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Preface

This volume is the seventh in a series that started in 2005, and contains the
revised versions of 12 selected papers presented at the two COIN (Coordination,
Organizations, Institutions and Norms in Agent Systems) workshops in 2011.
The first took place on May 3 in Taipei, at the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), while the second was
held on August 22 in Lyon, at the IEEE/WIC/ACM International Conference
on Intelligent Agent Technology (IAT).

The papers in this collection have undergone a substantial process of re-
finement. As in previous editions, each submitted paper was reviewed by three
Program Committee members and revised versions of the accepted papers were
presented in the workshop sessions. After their presentation, some papers were
selected to be part of this volume. These selected papers had to be rewritten to
take into account the original reviewers’ remarks and the comments sparked by
the oral presentations. In the case of the papers selected from the COIN@IAT
meeting, rewriting has been substantial since the original submissions were rela-
tively short (following conference policy). All revised papers from the two work-
shops have undergone a second stage of review before producing the final version
that is included in this volume.

In keeping with the aim of the COIN workshops, these collected papers share
the basic premise of looking into coordination, organizations, institutions, and
norms from a macro perspective. In COIN, rather than the individual features of
the agents themselves, the interest resides in the collective aspects of interactions,
the context where interactions take place or the regulations that affect those
interactions. While this basic premise is shared, the papers contained in this
volume exhibit a healthy diversity of approaches.

There are three papers whose main concern is the coordination and organi-
zation of groups of agents. The first two look into the global effect of local in-
teractions. Inspired by ecological systems, Lurgi and Robertson in “Multi-agent
coordination through mutualistic interactions” focus on how coordination and
communication features among agents (in large self-organizing populations) may
achieve desirable network properties. Similarly, in their paper “Explanation in
human–agent teamwork,”Harbers et al. explore the effects that the explanation
of agent actions has on the performance of teams of agents that cooperate using
a paradigmatic scenario of human–robot cooperation. The third paper by Keogh
and Sonenberg, “Adaptive coordination in distributed and dynamic agent orga-
nizations,” is interested in modeling the organization of groups of agents where
agents not only adapt their own plans to a collective task but also improvise new
plans along the way.
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The papers by Jiang et al. and by Tampitsikas et al. both have an organiza-
tional perspective. Jiang et al., in “An agent-based inter-organizational collab-
oration framework: OperA+,” focus on features that result from the combina-
tion of organizations, and in particular (profiting from the OperA framework)
how to model collaborative relationships between agents that are members of
separate organizations that come together in a partnership. Tampitsikas et al.,
in “MANET: A model for first-class electronic institutions,” propose a frame-
work (extending the OCeAN proposal and formalized using Event Calculus) to
model systems where several electronic institutions are situated in a common
environment, and where individual agents are active in more than one of these
institutions.

Another group of four papers deals with norm-aware agents that reason
within a regulated multi-agent system. Panagiotidi and Vázquez-Salceda
describe in “Towards practical normative agents: a framework and an imple-
mentation for norm-aware planning” a conceptual framework to model practical
normative agents that need to reason about norms when planning how to achieve
their goals. Letia and Goron, in “Towards justifying norm compliance,” propose
including the notion of “justification” in normative multiagent systems and use a
justification logic and value-based argumentation to that effect. Balke et al. dis-
cuss in “Normative run-time reasoning for institutionally-situated BDI agents” a
methodology to produce run-time reasoning components for BDI agents starting
from a design-time institutional model. Finally, Cranefield et al. demonstrate in
“Modelling and monitoring interdependent expectations” the benefits of having
“expectations” as a first-class construct in normative multiagent systems and
show how to use a temporal logic with expectations and a model checker to
handle problematic cases of nested expectations.

Finally, there is a fourth group of papers whose focus is on the process for
norm creation and enforcement. In “Operationalization of the Sanctioning Pro-
cess in Utilitarian Artificial Societies,”Balke and Villatoro look into the processes
involved in the life-cycle of normative MAS and, in particular, discuss the pro-
cess of punishment from two perspectives: as a device for norm compliance, and
as a device for norm enforcement. Two papers by Mahmoud et al. also look into
metanorms in general and punishment in particular, but in the context of norm
emergence. While in “Overcoming omniscience for norm emergence in Axelrod’s
metanorm model” they focus on the way agents learn how to punish, in “Estab-
lishing norms for network topologies” they explore the effects of the topology of
communication links among agents.

COIN strives to fulfill its workshop role of stimulating discussion, facilitating
convergence and synergy of approaches, and weaving a community. Authors and
reviewers were encouraged to contribute to a workshop program that welcomes
the presentation of unconventional approaches—perhaps stemming from other
disciplines—as well as reports about ongoing work, and testimonials of the ap-
plication of the ideas of this community. The papers in this collection correspond
to that invitation.
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In terms of their main contribution, this year’s papers may be partitioned in
three groups: Five papers aim to explore or demonstrate a novel idea (Crane-
field et al., Harbers et al., Letia and Goron, and both papers by Mahmoud et
al.). Two papers (Balke and Villatoro, and Lurgi and Robertson) propose a new
approach; and five papers (Keogh and Sonenberg, Tampitsikas et al., Panagi-
otidi and Vázquez-Salceda, Jiang et al., and Balke et al.) present a modeling
framework.

The papers reflect a diverse pool of influences: modal logics of different fla-
vors (Panagiotidi and Vázquez-Salceda, Cranefield et al., and Letia and Goron),
answer set programming (Balke et al.), event calculus (Tampitsikas et al.),
argumentation theory (Letia and Goron), normative programming languages
(Cranefield et al., Panagiotidi and Vázquez-Salceda, Balke et al., and Lurgi and
Robertson), planning (Panagiotidi and Vázquez-Salceda), learning (Mahmoud
et al.), complex systems and networks (Lurgi and Robertson, and Mahmoud et
al.), experimental economics (Mahmoud et al.), legal theory (Balke and Villa-
toro), ecology (Lurgi and Robertson), management science (Harbers et al., and
Keogh and Sonenberg), and software engineering and sociotechnical systems de-
sign (Tampitsikas et al., Keogh and Sonenberg, Jiang et al., Balke et al., and
Harbers et al.).

Surprisingly, all but two papers that appear in this collection claim to be
motivated, to some extent, by practical considerations. Perhaps future COIN
workshops may have papers that analyze the type of applications, problem do-
mains, examples, and illustrative scenarios that are used in this community.
Those that are used or explicitly mentioned in this volume are: health care, peer-
to-peer computing (file sharing, wireless sensor networks, and wireless grids),
traffic management, robotic search, the blocks world for teams, auctions, and
running a collaborative project.

Three papers provide methodological guidelines (Balke et al., Jiang et al.,
and Keogh and Sonenberg). Four papers (Lurgi and Robertson, Balke et al., and
both papers by Mahmoud et al.) use some sort of experimental validation or
agent-based simulation to back their results, and all but one refer to some sort
of implementation of the ideas presented in the paper.

We would like to end this brief preface with two notes. One of gratitude,
the other of sorrow. We four, first as workshop chairs and then as editors of
this volume, want to express our sincere gratitude to the reviewers of the COIN
2011 editions. Everyone knows that reviewing is not an easy task: it demands
generosity—to allocate time and energy that is taken away from other duties;
good sense and optimism—to provide constructive criticism; plus a balanced use
of confidence, altruism, and courage—to recommend the acceptance or rejection
of papers. The names of this year’s program committee members are listed for
everyone to see in the front matter of this volume, but their contribution is subtly
present in the many suggestions that were taken up by the authors to enrich the
final version of their papers. Sadly, though, one of these PC members is no longer
with us. Marc Esteva passed away last December. He had been a very active
member of the COIN community. He wrote a thesis on electronic institutions
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and was the engineer behind the EIDE platform for their specification and
implementation. At the time of his unexpected death he was directing two PhD
students working on COIN topics (immersive regulated environments and the
evolution of situated and service-rich electronic institutions), and was the head
researcher in a Spanish project in this field. We will remember him in COIN not
just because he had been a reviewer in most of the editions and a contributing
author to many, but also because he was an enthusiastic participant in the work-
shop debates. To those of us who had the privilege of knowing him more closely,
recalling his many personal qualities will somehow compensate for the weight of
his loss.

July 2012 Stephen Cranefield
M. Birna van Riemsdijk
Javier Vázquez-Salceda

Pablo Noriega
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Multi-agent Coordination

through Mutualistic Interactions

Miguel Lurgi and David Robertson

School of Informatics, University of Edinburgh
10 Crichton Street. EH8 9AB, Edinburgh, UK

miguel.lurgi@ed.ac.uk,

dr@inf.ed.ac.uk

Abstract. In this paper we present an ecologically-inspired approach to
agent coordination. Mutualistic networks of interacting species in nature
possess characteristics that provide the systems they represent with fea-
tures of stability, minimised competition, and increased biodiversity. We
take inspiration from some of the ecological mechanisms that operate at
the interaction level in mutualistic interactions, and which are believed to
be responsible for the emergence of these system level patterns, in order
to promote this structural organisation in networks of interacting agents,
enhancing in this way their cooperative abilities. We demonstrate that
given plausible starting conditions, we can expect mutualistic features
to appear in self-organising agent systems, and we compare them with
natural ones to show how the characteristics displayed by ecologically
inspired networks of agents are similar to those found in natural commu-
nities. We argue that the presence of these patterns in agent interaction
networks confer these systems with properties similar to those found in
mutualistic communities found in the real world.

Keywords: agents coordination, ecologically-inspired interactions, com-
plex systems, mutualism, emergent behaviour, cooperation.

1 Introduction

Complex systems of interacting entities are ubiquitous in nature and the artifi-
cial world. They range from networks of interacting computers in cyberspace to
different types of transportation networks (e.g. airports and the links connecting
them), power grids that provide cities with electricity, or human interactions of
different kinds (e.g. researchers and their collaborations). These highly organised
webs of interactions are also found in biological systems such as protein, gene,
cell, neural, and ecological networks. The latter kind depicts the relationships
found in real communities in a given ecosystem, where species form complex but
organised collections of interacting entities.

In societies of artificial agents we are sometimes interested in promoting long-
lasting and complex relationships of the kinds described above in order to ac-
complish difficult tasks that are achieved more easily in a cooperative way.

S. Cranefield et al. (Eds.): COIN 2011, LNCS 7254, pp. 1–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Lurgi and D. Robertson

In nature, the process of evolution by natural selection has produced different
types of interactions between organisms composing communities. Together, these
interactions comprise the mechanisms ultimately responsible for the formation
and maintenance of the entangled web of life found in ecosystems.

From the range of interactions found in natural communities, we are mainly
interested in mutualisms: interactions in which both of the species involved ben-
efit from participating on them. This kind of relationship allows for the creation
of relations amongst species that facilitate each others survival. It has been ar-
gued that this kind of relation can enhance the stability of the community the
interacting species belong to [4] and promote biodiversity within it [5].

In this paper, we explore the extent to which relationships of this kind amongst
agents in artificial systems can promote the stability and persistence displayed
by communities of interacting species within natural ecosystems.

Ecologically inspired approaches have been applied to the design and de-
velopment of multi-agent systems in order to promote features such as self-
organisation and adaptation of agents in open, digital environments. Some of
them have even taken inspiration from the way interactions occur among species
in nature; as in [19], where the authors propose a “food-web” based approxi-
mation. In this work we go beyond this kind of approaches by deepening in the
level of detail for the definition of interactions among agents, based on ecological
mechanisms believed to account for important system-level properties.

We describe an approximation for the specification of protocols of interac-
tions for enabling relationships amongst artificial agents living in a multi-agent
system based on ecological concepts. We show how the organisation of the in-
teractions among these agents is similar in many ways to the patterns encoun-
tered when analysing ecological networks in general and mutualistic webs in
particular.

We argue that these specifications at the interaction level will enable our intel-
ligent systems with the features encountered in their natural counterparts, and
which undermine the adaptability, persistence, robustness, and stability found
in those complex natural networks of individuals.

2 Mutualistic Networks

A focus of research in ecology is based on the characterisation of different kinds
of interactions that are observed amongst individuals within ecological commu-
nities. The study of the patterns and structure of these interactions and their im-
plications for community organisation and persistence has been tackled through
the application of concepts borrowed from the mathematical fields of graph and
network theory, giving rise to the ecological discipline of ecological networks.

Studies of this kind performed on natural communities have shown that these
systems are generally characterised by small world patterns [12], contributing in
this way to fast propagation of the information across the networks; truncated
power law degree distributions [11], a feature characteristic of scale-free networks,
with a small number of nodes possessing degrees greatly exceeding the average
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(usually referenced as “hubs”) that are believed to be the strength and, at the
same time, the weakness of this kind of network; and the importance of weak
interactions for the maintenance of the overall community [6].

A particular type of ecological network, in which the interactions depicted
represent mutualistic relationships among the species in the community, are mu-
tualistic networks. Research on this type of ecological webs has demonstrated
that they share some of the patterns and features described above with other
kind of ecological networks [4], for example their heterogeneity or scale-free char-
acter. At the same time however, they are different in many respects, exhibiting
properties that are specific to these kind of networks: with specialist species in-
teracting with proper subsets of the species with which more generalist species
interact [4], and being pervasively asymmetric in the links between species [17].

The features displayed by mutualistic networks of interactions, and their ar-
chitecture, are believed to facilitate biodiversity maintenance and to minimise
competition in this kind of system [5]. These features are desirable in agent
systems in which we would like to promote organisational abilities.

It has been demonstrated in real ecosystems, and particularly in mutualistic
communities, that biological and ecological processes describing the interactions
between species within them are ultimately responsible for the structure and
patterns that we observe in these mutualistic networks of relationships [18].

We are particularly interested in those mechanisms because in this work we
take inspiration from some of the processes characteristic of mutualistic inter-
actions, such as: trait matching, habitat occupation (i.e. spatial distribution),
or the formation of meta-communities ; to define protocols of interaction among
agents in agent systems. We employ these notions of mutualistic interactions in
the formalisation of protocols of interaction between agents in our agent based
system.

The specification of agents’ interactions in this way have allowed us to fulfil
the objective of promoting collaborative links among agents and the emergence
of system level properties that facilitate the system’s stability and persistence.
We want our societies of artificial agents to display some of the features we
encounter in ecological networks of self-organised, autonomous individuals.

Thus, the way mutualistic species interact in nature gives us useful insights
about the way artificial intelligent entities may interact in a cooperative digital
environment in order to form organised and structured societies.

3 Methods

Since the focus of interest in this research is the design of interactions among
agents in a multi-agent system, we adopted an interaction centred approach for
the implementation of the system on which to develop the ideas presented in
this paper.

We used the OpenKnowledge system [8] as a framework for deploying our
multi-agent system. This allowed us to adopt a protocol definition approach for
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01 a(visitor,X) ::
02 null ← chooseHost(Y,ListOfHosts)
03 then
04 whereabout ⇒ a(host, Y )
05 then
06 (in(HabitatHost) ⇐ a(host, Y )
07 then
08 ((((null ← sameHabitat(HabitatHost)
09 then
10 whichtrait ⇒ a(host, Y ))
11 or
12 (null ← metaCommunity()
13 then
14 whichtrait ⇒ a(host, Y )))
15 then
16 availabletrait(Trait) ⇐ a(host, Y )
17 then
18 null ← haveTrait(Trait)
19 then
20 whichsize ⇒ a(host, Y )
21 then
22 size(TraitSize) ⇐ a(host, Y )
23 then
24 (null ← complementary(TraitSize)
25 then
26 null ← need(Amount,Reward)
27 then
28 exchange(Amount,Reward) ⇒ a(host, Y )
29 then
30 offer(Offered ) ⇐ a(host, Y )
31 then
32 null ← consume(Offered , Reward)))
33 or
34 (quit ⇒ a(host, Y ))))
35 then
36 a(visitor,X)

Where null denotes an event which does not involve message passing; the op-
erator :: is used to declare the definition of a role within the protocol; and
the operators ←, then and or are connectives for logical implication, sequence
and choice respectively. M ⇒ A denotes that a message, M, is sent out to
agent A. M ⇐ A denotes that a message, M, from agent A is received.

