as multi-access
medium without collision, which is exactly what we wanted for the physical
connection on the emulator.

Fig. 9. Frame sequence

A frame is a 32 bit value and can have several formats. Figure 10 shows the
normal data frame. A normal data frame is used to transfer data from one slave
to the other slaves. The bit D0=1 indicates the normal data frame. The bits D1-
D7 contain the source address, which serves as the identifier of the frame on the
ring. The D8-D15 bits contain the parameter Channel ID, indicating at which
“frequency” the node is transmitting, compatible to the Zigbee channel index.
The bits D16-D23 are the transmit power (TX Power) in dBm unit. And the
Lower 4 bits of D24-D31 contains the 4-bit actual data, comparable to the 4-bit
symbol formed on the real radio, the extra 4 bits are reserved for future extension.
The parameters Channel ID and Tx Power cover all the physical property of a
symbol. According to the 802.15.4 standard, a symbol stays on the ether for 16
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Fig. 10. Normal data frame Fig. 11. Configuration or status frame

us. To emulate the symbol period, the data frame is only transmitted via the
ring every 16 us, however, the actual duration for a frame to circle around the
ring is much shorter. This is covered in Part 2.5.

Besides connections to the ring, the Master node also has connections to a
Web Server and a LAN connection to the Wilab Database. Via the Web Server
the user can configure the “virtual ether”. Parameters for a specific node, such
as the noise floor, or path loss, can be programmed via the Master. This is
realized by generating a master configuration frame on the ring (Fig 11). This
frame circulates through the ring and the addressed slave will copy the data
internally. Broadcasting configuration, i.e. addressing several slave nodes with
one frame, is possible. Besides configuration, if requested, a slave node can send
status reports to the Master. The Master fetches the report and writes it into
the WiLab database. The status reports usually contain information related to
GPIO activities on the radio interface, or commands received from the local
processor. Therefore it is a powerful tool for monitoring the radio activity and
software debugging.

Broadcasting is straightforward. A transmitting node will write its frame with
a given Channel ID on the ring. Any other node with the same channel ID should
read out this frame.

2.4 The Physical Implementation

A connection between two nodes is made by a standard UTP cable ( 4 twisted
pairs) Fig 12. Low voltage differential signaling (LVDS) is the IO standard on
the ring. This ensures good signal integrity at high transmission speed. Among
the 4 twisted pairs, one pair is used as clock signal, two pairs are used for data,
the last pair is used for synchronization. The Sync signal travels along with the
Master frame. It can be considered as the Master frame flag. This Sync signal
is essential for the synchronization of the whole ring structure. A node that is
receiving a frame while the sync is active is for sure receiving the Master frame.

The two data lines allow to double the transmit speed. Hence to transmit 32
data bits only 16 clock pulses are needed. Three extra clock pulses are needed
for internal processing. This results in a total of 19 clock pulses to transmit a 32
bit frame. The timing diagram of the ring is shown in Figure 13. Every frame
on the ring corresponds to a time slot of 19 clock pulses.

As mentioned earlier, all the logic needed to implement the ring structure
and to emulate the radio module is implemented on the FPGA. Every node
(master, slave) has one FPGA board. More specifically, the slave node is built
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Fig. 12. The 4 pair UTP cable connection between nodes

Fig. 13. Detailed timing diagram of the data on the ring

on the Xilinx Spartan-3A-400 FPGA [7], while the master is built on the Xilinx
Spartan3E-500 FPGA [6]. The FPGA chip has a large amount of logic gates
available to build all types of dedicated logic, on top of that a powerful 32 bit
“soft” microprocessor (microBlaze [15]) is also available as an IP core(intellectual
property). To implement the low level ring protocol, a dedicated ring transmitter
is built with VHDL(hardware description language).

The radio interface is a combination of software and customized hardware
on the FPGA, with the software part running on the “soft” processor — mi-
croBlaze, mainly responsible for connecting the ring transceiver and the radio
interface. In addition, the software also performs processing needed for physical
layer emulation, to be explained in Part 3. The core of the hardware part of
the radio interface is a dedicated finite state machine, which takes care of the
SPI communication towards the MSP processor, generating necessary interrupt
towards software and partially controls the GPIO signals on the radio interface.
The block diagram of a slave is shown in Figure 14.

Special care is taken to maintain the quality of the clock signal. The Xilinx
Spartan-3A FPGA has on-board high-speed LVDS transceivers to drive the ring.
The clock recovery is executed by the PLL inside the FPGA. The Master node
is generating the clock while each slave node is reconstructing the clock on its
output with minimal phase delay with respect to the input. This recovered clock
is used in the ring transceiver logic. Thanks to this structure, the clock quality
is maintained through the entire ring. This enables the ring clock to run at very
high speed.
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Fig. 14. Block diagram of the slave node

2.5 Timing Considerations

The clock speed of the ring is 100 MHz. A complete 32-bit frame requires 19
clock pulses. We currently only implement a ring with 6 slave nodes and one
master. When a frame passes a node, it is first received completely and then
transmitted. Hence the duration for a frame to reach all the other nodes on the
ring equals:

T1 = 6× 19× 10nSec = 1.14us (1)

The duration for one frame to completely circulate through the ring is :

T2 = (6 + 1)× 19× 10nSec = 1.33us (2)

Be aware that not one but seven frames do travel around the ring during the
1.33 uSec. Hence a node can get access to the ring every 1.33 us.

The latency on the ring is defined as the time between transmitting a frame
by a given node and receiving that frame by another node. The best case is
when a node is transmitting to its left neighbor, the worst case is when a node
is transmitting to its right neighbor. The equation (1) shows that our worst case
latency is 1.14 us, smaller than the 2 us latency of CC2420 chip. Hence this
design meets the initial requirement.

3 Physical Layer Emulation

In wireless systems, bit errors occur during the decoding of received symbols.
When the received signal is much stronger than the local noise floor, the received
symbol is almost always correctly decoded, hence hardly any bit error can appear.
On the other hand, if the received signal is not strong enough to decode, frequent
bit errors will appear. In between the two extremes, there is a “gray zone”
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where the bit error rate varies . We now focus on this zone. It is known that for
each modulation technique, there is a given relationship between the bit error
rate(BER) and the signal to noise ratio(SNR). The 802.15.4 standard features
the OQPSK and DSSS modulation. The theoretical BER curve for 802.15.4 is
shown in Figure 15, [13]. Once the SNR is known, we can generate the bit error
accordingly.

To enable the calculation of SNR, several parameters need to be considered:

– The transmit power
– The path loss between transmitter and receiver
– The local noise floor and interference level at the receiver

The transmit power accompanies with each symbol as explained in Part 2.4.
Each slave has a path-loss table which contains the path loss to all the other
nodes. The local noise floor is also a parameter configured by the Master. All
the parameters are stored in dB scale. For each incoming symbol, the SNR can
be calculated as

SNR = TxPower − PathLoss−NoiseF loor (3)

If there are multiple senders active at the same time on the same channel, re-
ceivers can only recognize the symbol from one sender, the symbols of the other
senders are treated as interference. To emulate the interference from other nodes,
the strongest interference is used instead of the noise floor in the calculation of
SNR. In this case the SNR is actually the same as SINR (signal to interference
and noise ratio), for simplicity, we use the term SNR throughout this paper.

3.1 Quantized SNR and Its Link to Bit Error Rate

Once the SNR value is obtained, theoretically we could calculate the correspond-
ing BER, however, practically this would give too much processing load on the
embedded FPGA system. Hence we quantize the BER vs SNR curve and store
the most interesting part into a local look-up table. As explained above, the
“gray zone” of SNR is closely related to the bit error. So the first step is to
quantize this “gray zone”. This is illustrated in Figure 15. The SNR value can
be expressed by the formula below:

SNR = SNRoffset + SNRstep × n (4)

SNRoffset andSNRstep are two important parameters.SNRoffset represents the
lowest SNR value at which data can still be received, albeit with errors. Below this
value packets are completely corrupted. SNRstep is the quantization step. Thus
SNR becomes a function of n. The maximum value of n represents a threshold set
by the user. When the SNR value is above the selected threshold, the data is pro-
cessed without introducing bit error. The value n is also used as the index to look
for the proper BER in the look-up table. In the remainder of the paper, the value
n is referred as SNRindex.
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3.2 Bit Error Generation

The bit error is generated in software. BER value by nature is a fraction number,
however, calculation based on floating point and fraction number is slow and
expensive. Therefore we express BER as 1/X , theX is the nearest integer of the
BER value’s reciprocal. Only X is stored in the look up table. For instance, when
BER is 0.1%, the value 1000 will be stored in the look-up table. The software
counts the total number of received bits, and will toggle one bit every X bits.
The toggle location is generated randomly. When X bits are received, the bit
count is cleared to zero, and a new cycle starts with a new random toggle location
generated. Such a cycle is called a bit-error cycle.

This solution is simple to implement, but has one major drawback, when
transmitting a fixed number of packets with a fixed packet size, the packet error
rate(PER) becomes a constant. To avoid this situation, another parameter is
introduced — run-length of the bit error. This parameter defines the maximum
number of bit errors that can appear in a roll. Thus in the beginning of one
bit-error cycle, the random toggle location and the run-length of bit error are
generated. When the bit count reaches the toggle location, it will continue to
toggle the received bits until the number of toggled bits reaches the run-length.
When more than one bits are toggled in a bit-error cycle, there will be none
toggled in the following cycles. Hence eventually bit error rate stays the same.
The run length parameter effectively characterizes the burst behavior of the bit
error.

The random generator used here is based on a 32-bit hardware CRC shift
register. So it is actually a pseudo random generator. We admit this can cause
certain level of distortion. However, during experiments (see Part 4), we are able
to obtain emulation results that are compatible with real measurements, the
distortion introduced here is considered to be insignificant.

3.3 Topology Control and Interference Generation

Until now the link between bit error rate and SNR is established. In summary,
the topology control is directly achieved by specifying path loss between each
node. The path loss will affect several parameters, namely, RSSI and SNR, and
eventually affect the bit error rate of the received packet. By configuring the
path-loss table in each node inside the “virtual ether”, an arbitrary logical topol-
ogy can be formed, with no impact from the physical ring topology. When the
path-loss table is configured in real time, the logical topology becomes dynamic.
This allows us to emulate a network with mobile nodes.

As for interference generation, there are two options. One option is to directly
generate interference configuration from the Master. This is realized by configur-
ing the local noise floor parameter in all the Slave nodes. The noise configuration
can be based on a simple pattern, as illustrated by experiment in Part 4.2. An-
other possibility is to record the interference in a certain environment and replay
it by the Master afterwards. The quality of this approach depends on the time
resolution of the recorded interference.
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Fig. 16. Approximated BER curve

The second option is done by estimating the BER curve. Sometimes interfer-
ence does not have a simple pattern. Recording interference with high resolution
consumes a large amount of memory. Hence direct interference generation is not
always a good option. If we can obtain the BER vs SNR curve under a certain
environment, an appropriate amount of bit errors can be generated. The amount
of generated bit errors should be equivalent to what is caused by the interfer-
ence in the given environment. Therefore the desired amount of interference is
obtained.

The measurement of BER is usually not that straightforward. It can be done
in many ways. Here for simplicity, we assume every bit inside a packet is indepen-
dent, for a packet of N bits, the BER and PER have the following relationship:

1− PER = (1− BER)N (5)

Therefore BER can be derived from PER when the packet size is known. The
measurement of PER is usually simple. When combine the PER measurement
with a simple energy recording, the BER vs SNR curve can be derived. This is
further explained with experiment, Part 4.1.

4 Experiments

4.1 Emulation of Indoor and Outdoor Environment by BER
Estimation

In this experiment we aim to emulate different environments by the proper esti-
mation of BER curve. We used the experiment result in [13] as input, where a set
of packet error rate(PER) measurements are performed in function of the dis-
tance between the transmitter and the receiver. The measurement is performed
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both indoor and outdoor. In addition to PER, RSSI (received signal strength
indicator) is also recorded. The indoor experiment is performed multiple times.
Each time a different packet size is used. We only selected the measurement
with packet size of 127 bytes for the indoor emulation. The PER in the outdoor
environment is measured only with a packet size of 20 bytes. For details of the
experiment, readers are referred to [13]. We derived the path loss from the mea-
sured RSSI, the result is shown in Figure 17. These derived path loss is used as
the direct input for the link configuration.

2 5 8 101214 20 25 3032 40 50 60 70
50

55

60

65

70

75

80

85

90

95

distance[m]

P
at

hl
os

s 
[d

B
m

]

 

 

Indoor Pathloss
Outdoor Pathloss

Fig. 17. Path loss vs distance

The next step is to estimate the BER curve. We first calculate the measured
BER based on the PER measurement (Fig 18, Fig 19) and Equation (5). We
measured the indoor noise floor in our office with Airmagnet [9], which is around
-88 dBm. For the outdoor environment, -100 dBm is the selected average noise
level based on calculations [17]. Given the transmit power (0 dBm), path loss,
and local noise floor, SNR can be calculated according to Equation (3). These
lead us to the measured BER curve, shown in Figure 16. Based on the theoretical
relationship of SNR and BER, the approximation of measured BER curves are
derived (Figure 16). These estimated BER curves are stored in the look-up table
for our emulation. The results of the emulated PER for both indoor and outdoor
environments are plotted in Figure 18 and Figure 19 respectively.

In general, the emulated PER approaches the measured PER very well for
both indoor and outdoor scenarios. There are some deviations at certain loca-
tions, these are most likely caused by inaccurate RSSI or simply fluctuations of
measurements.

Hence, we prove that by estimating the BER curve properly, we are able to
emulate different environments. The PER increase with the distance, which also
prove that our methodology for topology control works as expected.

4.2 Emulation of Microwave Oven Interference by Direct
Configuration

In this experiment, we generate the interference configuration directly from the
Master. We aim to compare our emulation result with JamLab [12]. JamLab
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focuses on interference emulation based on existing testbed facilities, such as
TelosB nodes. According to [12], the interference of microwave oven has a simple
on-off pattern with 20 ms period time and 50 % duty cycle. We decide to use this
simple pattern to emulate the interference of microwave oven. The experiment
scenario is identical as in JamLab. One node sends 400 packets to another node
at 1 pkt/sec. The transmitter and receiver are placed about 3 meters apart with
no obstacles in between. According to the widely-used path loss model[16], path
loss at distance d from the transmitter equals:

PL(d) = PL(d0) + 10λ log
d

d0
(6)

The path loss at 2 meter is known to be 46 dB [12]. The path loss coefficient
λ for indoor environment is typically 2.5. When substitute these values into
equation (6), we get 50 dBm as the path loss at 3 meter. Thus the topology can
be configured.

The only difference between our emulator and JamLab is how the interference
is generated. JamLab used another TelosB node to generate the interference. In
our system, Master transmits a configuration frame every 10 ms via the broadcast
configuration channel, thus the interference is turned “on” or “off” every 10 ms.

We only emulated for NULL MAC with packet size of 100 bytes. The emu-
lated packet receiving rate (PRR) from our emulator is 44.1%, from JamLab is
43.6%. We can see, that both emulation results are compatible to each other.
However, in JamLab, the location of the interferer has to be carefully chosen,
the transmit power also needs to be adjusted in order to obtain the right level
of interference. If interference is required in a large area, the coverage becomes
an issue. When multiple interference sources are present, JamLab needs a care-
ful planning to avoid cross talk between different interference areas. Compared
to JamLab, we only need to configure the Master. Every node gets the ex-
act amount of interference as configured, which is much more accurate and
flexible.
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4.3 Testing at MAC Layer

There is always a concern that the physical topology of the ring will influence
the network behavior on the higher level. In this experiment we further prove
the reliability of the emulator by performing a throughput test at MAC layer.
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Fig. 21. Deviation vs physical topology

We emulate the throughput experiment presented in [10]. The original experi-
ment is performed on a set of TelosB motes. The receiver is situated in the center
while a set of 1 to 10 senders are placed 1 meter away from the receiver. To em-
ulate the same topology, we configured the receiver to have identical path loss
to all the senders. The path loss value is calculated based on Equation (6). The
senders sent packets to the receiver as fast as permitted by the MAC layer. The
receiver counted the number of packets received successfully over the duration of
60 seconds. We only performed the test for XMAC[14] with 1 to 5 senders. The
software is downloaded from [11], identical as used in [10]. The result is shown
in Figure 20. In general, the throughput increases with the number of senders.
The emulated throughput curve fits well with the measurements.

We also take an extra step to exclude the influence of the physical topology.
In case of only one sender and one receiver, we change the sender and receiver’s
physical location, from being neighbors on the ring till 5 hops apart. The devia-
tion of the throughput in percentage is plotted in Figure 21. The deviations do
not show a trend related to the physical topology, and the value itself is also very
small, less than 1% of the total throughput. Hence we conclude the impact of the
physical ring topology on the performance of higher level protocol is neglectable.

5 Related Work

Many efforts have been made to overcome the limitations associated with wire-
less testbeds. For example, the solution presented in [12]. This solution focuses
on generating interference with existing off-the-shelf hardware in a testbed. The
transmit power and the location of the interferer have to be carefully set up in
order to obtain desired interference coverage and low cross-talk between inter-
ference sources. Our solution, on the other hand, does not require such kind of
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physical deployment. Both topology and interference are controlled by software
parameters, and can be realized in real-time.

The work presented in [18] is comparable to our work in the sense that they
also use FPGA to replace the wireless media. However, there are three major
differences: first at hardware level, they actually intercept the analog RF signal
at the antenna port, while in our system, the data is never modulated into
RF signal; secondly, in their work the FPGA is used to perform digital signal
processing(DSP) based on a certain channel model, while in our system it is
used to implement the radio interface and ring transceiver; Finally in essence,
our system relies on the relationship between SNR and BER to achieve topology
and interference control, while they rely on the physical layer channel model and
DSP. From a user perspective, the topology and interference control is realized by
tuning DSP parameters of the selected channel model, eg large-scale attenuation
or fine grain fading. While for our system it is achieved by specifying parameters
such as pathloss and noise level directly. The work presented in [18] is more
suitable to emulate certain physical layer phenomena, while our system focuses
more on general network performance. Also we believe our system is more user-
friendly for researchers without DSP and physical layer background.

6 Conclusion and Future Work

We implemented a wireless link emulator based on low-cost Xilinx FPGA. This
emulator differs from previous work by its unique hardware aspects, including
the customized radio interface and the ring transceiver. The high speed hardware
design is the key enabler for the concept of physical layer emulation.

We introduced the methodology used by our system to emulate various en-
vironments, and demonstrated experimental results that are compatible with
real-life measurements.

Nevertheless, many interesting directions remain for further research. For ex-
ample, the real-time topology control can be used to emulate a network with
mobile nodes, and the real-time interference control creates the possibility to
replay interference from recordings.

Our solution is a low cost yet very powerful and flexible test facility, that
can be extended to other radio chips and wireless technologies. The scale of the
emulated network can be further increased by using the newest FPGA family
(Spartan6) yielding higher speeds clock on the ring. In the future, we aim to
enhance the ring clock speed by a factor of eight, resulting in 48 nodes in the
emulated network.
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Abstract. Extensive work has been done in wireless multihop rout-
ing with several ideas based on shortest path or load balancing rout-
ing algorithms, that aim at minimizing end-to-end delay or maximizing
throughput respectively. Backpressure is a throughput-optimal scheme
for multihop routing and scheduling, while Enhanced-Backpressure is
an incremental work that reduces end-to-end delay without sacrificing
throughput optimality. However, the implementation of both theoretical
schemes is not straightforward in the presence of 802.11 MAC, mainly
because of their requirement for centralized scheduling decisions that is
not aligned with the aspects of CSMA/CA.

This paper proposes a novel scheme, named Enhanced-Backpressure
over WiFi (EBoW), which is compatible with the decentralized operation
of WiFi networks and efficiently utilizes the benefits of Enhanced-
Backpressure design, combining throughput optimality with low end-to-
end delay. EBoW router is implemented relying on Click framework for
routing configuration. The performance of EBoW is evaluated both on
a medium-scale outdoors wireless testbed as well as through experimen-
tations in NS-3 simulator tool. The protocol has been compared against
other state of the art routing protocols and we argue that EBoW is much
more throughput efficient than the others, while succeeding similar end-
to-end delay.

Keywords: Backpressure, wireless mesh, multi-path routing, testbed.

1 Introduction

As the demand for seamless connection increases, the use of wireless multihop
networks as a communication infrastructure becomes more and more popular.
The efficiency of a multihop mesh network is directly related to the routing
protocol. On the one hand, shortest path routing algorithms achieve minimum
end-to-end delay. On the other hand, when efficiency is measured in terms of
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throughput, the routing protocol should utilize multiple paths connecting a
source-destination pair, avoiding the dominant shortest path approach.

A scheme that achieves throughput optimality is the well-known Backpres-
sure (BP) algorithm, which operates on a time-slotted and centralized schedule
and introduces scheduling and routing policies. Enhanced-Backpressure (EBP)
is an improved mechanism that can be configured with an appropriate bias that
inclines packets to move in the direction of their shortest paths. EBP provides
lower delay than BP, without sacrificing throughput efficiency. The seminal work
of Tassiulas and Ephremides [1] constitutes the core of BP and EBP, first in-
troduced in the work of Neely et al. [2] as Dynamic Routing and Power Control
(DPRC) and Enhanced-DPRC respectively. The work of Georgiadis et al. [3]
offers a comprehensive survey.

Although both schemes are throughput optimal, they have not been imple-
mented, mainly because of the centralized scheduling policy and the time-slotted
assumption. These features do not fit with the dominant wireless communication
protocols. In this paper we propose an 802.11 compliant version of EBP, named
Enhanced-Backpressure over WiFi (EBoW), which implements the EBP aspects
in a manner that is compatible with WiFi networks. The experimentation results
of the proposed scheme show that EBP principles can be efficiently applied to
contemporary WiFi mesh networks.

The novelty of the proposed algorithm is twofold: i) it provides a distributed
load balancing scheme, which connects nodes through multiple paths and opti-
mizes throughput efficiency keeping low end-to-end delay, while ii) it is applicable
to WiFi ad-hoc meshes that support parallel flows, where a flow defines a stream
of packets with specific source and destination. We prove that EBP principles
could be well adapted so as to be efficient even if a central scheduling mechanism
cannot exist. Particularly, we introduce a scheme in which every node attempts
to forward packets to less loaded and closer to the destination neighbors, in
a similar way that EBP scheme schedules. If there is no less loaded neighbor
that is closer (or at least at the same distance) to the destination, then the node
stops forwarding. This feature enables a simultaneously activated scheduling pol-
icy that offers more transmission opportunities to other neighboring nodes that
experience collisions.

In order to evaluate the proposed routing and scheduling scheme in realistic
conditions, we implement it using the Click modular router [4]. By conducting
experiments in a realistic wireless testbed, named NITOS [5], we compare our
algorithm to other well-known schemes, and we show that it sometimes gains
significant throughput increase due to load-balancing inherent characteristics.
We also explore and verify our experimentation results in identical setups using
NS-3 [6] simulator integrated with Click development.

The rest of the paper is organized as follows. In Section 2 we introduce related
work, while in Section 3 we describe BP and EBP schemes in detail. Section 4
describes our proposed scheme and Section 5 presents the implementation fea-
tures. The numerical results are provided in Section 6, while Section 7 concludes
the paper.
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2 Related Work

The main part of BP and EBP [3] is the scheduling policy that requires a central
node responsible for collecting information about the whole network. According
to these schemes, each packet is related to a particular commodity, which may
be defined by its destination or its source-destination pair or something more
specific. For the rest of the paper, we assume that each commodity represents a
particular destination, and there is a one-to-one correspondence between sets of
commodities and destinations. Furthermore, each node maintains a set of inter-
nal network layer (layer 3 of OSI model) queues, while each queue corresponds to
a commodity and stores all associated packets with this commodity. The length
of a commodity queue is named as commodity backlog.

The scheduling policy of both schemes is actually a maximum weight match-
ing1 algorithm that chooses to transmit packets corresponding to particular com-
modities through specific links, so as to maximize the aggregate link-commodity
weight. In contrast to traditional schemes where each link is assigned a single
weight, BP and EBP assign multiple weights to a link, corresponding to different
commodities. BP utilizes a link-commodity weight that is linear to the difference
among the commodity backlogs of the adjacent nodes of the corresponding link,
which is denoted as differential backlog. In case of EBP, the relative weight is also
linear to the difference of the distances between the adjacent nodes of the link
and the destination of the commodity, which similarly is denoted as differential
distance.

Finally, the routing decision of each node is implied by the centralized schedul-
ing policy, as each node transmits a packet associated with the commodity and
through the link of the corresponding scheduling choice. Unlike traditional rout-
ing mechanisms for wired and wireless networks, BP and EBP routing does not
perform any explicit path computation from source to destination.

Several algorithms based on BP aspects have been proposed, which mainly
require heuristic modifications of BP principles and sometimes introduction of
new MAC protocols. XPRESS [7] is a well designed cross-layer architecture,
which implements accurately most of the BP designs. Actually, it forces the
wireless network to act like a hypothetical wireless switch, operating on a TDMA
MAC, as it is originally proposed in theory. On the other hand, ad-hoc wireless
environments without centralized control are commonly used, and a TDMA
MAC is not applicable in such environments.

Backpressure-based Rate Control Protocol (BRCP) [8] is an approach of BP
scheduling over a predefined routing tree of sensors with a single commodity (or
destination) related to the root of the tree. It is actually a distributed version,
where each sensor decides the prioritization of its current transmission based
on the current differential backlog. Obviously, this scheme does not apply on a
wireless mesh with multiple commodities.

1 Matching is a set of pairwise non-adjacent links and the maximum weight matching
has the maximum aggregate weight.



IEEE 802.11 Compliant Version of Enhanced-Backpressure 67

DiffQ [9] is a different scheduling approach for wireless mesh networks that
support multiple commodities. It enables packet transmissions of commodities
through links with positive differential backlog and gives higher priority to those
with larger differentials. This design requires changes of the 802.11 MAC layer.
Furthermore, the routing decision depends on a shortest path routing protocol
that does not feature load balancing characteristics and therefore does not take
advantage of these BP inherent features.

The Backpressure Collection Protocol (BCP) [10] is a remarkable implementa-
tion and experimentation of BP design in wireless sensor networks over 802.15.4.
In sensor networks there is only one commodity, since all packets have the same
destination. So sensors include only one network layer queue, a feature that
differentiates BCP from the BP scheme. Furthermore, BCP uses a BP related
weight that is enriched with a penalty mechanism, while the use of an EBP
oriented weight seems to be more efficient.

Horizon [11] is another system design for distance-vector routing in wireless
multihop networks, which is inspired by the BP principles and it is compatible
with 802.11 MAC and TCP. It is the first system architecture that implemented
these principles in a wireless system design. However, Horizon uses an inexplica-
bly simplified forwarding algorithm that actually depends on backlogs and not
on differential backlogs, as BP does. Congestion Diversity Protocol (CDP) [12]
is another distance-vector routing protocol that is queue length aware and not
BP inspired. In like manner, it does not depend on differential backlogs and
moreover does not keep different queues for different commodities. Both proto-
cols, Horizon and CDP, do not include scheduling policies. The proposed EBoW
scheme is compared with these implementations.

In contrast, SouRCe Routing (SRCR) is a shortest path routing protocol
implemented in Roofnet [13]. It uses Expected Transmission Time (ETT) [14],
which is the state of the art for defining wireless link weight for forwarding pack-
ets, and applies Dijkstra algorithm to explore the shortest route from a source to
a destination. Since several evaluation works show that SRCR efficiently routes
packets in mesh networks, the proposed algorithm will be compared to SRCR
to measure the efficiency of the load balancing feature that comes as inherent
characteristic in BP.

Summarizing, the most remarkable implemented routing protocols for WiFi
ad-hoc meshes with multiple flows are these of Horizon, CDP and SRCR. Horizon
and CDP are two notable distance-vector routing schemes that attempt to use
multiple paths for packet forwarding using BP principles. Their common feature
is their effort to avoid overloaded paths. On the other hand, SRCR uses always
the shortest path ignoring alternative less loaded routes.

3 Enhanced-Backpressure Explained

Before starting the description we will introduce the main terminology of BP and
EBP. A throughput vector includes the throughputs of all network flows, where
a flow throughput is the average packet delivery rate of this flow. Furthermore,
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(a) Capacity region of a network with
two flows

(b) Commodity backlogs and shortest dis-
tances of two adjacent nodes

Fig. 1. Capacity region and Network snapshot

the capacity region of a certain scheme consists of the throughput vectors that
this scheme is able to manage, while the capacity region of a network is the
union of the capacity regions of all possible schemes. Figure 1(a) illustrates the
above mentioned regions for a network with two flows. Tassiulas and Ephremides
[1] proved that under a slotted environment, the capacity region of a network
is the same as the capacity region of the BP scheme, which is superset of the
capacity region of any other scheme. Neely et al. [2] also showed that EBP has
the same capacity region with BP. The goal of the proposed scheme is to succeed
an extended capacity region similar to that of the BP and EBP schemes.

Before proceeding, we introduce also some notations. We consider a multihop
wireless network with node, link and commodity sets denoted as N ,L and C
respectively. If i, j ∈ N are two adjacent nodes in the network, then l = (i, j) ∈ L
is a directional link. Furthermore, if c ∈ C denotes a commodity, then d(c) ∈ N
is the destination node that corresponds to commodity c. Finally, as it is shown
in Figure 1(b), Qc

i symbolizes backlog of commodity c at node i and Ec
i stands

for the length of the shortest path (or the distance) from node i to destination
d(c). Consequently, differential backlog and differential distance of commodity
c through link (i, j) are denoted as ΔQc

i,j = Qc
i − Qc

j and ΔEc
i,j = Ec

i − Ec
j

respectively. In addition, Ri,j is the actual data rate of link (i, j).
The core of BP and EBP schemes is the maximum link-commodity weight

matching algorithm. The BP link-commodity weight for a commodity c ∈ C
and a link (i, j) ∈ L is either zero or the positive product of the actual data
rate Ri,j of the specific link and the differential backlog ΔQc

i,j , as it is given
in equation 1. Furthermore, EBP can be configured so as to incline packets
to move in the direction of their shortest paths, using another appropriately
defined link-commodity weight. More specifically, in EBP differential distance
ΔEc

i,j is added to the above mentioned differential backlog, as it is defined in
equation 2. The distance should be estimated using hop count or another more
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sophisticated approach for measuring the shortest path length. Finally, the EBP
scheme succeeds the same throughput optimality as the BP scheme, while at the
same time it reduces packet delivery time.

wc
i,j = max{ΔQc

i,j · Ri,j , 0} (1)

w̄c
i,j = max{(ΔQc

i,j +ΔEc
i,j) ·Ri,j , 0} (2)

4 EBoW Design

4.1 Algorithm Description

The goal of the Enhanced-Backpressure over WiFi (EBoW) scheme is to improve
throughput efficiency of wireless mesh networks, adopting the EBP principles,
while simultaneously succeeding low delay, similar to the shortest path routing
schemes. Due to its characteristics, this scheme can dynamically avoid overloaded
paths, create parallel routes and therefore balance the traffic load in the network,
increasing in this way its throughput efficiency.

Below we describe the main principle behind EBoW explaining the practices
adapted, in order to achieve the benefits mentioned. Consider a network with
multiple nodes that operate in a multihop environment. In such a setup, EBoW
runs in every node that can act as source, destination or relay. Every node
maintains a set of internal network layer queues, where each queue corresponds
to a commodity, as specified in the BP and EBP schemes (further details in
Section 2 and Section 3).

When a node receives or generates a packet that needs to be forwarded, it
identifies the related commodity, recognizing the destination of the packet, and
pushes the packet to the corresponding network layer queue. Moreover, each node
that has packets in its queues, initiates a procedure to schedule the transmission
of a packet. The most important part of this procedure is the calculation of the
link-commodity weights of equation (3).

ŵc
i,j = (ΔQc

i,j +ΔEc
i,j) ·Ri,j (3)

Next, the node finds the link-commodity pair with the maximum weight, with
positive differential backlog ΔQc

i,j > 0 and non-negative differential distance
ΔEc

i,j ≥ 0. If there is at least one link-commodity pair that satisfies these condi-
tions, the node selects the one with the maximum weight and transmits a packet
from the corresponding queue. Then, the packet is passed down to the data-link
layer (layer 2 of OSI model), while it is tagged to be transmitted through the
link that is related with this pair. This algorithm is the routing policy of the
EBoW scheme. On the other hand, in case there is no pair that meets these
requirements, the node remains inactive and does not schedule transmissions.
These requirements constitute the scheduling policy of the EBoW scheme.

The first scheduling condition requires a positive differential backlog ΔQc
i,j >

0 and exists because of the remark of Li et al. [15], who explained why the
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capacity of a chain of nodes is reduced due to the inherent characteristics of
802.11. Nodes centrally located in the chain experience more collisions than
border nodes. This is due to the fact that border nodes inject more packets into
the chain than the subsequent nodes can forward, so these packets are eventually
dropped. The time that border nodes spend to send those extra packets decreases
the overall throughput, since it prevents transmissions of subsequent nodes. Our
proposed algorithm takes this observation into account and therefore introduces
the positive differential backlog condition to prevent it. So, in EBoW if a node
observes that an adjacent node features a higher backlog than itself, it refrains
from forwarding packets to it, thereby providing more transmission opportunities
to this node. In this way, the capacity per hop is allocated more efficiently.

The second scheduling condition namely non-negative differential distance
ΔEc

i,j ≥ 0 exists in order to avoid excessively long routes of packets towards their
destinations. Eventhough the EBP scheme takes into account distance to desti-
nation by incorporating it into the link weights, it often allows a packet to move
further away from its destination. However, this is a typically undesired feature
for traditional wireless applications, where users are interested in experiencing low
end-to-end delay and jitter. This observation explains why the non-negative dif-
ferential distance is a necessary condition for packet forwarding in our proposed
scheme, which takes practical WiFi applications into consideration.

In essence , the main differentiation of EBoW with respect to the original EBP
scheme is that it is structured around a distributed architecture, which makes it
more suitable for real WiFi applications. EBP is a centralized algorithm which
assigns non-negative weights to all link-commodity pairs and schedules packet
transmissions based on the maximum weight matching principle. In contrast, in
EBoW each node makes its forwarding decisions independently, according to the
algorithm described before. More specifically, each node i ∈ N finds neighbor
j ∈ N : (i, j) ∈ L and commodity c ∈ C that maximize ŵc

i,j (ties broken
arbitrarily) subject to ΔQc

i,j > 0 and ΔEc
i,j ≥ 0, and pushes down from the

Fig. 2. Network example illustrating EBoW design
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network to the data-link layer a packet that corresponds to commodity c for
transmission through link (i, j). If there are no neighbor j and commodity c
that satisfy these conditions, the node remains inactive.

For example, in Figure 2, considering that the path length is measured in hops
and the data rate of each link is equal to unit, then ŵc

i,j = ((3−2)+(2−2))·1 = 1

and ŵc′
i,m = ((3−2)+(2−1))·1 = 2, while ΔQc

i,n = 3−3 = 0, ΔEc
i,m = 2−3 < 0,

ΔEc′
i,j = 2−3 < 0 andΔQc′

i,n = 3−4 < 0. As a result, node i forwards to neighbor
m a packet that corresponds to commodity c′.

4.2 Distance Calculation and Broadcast Packets

The way that the algorithm estimates the distance between two nodes is another
important point to mention. In the previous example, we used hop count for sim-
plicity. In fact, the proposed algorithm uses a more sophisticated technique of
distance measurement. The distance Ec

i between node i and destination d(c) is
expressed as a scale factor θ of the aggregate expected transmission time of a
packet (queuing and processing delay is ignored), which is routed through the
shortest path from source i to destination d(c). The scale factor is adjusted so
that ΔEc

i,j and ΔQc
i,j to have the same range of values. The expected transmis-

sion time through a link is given by the well known formula of the Expected
Transmission Time (ETT) metric [14]. According to this formula:

ETT =
1

df · dr · S
B

(4)

where df and dr are the expected forward and reverse link delivery probabilities
(the product of these two is the probability of a successful acknowledged trans-
mission), S is the average packet size and B is the average packet rate that the
rate controller assigns. So, if ei,j stands for the ETT weight of link (i, j), then

Ec
i = θ ·

∑

∀(k,l)∈L in the shortest path i�d(c)

ek,l (5)

Every node needs to know all commodity backlogs of its neighbors, as well as
the aggregate ETT of the shortest paths from itself and its neighbors to every
destination. The ETT calculation for every link, especially of the forward and
reverse probabilities df and dr, is based on a probing mechanism that period-
ically forces nodes to send broadcast packets and inform neighbors about the
number of the broadcast packets they have received. Due to this mechanism,
each node estimates the ETT weights of its outgoing links, while simultaneously
learning about the commodity backlogs of its neighbors, which are included in
the broadcast packets.

However, nodes need to know ETT weights of links that are located multi-
hops away from them. So, before a source starts forwarding a packet, it initiates
a broadcast query flooding the network in order to reach the destination of the
packet. While the query packet is passing through network links, it is tagged
with the path that it followed until that point. The destination receives these
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queries and replies through all paths that the query flood explored. Similarly,
each reply packet is tagged with the ETT weights of all links that this packet
passed through. In this way, once the source (or a relay) receives the reply
packets, it learns about all necessary ETT weights in order to estimate the
distances from itself and its neighbors to the destination.

5 Implementation Details

The software development of EBoW scheme is based on the Click modular router
framework [4], a novel software architecture for building flexible and configurable
routers, that lie on network nodes and forward packets. A Click modular router
consists of packet processing modules called elements. Individual elements imple-
ment simple router functions like packet classification, queuing and interfacing
with network devices. Complete router configurations are built by connecting
elements into a graph, where packets flow along the graph’s edges. Most of these
elements are given by the existing framework, while it is possible to construct
additional and more specific elements.

The Click modular router is able to run as a linux-kernel module or a user-
level executable on top of linux operated boxes. The Click framework includes a
package of elements and a configuration of a user-level SRCR router (designed
by the Roofnet [13] team). The configuration of the EBoW router shares a lot
of common features with the corresponding one of the SRCR router, as it is
illustrated in Figure 3. So, a brief description of the SRCR router follows, and
then it is presented how the EBoW router is differentiated from this.

The User-Level SRCR Click Router (see Figure 3(a)) uses a pseudo-
interface that connects the application layer with the underlying network layer
and a wireless interface that receives and transmits packets over the air. Once
a packet is received from the application layer (through the pseudo-interface),
it is forwarded to the SRQuerier element. The main goal of this element is to
estimate the shortest path from this node to the final destination of the packet.
If SRQuerier does not have already the information for this packet (through
past investigation for the shortest path of another packet with the same destina-
tion), it forwards the packet to the MetricFlood element. This element initiates
a broadcast query flooding the network in order to reach the destination of the
particular packet.

The query packets of the flood visit the MetricFlood elements of the relays
until the destination. Once the destination is reached, the query packet is for-
warded from MetricFlood to the SRQueryResponder element. SRQueryRespon-
der initiates a reply packet that follows the shortest path to the initial node,
visiting the corresponding element of each relay until the source. The shortest
path is recognized by SRQueryResponder in the following way: the destina-
tion receives multiple query packets that were transmitted through the flooding
method, through multiple paths. Each query packet is tagged with the path that
it followed, as well as with the ETT weights of the intermediate links. So the
destination explores the intermediate link weights and finds the shortest route
applying Dijkstra algorithm.



IEEE 802.11 Compliant Version of Enhanced-Backpressure 73

(a) SRCR Router

(b) EBoW Router

Fig. 3. Click Configurations

Once the source receives the reply packet, it learns also about the shortest
path to the destination, because the reply packet is similarly tagged with the
path that it followed. So SRQuerier has the relative information for the fol-
lowing packets with the same destination. Therefore, the following packets are
forwarded to the SimpleQueue element, which is able to store up to 50 packets,
and implements the network layer queue. There is also another SimpleQueue
element that stores the control packets, like query, reply and broadcast packets.
The broadcast packets are generated and processed by the ETTStat element,
for estimation of the ETT weights of the outgoing links, as it was described
earlier in Subsection 4.2. Both queues store the packets, and forward them to
the wireless interface on demand.

The User-Level EBoW Click Router (see Figure 3(b)) uses the same un-
derlying probing mechanism (ETTStat) that estimates the ETT weights of the
network links, while it features an additional probing mechanism (BacklogStat)
for broadcasting commodity backlogs of each node to its neighbors. Furthermore,
as it was mentioned in Subsection 4.2, either the source or the relay of a packet
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needs to know the distances from itself and its neighbors to the destination,
so as to be able to estimate the differential distances. So, SRQueryResponder
is replaced by the new EBoWQueryResponder element, which responds with
a broadcast reply flood, instead of sending a single reply packet through the
shortest path.

Finally, the most important difference between EBoW and SRCR configu-
rations, is the structure that stores the data packets. The EBoW router uses
the CommodityQueues element instead of the SimpleQueue one. This structure
includes a variety of internal network layer queues, one for each known commod-
ity. Once a packet that corresponds to a new commodity arrives, the structure
produces a new internal network layer queue. When a packet is to be forwarded
from CommodityQueues to the wireless interface, the CommodityQueues ele-
ment estimates the EBoW weights, pulls a packet from the appropriate internal
queue and tags it for forwarding through the appropriate link. In case that there
is no link-commodity pair that meets the previous mentioned requirements (see
Section 4), then the element does not forward any packet to the interface.

In summary, the distinctive features of EBoW router are three:

– The extension of probing mechanism that is used also to propagate com-
modity backlog information.

– The modification of SRQueryResponder element in order to respond more
than once through every path that queries followed until the destination.

– The replacement of SimpleQueue element with an appropriate Commodi-
tyQueues one, that includes dynamically added and removed network layer
queues and applies the EBoW scheme.

6 Experimentation and Results

In this section, we present evaluation experiments of the implemented scheme
under various scenarios. For the purposes of the experimental evaluation, we
used the realistic medium-scale NITOS testbed.. Experimentation with imple-
mented mechanisms in realistic infrastructure, may lead to results that depend
on varying traffic, interference conditions and topology settings that cannot be
fully controlled. In order to arrive at solid results regarding the evaluation of
our protocol, we decided to run multiple executions of each experimental sce-
nario that is presented in this section. More specifically, each experiment is run
5 times and lasts 10 minutes. The reported results present average values. More-
over, we decided to run the same experiments under fully controlled settings in
a simulation environment and for this purpose we used the NS-3 platform. Com-
parison between the results obtained through experimentation on the different
platforms, enhances the validity of the followed evaluation approach.

Through our experiments, we compare EBoW with SRCR, Horizon and CDP,
which are considered as state of the art routing protocols for WiFi networks. For
comparison reasons, we also implemented the Horizon and CDP mechanisms
based on the Click framework and the SRCR Click configuration. Performance
comparison between EBoW, SRCR, Horizon and CDP, is presented in terms of
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throughput and end-to-end delay. Our experiments are organized in two parts,
where in the first part the execution of an experimental scenario in a simple
proof-of-principle network is presented, while in the second part we conduct a
complex experiment in a topology of 20 nodes that introduces randomness and
approximates realistic conditions. Details about the experimentation platform
used in each case follow.

6.1 Experimentation Platforms

NITOS is a wireless outdoor testbed deployed across several floors and thus
it provides for easy setup of multi-hop routes (Figure 4(a)). It is a non-RF-
isolated wireless testbed, so we used 802.11a to eliminate interference, since
commercial 802.11 products in Greece use only 802.11bg. The nodes used for
the experiments feature a 1GHz VIA C3 processor and a Wistron CM9 wireless
card. These wireless cards come along with a special version of the open source
MAD-WiFi driver that enables the Click router to transmit and receive packets.
The main features of the nodes and their software specifications are depicted in
Table 1.

Table 1. Basic Configuration of NITLAB nodes

Model Orbit radio nodes

CPU / Memory 1 GHz VIA C3 processor / 512 MB RAM

Operating system Debian GNU/Linux 4.0r8 ”etch” / kernel ver 2.6.16

Wireless card Wistron CM9 mini-pci / chipset Atheros AR5213A

Wireless driver madwifi-old r846 2005-02-16 (modified)

NS-3 is a valid simulation framework that is able to simulate network topologies
under accurately controlled conditions. The experimenter has the flexibility to
decide about the preferred OSI layer protocols. We exploited this feature to run
our experiments using specific routing protocols. We decided to use the NS-
3 simulator, because of its ability to be integrated with the Click framework,
in order to be able to test the developed Click configurations in a simulation
environment. As a result, we were able to use the same Click configuration in
both real and simulated experiments.

6.2 Measurement Methodology

The traffic on the real testbed is generated using Iperf [16], a powerful tool for
traffic generation and measurement. The experimental setup consists of several
pairs of nodes that initiate UDP traffic flows by running Iperf clients at the
sources and Iperf servers at the destinations. We also use the Iperf tool to collect
throughput performance in each experiment. In order to monitor end-to-end
delay performance per packet, we developed a custom timestamp mechanism
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(a) NITOS Testbed (b) Topology of Experiment I

Fig. 4. Experimental Setup

using the Click framework. For experiments conducted in the NS-3 platform, we
used the same mechanism to gather delay measurements, while traffic generation
and throughput monitoring were performed using the OnOffApplication and
PacketSink NS-3 application modules. Description of the conducted experiments
and discussion about the obtained results follow.

6.3 Experiment I

The topology and connectivity map of our first experiment are illustrated in
Figure 4(b). A ring topology of 7 nodes is designed, enabling a 3-hop and 4-
hop path with the same source (node 1) and destination (node 4) nodes. Each
network node is able to communicate through single-hop transmissions with
each one of the two nodes that exist before and after it in the ring topology.
In the presented topology, an extra node (node 8) also exists, which is able to
communicate directly only with node 2.

The experiment consists of two parallel active flows, namely flow A and flow
B, where through flow A node 1 transmits to node 4, and through flow B node 2
transmits to node 8. We conduct experiments of varying traffic rate for both of
these flows, in order to estimate the capacity region supported by the network
across the different protocols. Results obtained through experimentation in NI-
TOS testbed and NS-3 simulator are very close, and for this reason we present
in the following figures only the realistic testbed results. In Figure 5(a), we illus-
trate the capacity regions of the examined schemes. For example, the throughput
vector [6Mbps, 15Mbps] that indicates throughputs 6Mbps and 15Mbps for the
flows A and B respectively, exists inside the capacity region of EBoW, while it
is outside the capacity region of the SRCR scheme.
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(a) Capacity Region (b) End-to-end Delay for flow A

Fig. 5. Results of Experiment I

SRCR as a shortest path routing algorithm indicates the shortest route for
each flow. Due to the symmetric nature of the designed topology, nearly equal
ETT weights are reported for each link. As a result, SRCR obviously selects the
shortest 3-hop path 1-2-3-4 that features the lowest aggregate ETT weight, in
comparison with the 4-hop path 1-7-6-5-4. As SRCR does not feature any load
balancing mechanism, it is not able to detect simultaneous ongoing transmis-
sions, as these of flow B in this scenario. Under the SRCR approach, node 2 acts
as a bottleneck that significantly reduces the throughput for both flows.

On the other hand, the rest of the schemes under consideration, better exploit
the existence of two paths between the source and destination nodes of flow A.
Although the 4-hop path is longer in terms of ETT weight, it features less traffic
load in comparison with the 3-hop path due to the simultaneous transmissions
of node 2. As a result, the 4-hop path is able to provide higher throughput
performance. In addition, we notice that EBoW approach features an extended
capacity region compared to the regions of the other two distance vector rout-
ing protocols. The main reason for this phenomenon comes from the inherent
scheduling policy of the EBoW scheme, through which nodes that feature non
positive differential backlogs are scheduled not to forward packets, while relay
nodes that follow are provided with more transmission opportunities (see more
details in Section 4).

Another important factor that has to be considered is end-to-end delay per-
formance. We notice that end-to-end delay reported for flow B is equal for all
schemes, as they all use the same 1-hop route for packet forwarding. The end-to-
end delay performance for flow A yielded in each approach, is depicted in Figure
5(b). As clearly shown in this figure, end-to-end delay performance for flow A is
reported quite similar for all load balancing schemes. Another observation is that
the SRCR scheme outperforms all the other schemes in terms of end-to-end de-
lay. The lower end-to-end delay measurements reported for SRCR are expected,
as this approach is based on the shortest path principle. However, end-to-end
delay performance of SRCR is not significantly lower, which is due to the colli-
sions that occur frequently in the heavy loaded 3-hop path and negatively affect
delay performance.
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(a) Throughput (b) End-to-end Delay

Fig. 6. Results of Experiment II

6.4 Experiment II

In the second experiment we extend our validation in a random setup that in-
cludes 20 nodes and 3 randomly selected 4-hop flows. Figure 6(a) shows the
average throughput achieved for the 3 flows under each approach, on top of the
two different platforms. As we can see, the proposed scheme features significant
throughput improvement compared with the other schemes, across both plat-
forms. Under EBoW, transmitter nodes are able to utilize multiple paths and
moreover refrain from forwarding packets to nodes that feature high backlogs
and thus result in network capacity improvement. In addition, EBoW performs
better even in cases where the source-destination node pair is connected through
a unique path, as it provides more transmission opportunities to nodes that fea-
ture higher backlogs.

Figure 6(b) demonstrates end-to-end delay measurements obtained during
experimentation in the extended topology, across the different environments.
According to these results, we notice that SRCR provides the lowest delay val-
ues among the compared approaches. An observation of notable importance is
that the EBoW scheme outperforms the rest load balancing schemes. This re-
sult is obtained under experimentation in more generic topologies compared
with the simple ring topology used in the previous experiment. More complex
topologies provide larger paths in terms of aggregate ETT, which are avoided by
the proposed scheme based on the non-negative differential distance forwarding
requirement, but not by the rest load balancing schemes.

Results obtained between the different platforms are quite close but have some
characteristics that provide for further discussion. First of all, we notice that
real testbed experiments yield lower throughput and higher delay performance
in comparison with simulation results. This comes from the fact simulation envi-
ronments are not able to accurately estimate performance of realistic networks.
However, experimentation in each platform aids in arriving at relative conclu-
sions, regarding the superiority of our protocol. At this point we also remark the
higher deviation values observed during testbed experimentation, which result
because of the volatile nature of the realistic testbed environment.
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7 Conclusions and Future Work

In this paper we propose an implemented EBP inspired scheme that exploits
multi-path flow forwarding and outperforms the state of the art routing proto-
cols in terms of throughput, while it keeps low packet delay close to the delay of
the shortest path routing protocols. The new scheme features significant through-
put benefits comparing to other routing protocols with load balancing efforts.
We intent to extend the current work towards two directions: The first one is
to compare the proposed protocol with centralized EBP based implementation
approaches, and to see the advantages and disadvantages of the distributed VS
the centralized version. The second one is to combine the proposed scheme with
more sophisticated scheduling EBP inspired policies that will be implemented
in a distributed manner and will allow the scheduling of transmissions in the
neighborhood based on the load difference of the contenting hops. The schedul-
ing will be based on prioritization schemes of 802.11 such as those proposed in
802.11e (different AIFS or different back-off values based on traffic queues).
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Abstract. BonFIRE offers a Future Internet, multi-site, cloud testbed,
targeted at the Internet of Services community, that supports large scale
testing of applications, services and systems over multiple, geographically
distributed, heterogeneous cloud testbeds. The aim of BonFIRE is to
provide an infrastructure that gives experimenters the ability to control
and monitor the execution of their experiments to a degree that is not
found in traditional cloud facilities.

The BonFIRE architecture has been designed to support key function-
alities such as: resource management; monitoring of virtual and physical
infrastructure metrics; elasticity; single document experiment descrip-
tions; and scheduling.

As for January 2012 BonFIRE release 2 is operational, supporting
seven pilot experiments. Future releases will enhance the offering, in-
cluding the interconnecting with networking facilities to provide access
to routers, switches and bandwidth-on-demand systems. BonFIRE will
be open for general use late 2012.

Keywords: Multi-cloud, Future Internet, Internet of Services, Testbed,
Bandwidth on Demand.

1 Introduction

BonFIRE offers a multi-site cloud testbed that supports large scale testing
of applications, services and systems over multiple, geographically distributed,
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heterogeneous cloud testbeds. BonFIRE targets the Internet of Services com-
munity and offers a test infrastructure that is ideal for performing experiments
relating to distributed applications and services. BonFIRE’s aim is not to pro-
vide a production environment for cloud applications, but instead to provide an
infrastructure that gives experimenters the ability to control and monitor the
execution of their experiments to a degree that is not found in traditional cloud
facilities.

By targeting the Internet of Services community, BonFIRE aims to extend
the reach of Future Internet experiment testbeds into the area of distributed
applications and services. To further appeal to that community, BonFIRE adopts
a cloud-based model that is familiar to many Internet of Services experimenters.

One of the key features of BonFIRE is to give experimenters the ability to
control some of the many variables that affect the performance of distributed
applications. For example, BonFIRE allows users to control network quality-
of-service parameters such as latency, delay and packet loss using the Virtual
Wall [1] network emulation facility. Further control of network performance be-
tween geographically distributed infrastructures is anticipated through future
interconnection with FEDERICA [2] and GÉANT AutoBAHN [3,4].

Apart from network characteristics there are many other variables that can
affect performance of an application running on a cloud infrastructure; exam-
ples include the load of the VMs running on the physical machine as well as
disk and memory contention. BonFIRE supports exclusive access to physical
machines and allows experimenters to directly control the placement of VMs
on physical machines. These features give experimenters the control required to
reduce contention or even ensure an explicit level of contention required for the
experiment.

Where BonFIRE cannot control variables, it provides low- level infrastructure
metrics that can be used to monitor the infrastructure at a level that is typically
hidden from users of cloud systems. Examples of infrastructure metrics include
the load on a physical CPU, network throughput and disk I/O metrics. Experi-
menters are to use this low-level infrastructure monitoring data to understand,
and account for, the impact of these variables on their experiment results.

By adopting a cloud-model to access the multi-cloud facility, BonFIRE pro-
vides a convenient resource-level interface for managing compute, network and
storage resources on any of the BonFIRE testbeds. Thus BonFIRE supports ge-
ographically distributed experiments over multiple heterogeneous cloud testbeds
including the ability to elastically adjust the resources used during an experi-
ment. BonFIRE also supports a higher experiment-level interface that provides
users with the ability to describe the whole experiment in a document. Ad-
ditionally, BonFIRE provides built-in support for commonly used experiment
functionality such as monitoring collectors and publishers.

2 The Testbeds

At the core of BonFIRE are five geographically distributed cloud testbeds that to-
gether offer 350 cores, with 700GB of RAM and 30TB of storage. An additional
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2,300multi-core nodes can be added to BonFIRE on specific request. Additionally,
BonFIRE is working to interconnect with several external facilities to enhance the
offering.

2.1 Core Testbeds

The BonFIRE core testbeds can be divided into two groups: OpenNebula based
testbeds located at EPCC (UK), INRIA (France) and HLRS (Germany) and
non-OpenNebula based testbeds located at IBBT (Belgium) and HP (UK). All
testbeds are different from one another regarding structure, networking and re-
sources. This heterogeneity is a key feature of the BonFIRE system.

The common point of the testbeds of EPCC, INRIA and HLRS is that they
use OpenNebula as a cloud management solution and are currently running the
Xen hypervisor. Apart from that, the sites are quite different: EPCC provides
96 cores on two nodes, INRIA 36 cores on 9 nodes and HLRS a total of 44 cores:
20 cores on five nodes at 2GB RAM and 24 cores on six nodes at 8 GB RAM.

IBBT’s Virtual Wall is based on the Emulab network emulation software.
Tight integration of Emulab’s capabilities and the BonFIRE functionality makes
it very much suited for network related experiments. The IBBT Virtual Wall
consists of 100 nodes, of which 8 are available permanently to BonFIRE users
throughout the project’s lifetime. Each node has 4 cores at 4GB RAM and 4 to
6 Gigabit Ethernet interfaces, all of them connected to a non-blocking switch.

The HP infrastructure provides a virtual machine execution service. The vir-
tual machines will be running in a Xen environment, augmented with network and
storage virtualization.HP’s infrastructure is set up with the current stable release
of HP Cells [5] as a Virtual Infrastructure Manager. The HP facility provides 32
4-core nodes permanently dedicated to BonFIRE with access to up to 96.

2.2 On-Request Resources

On-request resources are resources that are not part of the BonFIRE facility on
a permanent basis, but they are provided to users for large- scale experiments.
Typically, a substantially larger collection of resources is available on-request
than is offered by the pemanent infrastructure. The operation and investments
of these facilities are too high to be exclusively provided for experiments but are
operated as production level facilities. In order to allow large scale testing, these
resources can be made available for a specific experiment for a limited time.

As with the permanent resources, the kind and amount of on-request re-
sources differs from site to site. In total, there will be around 2,200 cores available
through on-request resources across all sites.

2.3 External Facilities

Integration of the internal multi-site cloud facilities and their interconnection
with external (FIRE) facilities is key in BonFIRE. Horizontal integration is
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achieved through the integration of the different testbeds facilities as described
in Section 2.1. Conversely, the vertical integration of the facilities (Cloud-and-
Network) enables cross-layer testing to propagate service-level requirements down
to the connectivity levels. BonFIRE will initially interconnect with two external
facilities to provide vertical integration to the network level. These are GÉANT’s
Bandwidth-on-Demand (BoD) system and FEDERICA’s slice-based infrastruc-
ture that gives access to routes, switches and servers.

A major challenge in the vertical federation of cloud and network is the need
to provision on-demand network connectivity services among multiple cloud re-
sources and sites by interfacing to multi-domain heterogeneous production net-
works. In this framework, BonFIRE integrates with Bandwidth- on-Demand
(BoD) provisioning systems that have been developed by network operators to
provide their end-users with dynamic and efficient systems for their on-demand
network connectivity services. Due to the research-driven mission of the Bon-
FIRE project and the positioning of the overall FIRE initiative, national Re-
search and Education networks (NREN) and GÉANT are the preferential con-
nectivity providers for BonFIRE. It is planned to inter-connect some of the
available sites (PSNC, EPCC, HLRS) through their NRENs - PIONER, JANET
and DFN respectively - and through the GÉANT network. This will enable to
perform and demonstrate a cloud-to-network proof-of- concept prototype uti-
lizing GÉANT BoD service implemented with AutoBAHN for establishing and
monitoring dedicated high capacity connections between sites.

FEDERICA [2] was a European Project of the 7th Framework Program. Its
main goal was to deploy an e-Infrastructure for researchers on Future Internet.
Resources of this e-Infrastructure can be allocated to independent slices and
assigned to different experimenters allowing them to have the complete control
of the resources in their slice. This infrastructure is physically distributed around
the whole of Europe and it is composed by routers, switches and servers. By
interconnecting with a subset of FEDERICA’s infrastructure, BonFIRE users
will be able to perform new kinds of experiments over a controlled network.
This includes configuring network topologies and routing protocols and setting
quality of service (QoS) parameters.

3 Architectural Principles

The following architecture principles have been used to drive the design of the
BonFIRE architecture. By explicitly specifying these key principles we aim to en-
sure a consistent architectural vision throughout the BonFIRE system by apply-
ing these key principles when making any architectural decisions. The principles
are as follows:

1. It must always be possible for the BonFIRE multi-cloud facility to include
testbeds over which BonFIRE has no control.

2. Always provide APIs to BonFIRE functionality, in addition to any BonFIRE
graphical user interfaces (GUIs). These APIs will allow third parties to better
integrate BonFIRE into their systems.
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3. Allow experimenters full access to the specific functionality of particular
testbeds. The heterogeneous testbeds within the BonFIRE multi-cloud differ
for good reasons.

4. Allow higher-level functionality to exclude specific functionality of a testbed
if this makes common tasks easier to achieve. Thus BonFIRE will give exper-
iments the opportunity to choose the best approach for their specific task.

5. Support incremental adoption of the BonFIRE system by experimenters.
Some experimenters will come to BonFIRE fresh and will be happy to invest
effort learning the whole system in order to utilize its full power. Other users
may wish to incrementally integrate BonFIRE functionality into existing
experiments.

6. Support declarative specification of experiments as far as possible. Experi-
menters need only focus on what they want to deploy as an experiment and
on the relevant conditions.

4 Architectural Functionality

This section presents an overview of the BonFIRE architectural functionality.
These are the key functionalities of the BonFIRE architecture and are expressed
independently of the architectural components needed to implement them.

4.1 Resources

BonFIRE allows experimenters to execute experiments that create and use var-
ious resources on the BonFIRE testbeds. BonFIRE supports three types of re-
sources: compute, network and storage.

Compute resources are virtual machines (VMs) that are created and run for
some part of the duration of an experiment. All BonFIRE virtual machines
are created as part of an experiment and have a lifetime that does not ex-
ceed the lifetime of the experiment. Compute resources can be configured with
application-specific contextualization information that can provide important
configuration information to the virtual machine; this information is available
to software applications after the machine is started.

To support the degree of control required by experimenters, BonFIRE allows
users to reserve exclusive access to some physical machines. The experimenter
can then explicitly specify the placement of VMs on these physical machines in
order to control the desired level of contention between VMs.

Network resources can be used to connect the VMs to networks to allow the
VMs to communicate with each other and possibly with the wider Internet.
BonFIRE provides one network that any VM on any BonFIRE site can connect
to. This network is also used by the BonFIRE services to manage and monitor
the VMs in the experiment. Experiment-specific networks can be configured on
the testbeds, according to the experiment’s needs.

Storage resources are disks that can store data associated with an experiment.
It is often important to decouple the lifetime of the storage resources from the



86 A.C. Hume et al.

lifetime of the experiment. This provides a persistence of data that allows exper-
iment data to be written to a storage resource and be retrieved at a convenient
time after the experiment has completed. BonFIRE supports two types of stor-
age resource: operating system (OS) storage resources, and data block storage
resources.

All BonFIRE compute, network and storage resources reside on the testbeds
on which they are created and BonFIRE makes no attempt to hide this location
information from the end user. End users are expected to plan their experiments
with a detailed understanding of how they wish to distribute their resources
among the various testbeds.

BonFIRE supports dynamically creating, updating, reading and deleting re-
sources throughout the lifetime of an experiment. In order to aid the end user in
managing the resources within an experiment, BonFIRE provides the concept
of experiment resources that can be used as containers for the resources whose
lifetime is limited to the duration of the experiment.

4.2 Monitoring

BonFIRE includes an extensible monitoring framework that allows users to log
and monitor various metrics associated with an experiment’s progress. There
are three types of metrics that may be monitored according to the experiment’s
needs: VM metrics, application metrics and infrastructure metrics.

VM metrics provide system information regarding the status of the VM from
the perspective of CPU, memory, disk space.

Application metrics can be defined by the experimenter according to the spe-
cific software applications being used by the experiment, for example the number
of open database connections, or the value of an application counter.

Infrastructure metrics provide detailed information about the underlying hy-
pervisor’s system performance. For example, some experiments may need to
monitor the hypervisor’s CPU, how many VMs run on the same CPU, or what
the load is on a specific CPU. This level of monitoring is typically not pro-
vided by production cloud systems but it is an essential feature of the BonFIRE
experimental facility.

Users, and user-agents such as software systems, can access an integrated
view of an experiment’s monitoring information giving access to all three levels
of metrics from a single source. BonFIRE provides an API to access monitoring
information and also a graphical tool to display metric values and metric value
graphs in real time while an experiment is executing.

4.3 Elasticity

Elasticity is the ability to create and delete resources, typically virtual machines
with associated storage and networking, while an experiment is running. Usually
elasticity actions are performed when specific conditions occur. For example, a
new VM may be created when the overall system load is high. The BonFIRE



BonFIRE 87

monitoring functionality can be used to detect when these experiment-specific
conditions occur. BonFIRE aims to provide three levels of elasticity support:

– Manual: where experimenters manually observe the monitoring system and
create or delete resources as desired.

– Programmed: where the experimenter writes a program that uses the mon-
itoring API to detect when specific conditions occur and programmatically
creates or deletes the resources as desired. According to the experimenter’s
preferences this program may be executed either on a BonFIRE virtual ma-
chine or on a machine outside of the BonFIRE infrastructure.

– Managed: where the user specifies the elasticity policies in a high- level ex-
periment descriptor and BonFIRE creates or deletes the resources according
to the specified rules.

The BonFIRE resource API supports the control of resources on all testbeds
in the BonFIRE infrastructure. It is therefore possible for an control program
running on a VM on one testbed to create resources on another testbed. This
support for cross-site elasticity is a key feature of BonFIRE.

4.4 Experiment Descriptors

Experiments can interact with the BonFIRE system at two different granulari-
ties: resource level and experiment level granularity.

When using resource level granularity, experimenters explicitly send a request
to BonFIRE for each resource create, update, read or delete operation. With
the experiment level granularity the experimenter describes the experiment in a
single document and sends one request to BonFIRE to submit the experiment.
Once submitted, the experiment is managed by BonFIRE and the individual
resource level operations are performed by BonFIRE.

BonFIRE provides resource level operations through an implementation of
the Open Cloud Computing Interface (OCCI) [6]. OCCI provides create, read,
update and delete operations to compute, storage and network resources.

With experiment level granularity the experimenter describes their experi-
ment in a single document that we call the Experiment Descriptor (ED). There
are five parts to an experiment descriptor:

1. Specification of the initial deployment of compute, storage and network re-
sources.

2. Specification of the monitoring metrics.

3. Specification of elasticity rules containing both trigger conditions (specified
with respect to the monitoring metrics) and the actions to perform when the
conditions are met.

4. Specification of general rules that specify trigger conditions and actions to
perform that are not necessarily related to elasticity.

5. Specification of a shutdown sequence for stopping the experiment.
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BonFIRE uses Open Virtualization Format (OVF) [7] as its primary experiment
descriptor. OVF is a standard for the specification of the deployment of virtual
resources and being developed within the Distributed Management Task Force
(DMTF).

OVF will support the first part of the experiment descriptor described above.
Parts 2, 3, 4 and 5 will require extensions to standard OVF in several directions.
Other projects have already extended OVF to support specific cloud require-
ments such as elasticity [10] and BonFIRE will aim to adopt the same extensions
where possible.

Release 2 of BonFIRE supports experiment descriptors that specify the initial
deployment of compute, storage and network resources, but does not support the
specification of monitoring metrics or elasticity rules in one document. This does
not mean that experiments requiring monitoring and elasticity are nor supported
by BonFIRE. Such experiments simply have to configure the monitoring metrics
and elasticity rules separately within the virtual machine images used by the
experiment, rather than specifying them within an experiment descriptor.

As an alternative to the OVF format, BonFIRE will also support a very simple
experiment descriptor format that provides the core functionality of specifying
compute, network and storage resources in a single document.

4.5 Scheduling

Many commercial cloud facilities present a model of almost-infinite resource
availability: the user gets as many resources as they apply for. Most BonFIRE
testbeds, however, offer a small number of compute nodes as part of the per-
manent infrastructure. BonFIRE therefore operates at a different end of the
resource spectrum from commercial cloud facilities and hence must operate in a
different way regarding the scheduling of resources.

The problem is made interesting by the fact that BonFIRE combines cross-
site deployment with the notion of the experiment. It is possible that the user
may have a preference to start specific compute resources on specific sites; if
one site cannot fulfill its requirements, while the others can, experiments may
fail to run as expected. Also, BonFIRE will allow the user to leave the location
unspecified, so the system needs a mechanism to resolve this in a way that the
resources can be deployed.

This leads to the idea of Atomic Experiment Scheduling, whereby BonFIRE
considers an experiment in its entirety before attempting deployment. The inten-
tion is that BonFIRE does not attempt deployment of any experiment resources
until all involved BonFIRE sites indicate that they can allocate the required
resources.

Future releases of BonFIRE will provide atomic scheduling over all the
OpenNebula-based facilities. This will require BonFIRE-specific extensions to
OpenNebula.
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5 Architectural Components

The architectural components of BonFIRE can be seen in the architecture
overview diagram show in Fig 1. The BonFIRE architecture consists of five
layers each building on the functionality of the layer below it. Each layer ex-
poses its functionality via a set of APIs. The APIs of the lowest two layers, the
Testbeds and the Enactor, can only be used by the layer above them. The APIs
of the next two layers, the Broker and the Experiment Manager, can be used by
end users, agents acting of behalf of end users, and the layer above them.

5.1 Testbeds

The lowest layer of the BonFIRE architecture are the testbeds. The testbeds are
the cloud infrastructures that provide compute, network and storage resources
that can be used by BonFIRE experiments. Currently BonFIRE has three differ-
ent types of testbeds: the Cells cloud infrastructure provided by HP; the Virtual
Wall network emulation infrastructure provided by IBBT; and three cloud in-
frastructures implemented using the OpenNebula toolkit for cloud computing
and offered by EPCC, HLRS and INRIA.

Theoretically testbeds may expose their functionality via any API they choose
but to simplify the initial implementation all testbeds currently expose their
basic resource manipulation functionality using a version of the Open Cloud
Computing Interface (OCCI) [6].

5.2 Enactor

The role of the Enactor is to shield the technical details of how to communicate
with each specific testbed from the higher level Broker. The Enactor receives
OCCI requests from the Broker and transforms them onto suitable requests for
the appropriate testbeds. The transformed request is then sent to the testbeds
and the response received. The response is then transformed into a common
format and passed to the Broker.

5.3 Broker

The Broker is the lowest layer of the BonFIRE architecture that may be accessed
by end users and provides the entry point for experimenters to interact with
BonFIRE at the resource level granularity.

The Broker maintains the current set of experiment resources and all the
compute, storage and network resources currently used by the experiment. User
operations on the compute, storage and network resources are passed to the En-
actor and then onto the appropriate testbed. User operations, such as create and
read, on the experiment resource are typically executed at the Broker because
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the testbeds know nothing about the concept of an experiment. Some operations
such as deleting an experiment require the Broker to interact with the testbeds
via the Enactor.

The Broker currently exposes two APIs: OCCI for managing resources; and
a Monitoring API. The OCCI interface is used to create, read, update and
delete compute, network and storage resources. The OCCI is extended from the
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proposed standard to include BonFIRE specific requirements related to the ex-
periment resource, explicit indication of the location at which a resource must
be created, and also additional network elements to specify the bandwidth, loss
rate and latency for emulated networks on the Virtual Wall.

5.4 Experiment Manager

The role of the Experiment Manager is to take a description of an experiment as
described in an experiment descriptor and manage its execution through multiple
calls to the Broker. Experimenters can create new managed experiment resources
and specify the corresponding experiment descriptor.

BonFIRE supports two different formats of experiment descriptor, OVF and
the BonFIRE simple experiment descriptor. For each format the Experiment
Manager contains a parser that maps the experiment descriptor onto a common
data model that describes the experiment. This allows the rest of the Experiment
Manager architecture to be decoupled from the choice of experiment descriptor
format.

The data model is then validated to check that it is consistent and that the
labels used to identify locations, templates, etc. are valid. When an experiment
descriptor request is sent to BonFIRE, the validator is the last component to
execute before the response is returned. This response indicates whether or not a
valid experiment descriptor was provided, but cannot indicate whether it could
be successfully deployed as deployment is carried out later in a background
task. It is therefore important that the validator detects as many errors in the
experiment descriptor as it possibly can.

The managed experiments are then placed in a queue, and deployed in turn
in a background task. In a future version, the testbeds will be polled to check
resource availability, before either deploying each experiment or holding in the
queue until the necessary resources become available. At present, the Experiment
Manager attempts to deploy every experiment in the queue. If the location of
any resources is left unspecified in the experiment descriptor, the scheduler will
choose a suitable location.

Next, the planner plans the order in which the various resources should be cre-
ated. Network and storage resources will need to be created before the compute
resources that use them. Additionally, property constraints between virtual ma-
chines may also influence the order in which compute resources must be created.
For example, if a client virtual machine must be configured at boot time with
the IP address of the server virtual machine, then the server virtual machine
must be created first in order to determine its IP address.

Once the initial deployment of resources has been planned, the resources are
created in the appropriate order via calls to the OCCI API of the Broker. Prop-
erty values are also passed to VMs on creation, for example to ensure the server’s
IP address is written to the appropriate contextualisation section when the client
virtual image is created.
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5.5 Portal

The Portal offers the experimenter a graphical interface to the BonFIRE capabil-
ities. It has a view of the experimenter’s data, the running experiments, and the
available platform capabilities (for example, the list of sites). The Portal is the ag-
gregated view of the whole platform, and is the simplified entry point for the ex-
perimenter. It is also a way to present to the experimenter information from the
Broker or the cloud sites, for example, to monitor experiment progress.

5.6 SSH Gateways and the BonFIRE WAN

The availability of publicly addressable IP addresses varies across the various
BonFIRE testbeds. Some testbeds have very few, or even zero, such IP addresses
to allocate. This obviously creates a challenge when one VM in a experiment
must communicate with another that does not have a publicly addressable IP.
To overcome this problem BonFIRE implements a WAN to which all VMs can
be connected. This WAN can be used for both BonFIRE’s control data and ex-
perimenters’ application data. The WAN is implemented using VPN technology.
The BonFIRE WAN can be a major bottleneck and should not be used for large
scale inter-testbed communication that is crucial to an experiment. Instead in
such cases publicly addressable IPs should be used wherever possible.

The SSH Gateways provide a means for experimenters to SSH into virtual
machines that are not publicly addressable. Each BonFIRE site provides an
SSH gateway that experimenters can connect to using SSH. From these gateways
experimenters can then SSH to their VMs over the BonFIRE WAN.

5.7 Identity Server

The Identity Server provides BonFIRE’s identity management functionality.
User credentials are stored in a central LDAP database. To avoid a single point
of failure the database is cloned on a master-slave approach on each site. The
slaves on the sites are also used for user authentication on the sites. The web
interface of the Identity Management allows users to manage their credentials.
There is also an administrative web- interface which gives the BonFIRE admin-
istrators full control of all existing user accounts. The passwords are never seen
in clear text by the administrators, as they are stored in hash format. For each
user the Identity Server stores the username, password, groups and also option-
ally the user’s SSH public key. If available, the testbeds use this public key to
preconfigure all virtual machines such that only that user can SSH to them.

6 Experiments

BonFIRE is currently being used by seven experiments. This section gives an
overview of two of these experiments and explains why BonFIRE is particularly
suited to the task.
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6.1 QoS-Oriented Service Engineering for Federated Clouds

This experiment is one of the three driving experiments in the BonFIRE project,
which is carried out by the IT Innovation Centre at the University of Southamp-
ton. The experiment investigates techniques to better understand and predict
the Quality of Service (QoS) achieved by service based applications when run-
ning on cloud infrastructures. The complexities of determining QoS requirements
for service based applications in the cloud has given rise to a new class of service
engineering tools within the Platform-as-a-Service (PaaS) layer for modelling,
analysing and planning. While it is in the interest to a PaaS provider not to
over- provision, it is important that the application performance is stable and the
user experience is acceptable. This is not trivial since service based applications
are often highly interactive and the usage patterns may fluctuate significantly
depending on user demand.

QoS terms are typically set out in a Service Level Agreement (SLA) based
on low level infrastructure terms such as CPU speed, disk space, etc. How-
ever, the customers (typically the application users) are often more interested
in application-level parameters, e.g., the number of dropped frames for a multi-
media streaming application. The gap between the terms infrastructure providers
offer and what the users are interested in can be large. This results in a complex
relationship between application performance and resource parameters, which is
greater still for applications deployed across federated clouds.

Several service engineering tools have been developed in the EU IST IRMOS
project to address the challenges above [8]. This experiment focuses on predic-
tion of application performance based on a generic description of infrastructure
resources (based on application benchmarking scores), to enable transferability
across different providers, particularly with federation in mind. The hypothesis
put to test in the experiment is that such a description of resources not only
allows for prediction of application performance, but may enable more accurate
predictions compared with using typical infrastructure parameters. Moreover,
we hypothesize that using QoS terms in SLAs will improve overall efficiencies
for all cloud stakeholders due to increased accuracy of requirements achieved by
a simplification of service planning and adaptation models, and increased mar-
ket adoption and flexibility due to the simplification of the federation between
Platform and Infrastructure stakeholders.

The heterogeneous resources and federated testbeds in BonFIRE is essential
to this experiment to be able to address the above hypotheses. The resource
control offered in BonFIRE ensures repeatable experimentation, and the built-
in monitoring facilities allow a more in-depth analysis than what is possible
elsewhere; particularly infrastructure monitoring as that allows for correlation
of results obtained on the virtual resources with what actually happened on the
physical infrastructures. This is important for addressing resource reliability in
the cloud, which is a factor one needs to consider when predicting application
performance to estimate QoS. For more details about the experiment and initial
results, please refer to [9].
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6.2 Virtual Clusters on Federated Sites

The Virtual Clusters on Federated Sites experiment is funded through the first
BonFIRE open call and is being carried out by Centre of Supercomputing of
Galicia (CESGA). The aim of this experiment is to research the feasibility of
using multiple cloud environments for the provision of services which need the
allocation of a large pool of CPUs or virtual machines to a single user (as High
Throughput Computing (HTC) or High Performance Computing (HPC)). The
use case covers dose computation for radiotherapy treatments based on Monte
Carlo methods, developed in the eIMRT project [11].

The experiment studies questions related to the usage of virtual clusters in a
distributed cloud environment. A first set of questions are related to the time
that the deployment and enlargement of such cluster need to be operational and
the influence other simultaneous operations have in the process. Previously in
other experiments in grids, local clusters and even commercial cloud providers,
interferences with other users and processes have been observed which affect the
final quality of service. The objective is to understand better how to manage
these virtual clusters to guarantee a low time to solution or latency (this means,
the time since the cluster has been requested to the end of the service). Also,
the elasticity functionality will be analyzed, using the application performance
monitoring as a trigger for the change in the size of the cluster.

A second set of experiments will investigate the usage of the distributed capa-
bility of cloud providers (federated or multi- site) in order to protect the service
against failures. A virtual cluster will be deployed divided in two sets, and the
characteristics of the network (latency, bandwidth and packet loss rate) will be
changed to study the effects in the performance of the cluster. The radical situ-
ation of losing part of the cluster will be simulated changing the bandwidth to
zero, when the other part should recover from it to guarantee that the customer
receives the solution on time.

The main metric to measure in the experiments is the time to execute one
operation as function of the factors which can affect this time, as the number of
machines that compose the cluster, the size of each virtual machine, etc.

Because clouds are shared environments which are not completely under con-
trol of the experimenter, several measurements must be done. To automate the
process of executing the experiments, an Experiment Agent should be developed.
This agent will communicate with the BonFIRE infrastructure and will control
the execution as well as record the data locally to make analysis later.

The results and data acquired during the experiment should permit CESGA
to develop the policies and business rules to include in the applications under
development at the institution which use the Software as a Service model. This
new model will be developed after the end of the experiment.

An experiment like this needs the BonFIRE infrastructure because the us-
age of commercial providers does not guarantee enough control of the factors
which can affect the results. Installing a local infrastructure for executing it is
too complex and time consuming. Additionally, BonFIRE includes a site where
the network can be controlled. This is a facility that CESGA can not deploy
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currently. BonFIRE, therefore, offers a unique cloud infrastructure where new
cloud concepts and applications can be experimented with.

7 Current Status and Future Work

As of January 2012 release 2 of BonFIRE is operational and is being used by the
three embedded experiments and the four experiments funded by BonFIRE’s
first open call. These open call experiments are feeding back comments and
requirements that will be addressed in subsequent releases of BonFIRE. A new
set of experiments funded by a second open call are planned to begin using
the BonFIRE facility in September 2012. Subsequently, it is planned to open
BonFIRE up to a wider set of users later in 2012.

The resource-level API provided by the Broker is working very well and will
continue to provide the core functionality of BonFIRE. The higher-level func-
tionality offered by the Experiment Manager will be extended to support all five
levels of the experiment descriptor as described in Section 4.4.

The ability to obtain exclusive access to a physical machine and specify the
placement of VMs on these machines has given BonFIRE experimenters the
means of controlling their experiment infrastructure to a degree that is not
supported by typical cloud infrastructures. This functionality has shown good
promise in allowing experimenters to control the degree of contention experienced
by a VM. Further research is planned to investigate if BonFIRE can provide a
set of typical contention templates that can be easily applied to VMs under test.
Where such contention cannot be controlled, BonFIRE allows it to be monitored
via the infrastructure monitoring functionality. This ability to monitor infras-
tructure metrics and easily correlate them with application or VMs metrics is
proving of great use to experimenters.

BonFIRE will expand vertically to support the dynamic interoperation among
some BonFIRE sites through the GÉANT network. This will automate the net-
work control for real multi-site experiments and offer network as primary re-
source for the experiments with its key configuration parameters (bandwidth,
delay, etc.). In release 3, the BonFIRE system will be interfaced to the GÉANT
AutoBAHN system (Automated Bandwidth Allocation across Heterogeneous
Networks). The user/cloud (BonFIRE) to network (GÉANT) interface will be
based on the AutoBAHN User Access Point interface(UAP): the AutoBAHN
client will be integrated into the BonFIRE Enactor to issue BoD request and
implement consequent actions on the respective LAN sides (end-point). Also
other BonFIRE system components will be adapted to cope with the new WAN
network resources: in particular, the Portal will require new tabs/pages to de-
scribe the new resources; the OCCI will be extended to include specific fields
for BoD network resources; the Experiment Manager and Broker will require
data model adaptations. These near-future BonFIRE architecture and compo-
nents modifications will make available on-demand network connectivity ser-
vices between selected sites/resources bound to the experiments: user-controlled
network QoS parameters and possibility to reserve actual (i.e. not emulated)
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network resources both in immediate-permanent and advance reservation mode
will definitely enhance the Future Internet (FI) experiment coverage area.

