
Chapter 27
Research on Parallel Association Rules
Mining on GPU

Qingmin Cui and Xiaobo Guo

Abstract In this paper, general-purpose computation on graphics processing unit
(GPGPU) is playing an important role in super-computing. We proposed a parallel
association mining solution based on graphics processing unit (GPU) using Compute
Unified Device Architecture (CUDA)–Cuda Apriori. The support-counting step for
candidate frequent itemsets is off-loaded from CPU to GPU. First, candidate frequent
item sets and transactions are partitioned in the pattern of thread block and grid of
thread blocks of GPU. Second, the task of support counting is performed in parallel by
massive threads with the simple matching computation, suitable to stream access
model of GPU. In our experimental work, we simulated transactions on both our Cuda
Apriori and the standard Apriori.

Keywords Association rule � Data mining � GPU � Support counting

27.1 Introduction

The rapid increase in the performance of graphics processing unit (GPU), coupled
with recent improvements in its programmability, have made it a compelling
platform for computationally demanding tasks in a wide variety of application
domains [1] (called General Purpose GPU, GPGPU). Current-generation GPUs are
designed to act as high performance stream-processors. Their performance is
derived from parallelism at both the data and instruction levels. Additionally,

Q. Cui (&) � X. Guo
School of Computer Science and Engineering, Henan Institute of Engineering,
Zhengzhou, China
e-mail: eielw@sina.com

Y. Yang and M. Ma (eds.), Proceedings of the 2nd International Conference
on Green Communications and Networks 2012 (GCN 2012): Volume 2,
Lecture Notes in Electrical Engineering 224, DOI: 10.1007/978-3-642-35567-7_27,
� Springer-Verlag Berlin Heidelberg 2013

215

current-generation GPUs are architected to take advantage of the independence of
the data-elements in traditional graphics scenarios. This data-independence
enables a memory-model that is simple and fast. Although these characteristics
allow for high levels of performance, they pose challenges when conventional
(i.e., non-graphical) applications are ported to the GPU. The streaming architecture
can be a difficult programming environment for developers accustomed to working
with traditional CPUs. In particular, the simplified memory model is restrictive
when it comes to implementing well-known data structures such as linked-lists,
trees, etc. Thus, although the GPU provides a new opportunity for optimizing the
runtime performance of conventional algorithms, these algorithms must be rede-
signed into a form that is appropriate for the parallel, stream-architecture of GPUs.

In this paper we use the GPU to our advantage by demonstrating that offloading
support counting computation to the GPU allows Apriori to function effectively at
significantly higher frequent item sets-processing. To this end, we ported the
Apriori [2], the newest generation GPU. In the experiment we simulated trans-
actions on both our GPU-based version of Apriori (called compute unified device
architecture, Cuda Apriori) and the standard Apriori. The results show that Cuda
Apriori produces a 10-fold performance enhancement of frequent k-item sets
mining (k [2) step to Apriori and outperforms it by up to 80 % on the whole.

27.2 Cuda Apriori Algorithm

Apriori is a heavy computational task. Let jIj ¼ m, there are 2m subsets to be the
candidate frequent itemsets at worst and selecting all frequent k-itemsets need to
scan the whole transaction once. Agrawal and Srikant [2, 3] etc., are a class of
Apriori-like algorithms with characteristics of large candidate frequent itemsets
generation and transactions scan multi-times. Another is Fp-growth [4] algorithm,
which adopts frequent-pattern growth to overcome the fault of Apriori. Fp-growth
has better behavior at dense transactions and is opposite to the sparse. Especially,
it is unreal to construct FP tree in main memory for large database (Table 27.1).

The parallel algorithms based on Apriori-like or Fp-growth usually run on
shared-memory systems or clusters platform, whose bus and message transfer
delay cannot be neglected [4–6].

In this section, we give a new association rules mining algorithm employing
G80 and the Compute Unified Device Architecture (CUDA): The transactions and
candidate frequent itemsets are partitioned, and support counting task suited the
stream model is parallelized using massive threads on multi-processors of G80.

27.2.1 Data Partition and Task Parallelization

The G80 contains a set of multiprocessors, each of which contains a set of stream
processors that operate on single instruction multiple data (SIMD) programs.

216 Q. Cui and X. Guo

The stream processors in the G80 are general purpose. They are quite different
from earlier GPU design, which had fixed numbers of special-purpose processors
(e.g., vertex and fragment shades), very limited support for arbitrary memory
accesses (scatter/gather), and little or no support for integer data types.

Figure 27.1 illustrates the Programming Model of CUDA. A unit of work
issued by the host (equal to CPU) to the G80 is called a kernel and defines the
computation to be performed by a large number of threads, organized in blocks.
Each multiprocessor executes one or more blocks. Blocks are organized in grid.
Each kernel is executed as a batch of threads organized as a grid of blocks.