Fig. 1. The “visitor” role in an ecologically inspired interaction model, written in LCC,
for multi-agent coordination
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37 a(host, Y ) ::
38 whereabout ⇐ a(visitor,X)
39 then
40 (null ← location(Habitat)
41 then
42 in(Habitat) ⇒ a(visitor,X)
43 then
44 ((quit ⇐ a(visitor,X))
45 or
46 (whichtrait ⇐ a(visitor,X)
47 then
48 null ← myTrait(Trait)
49 then
50 availabletrait(Trait) ⇒ a(visitor,X)
51 then
52 ((quit ⇐ a(visitor,X))
53 or
54 (whichsize ⇐ a(visitor,X)
55 then
56 null ← traitSize(TraitSize)
57 then
58 size(TraitSize) ⇒ a(visitor,X)
59 then
60 ((quit ⇐ a(visitor,X))
61 or
62 (exchange(Amount,Reward) ⇐ a(visitor,X)
63 then
64 null ← obtained(Reward)
65 then
66 null ← has(Amount,Offered)
67 then
68 offer(Offered) ⇒ a(visitor,X)
69 then
70 null ← synthesis(Reward,Growth)
71 then
72 null ← expendResource(Offered, Growth))))))
73 then
74 a(host, Y )

Fig. 2. The “host” role in an ecologically inspired interaction model, written in LCC,
for multi-agent coordination

the formalisation and description of the interactions among the entities sharing
our digital environment. OpenKnowledge makes use of the Lightweight Coor-
dination Calculus (LCC) [14] for the specification of interactions among au-
tonomous agents which communicate through a peer-to-peer (P2P) network.
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For describing interactions among agents in multi-agent systems we focus on
mechanisms believed to account for system-level patterns in natural communi-
ties [18]. Based on key concepts in ecology such as habitat, meta-communities,
traits, and resources, we focus in the mechanism of “trait matching” and take
inspiration from how species in nature are bound together via complementary
phenotypic traits to propose a method for describing interactions between arti-
ficial agents within a multi-agent system.

Protocols for agent interaction coordination in LCC are based on the defi-
nition of roles, which are in turn composed of clauses specifying the actions to
be performed by the agents taking part in a particular interaction, when they
embark upon any of its instances, by assuming one of the roles available in it.
LCC follows a logic programming paradigm, therefore variables are instantiated
through constraint calls. Agents’ roles defined in this way are thus composed
of a series of constraints that are executed and verified in order to instantiate
the variables declared along the protocol. These variables encapsulate the infor-
mation to be transmitted within the messages that are exchanged in-between
constraints (see figures 1 and 2).

We defined the roles of “visitor” and “host” inside our protocol of interaction
in resemblance to the actors taking part in plant-animal mutualistic interac-
tions in nature. Figures 1 and 2 show the definition of the interaction protocol,
comprising the definitions of the roles mentioned above. In this protocol, it is
clear how the notions from mutualistic interactions introduced above have been
formalised as an agent coordination protocol. This also implies that the imple-
mentation of agents in the system is driven by these concepts, since agents must
contain the functions, and have to be able to handle the messages, contained
in the protocol. In sum, these ideas are thus the main drivers for the design
of the multi-agent system itself. The protocol formalisation is further explained
below, where the general idea of the interaction and a description of the concepts
involved in it are presented.

Agents implementing the roles mentioned interact through the exchange of a
series of messages generated via local constraint solving. Through these messages
they exchange and process information about: (i) the habitat they occupy within
the environment, (ii) the size of the trait through which they are interacting,
(iii) their ability to form a meta-community, and (iv) the amount of resource
they are going to exchange if the interaction is successfully completed. All of
these events can be seen in our interaction protocol shown in figures 1 and 2.

Information about the size of the interaction traits is used to obtain a degree of
complementarity, which partially determines the actual occurrence of the inter-
action. Meta-communities are formed when agents interact with partners located
in habitats different than their own.

The messages to be exchanged and the constraints to be solved during the
execution of the interaction protocol possess a certain ecological meaning and
have been formulated in order to specify the ecological process of interaction as
described above. The exact meaning of each of them is the following:
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– chooseHost : through the resolution of this constraint, the agent taking the
visitor role selects a partner for interaction among the possible host agents
available in the system. This is a random selection.

– whereabout : the visitor agent sends out this message to the host partner in
order to obtain information about the location (i.e. the habitat) of the host.

– location(Habitat): when asked about the habitat it occupies, the host agent
employs the ‘location’ constraint to determine it in order to be able to share
this information.

– in(HabitatHost): the host agent replies to the visitor’s request sending this
message, which contains the value of the habitat where the host is located
(HabitatHost).

– sameHabitat(HabitatHost): using the information of the habitat of the host
(just obtained from the previous message exchange) the visitor agent uses
this constraint to analyse this value and determine whether the host agent
lives in the same habitat as it does.

– whichtrait : following the interaction protocol, if the previous constraint yields
true, the visitor agent will employ the whichtrait message to ask the host for
the trait to be employed during this interaction.

– metaCommunity: if the sameHabitat constraint returns false, the visitor
agents employs the metaCommunity constraint to determine whether it is
able to establish a meta-community with the host agent, even though they
are in different habitats, if this is not the case, then the visitor agent sends
out a ‘quit’ message to the host and the interaction is aborted.

– availableTrait(Trait): if the interaction continues, the host agent will reply
to the visitor request with the availableTrait message, which will be used
to inform the visitor which trait the host is willing to employ during this
interaction.

– haveTrait(Trait): the visitor agent is able to evaluate the response of the
host using the haveTrait constraint, which will take the Trait value received
from the host and determine whether the visitor can cope with that trait. If
that is not the case, then the agent will send a ‘quit’ message to the host to
inform that the interaction has been broken.

– whichsize: this message is employed by the visitor agent to ask the host
the size of the trait being employed. In real life, trait sizes correspond to
the magnitude used to quantify the given trait, e.g. the size of the bill of a
hummingbird in respect to the size of the corolla of the flower it will pollinate.
This size, as it happens in nature, will be used by the agent to determine
whether it is complementary with the host.

– size(TraitSize): the request from the visitor agent is answered by the host
through this message, in which it sends the information about the size of the
trait that was selected for the current interaction.

– complementary(TraitSize): through this constraint, the visitor agent is able
to determine whether the traits selected for interaction are complementary
among the partners. If that is not the case, the visitor agent ends the in-
teraction by sending the host the ‘quit’ message, otherwise the interaction
continues.
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– need(Amount, Reward): if the interaction can continue, the visitor agent
utilises this constraint to determine the amount of resource it is expecting
(i.e. it needs) from the interaction and the reward it is willing to offer to the
host agent.

– exchange(Amount, Reward): the information obtained through the previous
constraint is shared with the host agent in order to find out whether it is
able to provide the requested resource and is happy with the offered reward.
This is done using the ‘exchange’ message.

– obtained(Reward): using this constraint the host agent considers whether the
reward offered by the visitor agent is enough for the interaction to take place.

– has(Amount, Offered): based on the amount of resource requested by the
visitor, the host agent calculates the amount that it is actually capable to
offer and will employ this information to inform the visitor about it.

– offer(Offered): once the amount of resource to be offered has been calculated
by the host agent, it sends this information to the visitor using this message.

– consume(Offered, Reward): the visitor agent employs this constraint to de-
termine whether the offered resource by the host is enough to cover its needs,
or simply if it is willing to accept it. If this is the case, it will consume the
resource and update its internal state accordingly based on the resource
consumed and the reward offered to the host. If it is not willing to take the
offer, it will send out the ‘quit’ message to the host to let it know that the
interaction was cancelled.

– synthesis(Reward, Growth): if the visitor accepts the offer, then the host
agent will use this constraint to synthesise some resource based on the reward
obtained from the visitor and will produce some growth resource.

– expendResource(Offered, Growth): the growth resource alongwith the amount
of resource offered to the visitor will be considered using this constraint to
calculate the net gain of the host for this interaction.

Both roles in the protocol are recursive, as defined by the last line of each role,
which resets the execution of the protocol and allows the agents to embark on
future interactions. It is also worth noting the strategic locations of the ‘quit’
message, which can be used at any time to abort the interaction when certain
conditions necessary for it to happen are not met (e.g. agents in different habitats
or with not complementary trait sizes).

As shown by the protocol, this technique for agent communication relies heav-
ily on the complementarity of traits of the partner agents for any given interac-
tion, which means that agents aggregate in groups in which each agent is able
to provide different functions according to the necessities of the other partners
in the community. It is key for this approach then, that agents are able to per-
form different roles in a given association or conglomerate, in order to ensure
the stability of the network by minimising competition and increasing diversity.

This ideas are in sharp contrast with other approaches in which agents aggre-
gate based on the affinity of their capabilities and features, like for example [3]
and [7], where the mechanisms of local convergence and homophily ensure that
agents with similar capabilities tend to develop stronger connections.
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Our model has a number of parameters and settings that can be configured in
order to produce different outcomes given different circumstances for the agents
to interact. Our default general settings however, define certain values that are
common to all of the simulation results presented. The main settings are:

1. number of agents: in resemblance to the proportion of plants versus polli-
nators in plant-animal interaction networks, where there are generally more
plant species than animal ones, we set the number of host agents in our agent
systems to ten and that of the visitors to fifteen.

2. number of habitats: the habitat a given agent occupies will partially de-
termine whether it will be able to interact with the agent selected for in-
teraction; they will be more likely to interact if in the same habitat than
otherwise. In our experiments the default number of habitats employed is
two, and agents are evenly distributed among both habitats.

3. minimum and maximum resources: any given interaction is based around
the exchange of resources that will ultimately allow agents to survive; at the
beginning of each run, agents are given a certain amount of resources that
is selected randomly from a normal distribution bounded by a minimum
and maximum amount of resources. By default the range for this amount is
between five (min resource) and twenty (max resource). Although the initial
amount of resource may determine the fate of an agent, these numbers were
selected in order to ensure stability in resource distribution.

4. meta-community formation: agents possess the ability of interacting with
individuals belonging to different habitats than their own; when this happens
they are said to form a meta-community. The probability of any given agent
forming a meta-community association is 0.1.

5. maximum trait size: in our model we have a parameter specifying the max-
imum size of the interaction trait, and all the agents will have sizes ranging
from zero to this maximum size. The default value for the maximum size
of traits in our system is five. The size of a trait will determine the extent
to which partners in an interaction will be complementary to one another,
thus, this parameter is a measure of overlap of features (the closer the size
of the traits on complementary partners the more likely they will be able to
interact).

Sensitivity analyses have been performed on the initial values of the parameters
described above in order to ensure that different configurations of these parame-
ters do not produce a noticeable variation on the behaviour of the system (data
not shown [10]).

The analyses which follow are based on multiple series of simulations, config-
ured as described above, with initially random encounters between agents. These
allow us to generate networks of interactions for analysis.

Our study of the networks obtained in this way takes advantage of a set of
metrics borrowed from the field of ecological networks and which are commonly
used to analyse this type of complex network of interactions. It is important to
note here that some of the measurements that can be obtained from interaction
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networks of this kind are calculated on a particular representation of them: the
interactions matrix.

The interaction matrix is a matrix where the interactions between species /
agents in the network are represented by the cells in it; in the case of a qualitative
representation, it is a binary matrix with a 0 representing the absence of a given
interaction and 1 its presence. In its quantitative version, the positions of the
matrix with values different from 0 record the strength of that interaction. Since
ours is a bipartite network, columns and rows represent different sets of agents,
whereas in networks such as food webs, for example, the species are represented
by rows and by columns. In our graphical representations the host agents are
represented by the columns and visitors are represented by rows.

The metrics we used in this work for analysing our interaction networks are
the following:

1. connectance (C = L/S2): the connectance of the network gives a quantitative
value of the proportion of links that are actually realised (L is the number
of links in the network) relative to the total number of possible interaction
links in the network (S is the number of nodes).

2. frequency distribution of the number of interactions: represents the distri-
bution of the frequencies with which we encounter a node with a certain
number of interactions.

3. degree distribution: the degree of a node is the number of links it has. The
distribution of degrees is a good indicative of the extent to which a given
network possesses scale-free features.

4. nestedness index: originally inspired by the theory of island biogeography [2],
nestedness is a measure of the organisation of the community which assesses
the extent to which the diet, or sets of interactions, of more specialist species
(i.e. those possessing only one or a few interactions) are proper subsets of
more generalist species.
It is not difficult to see, based on this definition, that more nested commu-
nities (i.e. those in which the interactions are organised in proper subsets
among species) display a larger cohesion, since the removal of one random
species can be compensated for by the other nested interactions.
Based on the interactions present in the interaction matrix, a way of cal-
culating how nested the interactions are, is through the isocline of perfect
nestedness. It is a measure introduced by Rodŕıguez-Gironés and Santamaŕıa
in [15], which by taking into account the number of interactions occurring
in the network, obtains an estimate of a perfectly nested matrix and yields
a curve that allows us to visualise the pattern that we should expect from
it. This curve, plotted on top of the actual interactions matrix gives an idea
about how nested our matrix is.
This measure is used to determine how far from a perfectly nested commu-
nity (in regards to the interactions between agents) ours is, and facilitates
the visualisation of the interactions that are contributing towards its organ-
isation and those that are keeping it away from it.
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Fig. 3. Network of interactions between agents produced as an output of a simulation
run performed in a multi-agent system, using the interaction model described in this
paper

Additionally, we calculate the Nestedness metric based on Overlap and De-
creasing Fill (NODF), as presented in [1], and which is another metric com-
monly used in the analysis of nestedness in ecological networks [9] for de-
termining the extent to which a given interaction network presents a nested
pattern.

4 Results

Our experiments consisted of the execution of a series of independent simulation
runs following the specifications outlined above for parameter initialisation and
run configuration. During these runs, relationships among pairs of agents arose
with different strengths (the number of times an agent interacts with any other
relative to the number of times it has interacted during the entire simulation)
and with different configurations.

4.1 Ecologically Inspired Mutualistic Agents Networks

Figure 3 shows an example, taken from one of the runs in our experiments,
where the relationships among agents in our multi-agent system are represented
in a fashion similar to networks of interacting species described in the field of
ecology.

In this graph, the agents and their relationships with other agents are rep-
resented by nodes and arcs respectively. A link (arc) is generated between two
agents whenever an interaction is successfully completed amongst them.

By representing the relationships between the agents in agent systems in this
way we are able to extract features, obtain descriptors, and perform analyses
over the resulting network based on methods borrowed from network theory.
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Fig. 4. Frequency distribution of the number of interactions for the network in Fig. 3

We obtained networks that display a scale-free structure: the plot displayed
in figure 4 shows data from the network in figure 3, where it can be observed
that the majority of nodes in this network have small degree (≤ 2), while a small
fraction of them are highly connected, showing a distribution of the frequency
of interactions biased towards low values (1 and 2 interactions). Additionally,
small-world properties are found in our networks: with short paths between any
two nodes, a property commonly found in ecological networks.

Properties of the kind mentioned above, which are encountered in the networks
of interactions among our agents, are common patterns also found in different
kinds of complex networks in nature and the artificial world [16], and which
differ significantly from the structure that we would expect from a randomly
assembled network.