Additional vertical expansion and the ability to federate with other FI testbeds
will be demonstrated by connecting BonFIRE with a subset of the FEDERICA
facility. This will require BonFIRE to connect to the Slice-based Facility Archi-
tecture (SFA) used by many of the networking-focused FI testbeds.
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F.J., Rodŕıguez-Silva, D.A., Gómez, A., Mouriño, C., Pombar, M., Sánchez, M.:
eIMRT: A Web Platform for the Verification and Optimization of Radiation Treat-
ment Plans. J. Appl. Clin. Med. Phys. 10(3), 2998 (2009)

http://www.ibbt.be/en/develop-test/ilab-t/virtual-wall
http://www.fp7-federica.eu/
http://www.geant2.net/upload/pdf/GN2-05-086v11.pdf
http://www.geant2.net/upload/pdf/GN2-05-208v7_DJ3-3-1_GEANT2_Initial_Bandwidth_on_Demand_Framework_and_Architecture.pdf
http://www.geant2.net/upload/pdf/GN2-05-208v7_DJ3-3-1_GEANT2_Initial_Bandwidth_on_Demand_Framework_and_Architecture.pdf
http://www.hpl.hp.com/open_innovation/cloud_collaboration/projects.html
http://occi-wg.org/
http://www.dmtf.org/standards/ovf


ExoGENI: A Multi-domain

Infrastructure-as-a-Service Testbed�

Ilia Baldine, Yufeng Xin, Anirban Mandal, Paul Ruth, Chris Heerman,
and Jeff Chase

RENCI

Abstract. NSF’s GENI program seeks to enable experiments that run
within virtual network topologies built-to-order from testbed infrastruc-
ture offered by multiple providers (domains). GENI is often viewed as a
network testbed integration effort, but behind it is an ambitious vision for
multi-domain infrastructure-as-a-service (IaaS). This paper presents Ex-
oGENI, a new GENI testbed that links GENI to two advances in virtual
infrastructure services outside of GENI: open cloud computing (Open-
Stack) and dynamic circuit fabrics. ExoGENI orchestrates a federation
of independent cloud sites and circuit providers through their native IaaS
interfaces, and links them to other GENI tools and resources.

The ExoGENI deployment consists of cloud site “racks” on host cam-
puses within the US, linked with national research networks and other
circuit networks through programmable exchange points. The ExoGENI
sites and control software are enabled for software-defined networking us-
ing OpenFlow. ExoGENI offers a powerful unified hosting platform for
deeply networked, multi-domain, multi-site cloud applications. We intend
that ExoGENI will seed a larger, evolving platform linking other third-
party cloud sites, transport networks, and other infrastructure services,
and that it will enable real-world deployment of innovative distributed
services and new visions of a Future Internet.

1 Introduction

ExoGENI is a new testbed at the intersection of networking and cloud comput-
ing, funded through NSF’s Global Environment for Network Innovation (GENI)
project. GENI is the major US program to develop and deploy integated network
testbeds. The ExoGENI testbed is designed to support research and innovation
in networking, operating systems, distributed systems, future Internet architec-
tures, and deeply networked, data-intensive cloud computing. The testbed can
also serve as a platform for novel applications and services, e.g., for the US IG-
NITE initiative. The initial deployment is scheduled to become operational in
late 2012.

� This work is supported by the US National Science Foundation through the GENI
initiative and NSF awards OCI-1032873, CNS-0910653, and CNS-0720829; by IBM
and NetApp; and by the State of North Carolina through RENCI.

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 97–113, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



98 I. Baldine et al.

ExoGENI is based on an extended Infrastructure-as-a-Service (IaaS) cloud
model with orchestrated provisioning across sites. Each ExoGENI site is a pri-
vate IaaS cloud using a standard cloud stack to manage a pool of servers. The
sites federate by delegating certain functions for identity management, autho-
rization, and resource management to common coordinator services. This struc-
ture enables a network of private clouds to operate as a hybrid community cloud.
Thus ExoGENI is an example of amulti-domain or federated cloud system, which
some have called an intercloud.

ExoGENI combines this structure with a high degree of control over network-
ing functions: OpenFlow networking within each site, multi-homed cloud servers
that can act as virtual routers, site connectivity to national circuit backbone fab-
rics through host campus networks, and linkages to international circuits through
programmable exchange points. The project aims to enhance US research cyber-
infrastructure capabilities in four inter-related ways:

– The missing link. ExoGENI interconnects clouds to dynamic circuit fab-
rics, enabling a range of networked cloud applications and services, including
data-intensive interaction, distributed data sharing, geo-replication, alterna-
tive packet networks, and location-aware services.

– On-ramps to advanced network fabrics. ExoGENI shows how to use
campus clouds to bridge from campus networks to national transport net-
work fabrics, overcoming a key limitation identified by NSF’s CF21 vision.
ExoGENI cloud sites can act as virtual colocation centers that offer on-
demand cloud services adjacent to fabric access points. Sites at fabric inter-
section points can also act as virtual network exchanges to bridge “air gaps”
between fabrics stemming from lack of direct connectivity or incompatible
circuit interfaces.

– Cloud peering and data mobility. ExoGENI enhances the potential for
peering and sharing of private clouds. It offers a means to bring data and
computation together by migrating datasets to compute sites or placing com-
putation close to data at rest.

– Networking as a service. ExoGENI brings flexible network configura-
tion to cloud computing. It also enables experimental deployments of new
packet networking models over a flexible link substrate. Built-to-order vir-
tual networks can implement routing overlays using IP or other packet-layer
protocols. Testbed users may deploy custom node operating systems with
alternative networking stacks into their nodes, and use OpenFlow datapaths
and/or virtual routers to implement new network services at the cloud edge
and at network intersection points.

This paper gives an overview of the ExoGENI testbed and its control software.
The research contribution of this paper is to summarize the design principles
of ExoGENI resulting from our experience in developing the testbed software
(Section 2). Section 3 explains the rack site structure and interconnection archi-
tecture for the testbed. Section 4 outlines the integration of multi-domain IaaS
with the GENI architecture as it currently stands. The software described in this
paper has been implemented, deployed and demonstrated at various events.
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Fig. 1. Structure of a resource provider or aggregate. Each provider runs a native
infrastructure service (IaaS) of its choice, which may serve requests from local users
through a native API. To join a federation the aggregate is fronted with a generic
Aggregate Manager (AM) service. The AM validates user requests against local policy
and serves them by invoking the native IaaS API through resource-specific plugin
handlers. A handler may rely on other auxiliary services for some functions, e.g., image
loading, OpenFlow authorization, or network proxying.

2 A Testbed of Federated IaaS Providers

ExoGENI supports virtual infrastructure resources, which are instances of “fun-
damental computing resources, such as processing, storage, and networks” ac-
cording to the NIST definition of Infrastructure-as-a-Service [17]. Testbed users
may instantiate and program a virtual topology consisting of virtual machines
(VMs), programmable switch datapaths, and virtual network links based on
Ethernet standards. The deployment is based on an evolving set of technologies
including point-to-point Ethernet circuits, OpenFlow-enabled hybrid Ethernet
switches, and standard cloud computing software—OpenStack and xCAT [8].

The “Exo” (outside) prefix reflects our view of how GENI will evolve and what
capabilities are needed to deliver on the promise of GENI to “explore networks
of the future at scale”. GENI is evolving alongside cloud technologies and open
network control systems whose functions and goals overlap with GENI. The rate
of investment in developing and deploying these systems is quite a bit more than
an order of magnitude larger than the GENI effort.

One purpose of ExoGENI is to define a path to leverage these technologies
and substrates in the GENI project. At the same time, GENI control software
offers new ways to combine and extend them as a unified deployment platform
for advances in network science and engineering. ExoGENI shows how GENI
control software can leverage IaaS advances in a way that addresses important
orchestration challenges for networked cloud computing.
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The Exo prefix captures four related principles illustrated in Figure 1:

E1 Decouple infrastructure control from orchestration. Each provider
domain (aggregate) runs a generic front-end service (an Aggregate Man-
ager or AM) that exports the testbed APIs. The AM cooperates with other
services in the federation, and invokes a back-end infrastructure service to
manage the resources in the domain.

E2 Use off-the-shelf software and IaaS services for infrastructure con-
trol. Standard IaaS software and services offer a ready back-end solution
to instantiate and release virtual resources in cloud sites, circuit services,
and other virtual infrastructure services. The generic AM interfaces to these
standard APIs using plugin handler modules.

E3 Leverage shared third-party substrates through their native IaaS
interfaces. This compatibility with standard back-end infrastructure con-
trol services offers a path to bring independent resource providers into the
federation. The provider deploys an off-the-shelf IaaS service and “wraps” it
with an AM to link it into the testbed federation.

E4 Enable substrate owners to contribute resources on their own
terms. Participating providers are autonomous: they are empowered to ap-
prove or deny any request according to their policies. Providers allocate vir-
tual resources with attached QoS properties for defined intervals; the callers
determine what resources to request and how to expose them to applica-
tions. Resource allotments are visible to both parties and are controlled by
the providers. These principles are similar to those put forward for the ex-
okernel extensible operating system [15] developed at MIT in the 1990s; the
exo name also pays homage to that project [13].

Based on these principles ExoGENI provides a framework to incorporate “out-
side” resources and infrastructure services into a federation and to orchestrate
their operation. For example, providers may deploy new cloud sites using open-
source cloud stacks, such as Eucalyptus [18] or OpenStack, which support the
de facto standard Amazon EC2 IaaS cloud API. Common APIs such as OS-
CARS [10] are also emerging for transport network circuit services. Providers
may deploy these and other systems independently; once a system is deployed we
can install a front-end orchestration service (AM) to link it into the federation
without interfering with its other functions and users. The AM may be operated
by the provider itself or by a delegate or authorized client.

2.1 ExoGENI Control Software

The control software for ExoGENI was developed and refined in an ongoing
collaboration between RENCI and Duke University to create a GENI testbed
“island” around the Breakable Experimental Network [1] (BEN), a multi-layer
optical testbed built by the State of North Carolina and managed by RENCI.
The project grew into a more comprehensive effort to support a federated IaaS
system linking BEN and other infrastructure systems under orchestrated control
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Fig. 2. Conceptual view of the ExoGENI software stack. An IaaS layer consists of
standard off-the shelf software and services for server clouds, network transport services,
and OpenFlow networking, which control the testbed substrate. Testbed users and tools
access the testbed resources through GENI APIs and an alternative API (labeled Alt-G
in the figure) based on semantic resource models. The ORCA resource leasing system
tracks resource allocation and orchestrates calls to handler plugins, which invoke the
APIs for services in the IaaS layer. The monitoring system has a similar structure.

and a common authorization framework. Some early results from the project
have been reported in previous publications [3,2,24,16].

An initial goal of the project (2008) was to build a native circuit service for
BEN based on the Open Resource Control Architecture (ORCA [5]). ORCA is
an outgrowth of earlier projects in networked cloud computing at Duke, funded
by NSF and IBM. It is based on the SHARP federation model [9] and the
plugin architecture of the Shirako resource leasing core [14], with extensions for
automated control policies added for Automat [25]. The project developed a set
of plugin modules for ORCA, which are used in ExoGENI.

Building the native BEN circuit service presented an interesting test case
for the ORCA control framework. We built policy plugins that plan requested
paths through the BEN network by issuing queries on semantic resource models,
which are logic-based declarative descriptions of the network expressed in an
extended variant of the Network Description Language (NDL [11,7,12]). We also
built handler plugins that manage paths by forming and issuing commands to
network devices over the BEN management network, based on path descriptions
generated by the queries.

BEN is one of several circuit providers for ExoGENI. We later implemented
new ORCA plugins to interface to external circuit APIs: National LambdaRail’s
Sherpa FrameNet service and OSCARS, which is used in the national circuit
fabrics ESnet and Internet2 ION.
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We also extended other handlers to drive EC2 cloud APIs. With the emer-
gence of Eucalyptus [18] we focused our development on integration with stan-
dard EC2-compatible cloud stacks, replacing our older cloud software called
Cluster-on-Demand [6]. ExoGENI rack sites now use these plugins to drive the
OpenStack cloud service.

These steps led us to the ExoGENI software architecture, which uses ORCA
to orchestrate a set of participating virtual infrastructure providers through their
native IaaS interfaces. Figure 2 depicts the software stack. The ORCA portions
of the stack run in different ORCA-based servers: ORCA is a toolkit for building
aggregate managers (AMs) for the rack sites and other providers, together with
related coordination services (Section 4).

Users and their tools invoke testbed APIs to instantiate and program virtual
resources from participating providers. A slice is a set of virtual resources un-
der common user control. A slice may serve as a container or execution context
to host an application or network service. An ExoGENI slice may contain a
network topology with programmable nodes and links—a virtual distributed en-
vironment [21]. The links in the topology comprise the slice dataplane. Software
running within a slice may manage its dataplane as a private packet network
using IP or alternative protocol suites at the discretion of the slice owner.

A slice may span multiple sites and link to other GENI resources or other
external resources as permitted by peering and interconnection agreements. Ex-
oGENI slices are isolated: they interact with the outside world through controlled
interfaces, and the resources in a slice may have quality-of-service properties de-
fined by the providers.

2.2 Relationship to Other GENI Testbeds

ExoGENI is significant in part because it offers our first opportunity to eval-
uate the federated IaaS model in a production testbed. The ExoGENI princi-
ples represent a departure in the GENI effort, whose current standards evolved
from testbeds that were established and accepted by the research community at
the start of the GENI program in 2007: PlanetLab [19], Emulab [23], and OR-
BIT [20]. Each testbed developed its own control software to manage substrates
that are permanently dedicated to that testbed and under the direct control of
its central testbed authority.

The ExoGENI testbed is the first GENI-funded substrate whose control soft-
ware departs from that model and instead uses standard virtual infrastructure
services, which may be deployed and administered independently and/or shared
with other uses. We intend that ExoGENI will serve as a nucleus for a larger,
evolving federation that encourages participation from independent cloud sites,
transport networks, and testbed providers, beyond the core GENI-funded sub-
strate. An important goal of the project is to provide a foundation for organic
and sustainable growth of a networked intercloud through a flexible federation
model that allows private cloud sites and other services to interconnect and share
resources on their own terms.
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The ExoGENI model offers potential to grow the power of the testbed as
infrastructure providers join and their capabilities continue to advance. In time
these advances may enable not just real deployment of innovative distributed
services but also new visions of a Future Internet.

This goal requires an architecture that supports and encourages federation of
sites and providers and exposes their raw IaaS capabilities, including QoS capa-
bilities, to testbed users through common APIs. It requires a different structure
from the GENI predecessors, whose primary uses have been to evaluate new
ideas under controlled conditions (for Emulab and ORBIT) and to measure the
public Internet as it currently exists (for PlanetLab). PlanetLab has enabled de-
velopment of innovative distributed services in the real world, but it is limited as
a deployment platform because it supports only best-effort resource allocation,
limits use of modified kernel software to user-mode virtualization, and depends
on the existing Internet for its dataplane.

3 ExoGENI Services and Interconnections

Each ExoGENI cloud site includes a packaged rack with a small cloud server
cluster and an integrated OpenFlow network, built by our industry partner IBM.
The initial funding will deploy 14 rack sites at universities and research labs
across the United States. Each of the sites is capable of supporting about 100
virtual machines, based on an EC2-compatible IaaS cloud service (OpenStack
with Linux/KVM).

Figure 3 depicts the rack components and connections. The nodes in the
initial racks are x3650 M3 and M4 IBM servers. The worker nodes are the server
substrate for dynamic provisioning of nodes for slices. A single management node
(head node) runs the control servers for the site, including the OpenStack head
and ORCA servers. The rack also includes an iSCSI storage appliance for images,
instrumentation data, and other needs.

All components are connected to a management switch, which has an L3
connection to the campus network and from there to the public Internet. This
switch is used for intra-site access to the iSCSI storage, for remote management
by the testbed operator (RENCI) through a VPN appliance (not shown), and for
slice connectivity to the public Internet. Each worker has multiple 1Gbs ports
for these uses.

A separate dataplane switch carries experiment traffic on the slice dataplanes.
It is the termination point for L2 links to external circuit providers and to VLANs
or subnets on the host campus network, if permitted by the host campus. The
initial racks have an IBM/BNT G8264R 10G/40G OpenFlow-enabled hybrid
L2 switch with VLAN support. Each worker node has two 10Gbps links to the
dataplane switch.

Slice owners can access their nodes over public IP through a management
interface. Access is by root ssh with a public key specified by the slice owner.
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Fig. 3. Structure of an ExoGENI site rack for the initial deployment. Each rack has low-
bandwidth IP connectivity for management and a high-bandwidth hybrid OpenFlow
switch for the slice dataplanes. The site ORCA server controls L2 dataplane connections
among local nodes and external circuits.

Nodes may also have public IP addresses if permitted by the host campus. Public
IP access is managed by OpenStack and proxied through its head node.

3.1 Circuit Backbones

Each circuit provider offers a point-to-point Ethernet service among specified
points-of-presence on its network. ExoGENI can use dynamic circuit services
offered by major national fabrics (NLR, Internet2, ESnet) through their native
APIs (e.g., OSCARS). Two rack sites (RENCI and the exo-dev development
cluster at Duke University) have direct links to the BEN network, which connects
to 10Gbps ports on NLR FrameNet and I2/ION.

Rack sites connect to the circuit backbones either through dedicted fiber
or a static pool of pre-provisioned VLAN tunnels that traverse campus net-
works and/or regional networks (RONs). The host campus presents these cir-
cuit VLANs to the rack dataplane switch. ExoGENI coordinator services use
these various L2 capabilities to construct end-to-end circuit paths requested
for a slice dataplane, passing through intermediate network exchange points as
needed to remap VLAN tags or bridge gaps between multiple circuit providers
(Section 3.2). Authorized slices may also link to other VLANs entering the dat-
aplane switch from the campus network or backbone, such as the GENI Meso-
Scale OpenFlow Waves on Internet2 and NLR.
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Fig. 4. A virtual topology mapped to a circuit fabric substrate with network exchange
points. The exchanges are ExoGENI aggregates that stitch adjacent circuits into end-
to-end paths with VLAN tag remapping. The exchanges bridge gaps among multiple
circuit providers and reduce the need for common VLAN tags for circuits that span
rack sites.

3.2 Network Exchange Points

ExoGENI has connectivity to a wider range of circuit providers through two net-
work exchange points: a RENCI-operated exchange on BEN and the StarLight
facility in Chicago, which lies at the intersection of various national and inter-
national networks. RENCI has deployed switches with VLAN tag translation
(Cisco 6509) to these exchange points, each controlled by an AM.

We use the exchange points to stitch end-to-end circuits that span multiple
transport networks with no common inter-domain circuit service, i.e., an “air
gap” between circuit fabrics. The exchanges can also remap VLAN tags to link
end-to-end circuits between edge sites, for use when no tag remapping option
is available along the direct path and the sites have no common VLAN tags
available in their static pools. We have demonstrated use of the exchanges to
bridge connections among different circuit providers and to interconnect member
sites of GENI’s “Cluster-D” through various regional networks and NLR. Some
sites without NLR access have dedicated connectivity to StarLight through re-
gional or commercial providers and can bridge circuits to other networks through
StarLight.



106 I. Baldine et al.

Figure 4 shows an example of how VLAN translation at fixed exchange points
can enable more dynamic slice topologies for ExoGENI. The figure shows a slice’s
virtual topology in the top plane and the underlying circuits and their remapping
in the bottom plane.

ExoGENI will use its point-of-presence at StarLight to enable dynamic con-
nectivity to other GENI substrates, ESnet, Internet2, NLR, and DOE’s 100
Gbps ANI testbed (via a planned rack site at NERSC/LBL). StarLight also
links ExoGENI to various international testbed partners. For example, we will
have the opportunity to connect to our partners from Fraunhofer FOKUS and
their Teagle control framework [4] via StarLight and GEANT.

3.3 Site Software

Each ExoGENI rack site is reconfigurable at the physical layer, providing a flex-
ible substrate for repeatable experiments. Most testbed users will use a virtual
machine (VM) service (OpenStack), but we also have bare-metal imaging based
on the open-source xCAT provisioning system [8], which is developed and main-
tained by IBM. Currently we use xCAT only to deploy the OpenStack worker
nodes, and do not expose it through the rack AM. Programmatic bare-metal
imaging is on our roadmap for performance-critical applications such as virtual
routers.

The head node runs the OpenStack head and various network proxies and
auxiliary services for GENI and ORCA. These services include a native ORCA-
based AM for the site, and a second ORCA-based server that proxies the GENI
APIs (Section 4). Each rack AM includes a cloud handler plugin to invoke
EC2/OpenStack APIs and an ImageProxy server to obtain node images named
by a URL in the request. An image file specifies a canned operating system
and application stack selected by the user. ImageProxy is a stand-alone caching
server that enables the cloud site to import images on demand from the network
(Section 3.4).

The ORCA cloud handler also invokes a cloud service extension with a com-
mand set to instantiate dataplane interfaces on VMs when they are requested,
stitch interfaces to adjacent virtual links, and configure interface properties such
as a layer-3 address and netmask. This extension is known as NEuca: we im-
plemented it for Eucalyptus before porting it to OpenStack/Nova. We plan to
integrate it with the OpenStack/Quantum framework as it develops. Both NEuca
and ImageProxy are independent of ORCA.

Each rack also runsOpenFlow control services, including a FlowVisor [22] proxy
to mediate access from OpenFlow controllers to OpenFlow datapaths on the rack
dataplane switch. An ExoGENI slice may designate an OpenFlow controller to
manage traffic on its local dataplane links; the ORCA cloud handler invokes the
proxy to authorize the controller to manage traffic on VLANs assigned to those
links.
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3.4 Image Management

A key orchestration challenge for multi-domain networked clouds is uniform
management of images to program the node instances. With standard IaaS cloud
stacks following the Amazon EC2 model each cloud site requires some local user
to pre-register each image with the site’s cloud service, which then generates an
image token that is local to that site. Networked clouds need a way to manage
images across the member sites of a federation.

In our approach the creator of an image registers it at some shared image
depository and names it by a URL. A request to instantiate a VM names the
image by a URL and a content hash for validation. The AM’s cloud handler
plugin passes the image URL and hash to the local ImageProxy server. The
ImageProxy fetches and caches any image components if they are not already
cached, and registers the image with the local cloud service if it is not already
registered. It then returns a local token that the AM cloud handler may use to
name the image to the local cloud service when it requests a VM instance.

In principle, ImageProxy can work with any image server that supports image
fetch by URL, e.g, the various Virtual Appliance Marketplaces operating on the
web. It also supports BitTorrent URLs to enable scalable content swarming of
images across many cloud sites.

4 ExoGENI and the GENI Federation

ExoGENI may be viewed as a group of resource providers (aggregates) within a
larger GENI federation. ExoGENI itself is an instance of the GENI architecture
and supports GENI APIs, and also supports additional native ORCA interfaces
and capabilities that are not yet available through standard GENI APIs. This
section outlines how ExoGENI integrates with GENI and extends the GENI
federation model.

4.1 Aggregates

GENI aggregates implement standard GENI APIs for user tools to request re-
sources. The ExoGENI AMs, as described in this paper, are orchestration servers
built with the ORCA toolkit. They support internal ORCA protocols rather
than the standard GENI aggregate APIs. The GENI APIs are evolving rapidly
to support more advanced control and interconnection of slices and rich resource
representations and credential formats. Rather than implementing the GENI
API directly in the AMs, the initial ExoGENI deployment proxies them through
a GENI plugin for separate ORCA-based servers called Slice Managers (SM), as
described below.

This approach enables ExoGENI to present a secure and flexible interface
to the GENI federation and to support standard user tooling for GENI. At the
same time ExoGENI supports end-to-end slice construction across the ExoGENI
aggregates, based on native ORCA capabilities. The AM operator interface also
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Fig. 5. ExoGENI as a set of GENI aggregates. There is one ORCA Aggregate Man-
ager (AM) for each ExoGENI site or other provider. For third-party IaaS services the
AM authenticates using an ExoGENI-linked identity as a registered customer of the
provider. Each ExoGENI site also runs an ORCA Slice Manager (SM) that proxies
the GENI API, exposing the site as an independent aggregate within GENI. One or
more ExoGENI-wide SMs (ExoSM) expose the entire ExoGENI testbed to GENI as a
single GENI aggregate. The ExoSM uses native ORCA brokering, slicing, and stitching
features to construct complete virtual topologies within ExoGENI slices.

allows local policies that limit the local resources available to the testbed over
time. This feature enables ExoGENI providers to hold back resources from the
testbed for other uses, according to their own policies.

4.2 GENI Federation: Coordinators

GENI aggregates delegate certain powers and trust to coordinator services. The
coordinators help aggregates to cooperate and function as a unified testbed. For
example, GENI currently defines coordinators to endorse and monitor participat-
ing aggregates, authorize and monitor use of the testbed for approved projects,
and manage user identities and their association with projects. The GENI co-
ordinators are grouped together under the umbrella of a GENI Clearinghouse,
but they act as a group of distinct services endorsed by a common GENI root
authority.

The GENI federation architecture allows participating aggregates to choose
for themselves whether to accept any given coordinator and what degree of trust
to place in it. These choices are driven by federation governance structure. GENI
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has opted for a hierarchical governance structure for its initial trial deployment,
for reasons of safety and simplicity. To join the GENI federation an aggregate
must enter into certain agreements, including compliance with various policies
and export of monitoring data to GENI coordinators.

The aggregates in the initial ExoGENI deployment will enter into mandated
agreements with GENI and accept and trust all GENI coordinators. Specifically,
ExoGENI trusts GENI-endorsed coordinators to certify users, issue keypairs to
users, authorize projects, approve creation of new slices for projects, authorize
users to operate on approved slices, and endorse other aggregates in GENI.
The GENI coordinators in turn delegate some identity management functions to
identity systems operated by other GENI testbeds and participating institutions
(Shibboleth/inCommon).

4.3 ExoGENI Coordinators

ExoGENI provides additional coordinators and APIs for managing resources and
configuring end-to-end virtual topologies within the ExoGENI testbed itself. The
ExoGENI services are based on the ORCA control framework. Figure 5 depicts
some of the key services and their interactions.

User requests enter an ORCA control system through a server called a Slice
Manager (SM), which invokes the AMs to obtain the requested resources. In
general, an ORCA slice manager runs on behalf of slice owners with no special
trust from other services: the SM is in essence an extensible user tool that runs
as a recoverable server. However, in ExoGENI the SMs function as coordinators
that provide a trusted interface to the rest of the GENI federation. The ExoGENI
AMs accept requests only from trusted SMs endorsed by the testbed root. The
SMs run plugins that expose the GENI standard APIs for GENI users and
tools. They are responsible for validating the GENI authorization for the slice
and the user identity in each request, and translating between GENI RSpec-
XML resource descriptions and the logic-based semantic resource models used
in ORCA.

Internally to ExoGENI the SMs interact with other ORCA coordinators called
brokers, which collect and share information about ExoGENI aggregates, in-
cluding their advertised resources, services, and links to circuit providers. Each
ORCA broker is trusted by some set of aggregates to advertise and offer shares
of their resources. A broker may also coordinate resource allocation across its
aggregates and guide or limit the flow of requests to the aggregates, e.g., based
on scheduling policies and capacity constraints, as described in previous work
on SHARP resource peering [9,14]. Each request for resources is approved by a
broker before the SM passes it to an AM.

There are two distinct SM configurations in ExoGENI. Each ExoGENI rack
site runs an SM called a site SM. Each site SM exposes its rack site as a distinct
GENI aggregate. Requests to a site SM can operate only on the local rack: each
site SM uses a local broker with a share of local site resources.

In addition, a global ExoGENI SM called an ExoSM can access all aggregates
within the ExoGENI testbed. There may be any number of ExoSMs, but the ini-
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tial deployment has a single ExoSM. The ExoSM exposes ExoGENI as a single
GENI aggregate. The ExoSM offers a unified view of the testbed, and supports
virtual topology mapping and circuit path planning across the ExoGENI aggre-
gates, including the circuit providers and network exchanges. User requests to
ExoSM may request a complete slice topology spanning multiple sites and circuit
providers. The ExoSM coordinates construction and stitching of the end-to-end
slice.

An ExoSM plans and sequences the resource requests and stitching actions
to the AMs based on declarative semantic models that advertise the resources
and capabilities of the participating aggregates [3,24,2]. The ExoSM obtains
these domain models from a common testbed-wide broker (ExoBroker) that is
accepted by all ExoGENI aggregates and receives all of their advertisements.
The ExoBroker also facilitates allocation of common VLAN tags from static
tunnel pools when needed.

4.4 Integration with GENI

GENI users and their tools choose for each slice whether to access the ExoGENI
testbed as a single aggregate (through the ExoSM) or as a collection of distinct
site aggregates (through the site SMs). External GENI tools can interact with
ExoGENI site aggregates based on the current GENI architecture and API, in
which aggregates are loosely coupled except for common authorization of users
and slices. Each ExoGENI slice may also link to other GENI resources to the
extent that the standard GENI tools and APIs support that interconnection.

At the same time, the ExoSMs and ExoBroker allow ExoGENI to offer capabil-
ities for automated cross-aggregate topology embedding, stitching, and resource
allocation within the ExoGENI testbed. These capabilities are currently unique
within GENI. They are based on coordinator services, APIs, resource represen-
tations, and tools that are not part of a GENI standard. In particular, GENI
defines no coordinators for resource management, so cooperation among GENI
aggregates is based on direct interaction among AMs or exchanges through un-
trusted user tools. GENI is developing new extensions that would offer similar
capabilities for automated configuration of cross-aggregate virtual networks.

ExoGENI also differs from current GENI practice with respect to the usage
model for OpenFlow networks. GENI views an OpenFlow datapath as a sepa-
rate aggregate that allocates the right to direct network traffic flows matching
specified packet header (flowspace) patterns, which are approved manually by
an administrator. In ExoGENI, OpenFlow is an integrated capability of the Ex-
oGENI rack aggregates, rather than a distinct aggregate itself. ExoGENI slices
may designate OpenFlow controllers to direct network traffic within the virtual
network topology that makes up the slice’s dataplane. ExoGENI is VLAN-sliced:
each virtual link corresponds to a unique VLAN tag at any given point in the
network. The handler plugins of the ExoGENI rack AMs authorize the con-
trollers automatically, so that the designated controllers may install flow entries
in the datapath for VLANs assigned to the slice’s dataplane. We believe that
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this approach can generalize to other OpenFlow use cases in GENI and cloud
networks.

5 Conclusion

This paper describes the design of the ExoGENI testbed, which addresses the
goals of GENI by federating diverse virtual infrastructure services and providers.
This approach offers a path to leverage IaaS advances and infrastructure deploy-
ments occurring outside of GENI. At the same time, it offers a path to bring
GENI technologies to bear on key problems of interest outside of the GENI com-
munity: linking and peering cloud sites, deploying multi-site cloud applications,
and controlling cloud network functions.

ExoGENI offers an architecture for federating cloud sites, linking them with
advanced circuit fabrics, and deploying multi-domain virtual network topologies.
The initial deployment combines off-the-shelf cloud stacks, integrated OpenFlow
capability, linkages to national-footprint research networks and exchange points
with international reach.

ExoGENI and its ORCA control framework enable construction of elastic
Ethernet/OpenFlow networks across multiple clouds and circuit fabrics. Built-
to-order virtual networks are suitable for flexible packet-layer overlays using IP
or other protocols selected by the owner. IP overlays may be configured with
routed connections to the public Internet through gateways and flow switches.
ExoGENI can also serve a broader role as a model and platform for future deeply
networked cloud services and applications.
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Abstract. In the recent past, Network Virtualization (NV) received
much attention. Nevertheless, Virtual Networks (VNs) are still not avail-
able on the market. The consortium of the COntrol and Management
of COexisting Networks (COMCON) project examines the potential in-
teractions in vertically and horizontally divided markets and evaluates
the applicability of existing technologies, like Generalized Multi-Protocol
Label Switching (GMPLS), for automated virtualization-enabled net-
work management. To promote the manifold research, a selected sce-
nario was demonstrated at the EuroView 2011 comprising a Video on
Demand (VoD) service using a Scalable Video Codec (SVC). All neces-
sary components have been implemented and the selected scenario was
performed on a real network based on Linux PCs. In this paper, we
describe the components, the scenario, and the gained insights in detail.
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1 Introduction

From a business perspective, there are several reasons for the virtualization of
network resources. On the one hand, established network operators and service
providers would like to profit from the new opportunities opened by network
virtualization, like consolidation of resources and resource flexibility. On the
other hand, newcomers get more and easier possibilities to enter vertical and
horizontal markets in network and service provisioning.
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Today, virtualization focuses on computation or storage clouds while the vir-
tualization of fully configurable networks has not yet become reality. This is
partly due to the lack of standardized interfaces as well as missing best practices
for integrating a complete Network Virtualization (NV) environment [1]. Our
consortium of the G-Lab [2] phase 2 project COntrol and Management of CO-
existing Networks (COMCON) [3] identified key functions in a potential vertical
market based on the first definition of a vertical role model of the Architecture
and Design for the Future Internet (4WARD) project that gives a framework for
intercommunication of physical resource owners, brokers, and renters. Based on
these concepts, we revised the role model [4] and investigated how the different
players could fill their roles and how the interaction with respect to the provi-
sioning of Virtual Network (VN) is supposed to work. Therefore, we consider
the complete control loops of the different players and investigate monitoring
mechanisms as well as the role of decision components. On this foundation, we
implemented an exemplary scenario of service provisioning on a virtual infras-
tructure integrating monitoring and dynamic adaptation. The scenario was in-
tegrated in a testbed and successfully demonstrated [5]. In this work, we present
an elaborated view of the set-up as well as details on the individual steps.

The remainder of this work is organized as follows. In Section 2, we describe
the background of our work and our goals. In Section 3, we give detailed in-
formation on implementations and their capabilities. In Section 4, we describe
the scenario we selected and the run of proof-of-concept experimentations with
respect to automated network provisioning and service flexibility reacting on
dynamically changing demands. In Section 5, we summarize the lessons learned
in the course of our implementation and give an outlook on future work. In
Section 6, we draw final conclusions.

2 Background and Requirements

In this section, we present related work and give details on the background of
our implementation as well as an overview of our architecture.

2.1 Related Work

The impact of NV on the traditional Internet Service Provider (ISP) role model
is described in [6]. The authors propose to split up the ISP role into an in-
frastructure provider managing the physical resources and a service provider
deploying enabler services such as routing, Domain Name System (DNS) as well
as end-to-end services.

The 4WARD project refined this role model in [7]. Furthermore, 4WARD in-
troduced interfaces for role interaction with the focus on virtual network deploy-
ment and end-user attachment. We further refined these approaches to include
end-users in the role model and to be less static with regard to the protocols used
in the virtual networks, especially non-IP. The latter requires the consideration



116 M. Duelli et al.

Fig. 1. An overview of the roles and architecture considered in the COMCON project

of arbitrary virtual nodes. In [4], we introduce a business role model, which struc-
tures the core functions to be fulfilled by the cooperating players. Furthermore,
the interactions and dependencies between these roles are outlined.

For instantiation of virtual networks withQuality of Service (QoS) guarantees,
the authors of [8] propose a virtualization architecture based on DiffServ/Multi-
Protocol Label Switching (MPLS) enabled transport networks. To translate be-
tween different QoS parameters across several roles, a multi-tier architecture for
Service Level Agreement (SLA) management is proposed.

The Dynamic Resource Allocation by GMPLS Optical Networks (DRAGON)
project presents an architecture for inter-domain virtual path provisioning [9].
The mechanisms for path computation and resource reservation are based on
Generalized Multi-Protocol Label Switching (GMPLS). However, their imple-
mentation of Resource Reservation Protocol with traffic engineering extensions
(RSVP-TE) is focused on controlling Ethernet switches while we target arbitrary
network technologies.

The project on Generalized Architecture for Dynamic Infrastructure Services
(GEYSERS) [10, 11] defines an architecture to instantiate virtual networks for
interconnecting IT resources that relies on GMPLS. In contrast to our approach
where VNs are custom-tailored to meet the requirements of one particular appli-
cation service, in GEYSERS a VN is set up independently of the services that
might be deployed on it later on. We also integrate individual monitoring on
each role’s scope as an integral part of our architecture since we consider the
ability to verify SLA conformance to be critical for the economic acceptance of
VN. Additionally, the approach of service-tailored VNs means that every role
has to be able to monitor all relevant information.

2.2 Business Role Model

The different roles and their interaction assumed in the COMCON architecture
are illustrated in Figure 1. The role model comprises Physical Infrastructure
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Fig. 2. The loop of monitoring, decision, and control between the different roles

Providers (PIPs), Virtual Network Providers (VNPs), Virtual Network Opera-
tors (VNOs), and Application Service Providers (ASPs).

A PIP is the owner of its physical resources and uses virtualization techniques
to rent shares of these physical resources to VNPs. These virtual topologies pro-
vided to a VNP include links as well as virtual nodes providing storage and
computation resources. The PIP also provides means to configure and control
these virtual nodes. A VNP is a broker and an aggregator that typically acquires
resources from multiple PIPs while delivering a single contiguous VN to a VNO.
A VNO designs the VN, defining its topology and the functionality to be pro-
vided by each node. During operation, the VNO configures the functionality of
the nodes in a VN using the control means forwarded from the PIPs. Thus, the
VNO defines the shape as well as the inner configuration of the VN and, thereby,
tailors the network to the needs of the service envisaged by the ASP.

The clear definition of these four roles allows to identify potential and neces-
sary interaction and cooperation. Nevertheless, the modeled roles do not need to
be actually represented by different players, in real scenarios several roles may
also consolidate in one entity.

To set up a new VN, the roles interact as follows. The ASP formulates its
demands and mandates the VNO that makes the best and most suitable offer
to realize the requested service. In turn, the VNO requests a VNP who contacts
PIPs. As we consider automation to be a key enabler for future networks, all
communication for the set-up as well as the operation of a VN is assumed to use
standardized interfaces and corresponding protocols.

Due to the layered and multi-party business, trust and monitoring play an
even more important role than in today’s networks. Therefore, monitoring is
needed in different roles and on different levels to verify compliance with re-
quested criteria such as QoS parameters. In turn, monitoring allows all roles
to reconsider and redesign the VN taking into account the monitored internal
state. Thus, each role may implement a control loop that comprises monitoring,
decision making, and execution. These control loops as well as the relations of
the different roles are illustrated in Figure 2.
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2.3 Technical Requirements

The considered VNs consist of virtual links as well as virtual nodes. Further-
more, we expect that virtual nodes require additional configuration after initial
provisioning. Therefore, our architecture must provide interfaces to hand over
configuration and monitoring of virtual resources.

Our architecture allows to define QoS parameters such as bandwidth or delay
for a virtual link that have to be guaranteed.As several virtual networksmay share
a common physical infrastructure, virtual networks have to be isolated so that vir-
tual networks cannot influence each other. This requirement primarily influences
the underlying technology and implementation for network virtualization.

As we aim at tailoring one network to a service, we account for changes in this
service or its demands by dynamically adapting the underlying virtual network.
This includes simple modifications such as increasing the bandwidth of virtual
links as well as more complex adaptations such as changing the virtual network
topology at runtime.

Today’s transport network technologies like GMPLS and Next Steps in Signal-
ing (NSIS) already support QoS guarantees and isolation for links. Those tech-
nologies not only allow dynamic instantiation and tear-down of virtual links, but
also support adjustments, e.g., of link capacity, during ongoing operation. There-
fore, our approach is reusing existing technologies and enabling them for network
virtualization by prototypic extensions. In our implementation presented in the
following sections, we show how we use the well-established GMPLS control
plane framework, cf. Section 3.3, for link virtualization.

3 Implementation and Integration of Building Blocks

In this work, we focus on resource flexibility – a use case purely enabled by
NV – that allows networks to “breath”, i.e., dynamically grow or shrink. The
resources are assumed to be requested by a Video on Demand (VoD) service
whose video content ist to be streamed using the Scalable Video Codec (SVC)
format, described below. In the following, we describe the building blocks as well
as the split-up of their functions.

3.1 Multi-path SVC Framework

The newly gained resource flexibility can be combined with additional flexibility
provided on application layer by SVC streaming to realize a VoD service.

Multi-path Transmission. The split-up of a data flow on multiple paths
towards a common sink, has recently attracted a lot of attention since it allows
to utilize different access networks, e.g., 3G and WLAN available on today’s
smart phones, and to enable a virtualization of the transport resource [12], i.e.,
flexibly use parallel network resources. A multi-path transmission is initiated by
a splitting component that splits up the data on disjoint paths. In contrast to
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Fig. 3. Illustration of the possible scala-
bility dimensions for an SVC video
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Equal-Cost Multi-Path (ECMP), the splitter is not bound to simple packet-wise
load balancing but might be able to make use of knowledge on the structure
of the transmitted data, i.e., video streams in our case. Finally, the multiple
transmission paths end in an assembling component. Thereby, the assembler
not only has to join but also needs to synchronize corresponding data streams
by means of buffering and has to prevent reordering of packets [13].

Scalable Video Coding. The H.264/SVC is an extension of the widely used
H.264/Advanced Video Coding (AVC) codec, which was specified by the
ITU-T [14]. SVC provides a way to shift the balance between quality and con-
sumed bandwidth of an encoded video clip by selecting frame rate, resolution,
and image quality. These three dimensions are called temporal, spatial, and qual-
ity scalabilities. Figure 3 illustrates a video containing all three scalabilities.
Therein, the left “sub-cube” at the bottom is the base layer, which is necessary
to play the video file at Common Intermediate Format (CIF) resolution, 15 Hz
frame rate, and quality Q0. Based on this layer, different additional enhance-
ment layers permit a better video experience with a higher resolution, better
Signal-to-Noise Ratio (SNR), or higher frame rate. Enhancement layers can be
omitted to reduce the required bandwidth without interrupting the video stream.
However, their omission also decreases the video quality. As different layers are
separately packeted, they can be sent via multiple paths.

Cross-Layer Benefit. As mentioned before SVC quality is assembled of dif-
ferent blocks, cf. Figure 3, that increase the quality of the video and also the
required bandwidth. By means of NV, the VNO, which is given full control on
the video transmission in our case, is able to make use of these SVC properties
by splitting different quality layers among multiple paths. Thus, the service is
able to make use of changes to the underlying VN. The ability to adapt both,
network resources and service, has proven to outperform individual adaptations
of either network or service. This is illustrated in Figure 4, which is computed
based on the results taken from [15].
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Fig. 5. GMPLS protocol stack and
components

Fig. 6. Interaction of different roles and compo-
nents to an integrated architecture

Investigations on the impact of the SVC scalabilities on the user perceived
quality as well as the influence of insufficient network resources on SVC video
streaming were published recently. In [16], the authors showed that spatial adap-
tation should be preferred compared to temporal adaptation. This results from
spatial adaptation allowing higher bandwidth savings and lower decrease in video
quality than temporal adaptation. Packet loss rates of about 2% already have a
severe impact on the user perceived quality, as indicated by [17]. However, it was
shown that packet loss on enhancement layers has a lesser impact on Quality of
Experience (QoE) than packet loss on the base layer. Thus, we conclude that
in case of multi-path video streaming with different path QoS parameters, the
enhancement layers should be transmitted via the paths with lower QoS.

3.2 Monitoring

To be able to react on increasing load, e.g., to change the topology of a VN
and to split the SVC video stream to off-load paths, monitoring is required.
In the considered scenario, performing monitoring solely by the VNO is suffi-
cient since we presume trust between the roles and the VNO has full control
on the video transmission. As we consider a distributed architecture, we re-
quire distributed measurement points. Thereby, data is collected by, so called,
agents that send information to a data collection point, a database server. We
use the StableNet software [18], which uses Simple Network Management Proto-
col (SNMP) amongst others for monitoring the state of network resources and
provides interfaces to trigger decision making for certain network situations such
as high load. Furthermore, StableNet is multi-tenant capable. This opens up the
possibilities to use a single monitoring solution to individually monitor different
ASPs or VNOs with a single StableNet server.

3.3 Control Plane Framework

As presented in Section 2, a PIP has two core tasks. Firstly, a PIP operates and
manages a physical network consisting of nodes and links. Secondly, a PIP creates
virtual resources on top of the physical resources. In our demonstration, we focus
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on the virtualization of links. Due to the dynamic nature of virtual networks, we
expect a PIP to rely on a control plane to automate virtual link management.
This includes virtual link establishment, modification, and tear-down. Figure 5
depicts the functional blocks and protocols of the GMPLS framework [19] that
are involved in virtual link setup. We will shortly introduce those components
in the following.

To verify whether a virtual link can be embedded into the physical network,
a PIP needs an up-to-date view on its physical links, their properties, and their
utilization. The Link Management Protocol (LMP) and in particular the Open
Shortest Path First protocol with traffic engineering extensions (OSPF-TE) pro-
vide this information. Currently, Traffic Engineering (TE) extensions are defined
for bandwidth information. Additional metrics such as link delay are currently
taken into account by emerging protocol extensions [20]. Relevant information
on resource usage is stored in a Traffic Engineering Database (TED).

Algorithms for constraint-based path computation can operate on this TED to
find possible embeddings of a virtual link into the physical network. Embedding
can be a complex task, in particular for large networks and many constraints.
Therefore, the GMPLS framework comprises a dedicated Path Computation El-
ement (PCE) for constraint-based path computation.

Once an embedding solution is computed, signaling protocols such as
RSVP-TE are used to instantiate the virtual link accordingly. In case of
RSVP-TE, a hop-by-hop signaling is performed to allocate resources on each
node that the virtual link traverses. During this setup every node verifies that
the requested QoS parameters can be satisfied and reserves resources for the
virtual link.

3.4 Integration

The starting point for designing software integration in NV environments is
the generic role interactions as depicted in Figure 2. Obviously, each role has
access to monitoring information but on different levels: the PIP has access to all
monitoring based on the physical devices while the VNO only gets information
regarding its VN. This monitoring information defines the foundation of the
decision making components of each player. These decision making components
represent the players’ intelligence, their decisions are based on internal policies
and strategies. Therefore, they also cannot be standardized or even predicted,
so we decided to define the decisions to be taken beforehand. In the considered
scenario, the decisions of the PIP concern where to place paths and Virtual
Machines (VMs). The decisions of the VNO are the layout of the VN and the
configuration of the VMs. In the selected use case, this includes where to install
splitting and assembling functionalities, to configure the routing of the different
video layers but also to dimension the links and nodes of this VN. An overview
of the control process in the VNO is given in Figure 6.
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4 Demonstration

We developed a sophisticated scenario to show the flexibility in service provi-
sioning that can be achieved using the capabilities of an automated Network
Virtualization Infrastructure and of a elaborated service provisioning architec-
ture. We demonstrate automated network management and resource control for
virtual networks in the use case of a high quality VoD service over virtual net-
works. This scenario was integrated in a real network and was demonstrated
at EuroView 2011 [5]. In the following, the technical realization, the starting
situation and the run of events are presented in detail.

4.1 Testbed

The scenario has been implemented using seven off-the-shelf PCs running Ubuntu
Linux 10.04 equipped with 4-port Gigabit Ethernet network interface cards.
These nodes have been configured with distinct IPv4 networks for each link
and a manually configured routing table. In order to separate data plane and
control plane in the set-up, an additional GRE-tunnel [21, 22] was set up on
each GMPLS-controlled physical link and provided with its own IPv4 addresses.
Nevertheless, the data plane implementation is not complete: there are no la-
bels added and there is no scheduling enforcing the confirmed bandwidth. Five
of the seven nodes represent the PIP’s network infrastructure while the other
two represent the neighboring PIPs hosting source and destinations of the video
streaming service. Additionally, there is one remote machine hosting the Sta-
bleNet server process representing the VNO’s service monitoring. Thus, there
are seven local hosts in the testbed and one remote host representing three PIP
domains and one VNO domain in total.

4.2 Starting Situation

As a starting point the PIP in focus is assumed to have its physical components
virtualized and offering them via the VNP to VNOs. The PIP already deployed
virtual routers without special functionality within the network. An ASP has
developed a business plan for a VoD service and requests the VNO to design the
required network and to deliver the service. The VNO decides for a SVC solution
as it provides the VNO with the most adaptable solution while transmitting the
video. Based on this decision and the business plan of the ASP, the VNO plans
the network for the assumed customer base.

The network provided by the VNP includes a part provided by the PIP in
focus. In Figure 7, the PIP’s topology can be seen in the upper right part of
the demonstration GUI, which integrates the PIP’s and the VNO’s view for
demonstration purposes. The PIP’s network consists of the ring formed by nodes
A to E and the links in between. For the sake of clarity, we additionally depict
the nodes and links that the PIP uses for peering, i.e., node G connecting to the
data center and node F connecting to the users. To guarantee the QoE requested
by the ASP, the VNO monitors the virtual resources which is indicated in the
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Fig. 7. Annotated illustration of the initial set-up of the VN

lower part of Figure 7. The VNO is prepared to trigger actions with regard to
the SVC set-up as well as by requesting changes to the VN from the VNP that
communicates with the PIP.

4.3 Course of Events

The VNP requests the PIP to create a VN consisting of a connection from
node G to F with virtual nodes at the domain borders (nodes A and D). For
the demo, we use a simple GUI element to trigger the request (visible on the
middle left). After receiving the request, the PIP’s network management has to
determine how to fulfill the request, which heavily depends on business policies
and strategies. We define the path A-B-C-D as the selected solution. Having the
request mapped to physical resources, the PIP triggers an RSVP-TE signaling
session to set up the virtual link. In the demo, the signaling PATH and RESV
messages establish a Label Switched Path (LSP) with the requested bandwidth
as can be seen in Figure 7.

When the signaling is complete, the VNO takes over control of the VN and
sets up the VoD service. This includes setting up the streaming server in the
data center, but also deploying monitoring agents in the VN. In this case, that
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Fig. 8. VoD service running and serving an increasing number of clients

means StableNet agents on nodes B and E. The VNO’s monitoring shows the
current usage of the requested virtual link from node A to D as depicted at the
bottom of Figure 8.

Since the PIP provides virtual resources for other VNs as well, resource usage
on the physical infrastructure may change without changes in the selected VN.
In our scenario, the remaining bandwidth of the link between nodes B and C is
assigned to another VN indicated by a red line as shown in Figure 8. But also the
resource consumption within the VN changes and may call for adaptation. In our
scenario, more and more customers join the VoD service inducing an increasing
bandwidth consumption, which we emulated by a traffic generator on node G.

The VNO’s StableNet agents keep track of this as virtual link utilization is
monitored constantly. At a predefined link utilization level of 75%, the StableNet
monitoring issues a warning to the VNO, shown by the yellow background color
in Figure 8. Due to the history of the link utilization the VNO’s network man-
agement system reacts.

One possible reaction is a request to the VNP and then to the PIP to increase
the bandwidth of the existing virtual link. As there is no remaining capacity on
the link B-C, the PIP has to decline this request. However, the PIP may set up
a second virtual path via node E although this path is known to have a higher
packet loss probability than the first one. We therefore assume that these paths
cannot be transparently aggregated. Nevertheless, the PIP offers the VNO to
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Fig. 9. Enhancement layers successfully transferred to second path

adopt the VN by adding a second virtual path between nodes A and D with
higher packet loss probability.

When evaluating this offer the VNO has to consider the SLAs in force for
this service. We assume that the VNO cannot simply serve new users using this
second path due to the links’ characteristics and its service guarantees with the
ASP. Nevertheless, due to the flexible SVC framework the VNO can maintain
high QoE for all users despite the lower QoS characteristics of the second virtual
path. As described in Section 3.1, packet loss on the base layer result in a higher
impact on the perceived quality than on the enhancement layers, which may be
separated and routed differently using this enhanced framework. Therefore, the
VNO can configure its components to transmit the base layer for all users on
the reliable path and the less important ones on the second path. So the VNO
accepts the proposal of the PIP and activates a demuxer daemon on node A and a
muxer daemon on node D. As a result there is no perceivable quality degradation
of the video streams that are delivered to the customers. The resulting changes
in traffic on the two paths are illustrated in the lower part of Figure 9.

5 Lessons Learned and Next Steps

The process of integrating and setting up the scenario described in Section 4
provided insights on how interaction between different roles and also between
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functional components controlled by one role have to be designed. Anyway, this
integration is just an intermediate step to an extended scenario that is to be de-
signed, implemented, and integrated in the coming months. Both, lessons learned
and next steps, are presented in the following.

5.1 Lessons Learned

This section details the lessons learned during the implementation of the building
blocks and their integration into the discussed demonstration scenario.

Control Loop Coordination. The experimentation provided us a holistic view
on several phases of the operation of a selected VN. It revealed challenges as well
as promising solutions. The most prominent lesson learned from the scenario is
that possessing flexibility in network and service does pay off in certain scenarios.
Moreover, it may pay off by various ways: when designing this scenario in order to
use all capabilities of the Virtualization Platform and SVC, we found that many
simpler scenarios, that would cause serious problems when using today’s network
and service architecture, can be alleviated or significantly improved by each of
the two actors (PIP and VNO) alone given either the advanced features of NV
or SVC. This clearly highlights the challenge how these independently managed
control loops can be coordinated in order to avoid redundant or contradicting
actions and oscillation.

VN Descriptions. In order to establish such VN-provisioning relationship as
presented in the scenario and to allow for automatic topology changes, descrip-
tion of VNs have to be exchanged in a negotiation process. These descriptions
express requests or offers of VNs to be created or changes to existing VNs. The
work on this topic is ongoing, some general requirements were identified.

– Description methodology: The information model needs to support all needed
network elements and has to support embedding of information on control
access.

– Negotiation protocol : Although a simple take-it-or-leave-it approach could
be used, the flexibility often incorporated by complex topologies would be
neglected and the solutions are expected to be far from optimal.

– Definition of responsibilities. This depends on a solution for challenge de-
scribed above but since all players do have capabilities to react to external
events from the start, it would make sense to include agreements on respon-
sibilities in the VN negotiations from the very beginning.

Multi-path SVC Streaming. Multi-path transmission implemented in the
network requires additional functional blocks, namely a flow splitter and a flow
assembler. We implemented these functionalities and also mechanisms to cope
with out-of-order packets and assure a valid byte stream for the video player. We
used the capabilities of a SVC stream to split the flow into base and enhancement
layers and transmit them via different paths. This extends pure round-robin
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packet scheduling techniques. However, we had to extend the flow assembler
to be able to identify base and enhancement layers in order to reassemble the
complete stream or forward only a part of the stream if parts are missing. Due
to SVC dependencies we could not forward the video clip frame by frame but
buffered a Group of Pictures (GOP) before we forwarded the best available video
quality stream to the destination. Thus, we had to provide a larger buffer at the
assembler compared to the case of round-robin packet scheduling.

The splitter transmits packets via different paths and the assembler receives
the packets and forwards them to the destination. In order to guarantee the
original sequence of the packets, this entity has to buffer out-of-order packets
and re-sequence the packets if necessary [12]. This introduces additional wait-
ing times in the magnitude of the current round trip time. However, by tailoring
multi-path transmission to work together with SVC streaming we had to care on
additional issues. First, the splitter has to be able to identify base and enhance-
ment layers and transmit them via different paths. This extends techniques like
round-robin based scheduling approaches. In order to exploit the capabilities of
SVC, the assembler also is able to identify the different quality layers. We took
into account, that switches between resolutions can be performed on a GOP
basis. Thus, we first assemble all parts of the current GOP, identify whether a
quality switch was performed and then forward the best available video quality
stream to the destination.

5.2 Next Steps

The scenario presented in Section 4 shows flexibility and dynamic in terms of
“breathing” of the VN and the service. Nevertheless, instantiated components
remain at their physical host throughout the VN’s life time. But there are in-
centives for both the PIP and the VNO to relocate virtual resources.

Motivations for the PIP to move a VM from one physical host to another
range from utilization optimization, maintenance, data center migration, consol-
idation, or even disaster avoidance [23]. On virtualization level today a VM can
be migrated without noticeable service interruption from one physical host to
another (live migration) but these mechanisms are Ethernet and IPv4-focused
and come with several constraints. The integration of VM-management with a
virtualization-enabled network control plane, e.g. based on GMPLS, promises to
ease live migration of VMs and to reduce constraints.

The VNO itself may have motives to restructure its service provisioning VN
by relocating resources, e.g., to cope with changed (technical) requirements that
cannot be met at the old location or in order to save money by moving to another
VNP. In any case, this approach needs service or application specific knowledge
and possibly even built-in support. Therefore, the scenario can be extended by
relocation of virtual resources by virtualization or application specific means.

Another important topic to be addressed is the control loop coordination, in
particular the cooperation of PIP and VNO. There are events that are evident
from the infrastructure layer monitoring of the PIP, the network monitoring
within the VN performed by the VNO as well as from the application level
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monitoring performed by the ASP. If such network situation changes happen
and PIP and VNO and ASP use simple independent control mechanisms, they
all might trigger reactions to this condition which might prove to be redundant or
even contradicting. E.g., a link failure should normally just trigger the resilience
mechanisms provided by the PIP. Anyway, if these mechanisms fail or do not
exist, possibly the VNO could improve the situation by changing the VN-internal
routing or even the ASP could reduce the currently needed bandwidth by service-
specific means. Thus, it is not only required to define responsibilities between
the roles but also to develop means to coordinate them dynamically.

6 Conclusion

In this paper, we presented a complete scenario using NV. It is based on a
market model comprising PIPs, VNPs, VNOs and ASPs, defining a vertically
and horizontally divided market. We presented our implementations namely an
SVC framework, a GMPLS control plane, and a monitoring framework. For the
selected use case of VoD delivery using a VN, the scenario shows the variety and
power of interaction between different roles. In the scenario, the cooperation
of the PIP and the VNO, i.e., coordination of virtualization and service layer,
guarantee unaffected QoE for the end-users despite of unexpected demand and
limited network resources.

One prerequisite for successful coordination is an efficient monitoring infras-
tructure that allows to react on changing conditions as well as to verify SLA
accordance of consumed and provided services. The second prerequisite is an
ability to handle the dynamic of each player in its own responsibility domain:
the PIP has to be able to adapt instantiated VNs as well as a VNO should be able
to adapt its service to changing demands. A future challenge is the coordination
of these independent but overlapping control loops.

In short, we showed that NV is able to bring benefits for all parties but the
coordination of the different control loops needs to be further investigated.
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Abstract. The ability to capture and process packet-level data is of
intrinsic importance in network testbeds that offer broad experimen-
tal capabilities to researchers. In this paper we describe the design and
implementation of a passive measurement system for network testbeds
called GIMS. The system enables users to specify and centrally man-
age packet capture on a set of dedicated measurement nodes deployed
on links in a distributed testbed. The first component of GIMS is a
scalable experiment management system that coordinates multi-tenant
access to measurement nodes through a web-based user interface. The
second component of GIMS is a node management system that enables
(i) local processing on packets (e.g., flow aggregation and sampling),
(ii) meta-data to be added to captured packets (e.g., timestamps), (iii)
packet anonymization per local security policy, and (iv) flexible data
storage including transfer to remote archives. We demonstrate the ca-
pabilities of GIMS through a set of micro-benchmarks that specifically
highlight the performance of the node management system deployed on
a commodity workstation. Our implementations are openly available to
the community and our development efforts are on-going.

1 Introduction

Network testbeds are designed to offer environments to researchers and prac-
titioners in which experimental systems, configurations and protocols can be
carefully tested and evaluated. Network testbeds in use today can be differen-
tiated by the specific systems, level of control and “realism” that they offer
users. While the strengths and weaknesses of different testbed types have been
well documented, the utility of each depends directly on the ability to gather
measurements from the infrastructure.

Measurements in network testbeds can be broken into two categories: active
and passive. Active measurements are based on sending and receiving specifi-
cally crafted packet probes through the infrastructure (e.g., traceroute mea-
surements). These probes enable a variety of characteristics to be measured such
as end-to-end delay, loss and jitter [22]. While active probe-based measurements
are important and widely used in testbeds and operational networks, they may
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lack detail or precision or be entirely unable to capture aspects of behavior that
are critical for experiments.

Passive measurements are based on using specialized counting or capture
mechanisms that are built into software and systems deployed in network
testbeds. Standard examples are log files from servers, flow-export logs [17, 26]
or the diverse measurement information bases (MIBs) that are available from
networked devices via the Simple Network Management Protocol (SNMP) [15].
One of the most compelling types of passive measurement is the ability to cap-
ture packet information from transmissions on links in a testbed. Information
from packet traces can be critical to experiments with new network applica-
tions, protocols and security techniques, as well as for day-to-day management
and troubleshooting of the testbed infrastructure itself.

There are a myriad of challenges to enabling packet capture capability within
a network testbed. First, packet capture almost always requires dedicated sys-
tems since measurements on high-bandwidth links can result in overheads that
are beyond the capability of standard hardware. This means that sufficiently
capable systems must be acquired, configured, deployed and (securely) managed
alongside the experimental systems. Further, if packet capture is meant to be
available to concurrently running experiments, the measurement systems must
be able to log data such that multiple tenants have exclusive access to their
own data. Finally, packet capture always has security and privacy implications
since packets can contain personally identifiable and private information. De-
pending on the size and diversity of the testbed, these challenges can become
quite significant.

In this paper we describe a packet capture management environment for net-
work testbeds called GIMS (GENI Instrumentation and Measurement Systems).
The system was designed for deployment within the GENI infrastructure [4],
however it has evolved into a system that can be independent from that envi-
ronment. GIMS provides the capability to (i) configure packet capture measure-
ments (typically associated with an experiment on the testbed) on a deployed
set of dedicated packet capture devices, (ii) manage measurements from simulta-
neous users, (iii) enforce local security and privacy policies, and (iv) summarize
and archive captured data to remote storage devices.

The architecture of GIMS is divided into three major components. The first is
the GIMS front end, which includes web-based user interfaces for GIMS admin-
istrators and users, and allows the user access to monitoring capabilities during
the experiment and access to results after an experiment is over. The second
component of the architecture is the GIMS backend, which instantiates and fa-
cilitates control of measurements, and coordinates activities between the front
end (i.e., admins and users) and the GIMS packet capture devices. The backend
also includes a monitoring system that gathers and stores system information
and logs from running experiments. The third component is the packet capture
control system that runs on the packet capture devices that are deployed within
the testbed. This control system includes the capability to enforce privacy poli-
cies, summarize and aggregate packet data, and archive data in a variety of
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ways for multiple simultaneous experiments. Communication throughout GIMS
is facilitated through an XML/RPC-based command language. The system is
designed for scalable and extensible deployment and to simplify tasks of deploy-
ing capture devices, and managing and using the system. The GIMS components
were implemented in run on commodity PC hardware and UNIX-based operating
systems.

We describe the implementation of GIMS and include a screenshot of the
front-end user interface, and show results from a set of micro-benchmarks on
the packet capture control system. The former highlights some the capabilities
of the system from the user perspective. The latter is critical for understanding
the behavior and capabilities of the components that will actually be captur-
ing experiment data in the testbed. Our microbenchmark results show that the
packet capture system performs well under high offered packet rates, with zero
or nearly zero packet loss under a load of 200K packets/sec. In a configuration
with realistic TCP traffic offered at an average rate of 500 Mb/s and in which
the capture system produced flow export records, we observed zero packet loss.

The GIMS software distribution is openly available to the community [9]. It
has been running in a prototype deployment within the Wisconsin Advanced
Internet Lab [8] for nearly a year. We are currently in the process of identifying
locations for deployment of packet capture nodes in different parts of the GENI
infrastructure.

The remainder of this paper is organized as follows. In Section 2, we provide
details on the GIMS architecture. In Section 3, we provide details on the im-
plementation of GIMS. We evaluate the packet capture system through a set of
micro-benchmarks in Section 4. Studies and projects related to GIMS are de-
scribed in Section 5. We summarize, conclude and describe our future work in
Section 6.

2 System Requirements and Architecture

In this section, we describe the requirements and design of GIMS. At the highest
level, development of GIMS was motivated by the recognition that the ability
to capture packets on links (i.e., passive measurement) in a network enables
a broad range of network research experiments and network operations activi-
ties. These include experiments with new networking protocols, experiments in
network security, experiments with new network applications, experiments with
new measurement tools, etc. From a network operations perspective, passive
packet capture enables network performance tuning and network troubleshoot-
ing. However, this capability is not common in network testbeds and coordinated
management of packet capture devices is complex.

2.1 GIMS Relationship to GENI

GIMS was developed as a measurement infrastructure that would be deployed
within GENI [4]. To that end, the primary requirements beyond specific exper-
imental functionality is that it be consistent with the GENI authorization and
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credentialing mechanisms and that it interface with one of the GENI control
frameworks.

GIMS currently implements interfaces for the ProtoGENI control framework
as discussed in Section 3. However, during the development process, every effort
was made to make the implementation general and to modularize components
such that interfaces to additional control frameworks could be easily developed,
and so that the system could be used in a standalone fashion. A standalone
version of the system is nearing completion.

2.2 Passive Measurement System Requirements

The requirements for the GIMS environment are based on the GENI Instrumen-
tation and Measurement Systems Specification [18]. That document specifies a
broad vision for instrumentation and measurement, and discusses the trade-offs
and challenges for different types of instrumentation and measurement within
GENI. Our focus is specifically on the objective of developing a passive packet
capture capability i.e., the ability to gather, save and analyze packets from taps
on links in a network testbed.

The general requirements of the GIMS environment include (a number bor-
rowed from [18]):

– Full or partial packet capture at line rate with zero packet loss,
– No (or at least measurable) impact on experiments,

– Extensibility (i.e., the ability to add new measurement synthesis capability),
– High availability (e.g., at least as available as testbed systems on which

experiments are conducted),
– Large capacity (i.e., the ability to support a diverse set of simultaneous

activities from a large number of experiments),
– Remote management and monitoring capability,
– Access control (i.e., the ability to specify what data is available from a

particular device or collection of devices, to whom, and for how long),
– Flexible storage including the ability to house data locally and to stream to

a remote archive,
– Measurement nodes that are secure from unauthorized external access,
– Ease of use for both administrators and users of the system,

– Deployment on commodity PC’s and UNIX-based operating systems.

Specific requirements for the packet capture systems include:

– Support for IPv4 (IPv6 support is future work),
– Support for IPv4 header capture only,

– Support for specifying individual fields of interest in the IPv4 header,
– Support for on-the-fly prefix preserving anonymization of specified fields,
– Support for no-loss packet capture at line rate of at least 1 Gbps,

– Support for up to 256 simultaneous active experiments per node.
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Satisfying these requirements entails the development of a packet capture man-
agement environment that bears many similarities to network testbeds them-
selves and can easily be thought of as a parallel experimental infrastructure.
We are aware of no other packet capture management systems that fully satisfy
these requirements.

2.3 Architectural Specification

The design space for GIMS makes several assumptions. First, dedicated measure-
ment hardware will be deployed in a network testbed as illustrated in Figure 1.

Fig. 1. The basic physical components that support a GIMS deployment

These measurement host systems are connected to target links via taps (op-
tical splitters or active devices) or SPAN ports on switches. The systems are
commodity PC hosts running a UNIX-based OS and may include high perfor-
mance packet capture cards (e.g., such as Endace [3]), or specialized software
to improve packet capture efficiency (e.g., [14, 16]). These systems are remotely
accessible via a management network interface and include a separate network
interface for streaming captured data to remote, high capacity storage systems.
While not an explicit part of the GIMS requirements, attaching high precision
timestamps to packets is highly desirable for different types of experiments.
This is most effectively accomplished with specialized hardware and GPS sup-
port, although there are emerging software solutions [28]. Adding high precision
timestamps is a future objective for GIMS deployments but does not require any
specific capability from our software.

The GIMS design is three-tiered and divided into components as shown in
Figure 2. The first component is the front end. This component of the system
includes the interface mechanisms for both GIMS users and administrators that
enable access to the measurement infrastructure. The interfaces enable users to
configure their packet capture measurements. This includes specifying the set of
nodes that will be monitored 1, IP aggregates that will be captured, remote data

1 Users currently must have out-of-band knowledge of the links their experimental
traffic will use. Coordinating links that have packet capture nodes with testbed
experiments requires specific coordination with the testbed management infrastruc-
ture.
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Fig. 2. The key components in the GIMS architecture

storage targets (e.g., Amazon S3) and local packet processing (e.g., sampling or
flow aggregation). The admin GUI enables access to and configuration of remote
measurement nodes. The front end also includes the component manager. This
system enables coordination and integration of GIMS with a network testbed
control system such as ProtoGENI. The component manager facilitates authen-
ticated access to GIMS and control of GIMS systems from the testbed system
should the GIMS GUI’s not be required. In short, it makes GIMS more broadly
useable across diverse testbed infrastructures. The front end can run on a single
system or on multiple systems in a distributed testbed.

The second component in the GIMS design is the back end. This compo-
nent of the system is responsible for coordination of front end systems and the
distributed measurement nodes; it is, in a sense, the “nerve center” of GIMS.
The back end provides information about the availability and status of measure-
ment nodes via GIMS control messages to the front end. It also facilitates all
communication via GIMS control messages with measurement nodes, including
registration with the infrastructure, administrative configuration, and configu-
ration of packet capture activities for individual users. The core component of
the back end is a database system that maintains all state information about the
configurations of GIMS systems. This component can be distributed to enhance
robustness and to enables GIMS to scale to support a large infrastructure.

The third component in GIMS design is the packet capture management sys-
tem that runs on each of the measurement nodes that are deployed on links in
the testbed. Fundamentally, these nodes run some kind of packet filter (e.g.,
libpcap) that enables packets to be captured from a network interface, locally
processed, and stored. The packet capture management system runs on these
nodes and (i) facilitates multi-tenant use of measurement systems, (ii) enforces
local privacy policies, (iii) provides data summarization and aggregation capa-
bility, and (iv) provides data streaming to a designated remote storage device.
Remote storage recognizes the fact that packet capture on high speed links can
quickly fill disks, thus each user is only allocated a fixed local storage volume.
It is also critical that the packet capture management system impose a very low
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processing overhead on the measurement nodes so as not to affect packet capture
and processing and thereby impact measurements.

The control and data flow in GIMS is illustrated in Figure 3. Users specify
experiments and their associated measurement configurations through the GIMS
GUI or an interface in the testbed control framework. Among other things, this
results in filters deployed on measurement systems and storage allocation. As
experiments are run in the testbed, packets are captured and stored in the user-
specified archive. At the conclusion of the experiment, the filters and storage are
deallocated. The front end and back end facilitate the flow of control data and
maintain the current state of the measurement systems.

Fig. 3. Control and data flow in GIMS

Finally, the security and access control are critically important in GIMS since
measurement nodes may be deployed on live links. Measurement nodes are there-
fore only accessible to authorized users or administrators. Data collection on the
measurement nodes enforces local privacy policies by only capturing designated
fields of packets (e.g., header fields) and applying any required anonymization
before transmitting to either local or remote storage. The front end, back end
and measurement systems themselves are secured from unauthorized external
access by only allowing access on specified ports from specified systems and
from users with the correct credentials.

3 Implementation Details

In this section we describe implementation aspects of GIMS. We first discuss
the management and control components of GIMS (the front-end and back-end
components), followed by the packet capture subsystem implementation.

Figure 4 depicts the GIMS system components and interfaces among them.
These components are consistent with the architectural specification described
in Section 2. The user-facing components offer web-based views for users to man-
age, configure, and control testbed measurements. These front-end components
communicate with the back-end, which coordinates all of the activities in the
GIMS infrastructure. As such, the back-end performs remote procedure calls to
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Fig. 4. The GIMS system components

configure and control capture daemon components, and to manage the database
of users and device configurations in response to user and administrator actions
initiated from the front-end.

3.1 GIMS Front End

The most prominent of the front-end components, the GIMS control GUI, is
implemented using AJAX and runs from a web server in the testbed (in this case
gims.wail.wisc.edu). The GUI allows users to create device configurations,
assign names to specific configurations, and store them in the GIMS database
for retrieval. A screenshot of the control GUI is shown in Figure 5. A new set of
device configurations can be created automatically when an experiment in the
network testbed is created (e.g., a GENI slice), or it can be manually generated.
Each configuration can be saved in the GIMS database for future retrieval and
modification.

To obtain the status of a set of measurements, or an ongoing measurement
session, a GIMS user can view a separate results page, which can either show
the full results of a measurement session after it has ended, or display some
(near-)real-time information. The view of an ongoing measurement allows a user
to see a status log, as well as the results of querying the capture daemons for
basic statistics of packet or flow capture.

A separate administration GUI allows authorized users of GIMS to add, delete
and edit devices in the GIMS back-end database. A device must be added to the
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Fig. 5. The GIMS control GUI

database before it will be available to be selected for an experiment. The user is
prompted for information about the device such as location, device name, device
type, hostname, port and description. The capabilities of the device also need
to be entered so that the correct options can be displayed to the user during the
creation of device configurations.

3.2 GIMS Back-End

The GIMS back-end implements various functions to coordinate user actions
with the capture daemon systems deployed in a testbed. There are also a number
of functions to support generation, update, and retrieval of users’ device con-
figurations in the GIMS database, and it performs a variety of sanity-checking,
error-checking and logging functions.

The GIMS database is a core back-end component and is built on MySQL.
It contains tables to keep track of experiment state, location and type of de-
vices, which devices are being used in a given experiment, the configuration of
experiment devices, and statistics for each experiment.

Lastly, the “gimsd” monitoring daemon uses SNMP to monitor GIMS capture
devices that are currently running and collecting data on behalf of users. It takes
a snapshot of system performance every 15 seconds and stores the results in the
GIMS database. These results are available to the user via the GIMS Results
tool during and after experiment execution.

3.3 GENI Integration

GIMS currently includes a collection of scripts that forms a modular interface to
facilitate interaction with the ProtoGENI control framework. These interfaces
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enable integration with the GENI testbed, and their modular construction en-
ables additional control frameworks to be added without affecting other GIMS
components. These scripts are used to control and query various aspects of the
ProtoGENI system from GIMS. Likewise, the GIMS component manager is a
GIMS front-end component that translates ProtoGENI control instructions into
GIMS-specific control actions. In general, these components deal with transla-
tion of GENI contructs of “slices” and “slivers” into GIMS components and
configurations. Because of the modular design of this part of the back-end, it is
fairly straightforward to integrate with different external control frameworks. As
noted above, GIMS can also operate autonomously (i.e., without an interface to
a specific control framework).

3.4 Packet Capture Subsystem

The core measurement capabilities of GIMS are implemented in a subsystem
called the capture daemon. This subsystem consists of three components: the
capture daemon controller, which handles requests from the GIMS backend to
configure and control packet capture processes, the storage controller, which
handles storage interactions, and the capture daemon itself, which performs the
packet capture, aggregation and transformation of packets, and creation of meta-
data. The capture daemon subsystem is depicted in Figure 6.

The capture daemon controller implements a set of XML/RPC handlers to
accept requests from the GIMS back end for configuring packet capture system
parameters and storage parameters, for starting, stopping, and pausing capture
daemon processes, and for gathering some statistics on the progress of packet

Fig. 6. GIMS capture daemon architecture
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capture. It is implemented in Python as a single process, and communicates with
the storage controller and capture daemon processes through standard UNIX
inter-process communication mechanisms (pipes and signals). It also performs
detailed logging, which the GIMS backend relays to users if they want to gain
detailed runtime information about the capture system.

The storage controller is also implemented in Python as a single process, and
utilizes various modules to interact with sftp and Amazon S3 servers. As new
files are produced and become available for transfer, the storage controller ini-
tiates upload to user-specified directories, in the case of sftp, or a user-specific
bucket, in the case of S3. Since there may be multiple capture processes running
simultaneously we must take care to avoid blocking operations in the storage
daemon. Thus, the files generated from each configuration are handled by sepa-
rate threads in the storage controller.

Lastly, the capture daemon process implements the actual passive measure-
ment collection and processing. It is implemented in C, and uses the standard
libpcap API for packet capture. As a result, it can leverage any modified ver-
sions of libpcap that are available for accelerating packet capture, e.g., [3, 16].
To perform aggregation into flow records, the capture daemon uses the open
source libfixbuf and yaf libraries, and for anonymization, we use the well-
known prefix-preserving IP address anonymization algorithm of Fan et al. [19].

As data files are created (either packet traces or flow record traces), the cap-
ture daemon generates metadata in an easily processed XML format. The meta-
data include information about the experiment configuration (obtained through
the initial configuration call from the GIMS back-end) as well as user-specific
metadata (specified in the GIMS front-end GUI). Finally, experiment-specific
details related to the runtime performance of the experiment are added period-
ically as an experiment proceeds. For example, the number of received packets
and bytes are added periodically to the metadata, as well as information about
any interface packet drops that libpcap reports. These packet and byte counters
are also relayed to the GIMS back end, so that a user can gain (near-)real-time
information about his or her experiment as it runs.

4 System Microbenchmarks

Understanding the performance of the packet capture system is important to en-
sure that it does not skew measurements e.g., by inadvertently dropping packets.
In this section we describe a set of micro-benchmark experiments to evaluate the
performance of the GIMS capture daemon system. We also discuss operational
aspects of other parts of the GIMS system.

4.1 Experiments

The goal of our microbenchmark experiments was to evaluate the impact of
different configuration parameters on the performance of the GIMS capture
daemon. Since the capture daemon can perform optional transformation and
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aggregation of packets, we sought to understand the implications of different
options. Our testbed consisted of four identical commodity workstations, each
with Intel Xeon E5530 quad-core processors, 8 GB of RAM, and dual-port Intel
Gigabit Ethernet card dedicated to experiment traffic. A fifth workstation had
similar CPU and memory specs, but two dual-port Intel Gigabit Ethernet cards.
The four identical hosts were wired directly to the fifth host with cross-over
cables, creating a star topology. Each host ran Linux 2.6.32.

On the fifth (center of the star) host, we installed and ran the GIMS capture
daemon software. We additionally installed the PF RING [16] kernel module, as
well as the modified Intel Gigabit Ethernet (igb) driver to improve raw packet
capture performance. While experiments were running, we monitored CPU load
and collected information (from the capture daemon, and also directly from
PF RING) about packet drops. We used three of the other hosts to generate traffic,
and the fourth as a traffic sink. The packet capture daemon was configured to
monitor traffic on the interface connected to the traffic sink node.

We used iperf to generate uniform streams of UDP packets [1], from 64 bytes
through 1000 bytes, and the Harpoon traffic generator to generate more realistic
TCP traffic [27]. Due to limitations of using iperf for generating traffic, we were
only able to generate up to 210,000 packets per second (210 Kpps). This rate is
approximately the maximum rate of 512 byte packets that can be generated at
1 Gb/s. We configured Harpoon to generate an average load of about 500 Mb/s.

The capture daemon was run in four configurations. In the first, we captured
the first 64 bytes of packets and did not perform any other transformations to the
packets. In the second, we configured the capture daemon to do uniform sampling
of 10% on received packets (i.e., 90% of received packets were discarded). Again,
we captured and stored the first 64 bytes of the packets that remained after
sampling. In the third configuration, we collected simple SNMP-like packet and
byte counters on the received traffic, and in the fourth, we collected and stored
flow-level information in the IPFIX format [26]. In each configuration, data was
stored on the local system and not streamed to remote storage. We used the
iperf traffic generator for the first three configurations, and Harpoon in the
flow-oriented configuration.

4.2 Results

We first note that in all experiments, CPU load on the capture daemon host was
quite low (around 10%). This result is consistent with other measurements that
have been performed with PF RING-enabled systems [11, 14], and suggests that
the capture daemon does not impose significant processing overhead.

Table 1 shows the percent of packets captured (i.e., not dropped) for the three
experiments involving the iperf traffic generator. Results are shown for each of
the three capture daemon configurations, and five different iperfconfigurations.
As noted above, due to limitations of iperfwe could only generate, at maximum,
about 210 Kpps. We see from the table that there was zero or close to zero packet
drops in all cases except for experiments in which we collected 64 byte packet
headers with 64 byte and 128 byte packet traffic. In our Harpoon experiment
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with collecting flow records at the capture daemon, reported packet drops were
also nearly zero (less than 0.5%).

In both our CPU utilization measurements and packet drop measurements,
our results are consistent with prior work that has studied the performance of
PF RING-based systems. As a result, we expect the capture daemon to exhibit
scaling properties similar to other systems that use PF RING, and perform well
under high-load situations. We also note that the capture daemon can also take
advantage of hardware-accelerated packet capture platforms such as the Endace
DAG cards [3] to scale to higher speeds, since these platforms often offer modified
versions of the libpcap software.

Table 1. GIMS capture daemon system performance in different configurations using
the iperf traffic generator. Table values show percent of packets captured.

Packet size 64 128 256 512 1024
Offered packet rate 200 Kpps 201 Kpps 201 Kpps 208 Kpps 100 Kpps

Packet header capture 96.9 98.9 100 100 100
Header capture; 10% sampling 100 100 100 100 100

SNMP-like counters 100 100 100 100 100

5 Related Work

Passive network measurements are instrumental to operators and researchers
for gaining insight into network behavior and performance. As such, there have
been many protocols and systems developed over the years to facilitate passive
collection of network measurements.

The most ubiquitously deployed measurement capability today is defined by
the Simple Network Management Protocol (SNMP) [15]. The SNMP standards
define a set of counters and configuration variables arranged in a hierarchical
structure, called the Management Information Base, as well as protocols to re-
trieve counters and set device configurations. For example, many network oper-
ators utilize basic byte and packet interface counters that are available through
SNMP to gain a coarse view of traffic characteristics in their networks. Oper-
ators and scientists also use software packages such as the Multi-router Traffic
Grapher (MRTG) [24] to visualize these basic SNMP counters in appealing and
useful graphics, and to track traffic patterns over time.