Each thread is with thread ID, which is the thread number within the block.
To help with complex addressing based on the thread ID, an application can also
specify a block as a two- or three-dimensional array of arbitrary size and identify
each thread using a 2- or 3-component index instead. For a two-dimensional block of
size (Bx, By), the thread ID of a thread of index (x, y) is (x, By) and so is a three-
dimensional block. Each block is identified with block ID, which is the block
number within the grid. An application can also specify a grid as a two-dimensional
array of arbitrary size and identify each block using a 2-component index instead.
For a two-dimensional grid of size (Gx, Gy), the block ID of a block of index (x, y) is
(x, yGy).

The strategy of partitioning the transactions and candidate frequent itemsets is:
let the total number of threads in one block be t, and the total number of blocks in
one grid be b, parallel computation model based on G80 is shown in Fig. 27.2.

Candidate k-itemsets Ci
k are averaged to Ci;j

k (i = 0, 1,…,b -1; j = 0, 1,…,t -1)
in block Bi, while transactions set D is averaged to Di in whole grid. Every thread

Ti,j counts the support of every itemset in Ci;j
k based on Di, then every block Bi can

complete the Ci
k and a grid does Ck.

Table 27.1 Notations k-itemset An itemset having k-items

Lk Set of frequent k-itemsets (those with
minimum support)

Each member of this set has two fields:
(1) itemset and (2) support count

Ck Set of candidate k-itemsets (potentially
frequent timesheets)

Each member of this set has two fields:
(1) itemset and (2) support count

Bi Block of G80 with id i
Ti,j Thread of G80 with id j in block Bi

Di The dataset local to the block Bi

Ci
k The candidate set maintained with

the block Bi during the kth pass
(there are k items in each candidate)

Ci;j
k

The candidate set maintained with the block Bi

and thread Tj during the kth pass (there are k
items in each candidate)

27 Research on Parallel Association Rules 217

27.2.2 Support Counting on G80

Apriori implemented by CPU widely uses a hash-tree for determining the candi-
dates in Ck contained in a given transaction d, while such a data-structure would be
difficult on GPU given the simple memory model of GPU. Thus we opted instead

Fig. 27.1 Programming model of CUDA

{A,B} 2

{A,C} 3

{B,C} 2

{B,D} 7

{X,Y} 5

{X,Z} 1
...

N/b

...

grid

0,0
kC

0D

1,0
kC 1,0 −t

kC

0,0T 1,0T 1,0 −tT

0B

{A,B} 0

{A,C} 2

{B,C} 3

{B,D} 1

{X,Y} 3

{X,Z} 5
...

N/b

0,1
kC

1D

1,1
kC 1,1 −t

kC

0,1T 1,1T 1,1 −tT

1B

{A,B} 3

{A,C} 0

{B,C} 1

{B,D} 5

{X,Y} 0

{X,Z} 0
...

N/b

0,b
kC

1−bD

1,b
kC 1, −tb

kC

1,bT0,bT 1, −tbT

1−bB

Fig. 27.2 The transactions and candidate itemsets partition

218 Q. Cui and X. Guo

to use the parallel rendering pipelines of G80 to build a string match method as
Fig. 27.3 shows:

To process support counting, the following steps are required:

(1) To sort every item in Ci;j
k and Di in lexicographic order. It can be done by the host

before the invocation of kernel. It does not product extra spending compared to
the sequential Apriori algorithm.

(2) Thread Ti,j continuously reads a transaction d (such as {A B C F G}) of Di from
Global Memory to Shared Memory shared by all threads in one block. This
memory is on-chip and can be accessed much quicker than Global Memory.
We retain candidate k-itemsets in Global Memory because the length of every
k-itemset is k, which is very small and only scans once relative to single d.

(3) Thread Ti,j increases support counts of every element c in Ci;j
k , if c is contained

in d. The procedure of judging whether c � d or not follows:
Step 1: Data points pc and pd respectively reside in the first element of c and d.
Step 2: If pc points to ‘\0’, then c � d is correct and the procedure is over,

otherwise, if two elements pointed to by pc and pd are equal, both pc and
pd move next and the current step should be repeated. If not, go to Step 3.

Step 3: Pd moves next. If pd points to ‘\0’, c 6� d and the procedure is over,
otherwise go to Step 2.

Support counting on G80 adopts the sequential access model on the GPUs
memory, which is very fit to the stream model of GPU.