Another property seen in our networks, which is related to their scale-free
character, is the preferential attachment displayed by visitor agents with low de-
grees (e.g. the four white nodes on the top right corner of figure 3) to host agents
that are highly connected. This is a common feature encountered in mutualistic
networks, where specialist species are more likely to interact with generalists
[4]. Patterns of this kind are important in practice because, as has been argued,
they can give us information about functional properties of the system such
as: information propagation speed and resistance to node failures [16], which
in turn provide us with a better understanding of the relationship between the
complexity and stability of our agent systems.

Particularly, in the realm of ecological networks, asymmetric specialisation
(i.e. a specialist interacting with a generalist) has been found to be a per-
vasive feature of plant-pollinator interaction networks, and it is believed to
be beneficial for the majority of species in these communities because it fa-
cilitates the avoidance of extinction risks when species are highly reciprocally
specialised [17].
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Table 1. Connectance and NODF values of the fifteen simulated and fifteen empirical
networks analysed in this paper

Sim C (L/S2) NODF Emp C (L/S2) NODF

1 0.053 25.203 SAPF 0.031 18.36
2 0.062 37.063 CACO 0.034 29.693
3 0.064 32.456 CAFR 0.039 34.166
4 0.066 28.667 SCHM 0.041 56.66
5 0.067 36.132 MOMA 0.045 32.067
6 0.068 33.333 GEN1 0.061 34.243
7 0.07 42.913 OFLO 0.062 35.961
8 0.077 61.06 BAIR 0.064 50.98
9 0.079 44.409 ESKI 0.071 54.586
10 0.079 51.404 BEEH 0.074 67.66
11 0.083 54.82 WYTH 0.075 45.411
12 0.083 70.102 KANT 0.084 67.344
13 0.086 68.528 LOPE 0.103 57.423
14 0.087 59.211 HRAT 0.111 78.756
15 0.087 63.739 FROS 0.163 74.571

The network architecture displayed by the interactions amongst agents is an
emergent property of our system since the only mechanisms involved in agents’
interactions are those specified by the protocol presented in section 3. The cre-
ation of such a complex and intricate pattern of relationships is not a hardwired
property of the artificial communities, but rather the product of many differ-
ent agents interacting together for achieving their respective goals (gathering
resources to survive).

In the context of this system, biodiversity refers to the number of agents with
different functions, or in our case interactions, that inhabit the digital environ-
ment. The fact that agents assuming different roles and possessing different traits
and/or sizes are able to live in the system is a clear sign that diversity is enhanced
in our system. Even though agents and their parameter values are initialised ran-
domly at the beginning of each run, as explained above, when choosing partners
for interactions, only those that comply with the biologically mutualistic no-
tions introduced in section 3 are selected, promoting thus the emergence of the
interaction patterns we encounter (e.g. figure 3).

Agents would want to communicate and form complex networks of interac-
tions in order to obtain enough resources to survive in the digital environment.
Because of the benefits outlined above, agents that are incorporated into the
network will not only ensure their survival, but they will also contribute towards
the organisation of the community. This will in turn, through the indirect effects
propagated across the network - and ensured by its structural patterns - min-
imise the competition between agents, further benefiting them as a group and
contributing towards their sustainability.
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Fig. 5. Connectance versus NODF nestedness values in the natural (black dots) and
simulated (grey dots) communities presented in Table 1

4.2 Comparing with Empirical Data

In order to test the extent to which the networks of interactions found in our
artificial systems are similar to mutualistic networks of interactions found in the
real world (apart from the qualitative similarities introduced above), we have
compared the architecture of the networks obtained from our simulations to
empirical data of networks collected from real communities and that have been
compiled, analysed, and provided as supplementary material by Rezende et al
in [13]. Although in that paper they used the networks for different kinds of
analyses, the datasets provided are useful for getting an idea of the common
features encountered in mutualistic networks.

Because some of the properties of interest for analysing ecological networks
are scale dependent, we have selected fifteen networks from this dataset, based
on the number of species composing it and that were closest to the number of
agents in our simulations, for comparison against our fifteen simulated networks.

As mentioned in section 3, connectance (C = L/S2), the fraction of all possible
links that are realised in a network, is an important property that is commonly
employed in the analysis of ecological networks and which provides with infor-
mation about the degree of connectivity between the nodes of the network. We
use the connectance and the NODF index of nestedness, introduced in section
3, for comparing our simulated networks with fifteen empirically obtained plant-
animal mutualistic networks. Additionally we perform qualitative comparisons
between the structures obtained in one of our networks and one of the natural
communities considered for this analysis.

In table 1 we can see the connectance and NODF values derived from our
simulated networks and the selected empirical networks obtained from natural
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Fig. 6. Network representation of community number 3 presented in Table 1

communities; the names of the empirical networks are as presented in [13], and
the numbers used to identify the simulated networks are only for identification
purposes and are not related to any feature of the network itself. Figure 5 displays
the plot of the NODF against the connectance values with the double purpose of
analysing the behaviour of nestedness in relation to changes in the connectance
of the network, and to compare these relationships in our simulated communities
against their natural counterparts.

As we can see, in both types of networks there is a positive relationship be-
tween the connectance of the network and the nestedness value. This is not
surprising, since the more connections a network has the more they can con-
tribute to the nested diets observed in those networks. It is perfectly possible
however, that more links could mean less nested communities (if they go to the
wrong side of the perfect nestedness isocline), so, it is important to bear in mind
that in well organised communities, like the ones we consider in this work, the
more connected networks are, the more nested they become.

These data (table 1 and figure 5) also show us that the values of connectance
and nestedness obtained from our simulated communities agree with the values of
these measures commonly found in natural communities, where the connectance
is normally between 0.03 and 0.1, and the nestedness values are usually found
between 20 and 80. In our communities, the connectance values were greater
than 0.05 and lower than 0.1; similarly, the NODF values for our communities
were distributed along the 25-80 range of values. This provides more evidence for
the self-organised character of our digital societies, a distinctive feature inherited
from their biological peers.

4.3 Structural Similarities between Ecological and Agents Networks

We want to further explore the similarities between our agent systems and nat-
ural communities; for this we have selected, from the set presented above, one
of our simulated and one of the empirically observed systems to perform a one
to one comparison.
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Fig. 7. Network representation of the OFLO natural community presented in Table 1

Two networks were thus selected based on their similarities not only in con-
nectance and nestedness values but also taking into account other features, as we
shall see in the following paragraphs. The networks selected were: the one repre-
sented by the number 3 in table 1, with values 0.064 and 32.456 of connectance
and NODF index for nestedness respectively, for representing our simulated com-
munities; and the OFLO natural community, with 0.062 connectance and 35.961
NODF index, as a representative of the natural communities considered.

Figures 6 and 7 show the network of relationships between entities in the
simulated community number 3 and the OFLO natural community, respectively.

When closely inspecting these two networks we can easily observe a number of
broad similarities such as the high proportion of visitor nodes (nodes in white)
possessing only one interaction and also an important fraction of host nodes
(nodes in black) with two interactions or less. Also notable is the presence of
one highly connected host node in both of the networks (black node in the
bottom left corner in each of the networks), and also on the side of the visitor
species/agents (white node on the top left). These nodes act as generalists/hubs,
bringing cohesion and reachability to the whole network.

Another important feature captured by looking at the network of interactions
and that is shared by our natural and artificial communities is the low fraction
of strong dependencies among nodes (solid dark edges in the graph) and the
abundance of weak dependencies, which in natural communities is believed to
account for the stability and resilience of these systems, since the loss of a link
can be easily adjusted for by resorting to other connections in the network.
In agent systems, this property can be translated into the ability of agents to
quickly adapt to missing links and not to depend strongly in any other agent in
the network, facilitating in this way the persistence of each individual agent and
the system as a whole.

Apart from the graphical representation of the interactions network, we also
analyse certain properties derived from its structure and that can serve for
deepen our comparison among the selected networks.
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Fig. 8. Matrix of the interactions found in community number 3 in our simulations
(including NODF index and perfect nestedness isocline)

Natural communities, as we have seen above, are somewhat less predictable
than our simulated ones. This can be confirmed when comparing the interaction
matrices of our simulated community number 3 and the OFLO natural commu-
nity (figures 8 and 9 respectively): community 3 presents a much more organised
structure, with few interactions below the isocline of perfect nestedness, while
the OFLO community presents not only more interactions below the isocline but
also a few of them that are actually far removed from it. Also the degree distri-
butions in both communities, although agreeing in the overall scale-free pattern,
differ subtly by the fact that the values in our simulated community are closer
to the fitted power law (data not shown).

In spite of these differences, the communities present very similar distribu-
tions of the frequencies of the number of interactions (data not shown), with
practically all the nodes possessing less than five interactions and the majority
of them with two or one (this can be appreciated in the graph representation of
the networks). Additionally, only three nodes in the case of community 3 and two
in the case of the OFLO community possess more than five interactions. This
reaffirms the scale-free character present not only in the natural communities
employed here as reference, which is expected from this type of networks, but
also in our simulated communities as an emergent feature of the self-organisation
in our agent systems.

Our natural and simulated communities are similar not only in terms of the
network structure, but also in terms of their features and characteristics. These
similarities let us see how mechanisms implemented at the individual interaction
level between artificial agents allow for the development of mutualism through
agent interaction. Agent interactions defined in this way facilitate thus the
emergence of system level properties that are commonly encountered in natural
communities of mutualistic species. As has been argued throughout this paper,
these features can provide our self-organising agent societies with stability and
robustness.
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Fig. 9. Matrix of the interactions found in the OFLO natural community (including
NODF index and perfect nestedness isocline)

By comparing the structure of the networks of relationships resulting from
our simulations, with the networks of interactions amongst mutualistic species
in nature, we can translate the results of the research performed until now in the
field of ecology in general, and ecological networks in particular into the domain
of multi-agent systems. The characteristics described above, which are shared
between our networks of artificial agents and those observed between species in
the natural world, let us conclude that the features conferred to these natural
systems by the characteristics displayed by their networks of interactions are
also given to our agent systems thanks to the emergence of a similar network
structure to that found in these ecological networks.

5 Conclusion

The ecologically inspired techniques for agent coordination and communication
presented in this work allow societies of autonomous agents to form self-organised
complex networks of interactions that benefit from many of the features encoun-
tered in ecological networks of interactions among mutualistic partners in nature.

Since the systems from which we have taken inspiration are composed of mu-
tulistic relationships arising in nature, and by equating the patterns encountered
in the network of interactions between agents in our simulated communities to
those seen in their natural counterparts, our systems also benefit from the prop-
erties of increased biodiversity and minimised competition characteristic of these
type of natural systems [5], which promotes organisation and collaboration be-
tween the artificial entities in our intelligent systems.

To our knowledge no attempts have been made so far to develop agent interac-
tions inspired directly by ecological theory, which we think is a fruitful research
area. Furthermore, in the field of multi-agent systems, little effort has been de-
voted to the analysis of this kind of system from the point of view of complex
systems. The tools provided by the field of complex networks in general and
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ecological networks in particular, and that we have used as part of our study,
constitute then, as far as we know, one of the first attempts to analyse complex
networks of agents’ interactions in multi-agent systems from a complex systems
perspective.

Acknowledgments. Special thanks are due to Michael Rovatsos for presenting
this work during the COIN workshop at AAMAS 2011 on behalf of the authors.
Also, we would like to thank Michael, Stephen Cranefield, and an anonymous
reviewer for useful comments that helped us to improve this manuscript towards
its present form.

This work is part of the project “EcoBusiness: A Multi-Agent Approach for
Digital Business Ecosystems”, funded by the European Commission through
the Seventh Framework programme Marie Curie Actions - Industry-Academia
Partnerships and Pathways (IAPP). Grant agreement no.: 230618.

References
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Abstract. There are several applications in which humans and agents
jointly perform a task. If the task involves interdependence among the
team members, coordination is required to achieve good team perfor-
mance. This paper discusses the role of explanation in coordination in
human-agent teams. Explanations about agent behavior for humans can
improve coordination in human-agent teams for two reasons. First, with
more knowledge about an agent’s actions and plans, humans can more
easily adapt their own behavior to that of the agent. Second, with more
insight in the reasons behind an agent’s behavior, humans will have more
trust in the agents, and therefore more easily coordinate their actions.
The paper also presents a study in the BW4T testbed that examines
the effects of agents explaining their behavior on human-agent team per-
formance. The results of this study show that explanations about agent
behavior do not always lead to better team performance, but they do
impact the user experience in a positive way.

1 Introduction

When the members of a team jointly perform a task, it often happens that one
team member is dependent on other team members for achieving a subtask. For
instance, it may happen that a team member can only start to achieve subtask
A after someone else has achieved subtask B, or that a team member can only
start to achieve subtask C after another team member has started to achieve
subtask D. When team members are dependent on each other for achieving a
task, they are interdependent [16]. It is inefficient when two interdependent team
members are separately trying to achieve a task that can easily be achieved by
one team member. Therefore, interdependent team members need to coordinate
their actions in order to achieve a good team performance. The better the actions
of different team members are coordinated, the higher the performance of the
team will be.

S. Cranefield et al. (Eds.): COIN 2011, LNCS 7254, pp. 21–37, 2012.
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Coordination of actions is not only important in human teams, but also in
teams that consist of a mix of humans and software agents. Therefore, when
developing agents that aim to participate in a human-agent team, it is important
to make them able to coordinate their actions with other team members (both
humans and agents). Johnson et al [16] stress the importance of taking the
interdependence of the team task into account when designing agents that are to
function in a human-agent team. They promote a teamwork-centered approach
when designing autonomous systems, called coactive design.

In this paper we will analyze literature on teamwork and explanation, and
argue that explanation plays an important role in achieving good human-agent
team performance. Namely, in order to coordinate actions, it is important that
team members understand and predict each other’s behavior, and explanations
can help to improve insight in other team members’ behavior. Consequently, we
argue that to develop agents that perform well in human-agent teams, the agents
should be equipped with explanation capabilities.

Furthermore, we will describe an empirical study investigating the role of ex-
planation in human-agent teamwork. For the study, we will use the BlocksWorld
for Teams (BW4T) testbed for team coordination [18]. In BW4T, a team of
players has to perform a joint task in a virtual environment. The players are
highly interdependent, and the performance of the team strongly depends on
the level of coordination among the players.

The outline of this paper is as follows. In section 2, we will discuss literature
on teamwork and explanation, and motivate why explanation is important in
human-agent teamwork. In section 3, we will describe the BW4T coordination
testbed for investigating teamwork. In section 4, we describe the experiment that
examines the effect of explanations about agent behavior on the coordination in
human-agent teams. In section 5, we end the paper with a conclusion.

2 Background

In this section we will discuss human teamwork, human-agent teamwork, and ex-
planation in human-agent teams, respectively. Human teamwork has been stud-
ied for several decades. Compared to the large body of literature concerning
human teamwork, there is relatively little literature on human-agent teamwork.
The work on human-agent teamwork builds on concepts and theories that were
developed in research on human teamwork. Therefore, before we discuss human-
agent teamwork specifically, we first provide a short introduction to human
teamwork.

2.1 Human Teamwork

There are two main streams in the literature on human teamwork. In the first,
the concept of transactive memory is used to explain teamwork, and in the
second, the concept of shared mental models is used to explain teamwork. We
will describe both views.
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Transactive Memory Systems. The theory of transactive memory was first
introduced by Wegner [35]. A transactive memory system (TMS) is a memory
system that is distributed across different team members. In a TMS, each of the
team members has 1) knowledge that captures his or her own expertise, and 2)
knowledge about who knows what. The knowledge that needs to be remembered
is thus divided over the different team members. The assumption is that it is
more efficient for an individual to remember who has knowledge on a certain
topic than remembering all the details by oneself.