Although SNMP counters are widely available, they cannot provide insight
into application traffic patterns or other traffic details. As a result, many routers
have the ability to export flow records, which contain more detailed information
on individual application flows, and there have been other efforts within the
IETF to define flexible traffic flow measurement mechanisms, e.g., RTFM [12].
For example, the de facto standard Cisco Netflow formats [2, 17] are supported
on many devices, and it is likely that the flexible flow record formats provided
by the recent IPFIX standard [26] will see broad adoption.

Packet traces provide one of the most detailed views of network traffic, at
the cost of higher CPU and I/O load to perform the data collection. There are
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many standard tools and libraries available to facilitate capture and processing
of packet data, e.g., [7, 13, 23], and specialized hardware platforms that enable
efficient packet capture at multi-gigabit speeds [3].

A number of efforts within the research community have focused on improv-
ing packet capture efficiency on commodity hardware systems. For example,
the PF RING system can be compiled and installed in a Linux kernel to enable
packet capture at very high rates [16], and the related vPF RING system fa-
cilitates high-speed capture in Linux-based virtual machine environments [14].
There are PF RING-based modifications available to the standard libpcap API,
enabling applications to transparently take advantage of the performance im-
provements provided by PF RING. Since the GIMS packet capture daemon is
built on top of the libpcap interface, it can also transparently take advantage
of these performance improvements. Still, tuning a commodity operating system
and hardware platform to achieve best performance can be difficult. Braun et
al. evaluated packet capture bottlenecks on FreeBSD and using PF RING and
PF PACKET on Linux in order to provide guidelines for achieving optimal perfor-
mance [11].

There have been a number of systems developed to improve passive packet
measurement capabilities by making it easier for network managers and/or re-
searchers to initiate, collect, process and/or analyze the collected data. For ex-
ample, the pktd system provides authorized users with an API to initiate packet
capture on an end host while not having to give the user privileges to directly
open a network interface card in promiscuous mode [20]. Building on the capa-
bilities of pktd, Agarwal, et al. developed a system to remotely initiate packet
capture at specific vantage points within an enterprise network for the purpose
of debugging performance problems. In a similar vein, Hussain, et al. describe a
system for passive packet capture based on using Endace DAG cards that also
provides automated storage for packets [21]. These systems have similarities with
the capture daemon back-end of GIMS. However, GIMS includes a much broader
set of capabilities in terms of the kinds of data that can be collected and how
data can be transformed prior to storage.

Two systems that are specifically designed with measurement capabilities for
testbed environments include the MINER system [10] and the OMF manage-
ment framework [25]. The MINER system allows a user to initiate both active
and passive measurement tools on testbed hosts. A primary goal of MINER is
to provide a unified API for using arbitrary measurement tools. As a result, it
requires some code to be written to adapt existing measurement tools to the
MINER framework. OMF is more broadly a management and control frame-
work for network testbeds, but includes integrated capabilities to collect and
store experiment-specific measurements. GIMS has some similarities with these
systems, but is geared specifically toward providing high-performance passive
measurement capabilities. It is also control framework agnostic: it can either be
run in an independent manner, or easily interface with an existing testbed or
network management platform.
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6 Summary and Future Work

The ability to capture packets traversing links in a network testbed is of cen-
tral importance to many different types of experiments. However, the costs and
complexity of deploying and managing a packet capture measurement infras-
tructure within a testbed can be very high. In this paper, we describe a packet
capture management environment for network testbeds that we call GIMS. The
key objective of GIMS is to reduce the complexities associated with managing
and using a distributed packet capture infrastructure.

The design of GIMS is divided into three components. The front end includes
a set of GUIs that facilitate management and use of distributed packet capture
devices. The back end, controls configurations of packet measurement and facili-
tates communication between the front end and the packet capture devices. The
packet capture control system enforces privacy policies, summarizes and aggre-
gates packet data, and archives data for multiple simultaneous experiments on
packet capture devices.

GIMS was developed to run within the GENI infrastructure and has interfaces
to directly interact with the ProtoGENI control framework. However, it has also
capable of running autonomously outside of ProtoGENI. It was implemented
to run on commodity PC hardware with UNIX-based operating systems. It has
been running in the WAIL testbed for nearly a year and the software distribution
is openly available to the community.

Our on-going efforts are focused in three areas. First, we are in the process
of deploying GIMS nodes within the GENI infrastructure. This will enable the
system to be used by researchers in that environment. We are also adding ad-
ditional capabilities for results analysis and reporting. This recognizes the fact
that the process of running experiments does not stop with packet capture and
requires standardized tools to make use of that data. Finally, to enable the sys-
tem to be more broadly used, we plan to add new interfaces for other GENI
control frameworks such as Orbit [5] and PlanetLab [6].
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Abstract. Users of large-scale testbeds often need a group of nodes
with a reasonable level of stability to execute applications and exper-
iments. Although monitoring the stability of nodes themselves is cer-
tainly part of the solution, it is important to classify and select groups
of nodes according to their ability to communicate among themselves.
In this work we call such groups of nodes “stable wormholes”, and de-
scribe strategies to find those wormholes based on monitoring end-to-end
pairwise interactions. Data acquired is used to find five different types
of wormholes, each with a different stability pattern. The system was
implemented in PlanetLab. Extensive experimental results are reported
evaluating the proposed strategies. A comparison with another tool that
selects nodes based on node stability alone is also presented. The exe-
cution of a MapReduce application shows that nodes selected with the
proposed strategy ran the application significantly faster.

Keywords: Testbed Monitoring, PlanetLab, Testbed Node Selection.

1 Introduction

Uncertainty is arguably the major obstacle for developing dependable distributed
systems. As even in static systems it is impossible to solve agreement problems
when communication and computing time bounds are unknown and at least
one node may crash [10], the situation can only get worse in more unstable
networks. It is not difficult to see that depending on the level of instability it
may be impossible for a distributed application to complete successfully.

As Veŕıssimo points out in [22], current network environments often present
an spectrum of synchrony, that varies from components that present perfectly
predictable behavior to those that have a completely uncertain behavior. These
properties can be found in time, i.e. during the timeline of their execution sys-
tems become faster or slower, presenting lower or higher bounds to execute. The
properties can also be found in space: some components are more predictable
and/or faster than others, actions performed in or amongst on these nodes have
better defined and/or smaller bounds. Veŕıssimo defined a hybrid distributed sys-
tem model, Wormholes [21], in which different loci of the system have different
properties which correspond to different sets of assumptions.
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In this work we describe a monitoring strategy for finding wormholes in hybrid
distributed systems, i.e. those that cannot be classified either as synchronous
nor as asynchronous. Several different types of wormhole selection criteria are
proposed, all of them based on the ability of pairs of nodes to communicate
among themselves. At the heart of this strategy, end-to-end interactions between
pairs of nodes are monitored, i.e. the response times, measured at the application
level. All pairs are monitored, from each node to each other node.

Acquired data is used to build a graph that represents the system from the
point of view of the different nodes. This graph is called stability graph. An edge
of a stability graph indicates a stable communication - according to a criterium
- between the corresponding nodes on which the edge is incident. Based on the
obtained graph it is possible to find wormholes, i.e. groups of nodes that together
have behaved in a stable way. Several wormhole selection strategies were defined,
each with a different stability pattern.

We employed the global research testbed, PlanetLab [5] in order to evaluate
the proposed monitoring and wormhole selection approaches. In our previous ex-
perience of running HyperBone [4] in PlanetLab we had found out that several
nodes of this important testbed presented a very unstable behavior. HyperBone
is an overlay network that allows the execution of distributed applications on a
virtual hypercube. In order to execute parallel and distributed tasks, HyperBone
requires a set of nodes that present a reasonably stable behavior. We found out
that it is not trivial to find such a large set of such nodes in PlanetLab. Some-
times it is not easy even to find a set of nodes each of which can communicate
with all others. At a given time, a large set consisting of such nodes might not
even exist. Another characteristic we found out is that a communication chan-
nel is frequently not symmetric: if a node considers another to be stable, the
opposite might not be true. Moreover, a given node might consider two other
nodes to be stable, but those two nodes may not consider each other stable. All
communication patterns are possible in this environment.

Although there are tools for monitoring and selecting PlanetLab nodes for
the execution of experiments [19,15,6,17,13,3], they employ criteria on the sta-
bility of the nodes themselves, such as processing load or available memory, for
example. None of them selects groups of nodes also considering their ability to
communicate among themselves.

We describe extensive experimental results of our wormhole selection strate-
gies obtained from monitoring PlanetLab. The first set of experiments consists
in evaluting the different wormhole selection strategies, also checking how pre-
dictable each wormhole is, i.e. how it behaves as time passes. We also checked
experimentally how nodes of a wormhole selected by our tool fared when ex-
ecuting an experiment. We compared the performance of the wormhole with
the performance of nodes selected by another PlanetLab node selection tool,
SWORD. Both sets of nodes executed a MapReduce application. Results show
that in most cases the wormhole nodes ran the application significantly faster.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 defines the online monitoring strategy, as well as the stability graphs
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and the wormhole selection strategies. Section 4 presents experimental results
obtained in PlanetLab. Conclusions follow in section 5.

2 Related Work

The original Wormholes hybrid distributed system model was proposed by
Veŕıssimo [22,21]. This is a realistic model that is based on the fact that net-
works often present an spectrum of synchrony, that varies from components that
present perfectly predictable behavior to those that have a completely uncertain
behavior. Wormholes correspond to a subsystem - defined in time or space - that
behaves in a predictable way.

In [18] the authors report the development of end-to-end dependable dis-
tributed applications and mobility-aware services in ubiquitous communication
scenarios. They assume the use of off-theshelf components (COTS) and unreli-
able wireless communication links. The proposed strategy is based on a hybrid
system architecture, which considers the existence of wormholes: subsystems
with better properties than the rest of the system. A wormhole provides spe-
cialized timeliness and trustworthiness services that may be used to construct
more dependable and resilient applications. The implementation of an embedded
wormhole is reported.

The Partitioned Synchronous Distributed System Model [12] is another hybrid
model that assumes that a subsystem is timely, i.e. provides known upper bounds
on communication and computation times. In [16] the authors describe how to
implement perfect failure detectors in this system. The implementation assumes
the existence of a timeliness oracle, that classifies processes and channels as
timely or untimely.

Another work that employs similar ideas for selecting supernodes in P2P
nodes is reported in [14]. The superpeer selection problem is hard because in a
P2P network a large number of superpeers must be selected from a huge and
dynamically changing network in which neither the peer’s characteristics nor the
network topology are known a priori. A set of superpeers has similarities with
a wormhole. The supernodes must be well-dispersed throughout the network,
and must fulfill additional requirements such as load balance, resource needs,
adaptability to churn, and heterogeneity.

We applied our proposed wormhole selection strategies to PlanetLab. There
are other tools that aim at selecting PlanetLab nodes for the execution of exper-
iments. CoMon [19] is a monitoring system specifically designed for PlanetLab.
The objective is to provide information about the environment to users and ad-
ministrators. CoMon collects information about the nodes themselves, such as
CPU and memory usage, for example. All the information gathered by CoMon
helps finding “problematic” nodes and slices. Also, CoMon provides a tool for
selecting nodes which satisfy given restrictions. This work differs from Comon in
respect to the monitored data and the way nodes are selected. CoMon monitors
just attributes related to the nodes themselves, while the monitoring strategy
presented in this work monitors the interaction between pairs of nodes. The node
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selection in CoMon uses just the last data obtained from nodes, while the node
selection strategies proposed in this work can use data relative to any period
of time.

Vivaldi [6] is a fully distributed synthetic coordinate system whose objective
is to predict the RTT between hosts, i.e. determine the RTT between two hosts
without having one host effectively communicating with the other. Vivaldi’s
algorithm assign synthetic coordinates to each host, in such a way that the
distance between the coordinates of two hosts corresponds to the RTT between
them. The monitoring strategy described in this work is similar to Vivaldi as
both employ the RTT as the basic monitoring metric. But in Vivaldi the RTT
is an estimation that, even with good precision, does not consider faults and
network problems. Furthermore, in our strategy the RTT is measured in both
ways, i.e. we do not consider the RTT to be symmetric.

SWORD [3] is an application for resource discovery. It allows users to describe
the desired resources with requirements related to nodes themselves and their in-
teraction. In this way, SWORD is a tool for selecting nodes which satisfy various
criteria specified by the user. But SWORD itself performs just the node selec-
tion. It is necessary to obtain the node’s monitoring data from another system.
Using that data SWORD is capable of selecting the best nodes that satisfy the
given restrictions. There is an implementation of SWORD in PlanetLab which
uses data from CoMon.

SWORD is similar to the work described in this paper, as both are strategies or
selecting nodes in which applications experiments will be run. Experiments com-
paring the nodes selected by SWORD and by the proposed node selection strate-
gies were executed and are described. Since it uses data from CoMon, the version
of SWORD available for use in PlanetLab has the same differences to our strategy
as CoMon, i.e. it uses only data related to the nodes themselves, not their interac-
tion. Furthermore, the data corresponds to the last measurement obtained from
nodes, while we considered data sampled during a whole time frame.

In [9] we describe results of our observation of PlanetLab based on a offline
monitoring strategy, based on which we extracted cliques of stable nodes. In
the current work we present a different, on line monitoring strategy and for-
mally define both the monitoring strategy and five different wormhole selection
strategies, one of which is the clique.

3 Online Monitoring and Node Selection

This section describes the proposed monitoring strategy. We then define the
stability graph that is built by applying a stability criterium to the monitoring
data, and finally define five different types of stable wormholes that can be
obtained from the stability graph.

3.1 Monitoring Pairwise Interactions

Consider a network, represented as directed graph G = (V,E), where V is the
set of vertices corresponding to network nodes, and E the set of edges such that
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the ordered pair (i, j) is an edge if node i communicates directly with node j,
i.e. without employing intermediate nodes.

The purpose of the proposed monitoring strategy is to provide data that can
be used to select a set of nodes W , called a stable wormhole, such that for any
two nodes r, s ∈ W , W ⊆ V , the communication initiated by r with s can
be considered stable. In other words, wormhole nodes are able to communicate
among themselves in stable way, which of course depends on the stability criteria
defined below.

Every node of the monitored network executes a monitoring daemon, specified
as follows. Periodically, ∀i ∈ V , node i sends a message to each other node and
waits for a reply. Upon receiving the reply message, the Round Trip Time (RTT)
is computed using the local clock, and tuple (i, j, rtti,j , timestamp) is stored.
The timestamp corresponds to the local time instant at which the measure was
obtained. We assume that clocks are roughly synchronized, for example with the
level of accuracy that is obtained with the Network Time Protocol (NTP) [2] in
the Internet.

Monitoring is supposed to run at the application level, thus RTT measure-
ments vary not only because of network issues, but also due to the situation of
the node himself, for instance the number of processes on the scheduler’s queue
and CPU usage.

Even if a daemon stores recently colleted measurements locally, at some point
data is sent to a central monitor that eventually collects measured data from
all daemons. Due to the large amount of data that this strategy generates, and
the fact that recent data is more important that previous samples, the central
monitor summarizes sequences of tuples for predefined time frames. For example,
in our PlanetLab experiment described in the next section, we summarized data
per hour, day, month and year. Summarization computes both the mean and
standard deviation of measurements for a given pair of nodes within a given
time frame. Thus, the summary for ordered pair (i, j) for a given time frame
T = [t0, t1] and set of tuples (i, j, rtti,j , timestamp) is the average μi,j,T =<
rtti,j |t0 ≤ timestamp ≤ t1 >, plus the standard deviation σi,j,T used as a
measument of the dispersion.

Given two consecutive time frames it is also possible to compute the average
and standard deviation of the most recent timeframe taking into account the
summary obtained for the previous time frame.

3.2 Building the Stability Graph

From the monitoring data acquired, the central monitor builds a so called sta-
bility graph S for time frame T = [t0, t1]. Before the stability graph is formally
defined, we give the definition of “stability” itself, i.e. we define the criteria used
to classify a given pairwise interaction as stable or unstable. Consider the ordered
pair of nodes (i, j) monitored as described above. A threshold θ is defined as the
maximum value allowed for an RTT sample. We then compute the frequency
in which the round trip times fall below θ, considering the two sets of tuples
(i, j, rtt, timestamp) and (j, i, rtt, timestamp), such that t0 < timestamp < t1.
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Node i is said to consider node j to be stable if at least a fraction p of the
obtained rtti,j ≤ θ. The analogous procedure is used to check whether node
j considers node i to be stable. In our PlanetLab experiments we employed
p = 90%. Stability Graph T = (VT , ET ) is an non-directed graph defined as
follows. An edge (i, j) ∈ ET (thus node i ∈ VT and node j ∈ VT ) if an only if
both node i considers node j to be stable within T , and node j considers node
i to be stable within T .

3.3 Finding Stable Wormholes

After the stability graph S is built, we reach the final stage, i.e. searching for
wormholes, i.e. a connected set of nodes with a reasonable level of stability, that
could be employed to run distributed applications that require a “reasonable”
level of stability. Although at first we assumed that finding a wormhole was
equivalent to finding a clique in S, i.e. there should be an edge between any two
vertices in VT of S, experience taught us less strict criteria could lead to more
stable, more predictable wormholes. In particular, the clique represents an overly
restricted criteria, and the number of nodes (wormhole size) is often not large
enough. In this subsection we present the five different types of stable wormholes
we defined and evaluated: Minimum Degree, Highest Minimum Degree, K-Core,
Core and Stable Clique.

Minimum Degree. The least strict strategy for finding wormholes is the one
based on Minimum Degree. This strategy returns a stable wormhole W , such
that node i ∈ W if the degree of node i in S degS(i) ≥ dmin, for a given minimum
degree dmin. Thus the Minimum Degree strategy filters nodes by their degrees
in the stability graph. Only nodes with degree higher than the minimum degree
which is entered as an input parameter are selected.

The rationale behind this strategy is that it may suffice to find nodes that can
communicate in a a stable fashion with a large number of other nodes. However
it is possible that two nodes in a Minimum Degree wormhole are not able to
communicate with each other in a stable way.

Highest Minimum Degree. The Highest Minimum Degree strategy receives
as input parameter the desired number of nodes in the stable wormhole, m.
Given that parameter, an algorithm is executed on stability graph S to find
such a group of m nodes with the highest possible minimum degree, Dmin.
This strategy thus selects a wormhole with a specified minimum size (number
of nodes) and with the highest possible minimum degree for that size. A trivial
polynomial algorithm can be used to find a Highest Minimum Degree wormhole.

k-Core. The k-Core strategy finds a k-core on the graph representing the sys-
tem. A k-Core is the largest group of nodes that form a subgraph C of the sta-
bility graph S that has minimum degree equal to k. In other words, this strategy
selects a group of nodes that have a minimum degree among themselves, i.e. each
selected node has a degree higher than or equal to k within the wormhole. The
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input parameter in this case is the minimum degree k. This strategy is more
restrictive than the Minimum Degree and Highest Minimum Degree, since the
degrees in those two other strategies may involve nodes not in the wormhole.

The algorithm to compute a k-core from S is polynomial. It starts by building
subgraph S1 = (V1, E1), such that node i ∈ S1 iff degS(i) ≥ k. Note that an edge
(i, j) ∈ ET is also in E1 if both i, j ∈ S1. The process is then repeated: create
subgraph S2 = (V2, E2) selecting from all nodes of S1 those that have degree
greater than or equal to k. Eventually the resulting subgraph is equal to the
original graph, this is the k-core, the largest set of nodes in the stability graph
S that have minimum degree k among themselves.

Core. The Core strategy finds the stability graph core. A core is the largest
group of nodes that form a subgraph with the highest minimum degree possible;
i.e. the core of a graph is the k-Core with the highest value of k that is not
empty. This strategy thus returns the largest set of nodes that have the highest
minimum degree among them.

In order to find the Core wormhole the algorithm described above in the
k-Core strategy is executed on a binary search for the largest k that returns
a non-empty set of nodes. Initally k = n/2, half the number of nodes in the
system; the lower bound (bl) is 0 and the upper bound (bu) is n. If the k-core
is non-empty, then k is set to (bu + k)/2 otherwise k is set to (bl + k)/2. This
process is repeated until an empty set of nodes is returned; the core is the last
non-empty k-core.

Stable Clique. The Stable Clique strategy finds a clique [8] - a complete sub-
graph - of the stability graph. In a clique there is an edge between every pair of
nodes. Finding cliques is a NP-hard problem [11]. Therefore finding the largest
clique in a graph with a large number of edges, such as the graphs created by
the strategy described in this work, is impracticable, since the nodes - in which
experiments will be run - must be selected quickly. To address this problem, the
Stable Clique strategy uses two parameters: the minimum size of the clique and
the maximum processing time. We employed a well-known depth-first search al-
gorithm for generating all maximal cliques of an undirected graph, that employs
pruning and is feasible in practice [20]. The algorithm is executed until a clique
with a size higher than or equal to the specifed minimum size is found. Alter-
natively, if such clique is not found within the specified time limit, the largest
clique found so far is selected. This strategy is the most restrictive one, since
there must be an edge between every pair of selected nodes.

4 Experimental Results

This section describes experimental results obtained from a PlanetLab imple-
mentation of the wormhole selection strategies. When the experiments were ex-
ecuted in 2011, PlanetLab consisted of 983 nodes. Although the complete set of
nodes were monitored, the number of nodes that actually ran the system varied
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from 500 and 600 nodes. This was because a large number of nodes continuously
alternated being online and offline, and some other nodes remained unreachable
during the whole period of the experiments. In all experiments described in this
section each node measured the RTT to each other node every 5 minutes.

Two groups of experiments were conducted. The first group consisted of an
evaluation of the node selection strategies. Several stability graphs were built
using monitoring data obtained during continuous periods each consisting of 3
weeks. The second group of experiments, described in subsection 4.2, aimed at
comparing nodes selected by our strategy with nodes selected by another Planet-
Lab monitoring tool. This comparison was performed by executing a MapReduce
application on nodes selected both with our tool and with the other tool.

4.1 Evaluation of the Wormhole Selection Strategies

This experiment was based on monitoring data collected from January 30, 2011
at 00:00, to February 19, 2011, at 23:59 (UTC -3), for a total of 21 days. Stability
graphs were built at each hour during this period. The RTT thresholds employed
for generating the stability graphs were 0.05s, 0.1s, 0.15s and 0.2s; 4 graphs were
built per hour, for a total of 2016 graphs. Both the average and maximum degrees
of all stability graphs were computed. Figure 1 shows the average and maximum
degrees observed considering a threshold of 0.1s. Figure 2 shows the analogous
results when a threshold of 0.2s was employed. It is not difficult to see that the
values for both the average and maximum degrees were significantly higher when
the threshold was 0.2s. For instance, the average degree was about 60 during the
whole period in which the threshold was 0.1s; as the threshold was increased
to 0.2s, the average degree increased to 130. Higher threshold values are not
reported because the return meaningless results: a very high threshold does not
filter nodes and interactions which are highly unstable (variations fall within the
threshold).

After the stability graphs were generated, we executed the several wormhole
selection strategies. Each strategy was executed to find wormholes on the sta-
bility graphs. The purpose of this experiment is to evaluate the performance of
the different strategies as time passes.

The Minimum Degree is the simplest strategy: we counted the number of
nodes in the stability graphs with degree greater than or equal to the minimum
specified. The minimum degrees evaluated were 50, 100, 150 and 200. Figure
3 shows the number of nodes selected with the Minimum Degree strategy for
several days period using a RTT threshold of 0.1s. For minimum degree 50,
for example, the number of nodes selected remained close to 450 during the
observation time, note that this is about 80% of the total number of monitored
nodes, which ranged from 500 to 600 nodes.

Next we evaluated the performance of the Highest Minimum Degree strategy.
In this strategy we specify the number of nodes, and verify the maximum degree
of any such group in the stability graphs. Figure 4 shows, for a threshold of 0.1s,
the highest minimum degree identified over 21 days for groups of 50, 100, 150,
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Fig. 1. Average and maximum degrees of the stability graphs built with threshold of
0.1s
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Fig. 2. Average and maximum degrees of the stability graphs built with a threshold
of 0.2s

200 and 300 nodes. For 300 nodes, for example, the highest minimum degree was
about 100; for groups of 50 nodes the highest minimum degree was about 180.

In order to evaluate the Core strategy, cores were extracted from all stability
graphs. The number of selected nodes and the minimum degree among them
were recorded. Figure 5 shows the results for a threshold of 0.1s, considering
the whole observation period. We can observe that the number of varied widely,
while the minimum degree presented a low variability. Furthermore, frequently
the mininum degree was close to the number of nodes selected, thus the sub-
graph induced by the selected nodes presents high density, i.e. there are edges
between most node pairs, which means that in the graph cores obtained each
node considers the majority of the others to be stable.

Our main purpose in evaluating the Stable Clique strategy was to check
whether a Stable Clique maintains itself as time passes. Three Stable Cliques
were computed on the first stability graph considering a 1-day monitoring
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Fig. 4. Highest Minimum Degree for groups of different sizes, threshold of 0.1s

period. During that day we computed for each of the remaining stability graphs
if that Stable Clique was still there. The RTT threshold used to compute the
initial clique was equal to 0.05s; in order to check whether the clique was still
there we used a threshhold of 0.1s. The reason we computed the initial clique
with this low threshold (the most strict of all thresholds employed in all experi-
ments, employed to find both an initial clique as well as a initial core in the next
experiment we report below) was that it would allow us to initially select nodes
that were interacting in a very stable pattern. Then when checking the clique
we would employ a larger threshold to allow for some variation.

Figure 6 shows how each of the three fared during a representative time frame
(one day). We show for each group of nodes, the number of nodes that remained
fully connected among themselves. The threshold was of 0.1s. It is possible to
see that only one group of nodes remained as a clique for most of the time (not
all the time though). From our observations we reached the conclusion that the
Stable Clique employs a criterium that is too restrictive, and the selected group
of nodes most probably will not hold the desired properties for long.
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Fig. 6. The performance of Stable Cliques during one representative day

The Core strategy - which is less restrictive than the Stable Clique - proved to
be a better choice for selecting a group of nodes that presented among themselves
a stable communication pattern for a longer time frame. In order to check how
the nodes selected using the Core strategy behave as time passes, we selected
nodes using this strategy the first stability graph of a one day period. Again
for the initial selection we employed a strict threshold of 0.05s. 62 nodes were
selected. Figure 7 shows the average, minimum and maximum degree for these 62
nodes during a 1-day observation period, with threshold equal to 0.1s. Note that
as in the Stable Clique experiment above here we employed a larger threshold
to monitor the core, in comparison with the original threshold with which the
core was selected at first. This makes room for some fluctuation in the stability
among nodes.

The average degree had a very low variation during the whole observation
period, as well as the maximum degree - which remained constant. The minimum
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Fig. 7. Average, minimum and maximum degrees of nodes selected with the Core
strategy

degree, however, had a much higher variation. However, even when the minimum
degree varied this did not impact the average degree. This indicates that few
nodes were affected by some instability. Also, the average degree was close to
the maximum degree during the whole period, showing that the majority of the
nodes in the cores presented a stable behavior among themselves during the
whole period.

Discussion. Although the Minimum Degree and Highest Minimum Degree
strategies consistently return a larger number of nodes, these strategies do not
guarantee that the group of nodes all present a stable communication pattern
among themselves. On the other hand, the Stable Clique strategy only selects a
group of nodes such that all of them are able to communicate in a stable pat-
tern with all others. However this proved to be too restrictive, and difficult to
sustain as time passes. The results show that the Core strategy is the best: it
selects good sized groups of nodes that are able to interact among themselves in
a pretty stable way and remained so for longer.

4.2 Comparison with Another Tool

In order to compare the performance of nodes selected with the proposed strate-
gies and those selected with another tool, we executed experiments using MapRe-
duce. MapReduce [7] is a software framework aimed at distributed computing on
large data sets. MapReduce requires the definition of a mapping function, which
transforms the data in key/value pairs, and a reduction function, which gathers
the key/value pairs to obtain the final result. A MapReduce application can be
automatically parallelized and executed in a set of hosts. A node divides the
input data between several other nodes, each of which then repeats the process.
The set of nodes form a tree. When a node completes its mapping, the result
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is sent back to its parent in the tree. This process continues until the first node
receives all mapped data and performs the final computation (reduction).

The MapReduce implementation used in this experiment was Apache Hadoop
[1]. Hadoop is a framework for the execution of distributed applications. It pro-
vides a distributed file system, HDFS (Hadoop Distributed File System), and
an implementation of MapReduce. When Hadoop is started the HDFS and the
system responsible for executing the applications (including MapReduce ones)
are instantiated in all nodes. In order to execute MapReduce applications with
Hadoop, the input data must be inserted in HDFS, since all applications will
be run on top of this file system. All nodes then have access to any part of the
data, which can be effectively stored in any other node.

For the sake of comparing the performance of nodes selected by the proposed
strategies we employed SWORD [3], which was described above in section 2,
and provides the closest functionality to our tool, being specifically designed
for selecting PlanetLab nodes for running experiments. We selected our Core
strategy for this comparison, since it gave our best results when all strategies
were compared. The values chosen for all parameters used, both for SWORD
and for the Core strategy, were as restrictive as possible. The attributes used in
SWORD for selecting nodes were the response time of the nodes (based on the
CoMon server), and the one minute load which should be less than or equal to
10 in all experiments.

The MapReduce application used was a wordcount, which counts how many
occurences of each word appear in an input file. The text file used in the exper-
iments had size 1GB, and was created randomly. The experiment consisted in
executing this application several times, both using nodes selected by SWORD
and selected by the Core strategy. For every measured metric we computed the
mean and the standard deviation, as well as the maximummedian, and minimum
value.

Two different experiments were conducted, in both cases we employed 100
PlanetLab nodes. After the nodes were selected, Hadoop was started on all
nodes. The input file was then inserted in HDFS. Then, the MapReduce appli-
cation was run 15 times, one after the other. After these executions completed,
measurements were recorded. This procedure was performed twice (for a total
of 30 runs), each time using a group of nodes selected differently.

The first experiment was executed on July 15th 2011. 100 nodes were first
selected using SWORD at 10:50 (UTC -3), after that the experiment was run
on those nodes. Later 100 nodes were selected using the Core strategy at 18:00
(UTC -3) and the experiment was executed again. Table 1 shows the results
obtained from the 30 executions (15 using each set of nodes). Nodes selected by
the Core strategy ran the application significantly faster. Except for the standard
deviation, all values corresponding to the nodes selected by SWORD were about
two times the values obtained for the nodes selected by the Core strategy.

The second experiment was executed on July 18th 2011. This experiment con-
sisted of the same procedures employed for the first one, but with an important
difference: we first executed the application on the nodes selected by the Core
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Table 1. Comparison results (first experiment): execution time

SWORD Core

Average 22min 59s 9min 25s

Standard Deviation 12min 18s 6min 3s

Median 18min 54s 7min 34s

Lowest 6min 47s 4min 21s

Highest 58min 19s 28min 49s

Table 2. Comparison results (second experiment): execution time

SWORD Core

Average 20min 17s 8min 18s

Deviation 17min 33s 1min 49s

Median 16min 57s 8min 23s

Lowest 7min 46s 5min 10s

Highest 83min 25s 11min 42s

strategy. This was done to check whether there was an impact of the period of
the day in which the experiments were run. In this experiment, 100 nodes were
first selected using the Core strategy at 11:28. After the execution finished, 100
nodes were selected using SWORD at 14:40 and the experiment was run again.
Table 2 shows the results obtained from the 30 executions (15 per set of nodes).
As in the first experiment, nodes selected by the Core strategy ran the applica-
tion significantly faster, but in this experiment the standard deviation was much
higher for nodes selected by SWORD. Also, the highest execution time for nodes
selected by SWORD was by far higher than the highest execution time for nodes
selected by the Core strategy. The low standard deviation might indicate that
the nodes selected by the Core strategy presented a ”good” stability during the
whole experiment duration.

Discussion. In both experiments, nodes selected by the Core strategy ran the
application significantly faster than nodes selected by SWORD. These results
show that even on a highly unstable network such as PlanetLab, the strategies
described in this paper were able to select nodes that presented a reasonable
stable communication pattern among themselves.

5 Conclusions

Based on the fact that current network environments often present a spectrum
of synchrony, that varies from components that present perfectly predictable
behavior to those that have a completely uncertain behavior, in this work we
described strategies to find sets of nodes that can be considered to be stable
according to various criteria. Such groups of nodes are called stable wormholes
and the criteria for discovering wormholes are based on monitoring end-to-end
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pairwise interactions. Monitoring data is used to build stability graphs which
in turn are used to find five different types of wormholes, each with a different
stability pattern, ranging from cliques to sets of nodes with a minimum degree.
The system was implemented in PlanetLab, and we report results of a compari-
son between different wormhole selection strategies. Experiments comparing the
performance of nodes selected by the proposed strategies with nodes selected by
a tool that is based on node stability alone are also presented. The execution of a
MapReduce application on those nodes show that, in most cases, nodes selected
by the proposed strategies ran the application significantly faster.

Future work includes developing a tool for PlanetLab users that accepts more
input parameters, such as the size of a desired wormhole. Developing new strate-
gies for finding wormholes, such as the connectivity of the subgraph is also a
new research direction. Another issue that can be expanded in the future is the
classification of stability using other criteria such as an for instance adaptive
thresholds.
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Abstract. Conducting a realistic network experiment involving globally
distributed physical nodes under heterogeneous environment introduces
a requirement of experimentation control between the real world net-
work and emulated/simulated networks. However, there is a gap between
them to deploy network experiments. In this paper, we propose the Dis-
tributed Network Emulator (DNEmu) to fill the gap for the requirements
of a planetary-scale network experiment. DNEmu addresses the issue of
real-time execution with message synchronization through distributed
processes, and enables us to evaluate protocols with actual background
traffic using a fully controlled distributed environment. Through evalua-
tion with micro-benchmarks, we find that our DNEmu prototype imple-
mentation is similar in terms of packet delivery delay and throughput to
the existing non-virtualized environment. We also present a use-case of
our proposed architecture for a large distributed virtual machine service
in a simple control scenario involving actual background traffic on the
global Internet. DNEmu will contribute to research in protocol evalu-
ation and operation in a huge network experiment without interfering
with the existing infrastructure.

Keywords: distributed emulation, real-time simulation, ns-3.

1 Introduction

Designing novel network protocols aiming to replace the current Internet archi-
tecture (i.e., clean-slate designs [6]) requires showing feasibility on the existing
network before replacing it. Alternatively, analyzing the vulnerability of current
protocols or unrevealed incidents (such as an outage for the popular site YouTube
caused by inappropriate route announcement from Pakistan Telecom [1]) is im-
portant to avoid the accident happening in the future. As the demand for meth-
ods of studying communication is growing, a variety of network environments
is necessary to be produced for the purpose of evaluating current and future
protocols or architectures.

Network simulators greatly facilitate various network experiments. Researchers
can create experimental scenarios and evaluate network architectures or protocols
on simulated networks, without preparing large-scale and global wide network in-
frastructures or complex communication environments such asmobile andwireless
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c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



DNEmu: Design and Implementation of Distributed Network Emulation 163

Controllability

R
ea

lit
y Network

Testbed
(e.g. 

Planetlab)

Network
Simulator

)) Distributed
Network
Emulator

Integrated Operation

A
ct

ua
l E

nv
iro

nm
en

t
 C

oo
pe

ra
tio

n

Real-time
Simulation

Distributed 
Simulation

Distributed
Network
Emulator

Fig. 1. Our work aims to fill the gap between network testbed and network simulator
(left), and the gap between real-time simulation and distributed simulation (right).
Both gaps are caused by lack of smooth experimentation control.

network experiments. However, as network simulators work with pre-defined com-
municationmodels, it is impossible to evaluate protocolswith unpredictable active
traffic that occurs in the actual global Internet. This condition often precludes re-
alistic evaluation and reduces the evaluation quality.

As an alternative solution, a planetary-scale network testbed such as Planet-
Lab [15] has recently been used for experimenting with active traffic on the global
Internet. The scale of the number of nodes in the experiment, however, is limited
to the number of physical nodes in the testbed. Moreover, the cost of the experi-
ment controlling multiple nodes is regrettably high, especially when the number
of nodes and complexity of the experimental scenario in the experiment grow.

More realistic experimental results have been gained by using ns-3, which is a
novel network simulator [9]. Thanks to numerous contributions by researchers,
ns-3 now has capabilities such as the ability to import actual traffic with a
real-time scheduler, parallel distributed network simulation by Message Passing
Interface (MPI) [7] for synchronized operation under a distributed environment,
and Direct Code Execution (DCE) [11] to execute active running code in the
simulation. Such functionalities help researchers conduct a realistic experiment
for the evaluation of network protocols in a single toolset of software. However,
it still lacks the key functionality for satisfying the requirements: the implemen-
tation of current distributed simulation in ns-3 cannot carry out simultaneous
execution with the real-time simulation. It was impossible to perform an inte-
grated operation by distributed simulation and cooperate with external traffic
by real-time simulation simultaneously.

By considering the current picture of network experiments without smooth
experimentation control as illustrated in Figure 1, our motivation for this work
is filling the gaps in order to conduct planetary-scale network experiments. We
introduce a novel distributed, real-time network emulation architecture, called
DNEmu (Distributed Network Emulator), to satisfy the following requirements
for the network experiment.
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– R1: The experiment should incorporate live traffic with the simulated back-
ground traffic.

– R2: We should have fully control of the experiment in a distributed environ-
ment.

Our design choice for DNEmu involves exploiting the existing MPI-based net-
work simulation of ns-3, while considering the issue of real-time execution in-
volving live traffic.

The contributions of this paper are two-fold. First, we have designed a dis-
tributed real-time emulation on a novel network simulator, ns-3, to achieve a
global-scale network experiment with easier operation in a single toolset of the
software. In the design phase of this study, we identified the issue of distributed
simulation in real-time execution. Second, we have implemented a prototype of
our proposed design and evaluated the similarity of basic network performance
between the proposed architecture and a non-virtualized environment. To the
best of our knowledge, no such architecture exists based on the combination of
these two distinct simulation algorithms.

2 Background

This section briefly introduces two important functionalities of network simula-
tion: real-time simulation and distributed simulation. Both help users of network
simulators conduct network experiments in the distributed environment, but
they are mutually exclusive, which motivates the pursuit of a solution in this
paper.

2.1 Real-Time Simulation

In contrast to traditional discrete event simulation, simulation synchronized with
wallclock time of a computation node (called real-time simulation) was proposed
by Fall [5] and implemented on the ns-2 network simulator, which is the primary
network simulator of ns-3. As depicted in Figure 2, instead of conventional dis-
crete event scheduling, real-time scheduling allows us to wait for the next pend-
ing event until wallclock time corresponds to time in the simulator, and thus
the clock inside the simulation is synchronized with the outside the simulator,
allowing communication. By using this enhanced scheduler, the application in
the simulator is able to include live traffic from the outside (e.g., the Internet).

While real-time scheduling provides external interoperability to the network
simulator, it does not schedule events in real time. When a large number of
events attempt to execute at the same time t, the next pending event will be
delayed and the clock will then be desynchronized. Performance improvement in
the simulation core will help us to ensure that the event scheduling meets these
deadlines [13].
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2.2 Parallel and Distributed Simulation

Parallel and distributed network simulation [18] has been studied with the re-
quirement of rapid execution of complex and large-scale network simulation. By
utilizing multiple logical processes (LPs) distributed to multiple nodes, the sim-
ulation has accelerated execution time, while ensuring the same results with a
synchronized clock among the distributed processors.

Simulation Core

Model

Processor

Simulation Core

Model

Processor
Bus

(e.g.MPI)

Boundary

Fig. 3. Parallel and distributed simulation. Using several processors or physical nodes
distributes the load of simulation processes and accelerates execution with coordination
of time synchronization.

As shown in Figure 3, the topology on the simulated model could be shared
among the different processors or physical nodes. When the message (or event)
goes across the simulation boundary in the shared topology, a time-stamped
message is exchanged via the message bus between the different simulation cores
and processed at the second processor. The result then goes back to the original
simulation core without adding to the original processor’s workload and the final
execution time of the simulation will be thereby shortened.

Though the previous studies in the distributed simulation have focused on
the performance improvement of the network simulation, it is also necessary to
study the environmental synchronization among the distributed nodes, for an
integrated network experiment with simple operation.



166 H. Tazaki and H. Asaeda

Processor

Simulator Core
Data Chan Ctrl Chan

Simulator Model

Processor

Simulator Core
Data Chan Ctrl Chan

Simulator Model

Experimental Network Topology

master LP slave LPs

Event
Dispatcher

raw-socket 
channel

IPC channel

if: dest=other node

if: dest=same node
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2.3 What Is Missing?

Although the above two simulation algorithms are distinct, both of these algo-
rithms will contribute to the execution of a network experiment at distributed
locations. Controlling a complex experimental topology in a single scenario script
allows for easier deployment of the network experiment into hundreds of nodes,
and actual traffic generated by actual applications improves the quality of the
simulation.

However, the current implementation of the distributed simulation in ns-3

does not allow external traffic to be imported via a real-time scheduler. Further,
designing additional functionality for real-time execution in the distributed sim-
ulation is also not straightforward, because of the timescale differences within
the simulation. The following sections detail a framework for filling the gap of
the current simulation architecture.

3 The Architecture

In this section, we present our proposed architecture, DNEmu for distributed
real-time network emulation satisfying the above requirements.

3.1 Overview

As stated in Section 1, the goal of this paper is to provide a network exper-
iment framework, which both involves live traffic, and also uses a distributed
environment.

Our design choice to accomplish this goal is to extend existing frameworks of
distributed simulation and real-time simulation, and be able to utilize them simul-
taneously. Current distributed simulations require time synchronization between
distributed processors (or systems), but our proposed architecturedoes not require
any such synchronization, since the time should “walk along” with the wallclock
time of each system in the real-time scheduler (details are discussed in Section 3.3).
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In addition, we do not use MPI as an inter-connect for data transfer between
logical processes. Instead, we use the usual raw-socket based communication via
the usual network interface cards (or tunnels in some physical network environ-
ment cases). We do this because the buffering strategy of MPI for optimized
message synchronization does not allow the exchange of real-time messages be-
tween the LPs (details are discussed in Section 3.3). This separation of control
channel and data channel allows us to use a distributed real-time scheduler in a
network simulator.

Figure 4 shows the overview of theDNEmu architecture. While MPI is used as
a control channel between distributed logical processes, the real-time scheduler
handles external traffic coming from outside the simulator, and also appropri-
ately schedules the traffic on the data channel at the simulation boundary (i.e.,
the link between logical processes). A simulation scenario among the distributed
nodes can be shared, and execution is handled only at the master node and
synchronized with all of the distributed slave nodes.

3.2 Principles

During the design phase of our architecture, the following principles for design
choice, from several directions, were considered.

Less Dependency on Hardware Environment: The architecture and its
implementation should not be restricted to any particular hardware environment
(e.g., dedicated cluster computers for distributed simulation) in order to allow
distribution all over the world. It should use standard hardware with a common
operating system.

Less Dependency on External Toolsets: Dependency on external toolsets
is minimized to reduce the complexity of the operation of network experiments.
Since the architecture is a framework for any network experiments, and could be
utilized in many different ways, it should be able to tolerate for future extensions
of the architecture.

3.3 Functional Components

This section explains the functional components required for the DNEmu archi-
tecture.

Event Dispatcher: We introduce a new simulated event dispatcher for dis-
tributed real-time emulation. Existing distributed simulation transfers events
(i.e., packets) to the other endpoints via the MPI library if the events cross the
simulation boundary. Instead, in our architecture, the events are translated and
transferred to an emulated raw-socket (or tap device), and delivered to the other
endpoints over a connected network when distributed emulation is defined in the
simulation scenario. If the destination node of an event transfer is the same as
the original node, it conducts inter-process communication (IPC) for the event
transfer instead of raw-socket based communication.
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Message Passing between LPs: In addition, the function of the message
passing in a time-stamped order at the boundary of LPs is removed since we do
not have to synchronize the simulation clocks, as the real-time scheduler uses
wallclock instead. However, we still use the MPI library, because it easily enables
to control distributed nodes by providing the initial rendezvous, bootstrapping,
and to assign of MPI rank, which is the unique number of each logical process. We
then utilize existing raw-socket based communication at the simulation boundary
for data transfer between simulated nodes. During the implementation of our
prototype, we found that using MPI as a data channel of the inter-connect is not
suitable since the buffering behavior of the MPI message transfer prevents real-
time traffic delivery to another node. For example, the order of arrival of ICMP
echo request packets at a destination is different from the order of transmitted
packets. Figure 5 shows the order of arrival of ICMP Echo reply packets in
function of the transmitted sequence number from our prototype implementation
based on an MPI-based inter-connects. We can see that the packet transmitted
with sequence number 1379 was echoed backed in 1465th place. Such a non-
negligible effect for real-time simulation should be removed. One possible solution
to this issue is using a high-performance cluster computer with remote direct
memory access (RDMA) to reduce the delay on the inter-connect. However,
such hardware environments are not commonly available and restrict the use of
our architecture. We therefore do not use it in our design principles.

Figure 6 depicts the bootstrap sequence of distributed real-time emulation
with a pseudo-scenario script. When the simulation is executed at a node, the
node is the master LP (rank = 0), others are slave LPs, then:

(1) The MPI handles the execution of the program at remote (i.e., slave LPs),
and assigns rank using a static configuration for the MPI executable as usual.
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rank=2 rank=N
1: main () {
2: MPI_Init (); // (1)
3: (use of Real-time scheduler)
4: if (rank == 0) { // master
5: (configuration of AS1) // (2)
6: (establish inter-connect) // (3)
7: }
8: else { // slaves
9: (configuration of ASN) // (2)

10: (establish inter-connect) // (3)
11: }
12: return;
13: }

Fig. 6. The sequence of bootstrapping using DNEmu

(2) Decide the behavior of each simulated node based on their assigned ranks
(e.g., each AS (Autonomous System) setup in the network).

(3) Configure the inter-connect link between simulation boundaries at each LP.

When a packet in the simulation reaches the boundary node of eachLP, and is going
to forward to another LP, this inter-connect is used for the data channel between
distributed emulation. The sequence of (1) and (2) is the same as in the standard
distributed simulation, while (3) is introduced by our DNEmu architecture.

In the architecture ofDNEmu, the separation of the control and data channels
allows the real-time execution of the distributed simulation. While the MPI
only takes care of control messages for distributed logical processes as a control
channel, raw-socket based inter-connects work as a data channel. Such a design
choice fulfills our requirement of distributed real-time emulation.

4 Evaluation

In this section, based on our prototype implementation of DNEmu on ns-3, we
present a performance measurement using micro-benchmarks on our proposed
architecture, with the Linux container-based CORE (Common Open Research
Emulator) distributed network emulator [2] as an alternative. The objectives of
this evaluation are to show the proof of the concept ofDNEmu and the similarity
of our approach in terms of packet delivery with alternative network emulators.
We then give a possible use-case of DNEmu over globally distributed virtual
machines.

4.1 Setup

All of our experiments were conducted on two Linux systems, Node A and B as
shown in Figure 7, which were equipped with an Intel Core i7-2600 (3.4GHz) and
an AMD Opteron 6128 (2.0 GHz) processor. Two distributed nodes were located
in Tokyo and Kanagawa in Japan respectively, with nine hops between them.
Both systems ran with Ubuntu 10.04 64-bit with kernel versions 2.6.32.29 and
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Fig. 7. Experimental setup of micro-benchmark

2.6.39.4. We then installed the modified version of ns-3-dce-quagga-umip1 with
our distributed real-time emulation extension. We also used a CORE network
emulator version 4.2svn2 (20110919) on both systems.

By using two distributed nodes, we configured the experimental network as
illustrated in Figure 7. In the case of ns-3, we set up one simulated node in
each distributed physical node and configured Zebra BGP routing, based on
Direct Code Execution (DCE) [11], to exchange their owned route information
at the virtual node (VN), as shown in Figure 7. The forwarding processes in ns-3

were also configured with the modified version of DCE, Linux kernel integration
(i.e., ns-3-linux2), and DlmLoader. Each simulated node was connected via
a tun/tap interface (i.e., Local Tap) configured in the underlying operating
system in order to inject traffic from outside the simulation. The simulated node
was also configured with a GRE tunnel via a gretap interface (i.e., GRE Tap) for
the inter-connection of distributed nodes. The entire configuration is described
in a single simulation script of ns-3 with DNEmu.

In this experimental network, we used ping6 and iperf to measure the ex-
perimental traffic. All traffic was generated by Node A’s underlying operating
system (i.e., Tx), directed to the VN via Local Tap, and forwarded to Node B’s
VN according to the routing information exchanged by BGP, then delivered to
Node B’s underlying operating system (i.e., Rx) via Local Tap.

In the case of CORE network emulation, we also configured the same network
topology and VN as configured in ns-3 above.

4.2 Micro-benchmark

By using the previous setup, we conducted round-trip time (RTT) and available
throughput measurements. We first measured the performance of direct commu-
nication between Node A and B (as shown in (1) in Figure 7) without involving

1 Original version is downloaded from
http://code.nsnam.org/thehajime/ns-3-dce-quagga-umip/

2 Original version is downloaded from
http://code.nsnam.org/mathieu/ns-3-linux/

http://code.nsnam.org/thehajime/ns-3-dce-quagga-umip/
http://code.nsnam.org/mathieu/ns-3-linux/
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any virtualized node, in order to show the performance baseline of the network
environment. We then measured the performance via our DNEmu architecture
(2) and the CORE network emulator (3).

Figure 8 represents the RTT between two endpoints with an interval of 10
milliseconds in function of the size of packets (64, 128, 256, 512, 1024, and 1452
bytes) with standard deviation, from 5000 repetitions of the ping6 command. As
shown in the result of direct communication, the base RTT in this network en-
vironment in this experiment was around 2.5 milliseconds. The CORE emulator
based on Linux Containers (LXCs) scored with an additional 0.1−0.2 millisecond
delay on which to the base RTT. This minimum amount of overhead is achieved
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by lightweight virtualization of LXC. On the other hand, ns-3 with distributed
real-time emulation added considerable delay to the base performance: almost
twice as much as direct communication in the case of 1452 bytes packet.

Figure 9 also represents the result of measuring bandwidth by the iperf

command using the TCP Reno algorithm between two endpoints. We recorded
the bandwidth every second for 10 times and plotted the standard deviation
from repetitions.

We can see the performance disadvantage of DNEmu in delivery delay and
throughput. This comes from the packet processing delay inside ns-3 via raw-
sockets and tap-devices. Performance improvement of such functionality is re-
quired to obtain accurate results although it is beyond the scope of this paper.
However, the trend of packet size growth is similar to that in direct communi-
cation and other emulators (i.e., CORE).

4.3 Use-Case: Experiment Using a Globally Distributed Virtual
Machine Service

One possible use-case of DNEmu is that of network experiments in a distributed
network testbed based on a virtual machine service provider. Due to the limita-
tion of the number of nodes in the network experiment with such a virtual node,
a network simulator contributes to increasing the number of experimental nodes
on the testbed with a simple and controllable scenario description. This section
presents a NEtwork MObility (NEMO) handoff experiment involving distributed
located home agents maintained by BGP and OSPFv3.

Figure 10 depicts our experimental network configuration for this use case
using three different sites. MR is a mobile router operated with NEMO software,
MNN is a mobile network node moving with the MR, BS0 and BS1 are base
stations equipped with IPv6 router functionality, HA is a home agent, ARs
are access routers bridging three distributed networks via a tunnel, and CN
is a correspondent node. Access routers, which are located at the boundary of
each site, operate using the BGP routing protocol of Zebra to exchange route
information in the network. In addition to the experiment shown in Section 4.2,
we used a globally distributed virtual machine operated by the WIDE cloud
service, which is organized by the WIDE project3 and composed of Kernel-based
virtual machines (KVM) [10] located at nine distributed sites. We used a single
KVM node located in San Francisco and configured with a GRE tunnel and an
IP6-in-IP6 tunnel as inter-connects between each distributed sites.

In node A, the HA was operated with an Usagi-patched Mobile IPv6 imple-
mentation (UMIP)4, and Linux kernel5 to provide mobile networks for the MR.
In node B, two base stations served Wi-Fi access points to the MR and created

3 http://www.wide.ad.jp
4 USAGI-patched Mobile IPv6 for Linux: http://umip.linux-ipv6.org/, down-
loaded Jul 7 2010 version.

5 http://git.kernel.org/?p=linux/kernel/git/davem/net-next-2.6.git, down-
loaded Aug 19 2010 version.

http://www.wide.ad.jp
http://umip.linux-ipv6.org/
http://git.kernel.org/?p=linux/kernel/git/davem/net-next-2.6.git
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Fig. 10. Experimental use-case of an all IPv6 mobile network with a WIDE Cloud
(VM cloud) node as a complex network configuration with a single controlled emulation
scenario script

different wireless cells. The MR switched its point of attachment to the base
station and obtained a different network prefixes to change its Care-of-Address,
while the MNN followed and used the same address served by the upper MR.
In node C, the reachability to the CN was managed by the OSPFv3 protocol
executed by the Zebra ospf6d daemon using ns-3 DCE functionality. The oper-
ated network was created by the RocketFuel topology dataset [19] and we used
an Exodus (AS3967) database, which consists of 79 nodes and 147 links.

During this experiment, the MR and the MNN moved around between BS0
and BS1 with re-registration of binding to its home agent, and the MNN con-
tinuously sent ICMPv6 echo requests to the peer node (CN in Figure 10) to
measure the duration of the disrupted communication during a handoff.

All of the above experimental scenarios were configured in a single ns-3 script
and controlled at the master node (node A) with our DNEmu architecture.

Figure 11 shows the result of handoff during this experiment. In this figure,
the MR switched its point of attachment from BS0 to BS1 involving the handoff
procedure with the HA, creating nine-second disruption of the ping6 command.
At around 460 seconds, the MR changed the IP address of the egress interface
of the mobile router, re-registered the binding information to the home agent,
and updated the bidirectional tunnel between the MR and HA. After that, the
ping6 command continuously recovered without changing the MNN’s address
insured by NEMO. We can see longer RTT after the handoff since BS1 adds
a 100-millisecond delay in its simulation scenario. The fluctuating RTT is also
seen because of path characteristics between Tokyo and San Francisco.
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Such an experiment could be executed without involving existing environmen-
tal modifications. Neither network configurations (IP address and prefix alloca-
tion) nor operating system and kernel modifications are required.

5 Discussion

This section discusses the results of the above evaluation and future directions
for this work.

From an architectural design point of view, the proposed architecture is not
a simulator, because there is no reproducibility of the experimental result: time
synchronization is not performed among the distributed nodes, un-modeled be-
havior at wallclock based timescales always produces different result, and back-
ground traffic at the inter-connect always changes. However, the fully integrated
control via a network simulator greatly helps the easier operation of network
experiments with our DNEmu architecture. We therefore focused on a network
simulator as a toolset of network experiment.

Moreover, the architecture only relies on common features of the current op-
erating systems and does not require upgrading the system, which sometimes
would be a constraint in network experiments (e.g., the case of PlanetLab [3]).
Such a design choice will help with global-scale deployment without the obstacle
of software dependency.

The performance of the real-time scheduler plays an important role in this
architecture. If events are not finished before the deadline of the wallclock time,
the clock will be desynchronized, as mentioned in Section 2.1. Performance im-
provement in the simulation core is required, and would be a future direction of
this work.
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6 Related Work

The architecture proposed in this paper is related to two areas of work: integrated
emulators and external testbed controllers. This section highlights the relations
with the existing work.

Integrated emulators here refers to the experimental tool that is able to
emulate various environments from operating systems (by virtualization) to net-
work conditions (by, for example, Wi-Fi emulation on a wired link). This enables
researchers to experiment in advance with their proposed protocols, architec-
tures, or operations without wholesale deployment of the environment. CORE
(Common Open Research Emulator) [2] exploits the lightweight virtualization
technology of the operating system (i.e., IMUNES [16], netns [4]) and allows us to
execute existing applications over emulated links. This tool supports describing
the arbitrary topology with a GUI and executing on a distributed environment
from a single controller. While CORE is able to automate the flow of a network
experiment in a realistic environment, it requires the operating system’s support
to execute it. By contrast, the architecture proposed in this paper virtualizes ev-
erything in the user-land application based on ns-3 and requires no extension
to the kernel. PrimoGENI [20] and ROSENET [8] are both integrated network
simulators with an emulation facility via an emulation gateway, and achieving
flexible and scalable network experiments. However, due to the number of com-
ponents involved in an experiment, the potential complexity will increase. Our
DNEmu architecture achieves distributed emulation involving only with a single
toolset of the software and can control everything in a single simulation scenario.
This is the strength of our architecture compared to alternatives.

An external testbed controller is a tool (or toolset) to help the execution
of network experiments allowing easy operation and repeatability of the experi-
ment. OMF (cOntrol and Management Framework) [17] is a toolset of the soft-
ware to control experiments, manage the experimental component, and conduct
measurement via a unified controller. These have been successfully deployed into
an ORBIT testbed [14] to operate on hundreds of physical nodes. NEPI (Net-
work Experiment Programming Interface) [12] has been proposed as a general
framework for network experiments with a python programming interface. It
can operate across multiple types of network testbeds such as PlanetLab, Em-
uLab [21], or ORBIT etc. While these testbed controllers provide an abstract
model of the network experiments, our DNEmu architecture only targets at
a specific network simulator (i.e., ns-3) in order to reduce external software
dependencies of the toolset.

7 Conclusion

In this paper, we have designed the DNEmu architecture based on the combi-
nation of a distributed simulation and real-time simulation. To the best of our
knowledge, there is no other such architecture based on the combination of these
two distinct scheduling algorithms. The architecture has satisfied our require-
ments for a network experiment within a single toolset of software. Through the
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prototype implementation of our architecture, micro-benchmarking has shown
similar trends with packet delivery delay and throughput, and a use-case has
been presented on top of a globally distributed cloud service with a distributed
synchronized network experiment. Yet the implementation is at an early stage
and we have already found some performance drawbacks. However, our archi-
tecture will benefit the user who is going to deploy network experiments with
globally distributed nodes, without being concerned about a complex toolset for
the experiment.

The contributions of this paper are two-fold. First, we have designed a dis-
tributed real-time emulation on a novel network simulator ns-3 to achieve a
global-scale network experiment with easier operation in a single toolset of the
software. Second, we have implemented a prototype of DNEmu and evaluated
the similarity of basic network performance between our proposed architecture
and a non-virtualized environment.
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Abstract. OpenMAC is presented in this paper as an innovative experimental 
platform suitable for field testing and performance evaluation of Medium Access 
Control (MAC) protocols developed in C++. The concept design of OpenMAC 
avoids the use of hardware-specific code or Hardware Description Language 
(HDL), softening the learning curve and accelerating the implementation 
process. This paper describes the OpenMAC hardware/software architecture and 
shows its benefits with a design example of a Carrier Sense Multiple Access 
(CSMA) protocol. Finally, the paper provides the implementation details and 
presents performance results of a practical test to demonstrate how OpenMAC 
can fulfill strict MAC timing specifications and thus perform as a device 
backwards compatible with standards. 

Keywords: MAC protocol, rapid prototyping, flexibility, cross-layer. 

1 Introduction 

The Medium Access Control (MAC) layer defines the rules to access a shared 
communication medium, indicating when and how a specific node is granted access to 
transmit or receive data. Several MAC protocols have been proposed in the literature 
due to their key impact into the performance and energy-efficiency of communication 
networks. However, most of these works present only theoretical analysis or 
simulation, and just in very few cases they have been actually tested in the field. 
Experimental prototyping and real testing are essential processes for evaluating the 
protocols under realistic physical (PHY) layer conditions due to the fact that the 
inclusion of real-world effects in theoretical models often leads to intractable 
problems and computer-based simulation techniques are affected by the variability 
and, usually lack PHY layer accuracy [1]. 

The requirements for a MAC experimental platform are tightly related to the key 
functions of the MAC layer, which are briefly described as follows: 
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1) Provide access to PHY layer information, e.g., to monitor the channel status for 
Clear Channel Assessment (CCA) in order to know whether the channel is idle or 
busy. 

2) Enable PHY layer re-configuration to select various PHY parameters such as 
data-rate, modulation, transmit-power, frequency-channel, etc. 

3) Enable precise scheduling and timing, e.g., to ensure that transmissions occur 
during time-slots in Time Division Multiple Access (TDMA) protocols. 

4) Guarantee fast identification of received control packets which have to be quickly 
processed to generate answers and make decisions rapidly. 

5) Guarantee fast packet transmission, e.g., in contention-based protocols packets 
must be transmitted with minimum delay when the channel is detected to be 
clear. 

In addition, an ideal platform should also: 

1) Smooth the learning curve to create a prototype from a protocol concept design. 
2) Guarantee the fulfillment of the protocol time-specifications to ensure backwards 

compatibility with standards in case it is required. 
3) Provide flexible interfacing to experiment with different PHY layers. 

A number of research projects have addressed the implementation of experimental 
platforms to test MAC protocols [2]. Two categories of platforms have been identified 
in the literature: platforms based on commercial Network Interface Cards (NIC) and 
platforms based on custom hardware. 

Commercial off-the-shelf 802.11 NIC-based platforms [3]-[5] split the 
implementation of the MAC layer functions between the firmware on the networking 
card, which implements the time-critical functions, and the software-driver running on 
the computer hosting the card, which implements the time-tolerant functions. NIC-
based solutions constitute an inexpensive prototyping approach and facilitate 
reprogramming the MAC protocol functions by modifying the software-driver. 
However, the interface between the host-computer and the NIC introduces 
unpredictable delays which may compromise the precise scheduling and the 
compliance with strict timing requirements of the MAC protocol. For this reason, time-
critical functions are programmed in the NIC firmware, which usually cannot be easily 
reconfigured, thus limiting the flexibility to efficiently customize certain MAC 
functions. This limitation is extended to the access to information and configuration of 
the PHY layer, thus not allowing for MAC-PHY cross-layer designs. 

Several custom hardware platforms [6][7] have been implemented as an alternative 
to NIC-based platforms, e.g., TUTWLAN [8], Universal Software Radio Peripheral 
(USRP) [9] and GNU Radio [10], Wireless Open-Access Research Platform (WARP) 
[11], CalRadio [12], OpenAirInterface [13], among others. Custom hardware platforms 
are equipped with an analog Radio-Frequency (RF) front-end connected to a built-in 
computing subsystem by means of analog-to-digital and digital-to-analog converters. 
The computing subsystem performs both the PHY digital base-band processing (BBP) 
and the MAC functions. These solutions are based on Field-Programmable-Gate-
Arrays (FPGAs), embedded processors, or Digital-Signal-Processors (DSP). They 
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offer full control over the MAC and the PHY layers. The implementations based on 
FPGA allow partitioning the MAC into software and custom hardware-accelerators, 
offering even more processing power. In addition, they enable to experiment with 
different PHY layers and to design MAC-PHY cross-layer optimizations. 

On the other hand, state of the art custom-hardware platforms have some 
disadvantages. Their implementation cost is very high and they show a steep learning 
curve to start prototyping. The protocol designer needs to understand the hardware 
details to develop hardware-specific C-code in order to fulfill the tightest protocol 
time-constraints. However, MAC designers are typically familiar with high-level 
programming languages, e.g., C++, which may endanger the implementation of time-
critical functions. While the use of FPGAs allows hardware-acceleration and may 
relax the software optimization requirements, it forces the protocol designer to learn a 
Hardware Description Language (HDL). This is the main motivation for the 
development of the OpenMAC platform, which intends to bring MAC prototyping 
capabilities closer to the research community. OpenMAC introduces a special 
hardware/software partitioning of the MAC protocol that eases the task to fulfill the 
most challenging MAC timing-specifications with non hardware-specific code. The 
protocols can be entirely designed in C++ and hardware is transparent to the designer. 

The contribution of this paper is threefold. Firstly, it describes the implementation 
of the OpenMAC platform architecture presented in [14], which is summarized in this 
paper to make it self-contained. Secondly, it provides a comprehensive description of 
the measurement procedure and performance evaluation of the platform. Thirdly, it 
provides an example of implementation of a contention-based protocol. 

The remainder of this paper is organized as follows. Section 2 briefly describes the 
hardware/software architecture of OpenMAC. Section 3 provides a code example for 
a MAC protocol. The hardware implementation of OpenMAC is described in Section 
4. The performance results of the OpenMAC platform are reported and discussed in 
Section 5. Finally, Section 6 concludes the paper. 

2 OpenMAC Platform Architecture 

The architecture of the OpenMAC platform is depicted in Fig. 1. The implementation 
of a MAC protocol is split into the Software (SW) MAC and the Hardware (HW) 
MAC modules. The reason for this HW/SW partitioning is to enable the use of non-
hardware-specific C/C++ code for protocol prototyping and to fulfill the MAC 
protocol time specifications. 

The SW MAC implements non time-critical MAC functions in C++ code. The SW 
MAC is prevented from accessing long data payloads in order to minimize non-
deterministic software latencies. Instead, the SW MAC only needs to access the 
packet headers and packet-descriptors to make simple MAC decisions. 

The HW MAC executes time-critical MAC operations and heavy computation 
functions by means of hardware acceleration, e.g., Clear Channel Assessment (CCA), 
packet error control, encryption, etc. In addition, the HW MAC provides an efficient 
hardware mechanism to guarantee precise and deterministic MAC scheduling, e.g., 
time slots in reservation-based protocols, and back-off periods and inter-frame 
spacing in contention-based protocols. 
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Fig. 1. Hardware/Software architecture of the OpenMAC platform 

The HW MAC interfaces to the PHY digital BBP through the MAC/PHY 
interface, which supports fast transfer of packets and control parameters. The HW 
MAC configures various PHY parameters on the BBP such as the data-rate, 
modulation, transmit power, and carrier selection. In a similar way, the HW MAC 
monitors some variables that are read from the PHY layer, e.g., Received Signal 
Strength Indicator (RSSI). Access to PHY layer information at the MAC and upper 
layers is important in order to support cross-layer optimizations. 

The layers above the MAC are integrated in a host computer (Host-PC) connected 
to the OpenMAC platform through the Host Interface. However, the upper layers can 
also be integrated in the SW MAC processor when stand-alone operation is required. 
The current design of the Host Interface has the same architecture as the HW MAC. 

The shared-memory is a common storage place for accelerating the packet 
transactions among the SW MAC, HW MAC, and the Host-PC by means of a Direct 
Memory Access (DMA). The SW MAC accesses the shared-memory through the 
Processor Local Bus (PLB). The HW MAC stores in the shared-memory the packets 
received from the PHY, and it reads the ones to be transmitted through the PHY. 
Similarly, the Host-PC stores in the shared-memory the packets coming from upper 
layers and reads the ones stored by the HW MAC in the reception process. 

Each packet is referenced by a packet-pointer that identifies the base address where 
the packet is located in the shared-memory. The SW MAC exchanges packet-pointers 
with the HW MAC and with the Host-PC through the OpenMAC interface. 

The remainder of this section is organized as follows. Section 2.1 describes the 
structure of the packets in the shared-memory. The operation of the HW MAC blocks 
is detailed in Section 2.2. Finally, Section 2.3 describes the SW MAC functionalities 
and details the functions of the Hardware Abstraction Layer of OpenMAC. 

2.1 Packet-Descriptors 

A packet in the shared-memory is comprised of three components: 

1) The packet-header contains control information related to the MAC protocol. 
2) The data-payload contains the actual useful data of the packet. 
3) The packet-descriptors contain control and status information required for 

transmission and reception. 
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Two types of packet-descriptors are considered: MAC and PHY descriptors. The 
structure and contents of these packet descriptors are summarized in Table 1 and 
Table 2 for the transmission and reception processes, respectively. 

Table 1. Packet-descriptors used in packet transmission 

MAC Layer descriptors 
PacketLength Length of packet-header and data-payload in bytes 
TimeStamp Time when the SW MAC wants to start transmitting a packet 
EnableRxTimeOut To enable/disable the HW MAC to detect a time-out event in 

packet-reception after a packet is transmitted 
EnableBackoff To enable/disable the HW MAC to perform backoff process 
RxTimeOut Time-out interval to be used by the HW MAC to receive a new 

packet just after a packet-transmission if EnableRxTimeOut is 
enabled 

Backoff Max. duration of the backoff period to be used by the HW MAC 
for the transmission of a packet when EnableBackoff is enabled 

PHY Layer descriptors 
Modulation Modulation type used for a transmission 
DataRate Data-rate used for transmission at the PHY layer 
TxPower Transmission power 
Carrier Frequency band and carriers used for transmission 

Table 2. Packet-descriptors used in packet reception 

MAC Layer descriptors 
PacketLength Length of packet-header and data-payload in bytes 
TimeStamp Time when the packet was received from the PHY layer 
CRCresult Indicates if the current packet was received without error 
PHY Layer descriptors 
Modulation Modulation type used for the reception of a packet 
DataRate Data rate at which the packet was received at the PHY layer 
RSSI The RSSI is a measure of the RF energy received 

The SW MAC can read or write the packet-descriptors by accessing directly to the 
packets' structures in the shared-memory. The HW MAC transfers the PHY layer 
packet-descriptors among the shared-memory and the PHY layer. 

2.2 Hardware MAC 

The HW MAC is a digital module designed in VHDL. It has been created to support 
any time-critical function that can be required by any type of MAC protocols (i.e., 
contention-based, reservation-based, and hybrid MAC protocols), and to avoid re-
design efforts for adapting the HW MAC to new functions. 

In this section, the functionalities and the interaction among the HW MAC 
elements are described. A block diagram of the HW MAC is shown in Fig. 2. 
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The connection between the HW MAC and the SW MAC modules is implemented 
with the two interfaces shown in the left hand side of the diagram: the DMA bus to 
the shared-memory and the OpenMAC interface directly to the SW MAC. 

The transfer of packets is performed through the shared-memory using the DMA 
bus. In the transmission process, packets are read from the shared-memory by the Tx 
DMA block and then parsed to extract the packet-descriptors at the Tx Packet Parsing 
block. In the reception process, the packet-descriptors are first collected and 
registered by the Rx Packet Formatting block, and then the packets are written into 
the shared-memory by the Rx DMA block. 

The SW MAC exchanges packet-pointers (PP) with the Tx PP Manager and Rx PP 
Manager blocks through the OpenMAC interface. The packet-pointers are temporarily 
buffered in the TxPP FIFO and RxPP FIFO blocks, respectively, for transmission and 
reception. In the transmission process, the SW MAC sends the packet-pointers to the 
Tx PP Manager block. In the reception process, the Rx PP Manager notifies to the SW 
MAC when a new packet has been stored in the shared-memory. In the case that the 
RxPP FIFO is empty, the Rx PP Manager block notifies to the SW MAC, which sends 
one or more available packet-pointers. This approach overcomes possible latencies 
introduced by the SW MAC and guarantees that packets received from the PHY layer 
can be stored into the shared-memory immediately. 

As shown in Fig. 2, the OpenMAC interface is connected to the internal registers 
of the Channel State Monitor and the Configuration BBP/RF blocks. In their turn, 
these two are connected to the PHY layer through the MAC/PHY interface, shown in 
the right hand side of the diagram. This interface supports hardware-accelerated 
transfers of data and control parameters between the HW MAC and the PHY layer. 
The Channel State Monitor block periodically senses the channel status (e.g., RSSI, 
busy, or idle) provided by the PHY layer. The channel status is read by the Backoff 
Controller block, or by the SW MAC, to implement CSMA. 

 
 

 

Fig. 2. Hardware MAC Module Functional Block Diagram 
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The Configuration BBP/RF block configures the PHY layer (i.e., the Digital BBP 
and the Analog RF Front-End) by transferring the contents of its configuration 
registers (e.g., modulation, transmit power, carrier selection, etc). The configuration 
registers can be updated at any time from the SW MAC through the OpenMAC 
interface. In addition, the PHY configuration can be performed in a packet by packet 
basis by sending the PHY packet-descriptors (detailed in Table 1) at the beginning of 
each packet transmission. 

The HW MAC includes two packet processing paths devoted to the execution of 
time-critical functions in packet transmission and reception, e.g., Cyclic Redundancy 
Code (CRC), encryption, packet aggregation, etc.  Packets are fetched from the shared 
memory, processed, and transferred to the MAC/PHY interface, and inversely with 
packets received from PHY. 

Finally, the HW MAC includes three hardware blocks devoted to provide simple, 
precise and deterministic scheduling and timing to the MAC layer: 

1) The General Timer block provides a time indication signal (TimeCount) to the 
other blocks with a time resolution of 1 µs. 

2) The RxTimeOut Detector block detects when no packet is received within a time 
period (i.e., RxTimeOut packet-descriptor in Table 1) after the last transmission, 
e.g., acknowledgement (ACK) is lost for the previous data-packet transmission. 

3) The Backoff Controller block determines the time instants to trigger the packet 
transmission by comparing the TimeCount signal with the TimeStamp packet-
descriptor. It can be configured to execute a backoff process using the Backoff 
packet-descriptors, detailed in Table 1, and the channel status (PHY_cs) provided 
by the Channel State Monitor block. 

2.3 Software MAC 

The SW MAC is a C++ program that runs on an embedded processor without 
operating system. While the packet-processing load is concentrated on the HW MAC, 
which transfers great volumes of data through the shared-memory to exchange 
packets with the Host-PC, the SW MAC only accesses the packet-descriptors and 
packet-headers to make simple MAC protocol decisions (e.g., check the destination 
address, identify the packet type, determine time-stamps for transmission, etc). 
Therefore, by avoiding the need to access long data-payloads from software, the 
OpenMAC platform reduces software latencies and thus facilitates the fulfillment of 
strict timing constraints of the MAC protocol without using hardware specific code. 

The use of packet-descriptors (described in Section 2.1) simplifies the access from 
the SW MAC to the hardware, i.e., HW MAC, Host Interface, and PHY layer 
parameters. The SW MAC simply performs fast read or write access to the packet-
descriptor stored in the shared-memory that needs to monitor or configure. This 
approach avoids the use of dedicated and complex software functions to access the 
PHY, reduces the complexity in the development of the MAC protocol, and 
minimizes delays. 

In order to make the hardware details transparent to the protocol designer, a 
Hardware Abstraction Layer (HAL) is included in OpenMAC. The HAL is comprised 
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of a set of software functions which ease the access to the HW MAC and the Host 
interface. A HAL function is a very short piece of C-code that executes read/write 
accesses to the hardware internal registers through the OpenMAC interface. 

The functions of the OpenMAC HAL are described in Table 3. The input argument 
named channel used in all the HAL functions allows selecting among the channels 
connected to the OpenMAC interface bus: the PHY channel (HW MAC) and the 
HOST channel (Host interface). Both channels have basically the same architecture as 
the HW MAC module described in Section 2.2. 

Table 3. Functions of the OpenMAC Hardware Abstraction Layer 

Function: packet_pointer get_packet(char channel) 
Description: It returns the packet-pointer of a new packet that has been received from 
channel and has been stored in the shared-memory. 
Function: void send_packet(packet_pointer  tx_pointer, char channel, 
unsigned int timestamp) 

Description: It writes the packet-pointer tx_pointer of the next packet to transmit through 
the channel. The transmission will start at the time indicated by the packet-descriptor 
timestamp, passed as an argument. 
Function: unsigned int check_send_packet(char channel) 
Description: It returns the integer number of packets that are still pending to be 
transmitted through the channel. The packets are buffered in the Tx FIFO of the channel. 
Function: unsigned int check_get_packet(char channel) 
Description: It returns an integer value that can be mapped into the state of the reception 
process: (1) a new packet has been received from the channel and stored in the shared-
memory, (2) the channel needs packet-pointers for the reception of new packets, and (3) a 
time-out event has been detected after the last transmitted packet. 
Function: void pointer_allocation(char channel, char n, 
packet_pointer *rx_pointer) 

Description: It writes into the RxPP FIFO of the channel a list of n packet-pointers, 
rx_pointer, which will be used to store in the shared-memory new packets received. 
Function: unsigned int get_phy_cs(char channel) 
Description: It returns the status (RSSI, busy, idle) of the PHY layer connected to channel. 
Function: void config_phy(char channel, unsigned short modulation, 
unsigned short data_rate, unsigned short tx_power, unsigned short 
carrier_select) 

Description: It writes the parameters, passed as input arguments, to configure the channel. 
Function: unsigned int get_timer(char channel) 
Description: It returns the current TimeCount value of the General Timer shown in Fig. 2. 
Function: void reset_timer(char channel) 
Description: It resets the General Timer block of the channel. 

3 Example of CSMA Protocol 

This section presents an example of implementation of a CSMA protocol in the SW 
MAC processor. The aim of this description is to demonstrate how simple the design 
of a MAC protocol using OpenMAC can be. 
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In CSMA, a node that has data to transmit first senses the channel. In the case that 
the channel is clear, the node starts transmitting. Otherwise, the node initiates a 
random backoff and waits for the channel to be idle. The backoff timer is 
decremented along time; it is frozen when the channel is busy, and it is resumed when 
the channel becomes idle again. When the backoff timer expires, i.e., gets to zero, the 
packet is transmitted if the channel is idle, otherwise the backoff is reinitiated. When 
a data-packet is sent, the transmitting node waits for an ACK from the intended 
destination. If the ACK is not received within a timeout, the packet is retransmitted. 

The SW MAC code for CSMA is shown below. It is divided in two parts: 

(1) Transmission of Data-Packets from Host-PC to PHY. The data-packets 
transmitted from the Host-PC to the PHY are temporarily stored in the variable 
buffer_HOST2PHY of type packet. A new packet can only be stored in the 
buffer_HOST2PHY when it is free, i.e., an ACK has been received for the previously 
transmitted data-packet. The hardware Backoff Controller implements the backoff 
process and the RxTimeOut Detector generates the ACK time-out events. Therefore, 
the SW MAC has only to configure the associated packet-descriptors (i.e., 
EnableBackoff, Backoff, EnableRxTimeOut, and RxTimeOut) on each data-packet 
transmission. If an ACK time-out event is detected, the data-packet is re-transmitted. 

(2) Reception of Packets from PHY to Host-PC. The packets received from PHY 
are temporarily stored in the buffer_PHY2HOST, of type packet, to be later 
transferred to the Host-PC. Since the throughput among the Host-PC and OpenMAC 
can be assumed higher than the throughput among OpenMAC and PHY, the 
buffer_PHY2HOST is always ready to store new received packets. The SW MAC 
first checks the Cyclic Redundancy Code (CRC) descriptor of the received packet. 
Then, the SW MAC checks the destination address and the packet type. If it is a data-
packet, it is transferred to the Host-PC and the SW MAC starts the transmission of an 
ACK to the PHY delayed a Short Inter Frame Space (SIFS) from the time-stamp of 
the received packet. If an ACK is received, the buffer_HOST2PHY is released. 

Example code of a CSMA protocol implemented in the SW MAC processor. 

packet_pointer TxPP, RxPP; 
packet buffer_HOST2PHY, buffer_PHY2HOST, ACK; 
unsigned int status_HOST = 0, status_PHY = 0; char buffer_ready = 1; 
while(1){ 
/* PART 1: transmission of data-packets from Host-PC to PHY */ 

status_HOST = check_get_packet(HOST); 
/* Packet-pointer requested for data-packet reception from HOST? */ 
if ((status_HOST & RxPP_REQUEST) && buffer_ready) 

pointer_allocation(HOST, 1, &buffer_HOST2PHY); 
/* Data-packet stored in buffer_HOST2PHY by the HOST_IF? */ 
if (status_HOST & RxPACKET_RDY) {   

buffer_ready = 0; /* buffer_HOST2PHY is busy with new packet */ 
TxPP = get_packet(HOST); /* get the packet-pointer */ 
/* write some of the MAC and PHY packet-descriptors */ 
TxPP-> EnableRxTimeOut = ENABLED; /* enable Rx time-out */ 
TxPP-> RxTimeOut = ACKTIMEOUT; /* time-out to receive ACK */ 
TxPP-> EnableBackoff = ENABLED; /* enable backoff */ 
TxPP-> Backoff = CW; /* Contention-Window for backoff process */ 
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TxPP-> TxPower = TX10dBm; /* configure PHY tx power */ 
send_packet(TxPP, PHY, 0); /* transfer the packet to HW MAC */ 
} 

/* Time-out detected after the last data-packet sent to PHY? */ 
if (status_PHY & RxTIMEOUT) send_packet(TxPP, PHY, 0);/* tx again*/ 

 
/* PART 2: reception of packets from PHY to Host-PC */ 

status_PHY = check_get_packet(PHY); 
/* Packet-pointer requested for packet reception from PHY? */ 
if (status_PHY & RxPP_request) 

pointer_allocation(PHY, 1, &buffer_PHY2HOST); 
/* Packet stored in buffer_PHY2HOST by the HW MAC? */ 
if (status_PHY & RxPACKET_RDY){ 

RxPP = get_packet(PHY); /* get the packet-pointer */ 
 if (RxPP->CRCresult == OK){ /* check that CRC is correct */ 

for (i=0; i<6; ) /* check the destination MAC address */ 
if (RxPP->DstAddr[i] == my_Addr[i]) i++; else break; 

if (i==6){ /* destination MAC address is correct? */ 
send_packet(RxPP, HOST, 0); /* transfer to HOST */ 
if (RxPP->Type == DATA){ /* is it a data-packet? */ 

/* calculate time-stamp to transmit an ACK */ 
TxTimeStamp = RxPP->TimeStamp + SIFS; 
/* transfer ACK to HW MAC */ 
send_packet(&ACK, PHY, TxTimeStamp); 
} /* is it an ACK? then release the buffer_HOST2PHY */ 

else if (RxPP->Type == ACK) buffer_ready = 1; 
} 

} 
   } 
} 

4 Hardware Implementation 

The OpenMAC platform architecture has been implemented and tested on a Commercial 
Off-The-Shelf (COTS) FPGA-based development board. The technical features of this 
board are detailed in Table 4. It contains a Xilinx Virtex-5 FPGA [15] which integrates 
two PowerPC440 processors. One of the processors is used to run the code of the SW 
MAC and the other is left unused for future applications, e.g., development of high-
performance upper layers for standalone OpenMAC nodes. The rest of the FPGA 
implements the following digital modules: the HW MAC, the Host Interface, the 
OpenMAC interface bus, the shared-memory, and the MAC/PHY interface. 