27.3 Experiments

We compared Cuda Apriori with Apriori. All experiments were performed on a
Dell Compatible PC with an Intel Pentium D CPU 3.7 GHz, 1G-byte main
memory and Geforce 8800GTX graphic card. 768 MB of RAM, and 128 stream
processors, organized into 16 multiprocessors. Each stream processor executes at
1.35 GHz. The raw (theoretical) compute power of the 8800GTX is approximately

{A,B,C}

{A,C,D}

{B,C,D}

 ...
{B,D,Z}

{A,B,C,E,F}

{A,B,C,F,G}

{A,B,D,E,F}

{B,C,D,E,F}

{B,C,D,R,M}

{B,D,E,F,O}

…
{B,D,F,X,Z}

A C D \0

A B C F G \0

ji
kC ,

iD

jiT ,
c

d

Global
Memory

Shared
Memory

cp

dp

Fig. 27.3 Support counting on G80

27 Research on Parallel Association Rules 219

350 GFLOPS. Apriori is implemented using Microsoft Visual.net 2003 and Cuda
Apriori using CUDA.

We use synthetic 10 datasets, ranging from 100 K to 1 M, to find out the
relationship between the performance of Cuda Apriori and the size of datasets.
Average size of frequent itemsets is comparatively small as Apriori algorithm has a
good exhibition under short pattern.

The efficiency estimation includes the support-counting price and total price.
The support counting price of Apriori notated CAsc is (the time consumed by CPU
at supports counting/(k-1)); corresponding to that, CudaAsc is (the time con-
sumed by G80 at supports counting/(k-1)). k is the length of max frequent
itemsets. Apriori’s total time notated as CAac is measured as the time elapsed from
the initiation of the execution to the end time of the association rule generation
completed. So is the Cuda Apriori, and notated as CudaAac.

27.3.1 CAsc Versus CudaAsc and CAac Versus CudaAc

First of all, we compare CAsc to CudaAsc in Fig. 27.4 (T is average transaction
length and I represents average size of frequent itemsets). The results are very
encouraging: we get a 10-fold performance enhancement. On the other hand,
Fig. 27.5 shows that CudaAac is able to outperform CAac by up to 80 %. CAac/
CudaAac is far smaller than CAsc/CudaAsc, because the time of frequent k-itemsets
mining (k [1) only occupies half of the whole cost which also includes data input,
initial frequent 1-itemsets and the finial rules generation etc. In spite of L1 mining
also can adapt our method, we use the traditional implementing fashion that single
item’s support counting is carrying out at the same time of reading transactions as
data is seldom distributed on disk.

27.3.2 The Cost of Data Transfer

The extra cost of Cuda Apriori is data transfer. Candidate k-itemsets should be
copied from host to G80 before support counting, and counting results from G80 to

Fig. 27.4 CAsc vs. CudaAsc

220 Q. Cui and X. Guo

host after that operation. The data transfer cost and support counting cost of G80
containing the data transfer cost is given as follows.

Figure 27.6 shows the cost doesn’t vary under the all datasets. The transfer rate
between the G80 and host, under the CUDA, is about 2 GB/s so that it hardly
brings influence on the total executing time of Cuda Apriori.

27.4 Conclusion

The result shows that Cuda Apriori produces a 10-fold performance enhancement
of frequent k-itemsets (k [2) mining phase to Apriori and outperforms it by up to
80 % on the whole. In spite of the data, transmission of Cuda Apriori between
GPU and CPU is the extra cost to Apriori, its performance reducing can be
neglected with the high 2 GB/s speed road.

With the rapid progress of semiconductor technology and graphic chip, the
company is taking GPGPU in market seriously. GPUs are developing towards
lower latency of memory, with more multi-processor and higher transmission rate.
Schemes including neural networks, concept lattice, and other data mining algo-
rithms are waiting for migrating to GPU.

Fig. 27.5 CAac vs. CudaAac

Fig. 27.6 The cost of data
transfer

27 Research on Parallel Association Rules 221

References

1. John OD, David L, Naga G, Mark H (2007) A survey of general-purpose computation on
graphics hardware. Comput Graph Form 26(1):80–113

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of
international conference on very large databases 4(2):43–46

3. Park JS, Chen MS, Yu PS (1995) An effective hash-based algorithm for mining association
rules. In: Proceedings of ACM SIGMOD on management of data 45(38):35–43

4. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation.
In: Proceedings of ACM SIGMOD on management of data 17(12):63–68

5. Agrawal R, Shafer JC (1996) Parallel mining of association rules. IEEE Trans Knowl Data
Eng 8(6):962–969

6. Aflori C, Craus M (2007) Grid implementation of the Apriori algorithm. Adv Eng Softw
38(25):295–300

222 Q. Cui and X. Guo

	27 Research on Parallel Association Rules Mining on GPU
	Abstract
	27.1…Introduction
	27.2…Cuda Apriori Algorithm
	27.2.1 Data Partition and Task Parallelization
	27.2.2 Support Counting on G80

	27.3…Experiments
	27.3.1 CAsc Versus CudaAsc and CAac Versus CudaAc
	27.3.2 The Cost of Data Transfer

	27.4…Conclusion
	References