In order to use TMS theory for the explanation and prediction of team perfor-
mance, different ways to measure TMS have been proposed [24,1,27]. Moreland
et al [24], for example, distinguished three components of TSM: specialization,
credibility and coordination. The specialization component refers to the level of
knowledge differentiation within the team. Credibility refers to team members’
beliefs about the accuracy of other members’ knowledge. Coordination refers to
team members’ ability to work together efficiently.

Results of TMS as a determinant of performance are promising [1,21,25].
However, a real consensus among researchers on how to measure TMS is lacking.
First, there is no commonly accepted theory on which components comprise
TSM. Second, there are different ways to measure a team’s performance on
these components.

Shared Mental Models. Mental models refer to the internal representations
that humans have of the world around them. Mental models enable humans to
understand, explain and predict the systems in their environment [28]. In the
context of teamwork, mental models can help individuals to understand the be-
havior of other team members and to predict their future actions. This allows
the individuals to adjust their own actions to the expected behavior of others.
It is argued that in order to coordinate the actions of different team members
well, it is important that the team members have similar mental models: shared
mental models (SMM) [6]. Most researchers classify SMM into two broad dimen-
sions: task-related knowledge and team-related knowledge (e.g. [7]). Task-related
knowledge concerns knowledge about how to achieve the task, the current status
of task achievement, etc. Team-related knowledge concerns knowledge and capa-
bilities of other team members, what they are currently intending or doing, etc.
Experimental results trying to demonstrate the effects of sharedness of mental
models on team performance are promising. However, like for TMS, there is no
common method for measuring the sharedness of mental models [23].

Relation Between TMS and SMM. There is little interaction between the
research fields of TMS and SMM. An exception is the work of Nandkeolyar [25],
who compared both theories on their predictive power on team learning and
team effectiveness. He found that in most cases high levels of TMS compo-
nents (specialization, coordination and credibility) and high levels SMM both
predicted team performance well. However, in some cases, high levels of SMM did
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not result in high team performance, especially when teams scored high on TMS
specialization and credibility.

Researchers from both sides have stated that one theory is an extension of
the other. Shared knowledge in SMM theory can be seen as a team member’s
knowledge about who knows what in TMS theory. The other way around, a
team member’s knowledge about who knows what in TMS theory can be seen
as shared knowledge in SMM theory. Whether both theories only provide a
different vocabulary for the same processes, or describe distinctive phenomena,
in both cases do the two theories have a different focus. TMS focuses more
on the dividedness of knowledge and SMM focuses more on the sharedness of
knowledge. Both sides, however, do acknowledge that some of both is needed.
Without any shared knowledge, it is not possible to coordinate actions, but
totally overlapping knowledge leads to a single minded view on tasks, also called
groupthink [14].

2.2 Human-Agent Teamwork

Literature shows that sharedness and dividedness of knowledge are both impor-
tant in human teamwork. In this section, we argue that sharedness and divided-
ness of knowledge are at least as important in human-agent teamwork.

Dividedness of knowledge is particularly important in human-agent teams be-
cause agents and humans have different strengths and capabilities. For example,
agents may be better at remembering a large amount of data than humans, but
humans are often better at recognizing danger than agents. Both humans and
agents even have capabilities that the other does not have. On the one hand,
there is no human that can calculate as fast as an agent can, but on the other
hand, there are no agents that can break the ice (socially). To fully benefit of the
strengths and capabilities that the members of a human-agent team offer, the
tasks should be divided over the team members in such a way that each team
member performs the tasks that best suit his or her capabilities and knowl-
edge. For most tasks, especially the complex ones, this will lead to a division of
knowledge over team members.

Sharedness of knowledge is important in human-agent teams to coordinate ac-
tions, especially because knowledge and capabilities are often divided over team
members. When the members in a team have different strengths, they must be
are aware of each others’ specialties in order to allocate subtasks to the right
team member. Moreover, initially humans know less about the behavior of an
agent team member than the behavior of a human team member. Namely, be-
ing a human already reveals many properties of a team member, e.g. memory
capacity, speed of doing tasks. Among agent team members, there is more di-
versity concerning these properties. Therefore, it is especially important that
mental models about what team members know and can do are shared for the
coordination of actions. In line with this argument, several approaches for team
agents have been proposed that are explicitly based on SMM theory [19,37].

In literature on human-machine interaction, there is a shift of attention from
dividedness towards sharedness in human-agent teams. In the seventies, Sheridan
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and Verplank [29] introduced different levels of autonomy. At the highest auton-
omy level, the computer decides everything, acts autonomously, and ignores the
human, and at the lowest autonomy level, the computer offers no assistance, and
the human must take all decisions and actions. This model of autonomy levels
thus focuses on how tasks are divided over machines and humans. Johnson and
colleagues [17] argue that the levels autonomy model falls short on the actual
complexity of effective human-agent teamwork. They observe that humans and
agents have different capabilities and argue that to combine their strengths, it is
crucial to have good coordination in human-agent teams [3]. To coordinate ac-
tions it is necessary to exchange information about each others’ goals, intentions,
and observations. This stresses the importance of sharedness of knowledge.

We believe that explanation can contribute to coordination in human-agent
teams in two ways. First, explanations about agent behavior can increase the
sharedness of mental models by informing humans about the actions, observa-
tions and intentions of the agents. With this knowledge, humans will be able
to better understand and predict new agent behavior, which will make it easier
to coordinate actions. Second, explanations about agent behavior can increase
humans’ trust in agents. Members of a human-agent team usually have different
knowledge and capabilities. So when a team member provides information other
team members, e.g. informing about an intention, they will only use that infor-
mation to coordinate their actions when they trust the team member. Having
insight in another’s reasoning increases trust, and in human-agents teams trust
will improve coordination. In the next section, we will provide a short overview
of research of explaining intelligent systems.

2.3 Explanation in Human-Agent Teams

To discuss different applications in which intelligent agent and/or system be-
havior is explained, we will use Sycara and Lewis’ [31] distinction of different
roles of software agents in human-agent teams. According to them, agents in
a human-agent team can have the role of individual assistant, team assistant
and equal team member. We will discuss the explanation of intelligent system
behavior for each of these roles.

In the first role, an agent provides individual assistance to a human. In that
case, the agent cooperates with only one human, who may or may not be part of
a bigger team. Examples of providing explanations as an individual assistant are
expert systems and recommender systems. These types of systems both support
a single human user in making decisions. The explanation of intelligent system
behavior was first researched in the field expert systems. It was discovered that
to accept an advice or diagnose of an expert system, users want to know how and
why a certain outcome was reached [30,36,11]. Aims of explanations in expert
systems are increasing user acceptance, trust, ease of use, usefulness and user sat-
isfaction [10]. Aims of of explanations in recommender systems are transparency,
scrutability, trust, effectiveness, persuasiveness, efficiency, satisfaction [32].

In the second role, an agent provides team assistance. A team assistant agent
cooperates with all team members, usually to support coordination activities in
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the team [33]. The concept of team assistance is relatively young, and we are
not aware of explanation approaches for team assistant agents.

In the third role, an agent acts as a (more or less) equal team member. In this
role, an agent performs the reasoning and tasks of a human teammate. Virtual
training is a field in which the behavior of agents in the role of an equal team
member is explained. In virtual training, intelligent agents are used to play a
trainee’s colleagues, opponents or team members. Several approaches for explain-
ing the behavior of such agent have been proposed [15,34,8,12]. Explanations in
virtual training aim to increase the trainee’s understanding of the played session,
and thereby support learning.

Different roles of agents in teams yield different types of explanations. Ex-
pert system behavior (where the system has the role of personal assistant), for
example, is explained by traces of rules that were applied and the justification
behind those rules [11]. Behavior of agents in virtual training (where the agent
has the role of equal team member) is explained in terms of goals and inten-
tions [8,12]. The difference between expert systems on the one hand, and virtual
intelligent agents on the other hand, is that the behavior of the latter more
closely resembles human behavior. Humans explain and understand their own
and others’ behavior in terms of the underlying mental concepts such as desires,
plans, beliefs and intentions [22,20]. In Dennett’s words [9], people adopt the
intentional stance towards virtual intelligent agents, i.e. they attribute beliefs
and goals to them in order to understand their behavior. Thus, the role of the
agent in a human-agent team should be taken into account when developing its
explanation capabilities.

In the remainder of this paper we will discuss how to study the effects of ex-
planation in human-agent teamwork. The BlocksWorld for Teams coordination
testbed provides a mean to investigate human-agent teamwork. We will first de-
scribe the testbed itself, and subsequently, a study we performed in the testbed.
Agents in BlocksWorld for Teams have the role of an equal team member.

3 The BW4T Coordination Testbed

BlocksWorld for Teams (BW4T) is a testbed for team coordination [18]. In the
BW4T testbed, teams of humans, agents, or humans and agents can perform a
task that requires coordination in a controlled environment. We therefore believe
that the BW4T testbed is a useful tool for studying teamwork. The task is simple
to learn and it is possible to manipulate all conditions in the environment, but at
the same time, there are many interdependencies among the different players and
complex process arise. In this section we will describe the BW4T task, discuss
the behavior of a BW4T agent, and discuss the implementation of a BW4T
agent.

3.1 The BW4T Team Task

The BW4T task can be performed by human-human, agent-agent and human-
agent teams of variable sizes. The team goal is to jointly deliver a sequence of
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colored blocks in a particular order as fast as possible. A complicating factor
is that the players (human or agent) cannot see each other. Figure 3.1 displays
a screenshot of a BW4T game session, showing the environment in which the
players have to search for blocks. The left picture displays all blocks and players
in the game, and the right picture shows what one player can see. A player can
only see the blocks in a room when he is inside that room. The status bar below
the Dropzone (gray area) shows which blocks need to be delivered.

Fig. 1. Simulator view with two agents (left) and agent view with one agent (right).
The blocks that need to be delivered are respectively orange, light green, dark purple,
light blue, dark green and red. Bot0 in the right hall is holding an orange block and
bot1 in room C2 is holding a light green block.

To deliver a block successfully, a player has to go to a block of the right color,
pick it up and drop it in the Dropzone. A player can only carry one block at a
time. When a player drops a block of the wrong color in the Dropzone or any
block in a hall, the block disappears from the game. Human players can perform
actions in the environment through a menu that appears on a right mouse-button
click. The menu offers options to go to a place (room, hall or Dropzone), pick
up a block, drop a block and send messages.
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A team’s performance on the BW4T task is measured by the speed of com-
pleting the task. BW4T is designed such that the task involves a large amount
of interdependence among the players, and requires coordination to achieve a
good performance. For instance, it is inefficient when one player is searching in
a room that has just been checked by another. And if a player is going to deliver
a particular block, the others should not do that as well. To coordinate, players
can send messages to each other, which appear in the chatbox below the Drop-
zone. Players can inform others about what they do, where they are and what
they see. Furthermore, players can see the same status bar. So when a player
delivers a block of the right color, the other players will know. Finally, only one
player can be inside a room or the Dropzone at the same time. When a player
tries to enter a room that is occupied, a red bar appears indicating that someone
is inside.

3.2 Behavior of a BW4T Agent

Developing an agent that can perform the BW4T task on its own is rather
straightforward. The agent needs to be able to search for blocks and deliver
blocks, and it has to plan its behavior. Planning involves deciding what to do
(search or deliver), where to search for blocks and which block to deliver. There
are several strategies to perform the BW4T task. The agent can for instance
search all needed blocks and then deliver them. It can also search for the next
block in the sequence and deliver it once found, or keep checking rooms on the
way to the Dropzone to deliver a block.

The agent’s behavior gets more complex when there is a team of players
involved. Each of the agent’s has to coordinate its behavior with the others to
avoid that a room is checked twice, or that two agents are delivering a block
of the same color when only one block of that color is needed. To coordinate,
the players have to update others about their activities and percepts, e.g. tell
others what they are going to do and which blocks they found in which rooms.
Moreover, they have to adapt their own behavior to messages they receive from
others. For example, if a red block needs to be delivered and another player says
it is going to deliver that block, it is better to search for the next block in the
sequence.

When the behavior of the other players in a team is known, it is sufficient
to send updates and process updates from others for effective task performance.
However, in applications with human-agent teams, usually the behavior of the
others is not completely known. The behavior of the agents may be designed
by different developers, and behavior of human players can never be completely
predicted as humans tend to vary their strategy, make mistakes and forget things.
It may happen, for instance, that a player tells that there is a yellow block in
room C1, but once you arrive it is not there, or that a player announces that
he is going to deliver an orange block, but actually does not, or that someone
delivered a white block, even though you had told to deliver it. Therefore, a
BW4T agent should be able to deal with unexpected events.
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3.3 Implementation of a BW4T Agent

Currently, there are two ways to implement a BW4T agent. The first way is
to use Java. BW4T is implemented in Java and offers a basic agent class in
which the behavior of a BW4T agent can be specified. The second way is to use
GOAL [13], a BDI-based (Belief Desire Intention) programming language.

BDI-based programming languages offer the possibility to represent an agent’s
behavior in terms of its beliefs and goals, and a BDI agent’s actions are deter-
mined by a deliberation process on its beliefs and goals. The BDI-based agent
programming paradigm is based on Bratman’s theory of human practical rea-
soning, in which human reasoning is described with the notions of belief, desire
and intention [5]. Rao and Georgeff developed a BDI-based software model [26]
based on Bratman’s theory. A typical BDI deliberation cycle contains the follow-
ing steps: (i) perceive the world and update the agent’s internal beliefs and goals
accordingly, (ii) select applicable plans based on the current goals and beliefs,
and add them to the intention stack, (iii) select an intention, and (iv) perform
the intention if it is an atomic action, or select a new plan if it is a subgoal.

Currently, there is a set of BDI-based agent programming languages [2] and
GOAL is one of them. A connection has been established between BW4T and
GOAL, which makes it possible to implement BW4T agents in GOAL.

4 Experiment

In this section we describe the experiment performed in BW4T. As motivated
in section 2, we believe that human-agent teams in which agents explain their
behavior coordinate better than human-agent teams in which agents do not
explain their behavior. In the experiment, we will use performance on the BW4T
task to measure the level of coordination in human-agent teams. Our hypothesis
is that human-agent teams in which agents explain their behavior perform better
on the BW4T task than human-agent teams in which agents do not explain their
behavior.

4.1 Method

Design. The experiment has a within-subjects design with an explanation and
a no-explanation condition. In the explanation condition, the subjects cooper-
ate with an agent explaining its behavior, and in the no-explanation condition,
subjects cooperate with an agent that does not explain its behavior. The order
of the two conditions, explanation and no-explanation were assigned counter-
balanced to the subjects, to correct for possible learning effects from the first to
the second trial.

Subjects. A total of 16 subjects (male = 14, female = 2) with an average age of
27 (sd=3.5) participated in the experiments.
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Materials. We used the BW4T testbed described in section 3. In order to investi-
gate the effects of an agent’s explanation on human-agent team performance, we
developed a BW4T agent that is able to explain its behavior. We implemented
the agent in GOAL.

The agent’s behavior is formed by the following rules. The agent starts to
check rooms and once it knows about a block that can be delivered, it starts to
deliver that block. The agent uses information about blocks in rooms received
from the other player. When the other player announces that he is going to
check a particular room, the agent will not check that room. When the other
player tells that he is going to deliver a block, the agent will start to search or
deliver the next block in the sequence. The agent is able to deal with humans
that vary their strategy, make mistakes and forget to tell things. Namely, the
agent revises its plans when a room contains other blocks than it expected, and
when the agent holds a block that is not needed anymore, it will drop the block
in a room. Thus, in general, the agent is cooperative and assumes that the other
player is cooperative as well.

The following GOAL code shows a part of the agent’s planning behavior in
which it decides to either deliver a block or check a room.