Table 4. Features of the FPGA-based Development Board 

Board part-number HTG-V5-PCIE-100-2 (from HiTech Global, LLC [16]) 
FPGA Xilinx Virtex-5 XC5VFX100T-3 
Processors 2 PowerPC 440 (hard cores) 
RAM Memory 512MB DDR2-SDRAM, expandable up to 2GB 
Flash Memory 4 MB 
Interface with Host 8-lanes PCI Express End-Point connector. 

2 Gigabit Ethernet ports. 
Interface with PHY 2 connectors (QSE type) with 64 pairs of Low Voltage 

Differential Signals (LVDS) or 128 single-ended signals. 
Outputs of 5V and 3.3V supply for add-on PHY modules. 
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The shared-memory module is implemented using on-chip Random Access 
Memory (RAM) blocks of the FPGA. The Double Data Rate-Synchronous Dynamic 
RAM (DDR-SDRAM) module, included in the FPGA-based board, is left unused for 
future extensions with huge memory requirements. 

The PowerPC440 processor clock has been set to 400MHz in order to provide high 
speed to the SW MAC. For the processor peripheral cores (i.e., HW MAC, Host 
Interface, and shared-memory) and for the communication buses (i.e., OpenMAC 
interface, PLB, and DMA buses) the clock frequency has been selected as low as 
100MHz in order to facilitate and speed-up the FPGA implementation process. 

The FPGA-based board includes one Peripheral Component Interconnect (PCI) bus 
and two Gigabit Ethernet PHY ports based on the Alaska 88E1111 transceiver from 
Marvell. One of the Ethernet ports is used to connect the OpenMAC platform with the 
Host-PC. The PCI bus is foreseen to plug the board into a desktop computer in 
applications with greater bandwidth and throughput requirements. 

The expansion connectors of the FPGA-based board allow the implementation of a 
flexible MAC/PHY interface with external PHY layer boards. Two different PHY 
layer solutions can be implemented: 

1) A complete PHY which incorporates the BBP and the Analog RF Front-End. 
2) The BBP can be implemented inside the FPGA and an external Analog RF Front-

End can be used for the RF operation. 

So far, a Gigabit Ethernet PHY has been used for the proof-of-concept of OpenMAC. 
The use of a wired solution is mainly motivated by the lack of availability on the 
market of low-cost high-performance wireless PHY solutions which do not require 
great implementation efforts. 

5 Performance Evaluation 

The aim of this section is to show the ability of the OpenMAC platform to meet the 
time-constraints of a standardized MAC protocol. As an example, in the context of the 
IEEE 802.11 Standard for Wireless Local Area Networks [17], the data-packet 
reception and post processing to decide whether to transmit an ACK or not, and the 
initialization of the transmission of the ACK, must be done within less than a SIFS 
interval, i.e., tens of microseconds, in order to be able to tolerate non-negligible 
propagation delays as well. 

The remainder of this section is organized as follows. First, Section 5.1 details the 
performance metrics. The experimental setup is briefly described in Section 5.2 and, 
finally, the performance results are discussed in Section 5.3. 

5.1 Performance Metrics 

The following metrics have been considered for the performance evaluation of 
OpenMAC. The time metrics are shown in the timing diagram of Fig. 3. 
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Fig. 3. Timing diagram of the HW MAC and SW MAC processes within TxT, RxT, and TAT 

• Transmission Time (TxT) is defined as the time elapsed from the moment when 
the SW MAC initiates the transfer of the associated packet-pointer to the HW 
MAC, until the moment when the HW MAC finishes the transmission of the 
packet to the PHY. 

• Throughput in transmission is defined as the length of transmitted packets 
divided by the corresponding TxT (assuming a constant packet length). 

• Reception Time (RxT) is defined as the time elapsed from the moment when the 
first byte of a received packet enters into the HW MAC, until the moment when 
the SW MAC reads the packet-pointer. 

• Throughput in reception is defined as the length of the received packets divided 
by the corresponding RxT (assuming a constant packet length). 

• Turn-Around Time (TAT) is defined as the time elapsed from the moment 
when the first byte of a received packet enters into the HW MAC, until the 
moment when the HW MAC finishes the transmission of an answer packet 
(ACK) to the PHY. During this time, the SW MAC reads the packet-pointer, 
checks the packet header and descriptors, and transfers the ACK packet-pointer. 

It is worth noting that the processing delays introduced by the PHY layer are not 
considered in the definition of TxT, RxT, and TAT. The TAT is the most critical time 
parameter for those protocols which rely on handshaking of control packets, e.g., the 
ACKs used in the IEEE 802.11 Standard, as it defines the capability to respond to 
received packets in due time. This parameter is the key to ensure backwards 
compatibility with current standards. 

5.2 Experimental Setup 

The performance of the OpenMAC platform architecture has been assessed using the 
board described in Section 4. The wired Gigabit Ethernet PHY layer has been used for 
the setup shown in Fig. 4, which does not include the Host Interface for simplicity. 
One of the Ethernet transceivers has been connected through its Gigabit Media 
Independent Interface (GMII) to the MAC/PHY interface in the FPGA. Then, the 
OpenMAC platform has been connected to a Gigabit Ethernet port of a computer. 
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Fig. 4. Experimental setup used for the performance tests of OpenMAC 

The following procedure has been used to measure the TxT, RxT, TAT, and the 
different throughput values. 

1) The OpenMAC platform transmits or receives packets to/from the computer 
through the Gigabit Ethernet PHY. 

2) The following HAL functions, described in Section 2.3, are included in a test 
program to receive, to transmit, to monitor the status, and to allocate packet-
pointers: 
get_packet(), send_packet(), check_get_packet(), check_send_packet(), and 
pointer_allocation(). 

3) The get_timer() function is utilized to measure time periods between two 
different instants. In this way, the time measurements are simplified by 
employing the time-base provided by the HW MAC. 

4) In order to transmit Ethernet packets with a controlled length to the OpenMAC 
platform, the ping command is executed on the desktop computer as: 
ping -t -l length ip_address_openMAC . 

5) The transmission and reception throughput values have been computed by 
dividing the packet length by the TxT and RxT measurements, respectively. 

5.3 Experimental Results 

The experiments have been performed with different data-packet lengths (100, 500, 
1000, and 1500 bytes) and ACK packets of 46 bytes, which is the minimum data field 
length in Ethernet frames. Fig. 5 shows the results for TxT, throughput in 
transmission, RxT, throughput in reception, and TAT. 

In terms of throughput, OpenMAC performs close to the maximum available 
throughput in Gigabit Ethernet with long data-packets (1000 to 1500 bytes), which is 
1Gbps. As far as the turn-around-time values are concerned, OpenMAC achieves 
values of the TAT that are below 16 µs for short packets (46 to 500 bytes) and below 
20 µs for long packets (1000 to 1500 bytes). It is worth noting that, for short packets, 
and if the PHY layer device connected to OpenMAC was changed to one compliant 
with the IEEE 802.11 Standard [17], OpenMAC would fulfill the SIFS time (16 µs) 
specified in the standard for OFDM PHY layer using a bandwidth of 20MHz. 
Similarly, for long packets, OpenMAC is in compliance with the SIFS time (32 µs) 
using a bandwidth of 10MHz. In addition, the TAT could still be reduced by 
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increasing the clock frequency of the processor peripheral cores (i.e., HW MAC, and 
shared-memory) and of the communication buses (i.e., OpenMAC interface, PLB, and 
DMA buses) above the currently utilized 100MHz. This frequency adjustment could 
yield a reduction of more than 20% of the TxT, RxT, and TAT results obtained in the 
current implementation. 

The measurements that have been carried out on the FPGA board demonstrate that 
the OpenMAC platform fulfils the strictest timing specifications of the IEEE 802.11 
Standard. 
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Fig. 5. (a) TxT, RxT, TAT, and (b) throughput in Tx/Rx (with respect to the packet-length) 

6 Conclusions 

OpenMAC has been presented in this paper as an innovative platform suitable for the 
development and experimental testing of MAC protocols. It has been implemented 
using a COTS FPGA-based board with a processor integrated in the FPGA. 
OpenMAC provides full flexibility and re-configurability to develop any MAC 
protocol, to change the PHY layer, and to do research with cross-layer optimizations. 
The main objectives considered in the design of OpenMAC have been:  

1) To speed-up the development process of a MAC protocol by simplifying the 
conversion from the theoretical model down to implementation,  

2) To fulfill the protocol time-constraints, and  
3) To attain precise scheduling. 

Regarding the complexity of the protocol development cycle, OpenMAC allows 
implementing MAC protocols entirely designed in C++, without operating system in 
the embedded processor, and with hardware fully transparent to the protocol designer, 
who does not have to optimize hardware-specific C, assembly or HDL code. 

OpenMAC integrates a set of software HAL functions that abstract the accesses to 
hardware. In addition, it delegates the packet processing to hardware accelerators and 
prevents software from accessing high-volume data-payloads. The software accesses 
only short packet-descriptors and packet-headers, which facilitate the fulfillment of 
MAC time constraints. Moreover, OpenMAC contains hardware accelerators devoted 
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to configure and monitor the PHY layer, and to perform backoff processes, which 
avoids software to fast access to PHY. Regarding scheduling and timing, OpenMAC 
includes hardware elements to accurately control time events. 

The performance of the OpenMAC platform has been tested experimentally using 
Gigabit Ethernet PHY. It performs at maximum throughput of 1 Gbps and yields turn-
around-times below 20 µs for long packets (1000 to 1500 bytes) and below 16 µs for 
short packets (46 to 500 bytes). Hence, OpenMAC can fulfill strict MAC timing 
specifications such as the ones of the IEEE 802.11 Standard. 

OpenMAC achieves successfully the aforementioned objectives and brings 
prototyping capabilities closer to the research community by overcoming the 
limitations of state of the art. Future work will be aimed at attaching a custom 
wireless PHY layer (e.g., the WARP reference design [11]) to the OpenMAC 
platform. Furthermore, the execution of the OpenMAC software will be accelerated 
by using hardware interrupts, instead of software polling, to notify the state of the 
OpenMAC hardware modules. 

Acknowledgements. This work is supported by the Research Projects CO2GREEN 
(TEC2010-20823), GREEN-T (TSI-020400-2011-16), and GREENET (PITN–GA–
2010-264759). 
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Abstract. Despite the promising vision of pervasive sensor networks of thou-
sands of nodes, conducting such large-scale experiments on demand is still far
from reality due to the limitations of resources, space, and maintenance. To ad-
dress such challenges, we propose the MagicLink middleware to “magically”
weave geographically distributed sensor networks into a large-scale sensor net-
work testbed. MagicLink is a key part of the OKGems remotely programmable
cyber-physical system project under the GENI (Global Environment for Network
Innovation) initiative; and MagicLink is designed to enable shared “clouds” of
sensors for sensor network research and experiments at scale and on demand.
Specifically, MagicLink has the following salient features: (1) seamless integra-
tion of multi-site sensor networks offering elastic and scalable testbeds; (2) online
adaptive simulation that adopts a realistic radio model making the cross-site In-
ternet connection behave like a one-hop sensor network link in real environment;
(3) component-based design allowing easy integration with user applications. To
the best of our knowledge, MagicLink is the first solution to enable “almost-real”
large-scale sensor network experiments across sites. In this paper, we present
MagicLink’s system architecture and subsystem design. We demonstrate the us-
ability and fidelity of MagicLink through experimental results with representative
applications on a two-site testbed.

1 Introduction

The rapid evolution of ubiquitous sensing and pervasive computing paradigm has
spurred increasing demand for Wireless Sensor Networks (WSNs) that consist of thou-
sands of sensor nodes and span over large geographic territories. Due to the high cost of
sensor motes and lack of testing environment, simulation has been the primary method
for researchers to test their sensor network protocol and application design before ac-
tually deploying it on a real system. Although simulators provide users the flexibility
of acquiring various sizes of virtual networks on demand and reproducing their exper-
iments under different settings, they cannot provide satisfactory performance for both
large-scale and high fidelity sensor network simulations. On one hand, some unrealistic
abstractions used in simulation hinders the studying of protocol performance under real
world constraints. On the other hand, high-fidelity simulation of every event on a sensor
mote dissipates computation resources, thus makes it extremely unscalable [1].

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 194–209, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012
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With the accelerating development of WSNs, using experimental testbeds for proto-
typing and validating protocols and applications becomes a preferred method, because
it allows for investigating program performances in diverse hardware platforms and var-
ious environmental settings. There has been an explosive deployment of sensor network
testbeds in the past few years. Numerous small scale testbeds, typically from 20 to 40
sensor nodes, have been deployed and used in many research laboratories. However, the
scales of these individual testbeds are insufficient for future WSN applications. To work
around this issue, one alternative is to remotely deploy experiments on publicly acces-
sible large-scale sensor platforms, e.g., MoteLab [2], MistLab [3], KanseiGenie [4] and
NetEye [5]. Users access sensor resources through assigned accounts and program the
sensor motes using customized end-to-end programming tools. However, these plat-
forms suffer from two major problems: First, the scale of such platform is limited to
a single site, and is hard to be extensible in terms of resource federation. Second, the
provider-dependent interfaces and data logging methods at various platforms hinder the
users from reusing their programs. Thereafter, there is a urgent demand for large scale
and high fidelity experimental testbeds.

Some recent studies have proposed to create federated sensor networks across mul-
tiple sites [4, 6–8]. However, these federated testbeds lack high-fidelity radio models
for virtual links across sites. Although these platforms offer connections for data col-
lections and disseminations, they are not suitable for large-scale experiments across
multiple sites for protocol design that require realistic radio properties in the virtual
links across sites.

We propose the MagicLink system as a hybrid approach to overcome both deficien-
cies of inaccurate radio abstraction in simulators and inflexible sensor resource acqui-
sition in testbeds. MagicLink aims at fully utilizing isolated sensor resources to enable
large-scale sensor network experiments. To accomplish this goal, MagicLink first estab-
lishes message tunnels on top of the intermediate Internet connections of the distributed
sensor resources. Then, MagicLink restores the original radio link properties over the
Internet connections by employing an adaptive radio model to highlight the essential
the features of wireless radio links in sensor networks.

The following design features make MagicLink stand out from other projects:

1. MagicLink is highly elastic and scalable in that it weaves isolated small sensor
networks. The federated testbed provides not only data sharing, but also means for
cross-layer network protocol design and testing.

2. MagicLink features a unique adaptive radio model that preserves the lossy,
anisotropic, and dynamic properties of a real radio link in sensor networks deployed
in real world environments.

3. MagicLink is component-based, thus is easy to customize and integrate with user
applications.

The rest of this paper is organized as follows. Section 2 defines scope and presents sys-
tem architecture overview. Section 3 elaborates on the core component of MagicLink.
Section 4 presents resource initialization and updating functionalities. Section 5 illus-
trates cross-site communication details. Section 7 summarizes state-of-the-art related
works. Finally, Section 8 concludes this paper and discusses potential future work.
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2 MagicLink Design

The motivation behind MagicLink is to unite massive small-scale sensor testbeds preva-
lent in many research laboratories for large-scale experiments. Sensor nodes in these
small scale platforms usually have continuous power supply for long-term usage and
connections to computers for easy reprogramming. The rationale of MagicLink is anal-
ogous to cloud computing, or peer-to-peer desktop systems [9, 10], which harvest geo-
graphically distributed computing resources for computationally intensive applications.
Similarly, MagicLink enables a “cloud” of sensor networks that federates multi-site of
sensor resources and presents itself as a single large sensor network testbed. Through
testbed federation, MagicLink enables researchers to access to diverse resources that are
hard to acquire in a single site deployment and can also include and mix real world sen-
sor networks deployed for precision agriculture [11, 12] and habitat monitoring [13].
It can be viewed as a middleware to jointly connect physically separated small sen-
sor networks together, as shown in Figure 1(a). Challenges, however, arise not only in
the process of building up connections among the gateway computers of these sensor
testbeds, but also in smoothing the Internet gaps to achieve near identical radio link
features in a real large-scale sensor testbed.

(a) Illustration of construction of virtual
links over wired connection.

(b) Large-scale testbed constructed by
MagicLink System.

Fig. 1. MagicLink system illustration. Colored circles represent sensor nodes; squared areas in-
dicate geographically separated testbeds. Using MagicLink for sensor resource federation results
in a large-scale, smoothly connected sensor testbed that includes real and virtual radio links.

MagicLink primarily addresses two challenges: (1) Scalable resource federation:
the system should be able to support federation of many sub sensor networks to form
a large scale experiment platform. (2) High-fidelity one-hop virtual link connection
simulation: to construct a seamless connection, the simulated virtual links should hide
Internet connection features, e.g., packet loss ratio and round trip delay, but simulate
high-fidelity characteristics of radio links in a sensor network. Further, the interfacing
functionality should mimic radio communication properties for investigating protocol
behaviors in real world settings.

Use Case: To better illustrate the necessity of the high-fidelity virtual link connection
simulation, let us consider the scenario of running the Surge application [1] that builds a
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(a) Routing tree for Surge with-
out adaptive radio model

(b) Routing tree for Surge with
adaptive radio model

Fig. 2. Routing tree for the Surge application on a federated testbed of four sites. Each sub sensor
network is highlighted with different colors. Double circled nodes represent root nodes, black
solid lines represent radio connections, and green dashed lines represent virtual links across sites.
(a) Without adaptive radio model, Internet-based virtual links are always preferred over real radio
links as next-hop in the routing path. (b) With adaptive radio model, Internet-based “magic”
virtual links and real radio links are treated similarly. Either a magic link or a radio link is selected
as next-hop based on their runtime link qualities. This results in a real large testbed rather than
simply “connected” but actually “partitioned” multiple testbeds.

routing tree on a federated testbed consisting of four sites. A sensor node running Surge
will actively probe its neighbors and select the one with the most reliable link as its rout-
ing path. Figure 2(a) depicts the resulting tree on a rigidly connected four-site testbed.
In this case, no radio model is applied and the raw Internet connections are used. Since
Internet connections are more reliable than radio links (especially when certain reliable
transmission protocol such as TCP is adopted), they are most likely to be chosen as
the routing path. This is undesirable because it lacks the essential characteristics, e.g.,
heterogeneity and dynamics, of real radio links. Without these features, the reliability,
robustness, and self-adaptive qualities of a protocol cannot be thoroughly investigated.
On the other hand, MagicLink employs an adaptive radio model to connect testbeds. As
shown in Figure 2(b), a more realistic routing tree is constructed, because the interme-
diate Internet connections preserve the essential features of radio links. Hence, protocol
reliability and robustness can be better investigated.

To ease our presentation, we use the following terminologies throughout the rest of
this paper:

– Sub Sensor Network (SSN): a small sensor testbed that are federated into Magi-
cLink.

– Edge nodes: those sensor nodes that are at the edge of a SSN.
– Virtual links: the virtual connections among the edge nodes from different SSNs.
– SSN Gateway: a computer that provides Internet connection interface of a SSN.

System overview: The design of MagicLink system is centered around a set of virtual
link specifications called virtual link pool, as shown in Figure 3. All the cross-site con-
nection information is maintained in this virtual link pool. Four types of operations
are performed on the virtual link pool to achieve distributed resource weaving: system
initialization, system monitoring, virtual link adaptation, and message dispatching as
illustrated in Figure 3.
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Fig. 3. Component based design of MagicLink System

Virtual link pool contains the information about each individual link constructed by
MagicLink system. In its simplest form, it is a list of all source and destination sensor
node pairs and their properties, such as transmission delay and packet reception rate.
The following key functionalities are implemented:

– Interact with users for testbed configuration and result retrieving
– Locate distributed sensor resources (e.g. SSNs) and establish a connections be-

tween their gateway computers
– Build virtual links for each edge sensor node with appropriate setups
– Provide status monitoring service for updating virtual link properties
– Dispatch cross-site messages to their destination
– Customize communication methods for edge nodes to transmit to both radio and

wired interfaces

These functionalities are encapsulated in different components and are decoupled from
each other as shown in Figure 3. Such a component-based design offers flexibility and
easy integration with user applications. The basic functionalities are wrapped into four
components: resource initialization, which includes (1) interacting with users for sys-
tem configuration; (2) bootstrapping the system and initializing various parameters for
virtual link pool; monitoring of resources, which involves (1) keeping tracking locally
connected sensor nodes and (2) establishing and maintaining remote gateway computer
connections; message dispatching, which responsible for (1) providing joint messaging
interface between radio links and Internet, (2) performing virtual link lookup and for-
warding packets to appropriate virtual links; adaptation, which indicates the operations
for emulating radio link behavior by adaptively adjust message dispatching operations
on virtual links.

3 Virtual Link Pool

Virtual link pool is the central component of MagicLink and maintains virtual links’
information. Its primary purpose is to manage edge nodes’ communication radius as
well as connection qualities. Each virtual link between a pair of edge nodes is repre-
sented as a source/destination pair with certain link quality metrics in the virtual link
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pool. Since radio links are inherently asymmetric, individual gateway computer main-
tains a separate virtual link pool connecting its local edge nodes to remote edge nodes.
The quality of a virtual link is measured in terms of packet reception rate and trans-
mission delay. As MagicLink’s target is to seamlessly weave multi-site sensor networks
into one large-scale experiment platform, an adaptive radio link model is essential for
determining virtual link properties in cross-site message transmission.

It is well-known that radio communications are irregular and unpredictable. To con-
struct a realistic radio model in MagicLink, we not only consider the property of radio
signal path loss and shadow fading, but also further incorporate a link quality adjust-
ment component to reflect the anisotropic transmission and dynamically changing
property of a radio link. For initial link quality setup, MagicLink uses analytical model
to calculate packet reception rate at user specified distance and transmission power. Dur-
ing the execution of the user application, virtual link qualities are periodically updated
in accordance to the edge node’s real link qualities.

Radio signal path loss and shadow fading: There has been extensive studies on radio
propagation under different constraints [14]. In MagicLink, two radio signal path loss
models, namely free-space model and two-ray ground model, are provided for ideal
line-of-sight communication and single ground reflection scenarios. Users can deter-
mine the virtual link distances and choose the desired environment parameter settings
for their experiment.

Besides radio signal attenuation, noise on wireless channels as well as other shad-
owing factors, such as reflecting and scattering, also result in degradation in received
signal strength. The most commonly used statistic model for describing this shadow-
ing effect is log-normal distribution [14–17]. Therefore, the final received power Pf is
the summation of the attenuated transmission power Pr and the shadowing effect, and
it also follows the log-normal distribution Pf ∼ Logn(Pr, σ). We use the subscript
“dB” to indicate the decibel form of a variable from now on, thus the final received
power PfdB ∼ N (PrdB, σdB). The variance σdB of this distribution is a environment
related factor, and it is preset by the users to represent the characteristics of different
environments.

MagicLink uses a threshold value ξ to infer the correlation between packet reception
and final received transmission power. Based on the threshold, we can calculate the
probability of a packet being successfully received using:

p(PfdB > ξdB) = Q(
ξdB − PrdB

σdB
), (1)

where the Q-function is defined as the probability that a Gaussian random variable X
with mean 0 and variance 1 is greater than certain value.

Anisotropic radio propagation: Anisotropic radio propagation is another significant
property to model radio transmission. It should be carefully preserved when building
up virtual link connections between two SSNs. Many modeling methods have been pro-
posed in previous studies, e.g., [18], herein we describe the anisotropic property of a
sensor node’s radio transmission in terms of the degree of irregularity metric defined
in [18]. The degree of irregularity parameter ϑ of a node is defined as the maximum path
loss percentage variation per unit degree change in the direction of radio propagation,
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and is used to calculate the virtual link status based on its relative digression from a
predefined direction. The value of ϑ is typically a small number (e.g., 0.005) and it is
preset by users for desired radio irregularity degree. Using the metric of irregularity
degree requires that the testbed topology is preconfigured, and all the gateway com-
puters know the network topology in advance. This information can be easily obtained
via bootstrapping phase. Without the knowledge of testbed topology, a pre-calculated ϑ
value can also be obtained from a radio’s specification sheet (e.g., Telosb’s specification
sheet [19]).

Once ϑ is set, the theoretical received transmission power between two edge sensor
motes at a relative angle can be adjusted using:

P ′
r = (1± ϑ)× Pr. (2)

With Equation 1 and 2, and using dB form of the final adjusted received transmission
powerP ′

f as previously mentioned, the theoretical packet delivery ratio Pprr of a virtual
link can be calculated as:

Pprr = p(P ′
fdB > ξdB) = Q(

ξdB − P ′
rdB

σdB
). (3)

Using the radio propagation models enables the users to test their algorithms under
different settings, and provides a starting point for virtual link simulation. However,
the general free-space and two-ray models may not be able to accurately describe the
radio link path loss or fading parameters due to reasons such as occasional obstacles
or temporary interferences from other sources. Hence, in MagicLink design, we further
adjust the packet reception ratio Pprr using the measured data.

Dynamically changing radio link quality: Since wireless links are extremely sensitive
to environmental changes, capturing the dynamically changing behavior of a wireless
link becomes an indispensable task for link simulation. Although the causes of a link
quality fluctuation can be complex, we observed that when all radio links surrounding
one sensor node exhibit sudden changes of packet reception ratio, it is highly possible
that problem occurs at that sensor node, i.e., low battery level or presence of physical
obstacles in the near vicinity. Based on this observation, we can safely infer that the vir-
tual link should also be affected and adjust its link quality accordingly. In order to make
our model reflect this temporal property of a link, we introduce a link quality coeffi-
cient ψ to adjust virtual link quality. ψ is calculated as the percentage changes between
current link quality and link quality of previous period. When the motes surrounding
a sender all experience link quality degradation or improvement, given the theoretical
packet delivery success rate, Pprr, we have the adjusted packet reception rate P ′

prr over
virtual link as:

P ′
prr = ψ × Pprr. (4)

By integrating the anisotropic and dynamic properties, MagicLink’s adaptive radio
model can emulate the radio communication in high-fidelity, and user applications’
reliability and robustness can be thoroughly investigated.
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4 Resource Mediation

Resource mediation is a collection of operations that maintains and updates sensor
nodes and virtual link information. These operations mainly take place on gateway com-
puters. Resource mediation functionalities corresponds to the initialization and moni-
toring components on the left hand side of virtual link pool in Figure 3. Initialization
of testbed is a static, one-time operation, which includes user configuration and boot-
strapping, while monitoring is a periodically executed procedure, which can be further
categorized as sensor and Internet status monitoring. New status report message will
trigger a virtual link records update in the virtual link pool. This update is essentially
an adjustment of the theoretical link quality values in accordance to measured real link
status. We elaborate these operations in this section and illustrate them in the order of
temporal execution sequence within the lifetime of the testbed.

4.1 User Configuration

To setup MagicLink across multiple sites, as shown in Figure 1(b), users are asked to
provide the following parameters through a user interaction interface to establish the
initial platform topology:

– Information about how these SSNs to be connected, especially the gateways’ net-
work locations.

– Virtual link distances and environmental parameters, this information is used for
initialize the adaptive radio connection models. The orthogonal distance of two
adjacent SSNs, e.g., SSN 1 and SSN 2 in Figure 1(b), are provided by users to
initialized the basic topology.

– Sensor status monitoring frequency, this parameter is adjustable depending on the
specific user application features.

At this point, we assume that user has already obtained privilege of accessing these
SSNs to construct their testbeds. We will not elaborate on the associated resource dis-
covery and authentication mechanisms. The information provided by users will be used
to evaluate the initial link qualities. By default, local SSN topology and transmission
power information will be used.

4.2 Bootstrapping

Since users may not have all the sensor mote connection information, a bootstrapping
phase is necessary to assist virtual link pool initialization. Based on the testbed fed-
eration information specified by a user, the procedure of bootstrapping includes: (1)
identifying which locally connected sensor motes are selected as edge nodes for cross-
site communication; (2) calculating the relative distances of edge nodes according to
user defined orthogonal testbeds distance; (3) evaluating the default values for each
link’s quality metrics according to MagicLink’s radio model. After bootstrapping, each
sensor node in a local testbed will establish connections to several remote edge nodes
as its neighbors in the federated platform.
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4.3 Status Monitoring

The status monitoring component contains two parts running on different hardware: the
sensor network status monitor running on each edge node and Internet status monitor
running on each gateway computer.

Sensor network status monitor: In order to facsimile the important properties of radio
links, Sensor network Status Monitor (SSM) is employed to assist virtual link simu-
lation. The packet reception rate metric Pprr is of primary concern, whereas average
transmission latency τs is protocol related and can be helpful in some cases, such as
real-time communication [20]. SSM runs periodically and measures the aforementioned
metrics to provide a reference for simulating physical channel characteristics.

One advantage of designing SSM as a configurable component is that it can easily
be adjusted in accordance to different application contexts. First, depending on various
usage scenarios, users can choose to enable or disable SSM at any time. Take a data
gathering application for example, when the primary concern of the user application is
to collect sensed data, rather than to investigate the network protocol behavior, SSM is
unnecessary and can be safely turned off. On the other hand, if user application requires
link status monitoring, SSM can either be reused by the user application to alleviate
programming burden, or simply be replaced by user’s own monitoring program as long
as the same status report message format is used. SSM can also be customized in terms
of scheduled execution time and frequency in accordance to user needs.

Once the SSM component is configured, it measures packet delivery rate by sending
out probing message during the “idle” time of an application. During each probing
period, a fixed number of messages are sent out, and the packet delivery ratio of a
link is estimated by dividing the number of received packets by the expected packet
number. To elaborate, for each edge node ni, packet reception rates between each of
its neighbors are measured. Given P ij

prr as the reception rate between ni and nj , the
average reception rate for edge node ni with m neighbors is:

∑m
j=0 P

ij
prr/m.

Although transmission latency is a relatively less significant factor in sensor net-
works comparing to packet reception ratio (many simulators simply ignore this factor),
in a hybrid system like MagicLink, transmission latency can be useful to some extent.
The measurement for latency τs is provided as an optional function, and is evaluated by
subtracting the time when a packet is sent from the time when an acknowledgement is
received by the sender. Assume τ ijs is the packet transmission latency between sensor
node ni and nj . For edge node ni with m neighbors, its average one-hop transmission
latency is:

∑m
j=0 τ

ij
s /m

Internet status monitor: Similar to SSM, Internet Status Monitor (ISM) measures In-
ternet link qualities between gateway computers at a user configured frequency. Packet
reception rate and packet transmission latency are also relevant metrics we use to quan-
tify link qualities. Depending on the underlying protocol used, Internet connections can
be very reliable, thus measuring Internet reception rate is primarily used for preventing
extreme cases, such as loss of connection.

As to packet transmission delay, there is a rich literature on accurately measuring
transmission delays between Internet host computers, e.g, [21, 22]. We adopted the



MagicLink 203

algorithm proposed in [22]. For gateway computers within the same Internet domain,
average transmission delay τi is usually within 10 milliseconds. This is about the same
delay as typical one-hop radio transmission without using any MAC or other protocols.
If the SSM measured radio transmission delay τs is significantly larger than τi, which
implies possible heavy data traffic or large packet size, the message forwarding com-
ponent of MagicLink will interfere accordingly. On the other hand, for cross-domain
Internet connection, a longer delay may present. If this is the case, a notification to
users will generate for proper settings of timeout thresholds, if applicable.

5 Adaptation and Dispatching

Virtual link adaptation and message dispatching is the core operation that actually
achieves resource stitching among distributed sensor network sites. It establishes a vir-
tualization layer that hides the underlying geographical and connection heterogeneity.
The objectives of link adaptation and messaging dispatching are manifold: (1) provid-
ing joint messaging interface between radio links and Internet; (2) performing virtual
link lookup and forwarding packets to appropriate virtual links; (3) emulating radio link
behavior by adaptively adjust message dispatching operations on virtual links according
to real radio link environments and conditions.

5.1 Send/Receive Interface

On the edge sensor nodes of each SSN, whenever a radio message is broadcasted, both
the radio interface and serial/USB interface should be involved such that local and re-
mote neighboring nodes can hear this transmission. A customized send/receive inter-
face, which is implemented on top of TinyOS, is provided in MagicLink to handle this
job. Users invoke this interface the same way as the built-in radio send and receive
functions in nesC, with the same destination address format.

5.2 Message Forwarding

A message queue is implemented as a container to store sensor network application
messages on a gateway computer. In addition to the raw messages transmitted within
the sensor networks, time information is also included in each message stored in the
message queue for referencing purpose by certain applications. Once an edge node
transmission is heard by the gateway, which means the transmitted message should be
forwarded onto the virtual links, the gateway will insert this message into the message
queue. Messages are popped out and forwarded by the message dispatcher. Virtual link
lookup operation is implemented to guarantee messages are forwarded to the proper
destination. In addition, different virtual links may have different packet reception rates
according to the adaptive ratio model explained in Section 3. Packet forwarder processes
each message based on the adaptation rules and forwards it to the virtual links selected
by the link lookup operation.
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5.3 Adaptation

Virtual link adaptation refers to emulating the properties of wireless radio links on the
Internet connections. Based on the virtual link quality measurements, some messages
in the message queue may be intentionally dropped to simulate a packet loss. In other
words, the time to forward packets on the virtual link is dependent on the adaptation
policy configured by the end user in MagicLink. If a user turns on the transmission de-
lay adaptation in MagicLink configuration, the packets forwarding time will be affected
accordingly. Particularly, when the gateway connections delays are much less than ra-
dio transmission latency, the packet forwarding operation is intentionally postponed. If
the latency on the Internet is similar to that on the radio links, packets are forwarded
immediately.

6 Performance and Usage Cases

To validate our implementation of MagicLink system and demonstrate the effectiveness
of the radio model used, we tested two representative usage scenarios, single hop com-
munication and multihop communication, on a federated testbed constructed by Magi-
cLink. The testbed is configured as follows: a total of 32 sensor nodes are deployed at
University of Florida and Oklahoma State University. Each site configured 4×4 Telosb
sensor motes arranged in a grid topology with a node to node distance of 9 feet. At each
site, there is one gateway computer (fitPC2) connected to these sensor motes for repro-
gramming and power supply. Four motes from each site were configured as edge nodes.
They all had SSM installed and communicated through the send and receive interface
provided by MagicLink. Virtual links are set as 9 feet in distance as well, and use the
same transmission power level as radio communications. The variance σ is set to 7.6 as
adopted by NS-2 to indicate office environment with soft partitions.
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Fig. 4. Single hop link quality comparison: real radio link quality versus virtual link quality

6.1 Single Hop Communication

One advantage of using MagicLink is to achieve smooth cross-site communication; we
tested the performance of MagicLink’s radio model by comparing the quality of real
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Fig. 5. Single hop transmission dynamics: real radio link versus virtual link

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

P
ac

ke
t d

el
iv

er
y 

ra
te

 (
%

)

Time (minutes)

MagicLink
Theoretical value

(a) Low transmission
power level

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

P
ac

ke
t d

el
iv

er
y 

ra
te

 (
%

)

Time (minutes)

MagicLink
Theoretical value

(b) Medium transmission
power level

 75

 80

 85

 90

 95

 100

 0  50  100  150  200  250

P
ac

ke
t d

el
iv

er
y 

ra
te

 (
%

)

Time (minutes)

MagicLink
Theoretical value

(c) High transmission
power level

Fig. 6. Multihop communication across two sites at different transmission power levels

radio link with the virtual link. We randomly selected one edge node at each site to
form a virtual link. Packet reception rate (PRR) is used as the comparison metric here.
By letting one edge node send probe messages via the send interface at the frequency
of 120 messages per second, both neighbors at the local site and the virtual neighbors
at the remote site can hear this transmission. Upon receiving a message, an acknowl-
edgement is transmitted back to the sender in order to collect status information. Three
transmission power levels were tested, and virtual link adjustment was twice per sec-
ond. This experiment was conducted continuously for 6 hours to thoroughly exploit the
dynamic property of our radio model. We plot the results in Figure 4 and 5.

In these figures, the red lines show the fluctuation of radio link qualities, the straight
blue lines stand for the theoretical packet reception rate, a constant value calculated by
the methods used in NS-2 [23] and some other simulators, and the green lines represent
the virtual link variations in MagicLink. From Figure 4 one can observe that the adap-
tive radio model used in MagicLink vividly emulates the lossy and dynamic behavior
of radio transmissions, which is hard to manifest by the previously proposed theoretical
radio simulation model in other projects. In addition, with the increase of transmission
power, radio communication becomes more reliable, and both MagicLink and the con-
stant model show a better result in approximating link quality. Figure 5 quantifies the
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dynamic changes of radio links by sampling the standard deviation of packet reception
rate in every five minutes. Both radio link and virtual link exhibit similar fluctuation
of link quality changes. At some rare cases, e.g., time 40 in Figure 5(c), one can ob-
serve that the standard deviations of virtual link and radio link are significantly different
comparing to other approximations. This can be explained that the radio link dynamic
created by the adaptation method in MagicLink is probabilistic in nature (refer to Equa-
tion 4), and the virtual link is also affected by the anisotropic property. Therefore, some
cases may deviate greatly from the observed variations of the nearby real links. Simi-
larly, this kind of difference appears also in two real radio links or two different time
periods of the same radio link under identical environments, making our MagicLink
virtual links behave like real radio links in these aspects too. However, MagicLink is
designed to be flexible that with proper configurations, user can acquire the desired
level of link emulation.

6.2 Multihop Communication

Multi-hop communication is one of the key features in many applications targeted at
large-scale sensor networks. In this set of validation, we set up a multi-hop configuration
implemented by MagicLink and recorded packet delivery rates at different transmission
power levels. The implementation of a multi-hop configuration enabled by MagicLink
is depicted as follows: from the federated testbed, we randomly selected one sensor
node at each site to form a 4-hop communicate path, three of them are radio connec-
tions while the rest one is virtual link. We plotted the end-to-end packet delivery rate
at different transmission power levels in Figure 6. From the figure we draw two con-
clusions. First, MagicLink successfully accomplishes cross-site communication. The
pattern of the end-to-end packet transmission path agrees with many theoretical anal-
ysis, e.g., [24]. When transmission power level is low, end-to-end link quality is very
poor and shows significant dynamics over time. With the increase of transmission power
level, the overall link quality is improved. Again, the constant blue lines in all three fig-
ures show that the theoretical link simulation is not capable of capturing the dynamic
changing link property. In contrast, the mixture multi-hop model represented by the red
lines suggests that MagicLink seamlessly stitches the two simulation sites by rendering
similar multi-hop communication patterns as within the same local sensor testbed.

7 Related Work

The maturing of sensor network technologies has resulted in increasing demand for
large-scale sensor experiment platforms for fast prototyping and experimentation. Due
to the high cost of sensor motes and computation/memory limitations for high-fidelity
simulation, existing approaches for providing such experiment platform mainly fall into
two categories: hybrid simulation and testbeds virtulization.

Hybrid simulation approach emphasizes on using real sensor network data, such as
radio link status measurements and sensed data, as the input to simulators to improve
simulation quality. This approach is adopted by SensorSim [26] and Kansei [25]. In
SensorSim, real sensed data from a limited number of sensor motes are collected as
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input to the simulator in order to test applications’ response to environmental changes.
In Kansei, the sensor network simulator on a computer is connected to real sensor nodes,
and the radio communication is performed by real radio hardware on these sensor nodes.
Their methods are viable to small-scale simulations, but may not be applicable to large-
scale simulations due to message congestion.

Testbeds virtualization, on the other hand, focuses on creating a mapping between
deployed real testbeds and virtual nodes in a computer to visualize testbeds topology
and communication paths. Typically, in a virtualized testbed, there are more simulated
sensor nodes than real sensor nodes. For example, in NetTopo [7] the authors created
avatars for each real sensor node in a simulator. The WISEBED project [8] and [6] pro-
posed a testbed federation method that is conceptually similar to MagicLink’s design.
However, despite the conceptual similarity, a high-fidelity radio model that is critical for
seamless cross-site communication is missing from all these existing approaches, and
MagicLink is the essential missing piece for accomplishing smooth testbeds federation
and virtualization.

An essential component for sensor network experiment platform is its radio com-
munication module. To better reflect the communication performances, there exist a
rich literature on modeling of radio link properties. Two broad classes for modeling are
widely used in simulation of radio transmission behaviors in WSNs, namely analytical
models and empirical data based models.

For analytical modeling of radio signal attenuation, the physical layer features of a
wireless link are captured by the radio signal attenuation formulas. It provides a simpli-
fied and straightforward description of wireless communication between sensor nodes.
Many simulators adopt this approach to build up connections in a simulated network.
NS-2 [23] calculates received power at a receiver according to a user defined distance.
This power level is compared to (1) the receive threshold (RT), and (2) the carrier sense
threshold (CST). If it falls below CST, the packet is discarded as noise. If the received
power is between CST and RT, the packet is marked as an error packet. Otherwise, if
received power is above RT, the packet is conceived normal. Similar approaches that
using theoretical model to determine packet transmission rate are also adopted by Glo-
MoSim [27], ATEMU [28], and SWAN [29]. In MagicLink, we leverage the analytical
models to setup initial values for each virtual link. However, to reflect dynamic features
of radio communications, MagicLink periodically adjusts virtual link quality metrics
and values at runtime. This continuous refreshing process is a great leap forward to-
wards more realistic radio model, and makes Magiclink suitable for investigating the
reliability and robustness of real-world sensor applications.

An alternative approach to model radio links is to use empirical data. With the help
of radio quality trace files, simulators can provide diverse environment settings for radio
link simulations, making it a more favorable approach to many simulator implementa-
tions. In TOSSIM [30], the simulator loads the empirical data files to generate statistical
models for each link. Although this approach offers more flexibility, it consumes huge
memory space for simulating a network (e.g., 10MB per node), which hinders its appli-
cation to large-scale network simulation. Several researches used smoothing and fitting
methods to statistically analyze the experimental data samples, e.g., [31] and [32]. In-
stead of using the one-time-gathered trace data, MagicLink’s radio link model includes
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an online algorithm that is capable of dynamically adjusting virtual link status based
on the monitored real links. since anisotropic property is also important for building a
convincing radio link model. Zhou et al. [18] proposed a radio irregularity parameter,
Degree of Irregularity (DOI), to quantify radio propagation patterns in sensor networks.
MagicLink incorporates this DOI metric and assimilates the anisotropic feature to build
a topology-aware virtual link for comprehensive radio transmission simulation.

8 Conclusion and Future Work

We proposed the MagicLink middleware system for building large-scale sensor net-
work testbeds from distributed small sensor networks. MagicLink features an elastic
infrastructure that flexibly integrates multiple sites of sensor networks. In order to help
investigation of network protocol performance, we further proposed an adaptive ra-
dio communication model that embodies lossy, dynamic, and irregular properties of
radio links. We experimentally tested representative sensor network applications on a
testbed constructed by MagicLink, and showed that MagicLink possesses the desired
features and reflects real radio dynamics and heterogeneity. Under the GENI initiative,
using MagicLink, we are building a federated large-scale sensor network testbed that
integrates multiple sensor networks across the nation with friendly web interfaces, vi-
sualization and debugging utilities. This large-scale testbed with high-fidelity “magic”
virtual links is an ideal platform for evaluating and testing next-generation Internet pro-
tocols that consider sensor networks and mobile devices as first-class citizens.
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Abstract. The main challenge in wireless networks is to optimally use
the confined radio resources to support data transfer. This holds for
large-scale deployments as well as for small-scale test environments such
as test-beds. We investigate two approaches to reduce the radio traffic
in a test-bed, namely, filtering of unnecessary data and aggregation of
redundant data. Both strategies exploit the fact that, depending on the
tested application’s objective, not all data may be of interest. The pro-
posed design solutions indicate that traffic reduction as high as 97% can
be achieved in the specific case of test-bed for indoor localisation.

Keywords: WSN, filtering, aggregation, WiFi, bluetooth.

1 Introduction

Wireless sensor networks provide excellent means for monitoring and data gath-
ering in a large range of application areas. One such application is the use of
radio-enabled sensor nodes for (indoor) positioning in which the sensor nodes
collect signal measurements of user devices using radio transmissions, e.g., Blue-
tooth. Among the most frequently used radio standards are the IEEE 802.11
(with commercial name WiFi) and Bluetooth standards. Processing of the col-
lected measurements can derive the location coordinates of the transmitting de-
vice. Potential use cases of a positioning application include, but are not limited
to, analysis of visitor behaviour in shopping malls, tailored discount dissemina-
tion in attraction parks and evaluating staff efficiency in hospitals.

Inspired by the many use case opportunities, the Location Based Analyser
(LBA) project addresses the indoor localisation challenge by leveraging radio
frequency (RF) based technologies, namely WiFi and Bluetooth. More specifi-
cally, we use multiple sensor nodes at known positions to collect measurements
on the received signal strength indicator (RSSI) from personal devices on the
premises. The collected measurements are periodically sent to a central database
server where they are sorted per observed device and processed to determine the
current position of each device. There are various techniques to map RSSI to
distance, the most often cited being (multi)lateration and fingerprinting.

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 210–223, 2012.
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As part of the development process of the localisation system we set up a
test-bed for the purpose of testing and performance evaluation. Early in the
design and testing phase we stumbled across the problem of rapidly growing
sensor data. Although test-beds are designed typically at a smaller scale than the
finally deployed system, challenges related to congestion of the wireless medium
may arise. In addition, data storage may prove another affected aspect. In order
to ensure non-disrupting operation and system scalability one needs to take care
when managing the radio resources. We chose for an intuitive approach that
classifies the wireless traffic and identifies what data is pertinent for the needs of
the application. Possible data reduction strategies include filtering of unnecessary
data, aggregation of redundant data and data compression. Data aggregation in
WSNs has been largely studied [5,9,12] and evaluated in WSN testbeds [1,3,10]
for the purposes of reducing traffic volume and energy consumption.

This paper describes how we adopt filtering and aggregation to minimise
wireless traffic in a test-bed. Contrary to other studies, e.g., [9], which address
hierarchical aggregation in the network, we are only interested in a local (on
a single node) aggregation. We take as an example the case of a localisation
application but the discussed data reduction strategies can be applied to a larger
set of applications by modifying parameters of switching functionality on or off.

The rest of the paper is organised into the following sections. Section 2 de-
scribes the specific test-bed that we use and the encountered traffic challenges,
given the application’s needs. Next, Sections 3 and 4 discuss the implementation
and performance of filtering and aggregation respectively. Their combined use is
analysed in Section 5. Finally, Section 6 summarises the paper.

2 Localisation WSN Test-Bed

2.1 Localisation of User Devices

We designed an indoor localisation system that relies on sensor nodes at known
positions, which collect signal measurements from personal devices. A central
server processes the collected measurements to derive the location of the personal
devices. We are interested in signals from personal devices and in signals from
the sensor nodes. These signals are used to monitor the quality of the radio
channel and to improve the performance of the system.

In order to test and evaluate the localisation system we built a test-bed in-
side a single room, which reflects the system design. Its objective is to collect
measurements of signals from personal devices and reference sensor nodes. The
test-bed contains 16 sensor nodes, which form a 4x4 grid at 0.5 meter below the
room ceiling, see Figure 1. The sensor nodes scan continually for WiFi and Blue-
tooth signals and record the RSSI levels. Periodically, each sensor node sends its
measurements to a gateway node, which collects all measurements and forwards
them to the database server. At the server the measurements are stored and
analytically processed. In the rest of the paper the term sensor node and sensor
are used interchangeably.
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Fig. 1. LBA test-bed architecture: multiple sensor nodes (SNs), connected over WiFi
to a gateway (GW). Measurements are stored in a database server (DB).

In our proposed localisation system the amount of wireless traffic depends
on the number of deployed sensor nodes, the frequency at which measurements
are reported, and on the number of detected or tracked devices. Additionally,
there is interfering traffic from other devices that may use the same wireless
medium. Since the test-bed is located in the Computer Science building of the
University of Bern, there are other experimental wireless networks and wireless
access infrastructures that use the same radio channels. We consider traffic from
such networks and WiFi access points, e.g., beacons, as non-informative since
measurements regarding these devices contribute neither to the localisation of
devices nor to the radio channel monitoring. Therefore, these are unnecessary
measurements and while we cannot always avoid their collection we can prevent
their transmission to the central server. To this end we apply filtering.

Another factor that directly affects the busyness of the radio channel is the
proportion of collected measurements per device. For each device several mea-
surements may be collected by one sensor while a single measurement would
suffice for localisation. Clearly, reporting all measurements would be redundant
and we would like to minimise the radio channel utilisation. This can be achieved
by decreasing the amount of data to send. Therefore, we explore the use of data
aggregation.

2.2 Test-Bed Implementation

As sensor nodes we used Gumstix Overo Fire devices [2] with integrated on-
board Bluetooth and WiFi interfaces, which support the scanning of the wire-
less medium. Moreover, we attached an additional WiFi card, which is used for
communication between the sensor node and the gateway. On the sensor nodes,
we run a light Linux kernel and several lightweight packages to keep the sensor
as lightweight as possible. This sensor software is built using the Administration
and Deployment of Adhoc Mesh (ADAM) framework [11] which includes the
custom packages needed for running the Bluetooth and WiFi scanners. WiFi
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measurements are collected by capturing packets on the wireless interface with
libpcap, an application programming interface for capturing network traffic, and
by hopping through the WiFi channels with an interval of one second. Bluetooth
measurements are recorded by using output from the bluez Linux Bluetooth li-
brary. When the measurement buffer is full or a predetermined period has ended,
the measurements are flushed to the gateway. All the sensor nodes and the gate-
way are situated in the same local network.

The gateway and the database server both run on a regular Linux distribution.
The gateway can reside on both a desktop machine or a sensor node, as long
as there is a wired connection available for the communication to the database
server. The communication is through a SOAP web-service. At the database
server, we use a regular MySQL databases.

3 Filtering

One strategy to decrease traffic in the test-bed (and any other wireless net-
work) is to transmit only data that is pertinent. Filtering is a method that can
successfully omit the collection and transmission of unnecessary measurements.
The choice of an appropriate filtering solution needs an answer to three design
questions : what to filter, where to filter and how to filter.

What to filter. A filtering solution is needed that can identify unnecessary mea-
surements and only allow the transmission of measurements on user devices
(used for localisation) and reference sensor nodes (used for channel estimation).
As discussed earlier, we consider measurements on signals from experimental
wireless networks and WiFi infrastructure, e.g., access points (APs), as unnec-
essary. We refer to the former group as ’always-on devices’ and to the latter -
as ’fixed infrastructure’. Each group requires different filtering strategies as it is
explained later.

Where to filter. Three places can be identified in our system where we can em-
ploy filtering: the sensors, the gateway and the database server. Filtering at the
sensors has a direct impact on buffer occupation and on wireless traffic but is
challenging due to their limited resources while the decision what to exclude
needs large sets of measurements. The only benefit of filtering at the gateway is
the decreased traffic towards the database server. However, often bandwidth is
not a problem since wired connections are used generally. Moreover, the gate-
way also does not have knowledge on long-term data. On the database server,
we have both the capacity and the measurements at our disposal to support
a decision making for filtering. Hence, it is a more appropriate system for the
filtering decision process.

How to filter. Filtering can be based on black- or whitelisting of certain MAC
addresses. When a certain MAC address is blacklisted, all measurements of that
MAC address are discarded. When a MAC is whitelisted, all measurements re-
lated to it are collected. The choice of strategy depends entirely on the applica-
tion’s objective. In a controlled environment, when the target group of devices to
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monitor is well defined, whitelisting is the better choice since we are only inter-
ested in measurements from a limited set of known MAC addresses. In realistic
environments, where we have no control over the target devices, whitelisting is
not feasible because the targeted MAC addresses are not known beforehand. In
such case blacklisting is the better choice.

Another classification criterion is how the decision what to filter is taken. If we
collect the MAC addresses and enter them manually into the filtering system we
call this static filtering. Static filtering is time consuming, requires effort and does
not scale well. A better alternative is dynamic filtering, which introduces certain
intelligence in the system. Such a system integrates decision making processes to
analyse incoming measurements and decides what MAC addresses to filter out.

3.1 Filtering Solution

Taking into account the requirements of the current experimental test-bed we
chose a dynamic blacklisting strategy with static elements and static whitelisting
support, which we term combi-listing.

Static Blacklisting. Static blacklisting refers to the filters that are directly
installed at the sensor to filter out signal measurements from the fixed infras-
tructure (APs). An AP contributes significantly to the wireless traffic because (i)
it typically sends a beacon message every 100ms and (ii) it serves multiple clients
in parallel. Note that measuring this kind of traffic is undesirable, independently
of the specific WSN application.

Filtering of the fixed infrastructure is quite easily done at the sensor nodes
using the two distribution system (DS) flags in a WiFi packet [4] that indicate
sender (first bit) and receiver (second bit): 0 for mobile device and 1 for AP.
Hence, since they already use libpcap to capture packets at the WiFi interface,
we only need to create an additional rule to discard all packets with the type
’Beacon’ or DS flags 10 or 11 (first bit 1 indicates AP originating traffic). Static
blacklisting is implemented using the existing libpcap functionality.

Dynamic Blacklisting. Static blacklisting on top of libpcap is not feasible for
the identification of always-on devices that behave as any other device but are ac-
tive continually or for long periods of time. Instead we use a dynamic blacklisting
technique that combines a decision making process, which periodically generates
blacklists, and a dissemination process, which distributes the blacklists to the
sensor nodes.

Decision making. The decision making process is situated on the central server
and is responsible for the generation of the blacklists - one for each sensor node.
The process relies on one commonality between all always-on devices, namely,
they are generally connected 24/7. Therefore, if we analyse the collected mea-
surements over a long period we should be able to identify always-present MAC
addresses that correspond to always-on devices.

Formally a device in our test-bed can be identified by its MAC address and
activity level, i.e., the percentage of time in which measurements of its MAC
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address were received. The activity level is calculated over a specific evaluation
period, which is the timespan over which the list of blacklisted MAC addresses is
generated. For example, if a device was active for two hours within an evaluation
period of eight hours it has an activity level of 25%. If we define an activity level
threshold and a device’s activity level is above this level we can deduce that this
is an always-on device. The choice of the threshold is very important and related
to the duration of the evaluation period. For instance, it is fair to say that a
threshold of 80 or 90% should allows the identification of always-on devices.

An easy way to implement the proposed decision making is to count the num-
ber of distinct timestamps for a specific MAC address and divide this by the total
number of seconds in the evaluation period. However, there are disadvantages
to that in our test-bed. First, our WiFi-scanner hops channels every second.
Second, if an always-on device is only connected to the network and not actively
transmitting it will have only few measurements. To correct for this, we divide
the evaluation period into equal-length activity periods. Per MAC address, we
check within each activity period whether there is at least one measurement of
this address. If this is the case we mark the period as true, otherwise we mark
it as false. If we now count the number of activity periods marked as true and
divide that by the total number of activity periods in the evaluation period
(equation 1) we will get the percentage of time that this MAC address has been
active. We can derive the number of activity periods by dividing the evaluation
period by the activity period, both measured in seconds.

A simple comparison of the activity level threshold with the activity levels of
all MAC addresses detected within the evaluation period will give us the MAC
addresses to include in the blacklist.

ActivityLevel =
count(ActivityPeriod T rue)

EvaluationPeriod/ActivityPeriod
(1)

Dissemination. The dissemination of blacklists is pull-based. The procedure is
shown in Figure 2. The sensors request the blacklists from the central database
server via the gateway node. The server can answer, also via the gateway, either
with a new blacklist, when available, or with an empty message, when the sensor
polled too early and no update is available yet. Note that the new blacklist from
the server can contain no MAC addresses when there are none to filter out. If a
sensor should blacklist certain MAC addresses it filters out their measurements
but keeps statistics for each of the blacklisted address. Periodically this informa-
tion is sent back to the server, where it is used to re-evaluate whether the MAC
address should stay blacklisted. Without these statistics the decision support
process will loop into a repetitive adding and removing of MAC addresses to the
blacklist.

The dissemination procedure is implemented by extending the test-bed func-
tionality and introducing three new message types, namely, blacklist request,
blacklist update and blacklist aggregate messages. Either on start-up or after a
timer expires, the sensor nodes request a blacklist through the gateway using
a blacklist request message. The message contains a timestamp of the current
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Fig. 2. Message exchange between sensors, gateway and database server regarding the
blacklist

blacklist at the sensor and the type of blacklist the node is requesting (Blue-
tooth or WiFi).

The server answers with a blacklist update message, which contains the times-
tamp of the list in the update, or the timestamp of the blacklist request if no
newer update is available. The checkback-time field suggests how many seconds
will pass between the timestamp and the time a new blacklist will be available.
The list size field tells us how many MAC addresses the complete blacklist con-
tains. The update flag indicates if a new list is sent (flag 1) or if the sensor polled
and there is no update (flag 0). When there are no MAC addresses to blacklist
the flag is 1 (true) but the list size is zero and the MAC addresses field is empty.
The length of the MAC addresses field for a non-empty list depends on the list
size field.

Upon receiving the blacklist update message the sensor replaces the old black-
list with the new one and resets the timer according to the checkback-time field.
For each blacklisted MAC address the sensor collects statistics and reports them
hourly back to the server in a blacklist aggregate messages. The blacklist ag-
gregates message contains one or more structures depending on the number of
blacklisted MAC addresses. Each structure contains the MAC address of the
blacklisted device along with the first-seen and last-seen timestamp, the number
of measurements between the two timestamps and the average RSSI. The count
is used to make a decision whether a MAC address has to remain blacklisted.

Static Whitelisting. Static whitelisting is used to ensure the collection of mea-
surements on the reference sensor nodes which are used for channel evaluation in
the test-bed. For that purpose the MAC addresses of all reference sensor nodes
are identified and a specific whitelist for each sensor is kept at the central server.
The server is responsible to check that a MAC address from the whitelist does
not become blacklisted.

Alternative Solutions. The proposed distribution of node-specific blacklists
uses many unicast connections, which may lead to depletion of radio resource
if a large-scale sensor network is considered. Therefore, the realisation of the
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filtering solution may need modifications in order to scale down service traffic.
One possible approach is to broadcast the blacklist, that is the same for all sensor
nodes in a specific area (the area size depends on the communication range of
the radio technology). In addition, each sensor can pull its specific whitelist from
the central server when coming online.

3.2 Experimental Analysis

In this section we present results on the data reduction that filtering can bring
but first we discuss some parametrisation issues.

Parametrisation. Integrating the proposed filtering solution requires setting
up some parameters such as the blacklist evaluation period and the activity
period. For our purposes we selected an evaluation period of 24 hours, which
aligns easily with human activity. Choosing a good value for an activity period
is more challenging. In order to analyse this, we set up a test, where we included
a fixed WiFi device (laptop) in idle mode in the test-bed. The device was only
connected to a wireless network with no data traffic exchange. We let the sensor
nodes collect measurements over 65 hours and calculated the activity level of
the idle and the most frequently seen device at each of the sensor nodes for an
activity period of 60 and 300 seconds. Corresponding box plots over all sensors
are given in Figure 3.

A successful deployment should be able to filter out the idle device’s MAC
address as well as other high activity MAC addresses (most frequently seen
device). As we can see in Figure 3, an activity period of 60 seconds will not lead
to a successful identification of the idle device as ’always-on’ since its activity
level reaches only about 42% on average. When we change the activity period to
300 seconds the activity period of the idle devices rise up to 90% and it can be
easily identified for blacklisting. The reason for the above behaviour is the idle
status of the device in which case it communicates to the networks once every
few minutes. Note that the most seen device is less vulnerable to short activity
periods and easily reaches 80-90% of activity because it is actively transmitting.

Traffic Reduction. To quantify the gains in terms of reduced number of mea-
surements we conducted the following experiment. First, the testbed ran for full
24 hours, after which both Bluetooth- and WiFi blacklists were generated for
each node. Then, in a second 24 hours run no filtering was directly applied but
the generated blacklists were used to calculate, for the same data set, what the
measurement reduction would have been. This provides us a common base for
comparison since we are using the same data set. In the filtering decision the
parameters are: activity level > 0.8, activity period = 300 seconds, evaluation
period = 86400 seconds (24 hours).

Table 1 provides detailed statistics on the measurement reduction per sensor
node. The reduction is the percentage of measurements that will not be trans-
mitted if using filtering. Interestingly, the size of the generated blacklist is rather
small although the test-bed location would suggest much larger wireless activity.
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Fig. 3. WiFi: Activity level over all sensors for the most active MAC address and an
idling device when the activity period is 60 seconds

We explain that with the fact that the experiments were conducted on a week-
end when there are significantly less people, and hence always-on devices, in the
building.

In terms of reduced measurement values the results show that the effect of
filtering is significant. The reduction with combi-listing includes whitelisting of
the MAC addresses of the other sensor nodes for reasons discussed earlier. For
deployments where whitelisting is not needed the gains in reduction would be
even bigger. This trend is better visible in Figure 4 for WiFi - the mean mea-
surement reduction per sensor without whitelisting is about 93%, more than 10
percentage points higher than the mean reduction with combi-listing, i.e., the
combined use of black- and whitelists.

For Bluetooth we registered even higher measurement reduction with 99.76%
on average. We explain that with the smaller (six times) proportion of Bluetooth
devices in our test-bed environment compared to the number of WiFi devices.
As result one Bluetooth MAC address contributes more to the total number of
measurements. In addition, the range of Bluetooth is smaller than for WiFi and
therefore less devices will be detected in general. Note that whitelisting is not
included because there are no addresses to be whitelisted for Bluetooth (we do
not use Bluetooth signals in channel characterisation).
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Fig. 4. Measurement reduction comparison over all sensors after filtering

Table 1. Overview of WiFimeasurements in the second 24 hour period in the experi-
ment

Sensor Total measurements Reduced measure-
ments

Reduction [%] Blacklisted MACs

1 408.453 74.569 81.7% 26

2 458.547 83.204 81.9% 26

3 425.139 76.017 82.1% 26

4 416.985 72.839 82.5% 25

5 432.813 72.880 83.2% 27

6 404.987 71.233 82.4% 26

7 418.635 74.164 82.3% 25

8 412.666 76.420 81.5% 25

9 441.695 83.182 81.2% 26

10 390.836 70.235 82% 26

11 394.006 71.564 81.8% 26

12 441.728 78.060 82.3% 25

13 427.409 72.928 82.9% 26

14 364.902 62.817 82.8% 26

15 268.988 63.144 82.9% 25

16 414.818 63.914 84.6% 26

4 Aggregation

Aggregation of data (measurements) is another strategy that can improve the util-
isation of the limited radio resource and decrease the chances of collision.Generally
speaking aggregation is a technique to decrease the amount of measurements sent
over the wireless channel while retaining the measurements credibility. In sensor
networks aggregation has been proposed to decrease energy consumption [8,12] or
network congestion [5]. We are interested in using aggregation to decrease network
traffic and improve scalability since the current deployment of electrically powered
sensor nodes does not face energy consumption challenges.
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4.1 Aggregation Mechanism

Several approaches towards data aggregation are possible. One strategy is to let
the sensors report only changes in measured values, which is not suitable since
RSSI vulnerable to external factors and not very stable. Another aggregation
method is to send a single measurement (e.g., mean, max) per timespan where
the timespan duration largely depends on the type of application. For exam-
ple, for monitoring of ambient temperature one measurement per hour may be
sufficient while for target tracking a timespan in the order of few seconds is
more appropriate. We have chosen for the second option; the choice of timespan
duration is investigated in Section4.2.

(a) WiFi (b) Bluetooth

Fig. 5. Measurement reduction over different timespans of aggregation

In addition, we need to select which value to report. In the case of RSSI we
expect that the maximum value would be best since it is the least affected by
propagation conditions. The feasibility of other choices such as an average value
or another statistic registered over the aggregation timespan are discussed in
another study, namely [6].

An alternative approach to decrease wireless traffic is data compression [7].
Instead of using the redundancy in measurements data compression gains from
redundancy in the data itself by applying appropriate encoding. Although ben-
eficial it also requires additional processing.

To enable the chosen aggregation strategy in the test-bed two buffers are set
at the sensor nodes - one that collects all raw measurements and another for the
reported values. When the first buffer is full, or at the end of a reporting period,
all measurements are processed and the maximum RSSI per MAC address is
written into the second buffer. Then, it flushes the data to the gateway.

4.2 Experimental Analysis

To determine the measurement reduction we can achieve by applying aggrega-
tion, we used the same experiment setup as for the filtering experiment. We took
measurements over the first 24 hours and calculated the measurement reduction if
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each sensor would apply aggregation. Given the mobility of the tracked device, we
chose o aggregate over timespans of one to five seconds. We have chosen to report
the maximum RSSI value since we believe they are least affected by propagation
factors. The calculations were done for both WiFi- and Bluetooth signals.

Results for WiFi are shown in Figure 5(a), where boxplots of the reduction
achieved by each sensor node (y-axis) are plot against the used timespan (x-axis).
As expected, aggregation significantly affects the measurement traffic and in our
cases leads to a reduction in the number of measurements by more than 79% on
average for a one-second timespan. Increasing the timespan to five seconds does
only marginally improve the reduction to 81%. The reason for this is twofold. On
the one hand, not all devices are broadcasting every second. On the other hand,
the WiFi-scanner hops the wireless channels every second. Since devices commu-
nicate with a network on a single channel, we will not see their MAC addresses
after this second again until we completed the cycle of channel-hopping.

In Figure 5(b) the results for Bluetooth show different patterns - the mea-
surement reduction has an almost linear increase when we increase the times-
pan. More notably the measurement reduction grows from 12% to 40%, a less
dramatic improvement than in the case of WiFi. The number of measurements
we collect for Bluetooth are far fewer than the measurements collected for WiFi,
reflecting the ratio of devices that use the two technologies. Based on the results
we can conclude that the optimal value of the aggregation period for Bluetooth
depends on the application needs.

5 Combined Filtering and Aggregation

While the individual measurement reduction of both filtering and aggregation
shows great promise, it will be interesting to know if we can gain even more
by applying both techniques in the same sensor network. To analyse this, we
again used the results of the estimated measurement reduction experiment for
the filtering and calculated the total measurement reduction when we apply
aggregation (with one-second timespan) on top of that.

Figure 6(a) shows the results for WiFi measurements. For comparison reasons
we include the results for filtering as shown in Figure 4. Aggregation adds an
additional gain on top of the reductions that can be achieved by black- and
whitelisting. Differences between blacklisting and whitelisting are consistent with
previous observations - disabling whitelisting leads to even higher reduction. In
our specific case, given we chose to apply a combi-listing, the combined reduction
will be on average just shy of 94%.

The results of combining filtering and aggregation for Bluetooth are shown
in Figure 6(b). For reference, the results on using only blacklisting are included.
The graphs show that aggregation only slightly improve performance, the rea-
sons being the few Bluetooth devices that the system detects and the efficient
filtering of always-on devices that already brings measurement reduction of al-
most 99.8%. Although we are aware that the results are sensitive to the specific
system deployment, we expect that aggregation will lead to smaller reduction in
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(a) WiFi (b) Bluetooth

Fig. 6. Measurement reduction for combinations of blacklisting, whitelisting and ag-
gregation

measurements for Bluetooth than for WiFi due to the typically lower number of
Bluetooth devices. Note that there is no whitelisting for Bluetooth since in the
current deployment it is not used for channel estimation.

6 Conclusion

This paper deals with radio traffic challenges arising in wireless sensor test-beds.
We showed how the traffic volume can be greatly reduced by leveraging filtering
and aggregation independently and combined. We achieved reductions of 80%
on average with a peak above 95%, depending on used settings. Without this
reduction in traffic, the testbed would not be able to scale well when extended
to large testing sites due to the limited resources on the sensors and congestion
of the radio medium.

The reductions were achieved for an experimental test-bed consisting of 16
sensor nodes deployed indoors for the purpose of testing a positioning system
based on WiFi and Bluetooth technologies. Therefore, the chosen parameter
setting were specifically tailored to the system. Still, the described approaches
of filtering and data aggregation can fit to a diversity of WSN applications by
simply alternating component combinations (filtering) or fine tuning of param-
eters (aggregation). For example, an environmental monitoring application can
tolerate long aggregation periods, radio echo profiling can use only whitelisting
the deployed sensors but an assisted/ambient living application may prefer pure
blacklisting, since whitelisting requires human participation.

The presented evaluation and results have relevance beyond the scope of wire-
less test-beds. We are confident that filtering and aggregation strategies can also
help real-world deployments to scale better and to make better use of the lim-
ited radio resources. We are aware that both mechanisms have a downside, e.g.,
wrongly identifying a device as always-on in filtering or loosing measurements
details in aggregation, but we believe that a careful parametrisation can elimi-
nate the effects. In addition, compression techniques could further bring the size
of the transferred data down.
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Abstract. As the scale and heterogeneity of experimental environments
increases, the selection of adequate testbed resources becomes a daunt-
ing task for the experimenter. Wrong choices or unexpected resource
behavior can significantly decrease an experimenters productivity. These
challenges are further amplified by the recent trend of moving testbeds
from isolated labs to unpredictable real world environments to favor ex-
perimental evaluation under realistic conditions. This paper presents a
framework for resource selection in large scale and heterogeneous Inter-
net of Things testbeds, in order to support the experimenter with an
increased understanding of available testbed resources, their expected
behavior and topological relationships in the experimentation environ-
ment. Through an evaluation case study we demonstrate the effectiveness
of our proposed framework.

Keywords: Testbeds, Resource selection, Internet of Things, Wireless
Sensor Networks, Semantics.

1 Introduction

The promise of the Internet of Things (IoT) to bring new levels of efficiency
and increased real world insights to a variety of business domains has fueled
research in the recent years with the aim to make this vision become a reality.
However, the lack of understanding how existing solutions can operate in vari-
ous real world environments as well as the missing consensus on technologies and
standards across different business sectors has hampered the wide scale deploy-
ment of IoT solutions. There is a growing need to evaluate, compare and bench-
mark emerging IoT solutions on larger scale and outside lab environments under
realistic operational conditions and to mature these solutions further through
experimentally driven research.

While suitable experimentation environments and testbeds are slowly emerg-
ing [1], there is still a lack of adequate tools in order to support user friendly
and efficient experimentation in such environments [2] with reduced manage-
ment complexity. In particular features such as increased heterogeneity of these
testbeds and their scale represent severe challenges for the experimental users as
well as the testbed management tools that are necessary to manage efficiently
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available testbed resources. For example the selection of an adequate set of ex-
perimentation resources for a planned experiment can be a daunting task in
an environment of thousands of experimentation resources, with different ca-
pabilities and time-varying properties if the user is provided with non-intuitive
user interfaces such as simple resource list which are commonly used in today’s
testbeds. Similarly testbed management tools must provide reduced complexity
for testbed administrators to manage a potentially large number of experimenta-
tion resources. These tools must take into account the time-varying properties of
testbed resources and their surrounding environment in order to provide users
with reliable information for their selection and to optimize the re-use of the
underlying testbed substrate for concurrent experiments.

In this paper, we present a framework for large scale and heterogeneous In-
ternet of Things testbeds, which allows experimental users to efficiently select
resources to fulfill specific experimentation requirements based on static and
time varying properties of available testbed resources. More concretely we make
the following specific technical contributions that are integrated into an holistic
framework:

– We propose a mechanism that allows an experimental user to quickly ver-
ify whether there are suitable resources for an experiment based on static
properties of the testbed. For this purpose an ontology for describing IoT
testbed resources has been developed together with a semantic query mech-
anisms that identifies a suitable set of resources based on matching required
properties to those of available IoT testbed resource description instances.

– We provide a tool that allows a user to visually explore the topology for the
resource required for an experiment and further scope the exploration by
specifying constraints such as time-varying properties of links between IoT
resources.

– We provide mechanisms to efficiently update properties of resources in the
system to closely match real world changes to the testbed infrastructure and
surrounding environment.

– We describe an implementation of the above framework and evaluate its
effectiveness on a case study in our testbed

The remaining paper is structured as follows. Section 2 surveys existing work,
while section 3 provides an overview of our framework for resource selection,
putting it into the context of IoT experimentation environments. Section 4 de-
scribes in more detail realization of our proposed framework components and
underlying information models. In section 5 we evaluate the effectiveness of
the proposed framework using a detailed case study and present conclusions in
section 6.

2 Related Work

In the following section we briefly discuss related work in the field and how our
work differs and improves on it. In particular we focus on how resource selection



226 M. Nati et al.

in existing Wireless Sensor Network and IoT testbeds is supported and how
resources in these testbeds are described.

2.1 Resource Selection in Existing WSN and IoT Testbeds

The increasing trend in the field of Wireless Sensor Networks (WSNs) and IoT
research to test the effectiveness of the proposed solutions on a real hardware
deployments motivated the creation of a multitude of IoT testbeds and the
development of numerous custom solutions for their management [2]. Most of
the proposed solutions provide basic functions for executing experiments on top
of a given set of resources, such as reprogramming resources with a given test
image, resetting them in order to start and stop an experiment and to stream
back debug messages generated at run-time by the selected resources to a central
server, mainly through the use of a wired backbone infrastructure. Examples of
such frameworks are MoteLab [3], TWIST [5] and their clones or evolutions,
such as for instance the INDRIYA testbed [2]. These frameworks were mainly
used to manage a set of homogeneous sensor nodes as experimentation resources
and provided the user with little support in selecting suitable ones apart from a
list-view providing not much more information than the unique identifier of the
resource. Such approaches for resource selection put an increasing burden on the
testbed user for larger testbeds with heterogeneous nodes.

In order to present topological relationships between nodes and environmental
dependencies, some frameworks provide views to display a deployment map of
the testbed resources, showing the hierarchy of the testbed infrastructure com-
ponents [4] and/or physical links that may exist between different nodes [3].
While serving as decision aid for the experimental user, they are based on
static information data bases that have been obtained through previous experi-
ments or by manual user entry. Furthermore resource selection is still carried out
manually through list-views, making it a tedious tasks for experimental users.
In order to better capture the characteristics of heterogeneous resources, the
WISEBED [6] framework defines an XML based language called WiseML able
to describe testbed resources and topological links they may have. In order to
select adequate experimentation resources, users must still either browse these
WiseML descriptions or generated lists from these XML documents. Similarly,
SWORD [17] represents an example of an XML based declarative resource dis-
covery service for wide-area distributed systems, which successfully operates on
top of overlay testbeds such as PlanetLab.

Our framework complements the above efforts by providing a holistic solution
to simplify resource selection for large scale and heterogeneous IoT testbeds and
corresponding framework management services.

2.2 Description of Testbed Resources

The increased heterogeneity in testbed hardware and the need to provide access
to testbed resources in the context of federated testbeds has motivated more
descriptive approaches of expressing resource capabilities inside of a testbed
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framework. Initial approaches made use of XML based description formats. Ex-
amples thereof are the aforementioned WiseML format or the RSpec [9] format
of the ProtoGENI and PlanetLab control framework. The cOntrol, Management
and Measurement Framework (OMF) developed within the ORBIT testbed, in-
troduced a domain-specific language named OEDL [10], which allows to describe
experiment specific resource requests through a Ruby based scripting language.

The potential of exploiting machine processing capabilities for the development
of advanced testbed tools that increase the autonomy of testbed operation and
productivity of the testbed users have seen semantic resource descriptions recently
emerging. An early example is the Network Description Language (NDL) [11], its
extension NDL-OWL and the Network Markup Language (NML).

There have been other attempts developing XML and RDF based resource de-
scriptions for sensor networks, which are however not focused at modeling these
as testbed resources. Examples are the Sensor Model Language (SensorML) [12],
the Semantic Sensor Network specification of W3C [13] or OntoSensor [14]. These
efforts mainly focus on the sensing capabilities and observations or how to expose
sensors as service endpoints in web service architectures.

More closely to our work on semantic modeling of IoT testbed resources is
the recent work of Ju et al. [7]. In their work the authors propose an ontology
for describing heterogeneous resources of wireless sensor network called LENS
(Language for Embedded Networked Sensing) which has been integrated within
the testbed framework developed by KanseiGeni initiative [8]. In contrast, our
approach does not propose an ontology model from scratch, but instead extends
the recent W3C ontology on Semantic Sensor Network [13] by specifying further
details pertinent to IoT testbed resources. While there are similarities in modeled
concepts, there a differences in properties and how the relationships of concepts
are expressed. Furthermore, the authors of [7] do not provide any details on the
mechanisms to populate and maintain the static and dynamic properties of these
models within the testbed framework during operation.

3 Overview of Framework Architecture

Experimentation on existing IoT testbeds typically follows an experimentation
life-cycle that comprises different activity stages, including experiment speci-
fication, preparation of experimentation resources as well as the execution of
experiments and the subsequent analysis of experimentation data [2].

One of the most critical task is the experimentation scenario design and the
selection of appropriate testbed resources for the envisioned experiment. The lat-
ter is particularly challenging for large scale IoT testbeds such as the emerging
SmartSantander facility [1] as the experimental user is confronted with thousands
of possibly heterogeneous experimentation resources with different capabilities
and specific connectivity characteristics, constraint by their deployment environ-
ment. This is further complicated by that fact that experimentation resources
may fail or become temporarily unavailable for experimentation due to connec-
tivity failure or other ongoing experimentation tasks. Furthermore time-varying
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interference levels at wireless experimentation resources due to ongoing experi-
mentation at neighboring experimentation nodes or external sources may have
an influence on the suitability of a particular experimentation resource.

Figure 1 shows a high level overview of the architecture of our proposed IoT
experimentation framework. As can be seen from the figure, the framework func-
tions and support tools are exposed through a graphical user interface called
TMON towards the experimental users of the testbed. TMON allows simpli-
fied and user friendly access to a variety of different testbed services which are
able to support the experimentation users during all stages of experimentation.
This includes access to functions that assist the user during experiment specifi-
cation and resource configuration phases but also during experiment execution
and experimentation data analysis.

Fig. 1. Overview of the architecture of the proposed IoT framework for resource selec-
tion and management

For supporting the resource selection phase, the framework provides two ded-
icated functional components, the resource explorer and the topology explorer in
order to assist the user with an exploration of available testbed resources and
their static and dynamic properties and topological interdependencies. In our
framework testbed resources and the preliminary static capabilities they pro-
vide are described by semantic resource descriptions, which are stored in a RDF
data base. Through TMON a user can formulate visually queries for specific
resource properties in order to satisfy the requirements for a particular experi-
mentation scenario. The resource explorer evaluates these queries and performs
a semantic matching against the semantic resource descriptions (RD), in order
to provide the user with a selection of testbed resources fulfilling the desired
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properties. Once an initial subset of resources has been selected, the topology
explorer allows a user to explore the topological relationships and characteris-
tics of the links between nodes. As this information is quite dynamic and may
change in particular for wireless links, it is updated regularly by the testbed
management framework and kept in a separate database. This data base also
includes other dynamic properties such as the interference levels experienced in
different wireless channels. Testbed resource observers that are attached to each
testbed resource are able to detect the availability of new testbed resources,
as well as corresponding status and topology information and ensure that the
information available to the proposed testbed framework functions are always
up-to-date. The preliminary event based communication is realized through a
publish subscribe messaging bus inside of the framework.

Once a user has selected a suitable set of experimentation resources, the exper-
imentation specification is completed through TMON by provisioning of images
for experimentation and the specification experimentation timing requirements.
The experimentation configurations are passed to the reservation system and
scheduler for execution of the experiment. An experiment executor controls the
execution of experiments and allows testbed users to interact with the exper-
iments. During the experimentation phase, experimentation results and traces
are collected to an experimentation database. TMON provides the user with
different views to the experimentation data, allowing quick visual inspection
of the behavior of an experiment during execution or a detailed analysis after
experimentation.

The discussions in the remaining paper will focus on the components and
tools that allow efficient specification of testbed resources.

3.1 Resource Exploration

The purpose of the resource exploration tool is to simplify the discovery of
available experimentation resources and the identification of a suitable sub-set for
an envisioned experiment. The design of an adequate experimentation scenario
is not an easy task and requires the user to have a thorough understanding of the
underlying testbed resources, their capabilities and inter-relationships. For larger
testbeds such information may be difficult to know or obtain upfront. Starting
with a rough idea for an experimentation scenario an experimentation user will
explore the availability of suitable resources and may iteratively adapt and refine
the experimentation scenario to match the characteristics offered by a testbed
environment. The availability of critical information for the resource selection
process is crucial, so is the efficiency with which such information can be accessed
and searched directly by the human experimenter or by tools supporting him.

In order to leverage the increased machine processing capabilities of the grow-
ing eco-system of the semantic web, one of our design decision has been to seman-
tically describe our testbed resources. Instead of reinventing an ontology from
scratch for our resource model, we have carefully evaluated existing state of the
art ontologies in the sensor network and IoT domain and selected the Semantic
Sensor Network (SSN) ontology [13] as a starting point. We have then extended
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Fig. 2. UML diagram of the resource description model

the SSN ontology with concepts that are pertinent to IoT and sensor network
testbed resources, including the most critical information that an experimenter
may require for an adequate selection of testbed resources. Figure 2 provides
an overview of the key concepts of SSN highlighted in grey and our proposed
extensions.

Our proposed resource model takes into consideration the three possible de-
vice tiers that state of the art IoT facilities [2] are comprised of, by subclassing
platforms for IoT node tier, gateway tier and server tier from the original SSN
platform concept. A platform is deployed at a particular location, which has
implication for most of the different devices that it hosts. Devices that are at-
tached to a platform can be computing and communication devices and for the
IoT node platforms often sensing and actuation devices. Communication devices
can be wired or wireless. Sensing devices observe properties of their surrounding
environment, which are constraint to a particular observation area. Likewise ac-
tuator may influence properties within their respective actuation area. The SSN
ontology so far only specifies sensing devices.

For each of the concepts a variety of attributes have been defined that may
be of relevance to the experimenter for resource selection. Experimentation
code, e.g. a protocol implementation, is often developed based on a particular
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operating system, e.g. TinyOS and may have certain requirements on processing
capabilities or available memory of the underlying node platform. It is there-
fore important to know whether there are nodes supporting the execution of
the experimentation code. Some experiments may require specific sensing ca-
pabilities and/or cover specific geographic locations with these. In other cases
experimenters may have a specific interest in communication devices available at
IoT and GW nodes and what settings are possible for their configuration during
experimentation. It is important to note that our proposed resource model is
a starting point and will evolve as new hardware or software features become
available or new experimentation use cases emerge.

The resource descriptions are created an maintained in a triple store, which
can be queried through a SPARQL query engine. In order to hide the user from
the details of constructing SPARQL queries, our resource explorer provides an
front-end for visual query specification. These query specification contain the
above described resource types available, constrained by desired properties and
required numbers. The visual query specifications are then translated by the
resource explorer into a set of SPARQL queries which are submitted to the
query endpoint. Only those resources will be returned that satisfy the filters
applied in the query. While gaining quickly effective feedback about availability
of suitable resources, the user can use the identified subset as a starting point
for further topology exploration.

3.2 Topology Exploration

Based on the nature of an experiment, an experimenter may be interested also
to investigate the relationship among the resources and between the resources
and the experimentation environment. The topology explorer provides the exper-
imenter with an interface to explore these relationships based on an underlying
physical network topology model as depicted in Figure 3 for IoT node platforms.
A physical topology consists of node platforms and links. A link is defined be-
tween two communication devices that are hosted by a node platform. Each link
is described by a source device and by a sink device, thus two links between to
devices may exist with their specific properties. This is in particular the case for
wireless interfaces where link behavior is inherently asymmetric. Furthermore
in order to account for interference in an experimentation environment a cor-
responding interference module describes the perceived interference at the sink
side of a link.

Examples of a topology visualization are provided in provided in figures 4
and 5. The topology explorer takes as input a node set and a particular setting
configuration of the communication devices. For example, for an 802.15.4 based
radio, the interface takes as input one of the 16 available channels and one of
the transmission power level available for the radio chip featured by the respec-
tive resource. Based on this information, all the links connecting the selected
resources are visualized. The topology explorer also offers the possibility to fil-
ter only the links with specific properties in terms of Packet Error Rate (PER),
Link Quality Indicator (LQI), Receive Signal Strength Indicator (RSSI). A given
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Fig. 4. TMON Topology Explorer, inter-
ference free topology

Fig. 5. TMON Topology Explorer, inter-
ference affected topology

pre-defined sets of topology exploration rules are also defined, implemented and
accessible to the user in order to highlight nodes forming a connected component,
nodes forming a clique, or all the nodes geographically connected to a selected
destination sink. Further user-defined rules can be also easily defined based on
a plug-in mechanism provided by the TMON interface, which offers APIs for
accessing topology information and their visualization.

Figure 4 shows the nodes that are geographically connected (yellow nodes) to
a selected sink (green node) with a path made by only nodes closer to the sink
than the considered node and for a given selected configuration of channel (20),
power level setting (7) and PER (0.9). Red nodes represent dead-end nodes in
a geographic sense, while blue nodes (not present in the considered topology)
are the disconnected ones, because no links between them and the rest of the
topology exist for the selected parameter. All these provided information allow
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the user to gain a better understanding of the relations between resources and
check if they match what it will expect to see during its experimentation phase
in terms of topology connectivity, multi-hop path between a given source and
destination nodes or other features.

Apart from displaying available links between nodes, a user can also explore
existing interference affecting the links in an experimentation environment. For
a scenario similar to that depicted above (channel 15, power 7, PER 0.9), Fig-
ure 5 shows the interference that was present during the characterization of the
respective links by highlighting the occurrence of interference above a certain
threshold level with exclamation mark symbols next to the affected links and
by changing the node shape to a triangle. By adjusting channels and interfer-
ence levels an experimenter can thus quickly determine where his experiment
may be affected by an overlapping interferer in the environment. In our initial
implementation, we consider as interference sources the presence of WiFi Access
Point operating close to a resource in a range of frequencies overlapping with
those selected by the user for its experiment. A range of configurable parameters
for selecting the interfering sources based on the quality and power of the IEEE
802.11 signal affecting a given resource is also provided to the user. Our model
can be extended to other interferer based on available detection mechanisms in
the testbed.

The outcomes of both resource and topology exploration phase is a set of
suitable experimentation resources that can be further reserved and configured
for subsequent experimentation.

3.3 Resource Observation Plane

The resource and topology explorer are only effective, if the information kept in
the underlying information models about the resources is up-to-date and reflects
the current conditions in the testbed. This is the responsibility of the testbed
resource observer in our framework. Testbed resource observers have two primary
tasks. The first one is to keep track of the availability status of testbed resources
in the testbed and detectable changes to resource properties and reflect those in
the semantic resource descriptions. The second task is to keep continuously track
of topology and environmental related information of the testbed, such as link
characteristics or experienced interference levels in the surroundings and reflect
those in the topology data base. In the following we describe the realization of
each of the two functionalities in more detail.

The first time a new resource is added to the testbed, an administrator pro-
visions a semantic resource description (possibly by customizing a pre-existing
template for a resource type), which is added to semantic resource database.
This ensures that only authorized resources are able to attach to the testbed
framework. These descriptions are only removed, if an administrator decides to
discontinue the use of a particular testbed resource.

Our assumption for our framework is that IoT testbeds follow a three tier ar-
chitecture, which is the case for more advanced IoT testbeds of larger scale [2].
In such architectures, IoT nodes attach to GW tier devices which in turn attach
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to server tier devices. The testbed resource observer function is realized by a dis-
tributed process framework that is mainly deployed across nodes of the server
and gateway tier. Testbed resource observer instances of the GW tier not only
observe information about their own node, but also take care of observing di-
rectly attached IoT nodes. In the case of a two tier architecture with no GW tier,
the testbed resource observer instances on the server tier take care of directly
attached IoT nodes. Our design tries to minimize the reliance on IoT node tier
as much as possible, due to the resource constraint nature of these devices to
support a dedicated observation plane stack in parallel to experimentation code.

Availability information for testbed resources is kept as soft-state and requires
periodic update from Testbed resource observer instances. Respective instances
report the resource identifier of the corresponding testbed resources they are
responsible for using registration messages, which are matched against the se-
mantic resource descriptions in the data base. Only previously configured re-
sources are considered. Resource identifiers are in the form of URNs composed
of a testbed identifier prefix (preconfigured by an administrator at the testbed
resource observer instance) and a unique resource identifier that can be discov-
ered local at a resource. The latter can be the MAC address of the interface
through which a node attaches to the testbed or a serial id for the case of some
IoT devices, e.g TelosB.

While the update process for server tier and GW tier devices is straight for-
ward, some more details for the IoT tier need to be explained. The testbed re-
source observer instances of the GW device discover directly attached IoT nodes
either through implicit detection of their attachments or through an explicit reg-
istration of the IoT node instances. The first case works well for IoT nodes that
are connected through a wired infrastructure. For example in our testbed all
sensor nodes are attached via USB connections to the GWs, which can discover
attachment and detachment of USB devices by observing the USB bus events or
device maps of the underlying operating system. In the case only wireless links
exist to IoT resources, each IoT resource must be configured with a bootstrap
image that is able to communicate availability information and minimum device
properties (such as the resource id) to the testbed resource observer instance of
a gateway device. Apart from updating availability information or changes to
properties that can be locally detected, e.g. energy levels, testbed resource ob-
server instances also update discovered topology related information between
IoT nodes and GW nodes.

A more complex process is the maintenance of IoT node related topology in-
formation and environmental characteristics such as interference for which the
testbed resource observer relies on further support functionality. The update of
the IoT node related topology information is coordinated across different testbed
resource observer instances and requires the explicit installation of a profiling
image on the IoT nodes. The outcomes of such characterization is then reflected
by the resource observers in the topology database. Update of IoT node topology
related information is carried out automatically at periodic intervals during idle
time of the testbed resources or based when significant changes in interference
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are detected in the surrounding environment. In order to avoid interference with
ongoing or scheduled experiments, the profiling activities are carefully coordi-
nated using knowledge on utilized channels from the experiment specifications.
The interference characterization of the environment requires interference de-
tectors to be present at the gateway nodes. As our IoT nodes operate in the
2.4 GHz ISM band, WiFi interferer represent the major problem. Our current
implementation characterizes interference caused by WiFi access points in the
surroundings by frequently scanning available sources and recording the corre-
sponding channels together with signal strength and quality indicators through
a WiFi card attached to the gateway node. As a GW device and directly at-
tached IoT nodes are physically close located in our testbed architecture, we
make the simplifying assumption that the measured interference at the GW
nodes caused by the presence of WiFi signals also affects the IoT nodes in the
same manner. The testbed resource observer updates the corresponding informa-
tion in the topology database. Interference characterization takes also place at
the same time link characterization experiments are performed. As interference
characterization does not rely on code executing on IoT nodes, it can take place
more frequently, even during user generated experiments, and annotated to the
corresponding experimentation data.

Finally the testbed resource observer instances communicate with framework
services and between each other through a publish subscribe messaging bus.
Our current implementation is based on an MQTT broker and client implemen-
tations. However details of the underlying communication framework is out of
scope of this paper.

4 Evaluation Use Case

In the following we present a WSN protocol evaluation as an initial case study
to demonstrate the usefulness of the resource selection framework in our IoT
testbed. The evaluation is carried out in the SmartCCSR IoT testbed deploy-
ment, which is part of the SmartSantander experimental facility. The testbed
consists of 250 freely programmable sensor nodes deployed in a real world of-
fice environment across the two floors of the CCSR building, at the University of
Surrey, covering all the desks and communal areas of the research centre. The de-
ployed IoT nodes consist of 200 TelosB based platforms and about 50 SunSpots,
which are heterogeneous in their sensing capabilities. While the SunSpot plat-
forms provide only on-board sensing capabilities (accelerometer, temperature,
light), the TelosB platforms provide various sensing modalities varying from
on-board sensors such as temperature, light and humidity to external sensors
mounted on a custom board providing energy metering, noise and light levels,
temperature and motion.

The WSN protocol utilized in this case study is a TinyOS implementation
of a geographic routing protocol for wireless sensor networks [15]. The goal is
to carry out an initial small scale evaluation of protocol behavior on a dense
multi-hop connected network with approximately 15-20 nodes. Figure 6) shows
an overview of all experimental resources on the first floor of the building.
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A first challenge the experimenter is faced with is to find suitable testbed
resources out of 250 available experimentation nodes inside of the building that
match the expected node platform and topology requirements. While sensing
modalities are not important for the experiment, the experimenter knows that
all nodes with energy meters attached to it are currently utilized for a longer
term study [16]. Furthermore the experiments must be run on TelosB motes as
Sunspots do not support execution of his TinyOS based experimentation code.
Through TMON, the user specifies desired resource properties in a visual query,
indicating TelosB as node platform type and to use nodes with no energy meters
as sensing devices. Figure 7 shows the result of the query, which identifies a
subset of these nodes matching the requirements. Only 14 nodes are available,
however a visual inspection with the topology explorer allows the user to verify
that a suitable connected multi-hop topology exists, which will be otherwise a
tedious process.

Fig. 6. TMON Topology Explorer, 1st
floor testbed deployment

Fig. 7. TMON Topology Explorer, re-
source query result

Having identified a potentially suitable resource set, the experimenter now has
to chose a suitable channel and power level for its planned experimentation. In
order to have a fully connected multi-hop topology with the existing geographic
distribution, the user requires to fine tune of the transmission power the selected
set of nodes carefully. Using topology explorer, he can observer a fully connected
topology at a transmission power level of 7. He further discovers potential dead-
end nodes that are good experimentation cases for the behavior evaluation of
the protocol.

However the protocol performance and behavior greatly depends on the be-
havior of the links between the experimentation nodes. Lack of detailed knowl-
edge about the link behavior and environmental interference can lead to
misinterpretation of the protocol behavior, which we will try to demonstrate
in the following experimentation scenarios.
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Table 1 summarizes 5 scenarios that show different channel that are affected
by different levels of interference coming from WiFi access points in the sur-
roundings. While the Scenarios 1 to 4 are derived using the knowledge gained by
the system during the link characterization phase, the Scenario 5 is artificially
created by modifying the testbed environment at experimentation time.

Table 1. Experiment scenarios

Scenario 802.15.4 Ch. Interfering 802.11 Ch. Affected nodes Degree of Interference

1 11 1 14/14 High

2 15 2 11/14 Medium

3 16 6 5/14 Low

4 20 None 0/14 None

5 20 7 2/14 Very Low

We ran our geographic routing protocol 5 consecutive times, each over a period
of 15 mins with an average generation packet rate of 1 packet every 2 seconds. In
each of the considered scenarios, we compute the fraction of packet successfully
delivered to the sink (PDR) and their end-to-end latency. During each run the
Testbed observer characterizes the interference environment and we use this data
for annotating each set of results. No deviations were observed to the interference
previously captured in our resource models, apart for the Scenario 5 for with we
intentionally turned on an new Access Point in the nodes proximity that operates
on a new interfering channel (7). The results of the evaluation are reported in
Table 2.

Table 2. Experiment results

Scenario PDR End-to-end Latency (s)

1 0 0

2 0.75 1.42

3 0.98 2.42

4 1.0 2.96

5 1.0 2.84

As expected, in an high interference scenario, such as 1, no packet are received.
This is due to a characteristics of our protocol, that performs a Clear Channel
Assessment of the channel based on energy level before each transmission. Due
to the high interference strength affecting all the nodes in this scenario, all of
them are prevent to transmit any packets. In order to exclude possible bug in
the protocol, it has been tested with the same channel on a different set of
nodes, not affected by this interference. The behavior of the other scenarios is
quite predictable based on the collected interference information. The medium
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interference scenario performs better then the high interference one, with 75%
of the packet delivered, but performs worse to the scenario 3 and 4 were less
interference is experienced. This is due to the fact that interference prevents
some node to deliver their packets, as they appear to be disconnected from the
topology. As expected an higher PDR translates in an higher traffic for the
network and in an higher latency experienced in delivering packets. Finally, as
expected, Scenario 5 behaves very similar to Scenario 4, due to the very low
interference the nodes are exposed.

Even for the small scenario that we presented for reason of simplicity, the
experimenter would have had difficulties to explain the protocol behavior for
randomly selected channels without such explicit knowledge of interference pro-
vided by our framework. He could have confused protocol behavior for an imple-
mentation bug or spent significant amount of time playing with channel setting
in order to find a suitable topology characteristics. As the scale of experiments
and testbeds grows, the benefits of our framework become even more evident.

5 Conclusions

Our initial evaluation shows that the proposed resource selection framework pro-
vides a useful tool when experimenting in unpredictable real world environments
of larger scale with heterogeneous testbed resources. It allows experimenters to
become more productive by providing an increased understanding of available
testbed resources, their expected behavior and topological relationships in the
experimentation environment. In the coming months, the proposed framework
for resource selection will be integrated into the Santander testbed site, which
represents a urban scale outdoor experimentation environment. We believe that
such tools are essential for more productive experimentation in such challeng-
ing IoT testbed environments. While the initial focus of our work has been on
catering towards the challenges of IoT environments, our framework could be
applicable to testbeds of other Future Internet technologies. We have already
started work on integrating mobile phone based experimentation devices into
our framework and hope to investigate soon the required adaptations and the
effectiveness of our framework in federated Future Internet testbeds.
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Union under contract numbers ICT- 2009-257992 (SmartSantander) and ICT-
2009-257521 (IOT-A).
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Abstract. PlanetLab testbed is widely used to evaluate protocols and
applications under realistic Internet conditions, but this realism comes
at the cost of uncontrolled topology and traffic behavior. The use of
overlay networks on PlanetLab can solve this problem by giving more
control to the experimenter. However, manually creating such overlays
is far from simple, and existing solutions are either not available for all
PlanetLab nodes, or lack support for low level overlays. Deployment and
customization of overlay architectures are also poorly supported. In this
paper we present a flexible solution to support overlay networks on Plan-
etLab, providing deployment automation, tunneling, routing, and traffic
shaping capabilities. By building our solution into NEPI, a general frame-
work for network experimentation, which automates design, deployment,
and management of experiments, we simplify the complexity of building
overlays on PlanetLab, and foster reusability and extensibility though
NEPI’s modular structure.

Keywords: networking, overlays, PlanetLab, NEPI.

1 Introduction

PlanetLab[4] is a globally distributed testbed composed of many nodes con-
nected to the Internet. It provides support for the development of new network
technologies, enabling researchers to evaluate new protocols and applications
under realistic Internet conditions. It is difficult, or even impossible, to achieve
the same level of realism using alternative experimentation environments, such
as simulators [22], and this is what makes PlanetLab so valuable. However, this
realism comes at the cost of a lack of control over the many factors that influ-
ence the outcome of an experiment, such as links, nodes, and external traffic
conditions, since the researchers have no control over the Internet itself.

The use of overlay topologies on top of the Internet can mitigate this problem
by giving more control to the experimenters. Overlays can be used to force
specific routing topologies [2], or to analyze real traffic conditions[1,3] with a
degree of fault isolation.

Still, creating overlays on top of PlanetLab is a non-trivial task because of
the constraints imposed by the type of network virtualization [16,7] used to
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allow multiple experiments to run independently in the same nodes. Setting up
routes, tunnels, or IP filters, cannot be achieved by simply invoking appropriate
system calls as in classical (non-virtualized or fully virtualized) environments,
but requires instead the use of PlanetLab-specific tools.

Previous efforts have been made to enable the creation of overlay networks
on PlanetLab, which were mainly focused on the tunneling and routing aspects.
Existing solutions like PL-VINI [5] are limited because they depend on extensions
or infrastructure that is not available for all nodes, and thus they do not currently
work on the whole PlanetLab network. Other alternatives like Splay [9], do not
suffer from this limitation, but can only be used with application-level overlays.
While these solutions do provide enabling technology to build overlays on top
of PlanetLab, they do not solve the heavy load of manual work involved in
the customization and deployment of concrete overlay experiment scenarios. In
general, they do not provide enough tools to easily customize overlays, and only
perform a subset of the tasks needed to run and manage experiments on top of
them.

In this paper we present a solution for automatic creation and customization
of overlay experiment scenarios on PlanetLab, based on NEPI [12,13], the Net-
work Experimentation Programming Interface. Similar to other tools, our work
enables the creation of virtual links over the Internet, allowing both, layer-2
switching and layer 3-routing, between PlanetLab nodes. Nevertheless, by build-
ing our solution into NEPI, we provide support for the different steps involved in
the construction of overlay experiment scenarios, integrating the design, config-
uration, and automatic deployment on top of PlanetLab in one single tool. We
refer to this aspect of experimental overlay construction as deployment automa-
tion. Moreover, our solution provides all the necessary mechanisms for overlay
customization, including custom queues and transmission mechanisms, and the
functionalities required to run applications in the overlay, like IP routing.

Efficient and flexible tunneling between arbitrary PlanetLab nodes is accom-
plished by providing several tunneling alternatives. Like RiaS [6] and Trellis [8],
we support layer-2 and layer-3 tunnels with options for UDP, TCP and GRE
encapsulation. However, in contrast with previous work, our solution does not re-
quire specially tailored nodes, and can be deployed in any node in the PlanetLab
network.

Routing table manipulation was not possible before due to the lack of an
appropriate system interface. We enhanced routing capabilities in PlanetLab
by extending the vsys [11] interface to allow scalable, secure, and cooperative
manipulation of nodes’ routing tables, a capability on top of which our solution
builds application-transparent overlay networks.

Our solution was designed to enable the use of experimental queuing and
aggregation methods with low implementation overhead. It allows the researcher
to easily perform traffic shaping within experimental overlays.

Using these tools, researchers can experiment with routing overlays on Plan-
etLab with minimal effort, and through NEPI they can perform the experiments
repeatedly and automatically in a controlled way.



242 C.D. Freire et al.

The focus of this paper will be set on the techniques used to support de-
ployment automation, tunneling, routing, and traffic shaping capabilities for the
construction of routing overlays on PlanetLab using NEPI, which we consider
the be the core contributions of this work.

The rest of the paper is organized as follows: we begin by discussing the
challenges involved in the development of our solution, then we cover the imple-
mentation details of NEPI overlay construction and customization support for
PlanetLab. We finally evaluate the solution with a concrete use case showing
how the tools we develop can benefit to the evaluation of networking protocols
with increased accuracy.

2 Related Work

Two of the most complete previous solutions for low-level overlay deployment
in PlanetLab are PL-VINI [5] and RiaS [6]. Both have serious drawbacks that
limit their usability.

PL-VINI is an implementation of a virtual network infrastructure on Planet-
Lab, that uses User Mode Linux virtual machines [17] to provide full network
virtualization for independent experiments running in the same node. Contrary
to the Linux-VServer [16] container-based virtualization approach used natively
in PlanetLab, in PL-VINI, virtual machines in the same node have direct access
to the kernel network stack, making it possible to trivially manipulate routing
tables and create tunnels without interfering each other.

PL-VINI has a good performance and enables to easily create layer-2 overlay
topologies, but only around 40 nodes out of the many (1040) nodes in PlanetLab
support it. It depends on a set of extensions to PlanetLab that have not been
deployed on all nodes, and access to dedicated infrastructure that is also not
globally available, making it not suitable for big scale deployments in PlanetLab.

While PL-VINI allows the implementation of custom routing and queuing al-
gorithms, this can only be done through the Click modular router [5,21], which
precludes the possibility to reuse prototype code. In contrast, our solution was
crafted upon the idea of easy re-usability and it does not relinquish overlay
customization to a single application, thus it makes the researcher’s task of test-
ing prototype algorithms in realistic conditions easier. Furthermore, we provide
methods to run the experimental code in any PlanetLab node, expanding avail-
able resources beyond what PL-VINI provides.

Trellis [8], is another platform for network virtualization which implements
container based virtual machines by using Linux network namespaces [18]. Al-
though being the most performant alternative out there, by constructing its
tunnel implementation using GRE and kernel-mode switches, it suffers from
scalability issues. It creates one bridge and four taps (at least) per tunnel, all
connected via virtual (software) switches, stateful and expensive to maintain
objects. If every experiment running in a PlanetLab node created such tun-
nels, the kernel would be overwhelmed very easily. Trellis also does not respect
the administrative and fair share bandwidth limits that are imposed per node
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(and critical) to PlanetLab. Although it does provide bandwidth management,
it is not integrated with PlanetLab’s mechanism, so large-scale deployment of
the technique would be impractical. Like PL-VINI, it also would require heavy
changes in the PlanetLab system to enable its wide deployment, and thus it
remains an unavailable solution on most PlanetLab nodes.

RiaS [6], on the other hand, is supported by all the nodes in PlanetLab. It is
built upon an architecture of user-mode packet forwarders that create a network
of point-to-point links with layer-2 tunnels. By operating in user-mode, it scales
significantly more graciously than previous approaches under pressure, since it
is subject to PlanetLab’s fair-share scheduler. However, its support for layer-3
tunneling is limited because nodes with more than one interface (routers) in the
overlay topology are required to be PL-VINI nodes, thus for layer-3 tunneling
RiaS shares PL-VINI and Trellis limitations.

RiaS is heavily focused on layer-2 experiments, and because of this its ar-
chitecture is ill-suited for layer-3 overlays. It only implements layer-2 routing
techniques, to circumventing PlanetLab nodes’ inability to set IP routes at the
kernel level for one, and to support experimentation with arbitrary layer-2 pro-
tocols. It works more like a switch than a router. This imposes limitations on the
experiments, since RiaS by itself provides no layer-3 routing, and nodes cannot
reach other networks. Since RiaS does it all in user mode, it incurs heavy CPU
overhead, resulting in artificial bandwidth and scalability limits, and packet loss
well above that experienced in the underlying network. Rias does provide some
support for overlay deployment automation, in the form of a Resource Allocator
and Virtual Network Mapper tools. Although these tools consider the topology
level of an experiment, they do not cover the application level.

Other solutions like Splay [9] and Plush [14], do not even support low level
overlays (i.e. at layer 2 or 3), but rather they build application-level overlays.
Splay [9] is a good example, as it automates deployment both at topology and
application levels, has good performance, and is easy enough to use. However, it
only handles packets at the application level. Even its packet loss models apply
at the application level, which is an inaccurate rendition of link packet loss in
most cases. It is also not able to handle all applications, since they must be
written in Ruby using splay-specific support libraries.

PlanetLab support in NEPI was built to address the need to easily create and
customize overlays, both at topology and application levels, a problem which
current solutions do not fully address.

3 Challenges

PlanetLab [4] uses container-based virtualization to allow multiple experiments
to run independently on the same node while sharing its resources. The im-
plementation of network virtualization [7], however, has a cost: some tasks are
made more complex than in a classical (non-virtualized or fully virtualized) en-
vironment. Slivers (isolation units for experiments running in PlanetLab) do not
have full root privileges, so system calls to set up routes, tunnels, or IP filters,
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among others, are forbidden, requiring the use of PlanetLab-specific tools to per-
form these tasks. These limitations make many of the existing tools for overlay
creation unusable within PlanetLab [10].

In order to build overlays on PlanetLab, the first challenge that needs to be
addressed is tunneling. Packets have to be captured, encapsulated, and trans-
mitted over the Internet to their destination in a way that is transparent for
applications, and neutral for the intervening networks. Since PlanetLab nodes
host many slivers, 300 in average, which are container-based virtual machines
that share the same network stack, lower layer tunnels have to be implemented
to respect network isolation, in an environment of high concurrency.

User mode tunnels have their own challenges too. Since only the kernel knows
when a link is congested, and it will happily discard outgoing packets in this case.
To avoid packet loss at the kernel’s queue, which is undesirable when applying
customized queuing, it is necessary to limit packet egress rate to match available
bandwidth. But bandwidth can only be guessed, so user mode queues become
delicate to use.

Routing packets is another key challenge. Kernel routing table virtualization
is not able to handle as many slivers as are normally present in a node, so a
technique that shares resources safely is key to achieve routing successfully.

Per-sliver routing, a technique designed for UMTS/3G-connected nodes in
PlanetLab in [20] and embodied as a PlanetLab vsys script, allows slivers to
create their own private routing tables. This technique has scalability issues
since it only supports 150 concurrent slivers on each node, whereas the average
on PlanetLab is around 300.

Another problem that requires special attention is the testbed’s unstable and
unreliable nature. Nodes can be brought up and down without any warning,
or be overloaded and unresponsive, and their state is not always faithfully mir-
rored in the PLC API which we use for resource discovery. Our automation
procedures had to be made resilient on these situations, otherwise deployment
of big experiments resulted in unacceptably high failure rates.

4 PlanetLab Overlays in NEPI

NEPI [12,13] is a framework for network experimentation that automates exper-
iment design, deployment, and control, providing a uniform way of interacting
with different testbeds. NEPI provides an experiment description (ED) language
that allows researchers to design experiments, both at topology and applica-
tion levels, by adding and connecting testbed-specific component abstractions,
such as nodes and links. New abstractions can be implemented to support other
testbeds or to add new functionality.

An experiment controller (EC) entity is in charge of orchestrating the experi-
ment from the given experiment description. The EC is responsible for allocating
resources, configuring components, running applications, and retrieving experi-
ment results. It also handles the coordination of the (possibly several) testbeds
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involved in the experiment. The EC is independent from any specific testbed,
providing a large body of pre-existing automation functionality.

Because of these characteristics NEPI was an ideal choice to support au-
tomated deployment and overlay customization on PlanetLab. Our work was
focused, then, on adding the PlanetLab specific functionality to allow NEPI
to deploy experiments on PlanetLab. This not only included implementing the
necessary abstractions on NEPI, but also modifying the available interface in
PlanetLab to add the required routing and tunnel-enabling functionality.

In this section we will describe how overlays are created and customized on
PlanetLab using NEPI. We will also explain the mechanisms developed to sup-
port network-level routing overlays in PlanetLab, that is, overlays that route IP
or Ethernet packets. Other kinds of overlays are application-specific, and thus
require application-specific abstractions that are beyond the scope of our work.
The new mechanisms we contributed to PlanetLab to enable routing and tun-
neling, can be invoked by any user and application through the vsys interface.
With them, any PlanetLab user can now easily set up GRE links, and manipulate
routing tables.

4.1 Deployment Automation

In order to automate deployment of experiments involving overlays, an experi-
ment must first be described in a machine-understandable way. NEPI provides

Fig. 1. NEPI-managed PlanetLab overlays. (1) The user creates the Experiment
Description (ED) and passes it to the Experiment Controller (EC). (2) The EC uses
the instructions in the ED to discover and provision available resources. (3) The EC
instructs the allocated PlanetLab nodes to perform compilation and installation of
applications. (4) Build masters prepare application data which is then distributed Peer-
to-Peer among all nodes prior to experiment execution. (5) Results are relayed back to
the researcher automatically upon completion.
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an experiment description language based on interconnecting experiment compo-
nent abstractions, called boxes. These boxes can be grouped into two categories:
topology, and application.

To describe the topology-level of a PlanetLab experiment, we added boxes to
represent PlanetLab nodes, interfaces, and internet access. Picking nodes is a
critical design step. Since experiments can be affected by the presence of over-
loaded nodes, we allow researchers to specify constraints on various node metrics
that will be resolved at deployment time. An experiment could accept any node,
or it might require nodes with some amount of CPU or bandwidth unused. Or,
the other way around, we might need overloaded nodes, perhaps, if they were
trying to evaluate what happens when a node in the network is congested. All
those criteria can be useful for reproducing previous experiments.

To describe the application level, we added application and application-
dependency boxes, which can be connected to a node box, and represent an
instruction to deploy the application or dependency, and run it on the specified
node. Application boxes allow the specification of all the dependencies needed
for deployment: packages they depend on, to be automatically installed in the
nodes, and user programs to be launched, built and installed if necessary.

NEPI supports the concept of application traces, which capture the output
of applications or even network traffic. NEPI can automatically gather all the
traces at any point during execution, for inspection or analysis.

In contrast with Splay [9] and Plush [14], during experiment execution, NEPI
acts as a PlanetLab controller which can manage PlanetLab slices (groups of
slivers) and execute commands within nodes, rather than an agent that runs
directly in PlanetLab. NEPI only gives instructions to PlanetLab nodes the way
regular users would, using SSH. In this sense, our solution can be regarded as a
big, specialized scripting engine. The main benefits of this approach arise from
its flexibility: researchers can easily add functionality to it, and they do not
require any modifications made to PlanetLab itself, making it very easy to build
a range of reusable experimentation modules for deploying common topologies
or utilities in PlanetLab slices. Also, experiments descriptions remain valid and
usable for experiment reproduction, since NEPI and PlanetLab are decoupled
and changes to one do not usually affect the other

Once given access to the slice, NEPI uses the PLC API to perform resource
discovery, based on the criteria specified by the researcher in the experiment
description, and provision the nodes adding them to the slice.

To map overlay nodes into PlanetLab nodes, we implemented an algorithm
that constructs a set of viable hosts for each node, based on explicit and implicit
constraints. Implicit constraints include the number of real interfaces as specified
in the experiment description, and capabilities as required by the presence or
absence of virtual interfaces and custom routing tables. After such a set is built
for all nodes in the experiment, a simple backtracking procedure constructs a
subset of all viable assignments. Not one solution, but a whole class of solutions
are represented in a way that lets NEPI pick the best one in terms of qualitative
health metrics, such as node load and reliability.
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Fig. 2. Resource allocation strategy. Available nodes are partitioned into cate-
gories defined by the constraints derived from the experiment description. Each node
will require assignment from one or more categories. A backtracking algorithm com-
putes a set of solutions represented as an assignment node-to-category. Since each cat-
egory contains more than one node, the final solution is built using only the healthiest
nodes of the category (i.e. taking into account the node reliability).

NEPI obatins these node qualitative health metrics, tracked by the CoMon
[15] tool, through the PLC API. If apparently healthy nodes turn out not to be
so, NEPI adds those “seemingly live” nodes to a blacklist. With these precau-
tions, allocation on nodes with unstable communication is minimized, and thus
deployment success rates improve, which is a real problem when deploying large
experiments consisting of a great many nodes.

In order to achieve a certain level of reproducibility, we had to take into ac-
count the constantly changing landscape of PlanetLab. The controller will record
effective running parameters, like node load at the moment of deployment, phys-
ical locations, available bandwidth. When those parameters are not constrained
by experiment design, effective execution values will provide all the information
needed for posterior experiment reproduction, even when resource availability has
changed. Later runs can use this information to constrain node selection in a way
that resembles prior executions, or that ensures sufficient resource availability.

Once the nodes are successfully added to the slice and become responsive,
NEPI coordinates the process of deploying applications and dependencies. Ap-
plication resources, such as source code, are copied over to a few select nodes,
called the build masters. These build masters take care of building applications,
and downloading required rpm packages. In this way we avoid inefficient use of
PlanetLab’s resources - binaries only need to be built once per architecture, and
bandwidth can be better utilized by sharing required downloads in a peer-to-
peer fashion, preferring fast connections over slow ones. The rest of the nodes,
the build slaves, wait for their master to be done to copy the resulting binaries
and rpms from them.



248 C.D. Freire et al.

When everything is ready, the controller launches the applications. The re-
searcher can further interact with the experiment in realtime, modify certain
configurations, start and stop applications, and retrieve results though the con-
troller’s API.

4.2 Tunneling

NEPI supports tunneling both at layer 2 and layer 3, and provides encapsulation
over TCP, UDP, and GRE. Encapsulation over GRE is highly efficient since it is
supported at the kernel level. UDP and TCP encapsulation, in contrast, requires
user-mode packet forwarding, which adds processing overhead. However, it is
better suited for overlay customization, since the user-mode packet forwarding
daemon used by NEPI has been coded to support easily pluggable user-specified
behavior.

The creation of tunnels has two aspects. The first one is the creation and
configuration of the virtual interfaces, which is done through PlanetLab’s vsys
interface. We extended the existing interface to support creation of GRE links,
which was previously only possible through Trellis [8], with all the scalability
issues mentioned in Section 2. We also addressed potential conflicts related to
concurrent use of GRE tunnels by many slivers, a problem present in Trellis, by
marking all GRE packets between any two endpoints as belonging to the slice,
and in this way allowing the kernel to de-multiplex traffic belonging to each
slice both efficiently and securely, and allowing widespread adoption of GRE
tunneling without interference.

We enhanced point-to-point links configuration in PlanetLab by allowing pass-
ing the remote endpoint to the kernel when appropriate, and automatically set-
ting point-to-point routes, which is essential in the correct operation of many
applications. The system as a whole, though, still needs network-level routes,
so a mechanism for routing table manipulation is still necessary and will be
discussed in 4.3.

The second aspect of tunnel creation, is the actual forwarding of packets. NEPI
deploys a special purpose application for this, tun connect. It creates UDP, TCP
or GRE tunnels between two virtual interfaces, a basic building block of more
complex topologies. GRE tunnels require no user-mode packet processing, so
they perform best. But, when GRE links are inappropriate, such as when custom
queues or stream filters are applied, user-space packet forwarding is performed.
NEPI only performs packet encapsulation, routing and packet forwarding is done
in the kernel, avoiding any kind of heavyweight packet processing that was a
limiting factor in previous approaches.

4.3 Routing

Connecting network segments requires the presence of routing-capable nodes.
That is, nodes that can forward packets to the intended destination IP, for
which they need knowledge of the network’s topology. There are two main ways
to do this: static and dynamic routing.
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In static routing, routes are predefined, either manually or automatically, but
they do not change. This is the most common case, where routing tables are
populated with fixed rules.

In dynamic routing, routing tables are present just as in static routing, but
routers communicate with router-specific protocols to dynamically maintain op-
timum paths. There are many algorithms to do this, so the routing algorithms
usually work in user space and are highly customizable, sending routing ta-
ble updates to the kernel which does the actual forwarding. This mechanism
is a compromise between flexibility and performance, with highly customizable
routing daemons in user space, and packet forwarding taking place in the kernel,
to avoid unnecessary copying and thus achieving higher performance.

In order to support both static and dynamic routing, a mechanism to manip-
ulate the kernel’s forwarding information base (FIB) is required. To this end we
developed a new PlanetLab-specific interface, the vroute vsys script, that imple-
ments the standard IP routing manipulation system calls in a straightforward
fashion while enforcing certain rules aimed at maintaining proper separation
between slivers. vroute adds entries to the main routing table after validating
that the routes will not interfere with other slivers. This is done by checking the
private network address space assigned to the slice through the vsys vnet tag.
This tag can only be assigned by administrators, who are responsible of making
sure that the assigned segments are non-overlapping.

Prior to our work, PlanetLab only provided the sliceip interface to create
routing tables for slivers, which only supports 150 concurrent slivers per node,
an insufficient amount for the average number of slivers in a node (see Section 2).
By using both, the sliceip per-sliver routing, and the new vroute per-node rout-
ing methods, we solve the scalability problem and afford every sliver necessary
control over the routing tables.

Using the main routing table has the benefit of being limited by the number
of rules per node, rather than the number of slivers in a node. In fact, NEPI will
pick the vroute method if it does not need many rules, and sliceip if the table
is big enough to warrant a separate table, or the routes do not belong to the
slice’s private address space. With this we hope to make the system scale better
to high number of users sharing resources on the same nodes.

In combination with per-sliver routing [20], our solution creates a scalable
and secure way of configuring IP-routing at the kernel-level, that can be widely
adopted without disrupting PlanetLab. This means userland routing daemons
like olsrd are easily adaptable.

In this way, bandwidths up to 300Mbps have been achieved, enabling high-
bandwidth, low-overhead, and highly-customized overlays, which were previously
only possible in PL-VINI (using the handful PL-VINI-enabled nodes).

4.4 Traffic Shaping

In order to support overlay customization, including new queuing policies, user-
land packet forwarding and routing, like Xorp and Click, and even new tunnelling
protocols like OverQoS[1], we introduced several hooks into the framework in or-
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Fig. 3. Customizing overlay packet handling. Interprocess communication is used
to send all packets through a user process. Custom queuing, filtering and aggregation
algorithms can in this way be applied to the packet stream, both before encapsula-
tion and transmission, and after reception and de-encapsulation. When this is used in
combination with the built-in rate limiting options, arbitrary loss models, among other
things, can be applied to the overlay.

der to let experiments process network packets without having to implement all
the low-level details.

Stream filters can be arbitrary applications that process the packets flowing
through the overlays. They can be used to implement custom queues, packet
filters or transformations, tunnelling protocols. These modules can be provided
to the tun connect userland packet forwarder, to route all packets through user-
specified code. The mechanism only works when userland forwarding is taking
place, so it cannot be used with GRE tunnels.

The mechanism was designed so that even previous code not designed to
work with NEPI could be used. It takes either Python or C code, and provides
several ways in which experiments can process packets. Packets can be rejected
by implementing a filtering predicate, or a customized queuing class can be
provided that will be used instead of the primitive default FIFO. For more
complex processing, a connection to an external process that filters packets can
be made, covering most customization scenarios.

External filters can include piping all packets through a shell command, or
forwarding them to separate daemons, as would be the case if we wanted to
use Click. This is accomplished by writing a small module that returns two
file descriptors (i.e. a socketpair) through which all packets are piped. Thus, no
matter how a researcher decides to implement the prototype, the same code could
be reused for testing within PlanetLab. All this provides a level of flexibility no
other framework does.
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The tun connect module also performs user-land queuing. PlanetLab does not
allow slivers to control virtual interface’s queuing parameters, so queuing can be
accomplished in user-land by specifying custom queuing sizes or classes. This
allows researchers to very easily experiment with new queuing disciplines, as we
will demonstrate in 5.1.

Implementing OverQoS in PlanetLab would be trivial with this framework,
once the prototype has been written, significantly lowering the cost of experi-
mentation. The only foreseeable drawback of this technique is performance, as
the usage of stream filters incurs significant performance overhead.

5 Evaluation

In order to evaluate the solution in terms of ease of use, effectiveness and practi-
cality, we present an experiment case conducted on PlanetLab using NEPI. We
evaluate the practicality of our framework for real research cases by reproducing
an experiment from a published paper: POPI [19], a tool for packet forward-
ing priority inference. It was originally validated in PlanetLab in a costly and
laborious way, by probing routes between nodes and then manually requesting
information from intermediate providers by contacting their administrators.

We re-validated POPI using NEPI in a controlled PlanetLab overlay, a pos-
sibility that was not available at the time the paper by Guohan et al[19] was
published: by controlling routing behavior and comparing known overlay charac-
teristics against POPI’s inferred ones, we managed to achieve verifiable results,
in an automated and effortless fashion.

5.1 POPI

POPI[19], which stands for Packet fOrwarding Priority Inference, is a tool that
attempts to infer packet priorities in the intervening routers between two end-
points. In the paper by Guohan Lu et al, the tool is evaluated by simulation
as a first step, and in PlanetLab as a second step. During the PlanetLab run,
however, researchers had to ask ISPs about their routing policies, because they
could not otherwise verify that the priorities reported by the tool corresponded
to actual prioritization policies. Even then, their success was limited, because
not every provider answered, and because the information so gathered was very
rough.

We re-evaluated POPI, with the intention to evaluate NEPI’s adequacy in cre-
ating controlled routing overlays for protocols and application validation. NEPI
provides here the ability to create an overlay spanning lossy and congested links,
while at the same time granting controllable packet prioritization at selected
routing points by the use of customized queuing.

Designing the experiment was straightforward. NEPI already provided a ref-
erence queue class with TOS support 1, out of which a classifier queue based on

1 NEPI provides a base queue implementation, which can be attached to network
devices in PlanetLab, and defines queuing policies by inspecting the Type Of Service
(TOS) field in the IPv4 header.



252 C.D. Freire et al.

Fig. 4. POPI experiment concept. Three PlanetLab nodes connected physically by the
Internet, on top of which a routing overlay provides a controllable environment in which
to test POPI.

IP protocol was rather trivial to derive. We exploited our ability to control rout-
ing to introduce a mediating node between two arbitrary PlanetLab nodes. All
traffic between the endpoints is routed through this mediating node, which ap-
plies a controlled class of queuing, and which should result in the application of
recognizable statistical bias to the packet stream. Figure 4 shows the experiment
design, which includes deployment of POPI, unmodified, in PlanetLab.

We ran the experiment with numerous queue configurations, with the help of
a small script that leverages NEPI’s programmatic API. The experiment was run
in PlanetLab Europe (PLE) as well as a private PlanetLab-like cluster, allowing
us to experiment with different environments with little effort. The experiment
took 179 hours to run, but required no supervision. Of 325 runs, only 11 failed
to be deployed, because of connectivity issues (the controller was operating from
a domestic network), but were automatically retried or flagged as bad runs so
they could be skipped when analyzing results.

Since any PlanetLab node would be able to run the experiment, we could
have cut experiment run time significantly by running several configurations in
parallel, using more nodes instead, and illustrating the convenience of not being
limited to using only PL-VINI nodes for routing, as RiaS is. However, this would
have undermined our ability to compare against our small, private cluster.

Table 1 shows execution details. We induced multiple connectivity glitches by
connecting and disconnecting from the network, and joining and leaving VPNs
to stress NEPI’s failure recovery capabilities. Within the remaining runs, 32
failed because of problems with POPI’s tool itself and produced no results. A
vastly lower failure rate can be observed in our dedicated cluster, evidencing
that the strain on PLE nodes does have an effect on experiment success. Our
experiment was conducted at a particularly busy time of the year, yet failure
rates are acceptable, due to NEPI’s automated recovery procedures.

POPI could successfully infer queue prioritization in clear channels as long as
the different classes had different rate limits, but in instances where protocols
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Table 1. POPI experiment runs. Good runs are those where NEPI returned a successful
code. Bad runs when it did otherwise. Failed runs are good runs that produced no
output, in every case, because POPI could not establish the control connection due to
connectivity glitches.

runs/sets Good Bad Fail

PlanetLab Europe 142/30 8/0 16/0

Dedicated cluster 172/35 3/0 16/1

Table 2. POPI results, based on PLE runs only. Columns specify the bandwidth at
the node with the classifier queue, while rows specify the classifier queue configuration.
Marks show sets that contain cases (1) where the correct classification was detected
(2) where there was underpartitioning (3) where there was overpartitioning. Marks are
ordered according to predominance within the set. “4x TCP” represents a queue with
4 times as much bandwidth allocated to TCP traffic than other kinds.

config \ k 32 64 128 256 384

4x TCP (3,2) (1,2) (1,2) (3,1) (1,3)

4x ICMP (1,2) (1) n/a n/a (1)

4x UDP (1,3) (1) (1) (1,3) (1)

4x TCP 16x I (1) (1,2) (1) (1,3) (1)

4x U+T 16x I (2,3) (1) (3) (1) (1)

4x T+I (1) (1) n/a (1,3) (1)

indep. U,T,I (2) (2) n/a (1) n/a

were assigned separate classes with equal bandwidth (fair share queuing), POPI
could not tell the difference from a plain FIFO queue. There was a certain amount
of overpartitioning (cases where POPI inferred more classes than in reality) and
underpartioning (cases where POPI failed to infer a class), as expected, although
somewhat more frequent than expected according to the original research paper.
Table 2 summarizes our results.

In our experiment, 256k and 384k cases should not result in any classification,
because other nodes were uniformly limited to 256k. Any partitioning there is
considered overpartitioning, except when it detects the exact queue configura-
tion. It is interesting to note that TCP priority detection is consistently less
precise than with other protocols, as shown by the results of “4x TCP” and “4x
U+T 16x I” at 128k. In the former, there was a tendency to overpartitioning,
while in the latter TCP was consistently detected as having less priority than
UDP. This, after checking the resulting packet captures, could most probably be
due to reactive traffic generated by target nodes responding to POPI’s synthetic
TCP packets. This can interfere with the measurements, by exerting more pres-
sure than expected on the bottleneck queue. This effect is even more prominent
in our private cluster, where POPI is generally more precise due to the absence of
background traffic. This only highlights the bias experienced in TCP measures,
that is less evident when running in PLE.
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All the required sources and scripts to reproduce the experiment have been
made available on-line. With our tools, researchers can easily (assuming they do
have access to PlanetLab) reproduce the experiment, and even build other exper-
iments on top of it. NEPI’s experiment description XML contains not only topol-
ogy information, but also deployment instructions: where to get POPI sources,
how to build it, how to patch it if it were required. NEPI’s execution XMLs
contain valuable details about the resources used to run the experiment. All this
results in very strong reproducibility guarantees.

More details, and instructions on how to reproduce this experiment, can be
found at: http://www.nepihome.org/wiki/nepi/popiExperiment.

6 Conclusions

In this paper we have presented a framework that increases control over ex-
periments conducted using PlanetLab, allowing researchers to go beyond what
previously available tools permitted.

Our solution is based on building flexible routing overlays on top of PlanetLab.
We provide the ability to automate deployment of whole overlay experiment
scenarios, and improve the flexibility and scalability of the tunnelling and routing
techniques compared to previous approaches used in PlanetLab. Additionally,
our solution supports custom traffic shaping and different traffic encapsulation
and transmission methods, enabling easy customization of the overlays.

As part of this work, we extended PlanetLab’s vsys interface to include scal-
able and secure mechanisms for routing table manipulation, and creation of GRE
links. With these tools, we have shown how to implement low-overhead yet highly
customizable routing overlays.

In our use case “POPI”, we demonstrated the relevance of our contribution
by showing how it enables the researcher to gather experimental information
that was previously unavailable to him or her. By choosing to reproduce a previ-
ously published experiment case, we proved that our solution is relevant to real
research cases, while providing additional value.

A comprehensive technical evaluation of our solution is needed to further val-
idate the extent and limitations of our work. In future work, we will focus on
evaluating metrics related to scalability, resource usage, and performance. To
this end, we will consider node specific metrics, such as per node maximum
bandwidth and resource consumption, as well as global performance and scala-
bility metrics, such as maximum number of concurrent overlays and maximum
number of nodes per overlay.
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Abstract. Existing network testbeds can enable developers to evaluate the 
performance of different routing protocols in a network and help students to 
enhance their hands-on experiences and understand complex and abstract 
concepts of routing protocols by allowing them to carry out real-world 
experiments, but they are either limited in features or expensive to establish and 
manage. To address the problem, this paper presents ARTNet - A Real-Time 
Testbed for Routing Network – which supports almost all the popular routing 
protocols for typical applications in a cost-effective manner. ARTNet has been 
implemented on a multiprocessor server for users to create and manage their 
routing networks. Performance and functionality evaluations on the ARTNet 
platform show that it is a promising approach.  

Keywords: ARTNet, Network Testbed, Routing Protocols, Virtualization, 
Network Service.  

1 Introduction 

Network researchers and designers need to test different routing protocols under 
various conditions to determine whether they are robust or reliable. Students need to 
learn how to deploy routing protocols and manipulate their parameters in order to 
understand how these protocols actually work. However, it is not always possible  
to setup a live routing network testbed due to its high cost.  

Two types of techniques, emulation and simulation, have addressed the problem. 
The main difference between the two techniques is that a simulator is a program 
focusing on modeling components of a network, while an emulator is the hardware, 
software, or both focusing on duplicating the behavior of a live network. For 
emulation, a computer system running software such as Zebra [1], Quagga [2], and 
XORP [3] functions as a part of emulated testbed. For simulation, only software is 
used to simulate a whole network. There are a few well-known simulators in the 
market, such as OMNeT++ [4], Ns-2 [5], Cisco Packet Tracer [6], and OPNET IT 
Guru [7].  

An ideal testbed for routing protocols should comply with the following basic 
requirements: 
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1. It should provide a real-time, cost-effective, and realistic environment. Although 
the approach of emulation provides a real-time environment, it is expensive in 
terms of hardware cost. The approach of simulation, on the other hand, does not 
provide the real-time ability and the necessary realism.  

2. It should enable users to study and evaluate the performance of the network 
under specified loads. The load could consist of HTTP, FTP, TFTP, SMTP, 
POP3, DNS, and so on. 

3. It should be scalable and extensible. The testbed should scale well with an 
increasing number of routers, links and be able to inject real-world application 
traffic to the routing network. The approach of emulation allows users to inject 
real-world traffic, which is extensible. However, the scalability is constrained by 
its limited resources, management, and physical setup. Although the approach of 
simulation is used to perform large-scale routing experiments, it is hard to add 
non-built-in traffic.  

4. It should support routing protocols used widely in real-world networks, including 
Intermediate System to Intermediate System (IS-IS), OSPF, Routing Information 
Protocol (RIP), EIGRP, Border Gateway Protocol (BGP), and so on. Among 
these, different Interior Gateway Protocols (IGP), OSPF and EIGRP have been 
considered as the pre-eminent routing protocols. However, because EIGRP is a 
Cisco proprietary protocol [8], most emulators or simulators do not support it.  

5. It should provide a user-friendly environment for conducting routing 
experiments and performing analyses.  

In this paper, we design a testbed ARTNet in an effort to meet all the requirements by 
providing all the above-stated features. The rest of the paper is organized as  
follows: Section 2 presents the architecture of ARTNet. Section 3 describes the 
implementation and evaluation of ARTNet. Section 4 presents related work. Finally, 
in Section 5, conclusions are drawn, and future work is proposed. 

2 ARTNet Architecture 

Based on the requirements, we design the ARTNet architecture as shown in Fig. 1. 
ARTNet consists of Web-based Interface (WBI), Initialization Module (IM), Real-
time Configuration Module (RCM), ARTNet Database, Virtual Network (VN), 
Virtual Hosts (VHs), and Results Visualization Module (RVM). 

The WBI is a part of the GUI developed for users to login and access the virtual 
networks. It also enables users to specify configuration options for a network 
including the topology, protocols along with their parameters, and various loads on 
VHs. Once IM receives the users’ input through WBI, it is responsible for initializing 
the VN and VHs of their networks. Thus, these two components provide the 
configuration initialization capability of ARTNet. WBI, IM, and RCM can read and 
write configuration data into the ARTNet Database, which contains all the data 
related to the routing networks in the testbed. Users can also interact with ARTNet 
and their networks during the process of the experimentation, since RCM provides the 
real-time control to the VN and VHs. The RVM component provides the functionality 
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Fig. 1. Architecture of ARTNet 

of capturing and analyzing the experimentation data. It is also equipped with a user-
friendly interface for displaying the network statistics, deriving performance metrics, 
and makes it easy for users to analyze results and develop insights from the results. 

2.1 Virtual Network   

The VN consists of virtual routers, switches, and links. Our infrastructure is built on 
top of the real-time network simulator GNS3 [9]. It is an open-source Graphical 
Network Simulator that allows emulations of complex networks using Cisco 
Internetwork Operating Systems (Cisco IOSs) running on Windows, Linux and Mac 
OS X based computers. GNS3 was chosen because it has the following features: 

• Users can interact with it during experimentations. If an unusual event occurs in 
a network, they can see the impact immediately and make prompt adjustments. 
It provides the basic real-time control ability needed by ARTNet. 

• Cisco IOS software supports most of the routing protocols including ODR, RIP, 
IGRP, OSPF, EIGRP, IS-IS, and BGP [10]. These routing protocols will make a 
good set supported by ARTNet. 

• GNS3 supports real-time interactions with the simulated network. It also allows 
a connection of the simulated network to real routers or computers. These 
features play a key role in the extensibility of ARTNet.  

• It supports a realistic environment by using real Cisco IOSs and Command Line 
Interface (CLI), which is a powerful method for expert administrators to 
configure Cisco’s devices. 
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There are two sides to every sword. Due to licensing restrictions, users have to buy 
Cisco IOSs from Cisco or its partners [11]. In addition, The IOSs cannot be modified. 
In other words, ARTNet is not programmable and new routing protocols will be 
supported only if Cisco IOSs update has this new feature. 

Two sets of configuration files in GNS3 are supported and manipulated in 
ARTNet, one for routers’ configurations, and the second file is used to store GNS3 
network topology information such as name, location, and the IOS for each virtual 
router. When users start a virtual network, GNS3 will load these files for instantiating 
the topology and routers.  

2.2 Virtual Host 

A VH is a completely isolated duplicate of a real computer. In ARTNet, it provides 
the ability of generating real-world application traffic. VHs are connected to the 
virtual network through the Cloud device in GNS3. Users can manage how VHs 
connect to VN using WBI in ARTNet. Application servers are installed and run in 
VHs to provide the capability of traffic generation based on users’ specifications. 
Hence, the network performance can be analyzed by measuring specific traffic on a 
particular network.  

VMware Workstation is chosen to run virtual hosts because it provides seamless 
support for different guest OSs, manageability, and operational flexibility. VMware 
Workstation allows one physical PC to run multiple operating systems at the same 
time without rebooting or hard-drive partitioning. Physical hardware resources are 
mapped to the virtual machine’s resources, so that each virtual machine has its own 
CPU, memory, disks, I/O devices and more [12].  

There are some common application services used in today’s networks, including 
HTTP, FTP, TFTP, Email, and DNS services. Table 1 lists the software that is 
commonly used to provide these services. User can also choose to incorporate other 
applications that produce various types of traffic into the network. Examples include 
Voice over IP (VoIP), and streaming video.  

Table 1. Application Servers 

Application Services Software 
HTTP Apache HTTP Server 
FTP Vsftpd 
TFTP Tftpd 
Email Postfix 
DNS BIND 

Currently, in ARTNet, Ubuntu is used for the guest operating system running on 
each VH. A few open-source application servers have been pre-installed in the guest 
OS, such as BIND and Postfix. With these services installed, VHs function as 
application servers. The desired application services can be easily specified using the 
ARTNet interface without users worrying about the installation or configuration of 
the services.  
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2.3 Web-Based Interface and Initialization Module 

ARTNet consists of two GUI components, WBI and IM for researchers and students 
to create and manage their routing networks in ARTNet. 

WBI provides an interface to specify configuration options. Only the authenticated 
users can login and manage their networks remotely. Users can configure the VN or 
VHs in a visual way. For example, possible specifications for a router include which 
routing protocol to deploy, the IP address for each interface on the router, and so on. 
After configurations are made, IM generates the corresponding configuration files. 
ARTNet will then power on the specified network automatically by using the 
respective configuration files. Fig. 2 shows a screenshot of the WBI for configuring a 
virtual EIGRP network. 

 

Fig. 2. Screenshot of WBI for a sample network 

For example, if a user wants to configure a virtual router C1 in an existing virtual 
network, he can choose C1 from the drop-down menu and then configuration changes 
may be made to this router. As can be seen, users do not need to fill in the complete 
information, and default values will be used for the rest. After pressing the save 
button, the configuration changes will be sent to IM, which will populate the 
configuration file named C1.cfg for router C1.  

By using the GUI interfaces, it is more efficient and easier for users to configure 
their networks and specify routing options when compared to text or command-line 
based methods. And it also helps to avoid making configuration mistakes.   
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2.4 ARTNet Database 

ARTNet stores all of the information needed to run the routing networks in a central 
database. The stored data consists of three parts: User & Login (U & L) data, General 
Configuration Data (GCD), and Protocol Dependent Configuration Data (PDCD). 
Each type of data will be handled by its corresponding module. 

The U & L data consists of users’ names, passwords, and activity logs. A user can 
access ARTNet from any computer connected to the Internet using WBI. User name 
and password are checked against the authentication information stored in the 
database. The administrator can pre-register the network for each user. And users may 
also register by themselves. 

GCD and PDCD are used to store data regarding routers’ configurations in a 
routing network. GCD stores some common configurations such as router name, static 
route, loopback interface or access-list. PDCD stores data about routing protocols, 
such as router ID, redistribution, Hello/Dead interval, and more.  

WBI locates the network configuration data in ARTNet Database upon a 
successful user login. Then IM will extract the data and generate different 
configuration files to instantiate the network. 

2.5 Real-Time Configuration Module 

Networks hosted by ARTNet can also be configured and controlled dynamically using 
RCM. For instance, they can dynamically adjust the routing parameters in real-time, 
when the whole network is powered on.  

RCM enables users to start, stop, restart and login to a virtual router. For instance, 
users are able to interrupt the primary link for a subnet during the experimentation by 
shutting down the network interface of the router.  

RCM can also be used to control a specific VH or a group of VHs. It is capable of 
performing the following operations: start and stop a VH, run an executable program 
within a VH, copy a file from a VH to the host computer or vice versa, and assign an 
IP address to a VH. For example, the packet file stored in a VH can be copied from 
the guest VH operating system to the host operating system for further analysis.  

2.6 Results Visualization Module 

RVM is responsible for monitoring networks, capturing, filtering and visualizing 
packets, and displaying traffic statistics. Because the raw packet capture files usually 
include a large amount of data, it is important for users to be able to display and 
analyze only those packets of their interest. In addition, RVM provides key 
performance metrics such as convergence duration, throughput, end-to-end delay, 
delta time, number of retransmission packets, and service response time, which are 
used to measure the performance of routing protocols.   

The RVM consists of two different components. The first parts is a packet analyzer, 
which is used to caputre all the packets over a network interface. The second is a GUI 
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frontend which will display the statistics about the performance metrics. As VMware 
Workstation or GNS3 has no built-in packet capturing functionality, we use the open- 
source Wireshark [13] as the basic packet capturer/analyzer. After an experiment is 
completed, RVM will import the files captured by Wireshark, and then generate the 
statistics about these metrics from the packet files. Users can then compare them across 
different routing protocols in a visual way with just a few clicks. 

3 Implementation and Evaluation of ARTNet 

This section describes the hardware and software components used to implement  
the ARTNet platform. In addition, performance and functionality evaluations are 
performed on ARTNet.  

3.1 Implementation of ARTNet 

ARTNet is currently hosted on a multiprocessor server with 16×Intel® Xeon® E5620 
@2.40GHz processor, 48 GB memory, 500 GB hard drive, and six gigabit Ethernet 
interfaces.  

The open-source software bundle, LAMP (Linux, Apache, MySQL, and PHP5), is 
used to implement the ARTNet platform as described in Section 2. The operating 
system is Ubuntu 11.10 64-bit desktop version which has the built-in GUI support. 
The ARTNet Database is created and managed by MySQL 5.5. The Apache Web 
Server is used to host WBI and IM, and PHP 5.4.0 is used to implement the server 
side functionality as required by the WBI and IM components of the architecture. In 
particular, two PHP scripts are developed to realize the functionality to enable users 
to initialize routing networks in ARTNet. The first one is used to interact with users to 
provide authentication and dumping users’ configuration options into the database. 
The second script is responsible for reading from the database and generating 
corresponding configuration files.  

ARTNet uses the stable version GNS3 v0.7.4, which supports 1700, 2600, 3600, 
and 3700 serials routers for constructing routing networks. In our current setup, we 
use router model 3640 and the corresponding IOS is c3640-ik9o3s-mz.124-25b.bin.  

VMware Workstation 8 is used to create and manage VHs in ARTNet. The OSes 
for guests are the same as the OS for the workstation. Several virtual network 
interfaces (vmnets) are created and set up as host-only networks. 

3.2 Evaluation of ARTNet 

The ARTNet can run multiple instances of the routing networks for different users at 
the same time. This is especially useful in a class setting, when each student (or group 
of students) is assigned a dedicated routing network for experimentations. The 
number of instances supported is dependent on the size of routing network and the 
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available resources on the physical server. The performance evaluation will shed light 
on this aspect. In addition, a comparative routing protocol study is performed on 
ARTNet to show its usability. Both the evaluations are conducted based on a campus 
routing network.  

The campus network segregates the functions of the network into three layers: 
Access, Distribution, and Core Layers [14]. According to the Cisco recommended 
hierarchical campus design [15], routers at different layers play distinct roles. Routers 
at the Access Layer are intended to forward traffic only to and from the locally 
connected subnets. They ensure that the packets are delivered to end-user devices. 
The Distribution Layer acts as an aggregation point for all Access Layer devices. 
Routers at this layer implements policies, such as route filter or summarization. The 
Core Layer provides the high capacity transport between the attached Distribution 
Layer routers. Routers at this layer focus on speed and ensure reliable delivery of 
packets.  

 

Fig. 3. A small campus network-EIGRP scenario 
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3.2.1 Performance Evaluation 
First, two small campus network scenarios including 14 routers and 2 Cloud devices 
(in the form of VHs) as shown in Fig. 3 and Fig. 4 are created in ARTNet. D3, D4, 
D5, and D6 belong to the Distribution Layer. C1 and C2 belong to the Core Layer. 
Other end-user devices in a LAN are represented by the loopback interfaces on the 
Access Layer routers. The performance evaluation is done by running an increasing 
number of instances of the two scenarios until the workstation runs out of CPU or 
RAM resources.  

 

Fig. 4. A small campus network-OSPF scenario 
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As shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8, the CPU runs at 100% temporarily 
when a new routing network instance starts. Then the CPU usage drops after 3-7 
seconds. This happens after the idlepc values have been set. It sleeps the virtual router 
occasionally while virtual routers are idle. This significantly reduces the CPU 
consumption on the server. 25% of the CPU resources are reserved for the virtual 
routers and VHs to perform their tasks. For our specific setup, ARTNet supports about 
15 routing network instances concurrently without significant performance degradation. 

 

Fig. 5. CPU and RAM usage with 4 running instances. The average CPU usage is about 25.4% 
and the memory usage is 20.5%. 

 

Fig. 6. CPU and RAM usage with 9 running instances. The average CPU usage is about 51.4% 
and the memory usage is 39.0%. 
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Fig. 7. CPU and RAM usage with 14 running instances. The average CPU usage is about 
70.4% and the memory usage is 57.5%. 

 

Fig. 8. CPU and RAM usage with 15 running instances. The average CPU usage is about 
75.4% and the memory usage is 61.2%.  

3.2.2 Functionality Evaluation 
The two routing network instances as shown in Fig. 3 and Fig. 4 are used to 
accomplish the task of comparing the performance of EIGRP and OSPF protocols for 
HTTP and FTP applications. The comparison and evaluation of these two protocols 
are done based on performance metrics, packet loss and delta time.  
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Packet loss occurs when packets of data travelling across the network fail to reach 
the destination. It can be caused by a number of factors, so it is normal in a stable 
network. HTTP and FTP sessions were performed from the Virtual Host Server to the 
Client to transfer a large video file whose size is 27,580,668 bytes. Table 2 lists the 
number of packet loss generated by RVM. Recovery means that while the primary 
link is shut down (by using RCM) for the subnet between the Server and A7 at about 
45 second marks, the routings will converge again after certain time periods. 

Table 2. Packet Loss 

 HTTP/Recovery FTP/Recovery 
EIGRP 65 packets / 90 packets 58 packets / 76 packets 
OSPF 87 packets /164 packets 83 packets /137 packets 

The following formula is used to compare the rate for the increasing packet loss:     

For HTTP in EIGRP network,  9065 1.385 

For HTTP in OSPF network, 16487 1.885 

This indicates that the rate for the increasing packet loss is smaller in EIGRP network 
than that in OSPF network under HTTP traffic.  

For FTP in EIGRP network,  7658 1.310 

For FTP in OSPF network, 13783 1.651 

Similarly, this indicates that the rate for the increasing packet loss is smaller in 
EIGRP network than that in OSPF network under FTP traffic or HTTP traffic. 

Delta time is the time between the captured packets. Recovery delta time means the 
time between the last packet, which is captured before the primary link is interrupted, 
and the first packet, which is captured after the backup link becomes active. ARTNet 
RVM generates graphs like Fig. 9 and Fig. 10. 
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& Print Server. Yehia, Aziz, and Elsayed [17] compare EIGRP and OSPF 
performances for voice, HTTP, and FTP using OPNET modeler. They measured 
convergence duration, voice packets delay, and throughput. Lucio, Paredes-Farrera, 
Jammeh, Fleury and Reed [18] presented a comparative study of two simulators 
OPNET Modeler and NS-2. Simulator outputs are compared to the output from a live 
network testbed in a sample network. They used CBR-type traffic and FTP sessions. 
OPNET is a powerful tool for administrators and researchers to design, secure, 
analyze, troubleshoot and improve large-scale networks. However, both OPNET and 
NS-2 lack the real-time control functionality as provided in the ARTNet testbed 
presented in this paper. 

Knežević, Schubert and Kostić [19] proposed a testbed named MX to emulate 
programmable routers running over a realistic topology on multi-core servers. MX 
used XORP for the control plane and one physical computer was allowed to behave as 
multiple routers. Li, Liu and Rangaswami [20] integrated PRIME and XORP. This 
design used a forwarding plane offloading approach to reduce the I/O overload. A 
case study using OSPF to demonstrate its capability to conduct elaborate routing test 
was also provided. Petac and Musat [21] built a platform which includes Cisco routers 
and computers running GNU Zebra and Quagga. They studied the convergence time 
by interrupting various links in a hybrid network. Nguyen, Roughan, Knight, and 
Falkner [22] described AutoNetkit to auto-configure the complex emulation network. 
Quagga was used to provide the implementation of routing protocols. Platforms using 
XORP, Zebra, and Quagga software, provide programmable routers and allow rapid 
introduction of new protocols, but they do not include the popular proprietary routing 
protocols which ARTNet supports. 

5 Conclusions and Future Work 

In this paper, we present ARTNet, a cost-effective, realistic testbed for routing 
networks. It is scalable, extensible and user-friendly. It supports popular routing 
protocols and allows users to easily configure networks, control networks during real 
time and analyze the results after experimentations. 

We use ARTNet to evaluate the performance of two popular routing protocols, 
EIGRP and OSPF based on quantitative metrics (packet loss and delta time) for 
standard application services. The comparative analysis demonstrates that EIGRP 
converges faster for HTTP and FTP applications, when the primary link for a subnet 
is interrupted.  

For future work, we plan to combine IM with RCM to make ARTNet more user-
friendly and develop an intelligent results analysis module to help users to develop 
insights from their experimentations.   
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Abstract. Distributed network testbeds like GENI aim to support a potentially
large number of experiments simultaneously on a complex, widely distributed
physical network by mapping each requested network onto a share or “slice” of
physical hosts, switches and links. A significant challenge is network mapping:
how to allocate virtual nodes, switches and links from the physical infrastructure
so as to accurately emulate the requested network configurations.

In this paper we present the VF2x virtual network mapping system. Based on
the VF2 subgraph isomorphism detection algorithm designed for matching large
graphs, VF2x incorporates several novel algorithmic improvements. These and
careful implementation make VF2x perform more than two orders of magnitude
faster than the fastest previously published algorithm.

In evaluating our algorithm, we generated an extensive test workload based on
analysis of a 5-year trace of experiments submitted to the popular Emulab testbed,
and using the current ProtoGENI topology. We use this test workload to evalu-
ate the performance of VF2x, showing that it can allocate resources to virtual
networks on a large testbed in a matter of seconds using commodity hardware.

Keywords: Network testbeds, virtual network mapping, subgraph isomorphism.

1 Introduction

Network testbeds are used by networking researchers to experiment with new proto-
cols, applications, and systems, and are generally shared between users to reduce the
considerable capital cost involved. A testbed consists of a set of physical resources –
compute nodes (usually PCs), switches, links, etc. – together with a control plane which
allocates resources. Users submit “requests” in the form of specifications of particular
network configurations (nodes, topology, etc.) they would like to experiment with, when
they require the resources, and for how long. In response, the control plane allocates, if
possible, a set of resources to the users at the requested time.

Resources can be physical machines or links, but are often virtual “slices” of real
resources. Multiplexing enables a plurality of diverse virtual networks to coexist on a
shared physical network infrastructure [1–3]. Widely distributed testbeds like GENI [4]
aim to support a potentially large number of experiments simultaneously by mapping
each requested network onto a share or “slice” of physical hosts, switches and links.

A significant challenge in the context is virtual network mapping: how to map a
virtual network (VN) topology with resource constraints to specific nodes and links in
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a given physical network (PN) infrastructure so as to accurately emulate the network
configurations requested by users. This mapping problem is difficult in theory and in
practice due to the four properties summarized in [5]: diverse topologies, resource con-
straints, online requests and admission control. Even simplified variants of the mapping
problem with relaxed properties turn out to be difficult: assigning nodes in a switched
Ethernet-connected testbed without violating bandwidth constraints can be reduced to
the NP-hard multiway separator problem [6], and even when the nodes are pre-selected,
the link mapping problem for VN requests with link constraints is still NP-hard [5].

In this paper we present a new algorithm, VF2x, based on the VF2 subgraph isomor-
phism algorithm for matching large graphs [7]. VF2x performs network mapping more
than two orders of magnitude faster than the previously-published vnmFlib (also based
on VF2) but reduces solving time for near-worst-case problem instances through more
careful implementation and several novel algorithmic changes: constructing a candidate
queue, applying heuristic sorting, and introducing a new “timeout-and-relax” strategy.

In the rest of this paper, we first provide some background and related work of the
problem, and then in Section 3 we describe the VF2x algorithm, discuss the imple-
mentation issues and algorithmic improvements, and evaluate its effectiveness through
simulation. In Section 4.1 we explain the generation of a more realistic test workload
derived from a 5-year trace of experiments submitted to the Emulab testbed. Using the
generated test workload, we evaluate the performance of VF2x in Section 4. In Section 5
we make a conclusion.

2 Background and Related Work

Until recently, most testbeds supporting specification of network properties were central-
ized, such as Emulab [8] and DETER [9]. These testbeds emulate a variety of network
topologies using a small number of high-port-count, high-capacity switches to approxi-
mate a physical crossbar between machines. This testbed mapping problem with band-
width constraints has been proven to be NP-complete [10]. Simulated annealing has been
successfully applied to this situation [11], but does not work well for large-scale virtu-
alized network testbeds [12].

Other recent virtual network mapping algorithms make different assumptions in or-
der to apply efficient heuristics to make the problem tractable.

Zhu and Ammar [13] assume unlimited physical network resources and then try to
achieve low and balanced load on both physical nodes and links. Their algorithm, VNA-
I, subdivides the general topology in the VN request into multiple small star topologies,
and then exploits the flexibility of these small topologies.

Lu and Turner [14] consider the offline problem of mapping a virtual network with
a backbone-star topology to the physical network with the aim of getting sufficient
capacity to accommodate any traffic pattern specified by traffic constraints.

Yu et al. [5] propose a two stage solution to the problem. They first map the virtual
nodes, and then map the virtual links using shortest path and multi-commodity flow
(MCF) algorithms. The authors focus on improving the link mapping through substrate
support for path splitting and migration. Razzaq and Rathore [15] also propose a two
stage solution, but without the assumption of substrate support: virtual nodes are first
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mapped as closely as possible to the physical network, then virtual links are mapped to
the shortest paths which satisfy the demands.

Chowdhury et al. [16] propose algorithms which provide better coordination be-
tween the two stages. The virtual nodes are mapped to the physical nodes in a way that
facilitates the mapping of the virtual links to the physical paths in the subsequent phase.
The mapping problem is solved using a Mixed Integer Program (MIP) formulation. The
authors also assume substrate support.

Several algorithms consider network migration and reconfiguration. Butt et al. [17]
note the importance of differentiating physical network resources and argue that
topology-aware mapping together with reoptimizing bottleneck mappings can improve
the acceptance ratio. Schaffrath et al. [18] formalize the mapping problem as a linear
mixed integer program and allow dynamic reconfiguration of existing mappings.

Of particular interest is the vnmFlib network mapping library implemented by Lis-
chka and Karl [19]. Noting the relationship between the network mapping problem and
subgraph isomorphism detection, they develop a backtracking algorithm based on the
VF2 algorithm used in the pattern recognition community for finding subgraph isomor-
phisms in large graphs. VnmFlib maps virtual nodes and links in a single stage and
achieves better and faster mappings than the two stage approach used by Yu et al. [5],
and works especially well for large virtual networks with strong resource constraints.

While many algorithms (including VF2x) can produce optimal results (subject to
some utility function), this frequently involves exhaustive search and is therefore ex-
pensive. Moreover, it is rarely required; in practice a near-optimal solution in reason-
able time is preferable. Emulab’s simulated annealing algorithm [11] is a good example
of exploiting this property.

However, the Emulab approach suffers from two limitations: firstly, it does not al-
ways return the same result due to its use of randomness, which makes the debugging
of the algorithm challenging. Furthermore, it sometimes fails to find a solution that sat-
isfies all the constraints even if such a solution exists. This is illustrated by the “ugly”
example included in the Emulab source code. In contrast, VF2x is deterministic in all
its heuristics, and for this “ugly” mapping problem, can find a solution with no violation
in constraints in considerably less time.

3 VF2x Algorithm and Implementation

Recent proposals for distributed testbeds such as GENI presume a federated, distributed
physical infrastructure over which virtual networks (“slices”) are instantiated. Low
cross-sectional bandwidth is expected in such testbeds. At present, the various proposed
GENI frameworks address the mapping problem in different ways: ProtoGENI [20] in-
herits the existing assign mapping algorithm from Emulab; ORCA-BEN [21] uses
NDL-OWL ontology language to express substrate and a sequence of request and re-
lease operations, and relies on Jena RDF and OWL reasoning engines to perform topol-
ogy mapping [22]. The cost of the mapping operation is not prohibitive since the BEN
network is small.

We found vnmFlib [19] to be especially suitable for the network testbed mapping
problem, as explained above. However, in the process of trying to apply vnmFlib di-
rectly to our testbed resource allocator, we find several limitations of both the algorithm
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and its implementation which we explain in detail below. This motivated us to develop
VF2x, our own VF2-derived virtual network mapping algorithm.

3.1 Implementation Decisions

As with vnmFlib, VF2x extends VF2 with semantic constraints on virtual node and link
attributes (a key requirement for testbed applications) and a pre-defined distance value ε
which, unlike VF2, allows virtual links to be mapped to multi-hop paths in the physical
network of length at most ε.

Algorithm 1 shows the main skeleton of VF2x mapping algorithm. Variable depth
maintains account of how many nodes have been successfully mapped so far. At each
step, a new pair of nodes (n,m) is generated to try to match against each other. The
feasible(n,m) function checks the syntactic (structure of the graph) and semantic
(node and link attributes) feasibility of the mapping. If it succeeds, the mapping is re-
membered; otherwise, we try the next pair until we reach a dead end and backtrack().

Algorithm 1. VF2x mapping algorithm
Input: Attributed graph Gvn and Gpn

Output: Mapping from M(Gvn) to Gpn

while |M| � |Gvn| and depth > 0 do1

(n,m)← genpair();2

if n < 0 or m < 0 then3

backtrack();4

depth← depth − 1;5

end6

else if feasible(n,m) then7

M(m)← n;8

depth← depth + 1;9

end10

end11

VF2x improves dramatically over vnmFlib through a combination of careful imple-
mentation and several algorithmic improvements. The implementation techniques can
be summarized as follows: VF2x is implemented entirely in C (about 1,500 lines) based
on the existing igraph library [23] implementation of VF2; VF2x supports modelling of
network topologies as both directed and undirected graphs, while vnmFlib is restricted
to topologies modeled only as directed graphs; unlike vnmFlib, VF2x avoids non-tail
recursion; and finally, VF2x computes neighbors in a lazy manner and populates the
adjacent neighbor table on demand, while vnmFlib recomputes neighbors every time.

By themselves, these implementation decisions make a dramatic difference in perfor-
mance. Table 1 compares our VF2x implementation to vnmFlib using two simple map-
ping problems. To fairly compare the two implementations, we turn off the “splittable”
option (to map the flow in a virtual link to multiple paths in the physical network), solve
the mapping problems for directed graphs only, and set ε to 2 for both implementations.
The hardware used is the same as that used in Section 4.
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As seen from Table 1, even these better implementation techniques by themselves
allow VF2x_base to already solve the problems in roughly two orders of magnitude
less time than vnmFlib, without employing vnmFlib’s sorting heuristics.

We are not the first to observe the performance issues with vnmFlib [24], but our
goal here is to demonstrate that VF2-based algorithms in general can be implemented
with good performance for reasonable problem sizes.

Table 1. VF2x vs. vnmFlib

Example1a Example2b

Steps Time(ms) Steps Time(ms)

vnmFlib 3 2.786 20 18.994
VF2x_base 10 0.130 29 0.370
VF2x_candi 9 0.117 16 0.329
VF2x_candi_sort 4 0.089 14 0.050
a VN: 3 nodes and 3 links; PN: 6 nodes and 9 links.
b VN: 11 nodes and 10 links; PN: 14 nodes and 15 links.

Besides careful implementation, VF2x_base can be further optimized through al-
gorithmic changes which prune/reorganize the search space further and thus lead to a
better solution in less time.

Table 1 includes two of the algorithmic changes we use in VF2x: using a candi-
date queue and applying heuristic sorting. With these changes, the number of matching
steps is reduced. Details of these and other algorithmic changes, and their performance
impact, are given in the rest of this section.

3.2 VF2x with a Candidate Queue

To map a virtual node n to the physical network, rather than matching n against every
node available from the physical network, VF2 matches only against those nodes within
ε hops of the physical nodes already mapped.

VF2x uses a candidate queue to prune the search space still further. We first find all
the nodes that n’s neighbors have been mapped to. In the example shown in Figure 1,
n’s neighbors n1, n2 are mapped to m1, m2. Then, we calculate the intersection of E(m1)
and E(m2). Here, E(m) is the set of nodes at most ε hops away from m in the physical
network. In fact, the only possible candidates for n are elements of this intersection and
we call it n’s candidate queue. In Figure 1, the candidates are the light gray ones in the
shadowed area. The candidate queue improves solving time by reducing the number of
candidates to match: genpair() only generates candidate pairs (n,m) where m belongs
to the candidate queue. Table 1 shows the improvement obtained (the VF2x_candi row).

3.3 Heuristic Sorting of Network Topologies

Like VF2, VF2x is based on a depth-first search strategy. The sequence of the candi-
date pairs generated depend on how the nodes are ordered in the virtual and physical



276 Q. Yin and T. Roscoe

n

n1 n2

m1 m2

Mapped nodes

Node to be mapped

Nodes in n’s candidate queue

Virtual link

Physical path (length<=  )

Fig. 1. The generation of n’s candidate queue

networks. This suggests that sorting the nodes according to heuristics can reorganize
the search tree, and find a better solution in less time.

Different heuristics can be applied. vnmFlib sorts the generated candidate pairs based
on the resource consumption of the virtual nodes; VF2x sorts graph nodes such that
switches are ordered before hosts (whether a graph node is a switch or a host is indi-
cated by the additional “type” attribute which is introduced for a testbed environment),
furthermore high-degree nodes are sorted ahead of low-degree ones. Figure 8(b) in Sec-
tion 4.2 shows the effectiveness of this heuristic of mapping more-constrained resources
first.

3.4 Batching

Another extension VF2x makes for a testbed environment is to support batch solving:
mapping several virtual network requests in one solving process even though they share
the same physical network resources. The original VF2 algorithm does not support
this and can only detect isomorphism for the disconnected subgraphs (VN requests) by
mapping the virtual nodes from these requests to different physical nodes. With this
extension, the same physical switch can be shared by different requests even though
different switches in the same request are mapped to different physical ones.

3.5 Timeout-and-Relax for ε

The vnmFlib authors propose two algorithms to pick an appropriate ε (recall that virtual
links are only mapped to paths shorter than ε): VnmFlib-simple uses a fixed ε, while
vnmFlib-advanced starts with ε = 1, exhaustively searches for a mapping, and then
successively increments ε until one is found or until ε reaches 10.

For smaller ε, fewer candidate nodes need be considered, but the tighter constraints
can increase the required exploration of the search space. Informally, for small ε, if a
solution exists, it is likely that it will be found early in the search.

This observation leads us to adopt an additional heuristic to mitigate occasional
worst-case performance of VF2x (the general problem remains NP-hard), which we
term “timeout-and-relax”. Instead of always running VF2x to completion, we start with
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small ε and impose a small time limit on the solving time, aborting the algorithm if it
exceeds the limit. We then increase ε and the value of timeout, and retry. This approach
attempts a good compromise between shorter solving time of a smaller ε, and higher
success rate of a larger ε. As shown in Figure 9, this strategy brings down the average
solving time considerably compared to fixed ε and timeout values.