IF a-goal(deliverSequence), bel(me(Me),available(Me),

toPickUp(Block,Color),in(Block,Room))

THEN adopt(delivered(Block)) + insert(delivering(Me,Block)).

IF a-goal(deliverSequence), bel(me(Me),available(Me),

not(toPickUp(Block,Color)),nextRoomInSeq(Room),

not(checked(Room)),not(checking(_,Room)))

THEN adopt(checked(Room)) + insert(checking(Me,Room)).

The first if-then rule states that if it is the agent’s goal to deliver the sequence
of blocks, and it believes that it is available to do something and that there is a
block that can be picked up, then it will adopt the goal to deliver that block and
obtains the belief that it is delivering that block. The second if-then rule states
that if it is the agent’s goal to deliver the sequence of blocks, and it believes that
it is available to do something, there is no block that can be picked up, and the
next room that has not been checked is not already being checked by someone
else, then the agent will adopt the goal to check that room and obtains the belief
that it is checking that room.

As the aim of this study is to study the effects of explanations about agent
behavior on coordination in human-agent teams, the agent needs to be able to
explain its behavior. In section 2, we argued that agents that play the role of
an equal team member are considered intentional. In other words, we under-
stand their behavior by attributing beliefs, goals and intentions to them. We
therefore believe that the beliefs, goals and intentions underlying the agent’s
actions comprise useful explanations about its behavior. The implementation in
GOAL allowed us to explain the agent’s behavior in terms of beliefs, goals and
intentions [12].
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To explore the effect of explaining agent behavior on coordination in human-
agent teams, we need to be able to manipulate the agent’s communication be-
havior. Inspired on the KaOS policy framework [4], we use policies to regulate
the agent’s communication behavior, so we do not have to change the agent’s
programming code. We distinguish the following three communication policies.

1. Inform other players about your observations
2. Inform other players about your actions
3. Provide explanations for your actions

The first policy entails that if the agent observes something in the virtual en-
vironment, it sends a message to inform all other players about its observation.
Such messages are, for example, ‘Room A1 contains a pink block and a dark
blue block’ and ‘Room B2 is empty’. The second policy prescribes that if the
agent performs an action, it has to send a message to inform all other players
about it. Messages informing about actions are for instance ‘Im going to Room
C1’, ‘I picked up a red block’ and ‘I just dropped a gray block’. The third policy
prescribes the agent to explain an action, that is, to provide the underlying goal
of that action. In the next section we will discuss the explanation of actions in
more detail. Examples explanations for actions are ‘I am going to Room B3 to
search for an orange block’ and ‘I am going to Room C2 to deliver a light green
block’.

In the explanation condition, the agent adhered to all three communication
policies, and in the no-explanation condition, only communication policies 1
and 2 were applied. Thus, the agent equally often provided updates in both
conditions, but the updates in the explanation condition were longer than those
in the no-explanation condition.

Measures. Team performance was measured by the time of completing the task.
Faster task completion indicates a higher team performance. Additionally, the
subjects’ estimation of team performance, their understanding of the agent’s
behavior, and their opinion on the length of the explanations was measured by
a questionnaire.

Procedure. The subjects received an explanation of the BW4T task and how to
direct their ‘bot’. Subsequently, they had to play a training session, in which they
had to deliver three blocks on their own. The training session was included to
make sure that the subjects completely understood the game, and to give them
time to think about their strategy in the actual trials. No agent participated in
the training session yet, to prevent that it would shape the subjects’ expectations
about the agents in the trial sessions.

For the two trial sessions, subjects were instructed to perform the task with
the agent as a team, as fast as possible. They were told that the agent could show
any kind of behavior, e.g. not search in the right places or not take the subject’s
messages into account, but that the agent would not lie to them. In both trial
sessions, the human-agent team delivered six blocks of different colors. The colors
and positions of the blocks differed per session, but the total traveling distance
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to deliver all blocks was the same. The order of the two conditions, explanation
and no-explanation were assigned counter-balanced to the subjects, to correct
for possible learning effects from the first to the second trial. After both sessions,
the subjects were asked to fill in a short questionnaire.

4.2 Results

The time of completing the BW4T task was used as a measure for team perfor-
mance. In the explanation condition, the average time (n=16) to complete the
task was 596 seconds (sd=118), and in the no-explanation condition the aver-
age time was 593 seconds (sd=81). These averages are obviously not significant
(paired t-test: p=0.95).

We also examined if there was a learning effect between the first and second ses-
sion. The average time (n=16) to complete the sessions was 617 seconds (sd=118)
for the first session, and 572 seconds (sd=76) for the second session. The results
show that the subjects completed the task faster in the second session than in the
first session, but the difference is not significant (paired t-test: p=0.26).

In the questionnaire administered after each session, we asked subjects to
judge their own, the agent’s and their common performance on a scale from 1 to
7. Table 1 shows the averages in both the explanation condition (EX) and the
no-explanation condition (NE).

Table 1. Average estimation of performance on a 1-7 scale (n=16)

EX NE

I was effectively performing the task 5.9 (sd=0.7) 5.8 (sd=1.1)
The agent was effectively performing the task 6.0 (sd=1.3) 5.5 (sd=1.3)
We were effectively performing the task as a team 5.7 (sd=1.6) 5.1 (sd=1.7)

The results are not significant (paired t-tests: p=0.67, p=0.36, p=0.41, respec-
tively), but for all questions and in particular for agent and team performance,
the subjects judged performance on average higher in the explanation condi-
tion than in the no-explanation condition, even though no actual differences in
performance were found.

In order to investigate how well subjects evaluate performance, we calculated
the correlations between the self-evaluations in Table 1 and the actual team per-
formances. Surprisingly, the subjects’ self-evaluations have a low or even neg-
ative correlation with the actual performances. Three of the negative correla-
tions are significant (α=0.05): evaluated human performance and actual team
performance in the no-explanation condition (R=-0.49), evaluated agent perfor-
mance and actual team performance in the explanation condition (R=-0.50),
and evaluated team performance and actual team performance in the explana-
tion condition (R=-0.55). The results show that subjects make better estimates
of their own performance in the explanation condition, and better estimates of
the agent’s and the team’s performance in the no-explanation condition.
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In the questionnaire, we also asked the subjects to judge how well they under-
stood the actions and motivations of the agents, and how well the agents seemed
to understand their actions and motivations. The results in Table 2 show that the
subjects had a significantly better idea of what the agent was doing in the expla-
nation condition than in the no-explanation condition (paired t-test: p=0.030).
Though the other results are not significant, for all questions understanding was
on average rated higher in the explanation than in the no-explanation condition
(paired t-test: p=0.74, p=0.65, p=0.47, respectively).

Table 2. Average understanding of behavior on a 1-7 scale (n=16)

EX NE

I had a good idea of what the agent was doing 6.1 (sd=1.0) 5.1 (sd=1.4)
The agent seemed to have a good idea of what I was

doing 5.8 (sd=1.1) 5.7 (sd=1.0)
I understood the reasons behind the agent’s behavior 5.9 (sd=1.2) 5.7 (sd=1.5)
The agent seemed to understand the reasons behind

my behavior 5.6 (sd=1.0) 5.3 (sd=1.9)

Finally, we asked subjects if the agent provided too little, just enough, or
too much information. In the explanation condition, 1 subject thought that the
agents provided too little information, and all other 15 subjects thought that
the agent provided just enough information. A chi-square goodness of fit test
shows that the result is significant (χ2=26.4, p<0.001). In the no-explanation
condition, 10 subjects indicated that the agents provided too little information,
while 6 subjects indicated that the provided information was just enough. This
result is significant as well (χ2=9.5, p=0.009). Thus, in general subjects preferred
the amount of information in the explanation condition over the amount of
information in the no-explanation condition.

4.3 Discussion

We found no significant differences between human-agent team performance in
the explanation and the no-explanation condition. Therefore, the results do not
support our hypothesis that explanations about agent behavior improve human-
agent team performance on the BW4T task. The experience of the subjects,
however, was affected by the agent’s explanations. The subjects’ ratings of their
idea of what the agent was doing was significantly higher in the explanation con-
dition than in the no-explanation condition. Furthermore, a significant number
of subjects believed that the agent in the no-explanation condition provided too
little information, whereas a significant number of subjects indicated that the
agent in the explanation condition provided just enough information.

With a larger number of subjects, more of the results obtained from the
questionnaire may have been significant. Namely, all of the subjects’ ratings
are higher for the explanation condition than for the no-explanation condition,
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both concerning self-evaluations on performance as understanding of each other’s
actions. It is not probable that the difference in performance on both conditions
quickly would have become significant with a larger number of subjects, since
the performances on both conditions are rather similar.

There are several possible explanations for the similar team performances on
both conditions. We provide five of them. First, subjects may have lost time in
processing the agent’s explanations, which then was compensated by a more ef-
ficient task completion. The robots in BW4T move slowly on purpose to provide
players sufficient time to communicate, and think and process information. How-
ever, at some points in the game many actions have to be done at once (enter
a room, go to a block, pick up a block, go to the Dropzone, and communicate
about your actions) despite of the slow speed of the robots. Thus, at those time
points, processing explanations may lead to time loss.

Second, the subjects may have anticipated a cooperative agent. Though we
told them that the agent could perform any behavior and made them aware
of possible strategies, several of the subjects reported that their strategy was
to behave as if the agent was cooperative until they would find out otherwise.
With such a strategy, explanations do not contribute to a quicker adaptation
to the agent’s behavior as the subject’s initial behavior already makes the right
assumptions about the agent’s behavior. It would be interesting to conduct an
experiment with a less cooperative or capable agent, e.g. one that cannot process
certain messages or is colorblind, to see if explanations help subjects to quicker
adapt to the gaps in the agent’s capabilities.

Third, the task may involve too much noise. Some of the subjects, for in-
stance, reported that they mistook one color for another (e.g. yellow and light
green), which caused a serious delay. Other subjects said that they changed their
strategy after the first trial, e.g. they let the agent deliver all blocks. Further-
more, though the blocks are evenly spread over the rooms in different trials,
there is a luck factor involved in finding blocks. This factor can be decreased by
letting the team deliver more blocks, but adding blocks also gives the subjects
more time to learn the agent’s behavior, which decreases the expected effect of
providing explanations. In conclusion, noise factors like these may have wiped
out the effects of explanation on team performance.

Fourth, the task may be too simple to show an effect. In most situations, the
rationale behind the agent’s behavior can be deduced from its actions.

Finally, the agent always explained its actions by the goals they aimed to
achieve. The advantage of such explanations is that they are immediately deriv-
able from the mental state of a BDI agent. Possibly, when extending the agent’s
explanation capabilities, e.g. by adding information about the agent’s strategies,
the explanations would become more useful and have a bigger effect on team
performance.

5 Conclusion

In this paper, we discussed literature on human teamwork, human-agent team-
work and the explanation of intelligent systems and agents. We argued that
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explanation of the behavior of agents in a human-agent teams can contribute
to team performance in two ways. First, when team members have more shared
knowledge, e.g. about their current activities and plans, it is easier to coordinate
their actions. Second, explanations can increase trust in a team member, which
also facilitates the coordination of actions.

Furthermore, we presented a study in the BW4T coordination testbed that ex-
amined the effects of agents explaining their behavior on coordination in human-
agent teams. A first result was that, against our expectations, explanations about
agent behavior did not lead to better team performance. In the discussion we
suggested several explanations for these results, e.g. the task being too simple.
A second result was that, in correspondence to our expectations, humans in-
dicated that they better understood the agent’s behavior when they received
explanations about it.

Though the BW4T task is simple, we believe that it offers a good platform
for investigating human-agent teamwork. In order to further study human-agent
teamwork, we intend to do more experiments in the BW4T testbed, in which we
will use more diverse conditions than the two described in this paper. We will
test the effects of no communication at all and an overload of explanations, and
compare them to the current results. We also want to measure more dependent
variables in the experiments. Besides time of completing the task, we will also
measure the sharedness of knowledge between team members, and the trust
humans have in agents. Such research will give insight in whether concepts that
were adopted from literature on human teamwork also apply to human-agent
teamwork.

In future work, we intend to apply the results of this research to a real world
domain. We are aiming for the domain of crisis management, where software
agents can support policemen and firefighters by providing information, provid-
ing advice, and taking over simple tasks.
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Abstract. We elaborate the rationale and design of OJAzzIC (Organi-
zations Joining Adaptively with Improvised Coordination), a model for
agents in (Jazzy) Organizations that need to engage in dynamic adapta-
tion to respond to a dynamic situation. OJAzzIC provides an adaptive
data structure and framework for creation of multiple instances of or-
ganizations within a distributed system, with knowledge sharing across
organizational boundaries achieved through overlapping instances.
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1 Introduction

When working in complex dynamic scenarios such as in emergency management
or naval navigation, people adjust their own plans to coordinate and fit in with
others in order to achieve goals, rather than following strict scripts, protocols or
role descriptions [20,27]. Indeed, in complex settings it is not possible to consider
all alternatives and create a complete plan, rather an incomplete plan is created
based on current knowledge and a sequence of incremental problem solving pro-
cesses is involved in elaborating this plan, whilst actions begin toward fulfilling
the plan. Social scientists have studied ways of designing human organizations
to support such improvisation, e.g. [25], in settings that involve uncertainty, in-
complete knowledge, changing situations and interdependencies across multiple
tasks.

Formal predefined organizations can exist based on structured entities, such
as an Emergency Rescue Unit, Military Unit or Service Organization. There are
also numerous organizations, sometimes termed adhocracies [24] that emerge in a
dynamic distributed system [32], due to a local problem (shared location) or a co-
ordination need (e.g. resource contention or shared goal). An adhocracy involves
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multiple groups making decisions in a rapidly changing environment [24,26].
An examination of adaptive organizations found that the complexity and time
constraints involved are such that the organization changed via localised adap-
tive planning and improvisation rather than a broad re-structure at a design
level [20].

For similar reasons, it has been recognised that introducing organizational con-
cepts in the design of complex multiagent systems provides capabilities to pro-
mote appropriate communication, interaction and coordination, e.g. [18,19,38].
In dynamic domains, the interaction and coordination cannot all be pre-scripted,
but must be adaptable at runtime, so that as situations change, the collective of
agents can change goals and reallocate tasks or collaborate on tasks in response to
availability changes. We are working towards the design of a flexible, coordinated
organization-based agent system comprising multiple agents working toward a
shared goal. We are not only looking at plan elaboration, the OJAzzIC (Orga-
nizations Joining Adaptively with Improvised Coordination) model also supports
appropriate knowledge transfer within and across organizations and obligations
to ensure relevant knowledge is shared, and is intended to provide a framework to
enable coordinated, improvised activity.

The capabilities we expect of our sophisticated agents in order to cope in
a complex, uncertain and dynamic environment are based on problem settings
with the following characteristics:

– Multiple agents are working with at least one high level shared objective;
– Agents work with individual rationality (self-interest and individual utility

function) as well as some form of group rationality;
– Interaction, coordination and cooperation between individuals or groups is

needed in order to achieve goals with interdependencies;
– Membership of groups is fluid — agents may come and go;
– Roles are not fixed — members are required to improvise in order to achieve

goals in a timely way — based on who is available and their capabilities;
– The problem is distributed across multiple locations, central coordination

and control is not possible.

These capabilities require a sophistication in terms of agent knowledge, group
knowledge and awareness. The OJAzzIC model is based on an organizational
approach. Using the structure of an organization, agents have contracts that
define how knowledge is shared and held consistent between agents.