3.6 Algorithm Analysis with Synthetic Workload

Using the GT-ITM tool, we generated 10 separate physical networks with 100, 150,
200, . . . , 550 nodes. Each node pair is randomly connected with probability 0.1. In this
way, the physical network with 100 nodes are connected by around 500 links. We also
generated 200 virtual networks. The size of the virtual networks is uniformly distributed
between 2 to 20 and the nodes are connected with probability 0.5. The CPU capacity
and the link bandwidth follow a uniform distribution ranging from 1 to 100 for the
physical networks and ranging from 1 to 50 for the virtual networks. While synthetic,
these randomly generated virtual and physical networks are of the same characteristics
as those used by other researchers [5, 13, 19].

To evaluate each algorithmic change introduced above, we run a set of experiments
to map 200 virtual networks to each of the 10 physical networks using variants of
VF2x. In these experiments, ε is fixed and set to 2 and timeout is set to 5s. The
VF2x algorithm variants compared are: VF2x_base, VF2x_candi and VF2x_candi_sort.
VF2x_base is an extended VF2 which supports semantics constraints and maps vir-
tual links to multi-hop paths. VF2x_candi extends VF2x_base with a candidate queue
which further prunes the search space. VF2x_candi_sort applies heuristic sorting to
VF2x_candi and sorts the nodes by the degree. Heuristic sorting reorganizes the search
space in a way to find a better mapping in less time.

We ran all the experiments on a machine with an Intel Core2 Q6700 (quad-core
2.66 GHz) CPU and 4GB memory. The machine was running Ubuntu Linux 10.04 LTS
Lucid Lynx, and we used version 0.5.4 of the igraph library.
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Figure 2 compares the three algorithm variants by mapping 200 virtual networks
to the same 100-node physical network. As we can see, algorithmic improvements
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dramatically reduce the solving time and improve the mapping success rate: among
200 requests, within 5s, VF2x_base fails to map 65 requests, VF2x_candi fails to map
61 requests, while VF2x_candi_sort manages to bring the number down to 26. If we set
the timeout to 500s, one request fails after exhausting the search space and 11 requests
fails due to timeout.

Figure 3 plots the solving time of VF2x_candi_sort to map 200 randomly generated
virtual networks to three different physical networks: 100 nodes with 483 links, 300
nodes with 4513 links, and 500 nodes with 12458 links. As shown in the figure, for more
than 65% of the requests, VF2x uses less time to map them to the 100-node physical
network. However, it takes substantially more time for about 20% of the requests, and
even times out for 26 requests out of 200. Physical network size does play an important
role in the algorithm and we investigate this subject further in Section 4.3. Moreover,
within the same time limit, the timeout-and-relax strategy can improve the success rate
significantly, as we show in Section 4.2.
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Fig. 5. Generated tree topology

Figure 4 plots the solving time of VF2x_candi_sort to map 4 virtual networks of 4
nodes / 4 links, 8 nodes / 12 links, 12 nodes / 34 links, and 16 nodes / 54 links separately
to the 10 different physical networks. As the figure shows, the solving time increases
roughly exponentially with the physical network size as well as the virtual network size.
However, this is still acceptable for these problem sizes since VF2x is able to map the
virtual network of 16 nodes / 54 links to the physical network of 500 nodes / 12458
links within 100ms.

4 Evaluation Using Real Testbed Workloads

Since networking testbeds are still relatively new, particular those which are distributed
in nature and permit complex topological requests, it is not clear what kind of workload
is representative for a testbed resource allocator. Much related work uses GT-ITM to
simulate requests and testbed network topologies, as we have done to analyze different
VF2x algorithm variants in Section 3.6.
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However, these randomly generated undirected graphs cannot faithfully represent
real testbed requests and infrastructures. Therefore, in this section, we describe the gen-
eration of a more plausible test workload and use it to evaluate VF2x. While we make
no authoritative claims that the workload generated is representative, we do argue that
it is based on plausible data and assumptions. The hardware used is the same as that
used in Section 3.6.

4.1 Workload Generation

Physical Topology. We extracted physical topology information from ProtoGENI1 and
build our physical topology with 627 nodes (including switches and hosts) and 1163
links based on the resource information from the Utah ProtoGENI site. We simplify
the topology by summing up the bandwidth of all links from the same host to the same
switch instead of including all “duplicated” links. This physical topology is used for all
the experiments shown in this section.
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Request Stream. We then derive a sequence of virtual network requests from a com-
plete sequence of Emulab topology requests for 5 years up to June 2007, essentially
covering every experiment submitted to Emulab before that date. This trace consists of
23818 projects, 127586 topology requests among which 52089 are unique (the Emulab
.top files are not identical). Figure 6 shows the distribution of the requested network
sizes.

Temporal Characteristics. We assume that virtual network requests arrive dynam-
ically. The users submit “requests” stating desired network resources, when they are
needed, and for how long. In response, the testbed resource allocator will decide whether
to accept the requests and if so, which specific physical resources will be allocated.

In order to construct a realistic request workload, two important temporal variables
must be modeled: the request arrival rate and duration which defines for how long the
user actively uses the allocated resources.

1 http://www.protogeni.net/trac/protogeni

http://www.protogeni.net/trac/protogeni
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The arrivals of the requests are modeled as a Poisson process with a mean of λ re-
quests per time window. As a reference, we roughly calculate the request arrival rate for
the Emulab request trace. Based on the fact that Emulab received 127586 top requests
over 4 years, we conclude that Emulab received 4 requests per hour on average. Using
4 as a base value, in the following experiment, we vary λ to increase or decrease offered
load. This distribution model naturally does not take into account load spikes on the
system (such as before conference deadlines).

Request duration is modeled as a Gamma distribution. which have long been used for
modeling demand distribution in queuing systems [25, 26]. We choose the parameters
shape = 0.3 and scale = 20, and generate 1000 duration values with the distribution
as follows: 266 values are less than 10 minutes, 117 between 10 and 30 minutes, 90
between 0.5 and 1 hour, 459 between 1 and 24 hours, 68 between 1 and 7 days.

Based on the distribution models, we annotate the Emulab request stream with two
time parameters – when to request resources and when to release them – and generate
our workload from this. The workload is used in Section 4.4 to evaluate our testbed
resource allocation with VF2x mapping algorithm.

4.2 Additional Heuristics for the Test Workload

Analysis of the Test Workload. Unlike the random virtual and physical networks
generated by GM-ITM, nodes both in the physical topology described above and in
our new request stream have an additional “type” attribute indicating whether they are
switches or nodes. By analyzing the number of components of the requested virtual
network graph, we found that the majority of the requests are connected graphs. Among
them, most have tree topology and 20% of the trees are single nodes, as shown in
Figure 7. Among these tree-topology requests, the structure in Figure 5 is common,
where the hosts between switches are running DummyNet and acting as delays.

To explore the best heuristics we can apply to the test workload, we use the physical
network described in Section 4.1, and generate a series of trees of various sizes follow-
ing the structure pattern shown in Figure 5. We ran the VF2x mapping algorithm with
different ε values (the maximum length of the physical path that a virtual link can be
mapped to) and different sorting heuristics.
ε values are 1, 2, 3 and 4. Our baseline for comparison is “doing nothing”: ordering

virtual and physical nodes as they are declared in the specification; the second heuristic
is the one we describe in Section 3: sorting virtual and physical switches and hosts in
descending order of their degrees: first switches from high to low degree, then hosts
from high to low degree (so that switches are mapped first).

By comparing Figures 8(b) and 8(a), we can see that the heuristic to order/map
switches and hosts based on their degrees can reduce the solving time and increase the
success rate within a solving time limit of 10s.

These two experiments both show some interesting properties of ε. First, the smaller
the ε value is, the fewer candidate nodes are to be considered, which results in less
solving time. Second, the smaller the ε value is, the more constrained it is to find a
satisfiable solution. This can result in longer solving time for the cases where a solution
with smaller ε exists but requires more exploration of the search space, or when failing
to find a mapping solution due to a timeout. Third, the smaller the ε value is, the more
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Fig. 8. Solving time for trees of various sizes

sensitive the solving time is to the order of the nodes. In Figure 8(b), a tree of size 5 takes
more time to solve than tree of size 9. The 5-tree orders the nodes as S 0, S 1, S 2,H0,H1
while the 9-tree orders them as S 1, S 2, S 0,H0,H1,H2, ...H5 according to the sorting
heuristic. These observations led us to adopt the “timeout-and-relax” technique: we
start with small ε and small timeout, and increase ε and the value of timeout after each
timeout. This approach aims at a good compromise between faster average solving time
of smaller ε, and higher success rate of larger ε.

Applying Heuristics to the Test Workload. Having shown the effectiveness of the
sorting heuristic, in the next experiment we use our request stream to investigate the
effectiveness of the “timeout-and-relax” strategy. We randomly choose 2000 requests
out of 52089 Emulab requests and individually map each of them to the same physical
topology introduced in Section 4.1. We compare two different strategies: the simple
strategy in which ε is fixed and set to 4 with timeout = 10s; the timeout-and-relax
strategy in which ε is dynamic with different timeouts: (ε = 2, 1s), (ε = 3, 2s), (ε =
4, 7s). In both experiments, the sorting heuristic described above is applied.

Figure 9(a) and Figure 9(b) plot the solving time against the virtual network size.
Here, the virtual network size is defined as the total number of nodes and links. Fig-
ure 9(c) depicts the solving time CDF for fixed ε = 4 and dynamic ε = [2, 3, 4]. From
these figures, we can see that: with timeout-and-relax, VF2x solves most (more than
85%) mapping problems in less time, while it also achieves a higher success rate and
the number of timeout cases decreases from 119 to 74.

Figure 9(d) shows this comparison in more detail by plotting the solving time with
fixed ε against the solving time with dynamic ε. As we can see, most of the mapping
problems are solved in less time with dynamic ε and a majority of them are twice as
fast. The dots plotted in the center right of the figure are the 45 requests which fail with
fixed ε but succeed with dynamic ε. The dots plotted in the top right corner are the 74
requests (out of 2000) which fail to be mapped within 10s.

The algorithm used in all the next set of experiments is VF2x_candi with the above
sorting heuristic and timeout-and-relax strategy applied.
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Fig. 9. Solving 2000 Emulab requests

4.3 Repeated Requests to Exhaust Physical Resources

In this section, we use a simple test workload to investigate the sequential and global
allocation strategies. The test workload is a round-robin sequence of four requests from
Emulab request history which contain one node, 4 nodes, 7 nodes and 13 nodes sepa-
rately. For the two allocation strategies, we investigate the solving time to map physical
resources to the successive requests, as well as the total proportion of physical resources
that are allocated. In the experiment, we deliberately repeat the request in order to in-
vestigate, for one specific request, the influence of the shrinking physical resource pool.

With the sequential solving strategy, we allocate resources to each request, mark
the resources allocated as unavailable and never reallocate them, and continue until
we exhaust all physical resources. During this process, physical resource utilization is
increasing and the free physical resources are decreasing. Figure 10(a) plots the rela-
tionship between the solving time for one specific request and the shrinking physical
network. It shows how, initially, the solving time decreses since the available resources
are abundant the search space is shrinking. This trend stops in the middle when the
platform has much fewer resources available and the solver has to nearly exhaust the
(smaller) search space to find a solution.

With the global solving strategy, whenever we process a new request, we reassign
resources to all the requests seen so far in one mapping process, without respecting any
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Fig. 10. Exhausting physical resources

previous resource assignment. As we have observed in [27], with global solving, the
execution time increases exponentially as more constraint programs are solved simul-
taneously in the ECLiPSe solver we used [28]. To our surprise, with the batch solving
described in Section 3.3, the solving time in VF2x does not increase exponentially. As
shown in Figure 10(b), after a sharp increase at the beginning, the execution time in-
creases linearly. This is due to the fact the requests are repeating themselves. At the
beginning, VF2x takes some time (still within 10ms) to find mappings for the first 4
requests. Then, since successive requests are identical, they reuse the switch mappings
generated beforehand and this significantly prunes the search space. This shows that
batch solving is a surprising promising technique for solving a set of structurally recur-
ring requests efficiently.

4.4 Long Trace Behavior

In this section, we use the full test workload generated in Section 4.1 to evaluate our
testbed resource allocator with the VF2x mapping algorithm.

We run the simulations for 200 time windows with different request arrival rates:
λ = 4, 8, 16 which correspond to 800, 1600, 3200 requests in each simulation instance.
The generation of the request workload and the physical network topology used in
the simulations is described in Section 4.1. We use a client simulator to send resource
requests and release requests to the allocator. Upon receiving a resource request, the
allocator runs VF2x to decide whether or not to accept the request, if yes, it decides
which physical resources to allocate and removes them from the physical network; upon
receiving a release request, the allocator will revoke the resources and return them to
the physical network.

In Figure 11, the dotted line depicts the utilization of the physical network (dividing
the number of allocated hosts by the total number of physical hosts) under a request
arrival rate of λ = 4. The solid line shows the utilization in an “ideal” scenario where
all the requests are accepted and satisfied. Of 800 requests, the allocator refuses 69 due
to resource insufficiency and fails to map 7 requests to the physical network within 10s.
For these timeout cases, we can relax their resource constraints and retry the mapping
with VF2x.
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Fig. 13. Executing the generated trace of arrival rate λ = 4, 8

Figure 12 shows the physical network utilization under different request loads. After
some warm-up time, the system enters a more steady state as leases are requested and
released “evenly”. In the end, when no more requests are received, the allocator grad-
ually releases all the resources. By comparing the lines for different λ, we can see that
the higher the load, the more likely it is that the allocator can fit small requests into the
network and achieve higher utilization.

Figure 13 shows the solving time (including failures and timeouts) of VF2x in map-
ping the requests of different sizes to the changing physical network in the continuous
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resource allocation process. As we can see, with a bigger λ value, the provider receives
more requests in a given time slot, and this results in a higher failure rate because of its
limited capacity.

5 Conclusion

We have presented VF2x, a new virtual network mapping algorithm based on the VF2
subgraph isomorphism detection algorithm. VF2x supports semantic constraints and
is able to map virtual links to multi-hop paths. Several algorithmic improvements are
introduced: using a candidate queue, applying heuristic sorting and adopting timeout-
and-relax strategy.

The design of suitable network mapping algorithms for network testbeds (and, in-
deed, similar scenarios such a datacenter networks and cloud facilities) is still in its
infancy, and the idealized problem is, in theory, computationally hard.

However, we have shown that a combination of good choice of algorithm, pragma-
tism with regard to timeouts, and careful attention to implementation details can pro-
vide a fast way of embedding virtual networks in a physical substrate – when combining
algorithmic optimizations, implementation, and heuristics like sorting and timeout-and-
relax, VF2x is over two orders of magnitude faster than previous systems like VnmFlib.
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Abstract. The Emulab network testbed provides an environment in which re-
searchers and educators can evaluate networked systems. Available to the public
since 2000, Emulab is used by thousands of experimenters at hundreds of insti-
tutions around the world, and the research conducted on it has lead to hundreds
of publications. The original Emulab facility at the University of Utah has been
replicated at dozens of other sites.

The physical design of the Emulab facility, and many other testbeds like it,
has been based on the facility operators’ expectations regarding user needs and
behavior. If operators’ assumptions are incorrect, the resulting facility can exhibit
inefficient use patterns and sub-optimal resource allocation. Our study, the first of
its kind, gains insight into the needs and behaviors of networking researchers by
analyzing more than 500,000 topologies from 13,000 experiments submitted to
Emulab. Using this dataset, we re-visit the assumptions that went into the physical
design of the Emulab facility and consider improvements to it. Through extensive
simulations with real workloads, we evaluate alternative testbeds designs for their
ability to improve testbed utilization and reduce hardware costs.

1 Introduction

Network emulation testbeds [2,3,11,15,14] have become environments of choice for
evaluating network research. Their ability to provide highly customizable network
topologies make them suitable for hosting a wide variety of experiments, including se-
curity, networking, and distributed systems research. One of the oldest and largest, the
Utah Emulab facility [5,8,15], is currently built from more than 600 nodes having more
than 3,000 network interfaces. It gives experimenters full administrator access to their
allotted physical nodes and the ability to shape characteristics of dedicated network
links. We estimate that worldwide, at least ten thousand experimenters, a substantial
fraction of the network research community, use testbeds that are derived from, or sim-
ilar to, the Utah Emulab facility, and are thus affected by the decisions that have gone
into its design. In this paper, we examine user requests submitted to Emulab to gain in-
sight into experimenters’ behavior, and we use this information to inform the physical
design of future testbed facilities.

The goals of network testbeds differ from general-purpose clusters, and thus tradi-
tional cluster and data center designs cannot be applied directly to this domain. Clus-
ters typically concentrate on maximizing host-based metrics (such as compute power or

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 287–304, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012
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I/O operations) with the network playing only a supporting role. In a network testbed,
these priorities are reversed: the network is the main object of study, and the physical in-
frastructure of the testbed must support embedding of a wide variety of experimenters’
requested topologies. It is important to enable embeddings that avoid artifacts due to
under-provisioned network links or devices. In most clusters, communications patterns
on the network are not explicit; that is, any node may wish to communicate with any
other node, and the existence and bandwidths of particular communication paths are
not defined a priori. As a result, cluster networks must be provisioned based on mea-
sured load or built with full bisection bandwidth. In contrast, the networks in emulation
testbeds are explicit, and it is possible to directly study whether the network substrate
is capable of meeting the demands that are placed on it. Testbeds also have relaxed
requirements for high-availability—downtime due to failure of non-redundant compo-
nents represents an inconvenience, rather than a large loss of revenue.

Thus, while datacenter networks have received extensive study [1,7,9], a different
approach is needed for testbed networks. Facilities such as the Utah Emulab [15], DE-
TER [2], and StarBed [11] have independently designed their physical network topolo-
gies subject to budgetary constraints and assumptions regarding experimenters’ needs.
Such decisions impact the effectiveness of the testbed. Budgetary constraints necessi-
tate tradeoffs between factors such as the number of nodes in a testbed (affecting the
number and size of experiments that can be supported) and the degree of connectivity
between them (affecting the types of topologies that can be instantiated). If the deci-
sions made during testbed design are mismatched with user behavior, the result is a
testbed that either does not meet user needs or is unnecessarily expensive.

Emulation testbeds are now mature enough to provide us with a large dataset showing
how experimenters use them in practice; by studying this dataset, we can learn how to
build better testbeds. To this end, we have analyzed the network topologies submitted
to the Utah Emulab site, the largest and most widely-used emulation testbed, over a
period of eight years: from 2003 to 2011.1 This dataset consists of over 500,000 network
topologies submitted by 500 projects as they ran 13,000 experiments. From our analysis,
we form several hypotheses about the most effective ways to build future testbeds, and
test these hypotheses with simulations using real workloads.

We begin in Section 2 with a description of the Emulab testbed and the dataset
used for our study. In Section 3, we analyze the properties of experimenters’ submit-
ted topologies, including their size and edge-connectivity. Section 4 considers key deci-
sions in the physical design of a network emulation testbed, taking into account the cost
implications of these choices. Section 5 evaluates the effectiveness of different testbed
designs through extensive simulation using real user-submitted topologies. Finally, Sec-
tion 6 presents the high-level conclusions that we draw from the study.

2 The Emulab Testbed

To run an experiment on Emulab, a user submits a description written in a variant of the
ns-2 simulator language [6]. Included in this description is a virtual topology defining

1 Topologies from Emulab’s first years, 2000–2002, were not saved in enough detail for analysis.
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the nodes, links, and LANs2 on which the experiment is to be run. Emulab realizes this
virtual topology on top of the hosts and switches in its physical topology by loading
operating systems, configuring software, and creating VLANs.3

One of Emulab’s primary goals is scientific fidelity: it only “accepts” experiments
for which it has sufficient capacity. Bottlenecks in the physical topology (such as links
between switches) should not lead to artifacts in experiments. Because Emulab is a
multi-user facility, this means that interference between simultaneous experiments must
be minimized and resources already allocated to other users must be taken into ac-
count. Emulab uses ������ [12], a randomized solver, to find mappings from experi-
menters’ virtual topologies onto the testbed’s physical infrastructure. ������ ensures
that the mappings it produces do not violate constraints such as bandwidth on bottle-
neck links, and attempts to maximize the potential for future mappings by avoiding
scarce resources when possible. Most experiments run on Emulab use “bare hardware”
with a one-to-one mapping between nodes in the virtual topology and physical hosts.
For the purposes of this paper, we refer to these as “isolated experiments.” Emulab also
supports “multiplexed experiments,” in which multiple virtual machines can be placed
on each physical host. Multiplexed experiments are less popular than isolated ones be-
cause Emulab users typically want high fidelity and low-level access to hardware. The
primary use of multiplexing is to run experiments that are too large to be instantiated
one-to-one on the testbed’s limited physical resources.

Emulab’s physical topology has two networks: each node connects to both. The first
is a “control” network, over which testbed control tasks such a disk loading and network
filesystem mounts occur. This network connects to the Internet, and is used for remote
access to the nodes. The second is the “experimental” network: this network is isolated
from the outside and is re-configured as needed to create the experimenter’s virtual
topology. In this paper, we focus on the experimental network, as it is the one in which
the experimenter’s topology is embedded, and which must be sufficiently provisioned
to ensure scientific fidelity. Emulab supports “delay” nodes for traffic shaping on the
experimental network: when an experiment requests a link with non-zero latency or
with a bandwidth value not natively supported by Ethernet, Emulab inserts a node acting
as a transparent bridge. These nodes bridge two interfaces together using FreeBSD’s
����	�
� [13] to delay packets or limit their bandwidth. Because delaying a single
link requires only two interfaces, physical nodes having an even number of interfaces
can delay multiple links.

The Emulab facility at Utah has grown organically over the past twelve years: from
an initial set of 10 nodes, it has now grown to approximately 600, connected by thirteen
Ethernet switches. Nodes have been added over time in large, homogeneous batches,
and old nodes are rarely removed from service. Most nodes have four connections to
the experimental network. The rationale behind the use of homogeneous node groups
is to achieve a high degree of flexibility: the more interchangeable nodes are, the more
freedom there is in resource assignment. Old nodes are kept under the assumption that

2 For Emulab’s purposes, a LAN is defined as a clique of nodes with full bisection bandwidth.
3 In this paper, we concentrate on Emulab’s most heavily used resource: a “cluster” testbed made

up of PCs and Ethernet switches. Emulab also supports a wide range of other physical devices,
including wireless links, network processors, wide-area hosts and links, and Layer 1 switches.
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since network researchers are interested primarily in the network, most can tolerate
older, low-powered hosts. Emulab’s physical topology is tree-like: because there is no
need for redundancy, there is only a single path between any pair of switches. It is built
primarily with large modular switches (supporting up to 384 ports per chassis), because
full bisection bandwidth can be provided for modest cost within one switch. Emulab
does not attempt to provide full bisection bandwidth across its entire physical topology
due to the high cost of doing so. Instead, it relies on ������ to map experiments in
such a way as to minimize the use of inter-switch links, and rejects experiments that
cannot fit within these limits. Switch interconnects are generally built from interfaces
one order of magnitude faster than the node interfaces. For example, switches provid-
ing 100 Mbps Ethernet to nodes are interconnected using four to eight 1 Gbps ports,
and gigabit switches are interconnected using four 10 Gbps ports. Older Emulab nodes
have all interfaces connected to a single switch, while newer ones are “striped” across
multiple switches as described in Section 4.

The Utah Emulab is one of the oldest and largest facilities of its kind, and its de-
sign has influenced many other facilities. Other testbeds built using the Emulab soft-
ware [14], including DETER [2], use a similar physical topology. Unrelated testbeds,
such as StarBed [11] and Grid’500 [3], also use fundamentally similar physical
topologies.

2.1 Description of the Dataset

Each time a user creates, deletes, or modifies an experiment, Emulab records the action
in a database and puts the resulting topology in an archive file. We extract from these
records a raw dataset containing 619,504 topologies submitted by experimenters since
2003. These topologies are grouped into 22,266 different experiments: in Emulab, a sin-
gle experiment may be instantiated on the testbed many times, because users typically
release resources when not in active use. The experiments belong to 522 projects. A
project is a group of experimenters collaborating on the same research topic, from the
same lab, or in the same class.

Not every topology is relevant to our study, so we reduced the raw dataset in sev-
eral ways. First, some topologies request only a single node or no network links. Such
topologies are used by experimenters who are not studying the network, or to test the
deployment of specific applications or operating system images in preparation for larger
experiments. They are not relevant to the design of the testbed’s physical network, so
we ignore them for this study. Second, Emulab provides users with the ability to cre-
ate or modify experiments without instantiating them on the physical hardware, and
we excluded such topologies. Third, the operators of the testbed have several internal
projects. As such projects are not representative of general research needs, we have
excluded them. Finally, some experiments use resources that are not part of the main
cluster testbed, such as wireless nodes or wide-area hosts embedded in campus or back-
bone networks [4]. While important, these types of experiments have little effect on
the design of the cluster network, so we removed them from our study. Table 1 details
the filtering performed to produce a working dataset composed of 477 projects, 13,057
experiments, and 504,226 topologies.



How to Build a Better Testbed: Lessons from Emulab 291

Table 1. Refinement performed on the raw dataset to form the working dataset

Projects Experiments Topologies

Raw dataset 522 22,266 619,504
− empty topologies 553
− single node topologies 27,983
− unconnected nodes 24,454
− non-instantiated topologies 32,260
− internal projects 9 1,936 16,004
− non-cluster resources 14,024

Working dataset 477 13,057 504,226

3 Properties of Experimenters’ Topologies

We begin our study by analyzing the topologies submitted by experimenters, concentrat-
ing on the properties that directly affect testbed design: the topologies’ sizes, the types
of nodes they request, and their connectivity.

3.1 Most Experiments Are Small

Figure 1 shows the distribution of experiment sizes in the dataset. The first fact evident
from this figure is that most experiments are small: 80% of the isolated experiments
use fewer than 20 nodes. There is a small, but significant, tail of large experiments:
4% (more than 20,000 topologies) requested 100 nodes or more. The large topologies
belonged to 514 different experiments in 68 different projects, so while large experi-
ments represent a small fraction of all experiments, 14% of projects run at least one.
We believe this is because many projects conduct many small experiments in prepara-
tion for a few large ones. For example, they may run several experiments to develop
and debug a distributed system before evaluating it at scale. Only 5% of experiments
are multiplexed, but these tend to be large: 20% have 200 nodes or more. As a result,
multiplexed nodes actually represent a sizable fraction (31%) of all node requests.
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When a user submits an experiment to Emulab, it is “accepted” if there are enough
nodes and network resources free to instantiate it. Otherwise, it is “rejected.” Figure 2
shows the percentage of experiments that were accepted as a function of the exper-
iment’s size. We first observe the acceptance rate for isolated topologies is fairly low,
even for small topologies: only 50% of submissions with 20 nodes are accepted, despite
the fact that such a topology only uses 3% of the testbed. This shows that the testbed
is used heavily, and frequently does not provide sufficient free resources to admit even
small experiments. In order to cope with resource scarcity, some users turn to multi-
plexed experiments, deploying many VMs on the same physical node. Because they
use fewer physical nodes, these experiments have a much higher acceptance rate, and
even allow experiments larger than the physical testbed. Other users reduce the sizes of
their experiments to increase the chance they will be accepted.

3.2 Attractive Physical Nodes Are the Bottleneck Resource

The Utah Emulab facility has gone through several major hardware expansions over its
lifetime. Two such expansions occurred during the time covered by our dataset: in June
2005, 160 ����� nodes were added, approximately doubling the size of the testbed
and bringing the first Gigabit Ethernet to Emulab. In early 2010, 160 ���� nodes were
added, giving Emulab its first multi-core processors and greatly expanding its number
of Gigabit network interfaces.

One objective of the expansions was to support the deployment of larger experiments.
As we can see in Figure 3, the expansion in 2005 was somewhat successful in meeting
this goal: for nearly two years, the average experiment size grew slowly and reached
almost double the pre-expansion size. Eventually, however, the modern nodes attracted
more users, forcing experiment sizes back down. The expansion in 2010 was less suc-
cessful in this regard for three reasons. First, this expansion increased the testbed size
by only 50%, in contrast with the doubling in 2005. Second, the rollout of the new
nodes was gradual, with a period of limited release before they were made available to
all users. Third, Emulab had long ago reached a saturation point, with utilization of over
90% being common, so the new nodes did little to alleviate this pressure: they simply
allowed more experiments to be accepted.

Emulab allows users to request specific node types (such as ����� or ����), or to
simply request nodes of any available type. Figure 4 shows how these requests have
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evolved over time. The Utah Emulab facility has kept all old nodes in service after
expansions, with two goals in mind: to keep the testbed as large as possible, and to
support reproduction of results published using these nodes [5]. However, can be seen
in the graph, specific requests for old nodes types have dropped near zero. Requests
for “any” node type have declined slowly but steadily, presumably because users do not
wish to be allocated the oldest nodes, which are now over a decade old. We conclude that
the cause of the high rejection rates seen in Section 3.1 is not simply lack of available
nodes, but more specifically a lack of attractive nodes.

3.3 Most Requests Use Few Interfaces

Emulab was built with fairly homogeneous node connectivity: with the exception of
some ����s, most nodes have four interfaces available for experiments. The rationale
behind this design was maximum flexibility: large blocks of identical nodes greatly
simplify resource allocation. However, as we can see in Figure 5, requests using many
interfaces are uncommon—the majority of requested nodes have only a single interface.
This is in keeping with typical networks containing many edge hosts, which are typi-
cally not multihomed. The result, however, is that most interfaces in Emulab go unused
most of the time. It is interesting to note that the popularity of 4-interface nodes grows
up to experiments of size 100, then drops off sharply. Topologies at or right under 100
tend to be large trees, while topologies larger than 100 nodes are dominated by LANs,
which require only one interface per node. It is also worth noting that users have clearly
adapted to the physical constraints of the testbed: nearly all user requests have four
or fewer interfaces. While some topologies requested five or more interfaces, the num-
ber was negligible, and is not shown in the figure. Anecdotal evidence suggests that if
higher-degree nodes were available, some users would take advantage of them, but this
effect cannot be measured from our dataset.

Figure 6 shows that delay nodes represent a significant proportion of the requests:
up to 50 nodes, delay nodes represent 10% to 40% of the total. This not only shows
that experimenters are interested in traffic shaping, but also the necessity of having
numerous physical nodes with at least two network interfaces to act as delay nodes.
We also observe that use of delay nodes decreases for large experiments. We believe
this to be caused by two factors. First, as seen in Section 3.1, larger experiments are
harder to instantiate, and removing delay nodes is one way of keeping the experiment



294 F. Hermenier and R. Ricci

0 50 100 150 200 250 300 350 400

0

20

40

60

80

100

Topology size

%
 o

f t
op

ol
og

ie
s

Fig. 7. Percentage of topologies having LANs

2 10 100

0

20

40

60

80

100

Links (log scale)

%
 o

f L
A

N
s

Fig. 8. Distribution of LAN size

size down. Second, multiplexed experiments are more common at large sizes, and these
experiments perform traffic shaping on the hosts rather than using delay nodes.

3.4 LANs Are Common, But Most Are Small

LANs are of particular interest to testbed design: because they require full bisection
bandwidth, they are much more difficult to instantiate than topologies comprised of
links alone. Figure 7 shows the percentage of experiments that include at least one
LAN. Figure 8 depicts the distribution of the sizes of those LANs. The most striking
feature of Figure 7 is the fact that LANs dominate large experiments. Even at smaller
sizes, they are quite common: 40% of 8-node experiments use at least one LAN. LANs
are indeed primary components in many real networks, and experimenters who want
representative topologies must consider these components when designing their exper-
iments. While some experiments consist solely of a single LAN containing all nodes,
this is not the dominant use case for LANs: only 20% of the experiments that contain
them take this form. Finally, we observe from Figure 8 that a majority of LANs are
small in practice: only 10% of LANs interconnect 20 or more nodes. This is explained
by the small average experiment size.

4 Key Considerations for Network Testbed Design

Having seen the types of topologies that users submit to Emulab, we now turn our at-
tention to the design of the physical facility: a well-designed facility should be matched
to the types of experiments that are submitted to it.

4.1 A Cost Model for Physical Nodes

We begin with a model for the cost of a testbed’s hardware. Of course, minimizing cost
may not be the only factor influencing a testbed’s design. It may be desirable, for ex-
ample, to support certain rare but important types of experiments, even if the monetary
cost of doing so is high. Nevertheless, it is important to understand the effect of design
decisions on facility cost so that these decisions can be made with full awareness of
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their effect on the testbed’s budget. In addition, spending limited money to support cer-
tain types of experiments may limit the type or quantity of other experiments that the
testbed can support.

Our cost model takes into account all factors involved in the purchase of new nodes,
including not only the nodes themselves, but also network interfaces, switches, inter-
switch connectivity, infrastructure servers, racks, cabling, and power distribution. Prices
for these items were determined from current market rates. An important consideration
is that while nodes can be purchased individually, most supporting hardware must be
purchased in larger units: for example, one rack may hold 20 servers, and a modular
switch requires the purchase of a chassis plus some number of line cards. The result is
that the average cost per node is not a simple linear function of the number of nodes,
but instead exhibits a “sawtooth” pattern as seen in Figure 9(a). This figure also shows
the effect of varying the number of interfaces per node: adding more interfaces both
increases the cost (due to the expense of switch ports) and shortens the period of the
sawtooth (as additional switches must be purchased more often).

Clear “sweet spots” are present in the graph, though their effects become less pro-
nounced as the number of nodes increases. On a small scale, connectivity is not a large
factor in average node cost: when purchasing 10 nodes, a node with four links costs
only 14% more than a node with one link. At this scale, a strongly-connected testbed
is warranted. At larger scales, the amortization of infrastructure costs results in a price
more strongly influenced by connectivity: when purchasing 100 nodes, the difference
between these two configurations widens to 30%. With a $1M budget, choosing one link
rather than four allows the purchase of 100 additional nodes. As a result, large testbeds
must plan their connectivity carefully to avoid spending money on unneeded interfaces.

A critical parameter to the cost model is the type and size of switches. Figure 9(b)
compares two types of switches: a modular switch supporting up to 284 ports with 24-
port modules, and a fixed-configuration switch supporting 48 ports. All switch ports
that connect to nodes are 1 Gbps, and ports used for interconnects to other switches are
10 Gbps. The large switches have four 10 Gbps interfaces (leaving 264 ports available
for the nodes), and the small switches have two.4 Using smaller switches results in

4 These switch configurations, and their prices, are based on current HP ProCurve products.
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significant cost savings: 30% on average, and for a budget of $1M, a testbed built with
small switches can acquire 70 additional nodes. The penalty is that the “islands” of
full bisection bandwidth are much smaller, putting more demand on the interconnects
between switches. As a result, a small-switch testbed will be unable to host large LANs
and some strongly-connected topologies.

4.2 Heterogeneous Node Connectivity Enables Larger Testbeds

We now expand our model to consider configurations in which nodes have heteroge-
neous connectivity: some nodes have more interfaces than others. To do so, we ran a
series of simulations. In each simulation, a set of experimenters’ virtual topologies are
mapped onto a physical testbed of infinite size. Nodes in testbed have differing num-
bers of physical interfaces, and each virtual node is mapped to a physical node having
the minimum number of interfaces needed to satisfy it. We look at the resulting distri-
bution of physical interfaces used by the mapping; this gives us a rough guideline of
how many nodes of each type to include in a heterogeneous testbed. Figure 10(a) shows
these distributions for three different testbeds: one having one to four interfaces per
node, another having one to six, and a third having one to eight. On average, 67% of the
physical nodes used have one interface, 20% have two interfaces, and very few nodes
with more interfaces are needed. This correlates with our earlier statistics in Section 3.3,
showing that nodes with few interfaces dominate testbed use.

We then construct testbeds using our previous cost model with different nodes having
different numbers of interfaces. We use the distribution from Figure 10(a) to select the
proportion of the physical nodes having each number of interfaces. Within a fixed bud-
get, more nodes can be acquired, as the majority will only have a few links. Figure 10(b)
compares the size of a homogeneous testbed with testbeds built using the heterogeneous
distributions from Figure 10(a). The heterogeneous testbeds enable us to acquire 25%
more nodes using the same budget. The gain is slightly reduced when the testbed is
composed of nodes having more than four links. However, the loss is not significant as
the number of high-interface nodes is small. Nodes with six or eight experimental links
may be still useful in Emulab to support future users’ needs.
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(a) Unstriped links (b) Striped links

Fig. 11. Two network topologies connecting eight nodes, each with two gigabit interfaces

4.3 Alternatives for Switch Connectivity

Because providing full bisection bandwidth across the entire network is prohibitively
expensive, bandwidth between switches (interswitch bandwidth) becomes a critical re-
source in distributed infrastructure [1,7]. In a network testbed, it is important to avoid
oversubscription of these bottleneck links, which can lead to capacity artifacts and harm
the scientific fidelity of the facility. Interswitch bandwidth imposes limits on the size of
experiments that the testbed can host, and on LAN sizes in particular.

A traditional way to increase interswitch bandwidth is to purchase faster intercon-
nects between the switches. This strategy, however, quickly becomes expensive. Be-
cause of their large number of network interfaces and explicit communications channels,
an alternative strategy is available to network testbeds. This strategy is to stripe nodes’
links across multiple switches; rather than connecting all of a node’s interfaces to the
same switch (as shown in Figure 11(a)), a node’s interfaces are distributed across differ-
ent switches, as shown in Figure 11(b). In a traditional datacenter network, a node may
be connected to two switches for redundancy. Interface striping in a network testbed in-
volves more interfaces per node and has a different purpose: it serves to align the switch
connectivity with communication patterns. Intuitively, the motivation for connecting
two interfaces to the same switch, rather than different switches, is to take advantage of
the high bisection bandwidth within the switch. Two interfaces on the same node, how-
ever, rarely have a need to exchange traffic among themselves. It is much more likely
that they will be connected to interfaces on other nodes, and striping ensures that, for
any pair of nodes, there exists at least one switch on which both nodes have an inter-
face. The result is a greatly decreased dependence on interswitch links and the ability
to create large LANs, potentially connecting every node in the testbed. A disadvantage
of striping is that it limits the number of nodes in the testbed to the maximum available
switch size. Another disadvantage is that heterogeneous interface counts become more
complicated to support, as they disrupt the symmetry of the striping.

We ran a simulation to discover how much interswitch bandwidth is used in practice
on Emulab. We used the physical topology of Emulab’s 160 ����� nodes, which are
connected in an unstriped manner to two large switches connected by an 8 Gbps trunk.
Our simulation re-played the user requests for the ����� nodes: after mapping each
user topology to the testbed using Emulab’s ������ program, we examined the amount
of bandwidth allocated on the interswitch trunks. The original submission time for each
experiment was preserved, and we assumed that each experiment stayed instantiated on
the testbed for 24 hours.
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Fig. 12. Interswitch bandwidth between the switches connecting the ������ nodes

Figure 12 shows the distribution of allocated interswitch bandwidth after each experi-
ment is instantiated. We observe the usage is significantly below the maximum capacity
of 8 Gbps: the maximum usage is 1.1 Gbps, and only 3% of instantiations result in
consumption of more than 1 Gbps. The domain features of network testbeds explain
this surprising result. Emulab relies on large switches with hundreds of ports to connect
physical nodes. With 80% of submitted topologies being composed of fewer than 20
nodes, the probability of being able to fit a requested topology within a single switch are
high. Furthermore, ������ optimizes each topology mapping to keep the interswitch
bandwidth usage as low as possible. This result suggests that it is worth investigating
testbeds built with smaller switches. While such testbeds would rely more heavily on
interswitch links, and possibly be unable to support some large experiments, the large
switch topology is clearly over-provisioned in this respect. Since small switches typi-
cally cost much less than large ones, the savings would allow the testbed to add more
nodes.

5 Evaluating Testbed Designs

We now combine the lessons of the two previous sections to evaluate new testbed de-
signs: using information about users’ requests and the costs of alternative topologies,
we run simulations to find the topologies that are most effective on real workloads. The
workload used for these simulations is a subset of the entire Emulab dataset: we use
the 14,873 topologies that specifically requested Emulab’s ����� nodes. We chose
this subset to limit the runtime of the simulation, and to capture what could be consid-
ered a “sub testbed” of the full Emulab topology. This workload is processed through a
FIFO batch queue and resource mappings are produced by Emulab’s ������ program.
If resources are available, the experiment in the front of the queue is instantiated on
the testbed, and those resources are marked as unavailable; otherwise, the queue blocks
until sufficient resources are available. After instantiation, each experiment stays on the
testbed for 24 hours of simulated time before terminating. We submit all experiments si-
multaneously at beginning of the simulation, and measure the total amount of simulated
time until all experiments have been completed. We also measure the rejection rate: that
is, the number of virtual topologies that cannot be mapped to the physical testbed un-
der any conditions. This occurs when the physical topology being evaluated does not
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contain enough physical nodes, a sufficient distribution of interfaces, or satisfactory
inter-switch bandwidth. This measure is important, since rejecting a large number of
topologies would keep the completion time low, but indicate that the testbed does not
meet the needs of at least some experimenters.

5.1 Heterogeneous Node Connectivity

As discussed in Section 3.3, most nodes in virtual topologies have few network inter-
faces, and the cost model in Section 4.1 shows us that it is possible to trade off fewer
physical interfaces for more physical nodes. Choosing a distribution for network inter-
faces is a critical decision for improving the testbed’s hosting capacity, but it is im-
portant to balance cost against variability in the workload. We evaluated the suitability
of seven simulated testbeds which differ in the number of interfaces on each physical
node. Each testbed was generated from the cost model using a $500,000 budget. Each
has a different proportion of nodes having either two or four Gigabit Ethernet links on
the experiment network. Interfaces are not striped across switches, and the inter-switch
bandwidth capacity is set to 40 Gb (modeling four trunked 10 Gb ports). The configura-
tion having only 4-link nodes is similar to that used on the Emulab facility at Utah.

Table 2. Simulation results for seven generated testbeds that differ in the proportion of two-
interface and four-interface nodes. The “0%” case is similar to the topology of the Utah facility.

2-link nodes Phys. nodes
Interswitch Bw.

Rejections Time (days)
avg. max.

0% 130 1.46 Gb 9 Gb 0 (0.0%) 1564
20% 135 1.41 Gb 10.1 Gb 0 (0%) 1510
40% 144 1.27 Gb 8 Gb 0 (0%) 1421
60% 148 1.11 Gb 8.1 Gb 0 (0%) 1394
80% 159 223 Mb 3 Gb 33 (0.2%) 1405
90% 161 30 Mb 4 Gb 33 (0.2%) 1487
100% 165 12 Mb 1 Gb 3,532 (23.8%) 995

Table 2 details the results. As expected, the number of physical nodes in the testbed
increases with the proportion of nodes that have two links. For example, with 20%
of nodes having two links, the testbed is 5 nodes larger than when all nodes are 4-
link nodes. Around a proportion of 80%, 4-link nodes become scarce resources and
experiments start to be rejected for requesting too many nodes with more than two
links. When we increase the percentage of 2-link nodes to 90%, no additional topologies
are rejected, but the completion time is increased by 5.8%. The small number of 4-link
nodes is sufficient to map the same set of topologies, but because these nodes are scarcer,
some topologies must wait a long time for them to become free, blocking the queue. In
the extreme case, a testbed comprised of only 2-link nodes rejects nearly one quarter of
all experiments.

We also observe that increasing the number of nodes with two interfaces reduces the
average interswitch bandwidth usage. This is explained by the increasing number of
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physical nodes attached to the same switch. When all nodes have four links, a 264-port
switch connects 66 nodes; when all nodes have two links, 132 nodes fit onto each switch.
Thus, the probability that a topology is able to fit within a single switch increases with
the percentage of 2-link nodes.

In this experiment, the testbed with a 60%/40% split between two- and four- link
nodes is the most efficient: the 18 additional nodes afforded by this configuration re-
duces the completion time by 10.8% while still being able to host every topology in the
workload.

5.2 Switch Connectivity

We now evaluate the alternate switch topologies from Section 4.3: striping the inter-
faces of each node across more than one switch, and building a testbed out of small
48-port switches. We compare to the best design from the previous evaluation, a hetero-
geneous testbed with a 60%/40% split. As before, all testbeds are built with a budget of
$500,000.

Table 3. Simulation results for two generated testbed topologies, with and without interfaces
striped across the switches

Network configuration
Interswitch bw

Rejections Time (days)
avg. max

Unstriped 1.11 Gb 8.1 Gb 0 1394
Striped 85 Mb 2.1 Gb 0 1392

Table 3 shows the impact of a striped physical topology using two switches, with
each node having two interfaces on each switch. Neither configuration rejects any ex-
periments, and the difference in total completion time is negligible. The striped config-
uration uses much less interswtich bandwidth, giving it a clear advantage—only 7.7%
as much on average, and 26% at the maximum. However, both configurations result in
interswitch bandwidth comfortably below even a single 10 Gb link, meaning that from
a practical perspective, either is capable of handing the workload in our simulation.
Striping still has the potential to be advantageous if the submitted topologies are more
strongly connected than those typically seen on Emulab. It can also provide a benefit if
the cost of interconnects is high, as is the case when using the latest, and therefore most
expensive, generation of Ethernet technology. Finally, striped connectivity is also mean-
ingful when the ratio of node ports to interswitch ports is high. This can occur when
when using large, high-density switches or small fixed-configuration switches with a
limited number of “uplink” ports.

It can be difficult in practice to map virtual topologies to striped physical facilities.
We repeated our previous simulation with five interfaces per node, necessitating an
asymmetric striping pattern—each node had two interfaces on one switch and three
on the other. The result of this experiment was a marked increase in the interswitch
bandwidth used, to 800Mb. This can be explained by the fact that the irregularity intro-
duced by asymmetric striping makes the mapping problem harder, and Emulab’s solver,
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������ has not been tuned for this case. Making effective use of an asymmetric striped
topology would require a new mapping algorithm.

We next turn our attention to the size of the switches used to build the testbed. As
we have seen in Section 4.3, connectivity in Emulab experiments tends to be sparse,
so small, cheap, switches may be an economical alternative to the large switches used
in the Utah Emulab facility. The first two rows of Table 4 show simulations for two
testbeds using 264-port and 48-port switches, respectively. As expected, the cheaper
48-port switches allows us to acquire more physical nodes, and the resulting testbed
is 27% larger. However, we observe that 138 topologies (1%) were rejected as being
unable to be fit on this testbed. An analysis of the rejected topologies confirms they
were composed of LANs with more than 30 virtual nodes; these LANs fit on a single
switch in the large-switch configuration. 85 of the rejections (60% of the total) were due
to actual capacity limitations, while the remaining 57 are due to the fact that ������
sometimes misses valid solutions due to its randomized, heuristic nature.

Table 4. Simulation results for testbeds using an 60%/40% split of two- and four-link nodes. 264-
port switches and 48-port switches are connected through 40 GB and 20 GB uplinks, respectively.

Switches Nodes
Interswitch bw

Rejections Time (days) Cost
avg. max

264 ports 148 1.11 Gb 8.1 Gb 0 (0%) 1394 $498,796
48 ports 186 1.06 Gb 8.1 Gb 138 (0.9%) 996 $498,354
48 ports 148 883 Mb 9 Gb 142 (0.9%) 1314 $390,268

The greater number of nodes in the small-switch testbed allows the workload to com-
plete 28.5% faster. The cost of providing a network capable of hosting sizeable LANs
is an increase in the completion time. Viewed from this perspective, when spending
$500,000, the use of large switches allows us to host 1% more topologies, but at the
cost of increasing the completion time of the whole workload by 40%.

In order to estimate the monetary cost of supporting this 1% of experiments, we ran
another simulation, shown in the third row of Table 4. This time, we used small switches,
but limited the number of nodes to 148, the number in the large-switch testbed. The re-
sult was a cheaper testbed, costing only $390,000. As with the previous simulation,
the use of 48-port switches restricts the testbed’s hosting capacity, and 142 topologies
were rejected.5 Comparing this configuration to the large-switch testbed, we see that
the completion times are similar.6 As both testbeds have the same number of nodes,
this confirms that the network is the bottleneck that causes some experiments to be re-
jected. The usage of small switches reduces the testbed cost by $108,000. Thus, we can
estimate that supporting these 142 experiments (0.95% of the total) raises the testbed
cost by 28%. Put another way, the “easiest” 99% of experiments cost on average $33.5
each, while the “hardest” 1% cost $760.7 each. Note that these experiment costs should

5 The difference with the previous experiment is explained by the nondeterminism of ����.
6 The slightly higher time for the large-switch testbed is explained by the fact that it runs more

experiments.
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be interpreted as illustrative, rather than true costs: since our simulations only cover
6 years (less than the useful life of a node) and use a simple model for experiment
duration, they should not be considered definitive costs.

The conclusion we draw from these simulations is that testbed design should take
into consideration the relative costs of supporting certain types of experiments, and
the research value of such experiments (in particular, large LANs) should be weighed
against their increased infrastructure costs.

6 Conclusions

From our analysis of user topologies and simulations of alternative physical topologies,
we draw the following conclusions:

While experiments requiring few nodes dominate testbed usage, there is also a sig-
nificant contingent of users who want to deploy experiments that are quite large. The
latter class of experimenters are likely limited by the number of nodes available on a
shared-use testbed. The fraction of projects using at least one large experiment is greater
than the fraction of experiments that are large, suggesting that projects use many small
experiments to prepare for a relatively small number of large trials.

A physical testbed topology need not have full bisection bandwidth; on the contrary,
a testbed is able to meet its users’ needs with a surprisingly small amount of bandwidth
between switches. This makes building testbeds out of small, cheap, switches more
attractive than expected. The exception to the low edge-connectivity rule is large LANs,
which are employed by some experimenters. This implies that a testbed built from small
switches may find value in one large switch to support these LANs.

Striped topologies reduce the need for inter-switch connectivity. Though it is possi-
ble to build a testbed with modest bisection bandwidth even without striping, a striped
configuration aligns the physical topology with common communication patterns, and
can reduce the need for inter-switch bandwidth even further. The tradeoff is a more dif-
ficult mapping problem, requiring further work to use this configuration with maximum
efficiency.

Nodes with few links are prevalent in users’ requests. The result is that a homoge-
neous testbed, with an equal number of physical interfaces per node, makes inefficient
use of resources. By varying the number of interfaces per host, it is possible to build a
larger testbed, a cheaper testbed, or one with a significant number of high-degree nodes.

The savings from heterogeneous node connectivity vary with the scale of the testbed.
For large testbeds, many costs amortize, and the cost of network ports becomes a domi-
nant factor. Giving some nodes fewer interfaces results in substantial cost benefits. For
small testbeds, this effect is much less pronounced, and a homogeneous testbed is prefer-
able for its flexibility.

Some experiments require a more expensive testbed than others, so care should be
taken when planning a testbed to decide how valuable these experiments are. In our sim-
ulations, we found that if Emulab were to intentionally exclude the 1% most “difficult”
experiments, it could save 25% of hardware costs or could build a 32% larger testbed.

While users know what topologies they want, they also quickly learn the limitations
of the testbed, and tend to adapt their expectations to what is realistic to instantiate on it.
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For example, experimenters rarely request more network interfaces than Emulab nodes
have. This is in keeping with earlier studies finding similar effects on the Internet infras-
tructure: the degree of connectivity of Internet routers is heavily influenced by available
commercial offerings [10]. Experimenters also decrease the sizes of their experiments
when nodes are scarce.

Multiplexed experiments are used primarily to support very large topologies. Though
multiplexed experiments represent only 5% of submitted topologies, their large average
size means that they account for 31% of all nodes allocated by Emulab, making them
an important resource. The implication is that most users prefer “bare hardware,” but
are willing to tolerate virtualization in order to run large experiments. Testbeds aiming
to appeal to the widest possible userbase should support non-virtualized experimenta-
tion, those aiming to support large experiments should support virtualization, and for
maximum flexibility, it is desirable to support both.

In the Utah Emulab facility, demand always exceeds capacity, and expansions to the
testbed hardware are met with increased usage. As a result of Emulab’s “first come, first
serve” policy, users tend towards small experiments. In order to support larger experi-
ments, a testbed would need to be either significantly over-provisioned (and thus expen-
sive and inefficient), or to implement allocation policies (such as advance scheduling)
that favor large experiments.
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Abstract. The IBBT iLab.t technology centre provides computing hard-
ware, software tools and measurement equipment to support researchers
and developers in building their ICT solutions, and in measuring the per-
formance of these solutions. Among other things, the iLab.t hosts several
generic Emulab-based wired test environments called the Virtual Walls,
and two wireless test environments which are grouped under the name
w-iLab.t. Until very recently, these wired and wireless test facilities each
had their own history: they were deployed and maintained by a differ-
ent group of people, were operated using different tools, and each had
their own community of experimenters. This paper provides insight on
the origin and evolution of the Virtual Wall and w-iLab.t facilities. It
explains how these facilities were federated, by using the best parts of
both the OMF and Emulab frameworks. It discusses the benefits of our
local federation as well as our future federation plans.

Keywords: testbed, wireless, wired, emulab, omf, federation.

1 A Short History Behind the iLab.t

The history behind the iLab.t test facilities goes back to 1997, and starts with
a first experimental set-up consisting out of 1 ATM switch and 2 Windows PCs
deployed in the premises of the IBCN research group of the INTEC department
of the Ghent University, Belgium. One year later, the Atlantis testlab was born,
and over the years additional nodes, a diverse range of network equipment and
measurement equipment was added. After the IBBT (Interdisciplinary Institute
for Broadband Technology) was founded in 2004, the activities of the Atlantis
lab —at that point already counting well over 100 network nodes— were con-
tinued and significantly expanded under the flag of the IBBT iLab.t technology
centre. By 2006, the iLab.t counted over 300 rack mount PCs, a wide selection
of network devices and technologies, professional test and measurement equip-
ment including wired and wireless sniffers, packet generators and QoS analysers.
Currently, about 120 40U racks are used. In 2007, it was decided to make the
testbeds more generic by installing the Emulab software [1] on 100 servers, that
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we named ‘the Virtual Wall’. In this way, people could use the same resources
repeatedly and create also larger testbeds for experiments.

At that time, the popularity of wireless WLAN devices and sensor nodes was
also significantly increasing. Being a research institute involved in multidisci-
plinary demand-driven research projects that often demand a proof-of-concept
demonstrator, several small-scale desktop wireless testbeds with diverse types of
hardware and wireless interfaces started to appear throughout the office building.
However, it quickly became clear that there are significant drawbacks to main-
taining several small-scale (wireless) testbeds; to name just a few drawbacks,
with multiple individual test set-ups, it was often time-consuming to re-run ‘old’
experiments after the equipment had been stored in a cupboard for an extended
period of time, especially if a certain experiment was not well-documented. Fur-
thermore, re-using (parts of) previously programmed code and scripts is difficult,
for example if one set-up is based on a COTS wireless Wi-Fi router and another
set-up makes use of desktop PCs with Wi-Fi cards. As a final example, for scal-
ability and efficiency reasons, in many cases it makes much more sense to build
expertise on devices of a single type and buy a large amount of these nodes,
than to have fragmented and more limited knowledge on operating a more di-
verse selection of hardware and have several testbeds of a smaller scale. These
and other experiences led to the design and deployment of a 200-node wireless
testbed, called the w-iLab.t in 2007 [2]. Since 2007, the w-iLab.t has been fur-
ther developed and at this moment, there are two instances of the lab. Being
deployed in the IBBT offices in Gent, Belgium, the original deployment is called
the w-iLab.t office. The new location is known as w-iLab.t Zwijnaarde, after the
town in which it is located, approximately 5 km away from the central IBBT
offices.

In 2010 and 2012 respectively, a second and third Virtual Wall were installed.
As a result, there are now 300 servers available in 3 Emulab configurations.

2 The Virtual Wall and w-iLab.t Facilities

To get a better understanding of the Virtual Wall and w-iLab.t facilities, a high-
level description of both facilities is provided below. Next, Section 2.3 explains
how both facilities are currently being used.

2.1 High-Level Description of the Virtual Wall

The iLab.t currently has 3 Virtual Wall testbeds. A Virtual Wall exists out of
100 servers, all connected with 4 or 6 Gigabit interfaces to a central switch (Force
10 E1200) which functions as a patch panel. Besides this, there is a control in-
terface per node through which people can login. The testbed runs the Emulab
software of the University of Utah [1]. Experimenters can build (large) experi-
ments by drawing a topology in a graphical user interface or by creating NS2 files
describing the topology of the experiment. One of the advantages of the Virtual
Wall is that the Emulab software controls the switch as a virtual patch panel, so
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Fig. 1. Emulab based Virtual Wall testbed

experimenters can remotely change topologies and configurations. There is no
virtualisation involved, so the experiments run on the bare machine hardware,
which is very important for performance experiments. As can be seen in Figure 1,
20 of the 100 nodes are connected to a display so that also visual feedback can be
gathered, for example from large scale gaming experiments or video streaming
experiments. As indicated above, in 2010 and 2012 two additional Virtual Walls
were installed of 100 nodes. The advantage of having the testbed locally, is that
we can also connect measurement hardware (e.g. Spirent Testcenter) or specific
test devices besides getting visual feedback.

2.2 High-Level Description of the w-iLab.t

As indicated above, the original w-iLab.t deployment is located in an office build-
ing, and spans 3 floors of 90m x 18m. At 200 spots throughout offices, meeting
rooms and hallways, wireless nodes are mounted to the ceiling. More precisely,
at each of the spots, an embedded PC (PC Engines Alix3c3 [3]) is installed. All
embedded PCs are connected over Ethernet to a central control server. Each
embedded PC is equipped with two Wi-Fi a/b/g mini-PC interfaces. Moreover,
a TelosB sensor node is connected via a custom-built so called ‘environment em-
ulator’ to a USB port of the embedded PCs. This environment emulator allows
experimenters to take more control over their sensor node experiments (e.g. em-
ulation of sensor node inputs, reading/setting analog and digital I/O pins) and
enables advanced logging functionality [4]. As a result, each node in the w-iLab.t
office can be activated as a sensor node, a Wi-Fi node, or a combination of sen-
sor and Wi-Fi, for example to act as a gateway. How the sensor nodes and/or
Wi-Fi nodes behave is completely decided by (and reprogrammable by) the
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experimenter. For example, a Wi-Fi node uses the Madwifi [5] driver by de-
fault. As such, each Wi-Fi node can be programmed to behave as an access
point, or as a station, or can be configured in monitor mode. It is also possible
to install a different wireless driver, and/or to extend or modify any of the nodes
in the same way as an experimenter would be able to do with a node that resides
on his desktop, thus guaranteeing full flexibility in the experiments. The control
software of the w-iLab.t office is based on the Motelab software [6] but has been
extended over the years [2] to improve the functionality and usability.

The main driver for deploying a second w-iLab.t testbed, was the fact that
the 2.4GHz ISM spectrum band in the office environment is at times heavily in-
terfered by operational wireless networks, cordless phones and microwave ovens.
Furthermore, since people are working in the office, the wireless link quality
during daytime experiments may be very unpredictable. While for some ex-
periments, this interference and unpredictability is a welcome challenge, it is
obviously also very helpful to be able to execute experiments in an environment
where no people are working and where no devices external to the experiment
are causing interference. Such environment was found in a utility room above
a cleanroom in Zwijnaarde. In this 66m x 20.5m room, 60 fixed nodes (Wi-Fi
a/b/g/n, custom sensor node, Bluetooth) are installed. In addition, 20 mobile
nodes based on a vacuum cleaning robot available with similar characteristics
as the fixed nodes are soon to be added. The new nodes are more powerful than
those in the office deployment [7]. While the low-power nodes in the office de-
ployment are powered over Ethernet, the more powerful nodes in the Zwijnaarde
testbed are powered via Power Distribution Units (PDUs). A high-level overview
of w-iLab.t Zwijnaarde architecture is provided in Figure 2. While not listed on
the figure, the w-iLab.t Zwijnaarde is also home to software defined radios and
advanced spectrum sensing components.

When planning the new Zwijnaarde deployment during 2011, the requirements
were determined based on the experience gained when installing and maintaining
the w-iLab.t office environment. The wish list of new functionalities included
expectations such as a more easy versioning system (to make it easier to go
back to a previous version of the code under test and to specific parameter
settings), easier sharing of experiments and code between users, a more uniform
interface for including and manipulating sensor nodes and Wi-Fi based nodes
in experiments, a more flexible way to share and comment on results, support
for mobile nodes, and support for multi-site experiments. As such, it was clear
the control software that was used for the office environment would have to be
significantly extended. While such redesign would have been possible, or new
and clean code could have been written from scratch, after studying the state of
the art at that time we decided to start from and contribute to the OMF [8,9]
control and management framework, since part of the functionality that was on
our wish list became available with no or limited adjustments, by adopting OMF.
Furthermore, while OMF does not fully support all functionalities available in
the w-iLab.t testbed (e.g. environment emulator or our custom visualisation and
processing extensions), we believe this lost functionality can easily be transfered
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Fig. 2. High-level overview of the w-iLab.t Zwijnaarde architecture

to the OMF. To summarize: using the functionality provided by, and contributing
to a well-known and widely used tool was found to be more useful than continuing
to work on a custom code base. As will be described in Section 3, it is the OMF
tool that is also used to enable the federation between the w-iLab.t Zwijnaarde
and the Virtual Wall.

2.3 Role of the Facilities

Until recently, the (wired) Virtual Wall and (wireless) w-iLab.t facilities, al-
though operated on the same physical location, were installed and largely main-
tained by different people. For each of the facilities, different user tools were/are
provided, and in general, the knowledge on operating and using the platforms
and the specific extensions was/is divided among two distinct user groups. In
hindsight, the divide between the wired and wireless experimentation facilities
grew in a natural way and is largely historically linked to the organization of our
research in research clusters, such as ‘wireless and mobile networks’ and ‘cloud
computing’. As such, when initially implementing both facilities, the choice was
made to start the Virtual Wall based on the the Emulab software, and the (origi-
nal) w-iLab.t (office) on Motelab, based on multiple site visits of similar testbeds
in the US and Europe. In 2007-2008, those choices fitted best our needs. Obvi-
ously, as the experimental facilities were further developed, the fact that different
people were involved in setting up and maintaining the testbeds also means that
the Virtual Wall and the w-iLab.t have grown to what they are today while
fully focussing on their respective experimenter communities, without having to
make compromises towards the other community. Table 1 summarizes the most
important differences.
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Table 1. Comparison of facility characteristics

Virtual Wall (wired) w-iLab.t (wireless)

Choice of nodes Specific nodes are chosen based
on technical requirements (e.g.
number of interfaces).

As the location of the nodes in-
fluences the topology, the exper-
imenter hand-picks the nodes in-
volved in his/her experiment.

Reservation After reserving nodes, user con-
trols experiment via SSH (or
custom scripts). Scheduling an
experiment does not necessarily
mean executing an experiment.

Experiment is usually fully de-
fined before experiment can be
scheduled; scheduling experiment
equals executing an experiment.

Node capacities Powerful multi-core PCs Embedded PCs for control and
Wi-Fi, low-power low-capacity
sensor nodes. Ethernet usually
only management.

Interfaces Multiple identical Ethernet inter-
faces per node

Heterogeneous wireless inter-
faces (Wi-Fi, Bluetooth, IEEE
802.15.4)

Storage NFS mounts, or custom solution
by the experimenter

NFS mount, custom database so-
lution for sensor nodes

Experiment life-
cycle support

Support for swapping in images Office: support for flash-
ing/installing nodes, collecting,
processing, visualising results,
trigger events during experi-
ments; Zwijnaarde: OMF/OML
based deployment

Although, as will be described in Section 3, a federation between these wired
and wireless experimentation facilities is now a fact (at the moment of writing,
the final steps of the integration happened little over 2 weeks ago), so far the dif-
ferences in experimentation communities are still reflected in the user accounts
for the Virtual Wall and w-iLabt. When comparing the user account lists from
both platforms, only 9 experimenters have an account for both testbeds, with
the total number of accounts for the Virtual Wall and w-iLab.t being 120 and 60
respectively (excluding student group accounts and other generic accounts which
are used by multiple users, for instance in the scope of a research project). An
example experiment performed by a ‘typical’ Virtual Wall user on the w-iLab.t
involved reasoning on top of sensor values that were dynamically obtained in real-
time from the wireless sensor nodes of the office testbed. In this case, a central
machine with a lot of processing power, which is not available in the ’normal’ w-
iLab.t set-up was required. The ad-hoc solution in this case was simply to add an
external computing node to the control network of the w-iLab.t for the duration
of the experiment. In addition to the accounts for individual experimenters, both
iLab.t facilities are used in many national and international research projects,
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and are used by PhD and master students for research and educational purposes.
An selection of international research projects and the role of the iLab.t is listed
in Table 2.

Table 2. Selected projects in which the iLab.t facilities are used

Use and development of experimentation infrastructure

BonFIRE
www.bonfire-
project.eu

BonFIRE designs, builds and operates a multi-site Cloud prototype
Future Internet faclility. The Virtual Wall is one of the facilities in
the BonFIRE cloud, providing support for experiments with a need
for a fully controllable network environment.

CREW
www.crew-
project.eu

The w-iLab.t is one of the core testbeds in the CREW federation.
Among other things, the w-iLab.t test environment is used to cre-
ate reproducible interference environments modelled according to the
typical use of wireless networks at different locations, such as a home
or an office.

OFELIA
www.fp7-
ofelia.eu/

The OFELIA project creates an experimental facility that allows re-
searchers to not only experiment ‘on’ a test network but also to con-
trol and extend the network itself in a precise and dynamic way,
using OpenFlow networking technology. Both the Virtual Wall and
the w-iLab.t are part of the OFELIA facilities.

OpenLAB
www.ict-
openlab.eu/

OpenLab brings together the essential ingredients for an open, gen-
eral purpose and sustainable large scale shared experimental facility.
The w-iLab.t testbed is made available to selected experimenters as
part of the OpenLab federation.

Research projects

SPITFIRE
www.spitfire-
project.eu/

The w-iLab.t is used to evaluate the implementation and usage of
embedded web service technology based on the IETF CoAP proto-
col. Novel solutions for facilitating sensor deployment, discovery and
access are designed and evaluated.

SPARC
www.fp7-
sparc.eu/

The SPARC project studies carrier grade extensions to split archi-
tectures including OAM, restoration and reliability, network virtual-
ization, and resource isolation in order to open up carrier networks
to the benefits of split architectures. The iLab.t Virtual Wall is used
to prototype carrier class applications of OpenFlow and to evaluate
their scalability and performance.

EULER
www.euler-
fire-
project.eu/

The main objective of the EULER research project is to investigate
new routing paradigms so as to design, develop, and validate experi-
mentally a distributed and dynamic routing scheme suitable for the
future Internet and its evolution. The Virtual Wall is used for the
prototyping, functional validation and performance measurements of
the routing protocols.

CONSERN
www.ict-
consern.eu

CONCERN aims at developing and validating a novel paradigm of
dedicated, purpose-driven small scale wireless networks that are char-
acterized by energy awareness and service-centric evolution. Within
this context, w-iLab.t is used to implement and experimentally mea-
sure the power savings that can be achieved by different cooperative
mechanisms in heterogeneous network environments.
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From this table, it can be seen that while the Virtual Wall and the w-iLab.t fa-
cilities are used in many projects, currently only the OFELIA project makes use
of both facilities. Considering the above observations, it is a very valid question
whether it makes sense to federate wireless and wired experimentation facilities.
In the next section, it will be explained why we decided to federate our wireless
and wired facilities, regardless of these observations.

3 Federating the Virtual Wall and w-iLab.t Facilities

3.1 Complimentary Experimentation Tools

As can be seen in the overview Table 3, both Emulab and OMF have specific
functionality in the experiment life cycle. Some of the functionality is overlap-
ping, while other functionality is unique for one of the frameworks. Especially
the unique features of one of the frameworks are very interesting to share among
all experimenters/experiments. Besides these, the standard OMF framework is
lacking some functionality regarding secure use of nodes, which can be perfectly
filled in by Emulab functionality. Because of these reasons, it was obvious for us
to try to combine the functionality of both frameworks in a federated environ-
ment. For free, we got a similar environment for wired and wireless experiments,
which is very interesting for both testbed administrators and experimenters.
Customised code is limited to the minimum and fed back to the official frame-
works. This means also that we can open up the testbeds more easily to the
outside world, as e.g. APIs created for projects as Bonfire or Ofelia can now talk
to wired and wireless testbeds.

Table 3. Comparison of facility characteristics

Virtual Wall (Emulab) w-iLab.t Zwijnaarde (OMF)

Resource dis-
covery

proprietary + SFA Inventory database on AM

Resource reser-
vation

Only current availability on a
first come, first served base

-

Resource ini-
tialization

SFA/XMLRPC Manual

Experiment
control

ssh + startup scripts ssh + OEDL scripts

Monitoring - OML

User storage NFS (secure user and project
home mounted)

NFS (user home mounted)

Authorization webbased + XMLRPC + SFA
Credential API

-

Experiment
topology setup

Web interface or NS file Ruby topology script

NIC config done by Emulab OEDL scripts
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Fig. 3. OMF system architecture

3.2 iLab.t Federation: Building Blocks

The initial blocks for the federation are two separate facilities: the Virtual Wall,
based on Emulab, and the w-iLab.t Zwijnaarde. The choice for federating with
the w-iLab.t Zwijnaarde in this initial phase is made because this newer testbed
is currently already equipped with OMF, while the w-iLab.t office is yet still
managed by our older, Motelab-based management software. In a later phase,
the w-iLab.t office is also to be integrated in the iLab.t federation. The remainder
of this section is organized as follows: first, the Emulab and OMF frameworks
and the relevant methodology are introduced in Sections 3.3 and 3.4. Next, the
federation approach is explained in Section 3.5.

3.3 OMF Basics and Experimentation Lifecycle

The OMF framework consists of 4 major blocks, illustrated in Figure 3, that
are interconnected over a wired control framework. First, there is the Aggregate
Manager (AM), which can be considered as the main server of the testbed. The
AM is responsible for initializing and configuring testbed resources. The AM also
runs the OML (OMF Measurement Library) server [4] to collect results from the
nodes during the experiment. Second, the Experiment Controller (EC) is the
machine on which experimenters log in to run their experiments on the testbed.
The EC can start and stop experiments and interact with the nodes by sending
commands to the resource controllers during the experiment. Third, the Resource
Controller (RC) is a software daemon which runs on each of the resources (which
are in the case of w-iLab.t the wireless nodes) and waits for instructions from
the experiment controller. Finally, there is an XMPP (Extensible Messaging
and Presence Protocol) server, used to propagate the communication between
the experiment controller and the resource controllers.

To understand the relevance of the proposed federation solution, it is impor-
tant to understand the installation process and experiment lifecycle of an OMF
testbed; The first step in installing an OMF testbed, is to install an aggregate
manager (AM). This AM runs a DHCP, DNS and TFTP server. Whenever a
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node is added to the testbed, its specifications should be added to the inventory
database on the AM. Every node should also be registered to a certain part of
the testbed (also called a ‘slice’) via the XMPP server. The AM also runs a
Frisbee server [6] to load images on the nodes. The second step is to install the
experiment controller, and complete the EC configuration with the IP addresses
of the AM and the XMPP server. Finally, the resource controllers are installed
and configured on the nodes. In the corresponding configuration file, the control
interface (e.g. eth0), the XMPP server address and the experiment slice the node
operates in by default (e.g. the default slice, spanning the entire testbed) have
to be specified.

After the installation, the OMF experiment lifecycle is the following.

– When a user wants to run an experiment on an OMF-enabled testbed, he
first has to decide which image (OS, drivers, . . . ) he wants to configure the
nodes with. By executing an omf load command on the EC, the image is
multicast from the AM to the nodes that require that image.

– The second step for the user is to write an OEDL script (OMF Experiment
Description Language). This script selects which nodes will be part of the
experiment and what applications will be executed at what time during the
experiment. We use the Human Readable Name (HRN) to define a node.
This HRN is also listed in the inventory database and is registered to a slice
in the XMPP server.

– Now the user can start the experiment by executing an omf exec command
on the EC.

– The EC now checks the status (power on/off) of the nodes through the AM.
The AM can then power on the nodes if necessary via a software component
which is part of the so called Chassis Manager, responsible for the manage-
ment of the power state of the nodes.

– Once the nodes are powered on, the EC sends commands to the resource
controllers (RC) on the nodes through the XMPP server. Commands can be
to install software, start scripts, configure wireless interface, . . .

– During the experiment, results can be collected with OML [10]. The OML
server runs on the AM. Resource nodes need to have the OML client library
installed.

3.4 Emulab Basics and Experimentation Lifecycle

Figure 4 illustrates a basic view on an Emulab based testbed. There are 2 central
servers (which run FreeBSD): BOSS is in charge of all configuration and organ-
isation work, while OPS is the NFS server. Experimenters can login on OPS
to get to the storage after their experiment was finished. Then there is a large
switch to which all nodes are connected with as much as possible ethernet ports.
This switch only functions as a patch panel, so it substitutes the manual patch
cable connections. In this way, experimenters can use nodes as software based
routers with multiple ports, use nodes as delay or packet loss nodes, and so on.



The w-iLab.t Testbed 315

Virtual Wall
BOSS

Virtual wall
node

Virtual wall
node

Virtual wall
node

Virtual Wall
File server

Fig. 4. Emulab architecture

Some nodes have 4 harddisks to make it possible to create RAID0 configurations
for fast disk access. Emulab also has a user/group/project model which works
by delegation. A user which is a ’grouproot’ can admit other users to his exper-
iments, so this makes the testbeds scalable to many users with a low sysadmin
overhead. All experimenters in a group have access to the nodes of experiments
of this group.

When starting an experiment, Emulab swaps in the right images on the right
nodes, configures the IP addresses, the VLANs on the switch and the user pass-
words. There is also a very useful dynamic DNS system which makes that you
can address your nodes in the experiment always through the same hostname,
no matter which node is chosen for the experiment. At the end of swapping in
the experiment, a script can be executed, or the experimenter can take manual
control through SSH or RDP (remote desktop). Emulab has also a pubsub sys-
tem with barriers, but experimenters tend to implement a similar thing in their
experiment software, we have learned.

3.5 The iLab.t OMF-Emulab Federation

The basic approach of our federation solution is to extend the Virtual Wall (Em-
ulab) testbed to support OMF experiments. Because no structural changes were
made to the original setup, users can continue to use the testbed as before, as
such guaranteeing backward compatibility and continuity of both experimen-
tation environments. Figure 5 provides a high-level overview of the federation
set-up.
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Fig. 5. The Virtual Wall – w-iLab.t federation

As shown in this Figure, two servers were added to the Virtual Wall set-up.
One server acts as OMF Aggregate Manager, the other one as XMPP server.
Although the OMF framework allows experimenters to install their own Exper-
iment Controller on their local desktop, experimenters are assisted in setting up
a joint experiment as follows. A specific script was created, that can be included
when configuring a Virtual Wall experiment. By (automatically) executing this
script, a regular Virtual Wall node is configured as an OMF Experiment Con-
troller. As such, whenever users want to run an OMF experiment on the Wall,
one of the Virtual Wall nodes can be swapped in, and this conversion script can
be started automatically. The user home directory on the EC is persistent, as
it is mounted on the home directory of the user on the Virtual Wall file server,
which can be accessed at all times (also after the experiments are completed).

A similar approach is used for the nodes that are part of a joint experiment.
Both Virtual Wall nodes and wireless nodes can be part of an OMF experiment.
To accommodate this, a first requirement is that the nodes should run an OMF
Resource Controller. We therefore provided a script that turns a regular (Virtual
Wall or wireless) node into an OMF-enabled node. The RC configuration file only
requires the address of the XMPP server, which is a static server added to the
Emulab setup. As discussed in Section 3.3, the second requirement of the OMF
framework is that all nodes should be listed in the inventory database and should
be registered to a certain slice in the XMPP server. We therefore created a second
script (started after the conversion script), which registers the node to the AM
inventory and the XMPP server. For this we use the Emulab DNS system that
generates a unique dynamic DNS name and IP address for every node that is
swapped in for an experiment. Based on the MAC address, the register script
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inserts the IP address and HRN (a unique DNS name assigned by Emulab)
in the inventory and uses the HRN again to add the node to an experiment
slice in the XMPP server. After the experiment is finished, the nodes should be
removed from the inventory and the XMPP server to avoid problems when re-
scheduling an experiment, since Virtual Wall resource names can be different for
every run of an experiment. Note that for wireless nodes, the Emulab software is
configured to select specific nodes. This is needed because the location of a node
is very important in wireless experiments. In this setup, the Virtual Wall can
be considered as the core testbed, having the possibility to swap in the OMF
framework when requested by the user. This loose coupling approach has the
advantage of requiring very little effort to achieve and ensures the correct working
of the core testbed software. Furthermore, the Virtual Wall users can now also
make use of the OML functionality to log their experiment results. In the chosen
implementation, the Virtual Wall replaces some of the AM functions: the AM
normally has to check whether nodes are on or off when an experiment is started
and switch them on if necessary. In this implementation, this functionality is not
needed anymore, since the Emulab software ensures that the nodes are switched
on once they are swapped in. In order to overrule the AM functionality, we
configured the AM to use a dummy Chassis Manager, which informs the AM
core that the resources are always on. Furthermore, the AM functionality to
load images on nodes is now also performed by the Virtual Wall, which also
uses the Frisbee disk loader. This means that previously configured images of
the w-iLab.t can be reused in the federated testbed.

Figure 6 demonstrates the setup of an experiment, using the new federation
possibilities. In this experiment two arbitrary Virtual Wall (pcX and pcY) nodes
are swapped in. One is configured as OMF EC, the other node is part of the
experiment and can run additional software (e.g. video streaming server for home
security system). Two fixed wireless nodes are chosen to act as wireless access
points. Note the difference between the Virtual Wall nodes (arbitrary chosen by
the system) and the wireless nodes (specifically requested by the user). All the
nodes in this example are running Ubuntu 11.04, but other operating systems
can be used as well. The only requirement for the nodes is that they should
be able to run the experiment or resource controller, programmed using ruby
scripts

4 Discussion and Future Plans

The iLab.t federation approach explained above demonstrates that federation –
although exactly defining the term ‘federation’ in the context of Future Internet
infrastructures is a discussion on its own– should not always be a time consuming
and complex process. The implemented loose coupling between the OMF and the
Emulab framework results in benefits for both the experimenters and ourselves as
testbed owners/maintainers. For experimenters, the federation means easy and
unified access to both a wired and a wireless experimentation facility. Executing
experiments which concurrently use (parts of) the Virtual Wall and (parts of)
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Fig. 6. Example federated experiment

the w-iLab.t is now possible. Even when combining nodes of both testbeds is not
of importance to the experimenter, there is still the benefit of added function-
ality: Virtual Wall experimenters now have better control over their experiment
lifecycle thanks to OMF, and the OML measurement library can be used to col-
lect and process measurements. Vice versa, for experimenters using the w-iLab.t
Zwijnaarde deployment, the federation means that nodes can now be configured
via a user-friendly Emulab GUI. Furthermore, while in the ‘normal’ OMF de-
ployment of the w-iLab.t Zwijnaarde, experimenters could (un)willingly destroy
another experimenter’s experimenter by executing an OMF-load command on a
node that was already in use, this is now impossible, as an Emulab experiment
cannot be swapped out by an other user. Also, the whole user/project delegation
system of Emulab is now available to the wireless testbed, meaning that creation
of accounts happens in a unified way, and, that secure use of storage is possible
now.

Without any doubt, this functionality that was added by federating the Emu-
lab and OMF approaches could also have been added by modifying or extending
the code of either Emulab or OMF. The advantage of gaining the functionality
through federation, is that there was very little implementation effort required
to gain functionality while being assured of backwards compatibility. We also
profit in this way of the best things of two standard frameworks with almost no
customisation. It must be noted that enabling this local federation from a tech-
nical point of view is just one little aspect of the iLab.t federation story: having
the technical possibility to let OMF and Emulab - wireless and wireless - exper-
imentation facilities cooperate does not mean that experimenters will instantly
be aware of the possible benefits and start scheduling federated experiments.
However, for the administrators maintaining the Virtual Wall and w-iLab.t
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Fig. 7. Future federation vision: at the bottom we see the two wireless testbeds, the
3 Virtual Walls and measurement equipment. On top we see the resource provisioning
through Emulab’s Protogeni and an extension for future reservation. Also shown, is the
OMF layer for experiment and monitoring control. On top, the different graphical user
interfaces (community, platform or project specific as e.g. Bonfire) are shown together
with a Portal pointing the experimenter towards the right tools and a distributed
trustworthiness layer.

facilities, federating the facilities has been a trigger to promote discussion and
to better cooperate on future extensions to the facilities. As an example, the
adoption of SFA was one of the drivers: an SFA interface for OMF is still under
development, while the Protogeni SFA interface on top of Emulab is already
very stable. In this way, both our wired and wireless testbeds will be reachable
through SFA (see Figure 7). The gain of OMF experiment control for the wired
experimenters will be very important. In the near future, we plan to organize
workshops targeted to the w-iLab.t and Virtual Wall communities, in which the
federation approach is explained and example federated experiments are pro-
vided. It is expected that future extensions to the iLab.t facilities will be useful
to both the Virtual Wall and w-iLab.t communities, and that the federation will
further stimulate cooperation. Also from a technical point of view, the local Vir-
tual Wall – w-iLab.t federation is not an endpoint. In the future, the federation
exercise will be repeated continuously at a larger scale. A first step will be to
also integrate the w-iLab.t office in the federation. Next, federation at a larger
scale, with experimental facilities owned by other legal entities will be pursued.
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5 Conclusion

Driven by some very practical problems which arose when the IBBT iLab.t grew
from individual experimenter testbeds, over an Emulab based Virtual Wall in-
stallation, to multiple large wired and wireless testbeds, we have studied and im-
plemented the best way forward towards the future for controlling our testbeds.
We ended up by using the Emulab software in a multi-testbed configuration
with shared accounting (which makes it easier for upgrading and maintenance
than one really big testbed) for the node provisioning and account/project han-
dling topped of with the OMF/OML framework for controlling the experiments
and measurements themselves. This federation was rather straightforward com-
pared to extending one or another framework, and seems to be very promising
for the testbed administrators and experimenter communities as know-how can
be shared easily now to make the best use of all available frameworks. Besides
this, we believe that also external federation through the Emulab Protogeni SFA
interface will be a very interesting way forward towards a more global federation.
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Abstract. Traditionally, testbeds for networking and systems research have been
stand-alone facilities: each is owned and operated by a single administrative en-
tity, and is intended to be used independently of other testbeds. However, this
isolated facility model is at odds with researchers’ ever-increasing needs for ex-
periments at larger scale and with a broader diversity of network technologies.
The research community will be much better served by a federated model. In this
model, each federated testbed maintains its own autonomy and unique strengths,
but all federates work together to make their resources available under a common
framework.

Our challenge, then, is to design a federated testbed framework that balances
competing needs: We must establish trust, but at the same time maintain the auton-
omy of each federated facility. While providing a unified interface to a broad set
of resources, we need to expose the diversity that makes them valuable. Finally,
our federation should work smoothly in a coordinated fashion, but avoid central
points of failure and inter-facility dependencies. We argue that treating testbed
design as a federated distributed systems problem is an effective approach to
achieving this balance. The technique is illustrated through the example of Proto-
GENI, a system we have designed, built, and operated according to the federated
model.

1 Introduction

Testbeds for networking and systems research have traditionally been built as stand-
alone facilities where each testbed is operated and managed by a single entity. The
problems of building, running, and improving each individual testbed have received
attention in the literature in preference to issues of coordination, trust, and cooperation
between testbeds [30,18,17,1].

Increasingly, experimenters need to run larger experiments incorporating a broader
diversity of devices and network technologies. It is difficult to satisfy this requirement
with isolated testbeds, since each testbed is limited in size and tends to concentrate on
a particular type of resource. If experimenters were able to treat a collection of testbeds
as a single facility, this would enable them to run larger experiments and take advantage
of diverse resources.

This leads to a federated model, in which individual testbeds work together to provide
their users with a common framework for discovering, reserving, and using resources.
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This common framework must meet a number of requirements. It must establish trust
between federates, but allow each member of the federation to retain autonomy; each
federate should have independent local control over usage policies and resource main-
tenance. The federation should support pre-existing testbeds, which are managed using
a variety of software suites, and which were created to manage different kinds of re-
sources. While accommodating this heterogeneity, the federation must present a single
interface and provide the appearance of a single “virtual facility,” giving users access
to a richer set of resources than any one facility can provide by itself. Finally, the fed-
eration must provide coordination among members without sacrificing robustness, as a
complex distributed system introduces many points where failures can occur.

This paper makes three contributions. First, it defines a set of five design principles
that, together, meet the requirements of a federated testbed. Second, it presents a spe-
cific realization of these principles in the ProtoGENI federation. Third, it shares our
experiences building and running this federation, which has been used by more than
three hundred experimenters over the last three years. These include experiences that
have caused us to re-think parts of the federation’s design, an analysis of its robustness
to failures, and an evaluation of the time required to set up experiments.

Our five design principles are:

– Partitioned trust between the federates: Each federate is responsible for its own
resources and users, and only trusts other federates insofar as the peer’s resources
and users are concerned. Each federate retains the right to make local authorization
and policy decisions, and no testbed occupies a privileged position in the federation.

– Distributed knowledge: No single entity has complete knowledge of the system.
This enables local extensions, allowing federates to offer unique resources and to
add new features without being limited by the global framework. It also aids in
removing centralized points of failure and inter-facility dependencies.

– Minimal abstraction: The ProtoGENI framework provides a low-level API for re-
source access, rather than hiding the details of resources behind higher-level ab-
stractions. This gives implementers of user tools the flexibility to define their own
higher-level abstractions, tailoring them to specific user communities or use cases.

– Decentralized architecture: ProtoGENI has only one centralized entity, which is
used for bootstrapping and convenience. Operation can proceed without it in most
cases. There are no global locks in ProtoGENI; instead, we make use of local trans-
actions to coordinate operations that span federates.

– Minimal dependencies: Each ProtoGENI call carries as much context with it as
possible. This minimizes dependencies between services, which do not need to
contact each other on-line for correct operation.

2 Related Work

Emulab [30] provides a diverse set of experimental resources such as wireless nodes,
simulation, and real Internet resources through portals to the PlanetLab [29] and RON
testbeds [1]. This control framework is built around a strong assumption of centralized
management. There are dozens of testbeds around the world built on Emulab, but un-
til we began work on ProtoGENI, each operated in isolation. The federation of these
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previously divided testbeds is the chief user-visible contribution of ProtoGENI, and has
required significant architectural changes to the underlying software.

PlanetLab is also a large-scale testbed, distributed around the world. All sites run a
common code base, and most maintenance and allocation is done by central entities,
called PlanetLab Central (PLC).There are multiple instances of PLC, including one in
Europe, another in Japan, and VINI [3], which extends PlanetLab’s support for topology
control. PlanetLab introduced the idea of “unbundled management,” separating user
tools from the management of the facility, and we make use of it in ProtoGENI. As
part of the GENI project, this federation is evolving along a similar path to the one we
present in this paper.

ORBIT [17] and StarBed [14] are built around a centralized use, policy, and mainte-
nance model. ORBIT is a Radio Grid Testbed, providing wireless devices to its users.
Due to the restrictions of its physical environment, ORBIT does not “slice” its testbed,
but allocates all nodes in its testbed to one experiment at a time [21]. StarBed is specif-
ically designed for virtualization, enabling users to build experimental topologies up to
thousands of nodes.

The Open Resource Control Architecture (ORCA) is an extensible architecture which
provisions heterogeneous virtual networked systems via secure and distributed manage-
ment over federated substrate sites and domains [16]. ORCA focuses on mechanisms
for providers and consumers (e.g. experimenters) to negotiate access to, configure, and
use testbed resources. ORCA provides diverse environments on a pool of networked
resources such as virtualized clusters, storage, and network elements which are main-
tained independently by each site. While ORCA shares many features with ProtoGENI,
it uses a different set of fundamental design decisions.

Panlab [27,28] is a federated testbed with facilities distributed across Europe. While
the Panlab and ProtoGENI architectures have many analogous elements, the philoso-
phies behind them differ. Panlab’s “Private Virtual Test Labs” (similar to GENI slices)
are typically controlled and used through a centralized manager, called Teagle. In con-
trast, ProtoGENI’s architecture emphasizes distributed systems aspects of testbed fed-
eration, avoiding centralized services almost entirely.

Namgon Kim et al. [10] have published work on connecting the FIRST@PC testbed
with ORCA-BEN. They focus more on the stitching aspects of federation, while we
examine the overall architecture and API.

SensLAB is a large scale wireless sensor network testbed, allowing researchers ac-
cess to hundreds of sensor nodes distributed across multiple sites [24]. The system
presents a single portal, through which users can schedule experiments across all the
available networks. The current SensLAB installations operate highly homogeneous
hardware platforms, but are working toward interoperability with OneLab [2], and we
expect that this integration will result in sophisticated federation management facilities.

WISEBED [4] is another distributed system of interconnected testbeds, in which the
hardware resources are large scale wireless sensor networks. Like GENI, WISEBED
aims to produce a large and well organized structure by combining smaller scale
testbeds; the chief difference is that WISEBED focuses on wireless sensor technology,
while almost all networked GENI resources use wired links (with a minority of facilities
choosing to make wireless resources available for special purposes).
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Soner Sevinc [25] has developed an architecture for user authentication and trust in
federations using Shibboleth as an identity provider. Our federation architecture pro-
vides mechanisms for federates to coordinate experimentation, and has been integrated
with Soner Sevinc’s system.

Grid [8] and Tier [13] systems share some goals with federated network testbeds,
in that they are distributed systems able to connect heterogeneous, geographically dis-
tributed resources from multiple administrative domains. Grid systems provide dynamic
allocation and management of resources via common tool kits such as Globus [7]. As
with our system, each domain is responsible for its own maintenance and policy. The
fundamental distinction is that in ProtoGENI, it is the network, rather than computing
resources, that is the primary object of interest. Grid computing hides most resource
heterogeneity and infrastructure behind abstract interfaces, where as we expose them
whenever possible. Cloud computing takes this one step further with virtualization. In
comparison, ProtoGENI provides users with more transparent control over the network
and the ability to take advantage of the diversity of resources for experimentation. Re-
searchers are investigating the integration of Grid and traditional network testbed re-
source management techniques [23]; such a combination is largely orthogonal to the
peer-to-peer federation model we consider. Most grids are organized hierarchically,
while ProtoGENI is decentralized, allowing its principals more autonomy; most clouds
consist of resources owned by a single entity, and are thus not federated.

3 Architecture

The architecture of ProtoGENI builds on the GENI framework. In this section, we will
describe the overall GENI structure before examining how ProtoGENI expands on that
architecture.

3.1 GENI

GENI’s architecture is based on the “Slice-based Federation Architecture” (SFA) [19],
which has been developed by the GENI community. The SFA is so named because
it centers around partitioning the physical facility into “slices,” each of which can be
running a different network architecture or experiment inside. Physical resources, such
as PCs, routers, switches, links, and allocations of wireless spectrum are known as
“components;” when a user allocates resources on a component, the set of resources
they are given comprises a “sliver.” This sliver could be a virtual machine, a VLAN, a
virtual circuit, or even the entire component. Each sliver belongs to exactly one slice: in
essence, a slice is a container for a set of slivers.

There are two main types of principals in GENI:

Aggregate Managers (AMs) are responsible for managing the resources (compo-
nents) on which users will create networks and run experiments. AMs are responsible
for the allocation of their resources, and may make decisions about who is authorized
to use them. An individual AM may manage a collection of components, called an ag-
gregate; in practice, each facility in GENI runs a single AM that manages all of its
resources, and the largest aggregates contain hundreds of nodes and thousands of links.
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Users access components from the federated testbed to run an experiment or a ser-
vice. A user is free to create slices which span multiple AMs, and each user is authorized
by one of the facilities in the federation.

Principals and many other objects in the system are uniquely named by a Uniform
Resource Name (URN) [15]. The URN scheme that we use [26] is hierarchical—each
authority is given its own namespace, which it can further subdivide if it chooses. To
maintain partitioned trust, each authority is prohibited, through mechanisms described
in [31], from creating URNs outside of its namespace. An example of a GENI URN is:

urn:publicid:IDN+emulab.net+user+jay

Because the URN contains the identity of the authority that issued it (in this example
“emulab.net”), it is possible to tell which authority “owns” the object without resort-
ing to a lookup service; this is in keeping with our decentralized architecture goal.

At a high level, testbeds federate in this framework by forming trust relationships: if
facility A trusts facility B, then A is willing to trust B’s statements about what users it
has, what slices they have created, and what resources B offers. Note that this does not
preclude A from having local allocation policies: just because it recognizes B’s users
does not obligate it to satisfy all requests they might make. Arrangements regarding
“fair sharing,” etc. can be made as part of the federation agreement. Trust relationships
need not be symmetric: A may choose to trust B even if that trust is not reciprocated.

3.2 ProtoGENI Architecture

We build on the basic GENI architecture by adding two new kinds of entities into the
federation, and by providing an expanded API for AMs.

Slice Authorities (SAs) are responsible for creating slice names and granting users
the necessary credentials to manipulate these slices. By issuing a name for a slice, the
SA agrees to be responsible for the actions taken within the slice. An SA may be an
institution, a research group, a governmental agency, or other organization.

A user has an account with an SA, called the “home” SA; this SA vouches for the
identity of the user, and in most cases, is willing to create slices for the user. The user is,
however, free to create slices using any SA that, according to its own policies, is willing
to be responsible for that user’s actions.

Of course, establishing trust in this pairwise fashion does not scale well to large
federations. ProtoGENI’s sole centralized service, the Clearinghouse (CH), is used to
make this process more convenient: it allows federates to publish the certificates that are
used to establish trust, and to discover the certificates of other federates. It is important
to note that this does not mandate specific trust relationships: as described in [31], a
federate may choose not to trust some certificates stored at the clearinghouse, or may
choose to trust additional certificates that are not registered there.

The clearinghouse also serves a second purpose: it acts as a registry where various
objects can be looked up. Notably, users can ask the clearinghouse for a list of all reg-
istered federates to bootstrap the process of resource discovery, as described in the next
section. In both of these roles, the information provided by the clearinghouse changes
infrequently, and can be safely cached for long periods of time (days or weeks).
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ProtoGENI AMs also export an expanded interface relative to the GENI standard.
Specifically, they can issue tickets, which are guarantees of resource provision for the
owner of the ticket. When a user redeems one of these tickets with the AM, the AM
creates a sliver, and the user can begin running an experiment. ProtoGENI AMs also
support the ability to update existing slivers.

ProtoGENI has sophisticated requirements for authentication and authorization, com-
plicated by the fact that different parts of the system are owned and operated by different
organizations, each of which may need to enforce custom local policies.

The authentication system is based on the IETF PKIX model [5], while the autho-
rization mechanism involves the presentation of cryptographically signed credentials
(which behave analogously to X.509 Attribute Certificates [6]). Together, these prim-
itives allow the warranting of identities, the granting and delegation of permissions,
and the verification of identity and privilege. Most importantly, all of these operations
may be performed by different principals, who need no direct knowledge of each other.
ProtoGENI’s authentication and authorisation system are detailed elsewhere [31].

3.3 Running an Experiment

Putting these pieces together, a user goes through the following steps to run an experi-
ment (see Figure 1).

Creating a Slice: He contacts an SA (usually the “home” SA), and requests a new slice.
If the request is granted, the SA gives him a name for the new slice and the credentials
necessary to manipulate it. At this point, no resources are yet allocated.

Discovering Resources: Next, the user selects the components that he will use to build
his network. This can be done in a number of different ways. The simplest is to ask each
AM in the system to enumerate the resources it has available; the user asks the CH for
a list of federated AMs (or uses a cached copy of this list), and then asks each AM for
an “advertisement” describing its resources. Alternately, he may make use of network
embedding tools [22] to help select appropriate components.

Creating Slivers: Once the user has selected a set of components, he creates a “request”
describing the network to be built. The user sends this request to each AM from which
he wants resources. When granting such a request, the AM returns a “ticket”, promising



Designing a Federated Testbed 327

the use of those resources. If not all ticket requests are granted, the user may keep the
tickets he has and/or try to obtain new tickets to replace the failed requests. Once he is
satisfied with the set of tickets held, those tickets may be “redeemed” at the AMs that
issued them, causing slivers to be created.

Using Resources: The user may now log into the slivers and begin running experiments.
Programming, configuring, or logging in to a sliver is done with component-specific
methods; many components are accessed through ssh, but other access methods may
be required for some components. The user may modify the slice while it is running,
and releases all slivers when the experiment is complete.

4 Interactions between Federates

ProtoGENI has been designed to keep federates as loosely coupled as possible; they
do not depend on central services, and the only parts of the system involved in a given
operation are those directly affected by it. In the extreme case, if a federate is cut off
from communication with the rest of the federation, users who can reach the federate
are still able to create slices and slivers on it.

This is possible because, in keeping with the design principles of decentralized ar-
chitecture, minimization of dependencies, and distributed knowledge, ProtoGENI goes
to great lengths to ensure that minimal state synchronization is required between AMs,
SAs, and the CH. This section describes the interactions these services have with each
other and with users. We concentrate on where ProtoGENI stores state, how it avoids
centralized services, and how failures are managed. Because the full ProtoGENI APIs
[20] are too large to cover in depth here, we introduce only the calls necessary to under-
stand state management.

4.1 Slice State

ProtoGENI does not attempt to guarantee a globally consistent view of the state of
each slice. Instead, it uses a loose consistency model in which each of the individual
authorities and managers maintain their own state.

The authoritative source for user and slice records is the SA that issued them, and the
authoritative source for sliver information is the AM on which the sliver exists. Because
the URNs used in ProtoGENI encode the issuing authority, it is possible to determine
the correct authority to query simply by examining an object’s name. If, for example, a
AM wishes to find out more about a user who has created a slice on it, the AM may use
the user’s URN to identify and query the user’s home SA.

When a sliver is created, the AM is not provided with a global picture of the slice: the
sliver request (whose format is covered in Section 5) need only contain the resources on
the AM in question and any links to directly adjacent AMs that need to be configured
as part of the slice. Information about the rest of the slice is not needed for the AM to
create its slivers, and maintaining a global view would require that the AM be notified
of changes anywhere in the slice, even if those changes do not directly affect it.

As a convenience, SAs register users and their slices at the CH. Records at the CH
are not considered authoritative, however, since a network partition might delay updates
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to them. Nor does the CH maintain a list of slivers; this list is constantly changing, and
could never be completely up to date without adding a large amount of synchroniza-
tion (and consequently delay) to the system. Each AM attempts to inform a slice’s SA
whenever a sliver is created or destroyed, but as with records in the CH, these data are
advisory rather than authoritative.

Slice and Sliver Lifetimes. Because authoritative slice state is distributed across SAs
and AMs, and we cannot guarantee that they remain in contact throughout the lifetime
of the slice, we give each slice and sliver an expiration date. This way, we can be assured
that all slivers are eventually cleaned up and their resources reclaimed.

There are important nuances, however, in the relationship between slice and sliver
lifetimes. Because each sliver must belong to a slice, the sliver must not outlive its slice.
If it did, this could lead to a situation in which the user would lose control of the sliver.

The first consequence of this requirement is straightforward: the expiration time for
each sliver is bounded by the expiration time of the slice itself. The slice credential that
is generated by an SA when then slice is created contains that slice’s expiration time.
When slivers are added to the slice, AMs must simply ensure that the slivers’ expirations
are no later than the slice’s expiration.

The second consequence is that a slice cannot be deleted before it expires. It is possi-
ble that slivers exist that the SA is unaware of; a AM may have been unable to contact
the SA to inform it of the sliver’s existence. Therefore, the SA cannot know with cer-
tainty that deleting the slice is safe and will leave no orphaned slivers. As a result, slice
names cannot be re-used by experimenters before they expire. Since the namespace for
slices is effectively unbounded in size, this is not a major concern.

Both slices and slivers may be renewed before they expire; the slice’s lifetime must
be extended before the slivers’.

Resource Reservation across AMs. Slices that cross AMs present a dilemma: we
would ideally like the process of allocating or updating slivers to be atomic across all
AMs. As a concrete example, consider a slice with existing slivers from two different
AMs. We would like to make a change on both slivers, but only if both of the changes
succeed. If either one is denied, we want to roll back to the original configuration with-
out losing existing resources or otherwise changing the slivers. However, the loosely-
coupled nature of the federation precludes using global locks or global transactions.

Instead, we consider the resource allocation process on each AM to be a separate
local transaction, and model the life cycle of each sliver as a state machine, shown in
Figure 2. We designed the state machine with minimal abstraction in mind, allowing
clients or other intermediaries to build a transactional abstraction across AMs on top of
our lower-level per-AM API. Each sliver can be in one of four states:

1. The Null state, in which the sliver does not exist (has not yet been created, or has
been destroyed).

2. The Ticket state, in which the user holds a ticket promising resources, but the sliver
is not instantiated on the component.

3. The Sliver state, in which the sliver has been instantiated, but the user does not hold
a valid ticket.
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4. The Sliver and Ticket state, in which the user has both an instantiated sliver and a
ticket.

This state machine makes sliver manipulation a three-step process:

1. Get the list of currently available resources from each AM.
2. Request a new ticket on each AM; this step obtains a guarantee of resources, but

does does not actually instantiate a new sliver or modify an existing sliver.
3. Redeem the tickets at each AM to “commit” the resource change.

Steps 1 and 2 are not atomic: if other users are simultaneously trying to reserve re-
sources to their own slices, the second step may fail. In a distributed system like Proto-
GENI, it is not feasible to lock the resource lists for any length of time. Since con-
tention for resources is generally rare in ProtoGENI, a form of optimistic concurrency
control [11] is employed to both avoid locking and to ensure that users will find out if
someone else has already reserved a resource.

If the second step fails on some AMs, but not others, the user has three options.
First, he can decide to simply redeem the tickets that he was successful in getting. A
user trying to get as many slivers as possible might employ this strategy. Second, he
can abort the transaction by releasing the new tickets he obtained. This will return the
slivers to their previous states (either Null or Sliver) without modifying them. Third, he
can employ a more sophisticated strategy, in which he holds onto the tickets that he did
receive, and requests tickets from a new set of AMs to replace those that were denied.

Our experience running the Emulab testbed [30] suggests that retries due to the race
between steps 1 and 2 will be rare. Emulab uses a similar optimistic model in which the
resource database is not locked during allocation, and despite the fact that Emulab sees
heavy use, of 9,500 experiment swap-ins (analogous to ProtoGENI sliver creations) in
the past year, only 21, or 0.2%, had to be retried due to contention for resources.

In addition to its lifetime, each ticket has a “redeem by” time, which is set to expire
much sooner; typically, in a matter of minutes. If the user does not redeem the ticket in
time, the resources are reclaimed. This guards against clients that do not complete their
transactions in a timely fashion.

4.2 Behavior in the Face of Failures

ProtoGENI passes as much context as possible in API calls, so that they can be self-
contained. While this does result in some extra overhead in the calls, the benefit is that
the user can continue to make progress in the presence of network or service failures.
For example, a user obtains authorisation credentials from his home SA, and these
credentials are passed by the user to AMs when requesting tickets. As described in [31],
the AM receiving this material can verify its authenticity without contacting the issuer.

The result is that users can continue to use the system in the face of failures in one or
more services, including the CH. For example, if an SA is down, its users cannot create
new slice names, but can continue to interact with any existing slices and slivers. As
long as they do not lose the slice credentials obtained upon slice creation, there is no
need to contact the SA to manipulate the slivers in the slice. The lone exception is to
extend the life of a slice before it expires. However, this can be done at any time before
the slice expires, so transient errors are not fatal.
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While SAs attempt to register new slices at the CH, and AMs attempt to register new
slivers with the slice’s SA, failure to do so does not cause slice or sliver creation to
fail. Making this registration mandatory would significantly increase the dependencies
in the system, and reduce its ability to operate in the face of service failure.

5 Resource Specification

Resource specification is a core part of interacting with a testbed and must fulfill three
functions: First, AMs must be able to describe their available resources. Second, users
need to describe what resources they would like to acquire. Third, AMs must provide
information required for users to make use of those resources.

To perform these functions, we have developed a new resource specification format,
RSpec, which is an XML-formatted descriptive language. In keeping with the principle
of minimal abstraction, our specification is declarative rather than imperative. While
an imperative language would add descriptive power, it is more difficult to analyze and
manipulate. Adopting a descriptive format makes it possible for many tools to process
and transform resource descriptions, and encourages composition of tools.

One key principle behind our RSpec design is distributed knowledge. Because knowl-
edge of resources is distributed, every entity in the system can independently provide
information about resources. We use progressive annotation to allow a client to coordi-
nate data from multiple sources: operations take a resource specification as input and
yield that same specification annotated with additional information as output.

5.1 Annotation

Our specification format comes in three variants, each one designed to serve a slightly
different function. Multiple entities in the system can provide knowledge about a single
resource, and we allow calls to these entities to be composed by a client. An RSpec
describes a topology made up of nodes, interfaces, and links that connect them. Anno-
tations can provide additional information about the topology or resources.

Advertisements. Advertisements are used to describe the resources available on a AM.
They contain information used by clients to choose components. The AM provides at
least a minimal description of these resources. Our architecture then allows its advertise-
ment to be passed to measurement services or others who may discover more informa-
tion about the resources. At each such service, the advertisement is further annotated.

This progressive annotation of advertisements enables our distributed knowledge
model. An AM can change the set of resources advertised without first notifying or ne-
gotiating with other federates. AMs provide their own authoritative information about
which resources they manage and the availability of those resources.

At the same time, other entities can describe resources. A service might measure
shared resources to determine which ones are the most heavily used. Or it might provide
information about bandwidth and delay between networked components. Annotating
services do not need to coordinate with any AMs, who need not even be aware of their
existence.
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Requests. Requests specify which resources a client is selecting from AMs. They con-
tain a mapping between physical components and abstract nodes and links.

When the client has an advertisement with the information they need, they create a
request describing which resources they require. Some requests, called bound requests,
specify precisely which resources are needed—“I want pc42, pc81, and pc9.” Other
requests provide a more abstract, or unbound, description—“I want any three PCs.”

Once the request is generated, it goes through an annotation process similar to that
of the advertisement. If there are unbound resources in a request, it may be sent along
with an advertisement to an embedding service which annotates the request with spe-
cific resource bindings. In order to minimize dependencies, embedding services are not
associated with a particular AM and receive both a request and one or more advertise-
ments from the client. The client then sends the bound request returned by the embed-
ding service to a AM in order to acquire the resources. Each resource is tagged with the
AM that should allocate it. This means that the client can simply send the same request
to all relevant AMs and each one will allocate only those resources which it controls.

Manifests. Manifests provide information about slivers after they have been created by
the AM. This information is typically needed by users so that they can make practical
use of the resources: details such as host names, MAC addresses, ssh port numbers,
and other useful data. This information may not be known until the sliver is actually
created (e.g. dynamically assigned IP addresses). The manifest is returned to the user
upon sliver creation.

5.2 Extensibility

To allow AMs to make unique resources available, we must provide a mechanism for al-
lowing them to advertise new kinds of resources. Our core RSpec is therefore designed
for distributed knowledge, allowing different federates to provide their own indepen-
dent extensions. The base RSpec schema verifies within a single namespace and allows
elements or attributes from other namespaces to be inserted anywhere. These fragments
are then verified using extension-specific schemata. We allow extensions on any vari-
ant of the RSpec, thus allowing extensions to be created and used by any entity in the
federation.

Our extensions have a number of useful properties:

1. Extensions are safely ignored: Not all clients or servers will support all extensions.
If a client or server does not support a particular extension, then the tags which
are part of that extension will be ignored. This allows extensions to be created and
deployed incrementally with much greater ease than a change to the core RSpec.

2. Extensions are modular: Each extension can mix elements or attributes into the
main RSpec, but those elements and attributes are explicitly tied to the extension
namespace. Every extension can co-exist with every other extension.

3. Extensions are validated: In order to tag extensions, each one uses a unique XML
namespace. We are thus able to validate any XML document using the core schema.
The extensions themselves are also validated. We use independent schemata for
each extension and validate the elements in the namespaces for each extension
against its schema.
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6 Experiences

The primary indicator of the success of our design is that ProtoGENI is a running, active
system; the current federation contains sixteen AMs, and over 300 users have created
more than 3000 slices. To evaluate our system more concretely, we first describe our
experiences in creating and running the ProtoGENI federation, then show results from
quantitative tests of the system.

6.1 Framework Design

ProtoGENI has been open to users and tool developers throughout its development.
This allowed our experiences with actual users and experimenters to guide our design
decisions. Described below are some of the lessons we have learned from seeing our
system used by others.

Slice and Sliver Lifetimes: One area of the system that required very careful design
was the lifetime of slices and slivers. We have found that this aspect of the system is
consistently confusing to users; they expect to be able to delete both slivers and slices,
and have trouble understanding why slice names cannot be deleted before they expire.
However, as discussed in Section 4.1, this cannot be allowed, given the decentralized
architecture of our system: an SA cannot be sure that all slivers are really gone until the
expiration time on the slice (which bounds the expiration time on its slivers.)

Adding to the confusion is the fact that a slice name can be reused on an individual
AM. In other words, the holder of a slice credential may create, destroy and then create
a sliver again. As far as the AM is concerned, if no local sliver currently exists for a
slice, then it is willing to create one. In fact, this is exactly what many users do.

Users will often create a slice name, and then use that credential to create and destroy
many slivers on the same AM. This works since users usually know the state of their
own experiments. It has also resulted in an unintended consequence: users may create a
slice name, and set the expiration time to many months in the future. Since users often
forget to destroy their slivers, resources can get tied up doing nothing for a long time.
When this became a common problem, we established a policy which requires slices to
be renewed every five days.

UUIDs: Our initial strategy was to use UUIDs [12] as identifiers. One advantage was
that they can be generated by any party with a high confidence that they will be unique.
They are also opaque, meaning that clients do not have to do any work in parsing or
interpreting them. However, we discovered that using a flat namespace for all objects
had one major drawback.

There is no inherent mapping between identifiers and authorities. A flat namespace
requires a lookup service to resolve the authority issuing an identifier. For example,
verifying that an identifier was issued by a particular authority would require one to
first resolve the UUID to that authority. While decentralized resolvers for flat names-
paces do exist (such as DHTs), we saw that including the authority in the identifier, and
thus skipping this first step, was more in keeping with our minimization of dependen-
cies principle, so that operations require contacting only the entities directly involved
in them.
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Sliver Lifecycle: When designing the ProtoGENI API, we tried to make it easy to use
resources that are distributed geographically, under different administrative domains,
and controlled by distinct management authorities. Users are faced not only with the
task of deciding what resources they want, but they must also contact independent au-
thorities to ask for those resources. As described in Section 4.1, dealing with resource
allocation failures is complicated for both the system and the users. Worse still are sliver
updates, especially those that span multiple AMs.

The life cycle diagram shown in Figure 2 was the result of user experience and multi-
ple design iterations. An early version of the API used the same method to modify both
an unredeemed ticket and an existing sliver. In the latter case, the user had to present the
original ticket, even though the ticket had already been redeemed and was technically
worthless. The user was also required to hang onto this ticket in case he wanted later
modify the sliver. Furthermore, if the user decided to release this new ticket, he was
left in an even less complete state, with an active sliver and no ticket to modify it later.
As described in Section 4.1, this sequence is a common activity, as users allocate and
modify resources across a set of AMs.

As more users signed up to run experiments with ProtoGENI, we received numerous
questions about updating tickets and slivers. It was at this point that we decided to for-
malize the sliver lifecycle as a state machine, but our early attempts resulted in designs
with a large number of states, making them difficult to understand. We finally arrived at
the state machine in Figure 2, which puts the user in control of what to do with denied
ticket requests, while minimising the size of the state machine.

6.2 Testing the System

In this section, we look at two metrics. We measured the time required to create slices
both on a single AM and across multiple federates. In addition, we injected various
faults and examined the behavior of the system when dealing with them.

Slice Creation Time. We have run tests on the federation to determine the duration of
typical user tasks. For our experiment, we ran a test script using the following sequence
of steps: get a user credential, create a slice, list component managers at CH, discover
resources on one or more AMs, get a ticket, and finally redeem the ticket. We ran these
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Register

GetTicket
RedeemTicket

StartSliver

Fig. 5. Breakdown of time spent creating sliver

Table 1. Operability during failures. Each row
is an attempted operation. Columns are com-
ponent failures. Cells show if the given oper-
ation succeeds, can succeed if the client has
cached the indicated object, or always fails
(×).

Failed Entity
Operation CH SA AM
Discover Res. AM List Self Cred. ×
Create Slice Success × Success
Get Ticket Success Slice Cred. ×
Redeem Ticket Success Slice Cred. ×
Start Sliver Success Slice Cred. ×
Stop Sliver Success Slice Cred. ×
Delete Sliver Success Slice Cred. ×
Sliver Login Success Success Success

tests with up to 35 nodes to see how increasing the size of the request affected the
results. Figure 3 shows our results.

We also ran experiments using multiple AMs: between one and four. Figure 4 shows
the time required to allocate nodes as the number of AMs increases. Each trial allocated
20 nodes total, but split the allocation of those nodes across a different number of AMs.
As the number of AMs used increases, so does the time required to allocate nodes. This
increase in time could be mitigated by contacting the AMs in parallel. The single AM
case was run at a relatively lightly-loaded AM and so runs unusually fast relative to the
times seen in Figure 3.

The time spent creating a ten node sliver (averaged over multiple runs) is detailed
in Figure 5. The Register step accounts for all the negotiation with the SA to allocate
the slice name and obtain slice credentials. All subsequent steps are carried out at the
AM: GetTicket reserves components to the sliver, and is potentially expensive because
it attempts sophisticated optimization not only to satisfy the immediate request, but also
to maximize the proportion of future sliver demands which can be met [22].

The following RedeemTicket stage prepares the allocated components for use in
the sliver: for instance, disk images are transferred [9] to nodes where necessary, and
VLANs are programmed into switches (but not brought up). Our current implementa-
tion also performs auxiliary tasks for user convenience at this point (such as configuring
DHCP servers with information about control network interfaces, and registering DNS
names for nodes in the sliver). The final StartSliver period is frequently the lengthi-
est, although much of the operation is beyond the direct control of the AM. It involves
rebooting each node in the sliver into the newly defined environment, as well as complet-
ing configuration tasks that are most easily deferred until boot time (such as configuring
routing tables for the experimental networks).

Some of the time a client spends interacting with the system is spent gathering in-
formation it has already fetched during previous runs, such as the list of AMs, the
user’s “self credential,” and credentials for slices that are being reused. In addition to
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providing additional robustness in the face of failure, caching these values can reduce
the time it takes for a user to successfully create slivers. This provides a constant time
speedup regardless of how many nodes or AMs are involved in creating a sliver. Our
experiments show that this reduces the time taken to create a sliver by 17 seconds on
average.

Behavior in the Face of Faults. Our federation was designed to cope with failure of
one or more elements. In order to test this, we injected faults into the system in order
to emulate a network partition. In each test, one federated entity was isolated from the
federation and the client. We then attempted various operations to see whether they
succeeded, failed, or required some cached client-side information to work. The results
of these experiments are shown in Table 1.

If the CH fails or is isolated from the federation, the client can still perform opera-
tions on any AM it can reach, as well as the client’s SA. In order to discover resources
on a AM, the client would need to have a cached list of AMs in the federation; because
this list does not change frequently, most clients will have a fairly recent copy. The only
consequence of using an out-of date AM list is that the client may miss the opportunity
to use AMs that have recently joined.

The SAs are responsible for managing users and their slices. If an SA fails, its users
can no longer create slices or acquire credentials to manipulate existing slices. If a user
already has a self credential, it can be invoked to discover resources on any AM in
the federation. If the user has already created a slice, it has not expired, and the client
has cached the slice credential, then the user can still create and manipulate slivers on
any AM.

When a AM fails, the user cannot perform resource discovery or sliver creation, or
any sliver manipulation calls on that particular AM. Depending on whether the failure
is with the AM or the component itself, the user may still be able to log in to the slivers
that have already been created. The failure of one AM does not affect the user’s ability
to use other AMs in the federation.

7 Conclusion

Federated testbeds provide new opportunities for experimentation, but also raise a num-
ber of design challenges. We applied five design principles to the design of ProtoGENI,
resulting in a loosely coupled system that preserves local autonomy for federates. Proto-
GENI provides a low-level interface to discovering and reserving testbed resources; our
future work will build upon this fundamental framework to provide higher-level abstrac-
tions and services for experimenters.
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Abstract. The constantly increasing diversity of the infrastructure that
is used to deliver Internet services to the end user, has created a demand
for experimental network facilities featuring heterogeneous resources.
Therefore, federation of existing network testbeds has been identified
as a key goal in the experimental testbeds community, leading to a re-
cent activity burst in this research field. In this paper, we present a
federation scheme that was built during the Onelab 2 EU project. This
scheme federates the NITOS wireless testbed with the wired PlanetLab
Europe testbed, allowing researchers to access and use heterogeneous
experimental facilities under an integrated environment. The usefulness
of the resulting federated facility is demonstrated through the testing
of an implemented end-to-end delay aware association scheme proposed
for Wireless Mesh Networks. We present extensive experiments under
both wired congestion and wireless channel contention conditions that
demonstrate the effectiveness of the proposed approach in a realistic
environment. Both the architectural building blocks that enable the fed-
eration of the testbeds and the execution of the experiment on combined
resources, as well as the important insights obtained from the experi-
mental results are described and analyzed, pointing out the importance
of integrated experimental facilities for the design and development of
the Future Internet.

Keywords: Testbed Federation, Wireless Mesh Networks, Experiments.

1 Introduction

Wireless Mesh Networks (WMNs) are currently considered as the default solu-
tion for delivering high-speed Internet access to users within the last few network
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miles in non-urban areas. As a result, the interest of the research community in
proposing WMN-related approaches has dramatically increased during the last
few years. The inherent inability of simulation models to accurately estimate
performance of wireless networks, in accordance with the unique characteristics
introduced by the complex nature of WMNs [1] have directed research efforts
towards implementation approaches and evaluation through experimentation in
real world network scale and settings.

However, development of large scale WMN testbeds is a rather challenging
task that requires careful design and induces high deployment and maintenance
cost. Moreover, as WMNs are usually considered as a promising technology for
Internet access provision, experimentation across global scale networks that fea-
ture real Internet characteristics is required, in order to conclude on realistic re-
sults under real congestion conditions. Such requirements have led the research
community to create global large scale infrastructure that results from the fed-
eration of heterogeneous types of networks, such as wired (local, wide-area or
optical) and wireless (local, mesh or sensor networks).

Federation between inherently heterogeneous testbeds introduces several is-
sues that arise due to the difference in the nature of experimental resources,
but more importantly due the use of different software frameworks for resources
management and controlling. In this work we realize the federation between
two well-established heterogeneous network testbeds, namely the NITOS wire-
less testbed and the planetary scale wired PlanetLab Europe (PLE) testbed.
The utilization of a common experiment control framework, OMF [2] (cOn-
trol and Management Framework), and the adoption of the slice abstraction
as the building block for the federation have made the testbeds’ integration
possible.

In order to demonstrate the usefulness of the resulting integrated architec-
ture, we develop and implement an association scheme for WMNs that is aware
of end-to-end delay, part of which is generated in the wired part (PLE) and part
in the wireless part (NITOS). The implemented mechanism is based on novel
association metrics [3] that consider wireless channel contention, which are fur-
ther enhanced to take into account wired delay as well. The evaluation of the
proposed mechanism is performed through extensive experiments conducted on
the combined network architecture, which results from the federation of the two
heterogeneous experimental facilities.

This paper is organized as follows. In section 2 we discuss research work
related with both association in WMNs and federation of heterogeneous exper-
imental facilities. In section 3 we describe the architecture of the two heteroge-
neous testbeds and moreover provide details about the approach followed and
the tools used for the establishment of the testbed integration. In section 4 we
analyze and discuss the proposed association approach. In section 5 we present
and comment on the results obtained from the experimental evaluation of the im-
plemented mechanism. Finally, in section 6 we summarize our work, by pointing
out conclusions and directions for future work.
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2 Related Work

2.1 Association in Wireless Mesh Networks

WMNs are composed of Mesh Routers (MRs), which form the wireless back-
haul access network and Mesh Clients (MCs). MRs forward packets acting as
intermediate relay nodes and may also provide wireless access services to MCs,
in which case they are referred to as Mesh Access Points (MAPs). The WMN
consists also of Internet Gateway nodes (IGWs) that provide Internet access to
the network, through direct connection to wired infrastructure. MCs associate
with a certain MAP in order to access the network and do not participate in
packet forwarding.

The affordable cost and ease of deployment of IEEE 802.11 compliant equip-
ment has led the majority of WMNs to be based on conventional IEEE 802.11
devices, although this does not limit the application of other standards. Accord-
ing to the IEEE 802.11 standard, which was originally proposed for infrastruc-
ture Wireless Local Area Networks (WLANs), MCs perform scanning to detect
nearby MAPs and simply select to associate with the MAP that provides the
highest Received Signal Strength Indication (RSSI) value. The performance of
the standard association policy has been extensively studied [4] in the context
of IEEE 802.11 WLANs and it is well known that it leads to inefficient use of
the network resources. In WMNs, the entire path between the MC and the IGW
is composed of two discrete wireless parts: the single-hop access link between
the MC and the MAP it is associated with and the multi-hop backhaul part
that connects the MAP with the IGW. As the standard policy considers only
factors affecting performance on the wireless access link, its direct application
on WMNs becomes inappropriate. As a result, more sophisticated association
schemes are required to capture performance achieved in both the access and
the backhaul network parts.

Trying to address the issues generated by the unique two-tier architecture
introduced by WMNs, several approaches on MAP selection have been proposed
in the recent literature. An innovative cross-layer association mechanism that
considers not only the access link but also routing in the multi-hop backhaul
part is proposed in [5]. The authors in [6] consider also the interaction of physical
(PHY) layer transmission rate with the packet size and hop count and propose a
signaling mechanism through which information about congestion on both parts
is passed from the MAPs to the MCs. In [7], a new metric is proposed that takes
into account the impact of 802.11 MAC layer contention on bandwidth sharing
and results in accurate link throughput estimations. Another approach, proposed
in [8], considers also estimation of real-time traffic load conditions trying to cope
with the variability of network conditions, which is an inherent characteristic of
WMNs. The common characteristic of the works referenced above is that they
rely only on simulation based evaluation of the proposed mechanisms.

Recent research studies in the field of WMNs jointly consider problems that
traditionally were considered in isolation, such as association and routing. How-
ever, as simulation models are not not able to capture the interaction among
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different layers [1], research related to WMNs is mainly performed in experi-
mental facilities. A recent work in the field [9] proposes a cross-layer association
mechanism, which is implemented and evaluated through experimentation in a
wireless testbed. However, the evaluation of the implemented scheme is restricted
in experiments conducted in a small scale testbed composed of conventional lap-
top computers and not in a customized large scale Mesh testbed.

At this point, we argue that approaches proposed for WMNs should be fully
implemented and properly evaluated through extensive experimentation under
real interference and congestion conditions. In an effort to support realistic
and large-scale experimentation with heterogeneous network platforms, both the
GENI initiative in the U.S. [10], as well as the FIRE initiative in Europe [11]
are currently investigating federation of heterogeneous testbeds.

2.2 Integration of Heterogeneous Experimental Facilities

An initial effort on federation of testbeds was proposed in [12], where the wireless
EmuLab testbed and the wired planetary-scale PlanetLab testbed [13] were inte-
grated through the EmuLab-PlanetLab portal. The integrated interface provided
useful extensions to the PlanetLab’s management system. Moreover, several in-
tegration challenges were identified for the first time and appropriate solutions
were provided. Another work, proposed in [14], aimed at integrating Planet-
Lab with the ORBIT wireless testbed. The authors considered also the ability
of performing experiments on the integrated framework concurrently. Although
PlanetLab testbed provided support for virtualization of resources in the wired
part, virtualization of the wireless part had to be further investigated in order to
overcome the issues that the broadcast nature of the wireless medium generates.
Two discrete integration models were proposed in this work, where the first one
aimed to support PlanetLab users in extending their experimental topologies
with wireless nodes, while the second one was introduced to provide users of
the ORBIT testbed with the extra ability of adding wired network extensions
to their experiments.

An important issue that the aforementioned federation approaches had to
cope with was the scarcity of a common management system, as well as a com-
mon experiment description language. However, this issue was overcome with
the introduction of OMF, which provides tools for the management and ex-
ecution of experiments on testbed infrastructures. Nowadays, OMF has been
deployed and maintained on multiple testbeds supporting many different types
of technologies. The work proposed in [15] presented the integration of an OMF-
controllable WiFi testbed and PLE, through the addition of an extra wireless
interface in PLE nodes that were located within the range of the wireless testbed.
This integration was achieved through the development of special tools that sup-
ported the definition of slice-specific routing table rules and the exclusive use of
the wireless testbed by a single experimenter. Although this integration attempt
provided an integrated environment, where all resources could be instrumented
through OMF, it also faced the drawback of realizing the wireless testbed as a
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single resource and thus limited the access of the federated environment to a
single user for each reservation slot.

In an effort to maximize the utilization of OMF-based experimental facilities,
NITOS introduced a testbed Scheduler [16] that enables the assignment of dif-
ferent subsets of nodes and channels to different users during specific reservation
slots. The work in [17] proposes an integration architecture, which combines an
OMF-based wireless testbed supported by the NITOS scheduling mechanism
with several PLE OMF-enabled nodes. The resulting federated environment
formed a realistic global-scale WMN that supported the execution of multi-
ple concurrent experiments, through NITOS Scheduler. Moreover, the authors
demonstrated an experimental scenario that provided interesting insights regard-
ing real-world experimentation with peer-to-peer systems.

3 OneLab Federation of NITOS and PlanetLab

OneLab [18] is an initiative to provide an open, general-purpose experimental
facility, aimed at promoting innovation among network and ICT researchers in
Europe, both in academia and industry. It is primarily based on the results
of two EC FP7 projects, namely the Onelab and Onelab2 projects. One of the
most important goals of the initiative is to establish a federated environment be-
tween different, possibly heterogeneous testbeds. As several testbeds have been
deployed independently by research institutions across Europe during recent
years, and each of them has developed or adopted a different control and man-
agement framework, a complex and inconvenient mosaic arises. In this mosaic,
experimentation in different testbeds implies familiarization with the respec-
tive control frameworks, while combined experiments between different facilities
are extremely difficult to setup. The federation between NITOS and PLE, two
testbeds of entirely different architecture, which took place during the Onelab2
project, demonstrated that through agreements and collaborations among the in-
volved administrative entities, it is possible to establish architectural paradigms
that allow for combined experiments across heterogeneous platforms. In this
section, after describing the two facilities, we analyze the components of the
federated environment, which allowed for a combined experiment.

3.1 PlanetLab Europe

PlanetLab Europe is the European portion of the publicly available PlanetLab
testbed, a global facility for the deployment of new network services. It is tightly
federated with PlanetLab Central, offering a total of 1000+ nodes worldwide.
Each node is a dedicated server that runs components of PlanetLab services.

Slices/Slivers. The notion of a slice is a rather central notion in PlanetLab; it
typically allows to model resource allocation, by relating a set of users and a set
of resources (nodes). Once created, the slice ”owns” one private server (sliver)
on each of the selected nodes, and to the designated users, being part of the slice
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means UNIX shell access to all these slivers. The PlanetLab software is tailored
for smoothly orchestrating a complex workflow that involves a large number of
people, with different roles (from the legal paperwork, down to locally vouching
for users and remote IT management); it also needs to deal with accountability
of the resulting network traffic, especially given its scale and diversity of usages,
that by design often leads to untypical shapes of traffic; but it admittedly offers
little help in managing a slice, and encourages users to leverage third-party tools
for the actual experimentation phase.

MyPLC. MyPLC is the software that was packaged by the PlanetLab operators
to let others run their own private PlanetLab system. It was created by Princeton
University and is currently being codeveloped by Princeton and OneLab partner
INRIA. It provides a ready-to-install set of packages, for both infrastucture-side
(XMLRPC API, with related database, software server for securely booting and
upgrading nodes), and node-side (slivers management, accountability, remote
operations and monitoring). MyPLC is rather flexible, and several tens of in-
stances of MyPLC have been deployed around the world, either for entirely local
testbeds, or at the scale of a research consortium.

3.2 NITOS Testbed

NITOS is a wireless testbed featuring 50 WiFi-enabled outdoor nodes in the
premises of a University of Thessaly campus building. It is remotely and publicly
accessible to any researcher wishing to use its resources, after a registration and
its approval by the testbed administrators. Below we describe the two basic
software entities of the NITOS testbed, OMF/OML and NITOS Scheduler.

OMF/OML. NITOS has adopted OMF as its testbed control and management
framework. The architecture of OMF is based on three main software compo-
nents: the Aggregate Manager (AM), the Experiment Controller (EC) and the
Resource Controller (RC). The AM provides a set of services to the testbed (in-
ventory, image loading, etc.). The EC, which is the user’s interface, receives and
parses an experiment script describing configuration of resources and the actual
experimental scenario. This script is written in a domain-specific language called
OEDL (OMF Experiment Description Language). The instructions in the script
are transferred to the RCs of the respective resources, which are responsible
to perform the local configurations and application invocations. The different
components communicate asynchronously through an XMPP publish-subscribe
system, where each message is transferred to an XMPP server, which relays it
to its intended destination.

OML (OMF Measurement Library), a companion framework for OMF, is
responsible for handling measurements. It consists of two architectural compo-
nents, the OML server and the OML client libraries. The client libraries are
responsible for capturing measurements generated at the resources and, pos-
sibly after some manipulations, injecting them in streams headed towards the
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OML server. The OML server receives the data and stores them in organized
databases, one per experiment.

NITOS Scheduler. NITlab has developed a reservation and access control
software tool for NITOS, called NITOS Scheduler. This tool provides a web-
based reservation front-end for users of the testbed. In the Scheduler’s backend,
there are two main functionalities worth mentioning: the Scheduler’s interaction
with the XMPP framework used in OMF and the spectrum slicing framework.
Both of them are utilized to create slicing of the testbed, that is, to enable
simultaneous experimentation by multiple users through allocation of disjoint
sets of resources. Each user at NITOS is associated with a slice. Unlike the
typical PlanetLab setup where slices imply the existence of virtual machines, at
NITOS a slice is an abstract entity. For each slice in NITOS, the PubSub nodes
/OMF/<slicename> and /OMF/<slicename>/resources are always present.

When a reservation for a NITOS resource starts, an additional PubSub node
/OMF/<slicename>/resources/ <resource name> is created. When this reser-
vation ends, this entry is deleted. As a result, access to NITOS nodes is re-
stricted through this dynamic association and dissociation of resources to the
corresponding slices, based on queries to the NITOS scheduler’s database. Since
all OMF communication takes place via XMPP, this mechanism is equivalent to
OMF-based dynamic access control to the NITOS resources.

3.3 Federation Framework

In this subsection, we describe the basic components of the federated environ-
ment between NITOS and PLE. The development of these components took
place during the project Onelab2 and enabled, from an architectural point of
view, the conduction of the experiment presented in this paper.

Single Sign Up. One important characteristic of a federated environment is
that a user of such a facility should not be obliged to register at its different com-
ponents separately, but instead be able to use common credentials. To achieve
this operation between NITOS and PLE, a single-sign up mechanism has been
developed, so that any user of PLE can log into NITOS portal without going
through any extra registration process. This single-sign up process is based on
PlanetLab’s standard XMLRPC user authentication API. In particular, when a
user attempts to log into the NITOS portal, providing a username and a pass-
word, the portal’s underlying code not only tries to match the credentials with an
entry from the native user database, but also contacts the authorization server
of PLE through the standard API. If a match is found among PLE’s users, an
affirmation is sent back to NITOS, which then automatically generates (in the
case that id does not already exist) a slice in NITOS having the name of the
PLE slice and moreover logs him in NITOS portal with the provided credentials.
The process is transparent to the user and incurs no significant delay.

Deployment ofOMF/OMLatPLEResources. Amajor difficulty when try-
ing to run combined experiments using heterogeneous facilities is that different
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Fig. 1. XMPP Server Connectivity

languages are used to describe resource configurations and actions. There is the
need for agreement to use a common language for experiment description, which
must be able to handle the broadest range of resource types possible and easily
add support for new resource types in a modular fashion. OEDL is a perfect candi-
date, as it meets these requirements. Therefore, PLE decided to incorporate OMF
support on demand, in the form of so-called ’OMF-friendly’ slices. For slices with
this tag activated, an OMF Resource Controller is installed and initiated in the
related slivers. In this way, a PLE resource can be viewed as any other resource
of an OMF-based testbed and it can be configured through instructions issued by
the experimenter in an experiment script written in OEDL.

XMPP Communication Using Slices. In order for all the resources to be
able to communicate with the EC, they must be registered in the same XMPP
server or to a set of XMPP servers peered with each other. Currently the XMPP
servers of PLE and NITOS are not peered. As a result, we adopted the first choice
of using a single XMPP server and more specifically the NITOS XMPP server,
where the PLE node could be registered as if features a public IP address, which
is not the case for NITOS nodes that use private IP addresses. We are currently
working towards enabling the peering between these two XMPP servers. The
architecture, used in our current work, is presented in Fig. 1. As for a next step,
we logged into NITOS using the PLE slice credentials and statically associated
the PLE resource to the automatically generated slice, by adding a correspond-
ing entry to the NITOS XMPP server. In accordance with the functionality of
NITOS Scheduler, the PLE resource could be accessed via NITOS only by the
user related with the automatically generated slice and thus no unauthorized
access issues were raised.

4 Proposed Association Mechanism

In order to demonstrate the usefulness of the federated environment that com-
bines the wired PLE with the wireless NITOS testbeds, we developed a novel as-
sociation mechanism proposed for WMNs that is end-to-end performance aware.
In this section, we describe the developed association mechanism and moreover
provide details about its driver level implementation.
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4.1 System Model and Metrics Definition

As end-to-end performance in WMNs depends also on the performance expe-
rienced on the wireless backhaul part of the network, as well as on the wired
infrastructure on which the IGWs are connected, both factors are taken into
account by the proposed mechanism to provide for efficient associations. In this
work, we consider a special case of WMNs that do not feature a wireless backhaul
part, but are composed of MAPs that are directly connected to the wired infras-
tructure and thus operate as IGWs. A representation of the described topology
is illustrated in Fig. 2.

Fig. 2. Topology representation

Each MC chooses to associate with a single MAP among the MAPs that op-
erate in its vicinity. Each network node n has a set of neighbors, that reside in
its sensing area and operate on the same channel with n. This set of ”1-hop”
neighbors, that can be either MAPs or MCs, is denoted by An. In our previous
work [3], we concluded to two discrete throughput based metrics for uplink and
downlink communications that conform with the special case of infrastructure
802.11 networks. In this work, we consider only the case of uplink communica-
tions, which provides for a simple analysis of the proposed mechanism. In uplink
communications, frames are transmitted by each MC and destined to the specific
AP it is associated with. In our previous work, we arrived at an expression that
considers the medium sharing of each MCi with its ”1-hop” neighbors (Ai) and
estimates throughput on uplink as follows:

T up
ij =

1

fi
Rij

+

|Ai|∑

k=1

fk
Rk

, (1)

where Rij and Rk denote the PHY rates used by MCi and each node k ∈ Ai

accordingly, while fi and fk are defined as activity indicator factors reflecting
the activity intensity of MCi and node k ∈ Ai in comparison with each other.

4.2 End-to-End Performance Aware Association Mechanism

Based on the analysis in the previous section, we are able to estimate throughput
performance for the single-hop access link between the MC and each potential
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neighboring MAP. More specifically, the denominator of expression 1 estimates
the average time duration required for a single bit of information to be trans-
mitted over the access link. In this work, we develop an association framework
that is based on Round-Trip Time (RTT) measurements. In order to estimate
the RTT required for the initial transmission and subsequent retransmissions of
a frame with specific length, we have to multiply the calculated delay with the
number of bits that are transmitted over the access link and moreover double the
resulting value to estimate the total delay required for both transmissions. Con-
cluding, we estimate the RTT for a specific frame of M bits that is transmitted
over the access link from MCi to MAPj and back again, as follows:

RTTA
ij = 2 ∗M ∗ ( fi

Rij
+

|Ai|∑

k=1

fk
Rk

) (2)

In our approach, we develop a simple mechanism to estimate RTT experienced
on the wired backhaul part of the network as well. More specifically, each MAPj

periodically transmits probe packets and measures RTTB
j for the wired network

backhaul. These values are broadcasted to all MCs in range and as a result each
MCi is able to estimate end-to-end RTT for each potential MAPj , as follows:

RTT total
ij = RTTA

ij +RTTB
j (3)

4.3 Implementation Details

For the implementation of our mechanism, we used the Mad-WiFi open source
driver. Details about themechanism aiding in performance estimation on the wire-
less part can be found in our previous work [3]. In this section we will provide
details about the developed mechanism that enables application layer informa-
tion regarding wired RTT information to reach neighboring MCs. First of all,
we use a simple application level program that runs at the APs and sends probe
packets to the destination host to calculate RTTB

j values. In order to broadcast

this information to all neighboring MCs, we first had to make the RTTB
j value

available to the kernel level, as all MAC layer mechanisms are implemented as
loadable kernel modules by the MAD-WiFi driver. An efficient way to transfer
information to the kernel is through the proc virtual filesystem, which resides in
the kernel memory. The proc files used by the MAD-WiFi driver are stored in
/proc/sys/net/wlan/athX, where X denotes the specific interface. Another script
running locally at the APs periodically writes values to the specified proc file and
as soon as a new record is written the driver is informed. As for the next step we
had to broadcast the RTTB

j value to all neighboring MCs. In order to do this,
we extended the Beacon and Probe-Response frames to carry this information.
This frame extension does not affect the normal operation of the 802.11 proto-
col, as these frames feature a dynamic part that supports extension, according to
the standard. The MCs constantly estimate the RTTA

ij values for each potential
MAP. The third step is also performed at the MC side, where the driver combines
the RTTB

j value with the RTTA
ij and calculates the RTT total

ij . Finally, each MCi

associates with the MAPj that features the lowest RTT total
ij value.
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5 Experimental Evaluation

In this section, we evaluate several experimental scenarios that have been de-
signed to demonstrate the effectiveness of association mechanisms that jointly
consider factors affecting both wireless and wired performance, rather than pre-
senting innovative research results. The execution of such combined experiments
requires integrated testing, which would not be feasible without the existence of
the federated environment.

Fig. 3. Experimental topology representation

5.1 Measurement Methodology

Fig. 3 represents the actual topology used in our experiments. We consider a
typical scenario, where one traffic flow is generated from the MC node and
relayed through the two available APs to the final PLE destination node. The
MAPs act as IGWs and get access to the wired network part through NITOS
Server. As NITOS nodes are assigned private IP addresses, we had to enable a
Network Address Translation (NAT) service at NITOS Server through proper
IPtables [19] configurations, in order to provide Internet access to the two nodes
operating as MAPs. We also followed a similar procedure to provide for proper
relaying of traffic generated by the MC through the two MAPs.

As our association mechanism is end-to-end delay aware, we had to generate
conditions of varying delay in both the wired and the wireless parts. In order to
add artificial delay in the wired backhaul link, we used the Dummynet [20] tool,
which is able to simulate queue and bandwidth limitations, delays, packet losses,
and multi-path effects, by intercepting packets in their way through the protocol
stack. As an outcome of the OneLab project, PLE natively supports dummynet
as a kernel module in all nodes, configurable from the sliver through a command-
line tool. As all packets received at the destination, share the same IP address of
the NITOS Server, we base packet discrimination on the port numbers. To this
aim, we used a simple Nmap [21] script to dynamically detect the specific ports
used for incoming connections at the PLE node. For the wireless part, we enable a
pair of nodes that operate on each of the channels used by the MAPs and generate
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Fig. 4. Delay monitored at the PLE node for two flows generated by each MAP

channel contention conditions of varying traffic rate. Fig. 4 shows a screenshot of
the OMF visualization tool representing delay emulation for two discrete flows
generated by each one of the MAPs, as monitored at the PLE node.

The throughput performance of the experiments is measured by using Iperf
[22]. In our experiments, we run an Iperf Client at the MC to generate TCP
flows and UDP flows of varying rate and also an Iperf Server residing at the
PLE node to receive traffic and collect the corresponding measurements. We run
each experiment 10 times and each run lasts for 2 minutes.

5.2 Experiments

The conducted experiments are organized in two sets, where in the first set we
generate conditions of varying delay in the wired backhaul part, while in the
second set we vary the delay in the single hop wireless access link. Moreover,
each experiment is performed in two discrete phases, where in the first one we
compare the effect of injected delay on performance affecting either the wired
(1st set) or wireless (2nd set) part solely, while in the second phase we consider
the impact on the combined network architecture.

The conducted experiments aim at presenting the performance improvement
that can be offered through the application of the proposed association mech-
anism and thus measure the performance for a static scenario, where the MC
communicates with a specific MAP. Under this scenario we alter the delay in-
duced in each part and monitor the resulting performance in terms of TCP
/UDP throughput, packet loss and jitter values. The initial RTT in the wired
part between NITOS Server and the PLE node residing in France is around 80
ms, while in the wireless part the reported RTT between the MC and each MAP
without any external contention is below the value of 1 ms. In all the conducted
experiments, the default Rate adaptation algorithm of the driver has been used.

Wired - Combined Set of Experiments. In this first set of experiments
we use the Dummynet tool to generate artificial delay. Fig. 5(a) and Fig. 5(b)
illustrate the TCP throughput achieved under various artificial delay values in
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Fig. 5. TCP Throughput vs Artificial Delay

the wired and the combined architectures accordingly. We notice that even small
variation of delay in the wired part significantly affects TCP throughput and
therefore should be taken into account. Moreover, we notice that the wireless
access link acts as the performance bottleneck that significantly limits yielded
performance. A particular observation is that the same experiments provide
higher deviation values when conducted in the combined topology, for the cases of
200, 300 and 500 msecs of injected delay, in comparison with the execution solely
in the wired part. However, average throughput values show similar performance
in the above cases. Based on the observed results, we remark that relatively high
values of injected delay make TCP performance in the combined network highly
unstable.

In Fig. 6(a) and Fig. 6(b), we present the duration required for the successful
transmission of a file with size of 100 MBs in the wired and combined network
accordingly. We easily notice that even a low increase in RTT values of 20 ms
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Fig. 6. TCP File Transmission Duration vs Artificial Delay
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increases file transmission duration up to 5,5s (15%). Moreover, we notice that
the effect regarding the increased deviation values is also clearly illustrated be-
tween Fig. 6(a) and Fig. 6(b). We also conducted experiments based on UDP
transmissions. However, UDP performance in terms of throughput, packet loss
and jitter is not affected by the artificially injected RTT delay. This comes from
the fact that even high values of artificial delay cannot result in packet loss, as
the high capacity of operational system buffers supports storage of packets that
arrive during the artificial delay interval even at the maximum traffic rate of 90
Mbps that is used in our experiments.

Wireless - Combined Set of Experiments. The second set of experiments
has been designed to demonstrate the impact on end-to-end performance of
channel contention in the wireless access link . Fig. 7(a) and Fig. 7(b) illustrate
TCP and UDP throughput achieved in the wireless access link and the combined
network accordingly, under various values of traffic rate for the contending flow.

For the UDP case, we notice that even contending flows of low traffic rate
highly impact performance in both cases. In addition, we observe that results
obtained in the wireless and combined networks are very similar and both feature
relatively low deviation values. Packet loss measurements illustrated in Fig. 8(a)
and Fig. 8(b) show that UDP performance is directly related to loss of packets.
As the MC injects packets with high traffic rate, the wireless network capacity
is exceeded due to the simultaneous transmissions of the contending flow. The
resulting channel contention yields packet loss, which cannot be detected by the
UDP protocol and thus the rate of data entering the network is not restricted
within the network capacity region.

However, in the TCP case, we observe lower throughput performance yielded
in the combined network (Fig. 7(b)). This is due to the fact that the TCP pro-
tocol involves RTTs estimation in its adaptive retransmission procedure and
thus upon the detection of increased RTT values that result from the aug-
mented network range, limits the rate of traffic injected by the MC. Another
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Fig. 8. UDP Packet Loss vs Contention

particular observation regarding the TCP case is related to the high deviation
values observed among the multiple executions of the experiment in the com-
bined architecture, compared with the low deviation values observed in the local
wireless network. This is due to the fact that the generated traffic flows go over
the Internet through PLE during experimentation in the combined architecture
and thus high deviation values are recorded as a regular characteristic of exper-
imentation on realistic planetary scale networks.

Concerning UDP packet loss values presented in Fig. 8(a) and Fig. 8(b), we
observe similar performance between experimentation on the wireless link and
the combined network. Similar results are also obtained in terms of UDP Jitter
between experimentation on the two different network architectures, as illus-
trated in Fig. 9(a) and Fig. 9(b). Moreover, we used the OMF visualization tool,
in Fig. 10, to plot RTT values reported from the two MAPs with red and blue
colors and also yellow color for values reported from the MC. Particularly, we
observe that the MC is always associated with the MAP that features the lowest
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Fig. 10. Handoff demonstration

RTT delay and moreover notice a handoff that lasts between the 120 and 140
seconds of the experiment.

6 Conclusions and Future Work

The unique two-tier architecture introduced by WMNs has directed research
efforts towards experimentation on global scale realistic environments that re-
sult from federation of heterogeneous networks. In this work, we present the
federation of the wired PLE and the wireless NITOS testbeds. The resulting ar-
chitecture has enabled the execution of realistic association experiments in the
context of WMNs, which presented several characteristics of experimentation
under real world scale and settings. As part of our future work, we plan on in-
vestigating performance of typical WMNs that also feature a wireless multi-hop
backhaul in the aforementioned federated environment.

References

1. Pathak, P.H., Dutta, R.: A Survey of Network Design Problems and Joint Design
Approaches in Wireless Mesh Networks. IEEE Communications Surveys Tutori-
als 13(3), 396–428 (2011)

2. Rakotoarivelo, T., Ott, M., Jourjon, G., Seskar, I.: OMF: A Control and Manage-
ment Framework for Networking Testbeds. SIGOPS Oper. Syst. Rev. 43(4), 54–59
(2010)

3. Keranidis, S., Korakis, T., Koutsopoulos, I., Tassiulas, L.: Contention and Traffic
load-aware Association in IEEE 802.11 WLANs: Algorithms and Implementation.
In: Proceedings of WiOpt (2011)

4. Bejerano, Y., Han, S., Li, E.L.: Fairness and load balancing in wireless LANs using
association control. In: Proceedings of MOBICOM (2004)

5. Athanasiou, G., Korakis, T., Ercetin, O., Tassiulas, L.: Dynamic cross-layer asso-
ciation in 802.11-based mesh networks. In: Proceedings of INFOCOM (2007)

6. Makhlouf, S., Chen, Y., Emeott, S., Baker, M.: A Network-Assisted Association
Scheme for 802.11-Based Mesh Networks. In: Proceedings of WCNC (2008)



354 S. Keranidis et al.

7. Luo, L., Raychaudhuri, D., Liu, H., Wu, M., Li, D.: End-to-End Performance Aware
Association in Wireless Municipal Mesh Networks. In: Proceedings of Globecom
(2009)

8. Wang, H., Wong, W., Soh, W., Motani, M.: Dynamic association in IEEE 802.11
based wireless mesh networks, 2009. In: Proceedings of ISWCS (2009)

9. He, Y., Perkins, D., Velaga, S.: Design and Implementation of CLASS: A Cross-
Layer ASSociation Scheme for Wireless Mesh Networks. In: Proceedings of INFO-
COM (2010)

10. Elliott, C.: GENI: Opening Up New Classes of Experiments in Global Neworking.
IEEE Internet Computing 14(1), 39–42 (2010)

11. Gavras, A., Karila, A., Fdida, S., May, M., Potts, M.: Future Internet research
and experimentation: the FIRE initiative. SIGCOMM Computer Communication
Review 37(3), 89–92 (2007)

12. Webb, K., Hibler, M., Ricci, R., Clements, A., Lepreau, J.: Implementing the
Emulab-PlanetLab portal: Experience and lessons learned. In: Workshop on Real,
Large Distributed Systems, WORLDS (2004)

13. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM SIG-
COMM Computer Communication Review 33(3), 3–12 (2003)

14. Mahindra, R., Bhanage, G., Hadjichristofi, G., Ganu, S., Kamat, P., Seskar, I., Ray-
chaudhuri, D.: Integration of heterogeneous networking testbeds. In: Proceedings
of TridentCom (2008)

15. Di Stasi, G., Avallone, S., Canonico, R.: Integration of OMF-based testbeds in a
global scale networking facility. In: Proceedings of ICST QShine (2009)

16. Anadiotis, A.-C., Apostolaras, A., Syrivelis, D., Korakis, T., Tassiulas, L., Ro-
driguez, L., Seskar, I., Ott, M.: Towards Maximizing Wireless Testbed Utilization
Using Spectrum Slicing. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S.
(eds.) TridentCom 2010. LNICST, vol. 46, pp. 299–314. Springer, Heidelberg (2011)

17. Di Stasi, G., Bifulco, R., D’Elia, F.P., Avallone, S., Canonico, R., Apostolaras, A.,
Giallelis, N., Korakis, T., Tassiulas, L.: Experimenting with P2P traffic optimiza-
tion for wireless mesh networks in a federated OMF-PlanetLab environment. In:
Proceedings of WCNC (2011)

18. Fdida, S., Friedman, T., Parmentelat, T.: OneLab: An Open Federated Facility for
Experimentally Driven Future Internet Research. Springer (2010)

19. IPtables, http://netfilter.org
20. Dummynet, http://info.iet.unipi.it/~luigi/dummynet/
21. Nmap, http://nmap.org/
22. Iperf, http://dast.nlanr.net/Projects/Iperf/

http://netfilter.org
http://info.iet.unipi.it/~luigi/dummynet/
http://nmap.org/
http://dast.nlanr.net/Projects/Iperf/


T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 355–357, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Smart Information Network: A Testbed Architecture  
for Future Internet 

Xiangyang Xue1, Yi Li2, Xiaoyuan Lu2, Xin Wang1, and Lingwei Chu2,* 

1 Fudan University, No.825 Zhangheng Road, Shanghai, China 

2 Shanghai Engineering Research Center for Broadband Technologies & Applications 
No. 150 Honggu Road, Shanghai, China 

{xyxue,xinw}@fudan.edu.cn, {yli,xylu,lwchu}@b-star.cn 

Abstract. This paper introduces a testbed architecture for future Internet, which 
is called smart information network (SIN). The testbed opens up capabilities of 
network nodes through programmable platform, builds a uniform schedule 
system and various decision applications. The testbed can be easily employed to 
design and verify future Internet concepts. 

Keywords: testbed, future network, cognitive network, programmability. 

1 Introduction 

Recently, future Internet research has attracted attentions, which is towards the design 
of new Internet architecture from clean slate. Many programs about future Internet 
research have been established, e.g. FIND [1], GENI [2], FIA [3], FIRE [4], and so 
on. In these programs, FIRE and GENI are two major initiatives for developing large 
scale future Internet testbeds. 

One important trend in the field of testbed is programmability [5], which allows 
user to program network nodes. For example, OpenFlow [6] is employed in GENI to 
provide programmability. However, OpenFlow only provides a interface to modify 
flow table entries. 

There are other trends in the field of testbed, e.g. virtualization and federation [5], 
which increase the complexity of testbed. As a result, the testbed is difficult to 
manage, and automatic management techniques are needed. Recently, cognitive 
network has been presented to decrease human intervention, which can sense current 
reality, plan for the future, make a decision and act accordingly [7]. We believe that it 
is beneficial to automate testbed management. 

2 System Overview 

SIN is presented in this paper, which exposures more capabilities, builds up a 
scheduler platform for different equipments, and establishes various programmable 
                                                           
*  This work is supported by The National High Technology Research and Development 

Program of China (No. 2011AA01A109), and Foundation Project from Science and 
Technology Commission of Shanghai Municipality (No. 10dz1500107, No.10220711700 ). 
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Fig. 1. The architecture of SIN 

decision applications (DA) with cognitive loop, as shown in figure 1. SIN achieves 
smart configuration, control and information transmission. 

2.1 Resource Plane 

Resource plane is responsible for perceiving network status, transferring data flow 
and opening up network capabilities. Resource nodes can perceive the status of 
interior module, dada packet, link, path and so on. Rules are constructed inside 
network nodes, which denote the process manner of perceived information, such as 
forward, upload, modify, drop, and so on. For the information without a match rule, it 
will be delivered to scheduler to decide whether a rule should be added. 

Network nodes with open capabilities can be constructed using NetMagic 
programmable platform [8]. Using pass through mode of NetMagic, all flows from 
input interface are transmitted to user module (UM). Capabilities are programmed and 
embedded in UM, such as perceive set, port management, route table control and so 
on. In control module of NetMagic, management functions can be called, and then 
configure and execution in network nodes can be changed. 

Subsumption architecture [9] is employed in network nodes to decompose 
complicated intelligent behaviors into simple behavior modules, which can improve 
action speed and avoid conflict. Behavior module subsumes underlying modules, e.g. 
if two module’s results have conflict, higher module’s result will be accepted, and 
lower module’s result will be rejected. 

2.2 Converge and Schedule Plane 

This plane distributes perceived information, controls network nodes, and maintains 
network topology view. For each DA, a distribution space is determined in this plane, 
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which denotes that perceived information in such space should be transmitted to a 
DA, i.e. a mapping from a set of DAs to a set of perceived information field range. 

Scheduler classifies perceived information, and distributes the information to DAs. 
To improve distribution speed by parallel processing, mapping from each perceived 
information field to DAs should be determined from above mentioned mapping. If 
perceived information is received by a scheduler, it will be analyzed by filed 
resolvers. Each resolver produces a set of DAs, and the intersection of all sets is the 
final set of DAs that should process the information.  

2.3 Decision Application Plane 

This plane is responsible for analyzing perceived information, making decision and 
invoking actions, which consists of various DAs. Diverse DAs can be constructed, 
such as energy efficiency DA, safe network DA, and so on. Energy efficiency DA can 
close low load ports, links and modules temporarily to reduce energy consumption. 
Safe network DA can determine if a host is attacked by flow rate analysis, e.g. DDOS 
attack, and suspend the attack flows. 

3 Conclusion 

The design and architecture of SIN is presented in this paper. Functions and 
characters of three planes of SIN are also illustrated. SIN is innovative for designing 
and verifying future Internet concepts. In the future, we will design key technologies 
and build the testbed. 
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Abstract. The poster addresses Photonic Services as a general approach to end-
to-end connection over optical networks and possible types of applications that 
can benefit from them. Features and known challenges are highlighted. Also 
expected fields of application are listed and precise time transfer together with 
atomic clock comparison is discussed in detail with specific results.  

Keywords: optical fibre communications, real-time transmission, all-optical, 
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1 Photonic Services 

In general, a Photonic Service can be defined as an end-to-end connection between 
two or more places in the network and can be described by its Photonic-path and 
allocated bandwidth. Photonic-path is a physical route that light travels from one end 
point to one or more other end point(s). Allocated bandwidth is part of system 
spectrum that is reserved for Photonic Service user all along the Photonic-path. It is 
important to carry signals over network with minimal impact, so the processing at the 
end point will depend just on the application. In present networks, delay is almost 
independent of capacity. It is a fundamental characteristic (constraint) of the data 
topology also in over-provisioned networks, where queuing and buffering are null or 
minimal. The requirements for delay minimization impact all communication layers, 
starting from fibre topology.  All network application benefits from low latency, 
ranging from interactive (e.g. video conferences, of interaction between a user and a 
“cloud”) to traditional data transfers. These are typically based of window 
confirmation network protocols (e.g. TCP) where performance of such protocols is 
inversely dependent on RTT (round trip time) value.  

More demanding applications, especially in research community, even pose limits 
on latency jitter. This all is provided by well controlled all-optical network. Therefore 
an Optical-to-Electrical-to-Optical (OEO) conversion should be avoided to increase 
transparency of an optical network to Photonic Services, except for special cases. 

2 Applications 

Advent of many telecommunication services was driven by end-users and it is not 
different in case of Photonic Services. Photonic Services are called upon by 



 Photonic Services and Their Applications 359 

demanding applications that are not feasible (or are with significant complications) 
over traditional Internet Service Providers (ISP’s) network. We identified crucial 
parameters that characterize specific applications and pose requirements on network. 
The jitter in network latency represents the changes in time between any two 
consecutive pieces of information that arrive to destination. The jitter in network 
latency is also caused by lags that are introduced by (de)serialization and buffering 
during OEO conversion in present networks where necessary QoS parameters are 
solved via so called over-provision of bandwidth. The penalty for not meeting the 
jitter limits or service failure is mild in most applications but there are also 
applications, where failure interrupts whole experiment or even endangers human life. 
Examples of demanding applications and relevant references follow.  

Interactive Human Collaboration, High Definition Video and Cave-to-Cave 

The simplest case of interactive collaboration is human speech. ITU-T 
recommendation G.114 defines transmission latency limit up to 150ms for high-
quality communication. Nevertheless speech quality is complex matter and when the 
echo and loss are not present the latency can be higher; users don’t perceive 
discomfort up to 300ms. However 200ms is an empiric valued cited in many 
documents. The most demanding examples of this application are probably remote 
fine arts lessons like piano or violin lesson, where teacher should be able guide her 
students according to visual and aural experience delivered over the network. The fine 
art lesson has been tested in Brazil across Atlantic Ocean (Brazil and Spain) with 
success and presented at Customer Empowered Fibre Workshop 2010 in Prague [11]. 
Moreover, we must distinguish negligible latency (e.g. sound propagation in air) from 
latency to which user can adapt, for example from about 5ms for chamber orchestra to 
40ms for symphonic orchestra. Nevertheless 100ms is value which can user adapted 
to easily. Some experiments are described for example here [12]. The overall quality 
is strongly dependent on the codec used and generally two techniques are applied to 
improve a packet loss robustness and sensitivity to a variation in the delay of received 
packets. The packet loss concealment technique masks the effects of packet loss and 
the simplest forms are based on repeating the last received frame, the most 
sophisticated algorithms apply HMM (Hide Markov Models). An adaptive mode of 
play-out delay buffer dynamically adjusts to the amount of jitter present and the value 
is always calculated as duration of one frame multiplied by integer number. 

Cave-to-cave and HD video have recently enabled doctors and students of 
medicine to see the real-time high resolution video of operation by their own eyes and 
enjoy the precise work of top surgeons in the world. These high bandwidth 
demanding application usually require a dedicated Lambda to provide users with full 
experience. Actually a practical demonstration of HD video transfer has been 
accomplished in the Czech Republic over dedicated 10Gb/s link on the distance of 
150km. The data stream reached transfer rates of approximately 2.5 Gb/s and the 
signal delay was less than 1 ms, enabling the real-time broadcast [1].  
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Remote Instrument and Vehicles Control 

New unique instruments and facilities are often built at the most suitable places in the 
world that may not be well accessible. To name just a few, the unique observatory in 
India, that was built over 4500 meters high above the sea level in the barren desert of 
Ladakh [2], or highly specialized robot-assisted surgery system da Vinci located just 
in the most famous hospitals in the world [3]. The remote control of such instruments 
can save time and expenses to relocate experts to work directly on the site. The 
hospital in Strasburg conducted a Tele-surgery already in 2001. The robotic Tele-
surgery connected a surgeon from New York to a patient in Strasburg [4]. It is worth 
of mentioning that there were also experts on site ready to take the manual control of 
robot in case of network failure. The latency for a robotic surgery is considered 
negligible, when it is about 100ms, but the limit of adaptability can be up to 400ms. 
More detailed study can be found here [13]. Recently, professionals of CESNET and 
Masaryk Hospital in Ústí nad Labem have demonstrated their experience with 
transmission of robotic operations to their colleagues in Japan [5]. In general, this 
type of applications has mild requirements on bandwidth and network latency. Once 
the Tele-surgery proceed to regular use, it will be unacceptable to interrupt the 
connection, because the operation can discontinue and interruption can directly 
endanger patients’ life. These prerequisites will hardly be met in standard over-
provisioned networks and probably may require a dedicated optical channel.  

Many projects all around the globe are investigating intelligent transportation 
systems that would assist or replace vehicle driver to increase transportation safety 
and efficiency. Numerous tasks in future vehicle communication have been identified. 
Some of them should warn a vehicle driver or operator and address environmental 
warnings like hazardous location, traffic signal violation or slow vehicle motion. 
Emergency warnings like pre-crash sensing have stringent latency requirements of 
around 50ms with unacceptable penalty of vehicle crash. Although exchange of 
information among vehicles and infrastructure will be wireless, the availability of data 
from a surrounding infrastructure will be essential [9]. 

Comparison of Atomic Clocks and Ultra-Stable Frequency Transfer 

Time standards are usually represented by caesium clocks and other accurate clocks 
should be synchronized to them. The most accurate comparison of distant clocks was 
made by bidirectional radio transmission using dedicated satellite channels – it is an 
expensive method with that requires complex instruments. Advances in optical 
networking opened a new comparison option by utilization of optical channels. The 
accuracy in order of tenths of nanoseconds or better can be achieved.  Example of 
such experiment is described in [6].Transfer of accurate time and stable frequency 
between two distant places is required by experts from fields of time and frequency 
metrology, astrophysics, particle accelerators and fundamental physics [7]. The 
straightforward and beneficial approach is to utilize NRENs that already connect 
many research institutes and universities [8]. Successful transfer of ultra-stable 
frequency has been demonstrated over an optical network with live traffic [10]. This 
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application requires dedicated equipment in network nodes, but it is possible to run it 
next to standard long haul equipment. Optical clocks, that provide ultra-stable 
frequency, are developing into frequency standards.  In this case, the frequency is not 
transferred as a modulated optical signal – instead, the frequency generated by optical 
clock is subject of transmission. Any usual O-E-O conversion would violate this 
service, since frequency transfer requires special continuous wave narrow single 
mode lasers. 

3 Precise Time Transfer 

One of typical applications, that proved the concept of Photonic service as a multi-
domain end-to-end service, is highly accurate time transfer. Results of more than a 
year error-free operation of atomic clock comparison over distance of 550 km are 
presented at poster. More information can be found in [14][15]. 

4 Conclusions 

Photonic services have a great potential to enhance many contemporary or future 
applications including real-time applications. Although described application may 
seem to be very specialized and useful for small community of scientists, it has great 
impact. Atomic clocks are representing local approximation of UTC time scales and 
are running in every country. The accurate comparison of these time scales is 
essential for maintain the universal time scale UTC. 