We consider an individual agent to have individual mental attitudes such as
beliefs, goals, intentions and plans to enact those intentions, and accordingly
we build on the traditions of the Beliefs, Desires and Intentions (BDI) archi-
tecture for individual agents, extended to group activity, e.g. [38]. We adopt an
agent organization as defining a structure for a group of agents with some shared
mental attitudes associated with the organization, in addition to individual at-
titudes. The agent organization is a structured group of agents with definitions
of roles defining responsibilitie and relationships between roles, and rules defining
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obligations on members. For some, an agent organization is a group whose roles
and interactions are typically expected to be relatively stable and change slowly
over time [29]. Others have introduced terminology of groups, teams, congrega-
tions, coalitions etc, and these are variously associated with properties of coor-
dination, correlation, cooperation, and other Co-X words [18,31], and levels of
autonomy between individuals and the group [4,9,15,34]. In this paper we adopt
a rather relaxed view, and simply use the term organizations to cover both longer
term, stable groupings and those that can be relatively short-lived and changed
via localised adaptive planning.

In this paper we target a structure enabling both reallocation of agents to
tasks and dynamic goal decomposition and achievement. Previously, we exam-
ined SharedPlans [16] in the context of human coordination in the emergency
management domain and highlighted that agents need to ensure that they cul-
tivate knowledge about their organizational structure as well as domain knowl-
edge — plans and situation awareness [21]. In future work, we hope to give
attention more directly to the management of interdependent resources. These
requirements are not unique to the emergency management domain and could
be relevant to many emergent situations where agents initially form or enlist
in an organization with a common goal, then within that organization, smaller
organizational groups form to autonomously work on distributed, but possibly
interdependent sub goals. The issue to highlight is that each organization needs
to be aware and coordinated within the organization and across any overlapping
organization.

We are particularly interested in awareness and coordination of knowledge and
behaviour between, across and within organizations. In this paper, we present
a high level design for our organizational approach and describe how multiple
dynamic instances of organizations are created in order to enable appropriate
awareness in the organization. We do not yet address important issues including:
policy creation, agent negotiation protocols, resource contention and processes
for creation of and disbanding of organizations.

The paper is structured as follows. In the next section, we present key back-
ground material: we describe an extension to the traditional agent BDI delib-
eration cycle to include two levels of agent awareness of others within an or-
ganization — i.e. agents not only consider other agents in their own individual
deliberations, but agents also deliberate with others in an organization; in sub-
section 2.1, we describe a scenario involving detection robots to highlight key
requirements for our design; and in subsection 2.2 we summarise the main el-
ements of the model OMACS [6,7,8] on which we build. OJAzzIC builds on
the adaptable organizational structure used in OMACS [7] and combines with
features from contract based systems [10] and intentional approaches to joint
planning [16]. Section 3 contains a discussion of the key ideas of our model, in-
cluding features, metamodel, and a discussion of goals and roles. In section 4,
we briefly cover related work on adaptive agent organizations. We conclude by
highlighting future directions of our work.
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2 Background Material

2.1 Motivating Scenarios

A robotic search for weapons of mass destruction scenario previously used in
adaptive agent system design will be outlined and then we will modify this sce-
nario to highlight some of the requirements we are addressing. This scenario was
used previously to describe a simple adaptable organization based on OMACS
(Organization Model for Adaptive Computational Systems) [7].

The scenario is based on a number of robot sensors that need to search an area
and identify suspicious objects. Each suspicious object needs to be checked to see
if it is a biological, chemical or radioactive weapon. Not all sensor robots have
the capabilities to perform each object identification. When a suspect object is
found, all 3 checks need to be performed until one matches. So, each weapon
may only be one type of weapon, and the checks may be performed in any order.
There are six agent types: Base Robot, Sophisticated Robot, Chemical Robot,
Biological Robot, Nuclear Robot and Remover Robot. Both the Chemical Robot
and the Sophisticated Robot can identify chemical weapons, but the Sophisti-
cated Robot’s chemical detector is not as good as the Chemical Robot’s chemical
detector. All robots can search and find suspect objects. When a weapon has
been successfully identified, the Remover Robot removes it.

We now propose three modified scenarios to highlight more complex require-
ments for coordination:

Scenario 1. Goals involving multiple agents:
Example 1a. Suppose the chemical weapon can only be detected success-
fully by two robots working together simultaneously — Chemical Robot and
Sophisticated Robot. The two robots need to coordinate their behaviour to
both move to the same object simultaneously in order to perform the detec-
tion task.
Example 1b. Suppose two agent types Base Robot and Chemical Robot, can
combine their individual capabilities in order to achieve the removal role
capabilities of one Removal Robot agent. In this case, if an agent Removal
Robot fails or leaves the scene and another Removal Robot is not avail-
able, these two agents could together combine to achieve the tasks that were
previously allocated to one agent: Removal Robot.

Scenario 2. Resource contention and interdependencies: Suppose the removal
robot agents require an additional resource: a trolley, to help remove the
detected weapons. Each removal robot has access to at least one trolley,
shared by other removal robots within a close proximity. Sharing of this
resource requires that the agents coordinate their use and movement of the
trolley. As agents move about, they may need to become aware of ‘new’
trolleys closer to them.

These modifications highlight issues that we are interested in addressing in the
context of agent organizations. We focus on situations where tasks require mul-
tiple agents acting in a coordinated way to complete them, and therefore we
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require organizations of agents who share a goal. Within the organization, agents
can work autonomously on some tasks, but must coordinate where necessary. In
some cases, there may be a commander or leader role, however sometimes the
coordination may be established directly between members of the organization.
Agents should be able to dynamically reorganize and reallocate tasks if agents
leave or become unable to fulfill responsibilities.

Based on an analysis of human coordination in Emergency Management [21],
we seek to address the following requirements for coordination in a dynamic
organization:

– Awareness. All players in the organization are obliged to work with awareness
of others, including to be aware of what is relevant to others.

– Appropriate knowledge sharing. Information, relating to a goal or resource,
may flow within and out of one organization into other organization(s) as
members identify relevance to other organizations that they belong to, or
are aware of.

– Flexible adjustment of behaviour. In a dynamic situation involving uncer-
tainty, agents adjust their behaviour to fit in with others. The action se-
quence emerges over time based on the situation and adaptation to address
changes as they are realised. Goals may also change.

These requirements apply to complex domains that demand flexibility due to
uncertainty, distributed knowledge and interdependencies that must be man-
aged. Agents need to be able to improvise — adjust plans and modify goals to
fit in with others. It is not possible to prescribe behaviour exactly for all circum-
stances at design time so agents need to have access to organizational knowledge
to enable reasoning to change individual and organizational goals and plans.

2.2 OMACS

OMACS (Organization Model for Adaptive Computational Systems) has been
developed as an organization design based framework model that is capable
of adaptation so that a system organization can organize and reorganize itself
dynamically at run time. The organization is defined to include the following
entities: Goals, Roles, Agents, Domain Model and Policies [6,7,8]. OMACS ad-
dresses some of our requirements for flexible and adaptive organizations and has
influenced our design.

In OMACS, Deloach introduces the Capabilities abstraction to enable flexible
and dynamic reallocation of agents to roles [7]. A Role Model is used to define
a list of tasks or responsibilities to be fulfilled. Each Role definition within the
Role Model includes a required Capabilities list as well as a function that en-
ables capabilities to be prioritised as to their relative importance. This function
enables the measurement of an agent’s utility to play each role. It is possible to
define multiple alternative roles that are capable of achieving a particular goal,
however only one role can be allocated to one goal at any one time. DeLoach
and colleagues have proposed that adaptability in planning can be addressed by
having alternative paths available in a goal decomposition.
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When agents are no longer available and goals cannot be met according to the
original goal-role-agent assignment, the system automatically reorganizes and
newly revised roles or goals are selected based on the currently available agents’
capabilities [7]. However, if there is no agent available with an exact match to
the capabilities for a required role, the OMACS system does not address this
situation. It does not provide for dynamic flexibility at the level of coordination
of multiple agents together performing one role to achieve a goal.

In OMACS, most of the information required for collaboration between roles
is embedded in the goals that are instantiated [7]. OMACS is associated with
the creation of a dynamic goal design and run time representation using Goal
Model for Dynamic Systems (GMoDS) [6]. Using careful goal design according
to a goal decomposition tree, goals can be ordered so that goal dependency
is represented in the goal model, as well as alternative options, so that if one
set of goals cannot be satisfied, an alternative set may be chosen. This enables
dynamic and flexible re-allocation of goals. The capabilities abstraction enables
flexibility in dynamic allocation and re-allocation of agents to roles based on a
changing context. However, coordination between agents is implicit in the plans
that individual roles have to enact in order to achieve autonomous goals. OMACS
does not provide explicit coordination mechanisms toward agent cooperation on
goals or cooperation on synchronizing loosely coupled activities so as not to
interfere with other agents. If two agents need to act together concurrently, they
would need to each have separate goals for the actions and coordination would
be achieved implicitly according to the predefined script or plan for each goal
that each agent follows autonomously.

2.3 Extending the BDI Agent Deliberation Cycle

Our approach is based on the popular BDI architecture that enables goal-
directed behaviour in the presence of explicit deliberation about changes in
the environment, but extended to accommodate reasoning about other agents
e.g. [38]. Traditional BDI agents deliberate based on a self-interested cycle, i.e.

Table 1. Individual Agent BDI Deliberation Cycle

repeat
perceived-events := event-selector(event-queue);
update-attitudes();
plan-options := option-generator(perceived-events,current-goals);
selected-plan-options := deliberate(plan-options);
update-intentions(selected-plan-options);
execute();

end repeat

As Corkill [5] and others argue, agents within an organization, need also to
consider organizational objectives in addition to their own goals. Agents must
hence ensure that individual mental attitudes are managed so that they are
not inconsistent with organizational attitudes. Corkill describes organizationally
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adept agents that use adjustable preferences to value self, others and the organi-
zation to different degrees whilst evaluating utility functions in selecting actions
to perform. We propose that this be further extended, so that agents within
an organization might not only deliberate individually, but as an organization.
Agents therefore would be capable of individual utility based (self-interested)
reasoning, other-centred reasoning — with awareness of others, as well as or-
ganizational reasoning with others. In our approach, the obligations to update
individual mental attitudes are made explicit in a social contract that defines
congruence between organizational attitudes and individual attitudes.

Table 2. Organizational Agent BDI Deliberation Cycle

repeat
perceived-events := event-selector(event-queue);
process-individual-and-organizational-attitudes(current-social-contracts):
plan-options := option-generator(perceived-events, current-goals);
selected-plan-options :=

deliberate(plan-options, other-agents-and-organizations);
update-intentions(selected-plan-options);
execute();

end repeat

In the extended deliberation cycle, an agent perceives environmental input,
updates individual mental attitudes but, before selecting an intention the organi-
zational agent will deliberate with others in the organization. This organizational
deliberation is defined by obligations and policies in the social contract within
the organization and is discussed further in Section 3.4. Following the first stage
of organizational deliberation and any needed adjustment to individual atti-
tudes, the agent continues the deliberation process considering others — when
the agent may revise individual intentions and plans to ensure that they are not
intending anything that will hamper others and possibly to add new intentions
to help others.

3 OJAzzIC: Agents in Organizations Joining Adaptively
with Improvised Coordination

In this section, we outline our model, OJAzzIC and how this is used to instantiate
a network of multiple coordinated organizations. This model is for Organizations
Joining Adaptively with Improvised Coordination (OJAzzIC), the adaptive re-
quirements result in a model that can capture the necessary static and dynamic
knowledge in such as way as members can behave as a Jazz musician might — to
improvise and adapt their script on the fly, but not in such a way that it would
interfere with the script or plan adopted by others. The plans need to be clear,
but flexible. Behaviour needs to be coordinated, but not prescribed. OJAzzIC
builds on the adaptable organizational structure used in OMACS [7] and com-
bines with features from contract based systems [10] and intentional approaches
to joint planning [16].
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3.1 Adaptability in Design — Features of OJAzzIC

The novelty in our approach is to combine the adaptive nature of a dynamic
organizational structure—enabling both reallocation of agents to tasks and dy-
namic goal decomposition— with a dynamic social contract that defines explicit
obligations and coordination policies on the fly. The social contract may be based
on a predefined script that can be well defined or loosely governed by predefined
landmarks [40]. Additionally, our proposal for use of multiple instances of over-
lapping organizations in a dynamic way enables adaptable coordination within
meta organizations.

An organizational instance is created dynamically whenever a complex prob-
lem arises that requires some coordination over time. This coordination may
involve an emergent plan that needs revision when further information becomes
available. It may also require coordination of members in terms of a shared re-
source or goals that require multiple members to coordinate activity dynamically
in order to achieve the goal. It may also be that some initiative will be required
in terms of using members outside of their usual role descriptions where they
have capabilities toward helping achieve a goal.

Key to the approach of OJAzzIC is the creation, as required, of dynamic in-
stances of organizations. Within each organizational instance, context specific
dynamic contracts define agent allocations, obligations and roles. These ensure
that coordination, knowledge sharing and behavioural obligations can be dy-
namically defined within a particular network (organization) of agents. Multiple
organization instances may be created within the original organization. Each or-
ganization has at least one goal that requires coordination. Each organizational
instance (including the high level organization) has a set of dynamic organiza-
tion attributes with values available to all members. These attributes include an
organizational structure (role model including dynamic role definitions and coor-
dination roles), set of agents, goal tree, domain beliefs, resource list, fixed domain
policies and role definitions and a dynamic contract. The contract defines the
allocation of agents to tasks/coordination roles and dynamic coordination and
knowledge-sharing policies to ensure consistent beliefs are maintained within the
organization.

In order to address our requirements and establish an organizational design
with the flexibility to adapt, the following major decisions were made: The model
would include agentified organizations as first class entities [38]; Agent-Role-
Task mapping using Capabilities would be used to enable flexible automated
reallocation [7,36]; Goals could be shared by multiple roles using Capabilities
and Tasks; and Organization instances created would include social contracts to
define coordination obligations dynamically [40].

Agentifying the organization means we can treat the organization as one
agent, with mental attitudes that can then be semantically related to individuals
in the organization as desired [38]. This also means that no one individual needs
to stay in a particular role (e.g. Leader) for appropriate communication with the
organization. The organization is addressable as an agent in its own right [28].
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The organization is a static predefined structure that may be instantiated by
an actual organization instance that is created at run time. This organization
instance may be quite a stable and permanent structure based on formal roles,
but it may also be a short term organization created so that a group of agents can
work together in a coordinated way. In the latter case, the coordination may be
negotiated dynamically rather than be based on predefined scripts. In the former
case, the coordination may be based on default scripts, though these can still
be adapted. All organization instances are considered to be dynamic, first class,
agentified entities and from here on, we shall refer to these as organizations. The
organizational contract is part of the organization’s knowledge, so accessible to
all agent members.
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Fig. 1. Comparison of Agent to Goal Relationships in OMACS and OJAzzIC

Figure 1 shows an abstract high level view of the relationships in an OJAzzIC
organization alongside a partial view of similar components in an OMACS or-
ganization [7]. Figure 1(b) is expanded upon in Figure 2. In Figure 1(a) Agents
are related to Goals using the Role abstraction. As discussed in section 3.3, this
assumes that one role will achieve one goal. We introduce an extra level of sepa-
ration between roles and goals. In OJAzzIC, the Goal Tree is extended to include
Tasks as a possible decomposition of Goals. Agents can be allocated based on
responsibilities for Roles or based on Capabilities to fulfil Tasks. Extending Goal
Trees using Tasks will be discussed further in section 3.3.

The Role Model in OMACS is a fixed relationship of predefined roles (repre-
sented as ‘Role’ in Figure 1(a)) whilst in OJAzzIC (Figure 1(b)), the Role Model
is dynamic, it is created based on context and represents the roles instantiated by
agents in the organization. The Contract is an explicit mental attitude adopted
by the organization and defines obligations regarding knowledge sharing and will
be discussed further in section 3.4. Figure 1(b) is a simplified conceptual model,
more detail is presented in Figure 2. Our design is motivated by reality. In real
situations, a role description may change based on context and roles might need
to be shared. In OJAzzIC, the dynamic Role Model enables goals to be shared
between multiple roles and where necessary coordination roles are created. The
structure of the organization — role relationships and role definitions — are
dynamically defined.