Acknowledgements. This work was supported under the GN3 project and by 
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Abstract. Virtual and/or experimental networks capable of supporting an entire 
new set of applications and services (Future Internet, Grids, Cloud Computing, 
other) use, typically, different Control and Monitoring Frameworks (CMFs). This 
poster addresses the multiple federated CMFs instrumentation and measurement 
problems. A monitoring architecture (FIBRE-BR I&M Architecture) is briefly 
introduced by illustrating its basic components and services and its capability to 
integrate different CMF’s I&M Services. FIBRE-BR will use three different 
control and monitoring frameworks in its nine islands: OFELIA Control 
Framework, cOntrol and Management Framework (OMF) and ProtoGENI. Our 
target is to provide monitoring services, possibly, with a maximum reuse of the 
available CMFs I&M services over a new integrated and federated network 
structure. Some of the various aspects involved include the virtualized equipment, 
networks and monitored data; the collected data control access; and, finally, the 
multiple CMFs I&M data integration. This poster presents the FIBRE-BR I&M 
Architecture that integrates diverse I&M services, tools and facilities from 
multiple CMFs, allowing FIBRE-BR users, possibly transparently to each specific 
CMF, to benefit from the corresponding infrastructure and experiment specific 
measurement data. 

FIBRE-BR Instrumentation and Measurement (I&M) Architecture 

The FIBRE-BR I&M Architecture integrates diverse I&M services, tools and 
facilities from multiple CMFs, allowing FIBRE-BR users, possibly transparently to 
each specific CMF, to benefit from the corresponding infrastructure and experiment 
specific measurement data. 
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Fig. 1. FIBRE-BR I&M Architecture 

The Measurement Data Integration Point (MDIP) conforms the collected data from 
the available CMFs to FIBRE-BR I&M standard format (NM-WG), representation 
and distribution (including visualization). This service includes all measurement data 
processing related aspects such as, message format, message transport protocol and/or 
service, access privileges and common data storage or on-the-fly data distribution. 

The Orchestration and Configuration Services act on behalf of the users allowing 
them to configure, to define measurement points, and to orchestrate these 
measurement data collecting facilities according to each individual CMF.  

The I&M Portal main functionality is to provide a user friendly interface to control 
and access the measured data, according to a defined policy. 

The architecture has a storage strategy that allows users to retrieve data from their 
own or from others previous experiments, according to their access privileges. The 
persistent storage option is an experimenter decision that must comply with FIBRE-
BR retention policy. 

For additional information, please refer to: http://www.fibre-ict.eu/ 
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Abstract. In this paper, we detail the implementation of a self-organized 
GMPLS network using the DRAGON software suite to introduce service 
awareness in a GMPLS network. DRAGON daemon has been extended to 
support anycast routing to allow forwarding user (service) requests to the most 
suitable servers based on their advertised service attributes. Furthermore, OSPF 
daemon has been also extended to allow for these advertisements to propagate 
through the network and modify shortest paths based on these service attributes 
that can be network (i.e. bandwidth, delay etc) and non-network (storage 
capacity, CPU units, availability etc) resources.  

Keywords: GMPLS, DRAGON, routing, path selection, anycast, service 
awareness. 

1 Testbed Development and Testing  

DRAGON (Dynamic Resource Allocation in GMPLS Optical Networks) project [1, 2] 
deploys the IP network infrastructure and creates a GMPLS optical core network to 
allow dynamic provisioning of dedicated LSPs (Label Switched Paths). Virtual Label 
Switch Router (VLSR) is a basic element of the control plane architecture of 
DRAGON. VLSR translates GMPLS protocols into device specific commands, to 
allow dynamic reconfiguration of non-GMPLS aware devices. The Client System 
Agent (CSA) is a software that runs on (or on behalf of) any system, which terminates 
the data plane link of the provisioned service. 

There are four software daemons running at every VLSR node. OSPF and Zebra 
daemons are used for routing. RSVP daemon is used for signaling and DRAGON 
daemon provides all the necessary commands in order to request, delete and set the 
attributes of LSPs. We extended DRAGON daemon in order to support anycast 
routing to allow forwarding user (service) requests to the most suitable servers based 
on their advertised service attributes, [3]. OSPF  daemon has been also extended to 
allow for these advertisements to propagate through the network (via LSAs - Link 
State Advertisements) and modify shortest paths based on these service attributes that 
can be network and non-network resources. 
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A simple network testbed has been employed to test the extensions of OSPF and 
DRAGON daemon, see Fig. 1. It consists of three hosts/CSAs and one VLSR. In 
VLSR, DRAGON software is installed in Linux software switch mode. VLSR will 
use Linux commands in order to create or delete LSPs /VLANs (in the current setup). 
All CSAs run DRAGON in peer mode (CSAs have both RSVP and OSPF). 
Connectivity in the control plane is provided via a switch. GRE tunnels are setup for 
control plane messages. Two hosts are setup as service hosts that support two 
services, namely SERVICE 1 and SERVICE 2. A unique cost is associated for each 
service for each host. RSVP will ask local OSPF daemon for routing paths, in order to 
route the signaling messages. 

 

Fig. 1. Testbed design and development 

2 Service Requests 

For requesting a service, CLI (Command Line Interface) was used. Provision for 
SERVICE 1 is requested with the commands shown in Fig. 2, using “S1”. The chosen 
service host is 129.174.42.221 (cnl_host2). “show lsp” allows the inspection of the 
LSPs. An LSP between cnl_host1 and cnl_host2 is created, as shown in Fig. 3a. The 
output of the added commands “show servers” (DRAGON daemon) and “show 
ip ospf servers” (OSPF daemon) can be seen in Fig. 4a. AGE column denotes 
the AGE of the respective LSA. 
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Fig. 2. Commands for the provision of SERVICE 1 

3 Service Host Failure 

After having stopped cnl_host2, we requested provision for SERVICE 1 again. In 
such a case, host cnl_host3 was chosen as a destination (see Fig. 3b for LSP creation 
 

 

Fig. 3. a) LSP created for SERVICE 1. b) LSP created for SERVICE 1 after failure of 
cnl_host2. 

 

Fig. 4. Output of commands “show servers” (left) and “show ip ospf servers” 
(right) before (a) and after (b) a service failure in cnl_host2 
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and Fig. 4b for “show servers” output command). In such a case, the network has 
been self-organised to now point to cnl_host3 for service 1. We also emulated a 
failure in cnl_host3 and re-requested provision of SERVICE 1. In this case “set” 
command returns “No servers available for service S1. LSP 

attributes not set”.  

Acknowledgements. Thus work was partially supported by the Greek NSRF, via 
project "MEDOYSA" Grant No. 09SYN-24-769. 
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A Framework for Multidimensional

Measurements on an Experimental WiMAX
Testbed�

Fraida Fund, Chen Dong, Thanasis Korakis, and Shivendra Panwar
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Polytechnic Institute of New York University

Brooklyn, New York

Abstract. A major difficulty in the design, study, and implementation
of wireless protocols and applications is the multitude of nondeterminis-
tic factors (e.g. interference, weather conditions, competing traffic) that
can affect their performance. For this reason, testbeds that enable re-
searchers to quantify these influences have become increasingly essen-
tial in the wireless research community. The growing sophistication of
wireless testbeds and the wide array of services they can provide to re-
searchers have advanced the field tremendously.

Toward this end, we present an early implementation of an instru-
mentation and measurement framework that we have deployed on an
open-access 802.16e wireless research testbed at the Polytechnic Insti-
tute of NYU. We have created a set of tools to allow experimenters
to routinely collect measurements of environmental conditions during
experiment runtime. These tools integrate high volumes of multidimen-
sional measurement data from a diverse array of sources, including mea-
surements from software defined radio peripherals, sensors, and network
device drivers. With this, we aim to give researchers the ability to con-
duct rigorous and repeatable over-the-air experiments. We also foresee
potential applications for this framework beyond its use in experiments,
such as in long-term testbed monitoring.

1 WiMAX Testbed at NYU-Poly

Current and proposed Internet protocols are mainly developed and tested over
wired and WiFi networks, but Internet traffic is increasingly moving to new wire-
less broadband networks, including WiMAX and LTE. Because the properties
of these networks are very different from traditional WiFi and wired networks,
there exists a great need to evaluate Internet application and protocols over these
networks. The WiMAX testbed at NYU-Poly supports this aim by providing an
open-access, highly configurable wireless broadband network for use in research.

� This work is supported by GENI under WiMAX Mesoscale Deployment grant num-
ber 1751, the New York State Center for Advanced Technology in Telecommuni-
cations (CATT), the Wireless Internet Center for Advanced Technology (WICAT),
and NYU WIRELESS.
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2 Quantifying the Environment

It is difficult to conduct rigorous and repeatable over-the-air experiments be-
cause wireless signals are highly sensitive to the experimental environment. It is
especially difficult for remote users of a wireless testbed to understand what is
happening at the experiment site that may affect experimental results. There-
fore, we provide a set of tools (built on top of OML [2], the OMF [1] measurement
library) for experimenters to routinely collect measurements from a diverse array
of sources, to help them quantify these environmental conditions.

3 Measurement Sources

Our measurement sources include:

– Software defined radio peripherals, which sense the RF environment and
compute the FFT of raw WiMAX samples.

– Temperature and humidity sensors, which alert experimenters to extreme
weather conditions that can affect the wireless signal, and light sensors, to
indicate the level of human movement (which can contribute to multipath
effects) in the area.

– WiMAX network cards, which are used for WiMAX connectivity and which
also indicate signal strength and interference levels.

Each of these measurement sources can be configured to stream measurements
to an OML server during experiment runtime.

4 Applications

The measurements are stored by OML together with experimental data and
network configuration information, so that all relevant information about the
experiment is archived in one place. They are also used for real-time feedback
on network conditions during experiments, visualizations of multidimensional
data, and long-term monitoring of testbed conditions.
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and Testbeds for the Internet of the Future 
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Abstract. In October 2011 a new, ambitious project was launched, named 
FIBRE (Future Internet testbeds experimentation between Brazil and Europe). 
Its main goal is to create common space between Brazil and EU for Future 
Internet experimental research into network infrastructure and distributed 
applications, by building and operating a federated EU-Brazil Future Internet 
experimental facility. Apart from bridging partners from two continents, the 
project brings together different technologies, including OpenFlow, wireless 
and optical communications. To demonstrate the public utility of the facility, 
FIBRE will design and implement a set of pilot applications ranging from 
seamless wireless connectivity to high-definition content delivery. The poster to 
be presented describes FIBRE’s goals, its testbed facilities and a schema of the 
envisioned architecture embracing the functionalities of the individual testbeds, 
as well as their federation. This schema has resulted from the collaborative 
work of the partners in order to define the functional requirements related to 
such an architecture. Our ambition with this poster is to attract new users for the 
facility from the experimental research community, but also to stimulate interest 
for FIBRE’s activities among the conference’s attendees. 
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Abstract. Federation of network testbeds has been identified as a key
goal in the experimental testbeds community, leading to a recent activity
burst in this research field. In this demo, we describe a federated exper-
iment between the NITOS wireless testbed and the Planetlab Europe
(PLE) testbed. The federation scheme supporting this experiment was
initially established during the Onelab2 EU project and was enhanced
during the OpenLab EU project. The experiment constitutes in test-
ing the implementation of an end-to-end delay aware Wi-Fi association
scheme, in an environment where a wireless station situated at NITOS
is sending traffic towards a remote PLE server.

1 Introduction

Federation between heterogeneous testbeds introduces several issues that arise
due to the different nature of experimental resources, but more importantly due
to the use of different software frameworks for resource control and management.
In the present demo, we focus on the federation between Planetlab Europe (PLE)
and NITOS testbeds, which took place during the Onelab2 project [1]. For the
purposes of the demo, we present a simple Wi-Fi association experiment across
the federated testbeds.

PLE [3] is the European portion of the publicly available PlanetLab testbed,
a global distributed facility offering more than 1000 nodes worldwide. Each PLE

� This demo accompanies the paper submitted to the conference with title: Experi-
mentation in Heterogeneous European Testbeds through the Onelab Facility: The
case of PlanetLab federation with the wireless NITOS Testbed.

�� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no287581 (Project name: OpenLab).
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node is a dedicated server, hosting multiple virtual machines referred to as sliv-
ers. Users access a number of slivers by means of so-called slices. These are a
central notion in the Planetlab software framework, which deals with all the
complex management tasks, such as authentication, resource allocation and ac-
countability. Experimentation per se, however, is not treated in the Planetlab
software and users may use their own solutions to orchestrate an experiment.

NITOS [2] is a publicly available testbed, located in the premises of University
of Thessaly, and is mainly focusing on wireless experimentation. It has adopted
OMF [4] as its control and management framework. The basic building blocks
of OMF are the Experiment Controller (EC) and the Resource Controller (RC).
During an experiment, the user interacts with an EC instance, which orchestrates
the behavior of the experiment resources, on which RCs are running. OML, a
measurement software framework closely related to OMF, is being used to handle
experiment measurements at NITOS.

2 The Federated PLE-NITOS Architecture

The federated framework between NITOS and PLE is based on three main ar-
chitectural components:

– Single sign up: Any user of PLE can log into the NITOS testbed portal
without having to go through any extra registration process.

– Deployment of OMF/OML at PLE resources: PLE has incorporated
OMF support on demand. For PLE slices with this tag activated, an OMF
RC is installed and initiated in the related slivers.

– XMPP Communication using slices: The resources in an OMF experi-
ment must be registered in a set of peering XMPP pubsub servers, in order

Fig. 1. PLE-NITOS federation architecture
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to be able to communicate with the EC. Such a peering has taken place
between the NITOS and PLE XMPP servers during the OpenLab project.
This essentially means that an experimenter only needs to connect to a sin-
gle testbed and has access to the resources of both testbeds through OMF
commands. This architecture is depicted in Fig. 1.

Fig. 2. Experiment topology

Fig. 3. Snapshot of experiment measurements

3 The Experiment

The experiment highlights the importance of association mechanisms in the gen-
eral context of a network involving both wired and wireless (Wi-Fi) components.
The scenario is that of Fig. 2. A wireless station (STA) operating in an envi-
ronment with two available access-points (APs) is sending traffic to a remote



376 N. Makris et al.

destination through the Internet. In current 802.11 WLANs, the STA decides
about upcoming associations by taking into account only RSSI measurements
from neighboring APs. The goal of this experiment is to shed light on an impor-
tant parameter, often neglected in this context, the fact that the perceived QoS
of a station depends on end-to-end performance metrics, rather than AP-specific
metrics. In particular, one specific metric is taken into account, the end-to-end
delay.

In Fig. 3 we can see a snapshot of the observed measurements during the
experiment. It is clear from the figure that the station is always associated with
the access-point that offers the lowest end-to-end delay to the stream towards
the remote destination.

4 Conclusion

The federation between the NITOS and PlanetLab Europe testbeds was demon-
strated by means of an experiment spanning both testbeds. There is an ongoing
effort to extend the federation bonds between the two testbeds, particularly
those related to trust management and resource allocation functionalities.
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OpenFlow and P2P Integrated Testing, Project: OpenLab  

Christos Tranoris and Spyros Denazis 

University of Patras, Greece 
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Abstract. Facilities and resources are offered by testbed providers for creating 
richer and broader experimentation scenarios for future internet research. 
Federation among resource providers has emerged as a concept of enabling 
such rich experimentation scenarios. This demo presents the work in the context 
of OpenLab project by enabling with OpenLab tools Openflow experimentation 

Keywords: Future Internet Research, Experimentation, federation, openflow. 

1 Introduction 

Figure 1 displays the current OpenFlow deployment in UoP. Currently 3 XEN servers 
have been deployed where each one is capable of hosting a number of virtual 
machines. On each machine Openvswitch is installed, replacing linux networking. 
This virtual switch is configured with two virtual bridges each one connected to a 
network interface of the host. There are 2 networks: i) One public Network for 
accessing each host (and eventually each vswitch) over internet. This is used also by 
experimenters for accessing machines for an experiment. ii) A data network for VM 
data traffic.  This network is used to send traffic to and from an external VM on 
another host.  When a VM is requested, networking XEN scripts configure this VM to 
have 2 virtual interfaces. Each one is attached to virtual bridges created on the 
openvswitch. 

Figure 2 displays how we enabled the testbed for experimentation. We used 
technologies by the previous  Panlab project. 

Some Characteristics of the testbed are : 

- Access Switches via Public IPs 
- Install user software in VMs 
- Experiment with user’s own Openflow controllers 
- Access testbed via elastic public IP 
- SFA enabled to integrate with other resources (i.e. PlanetLab) 
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Fig. 1. The UoP openflow testbed 

 

 

Fig. 2. Enabling the testbed for experimentation 
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Abstract. The gradually growing demand for experimentation of pro-
tocols designed for wireless networks in real environments has resulted
in the development of experimental network facilities (testbeds). Most
currently deployed testbeds have been designed so as to offer services to
experimenters that lie within the testbed’s premises, thus limiting the
accessibility to external users. The requirement for multi-user access of
network resources has led several large-scale testbeds to provide remote
access services to certified experimenters. However, management and
maintenance of large-scale remotely accessible testbeds is a rather chal-
lenging task that requires proper hardware, as well as software custom-
built tools. In order to provide for remote switching of testbed nodes,
NITOS has developed a new chassis manager (CM) card and also a cus-
tom framework that allows for monitoring and controlling of the nodes’
operational mode. In addition, NITOS CM card provides for gathering
of various types of sensor measurements, through the attached temper-
ature, humidity and light intensity sensor modules. Another innovative
characteristic of the proposed card is that it provides the experimenters
with the ability to monitor the energy consumption of each testbed node,
which is rather important for experimentation with power optimization
schemes. In this demo, we will present the various functionalities of
the NITOS CM card and the developed control framework that accom-
panies it.

Keywords: Chassis Manager, Testbed administration, Wireless Sensor
Networks, Power Consumption Measurements.

1 Introduction

Remote administration of testbed resources requires proper custom-built solu-
tions that are composed of both hardware and software parts. Toward, this

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no287581 (Project name: OpenLab).
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(a) Microcontroller board (b) Custom extension module

Fig. 1. NITOS CM Card

direction, NITOS testbed has developed a custom framework that provides for
remote controlling of the testbed nodes’ operational mode. The hardware part
consists of the newly introduced NITOS CM card, while the software part is
composed of custom scripts that enable monitoring and controlling of the nodes’
operational mode, through a graphical user interface.

2 NITOS Chassis Manager Framework

In this demo, wewill present a framework that enables remote chassismanagement
of testbed nodes, as well as gathering and analysis of various types of sensor mea-
surements. The tool was developed for NITOS testbed [1], which is a large scale,
remotely accessible testbed that currently consists of 50 operational WiFi nodes.
NITOS is deployed at the Computer & Communication Dept. University of Thes-
saly building. Currently all testbed nodes are equipped with NITOS CM cards.

2.1 NITOS CM Card

The NITOS CM card is based on a micro-controller board, which is compatible
with the Arduino programmable, open-source platform. The card features an
Ethernet network interface, which provides connectivity through the transmis-
sion and reception of Ethernet frames. Moreover, the card features a custom-built
extension module that consists of:

– two solid state relays used to short the power ON/OFF and reset jumper
circuits of each node’s motherboard,

– one monitor connection that gathers voltage values, which are used to de-
termine the current operational mode (ON/OFF) of the node.

In Fig. 1(a) and Fig. 1(b), we present the developed CM card and the custom
extension module accordingly.
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As previously mentioned, NITOS CM card supports also gathering of various
types of sensor measurements, such as temperature, humidity and light intensity.
In order to gather humidity and temperature measurements, we use digital Sen-
sirion SHT1x [2] series sensors, while for light intensity measurements, we use a
properly calibrated analog photo-conductive cell. More specifically in Fig. 2(a)
and Fig. 2(b), we present the two different types of sensors that are attached to
the card.

(a) Temperature/
humidity

(b) Photoconduc-
tor

(c) INA 139 custom
module.

Fig. 2. Types of sensors attached to NITOS CM card

Another innovative characteristic that the NITOS CM card provides is the
ability to estimate the energy consumption of each individual testbed node.
More specifically, we use the INA 139 [3] integrated circuit to monitor the level
of current across the motherboard’s power supply pins. In order to estimate the
power consumption a specified time interval, we also require the motherboard’s
constant voltage supply, which is acquired through the monitor connection of
the CM card. In Fig. 2(c) we can see the custom module part that features the
INA139 integrated circuit.

2.2 NITOS CM Framework

The NITOS CM framework consists of custom scripts that enable monitoring
and controlling of the nodes’ operational mode, as well as gathering of sensor
measurements. In essence, the scripts that experimenters use to control the CM
card, send corresponding http requests, which are destined to the static IP ad-
dress that is assigned to each specific CM card. Then, the web server running at
each CM card, executes the selected operation (power ON/OFF, reset, gathering
of sensor measurement) and sends back an http response with details about the
operational mode of the node, or the actual sensor measurement. Moreover, the
CM framework is accompanied by a web graphical user interface that reports
the operational mode of each node, which is presented in Fig. 3(a).

The user is also able to get a graphical representation of the various sensor
measurements (temperature, humidity, light, power consumption) that have been
stored in NITOS database. Various statistical measures can be extracted from
the corresponding records, such as average and deviation values per each sensor.
Fig. 3(b) and Fig. 3(c) show snapshots of the supported statistical measures.
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(a) Chassis Management Inter-
face

(b) Average values repre-
sentation

(c) Variation representa-
tion.

Fig. 3. NITOS CM Framework web GUI

3 Conclusions and Future Work

In this demo paper we presented a framework for remote chassis management of
testbed nodes that also enables gathering and analysis of measurements gathered
from various types of sensors. The developed framework is based on the newly
designed NITOS CM card and features also a web GUI that further simplifies
the experimentation process. Currently, we are in the process of extending the
framework features by providing mechanisms able to estimate the actual power
consumption of the wireless cards that are attached to each node. In Fig. 4 we
present a prototype PCMCIA adapter that is able to connect directly to the CM
current monitor input and calculate the energy consumed during the operation
of the wireless card.

Fig. 4. NITOS PCMCIA prototype adapter for energy comsunption measurements
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Abstract. In the last decade testbeds have been set-up to evaluate net-
work protocols and algorithms under realistic settings. In order to draw
solid conclusions about the corresponding experimental results, it is im-
portant for the experimenter to have a detailed view of the existing chan-
nel conditions. Moreover, especially in the context of non-RF-isolated
wireless testbeds, where external interference severely impacts the result-
ing performance, the requirement of experimenters for accurate channel
monitoring becomes a prerequisite. Toward, this direction, various chan-
nel sensing platforms have been introduced, where each one offers dif-
ferent operational characteristics. In this demo, we propose the NITOS
Channel Sensing framework, which is based on software-defined radio
(SDR) devices that feature highly flexible wireless transceivers and are
able to provide highly accurate channel sensing measurements. Through
this framework, online measurement gathering is automated and fur-
ther simplified using specifically developed scripts, so that it becomes
a transparent process for the experimenter. The proposed framework is
also accompanied by a web user interface that allows the user to get a
graphical representation of the gathered measurements.

Keywords: GNU radios, channel sensing, experimental evaluation.

1 Introduction

The constantly growing demand for experimentation of protocols designed for
wireless networks under realistic settings has resulted in the development of ex-
perimental network facilities (testbeds). In order to provide for accurate channel
sensing during protocol validation in such experimental testbeds, the use of so-
phisticated and configurable spectrum sensing platforms is required. To this end,
NITOS has developed a specific framework that provides experimenters with
the ability of accurate channel sensing, based on SDRs and more specifically the
USRP device [1] accompanied by the GNU radio platform [2].

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
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2 NITOS Channel Sensing Framework

In this demo, we will present a framework for channel sensing through SDR
systems. The tool was developed for NITOS testbed [3], which is a large scale
wireless testbed that currently consists of 50 operational WiFi nodes. NITOS
is deployed at the Computer & Communication Dept. University of Thessaly
building. As NITOS is an outdoor deployed, non-RF-isolated testbed that offers
rich interference conditions, it is important to provide NITOS users with a spec-
trum sensing platform that is able to provide accurate information regarding the
dynamically varying channel conditions.

We implement this framework based on USRPs, which is a hardware platform
for software radio, and is commonly used by research labs and universities, and
the GNU Radio, which is a free, open-source software development toolkit that
provides signal processing blocks to implement software radios. A total number
of 9 wireless nodes are equipped with USRP1 and USRP N210 devices and are
spread among the multiple floors of the testbed deployment. The main scope of
the spectrum scanning procedure is to estimate the occupancy ratio per sampled
frequency, regarding only Received Signal Strength (RSS) measurements that
exceed a predefined RSS threshold. More details about the definition of the
Channel Occupancy Ratio (COT) can be found in our previous work [4].

As for the first step, the reservation of the appropriate nodes that are equipped
with USRPs is required. As for the second step, the experimenter simply executes
specifically developed scripts that enable the definition of multiple sampling
parameters, such as:

– the list of frequencies that will be sampled,
– the duration of sampling per individual frequency,
– the number of iterations of the repeated sensing procedure,
– the overall sampling period,
– and the RSS threshold that will be used for measurement filtering.

In the next step, the actual spectrum sensing is performed on each frequency
among the list of frequencies that have been specified by the user and the gath-
ered samples are saved locally at each node in an .out file format. Each frequency
is sampled for duration equal to the provided duration and this sampling proce-
dure is repeated for the specified number of iterations with interspace equal to
the specified sampling period.

In the following step, all the locally saved files are filtered out, so that only
values that are equal or above the specified threshold are taken into account. In
order to accomplish this step, we set all values that are lower than the threshold
equal to zero and save the filtered file into a new one. Afterwards, we calculate
the average channel occupancy ratio per sampled frequency among the multiple
measurements that have been gathered and store the corresponding results at
the NITOS database, with a unique identification tag. A flowchart representation
of the sensing procedure follows in Fig. 1.

Finally, the user is able to get a graphical representation of each measurement
set that has been stored in NITOS database, through a web interface that is
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Fig. 1. Flowchart representation of the channel sensing procedure

(a) Web interface. (b) Average Channel Occupancy Ratio plot

Fig. 2. NITOS Channel Sensing Framework Graphical tools

illustrated in Fig. 2(a). Various statistical measures can be extracted from the
corresponding records, such as average and deviation values per each frequency
or per each individual iteration. Another important feature that the framework
provides is the correlation matrix representation that provides an indication of
how much the measurements of each USRP-enabled node are correlated with
each other. Figure 2(b) shows a representation of average channel occupancy
ratio values for the multiple frequencies that are being monitored.
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3 Conclusions and Future Work

In this demo paper we presented a framework that enables channel sensing based
on software-defined radio (SDR) devices. Through specifically developed scripts
based on the GNU framework, the experimenter is able to gather RSS sam-
ples over a specified list of frequencies. Moreover, the proposed framework fea-
tures a web user interface that enables the user to get a graphical representa-
tion of the gathered results. Thus, experimenters are able to accurately monitor
channel conditions during the execution of their experiments, which results in
improvement of the experimental evaluation process. Currently, we are in the
process of extending the framework features by providing mechanisms able to
estimate Signal to Noise Ratio (SNR) for each individual frequency that is being
monitored.
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Abstract. OpenFlow technology has recently attracted a lot of atten-
tion in the networking research community, as the ability to control the
forwarding plane of a switch through software opens new exciting ca-
pabilities for protocol designers. Several network testbeds have added
OpenFlow-capable switches to their equipment, while at the same time
new OpenFlow-centric testbeds have been created. This demo describes
a proposed approach to provide testbed slicing in a publicly available
testbed featuring OpenFlow switching equipment. The approach lever-
ages the slicing features of the FlowVisor software component and com-
bines them with the NITOS Scheduler resource reservation framework.
The resulting configuration was implemented and successfully integrated
into the software framework of the publicly available testbed NITOS.

1 Introduction

OpenFlow (OF) technology, first introduced to the networking community in
2008 [1], has attracted a lot of attention both in the research community and in
the industry. Several OF-centric testbeds have been deployed by research insti-
tutions, while international research projects, such as OFELIA [2] and FIBRE
[3], have been launched, focusing on OF experimentation (either exclusively or
as a main direction).

The NITOS testbed [4], a publicly available testbed in the premises of Uni-
versity of Thessaly (UTH) mainly focusing on wireless experimentation, has
recently added two OF-capable switches to its equipment. The purpose of this
demo is to describe the combination of two independent software components,
the FlowVisor [5] and the NITOS Scheduler [6], in order to provide testbed
slicing capabilities in the OF component of NITOS.

Testbed slicing constitutes in allowing multiple researchers to experiment in
a testbed simultaneously, through the use of disjoint sets of resources. In an OF
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context this can be translated to assigning disjoint flowspaces to different users,
so that, for instance, a user can not direct a flow to a specific switch port, if this
port does not belong to a slice assigned to the user.

2 Integration of FlowVisor and NITOS Scheduler

The Scheduler-FlowVisor framework provides the required functionalities in or-
der to

– Reserve a flowspace (in the case of NITOS a set of ports in an OF switch)
– Restrict access of users to flows according to the reservations

The FlowVisor is a transparent proxy between OF switches and multiple OF
controllers that correspond to multiple users. It creates slices of network re-
sources and delegates control of each slice to a different controller or user. While
the FlowVisor provides the required isolation of different slices within an OF
switch, it doesn’t provide any solutions on how these slices can be reserved and
how each of them can be accessible by authorized users only. In order to pro-
vide these extra features, we combined the FlowVisor’s functionalities with the
NITOS Scheduler resource reservation tool.

Fig. 1. NITOS Scheduler - FlowVisor integration
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The NITOS Scheduler is a software framework dedicated to resource discovery,
reservation and access control. It comprises a web frontend for reserving network
resources for limited time intervals and a backend set of scripts to handle access
to them.

The procedure can be summarized as follows:

1. When a slice is created in NITOS, a corresponding FlowVisor slice is also
created and connected to a default NOX controller that instructs the OF
switch to adopt standard switching behavior. At any later time a user in
charge of this slice may redirect the controller to a new address where an-
other, custom, OF controller has been setup and initialized.

2. A user reserves some nodes of the NITOS testbed. These nodes feature an
experimental Ethernet interface connected to an OF switch. Along with the
reservation of the nodes, a reservation of the flowspace corresponding to the
switch ports connected to these nodes takes place (transparently to the user).

3. When the time interval of the reservation begins, the Scheduler backend sub-
mits a set of commands to the FlowVisor, instructing it to add the flowspace
corresponding to these ports to the respective user’s slice.

4. At the end of the reserved time interval the Scheduler instructs the FlowVi-
sor to delete the added flowspace from the respective slice, so that users
associated to the slice don’t have access to the switch ports anymore.

3 Conclusion

We described the integration of testbed slicing capabilities in OF testbeds through
the combination of FlowVisor and theNITOS Scheduler reservation software.This
architecture, implemented as part of the NITOS testbed framework, can be read-
ily applied to any other OF testbed.
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Abstract. This demo presents a novel routing and scheduling scheme,
named Enhanced-Backpressure over WiFi (EBoW), that obviously out-
performs the dominant approach of a shortest-path routing (SRCR)
combined with the classic CSMA/CA scheduling policy of 802.11 net-
works. The new scheme combines aspects of load-balancing and shortest-
path routing and enhances the CSMA/CA scheduling, maximizing the
throughput performance, while keeping low end-to-end delay. We per-
form a comparative demonstration of video streaming over an ad-hoc
802.11 network, using EBoW and SRCR, where the latter one is a state-
of-the-art shortest-path routing algorithm. The new scheme delivers a
smooth and jitter-free video playback experience, while the SRCR scheme
experiences noticeable jitter and rather frequent distortions. The demo
clearly demonstrates the performance superiority of the new implemented
scheme, as compared to the other one. The implementation of both
schemes relies on the well-known Click framework.

Keywords: Backpressure, wireless mesh, multi-path routing, testbed.

1 Introduction

The efficiency of a wireless mesh network is directly related to the applied routing
and scheduling policy. Backpressure [1] is a throughput optimal scheme that
instead of performing explicit path computation from source to destination, it
forwards independently packets to less loaded nodes, while it requires TDMA and
centralized scheduling. Enhanced-Backpressure (EBP) [1] is an improved version
that reduces the average end-to-end delay performance. However, both schemes
cannot be implemented on top of WiFi networks, due to the decentralized nature
of 802.11 networks. In this paper, we present an 802.11 compliant version of EBP,
named Enhanced-Backpressure over WiFi (EBoW) [2], which implements the
EBP aspects in a manner that is compatible with WiFi networks. Particularly,
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we introduce a scheme in which every node attempts to forward packets to less
loaded and closer to the destination neighbors, in a similar way that EBP scheme
schedules.

The implementation of the novel scheme is based on the Click framework [3],
while the NITOS wireless testbed [4] is used for its experimental evaluation. As
we mentioned above, we compare EBoW with SRCR [5] in terms of perceived
video quality after streaming a video clip over a wireless mesh. We also use a
GUI that shows at runtime which route the video stream followed in consecutive
moments of time.

2 Enhanced-Backpressure over WiFi

EBoW is an 802.11 compliant routing and scheduling scheme, that attempts
load-balancing routing retaining low end-to-end delay, while enhances CSMA/CA
scheduling. More specifically, it maintains a set of internal network layer queues
at each node, where each queue corresponds to a different destination. When a
node receives or generates a packet that needs to be forwarded, it identifies the
destination of the packet and pushes it to the corresponding queue. Moreover,
each node that has packets in its queues, initiates a procedure to schedule the
transmission of a packet. The node computes a weight per each pair of neighbor-
destination, which grows when the neighbor is less loaded for this destination or
is closer to this. Then the node chooses the maximum weighted pair and trans-
mits a packet of the relative queue to the corresponding neighbor. This algorithm
is the routing policy of the EBoW scheme. On the other hand, in case that every
neighbor is more loaded for or in a longer distance to every destination, the
node remains inactive and does not schedule transmissions. These requirements
constitute the distributed scheduling policy of the EBoW scheme.

3 Demonstation of Video over the New Scheme

In this demo, we compare EBoW with SRCR, that is a state-of-the-art shortest-
path routing algorithm. SRCR chooses always the shortest route, while EBoW
creates parallel routes and therefore balances the traffic load in the network.
A ring network (Figure 1) consisting of 5 NITOS nodes has been designed,
featuring a 2-hop and a 3-hop path as well, that connect their common source
and destination. The physical transmission rate for each node is fixed to 6 Mbps,
while their frequency selection is the rarely used (in Greece) 802.11a frequency
of 5280 MHz, in order to eliminate outside interference. The well known video of
foreman is transmitted from source to destination, compressed as H.264 video
with constant bitrate equal to 1Mbps. Simultaneously, an Iperf [6] high traffic
stream runs from the intermediate node of the 2-hop path to destination, that
overflows the intermediate node.

As illustrated in Figure 1, we use an external PC, which runs the VLC [7]
client and server to generate and receive respectively the UDP/RTP/H.264 video
stream. The server machine of the NITOS testbed is used as the connecting part
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of the actual network and the external PC. All frames delivered from the PC to
the source node, are forwarded to the destination node through the wireless part
of the network. Finally, the frames delivered at destination are further delivered
back to the external PC. The forwarding procedures are implemented through
Socat [8] connections.

Fig. 1. Ring Network

SRCR forwards the video stream through the shortest two-hop path, although
the fact that the intermediate node is overloaded. Because of this phenomenon,
the majority of video packets are discarded and the delivered quality to the
destination node is not satisfying. On the other hand, the proposed scheme
detects the overload node and avoids forwarding towards it. The utilization of the
parallel 3-hop is much more efficient in terms of throughput and perceived video
quality. Eventually, we are able to compare the quality of the video resulting
from transmissions that follow the previous mentioned protocols. In Figure 2,
four screen shots are provided that clearly depict the superiority that the EBoW
protocol achieves in terms of video quality.

Moreover, a Graphical User Interface (GUI) has been developed that gives
a depicted representation of the whole topology and its state. GUI shows the
path that video stream followed in average the last second. Figure 3 shows two
snapshots of the GUI, which indicate that the video stream followed the 2-hop
or the 3-hop path respectively. The GUI periodically collects the necessary data
using appropriate questions at control TCP socket of Click.

(a) SRCR snapshot (b) EBoW snapshot (c) SRCR snapshot (d) EBoW snapshot

Fig. 2. foreman snapshots
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(a) 2-hop forwarding (b) 3-hop forwarding

Fig. 3. GUI snapshots

4 Conclusion

In this demo paper we present a novel routing/scheduling scheme that dynam-
ically avoids overloaded paths, creates parallel routes and therefore manages to
balance the network traffic load, increasesing in this way its throughput effi-
ciency. We used this scheme to stream a video over a double-path topology, and
we observed that it outperforms the state of the art shortest-path routing pro-
tocol in terms of throughput and perceived video quality. A future direction is
an improved scheduling policy based on prioritization schemes of 802.11, such
as those proposed by the 802.11e amendment.
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Abstract. QUEENS (Dynamic Quality User Experience ENabling Mobile 
Multimedia Services) aims at exploiting and leveraging on the benefits and 
flexibility provided by a novel dynamic real-time QoE provisioning framework in 
order to assess and establish a new era of user-centric mobile multimedia 
applications. To achieve that, QUEENS utilizes and builds on the TEFIS 
infrastructure (EC ICT FIRE initiative) that provides a unique integrated platform 
for supporting efficient Future Internet service experiment and development 
involving different actors and heterogeneous testbeds. The TEFIS tools and 
facilities for designing, planning and executing QUEENS experiment, along with a 
QoE-aware mobile multimedia application prototype will be demonstrated, 
forming the trends of future internet services and experimental procedures. 

Keywords: Experimental testing Facilities, Quality of Experience, Multimedia 
Services. 

1 The QUEENS Experiment and TEFIS Platform 

QUEENS (Dynamic Quality User Experience ENabling Mobile Multimedia Services) 
aims at establishing, assessing, evolving and prototyping a novel framework for 
extending QoS (Quality of Service) to QoE (Quality of Experience) in mobile 
wireless networks, placing emphasis on mobile on-demand multimedia applications. 
Among the key features of the QUEENS framework is the joint consideration of user-
centric QoE preferences and network-centric mechanisms to enable a novel cross-
layering approach based on Network Utility Maximization (NUM) theory [1], which 
allows the operation optimization and the resource utilization maximization of: a) 
mobile application’s server and b) underlying wireless network radio resource 
management processes.  

To facilitate its goals the unique characteristics of TEFIS integrated testbed 
platform [2] is exploited by QUEENS experiment. TEFIS (FIRE Initiative), a TEstbed 
for Future Internet Services, provides a single point of access to a set of federated 
testbed resources, exploited by QUEENS towards enabling: a) real-time end-users’ 
QoE provisioning (User Interface) experiments, b) performing large scale mobile 
emulation networking experiments and, c) validating application prototypes with 
currently existing standards (i.e., IMS, 3GPP/LTE).   
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2 Background and Demonstration Description 

The TEFIS platform supports the overall experiment lifecycle, by providing a 
graphical user interface that allows for designing, planning, executing and evaluating 
the experiment results, eliminating the burden of managing, configuring and operating 
multiple heterogeneous testbeds, as described in Fig.1. The adoption of this platform 
for the description and the workflow of QUEENS experiment will be demonstrated. 

The initial, part of the QUEENS experiment lays the foundations and the overall 
concepts of the proposed Dynamic QoE Provisioning mechanism that offers enhanced 
services to the end users, increased profits to the service and network providers, as 
well as overall system performance maximization.  

 

Fig. 1. The QUEENS experiment workflow as described at the TEFIS experiment manager 

An interactive mechanism designed to support enhanced mobile multimedia 
applications by allowing users to interact with the video currently watched and 
request for different quality of service towards increasing their QoE will be 
demonstrated. Specifically, the developed android-based application will be 
demonstrated that offers a lightweight interactive graphical user interface that allows 
users to select and rate different video qualities of the same video clip (Fig.2), while 
providing context information and pricing incentives towards steering their  
decisions (Fig.3a). Testruns by Botnia Living Lab [3] users (as part of the  
overall TEFIS platform) provide a realistic and pragmatic view of users’ requirements 
and expectations. Moreover, a proficient correlation between QoE, as derived by 
users’ satisfaction rating (Fig.3b)) and QoS, by appropriately mapping video file  
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Fig. 2. QoE provisioning graphical user interface (within the mobile multimedia application) 

 

Fig. 3. a) Context information and pricing incentives, b) QoE satisfaction rating 

specifications, like codecs, bitrate or fps, to network metrics, like throughput or delay, 
expressed via the use of proper utility functions, will be illustrated. Finally, pricing 
incentives that drive users’ behavior, as well as its effects on network operators’ and 
service providers’ profits will be highlighted.   

The derived utility functions correlating QoS to QoE, as well as the knowledge of 
users’ expectations and requirements that will be initially demonstrated, are used as 
feedback to the next phases. Specifically, regressive and stress tests in large scale 
environments offered by PlanetLab [4] evaluate the correctness, stability and 
scalability of the proposed dynamic QoE adaptation scheme in the resource allocation 
process of the wireless networks and video servers. Moreover, the mobile QoE-aware 
multimedia application will be prototyped and end-to-end validated via SQS IMS 
Testbed [5] towards assuring its compliance with the reference protocols and 
standards, as well as its interoperability on a realistic environment (e.g., 3GPP/LTE).  
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Abstract. Several OMF-based testbeds are using Chassis Manager (CM)
cards for autonomously controlling and monitoring the status of nodes.
CM cards are typically microcontroller boards and can be connected
to different kinds of modules, including sensor modules. The NITOS
testbed, which has recently adopted the use of CM cards, features var-
ious types of sensors connected to them. Measurements can be easily
obtained through dedicated web services running on the microcontroller,
through a network interface. This demo describes the implementation
of an OMF service on top of these CM card measurement web services.
This service can either be requested directly by an experimenter who
wishes to obtain a specific sensor measurement, or it can be utilized in
OMF experiment scripts.

1 Introduction

Chassis Manager (CM) cards have been introduced as an out-of-band manage-
ment solution for experimental network testbeds, particularly for the purpose of
remotely powering testbed nodes on or off. They are a relatively cost-efficient
solution especially for wireless testbeds, where testbed nodes are typically dis-
tributed in a wide area rather than gathered in racks.

NITOS [1], a publicly available wireless testbed at the premises of Univer-
sity of Thessaly featuring almost 50 outdoor nodes, has recently adopted the
use of CM cards. In particular, NITlab, the laboratory maintaining the NITOS
testbed, developed a set of custom CM cards [2] for the nodes, based on AVR
microcontrollers. The cards were supplied with several sensor modules, including
temperature and humidity sensors as well as power meters. NITOS had already
been featuring sensors among its equipment, connected to the nodes via USB,
but the deassociation of sensor fucntionalities from the node itself offers sev-
eral advantages, the most important being energy saving, as the node doesn’t

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no269179 (Project acronym: COOPLAB).
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have to be powered on in order to get a sensor measurement. The microcon-
troller used for the NITOS CM cards features an Ethernet interface and a tiny
webserver which allows programming of web services. Therefore, requesting a
measurement from a sensor attached to the CM card can be easily done through
a simple HTTP request to the webserver of the microcontroller.

2 OMF Sensor Measurement Service

NITOS has adopted OMF [3] as its control and management framework. OMF
services are groups of specific tasks which operate on the testbed, such as loading
a software image into a node or rebooting a set of nodes.

Leveraging on the measurement web service available on the CM cards of
NITOS, we implemented a new OMF service called measure. It comprises a
method for each type of measurement and each of these methods receives two
arguments, the HRN of the node (each node features a CM card) and the domain,
which is typically the testbed’s domain name.

The new service can be utilized by a testbed user directly by invoking it
in a browser, or indirectly through an OMF experiment script. In the second
case, a user can schedule a measurement related experiment (e.g. monitor some
measurement data for a given time interval) or use the measurement as feedback
which may drive some kind of on-the-fly steering of a network experiment.

A pre-defined experiment script has been bundled as a new OMF command
available at NITOS, called omf measure. This command has the following format:

omf measure [-s SENSOR-MEASUREMENT] [-h] [-t TOPOLOGY]
[-c AGGREGATE]

Fig. 1. Provision of measurement OMF service through CM cards
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The argument SENSOR-MEAUREMENT specifies which measurement is re-
quested from the CM card attached to the nodes in the TOPOLOGY argument.
If not provided, a list of the available sensors for the specific card(s) is returned.

A scheme of the architecture of the OMF sensor measurement service can be
seen in figure 1.

3 Conclusion

We described the implementation of a new OMF service available at the NITOS
testbed, which provides measurements from sensors attached to the CM cards
of the testbed nodes, upon request.
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Abstract. Information-Centric Networking (ICN) has increasingly been 
attracting attention by the research community. In ICN the center of attention 
becomes the information itself and not the endpoints as in today’s IP networks. 
In this demonstration we present applications that we developed as proof of 
concepts for our ICN approach. A video streaming as well as a voice and a 
HTTP over publish/subscribe application that run on top of our ICN prototype 
will be demonstrated running in an international testbed. 

Information-centric networking has been touted as an alternative to the current 
Internet architecture by several research groups. Several technological solutions 
within a range of architectures have been proposed, such as in [1][2][3]. In this 
proposed demo we present three applications that we have implemented on top of the  
 

 

Fig. 1. PURSUIT International Testbed 
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network prototype, named Blackadder [8], which we have implemented in the context 
of the EU FP7 project PURSUIT [4]. Blackadder is based on the principles outlined in 
[1] and is implemented using the Click router project [5]. 

The Testbed. We have deployed our prototype in an international network in the 
context of the EU FP7 PURSUIT project [4]. As shown in Figure 1, eight sites across 
Europe as well as MIT in the US currently host 26 virtual machines, interconnected in 
an OpenVPN overlay. This enables us to emulate various topologies by assigning 
multiple link identifiers to the single network interface of each virtual machine. Note 
that forwarding in our prototype (called Blackadder in the following) is currently 
based on the LIPSIN approach [6], directly being implemented on top of Ethernet. A 
deployment tool has been developed in order to automate the deployment of network 
topologies and start experiments. This tool reads a configuration file that describes all 
nodes in the testbed along with their connections with other nodes and creates Click 
[5] configuration files for all testbed nodes, which in turn are copied to the respective 
nodes, initiating all testbed nodes. 

Demonstrated Applications. In the proposed demonstration we will present a video 
streaming as well as a voice and a HTTP over publish/subscribe application that run 
on top of our Blackadder prototype, based on the high-level architecture outlined in 
[3]. 

Video Streaming: A video store across the network publishes an information item that 
represents a video catalogue. Whenever a subscriber subscribes to this catalogue, 
rendezvous takes place and, subsequently, the Topology Manager (TM) creates a 
forwarding identifier that is published to the publisher (the video store). The publisher 
then publishes the catalogue to the subscriber, which can then browse all published 
videos and subscribe to any one of them. Subscribers can calculate the identifiers of each 
video by hashing its name in the received catalogue. Therefore, an information identifier 
in this demo represents the channel used to publish the video with video fragments being 
published using the same identifier. The media server is a VLC server that streams the 
selected video via a local UDP socket. The publisher on same physical host as the video 
server receives the video through a UDP client socket. When subscribers for that specific 
information ID join the system, the publisher starts publishing the video. If no subscribers 
exist for the advertised information item, then the publisher remains idle. If all previously 
joined subscribers unsubscribe from the channel, the rendezvous system notifies the 
publisher to stop publishing the video. During the video transmission, subscribers may 
join or leave. Subscribers forward all received video fragments to a VLC client, via a 
loopback UDP socket, which reproduces the transmitted video. The demonstrated 
application is written in Java and C++. 

Voice over Blackadder[7]: A voice connection in our demo is established similar to 
today’s Voice over IP, with the callee being the subscriber and the caller being the 
publisher. The information identifiers of the caller and callee are calculated by 
applying a hash function on each name. Firstly, the caller publishes to the callee’s 
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identifier and includes in that message its own identifier, in order for the callee to be 
capable to send messages back to the caller. The callee publishes to the received caller 
identifier as an acknowledgement. With this, the participants are able to commence a 
two-way voice data message exchange. In order to identify successive voice messages 
exchanged between the two parties, we rely on information exchanged during the 
establishment of the connection as well as on sequence numbers. This provides some 
degree of flow control in that if a packet arrives with a sequence number less or equal 
to the previous one, we can drop it rather than push it to the audio component of the 
application. The demonstrated application is written in Java.  

HTTP over Blackadder: We have implemented HTTP subscribe-GET and subscribe-
POST operations for Blackadder. Each web content server, subscribes to its domain 
name where content browsers may publish subscribe-GET requests for a specific 
domain content. After publishing a request, the browser subscribes to an algorithmic 
identifier for that request and the web server publishes the requested content under the 
same request identifier. A similar transaction takes place for subscribe-POST 
requests. The s-GET and s-POST operations can be public or private. This is enabled 
by the metadata session identifier that standard HTTP requests carry. If a response 
data contains a session identifier, then the algorithmic content identifier for the s-GET 
and s-POST requests is uniquely formed to implement sessions. We have developed a 
python content proxy for IP browsers and a python-based Internet proxy server that 
fetches and publishes content directly from the Internet.    

Acknowledgments. The research presented in the demo is supported by the EU FP7 
project PURSUIT under grant FP7-INFSO-ICT 257217. 
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Abstract. The development of applications based over vehicular net-
works, such as road safety, environmental information etc. require a com-
plete testbed platform for research and evaluation. Such a platform will
be provided by NITOS[1] testbed, that will include nodes mounted on
cars and fixed nodes of the testbed operating as road side units (RSU).
Besides the wireless infrastructure, there will be several sensors regarding
the environmental conditions and the vehicle. These will gather measure-
ments about air conditions and GPS data such as position and speed and
will be collected in a central database, where the experimenter will be
able to depict them in a Google map.

Keywords: Vehicular Network, Delay Tolerant Network, 802.11p, Sen-
sors, Testbed, NITOS, NITlab, Wireless.

1 Introduction

Todays wireless communications testbeds, tend to expand their infrastructure to
dynamic deployments, such as mobile and vehicular environments. In the pres-
ence of this scope, NITOS is being extended to incorporate nodes mounted on
vehicles. Furthermore, we enhance the nodes’ capabilities with a sensors frame-
work, based on microcontroller boards. Testbed’s users will be able to collect
measurements regarding the environmental conditions, the vehicle’s trajectory
and the vehicle’s internal status (e.g. fuel consumption, velocity etc.). These
measurements include temperature, humidity and CO2 indications. Measure-
ment points will be localized according to the GPS coordinates and they will
consist of data, concerning the vehicle’s speed, elevation and position.

The methodology that will be used to collect sensors measurements, will
be incorporated into an OML framework[2], which is currently available in

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant aggreement
no288254 (REDUCTION).
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NITOS testbed to the experimenters, as a framework that collects measure-
ments. The data collected from the sensors will be initially stored locally on the
car-mounted node and afterwards, it will be uploaded to the testbed’s central
database through an RSU.

The above implies a delay tolerant network (DTN), which is achieved through
an OML module, named OML-Proxy-Server[3] and acts as local buffer before
the measurements are being sent to the central OML server of the testbed.

Finally the experimenter will be able to retrieve the database file during the ex-
periment, so he can evaluate the received measurements as soon as they are col-
lected and injected into the database. The network scheme is shown in Figure 1.

Fig. 1. The big picture

2 Network Components

The main components of the vehicular network contain the hardware parts,
which are the sensors and the nodes. However, besides the necessary hardware,
a bunch of software programs are used to collect measurements using OML.
Additionally a web interface will be available to the experimenter to evaluate
the car’s route and measurements.

The connection between the car mounted node and the RSU is achieved
through a WiFi interface. The communication protocol used for this set up is
the 802.11p, using Mikrotik R52 wireless cards.

The RSU will be a static node of NITOS testbed. It will be responsible to
forward the received measurements, from the car to the testbed’s server, where
the data will be stored in a sqlite3[4] database.

Regarding the sensors infrastructure, we exploit Arduino Uno[5] potential,
which is a programmable microcontroller board and let us feature the car’s
node with CO2 2(a), temperature and humidity 2(b) sensors. Additional, a GPS
module is connected to the car node and enables measurements like Latitude,
Longitude, Altitude, Speed, Vertical Speed and Direction.
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(a) CO2 (b) Temperature and
humidity

Fig. 2. Sensors

Fig. 3. Arduino Uno board

3 Conclusions and Future Work

In this demo, a vehicular network with multiple sensors and DTN capability is
presented as part of the NITOS testbed. Temperature, humidity, CO2 and GPS
measurements are collected through an OML framework and stored in a central
database. During the experiment a dynamic Google map is created, depicting all
the available data contained in the database so far. For future work, we plan to
control the network’s resources with the OMF[6] framework, which is featured
on NITOS testbed for conducting experiments.
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Abstract. This demo presents a semantic approach to integrate network 
measurement information. For this, we use a common ontology for network 
measurements, taking the results of the ETSI Monitoring Ontology for the 
Internet (MOI). This ontology allows working with a common information 
model, but it is also necessary to define mappings to each measurement 
database schema. Finally, the user can get the integrated information by 
distributing a semantic query among every data sources containing the 
monitored information. 

1 Introduction 

OpenLab1 is a European project that aims at providing large scale shared experimental 
network facilities. OpenLab is composed of several testbeds, where each one includes 
monitoring tools to obtain network measurements, such as packet delays and losses, 
link bandwidth usage, etc. It is important for the testbed users to have an integrated 
view of their experiments measurements. However, each monitoring tool provides its 
own view of the network measurements. Most times, these measurements deal with 
very similar information, but represented following different structures.  

2 Demonstration Description 

The proposed demonstration shows how the measurement information can be 
integrated from multiple measurement repositories. To get the information from them, 
a single integrated query will be needed. Using the concepts defined in the MOI 
ontology2, the query will be distributed among the available repositories.  

The information in the repositories is usually represented in different formats. For 
this reason, a mapping between each measurement repository schema and the MOI 
ontology concepts is defined. The researcher aiming to query network measurements 
will not have to know the underlying databases that contain such data, but only the 
MOI ontology. 

                                                           
1 http://www.ict-openlab.eu/ 
2 http://portal.etsi.org/portal/server.pt/community/MOI 
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To achieve the semantic integration, a system capable of querying multiple 
measurement repositories is needed. Users send integrated SPARQL3 queries to an 
interface, which are then translated and distributed to the multiple measurement 
repositories. Each SQL repository has an SPARQL endpoint provided by a D2R 
server4 that maps each database table to a set of ontology concepts. Then, a mapping 
file is defined for each repository. 

In order to obtain a better performance when translating SPARQL queries into 
SQL ones, the code of the D2R server has been modified to use less redundant aliases 
in table joins. Another modification has also been done to automatically assign super-
classes of a specified class in a ClassMap, making the mapping process easier. 

The semantic query system has a graphical interface, shown in the figure below: 

 

Fig. 1. OpenLab Semantic query interface 

The elements of the interface (highlighted in Fig. 1) are the following: 

1. In “Demonstration Queries”, a set of predefined SPARQL queries can be executed. 
2. In “System Monitor”, currently executing queries can be checked. 
3. In “Add SPARQL Endpoint”, a new data repository can be added to the system. 
4. In “Mediated SPARQL Endpoints”, a list of available data repositories can be 

checked. 
5. This area is the core of the system, allowing a user to write a SPARQL query for 

the requested network measurements. 

                                                           
3 http://www.w3.org/TR/rdf-sparql-query/ 
4 http://d2rq.org/d2r-serverD2 
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Abstract. We demonstrate a queue-aware algorithm studied in a dia-
mond network topology. This algorithm’s decisions are obtained from an
analytical optimization framework relying on our technical work [4] and
we devise an implementation part by modifying the features of ath9k
driver [3] and click modular router [5]. Performance evaluation is con-
ducted through experimentation on the NITOS Wireless Testbed and
it reveals a significant rise in total throughput considering a particular
networking scenario while also it maintains stability of backlog queues
when schedules indicated by Lyapunov-based technique as throughput
optimal are selected.

NITOS Wireless Testbed website: “http://nitlab.inf.uth.gr” [2].

Keywords: Scheduling, Cooperation, Relay Selection.

1 Introduction

This work presents a maximum throughput and queue stable scheduling algo-
rithm that exploits cooperative transmissions in order to forward traffic from
source to destination through relays. With cooperative transmission, a packet
can be scheduled to be forwarded to a potential helper node (relay) if the direct
link from source to destination is worse than the links from source to relay and
from relay to destination. We implement a scheduling algorithm by exploiting
information on transmission queue lengths and channel quality to indicate the
optimal scheduling decision. This scheduling algorithm is implemented by using
the features of click modular router [5] and ath9k driver [3] in packet routing
and forwarding mechanisms.

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme, CONECT (FP7/2007-2013) under grant
agreement no257616.
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We consider the two-hop network depicted in Fig. 1 consisting of a source
node S, two relay nodes R1, R2 and a destination D. The relays help the source
node when channel conditions (or other factors such as queue congestion) do
not favor direct source-destination transmission by carrying out traffic through
alternative links. We assume that links are interference limited and impose the
constraint that, at any time slot t, only one of the two sets of links (shown
in Fig. 1.1 and in Fig. 1.2) can be activated. This is achieved by operating the
network in different channels per hop and featuring relay nodes with two wireless
interfaces.

We implement this scheduling decision algorithm and we verify its perfor-
mance in the NITOS wireless testbed [2] . The algorithm quantifies metrics that
are related to channel state information and queue lengths from all the network
nodes. Every node broadcasts this information to other nodes in the vicinity, so
as a common scheduling decision to be taken.

(a) 1st Scheduling Action (b) 2nd Scheduling Action

Fig. 1. Scheduling Actions every Time Slot

2 Relay Scheduling

We describe briefly a simple algorithm that selects relays for forwarding the
traffic and schedules transmissions relying on data backlog size. We denote by

Q
(t)
a the data length size in the queue transmission buffer on each node a at

time slot t, and by r
(t)
ab the transmission rate from node a to node b. Rate r

(t)
ab is

chosen so that to be the maximum of the feasible rates that the link can support
subject to an acceptable packet error rate threshold. The algorithm performs
its decisions for scheduling by quantifying the following metric Eq. 1. Its central
decision relies on enabling a mechanism in the source for gathering information
about queue lengths from relays. We elaborate this mechanism by exploiting
features of the click modular router [5] . Then the source sends periodically to
relays the scheduling activation decisions according to the following rule as given
in Eq. 1.
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Select 1st Schedule if (Q
(t)
S −Q

(t)
R1

)r
(t)
SR1

+Q
(t)
R2

r
(t)
R2D

> (Q
(t)
S −Q

(t)
R2

)r
(t)
SR2

+Q
(t)
R1

r
(t)
R1D

(1)
Otherwise, select 2nd Schedule

Then the source node S and the activated relay (either R1 or R2) transmit
packets in the forthcoming time slot t with the the respective transmission rate
that was used in the aforementioned rule. Particularly, if the 1st Scheduling

action is selected, then S transmits to R1, and R2 to D with rates r
(t)
SR1

and r
(t)
R2D

respectively, otherwise if the 2nd Scheduling action is selected, link activations
and transmission rates change respectively.

3 Conclusion

We implement a scheduling decision control algorithm by using the click modu-
lar router along with the ath9k driver in order to enable relay assisted coopera-
tive transmissions. Schedules are being activated towards maximizing the total
throughput traffic, when networking conditions do not favor direct transmissions
from source to destination.
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Abstract. Software defined networking (SDN) is a recent architectural 
framework for networking, which aims at decoupling the network control plane 
from the physical topology and at having the forwarding element controlled 
through a uniform vendor-agnostic interface. A well-known implementation of 
SDN is OpenFlow. The core idea of OpenFlow is to provide direct 
programming of a router or switch to monitor and modify the way in which the 
individual packets are handled by the device. We describe our implemented fast 
failure recovery mechanisms (Restoration and Protection) in OpenFlow, 
capable of recovering from a link failure using an alternative path. In the 
demonstration, a video clip is streamed from a server to a remote client, which 
is connected by a network with an emulated German Backbone Network 
topology. We show switching of the video stream from the faulty path to the 
fault-free alternative path (restored or protected path) upon failure. 

1 Introduction 

Split architecture is a concept of decoupling the control functions from the forwarding 
elements and defining an open programmable interface between them. This split 
means that there are separated entities (physically) that remotely control several 
forwarding elements, which allows the independent design of control plane and leads 
to Software Defined Networking (SDN). One of the most known implementations of 
SDN is OpenFlow [1], which has gained significant interest from many research 
communities, and many of the research challenges behind it have been investigated in 
a number of projects all around the globe. In OpenFlow networks, one or more 
OpenFlow switches are controlled by separate devices (controllers) that communicate 
with the OpenFlow switches via the OpenFlow protocol. OpenFlow (specification 1.1 
and beyond)  provides the concept of FlowTables and a GroupTable [2], which is an 
abstraction of the Forwarding Information Base (FIB). We implemented fast failure 
recovery mechanisms in OpenFlow, capable of recovering from a link failure using an 
alternative path. We demonstrate the effectiveness of the implemented mechanisms 
by emulating a large scale German backbone network and achieving a recovery time 
of less than 50 ms. 
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2 Our implemented Mechanisms and Experiment on High 
Speed Testbed 

One of the European projects named SPARC [3] studies how OpenFlow can be 
deployed in carrier-grade networks. The carrier-grade network should recover from 
the failure within 50 ms. We implement two well-known mechanisms of failure 
recovery i.e. restoration and protection in OpenFlow networks. In the case of 
restoration, the alternative path is established by the controller when it receives the 
failure notification from the OpenFlow switches [4,5]. In the case of protection, two 
disjoint paths (working and protected) are established by the controller before the 
failure occurs in the network. When the failure is detected in the working path, the 
traffic is switched to the protected path. We use a fast-failover type of the group-entry 
[2] to switch traffic between two different paths. This type is responsible for 
executing one of the action buckets of the group-entry as well as switching to another 
bucket upon failure. In our protection experiment, we establish an additional BFD 
session to monitor the failure in the working path. Once the BFD session stops 
receiving the BFD packets, the OpenFlow switch changes the associated alive-status.  
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Fig. 1A. Emulated Topology and On Site Portable Testbed    B: Virtual-wall Testbed 

We emulated our recovery mechanisms. in a nationwide German network topology 
(Fig. 1A). Each of the switches in Fig. 1A is also connected to a server (not shown) 
and has a dedicated interface to a switched LAN which establishes connection with 
the controller. Our testbed where this emulation is carried out is shown in Fig. 1B. 

For the experimentation, we implement our recovery mechanisms in a NOX 1.1 
controller and OpenFlow 1.1 software, recently developed by Ericsson [6]. We 
generate 182 different flows by using the Linux kernel module pktgen, break one link 
between switches and find recovery time. In our restoration experiment, the switches 
detect the failure due to loss of signal, which is approximately equal to the time when 
the first flow is restored in the network. On the other hand, the switches in the 
protection experiment detect the failure in 33 to 40 ms by establishing BFD sessions. 
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Fig. 2. Recovery Experiment 

The results of the experiment are depicted in Fig. 2. In Fig. 2, the X-axis represents 
the broken link (the number in brackets of Fig. 1A).; the Y-axis represents the 
recovery time. The minimum value is the time it takes to recover the first flow; the 
maximum value is the time it takes to recover all the flows; and the average value is 
the expected time for any flow to be recovered after the failure. In our nodes, 
Hannover node where we break the link 12 or 15 (Fig. 1A) detects the failure within 
50 ms in restoration. However, for other nodes, this value is between 167 to 210 ms 
(Fig. 2). The results show that restoration takes approximately 80 to 100 ms after 
detection of the failure (or after first flow is restored) and protection takes 1 to 3 ms.  

3 Demonstration on Portable Testbed 

In the on-site demonstration, we show our implemented restoration and protection in 
OpenFlow networks where a video server at one laptop streams a commercial video 
clip continuously, while the video client at other laptop receives and plays it in real 
time. We remove the link 15 (dotted link in Fig. 1A) from our emulated German 
topology to demonstrate it with two laptops, which consist of two Ethernet ports to 
communicate with each other. Mininet is used in the experiments to emulate this 
topology. We extend the Mininet software to send or receive the traffic from the 
physical port. For the demonstration, half of the topology is emulated in the first 
laptop and the other half is emulated in the second laptop (shown in Fig. 1A). In the 
topology, one NOX controller controls all the forwarding switches including switches 
emulated in the other laptop. Therefore, we use one Ethernet port for the working 
path; whereas other Ethernet port for the protected path and also for the 
communication between the controller and the switches of the other laptop. During 
the demonstration, we remove the Ethernet cable of the working path and show 
switching of traffic to the alternative path.  
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Abstract. We present the extensions made to NEPI, the Network Ex-
perimentation Programming Interface, to allow easy creation and cus-
tomization of routing overlays on top of PlanetLab. We particularly focus
on demonstrating the traffic shaping capabilities provided by NEPI, with
the use of customizable stream filters on PlanetLab overlays to induce
controllable packet prioritization.

Keywords: networking, overlays, PlanetLab, NEPI.

1 Demonstration

This demonstration is intended to supplement the paper[1] accepted at TRI-
DENTCOM’12. We focus on demonstrating the experiment use case presented
in that paper, in which we make use of stream filters as a means to control the
characteristics of an overlay deployed in PlanetLab, [2] providing a realistic yet
controllable environment where to test the POPI[4] tool.

NEPI [3] is an experiment management framework which provides support for
design, deployment, control and gathering of results of network experiments. We
added support for automating deployment and customization of routing over-
lays on PlanetLab, to alleviate the complexities of performing these tasks manu-
ally, and to more easily circumvent administrative limitations. NEPI automates
resource discovery, node provisioning, application deployment, and creation of
tunnels between the selected nodes to build the overlay network. It also provides
the ability to customize traffic in the overlays by adding user defined stream fil-
ters, processing functions applied to packets traversing the overlay tunnels. They
can be used to implement custom queues, packet filters or transformations, and
tunnelling protocols.

To demonstrate NEPI’s ability to provide a solution to existing problems when
using PlanetLab, we selected a previously published experiment case [4]. In this
experiment, researchers developed the POPI tool to attempt to infer packet
priorities in the intervening routers between two endpoints, by inducing bulk
traffic and analyzing point-to-point loss rates. However, in order to verify the
results obtained after running POPI on PlanetLab, it was necessary to ask ISPs
about their routing policies, because no other means were available to verify that
the priorities reported by the tool corresponded to actual prioritization policies.

T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 415–416, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



416 A. Quereilhac et al.

Fig. 1. POPI. An overlay is formed with 3 PlanetLab nodes. Traffic is sent by the
POPI client, from node A to node B through a mediating node, where packets are
processed by a classifying queue to induce class-dependent priorities. Traffic profiling
results are then reported back and analyzed expecting to verify the classification.

The researcher’s ability to verify the obtained results was limited, as not all
providers responded, nor provided complete information.

In our demonstration we re-evaluate POPI, using NEPI to create a controlled
routing overlay on PlanetLab to which we add stream filters to modify traffic
behavior in a known way, by means of a classifying queue that induces packet
prioritization. NEPI provides support for queues that implement queuing poli-
cies by inspecting the Type Of Service (TOS) field in the IPv4 header of the
processed packets. Such queues can be easily attached to PlanetLab network de-
vices, and thanks to this feature, designing this experiment was straightforward.
Figure 1 depicts the design of our experiment consisting of 3 PlanetLab nodes
connected in series. The node in the middle applies a controlled class of queu-
ing, resulting in recognizable statistical bias to the packet stream. This method
allows modification of overlay traffic behavior on PlanetLab in a controlled way,
avoiding the need to request information regarding traffic policies to the ISPs.

With this experiment we demonstrate how the stream filters feature provided
by NEPI enabled us to overcome existing limitations when experimenting with
PlanetLab-base overlays.Moreover, apart from automating deployment of custom
overlays in PlanetLab, NEPI also makes it possible to run numerous repetitions
of a same experiment, or variations of it, enabling thorough experimentation.

References

1. Freire, C., et al.: Automated deployment and customization of routing overlays on
PlanetLab

2. Chun, B., et al.: PlanetLab: an overlay testbed for broad-coverage services. SIG-
COMM Comput. Commun. Rev. 33, 3–12 (2003)

3. Quereilhac, A., et al.: NEPI: An Integration Framework for Network Experimenta-
tion. Software, Telecommunications and Computer Networks 19, 1–5 (2011)

4. Lu, G., et al.: POPI: a user-level tool for inferring router packet forwarding priority.
IEEE/ACM Trans. Netw. 18, 1–14 (2010)



T. Korakis, M. Zink, and M. Ott (Eds.): TridentCom 2012, LNICST 44, pp. 417–418, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Testing of LTE Configurations and Applications* 

Francisco Javier Rivas1, Almudena Diaz Zayas2, and Pedro Merino Gomez2 

1 AT4 Wireless, Systems Division, Malaga, Spain 
fjrivas@at4wireless.com 

2 Dpto. de Lenguajes y Ciencias de la Computación, University of Malaga, Spain  
{almudiaz,pedro}@lcc.uma.es 

Abstract. This paper introduces an experimental testbed developed at the 
University of Malaga to analyze the behavior of mobile applications and 
services over LTE (Long Term Evolution) networks. The novelty of the testbed 
is the ability to correlate the impact of radio propagation issues on LTE 
configurations and applications protocols and cross tuning LTE parameters and 
IP protocols from the point of view of the quality perceived by end users. In this 
work we focus on the evaluation of VoIP services over LTE networks. 

Keywords: Testbed, LTE, mobile application and services, performance. 

1 Introduction 

LTE have proven to be the primary choice for network operators to provide high rate 
data services with an evolving path to 4G, which will be provided by LTE Advanced. 
As LTE is an All-IP data centered technology, there is no support for circuit switched 
voice services. However, LTE is expected to provide voice services over IP and IMS 
(IP Multimedia Subsystem), as intended by the VoLTE (Voice over LTE) initiative. 
According to network operators, their customers are used to a high voice quality, and 
any migration path to LTE should not compromise the provided quality of service. 
Voice is still the core business for many operators, and obtaining accurate knowledge 
on the trade-offs involved in resource management and QoS over LTE will be critical 
for their success. With the aim of generating reference results, we suggest a novel 
approach that will hopefully help key market players in making decisions. Further 
details can be found in [1]. 

2 Testbed Architecture 

In order to meet the target requirements, we suggest a test architecture based on  
high-end network emulation, open VoIP applications and standard voice quality 
estimation methods. 

                                                           
* This work has been funded by Spanish projects TIN 2008-05932 and WITLE2 IDI-20090382, 

by the Andalusian project P07-TIC3131 and ERDF from the European Commission. 



 F.J. Rivas, A.D. Zayas, and P.M. Gomez 418

A custom tool chain illustrated in Fig.1 has been integrated to allow automatic 
processing of received traffic parameters and voice quality. Voice calls are originated 
between a softphone SIP client, and a VoIP server. For clients deployed in a laptop, 
the internet connection is established by a commercial LTE USB device and 
Wireshark may be used to monitor the traffic at the client side. Alternatively, a VoIP 
client can be run at smartphones and the TestelDroid [2], a tool developed in our 
department to allow the acquisition of communication related measurements at 
different levels in Android devices, is used to monitor the traffic.  

 

Fig. 1. Testbed setup deployment 

An LTE network is created using an E2010 eNodeB emulator from AT4 wireless 
that allows fine configuration of radio network parameters using the S3110B LTE 
Mobile Test Application. Most of the features are exposed by the S3110B not only 
through a graphic interface but also via remote control commands. Using those 
commands, we plan to automate network configuration and measurement campaigns. 

For that purpose, a data gateway application has been developed to communicate 
the external server with the E2010 external data interface. This gateway will also 
allow us to control the data flows in future works, e.g. restricting the available 
bandwidth or introducing packet losses, to emulate the effect of the core network 
transport.  
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Abstract. This demonstration is introducing Testbed-as-a-Service (TaaS) 
infrastructure that illustrates use of community based approach to building 
experimental ontologies and generation of supporting testbed resources applied 
to OMF based testbed. While this TaaS demo is initially primarily targeting 
virtualization and community collaboration, the final objective is to support 
domain specific experimental description languages and resource management 
in federated testbeds. 

Keywords: Web Services, Ontology Repository, Semantic Web, Interoperability, 
Testbed. 

1 Introduction 

The research question addressed by the presented demo is: could we facilitate the 
Testbed-as-a-Service federated infrastructure by using existing XML based aggregate 
managers (or services), generating ontologies out of their XML descriptions, then 
using these ontologies, enable semantic service annotations and facilitate  humanized 
interaction with experiment controller and resources supporting the range of what-if 
scenarios (including "what parameters may I change?", "do I break some 
constraints?", “give me range of the parameter") . These new services are potentially 
leading to an experiment specification language, ontology and even automated 
(OEDL/Ruby) code generation for OMF testbed management framework.  

We identify two crucial facilitators for achieving the vision of total system 
scalability in federated testbeds: Experiment Virtualization, and Community Growth. 
We propose to exploit Semantic Technologies in general and Semantic Web in 
particular to develop the facilitators. 

2 Community-Driven TaaSOR 

TaaSOR (available at http://www.orbit-lab.org:8080/tasor) currently targets OMF 
framework [1], and is limited to internal use while being externally available as a proof-
of-concept only. Here, we demonstrate the following: 1) Importing XML service 
description and generating the corresponding set of resources; 2) Browsing the set of 
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resources; 3) Loading new domain (NDL) and application specific ontologies; 4) Context 
and domain adaptation of the GUI; 5) Resolving semantic conflicts within the loaded 
services; 6) Semantic annotation of services; 7) Publishing the created semantics as an 
ontology as well as Rubi source code; 8) Command line access to the RESTful API. 
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Fig. 1. Implementation architecture. Federation of services is built by importing plain service 
descriptions (XML or other) and transforming them into the corresponding set of RDF 
resources. The resources are further annotated by community using loaded domain (NDL) and 
application ontologies. The Working set developed that way may be published on the system’s 
URL either as RDF ontology or Rubi code (a semantic positive feedback loop is created). 

 

Fig. 2. RIA Web Interface: a) Drag-and-drop semantic statements builder with auto-complete. 
b) Hierarchical browsing of services’ resources: All resources are clickable, draggable, and 
context sensitive. Knowledge pane presents convenient set of resources relevant for the last 
clicked resource. c) Working set of created semantic statements. 
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Abstract. The inherent inability of simulation models to adequately
express factors such as wireless signal propagation etc., can lead to in-
complete evaluation of wireless protocols and applications. Thus, testing
of proposed schemes under real-life settings has become the de facto
validation process. More specifically, in the context of testing scenarios
that include mobility, evaluation in real environments becomes a pre-
requisite. Networking testbeds have recently extended their capabilities
by providing the researchers with the ability to include mobile nodes in
their experiments as well. Towards this direction, we have developed a
prototype mobile node in NITOS, which features a mounted camera and
wireless interfaces that enable remote access and control. The proposed
mobility framework is also accompanied by a graphical user interface
that allows the experimenter to observe the node’s behavior remotely.

1 Introduction

As recent work has shown, mobility has positive impact on the behavior of wire-
less networks, as it improves coverage, helps security in ad hoc networks and
helps with network congestion as well [7]. As a consequence, the extension of
NITOS testbed with mobile nodes is indispensable, in order to allow for experi-
mentation under real mobility conditions.

In this demo, we will present a custom mobile node, developed at NITlab
which aims at upgrading NITOS, a large scale wireless testbed that currently
consists of 50 operational WiFi nodes.

2 Mobile Node Parts

From a higher-level view, our mobile node consists of the following hardware
parts:

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no287581 (Project name: Open-Lab).
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Fig. 1. Mobile node

– an iRobot Create [3,2]
– an Alix board alix2d2 [4], which is a single board computer, highly power

efficient, small and capable of running operating systems
– a webcam mounted on top of the robot
– an Arduino Uno[1], which is a small-size, programmable microcontroller

board that also features a digital accelometer and an ultrasonic sensor as
well.

In particular, the prototype features a custom designed tray that enables the
iRobot Create to carry the Alix board. The board communicates with the robot
over the serial port and is supplied power through the robot’s own battery. The
Alix board runs the Voyage Linux distribution, but it is able to run any light
Linux distribution. The mounted camera is facing upwards and thus is used to
recognize specific patterns that are placed on the ceiling, which provide the robot
with the ability to detect its position and navigate around the room.

In addition, the Arduino board is connected to the Alix board through the
USB port, and thus it provides for gathering of measurements from the attached
ultrasonic and accelerometer sensors. The ultrasonic sensor aids in avoiding ob-
stacles that may appear in front of the robot, while the digital accelerometer is
used to get acceleration measurements during the movement of the robot.

3 Programming the Robot

The Open Interface (OI) of iRobot Create consists of both an electronic and
a software interface that enable the experimenter to manipulate the robot’s
behavior and access sensor measurements through a series of commands that
are sent through the serial port by an external PC or micro-controller. In order
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to to interact with the robot we developed custom Python scripts [5], which are
based on the iRobot Create Open Interface.

Regarding the image recognition we use the ARToolKit [6], which is a software
library for building Augmented Reality(AR) applications. Using ARToolKit, our
mobile node is able to recognize four different patterns that are placed on the
ceiling and thus manages to detect its current position and send appropriate
commands to the Robot.

4 Demonstration

In this demo, we will use one of the two available network interfaces of the Alix
board, in order to wirelessly control our mobile node . This interface will be
connected with an operating in range Access Point(AP) and will be used as the
control interface. The second interface will be used for the actual experimentation
from the NITOS testbed users. Through a graphical user interface, which is
presented in Fig.2, we will be able to observe the node’s movement around the
NITlab laboratory premises. At the right part of the GUI, we can see direction
indicators, as well as a representation of the currenlty recognized pattern.

Fig. 2. GUI screenshot

5 Conclusion and Future Work

In this demo paper we will present an implementation of a location-aware mobile
node that has been developed in NITOS wireless testbed. Expansion of the
testbed capabilities with mobile nodes provides for more complex experiments
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in new research fields. Currently, we are in the process of expanding the abilities
of our mobile node, by training the camera software so as to be able to recognize
more patterns and moreover by using orientation tracking, in order to inform
the user about the exact angle under which the specific pattern is detected.
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Abstract. The w-iLab.t is a large-scale generic wireless experimenta-
tion facility. Two locations are equipped with in total over 260 wireless
nodes. In the w-iLab.t Zwijnaarde location mobile nodes are hosted. The
mobile nodes are mounted on top of robots, of which the movement can
be fully controlled by the experimenter. Due to a high accuracy posi-
tioning algorithm, the exact position of the robots is known at all time
during the experiments. This enables us to provide repeatable and con-
trolled mobile experiments to our users.

Keywords: mobile, robots, experimentation, wireless, positioning,
testbed.

1 The IBBT w-iLab.t: Mobile Extensions

The w-iLab.t is a large-scale generic wireless experimentation facility. Two lo-
cations are equipped with in total over 260 wireless nodes (IEEE 802.15.4, Wi-
Fi a/b/g/n, Bluetooth). In the w-iLab.t Zwijnaarde location mobile nodes are
available. These mobile nodes are mounted on top of iRobot Roomba vacuum
cleaning robots. These nodes are identical to the fixed testbed nodes and are
fully configurable by the experimenter. To power the mobile nodes, an extra
battery pack was installed on the robot. Thanks to an in-house designed circuit
board, it is possible to recharge both the external battery pack and the robot
battery through the iRobot Roomba docking station. The board also serves as
a bridge between the robot and a wireless sensor node (eZ430) which is used
to control the robot movement. Finally, the board can also be used to remotely
power on/off the mobile node on the robot. Please see Figure 1 for an example
of the w-iLab.t robot configuration. The w-iLab.t is part of the IBBT iLab.t [1].

2 Accurate Positioning Algorithm

The exact position of the robots should be known at all times during the ex-
periments. The basis of the positioning algorithm is dead reckoning: assuming
we know the starting position, we use the speed and the angle provided by the
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Fig. 1. the IBBT w-iLab.t robot

internal Roomba logic to calculate the new position. Since this approach was not
reliable on its own, corrections are made to the robot position by using a taped
grid (with a cell size of 1 by 1 meter) on the floor of w-iLab.t Zwijnaarde. The
horizontal and vertical lines of this grid are taped in different colours. Using the
standard cliff sensors of the robot, the position of the robot is adjusted every
time the robot crosses one of these grid lines. Empirical verification shows that
the position of the robots never deviates more than 3 centimeters.

3 Controllable and Repeatable Mobile Experiments

The mobility solution is fully integrated into the testbed, which is OMF compati-
ble [2]. Users can very easily include coordinate files into their OMF experiment
description files, describing the exact path the robot has to follow during the
experiment.

4 Conclusion

The w-iLab.t gives users the ability to easily include controlled mobility sce-
nario’s into their wireless experiments. By using the OMF framework, it is very
easy for users to repeat these mobile experiments and analyze results afterwards.
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Altmannova, Lada 11
Apostolaras, Apostolos 408
Aracil, Javier 406
Argyriou, Antonios 408
Aristomenopoulos, Georgios 394
Asaeda, Hitoshi 162
Azodolmolky, Siamak 372

Baldine, Ilia 97
Barford, Paul 130
Becue, Pieter 7, 305, 425
Belter, Bartosz 81
Benbadis, Farid 394
Bergesio, Leonardo 372
Bienstman, Luc 48
Bona, Luis C.E. 146
Bouckaert, Stefan 7, 305, 425
Braun, Torsten 210

Campowsky, Konrad 81
Carril, Luis M. 81
Carrozzo, Gino 81
Chase, Jeff 97
Chen, Jiayu 18
Chertov, Roman 18
Chikkulapelly, Srikanth 321
Choumas, Kostas 64, 387, 390, 408
Chu, Lingwei 355
Ciuffo, Leandro 372
Colle, Didier 411
Crovella, Mark 130

Dabbous, Walid 240, 415
Das, Ananya 130
Demeester, Piet 7, 305, 411, 425
Denazis, Spyros 377
Devabhaktuni, Vijay 256
de Vergara, Jorge E. López 406
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