We are not alone in proposing the need for shared mental models. Commit-
ments toward maintaining and proactively sharing information in teamwork has
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been addressed in similar work with agent/human teams [41]. In order to es-
tablish information relevancy, explicit information-needs graphs have been used
along with explicit mental models of team structure, team processes, and domain
knowledge [12]. Information flow within groups has been described in terms of the
relationships that form in a coordination loop [32]. In our case, we propose that
encouraging information sharing in each such network requiring coordination
is possible if each is considered a dynamic instance of an organization. Within
each organizational instance, obligations exist ensuring appropriate knowledge
sharing. Each organizational instance has a shared goal — such as a knowlege
seeking goal or a goal to manage a dependency, or a goal to achieve a particular
set of tasks. Agents may belong to multiple organizational instances simulta-
neously. In this way, an agent’s knowledge can be shared across organizational
boundaries where it is relevant to more than one organizational group.

3.2 OJAzzIC Organization Model

Figure 2 shows the OJAzzIC organizational model. Each organizational instance
is created following this model. Our organization entity is loosely based on
OMACS [7], with extensions to provide for more flexible and dynamic goal/role
sharing. Where we adopt OMACS concepts without extension, we do not provide
details here, but direct the reader to details elsewhere [8].
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Fig. 2. The OJAzzIC organization model

To achieve goals the organization may require more than one agent to co-
ordinate behaviour for related tasks. Goals are described in terms of tasks and
tasks require capabilities. A player has capabilities, enacts a role and is also allo-
cated tasks based on that role. Plans are based on instantiating general default
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plans or creating dynamic plans based on the decomposed Goal Tree, according
to the particular context. Organizational plans to achieve goals are established
dynamically using SharedPlans [16].

Agents start by belonging to a large organization responsible for the main
high level goal (e.g. the entire system). When two or more players need to co-
ordinate, a new organization is formed and within that organization an explicit
contract is formed that dictates policies, obligations, agreed goals and agree-
ment to coordinate with others in that organization. Coordination within the
organization relies on appropriate communication to share relevant information
and share plans. The new organizations that form overlap with existing organiza-
tions. We propose that in a dynamic organization, multiple smaller organizations
are created. These organizations each need to be explicit so that appropriate co-
ordination can be established within each. Each organizational instance created
would be based on the OJAzzIC organizational entity structure.

In OJAzzIC, an organization O is a tuple:
<G∗, R,Re, Contract, A,C, P,

∑
, β, oaf, achieves, requires, possesses >

This extends OMACS with G*, R, Re and Contract. These are explained in
more detail in the subsequent sections.

G*: extended Goal Tree, including ordered tasks where possible. This defines the goals
and how they could be decomposed into sub goals and ordered tasks;

R: the Role Model including a set of Roles, relationships between Roles and context
based Role Definitions. This also includes coordination roles created dynamically
as necessary;

Re: a dynamic Resources list defining objects in the environment that can be used to
help perform tasks;

Contract: The dynamic Contract contains a social contract and an information con-
tract. The social contract comprises a SharedPlan [16] and a set of coordination
Roles agreed for the organization. The Shared Plan outlines the current selection
of tasks to achieve the goal and the allocations thus far assigning responsibilities
for tasks. The contract in OJAzzIC replaces φ in OMACS (φ is a relation over G
x R x A providing goal/role/agent assignments). The information contract is a set
of agreed policy obligations and commitments to intentions to ensure consistency
of beliefs within the agent organization. The information contract contains β the
current Beliefs set that includes beliefs about the environment, including resources.

A: set of Agents;

C: set of Capabilities;

P: fixed policy constraints to apply to all members and to the allocation of tasks;∑
: domain model used to specify environment objects and relationships

In OMACS, policies are abstractly used to define the processes for allocation of
agents to roles (Assignment Policies), define behavioural obligations and rela-
tions between roles (Behavioural Policies) and define structural reorganizational
processes such as how to reallocate tasks (Reorganization Policies). OMACS
defines policies that must be held as Law policies and policies that can be pri-
oritised and hold when possible as Guidance policies. OMACS also defines ad-
ditional supporting functions oaf, achieves, requires, possesses. The definition of
function achieves has been extended to include tasks and SharedPlans
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oaf: organization assignment function measures the utility of a particular Shared-
Plan assignment of Agents to Roles to Tasks;

achieves: function defining role assignment — how effective the behaviour of
roles can be to achieve task T or goal G in a SharedPlan. This is used if a
default plan needs revision or if a default plan cannot be found for a context.
The Goal-Tree can be used to derive a plan.

requires: defines the capabilities required to play a role R or task T; and
possesses: function defining the quality of an agent’s capability for a particular

Task. To decide how well an agent can play a role, the requires and possesses
functions are combined into a function: capable. To decide how well an agent
can play a role to achieve a goal, the capable function and achieves function
are combined as a function: potential.

Based on our requirements, in OJAzzIC, we incorporate additional Authority
Policies defining a process for explicit acceptance of allocations by an agent
as well as Coordination Policies to help resolve multi-agent plan coordination
dynamically.

3.3 Goal Trees and Dynamic Role Model

In order to achieve our aim of flexibility, we choose to keep separate the goals of
an organization and the available roles that may be used to define (or allocated)
responsibility to achieve these goals.

Agent
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Fig. 3. OJAzzIC Goal Tree showing potential allocations with Players

Synchronized Tasks. If a goal cannot be achieved by one role, then multiple
roles or agents can combine to achieve a goal by working together. We de-
scribe goals as composing synchronised tasks and tasks can be performed by
agents with the appropriate capabilities. This abstraction is introduced to enable
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flexible and dynamic planning by agents to establish a coordinated SharedPlan
to work together to achieve a goal. We choose to split goals into separate syn-
chronised tasks rather than split roles, as intuitively, this abstraction fits with
our observations from real life examples in the Emergency Management domain.

In figure 3 an example OJAzzIC Goal Tree for the sensor case from section 2.1
is shown, as defined at design time. The Goal Tree encapsulates knowledge about
goal decompositions and in this case, we have indicated on the right side how
the goal tree could be expanded at run time to link to capabilities of particular
agents and generate potential plans. The Goal Tree can be thought of as a plan
recipe library. Default or preferred plans can be defined by indicating preferred
paths at design time, however the flexibility to use the Goal Tree dynamically
allows for dynamic planning and revision of plans.

As figure 3 shows, a goal may comprise multiple sub goals. Goals may also be
decomposed into tasks. Tasks and goals can be ordered. This abstraction is to
enable the splitting of goals to share between multiple players. When a goal is
split, performing the tasks requires coordination between the players. In figure 3,
goal G0 is decomposed into sub goals G1, G2 and G3. G1 must be performed
before G2. G1 is described in terms of search task T1. In some cases, one goal
can be achieved by one role directly, as with G3 achieved directly by R4. In the
absence of an agent allocated to Role R4 for whatever reason, an alternative is
to split goal G3 into two separate tasks T4 and T5. These tasks then can be allo-
cated to individual agents based on individual capabilities. When goals are split
and shared then the agents need to coordinate their behaviour using a Shared-
Plan. In figure 3, different dashed lines indicate whether an agent is allocated to
perform a role that directly satisfies a goal (big dashes) or whether agents are
allocated individual tasks (small dotted line). In the latter case, the SharedPlan
will ensure coordination between the agents. This figure shows potential alloca-
tions of players (sensor robots) to these goals and tasks at run time. BR1 has
the capabilities to perform task T1 and in this example has been allocated that
task. Player RR has the capabilities to fulfil role R4 and thus could be allocated
in that role to perform both tasks T4 and T5. Alternatively, CR could perform
T4 and BR could perform T5. Tasks T4 and T5 must be done simultaneously
— indicated by the parallel lines connecting them.

Using the sensor agent case as a very simple example, we can identify that
if allocations were made based on Figure 3 with CR and SR working together
to achieve the goal G4 Detect Chemical Weapon, then CR and SR would need
to coordinate and create a SharedPlan. This is a simple instance of an orga-
nization. Creating an organization would then obligate each agent (as defined
in the social contract) to appropriately share information such as a SharedPlan
to facilitate coordination between these agents. There could be initially an or-
ganization involving BR1 and perhaps some other agents conducting a search
of the area. Then as suspect objects are found, new organizations could spring
up including agents able to detect weapons. For example, an organization with
BioR, SR, CR, NR could form with BR1 as a leader to achieve the goal, G2
Detect Weapon. Then when a weapon has been identified, a new organization
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involving these or other agents would form to remove the weapon. We could
imagine a more complex scenario where there were hundreds of agents involved
in the weapons search over a large area. Multiple organizations could be created
dynamically as agents elect to work together to achieve goals. When one agent is
part of multiple organizations, this overlap allows for relevant information (e.g.
location, detection status of object) to be propagated across the network across
organizational boundaries.

Resources are explicit entities in the OJAzzIC organization’s knowledge base.
This is because of the potential for resource contention amongst agents in the or-
ganization and thus the need to coordinate interdependencies. Having this knowl-
edge explicit will enable direct reasoning within the Agent Organization, based
on priorities, negotiated protocols or the use of coordination artifacts [30,1]. We
do not address such reasoning further in this paper.

The sharing of relevant knowledge within and across organizations is im-
portant as knowledge may be distributed. Obligations to ensure appropriate
knowledge-sharing about SharedPlans [16] has been well defined and we adopt
this intention based approach to planning. We have adopted the use of con-
tracts to manage obligations to ensure agents will share domain-knowledge as
well as structural and coordination knowledge within each organization. Col-
lective obligations can be implemented as policies to govern joint activity and
teamwork [39]. We leave implementation details aside and in the next section,
describe at a conceptual level the contents of the contracts that need to be
created.

3.4 Contracts

As agents join (or apply to join) an organization, then agents must agree (com-
mit) to a social contract that defines interaction within the organization. Beliefs,
values, objectives, protocols and policies may be defined in the context of the
social relationships that exist within the society. At the time a new organization
is instantiated in OJAzzIC, players in each organization, explicitly form an or-
ganizational contract. Each organization exists for the duration of time in which
there is a need for that group of agents to be coordinated. The organizational
contract comprises a social contract that defines the social structure of the or-
ganization and an information contract that defines how information is shared
within the organization.

The social contract defines role descriptions and agreed role allocations. Role
descriptions may be abstractly defined at organizational design time and adapted
dynamically. Roles are defined with associated capabilities, authority levels and
obligations. These are made explicit in the social contract to enable dynamic
and adaptive revisions. Having an explicit social contract provides the abilitiy
to predict others’ behaviour and flexibly adapt individual goals in anticipation
of others’ needs and behaviour. The social contract also defines an agreed model
for command, control and coordination. Coordination Roles such as Leader,
Resource Manager, Knowledge Manager and Contract Manager are identified
and allocated if needed.
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− Object location

Leader: BR1

Goal: G2 Detect Weapon

Detection Organization:

  −  Direct Leader Control, inform leader of result of detection tasks
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                        G6 − NR
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BioR     SR    CR     NR

BR1

Fig. 4. Partial contract for the detection team in the sensor robot case scenario

Based on the need to cultivate knowledge sharing [21], information contracts
include policies that obligate members in an organization to all adopt joint
intentions to cultivate mutual knowledge within the organization. Obligations to
share information are limited to the agents within each individual organization
that forms. As an agent can belong to multiple organizations, the overlap enables
relevant information to be dispersed across a wider network as necessary. Figure 4
shows parts of an example contract for the organization with goal G2: Detect
Weapon, in the sensor robot case study.

4 Related Work

We have looked particularly at the following adaptive organizational models
for agents: OMACS [7], KB-ORG [36], and OperA [11]. Each addresses part
of our requirements. We also consider adaptivity in relationships achieved by
associating Agents to Roles and Goals as discussed, for example, in previous
work by Ferber [13] and Odell [28].

In these proposed metamodels for Agents, Roles and Groups [13,28], within a
group context, agents are associated with an agent role to determine the sorts of
activities in which the agent may participate. The interactions between agents
are governed by the roles played by the agents. An agentified group can then
communicate, take on a role and act as an agent. Roles enable a layer of ab-
straction between agents and their allocated tasks facilitating re-allocation and
reorganization of agent groups. Tidhar has similarly defined an organization as
a set of related teams as a first class (agentified) entity [38].

We have looked for flexibility in our goal design and have extended the
OMACS definition, so that a goal might be broken into synchronized/ordered
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tasks that could be assigned to agents. This approach has also been adopted in
AGR [13] and in the MOISE system [14] where a distinction is made between
a separate structural specification and a functional specification. In MOISE-
Inst [19], goals are decomposed into missions, then allocated to a set of respon-
sible agents. The goal tree specifies potential tasks that can be associated with
individual plan recipes that achieve each leaf goal [18,36].

A related approach has been promoted in the KB-ORG system, designed for
automatic allocation of tasks to agents in a dynamic organization [36]. In KB-
ORG, roles contain an assignable list of responsibilities and if necessary, roles
can be split between a set of agents and explicit coordination roles are created.
KB-ORG differs from our approach in that we are attempting to create a design
for organizationally aware agents, rather than using an external management
system. Importantly, in order to establish dynamic coordination by agents in
organizations, explicit coordination roles are needed. In KB-ORG, coordination
roles are created when an application level role is split between a set of agents.
Similar coordination roles are adopted in the role model and agreed in a social
contract in OJAzzIC.

We are not unique in articulating agent interactions as requirements and mod-
elling these separately in the design process for an agent system [33]. Others have
described interactions as part of an organizational design [2,14]. Relationships
and awareness of relationships between agents in a dynamic organization are
important to enable the appropriate coordination and communication.

Functional specification and decomposition of tasks in MAS using a goal-tree
to specify tasks with synchronization or coordination relations is not unique. It
is found in models including for example STEAM [37] and TAEMS [23]. High
level guidelines have been used to describe constraints on how organizational
objectives should be decomposed in a hierarchy. Separately, operational objec-
tives represented as leaf goals in their goal decomposition can be operationally
coordinated as required by the individuals involved (not at an organizational
level) [5,36]. This abstraction to ‘leave the details’ to the smaller groups is simi-
lar to ours, although we make the distinction that these smaller groups may be
considered as temporary organizations rather than teams. The value in creating
short to medium term organizations, is that for the duration of the organization,
obligations and some infrastructure including shared mental attitudes, can be
used to help ensure that our complex, dynamic, coordination requirements may
be addressed. A separate approach is to use Petri Net models to monitor and
coordinate hierarchical team plans [3].

Coordination by proxies or intermediate layers within an agent architecture
has been suggested to enable open systems with heterogenous agents to work
together. For example, Scerri et al assign a proxy agent responsible for coor-
dination to each team player [35]. This enables domain specialised agents to
work as part of a larger team, without the need for knowledge about the team
itself. However, with this approach, the agent players are not able to directly
reason about team issues or coordination and this limits its applicability in our
context.



54 K. Keogh and L. Sonenberg

5 Conclusion

We have provided an elaborated description of a model for agent organizations
requiring adaptability and improvisation. By giving agents access to organiza-
tional information that they can change, we allow agents to adjust their own
attitudes to fit in others in a changing situation. We have taken features from
existing systems [7,11,16,36] and extended these to meet our requirements.

We have organizations as first class entities so membership does not need to
be fixed and members have access to the mental state of the organization. Orga-
nizations are created based on a need to coordinate actions or resources. Within
organizations, agents are obliged to share information and maintain consistent
plans. We have contract based dynamic organizations so that organizational
structure is defined/agreed and modifiable at run time. We have a flexible goal-
task decomposition that enables definition of concurrent tasks and goals that
require multiple agents. We allow for goals to be shared, where multiple agents
can combine their capabilities to collaborate to achieve a goal. We propose that
this model be implemented so that multiple organizations are created, as needed.
As the OJAzzIC system is an organization of organizations, reasoning at differ-
ent levels of abstraction is possible.Each organization manages obligations to
ensure relevant knowledge is shared within and between organizations.

Future work is needed to formalise this design and validate it with an imple-
mentation. We hope to test it with a multi-agent organization implementation
based on the modifications to the search for weapons discussed early in this
paper [7]. Ultimately, our intent is to use our model in organizations involving
agents and humans, c.f. [41].

Agents may leave or join an organization at any time. Upon creation or join-
ing of an organization, agents agree to obligations within the organizational
contract. In particular these obligations guide communication and shared inten-
tions to keep mutual knowledge consistent between members. Agents may have
individual utility functions for private goals as well as global utility functions at
an organizational level. Agents may also use initiative when they have capabili-
ties outside of their designated role to locally adapt the organizational structure
to assist by performing tasks in the interest of the organization. These policies
and obligations need to be formally specified in future work.

OJAzzIC organizations would be suited to work in highly dynamic, complex
domains that require flexible adaptive interactive behaviour. These could in-
clude Emergency Management systems, Naval management coordination and to
some extent military command and control (when local decision making occurs
separate from the formal vertical command hierarchy). Where short term coor-
dinated tasks are to be performed by a group of agents and are well specified,
not likely to change during execution of a plan, an organizational structure is not
necessary. In these cases, agents might form a different less structured collective
such as a group with a SharedPlan [17].

Multiagent systems enabled with characteristics to work with humans have
potential benefits in simulation and training. Sophisticated agents could poten-
tially be used as surrogate humans in virtual organizations for training exercises.
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To be useful, such agents need to behave in a predictable and believable way sim-
ilar to humans [22] and need to be designed to coordinate behaviour with other
players. Our work contributes by proposing a conceptual design for dynamic and
adaptable agent organizations working together in a coordinated way.
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Abstract. Inter-organizational collaboration often occurs in complex,
dynamic and unpredictable environments. Regulating structures should
be represented explicitly and independently from the acting components
at different levels of abstraction in order for stakeholders to be able to
analyze the overall setup and decide on their participation. This pa-
per proposes a framework for describing collaboration relationships in
inter-organizational partnerships. The framework is based on the OperA
model for multi-agent organizations and provides a specification dimen-
sion which describes what objectives to achieve from the designer’s per-
spective based on the concept of organization, role and role dependency,
and an enactment dimension which represents the agents and their role
enacting relationships to describe who achieves what objectives from an
implementation perspective. The adoption of composite roles and com-
posite agents facilitates a modeling of nested organizations, which offers
a suitable way to manage/regulate inter-organizational interactions.

Keywords: inter-organizational collaboration, multi-agent system,
OperA, compositional design.

1 Introduction

Socio-technical systems are complex adaptive entities that require the engage-
ment of social and technical elements in an environment to reach certain goals
[14]. Such systems are composed of interconnected components whose interac-
tions form processes at multiple levels of abstraction. Modeling and analysis of
such systems is difficult because (1) it is impossible to elaborate everything at a
single aggregation level, (2) requirements and functionalities are not fixed a pri-
ori, (3) components are not designed nor controlled by a common entity, and (4)
unspecified changes may occur during runtime. Examples of such systems are
inter-organizational projects, supply chains, behavior in energy markets, and
introduction of new policies etc.

Agent-based models have been increasingly developed and adopted to de-
scribe, analyze and simulate socio-technical systems and explore phenomena
concerning complex relations between entities (e.g., [8], [7]). Comprehensive anal-
ysis of agent systems has shown that organization frameworks are needed for the
appropriate modeling of complex systems with MAS where many independent
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entities coexist within explicit normative and organizational structures [1]. The
deployment of organizations in dynamic and unpredictable settings brings forth
critical issues concerning the design, implementation and validation of their be-
havior, and should be guided by two principles:

– Provide sufficient representation of the organizational requirements so that
the overall system complies with its objectives,

– Provide enough flexibility to accommodate heterogeneous components.

A number of methodologies with a clear organizational vision have already been
proposed, such as AGR [15], Roadmap [13], Gaia [17], INGENIAS [16], Moise+
[11]. Nevertheless, current practice of Multi-Agent System (MAS) design tends
to take agents as atomic entities [6], which are presented at the same level of
abstraction. This either leads to an extremely large model that tries to describe
everything at a single aggregation level or a vague model without sufficient in-
formation to guide or regulate the actors. Another problem of an extremely
large model is the lack of controllability when unspecified changes occur. To
solve these problems, the idea of compositionality should be considered, which
enables to define and integrate processes and knowledge at different levels of
abstraction [3]. The higher levels model the systems in terms of coarser-grained
components while the lower levels provide increasing details to the components
designed and controlled by different entities. This not only enables integrating
different types of components in one model and providing necessary opacity in
inter-organizational systems but also makes it easier for actors to understand
their partnerships. Thus, components and groups of components can be eas-
ily reused at all levels of design. Compositionality also supports open systems
since (external) participants can extend existing designs according to their own
situations and designers are free of foreseeing details about participants.

Moreover, to enable flexible role enactments given that the implementation
of a system does not deviate from the original goals, there is a need for repre-
senting the regulating structures explicitly and independently from the acting
components. That is, regulations have to be specified in a separate picture to,
on the one hand, guide the agents’ behavior, and on the other hand, provide
enough autonomy for the agents’ participation.

Considering the importance of compositionality and the need to explicitly rep-
resent the regulating structures independently from the acting components, this
paper presents a framework OperA+ which extends the social structure in OperA
[10] modeling framework with constructs to represent multi-organizational inter-
actions in two dimensions. The specification dimension presents the regulating
structures in terms of connected roles and organizations while the enactment
dimension presents the acting components in terms of agents enacting the roles.
The concepts of composite roles and composite agents facilitate the composite
structure of the framework, which provides users with a multi-level modeling
environment. The higher-level specification captures the commonalities of or-
ganizational collaborations while the lower-level specifications present the in-
dividualities by layers upon layers of customization according to more specific
requirements. Components at the same level are modeled separately through
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lower-level specifications, which decreases their mutual influence when one of
them changes. For example, most of the supply chains include exporter, carrier,
importer at an abstract level but a food supply chain and a textile supply chain
are different in the details of the carrier due to the different requirements of
transporting food and textile.

The paper is organized as follows. Section 2 gives a brief introduction of the
OperA methodology. Section 3 illustrates the proposed framework OperA+ by
presenting its meta-model and formal definitions with an example of an existing
EU project. In Section 4, we give some design guidelines. Thereafter, related
work is discussed in section 5. Finally, conclusions and directions for future work
are presented in Section 6.

2 Background

The OperA framework [10] proposes an expressive way for defining open or-
ganizations distinguishing explicitly between the organizational aims and the
agents who act in it. That is, OperA enables the specification of organizational
structures, requirements and objectives independently from any knowledge on
the properties or architecture of agents, which allows participating agents to
have the freedom to act according to their own capabilities and demands. The
OperA framework consists of three interrelated models: organization, social, and
interaction.

The Organizational Model (OM) is the result of the observation and analysis
of the domain and describes the desired behavior of the organization, as deter-
mined by the organizational stakeholders in terms of roles, objectives, norms,
interactions and ontologies. The design and validation of OperA OMs can be
done with the OperettA tool [1]. The OM provides the overall organization de-
sign that fulfills the stakeholders’ requirements. The OM consists of a social
structure which describes roles and their objectives, and relations between roles
concerning achievement of objectives, a normative structure which describes
norms associated with roles, an interaction structure which is an abstract work-
flow that specifies how objectives should be achieved by the organization using
the notions of scenes and landmarks, and a communicative structure which spec-
ifies the organization’s ontology and communicative languages.

The OM is a descriptive view of the organization. In itself, the OM cannot
act but is dependent on a population of agents that enact its roles in order to
achieve the organization’s objectives. What this population looks like and how
it acts are described in the Social and Interaction Models in OperA.

The Social Model (SM) maps roles to agents and describes agreements con-
cerning the role enactment and their conditions in social contracts. Roles are
typically declarative entities meant to represent a part of the organization’s de-
sign and can be taken up by the agents enacting the role. Objectives of an
organization are achieved through the actions of agents, which means that,
at each moment, an organization should employ the relevant agents that can
make its objectives happen. That is, a role only gets an operational semantics
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indirectly through the agents that take up that role. For the operationalization
of OperA organizations, a Gatekeeper role is defined, which is responsible for
the assignment of roles to (external) agents. The gatekeeper agent is part of the
SM of each organization.

Finally, the Interaction Model (IM) specifies the interaction agreements be-
tween role-enacting agents as interaction contracts. The IM specification enables
variations to the enactment of interactions between role-enacting agents.

In this paper, OperA+ mainly concentrates on the social structure of OM and
extends the OperA framework by providing compositionality to both roles and
agents in two dimensions, which enables describing and analyzing organizational
interactions at multiple levels of abstraction. Thus, a balance can be achieved
between conformity and autonomy from the perspectives of both designers and
actors.

3 The Proposed Framework

3.1 Fundamental Concepts

OperA+ describes two dimensions of analysis:

– the specification dimension which describes what objectives to achieve in
the inter-organizational collaboration, and

– the enactment dimension which describes who achieves what objectives
based on the specification dimension.

The metamodel of the OperA+ framework in Figure 1 shows the main concepts
and their relationships. Note that this metamodel mainly concentrates on the
social structure in OperA and is a part of the complete OperA+ framework for
modeling multi-organizational collaborations. The extensions of other structures
such as the normative structure [12] and interaction structure are explored in
other works.

A specification of an inter-organizational collaboration model starts from a
role and continues with a set of organizations at different levels of abstraction. An
organization is a social arrangement which pursues collective objectives through
a set of connected roles. Roles are typically declarative entities meant to rep-
resent a part of the organization’s design. In OperA+, we refine roles into two
kinds: atomic role and composite role. Each composite role refers to a unique
organization at a lower level in the hierarchy which elaborates the objectives of
the composite role into finer-grained roles and gives more constraints or informa-
tion on how to accomplish the objectives. Atomic roles are not further specified
enabling heterogeneous enactment.

Definition 1 (role). A role r is a tuple (objr, RCapr, orgr) such that:

• objr is a set of objectives,
• RCapr is a set of capabilities required by the role to accomplish the objec-

tives,
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Fig. 1. Meta-model of the OperA+ framework

• orgr = (R,Dep) is an organization which contains a set of roles R =
{r1, r2, · · · , rn} and a set of role dependencies Dep = {dep1, dep2, · · · , depm}
where dep = (ri, rj , obj), ri, rj ∈ R, obj ∈ Objri

⋃
Objrj .

Objectives indicate the desired results a system envisions. Each role has a set
of objectives that it seeks to achieve. For this purpose, certain capabilities are
required for the agents who want to play a specific role. Capabilities are used to
define a skill or capacity for achieving the objectives. Objectives and capabilities
are expressed as predicates. When org = φ, r is an atomic role which is not
further elaborated. When org �= φ, r is a composite role which is elaborated
as a set of roles R, and their dependencies Dep through which objectives can
be passed unidirectionally. The dependency relation between roles ri and rj for
objective obj, represented as (ri, rj , obj), indicates that obj can be passed from ri
to rj , i.e., rj can realize obj for ri. In this paper, we overload all the definitions for
simplicity, e.g., r is used as a reference to the definition r = (Objr , RCapr, orgr).
Besides, we use subscripts to indicate the elements in each definition, e.g., Objr ,
RCapr, and orgr refer to the objectives, required capabilities and organization
of r.

To illustrate our proposal, we use as running example the organization of
an existing EU project that is being undertaken by a large number of univer-
sities, companies, interest groups and industry associations. The project itself
has the nature of research collaboration and is seen as a role with the objective of
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creating an inventive way of enabling a faster, safer and more reliable interna-
tional governance structure in a certain domain. Based on the role template in
common research collaborations, an organization of three interdependent roles
are identified at an abstract level according to the requirements of the project,
which are illustrated in Table 1. The three roles together describe the top level
organization and collaboratively realize the objective of the project. It can be
seen that the objectives of the three roles are only intellectual attitudes of what
should be done in the project, which do not contain detailed information on how
to realize the objectives.

Table 1. Role table for the project organization

Role Role Objective Required Capability

Project Manager Overall administration and
coordination

Leadership

Research & Develop-
ment

Create reliable, secure, and
cost effective logistic chains
supporting all applicable
regulations and procedures

Domain knowledge, research
and development experience

Knowledge Dissemi-
nator

Valorization and dissemina-
tion of the research results
among potential users

Understanding and explain-
ing abilities

In order to accomplish its objectives, each role in the organization must coor-
dinate several tasks. As a result, the three roles are elaborated to three lower-level
organizations shown in Table 2. In each lower-level organization, more specific
roles are specified to give more information or constraints on how to accomplish
the objectives of the corresponding composite role.

In the enactment dimension, roles in a specification are enacted by agents to
realize the objectives. Since our model is targeting at open systems in which
agents are not known at design time, the enactment dimension is only an illus-
tration of the possible solutions for the specification dimension. A specification
can have multiple enactments at different times and circumstances, i.e., the en-
acting of a specification is evolving with the changes of the agents. In OperA+,
an enactment of a specification is defined as a set of agents and their mappings
to the roles. Agents are autonomous, socio-cognitive entities capable of social
behavior. Within inter-organizational collaborations, agents must have the abil-
ity to communicate with each other, and work to achieve the objectives of the
roles that match their capabilities and at the same time they accept to play.
Two kinds of agents are defined in OperA+: atomic agent and composite agent.

Definition 2 (agent). An agent a is a tuple (Capa, Aa) such that:

• Capa is a set of capabilities,
• Aa = {a1, a2, · · · , ak} is a set of agents.
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Table 2. Role table for the lower-level organizations

Organization Role Role objective

Project Manager Project Director Overall legal, contractual, ethical,
financial administration

Project Coordinator Maintain communication with each
partner

Research & Develop-
ment

Service Architecture
Builder

Develop solutions for service archi-
tecture and explore their potential
of process innovation

Information Gover-
nance Modeler

Design an information governance
model to ensure that information is
available where and when needed

Semantic Modeler Develop a methodology for model-
ing semantics

Concept Proofer Prove the technical feasibility of the
concepts

Knowledge Dissemi-
nator

ICT Disseminator Disseminate knowledge among
commercial service providers

Logistic Dissemina-
tor

Disseminate knowledge among lo-
gistic service providers

In order to enact a particular role, an agent must possess a sufficient set of
capabilities that allow the agent to carry out the role and achieve its assigned
objectives. Therefore, corresponding to the required capabilities of roles, a key
component of agents is the capabilities they actually possess. Since agents in
an organization as well as their individual capabilities may change over time,
the ability of the agent to play specific roles also changes, which may result in
different sets of enactments for a specification.

When Aa = φ, a is an atomic agent. An atomic agent is an atomic entity
whose inner structure is either invisible or unimportant to the other parts of the
system. It can be an individual, a service, or even a company whose inner world
is hidden from the outside.

When Aa �= φ, a is a composite agent. A composite agent is a group of agents
who usually share a set of objectives and follow the same set of norms. Each sub-
agent in a composite agent can be either atomic or composite. The capabilities
of a composite agent is the union of its sub-agents: Cap =

⋃
a′∈Aa

Capa′ . For
example, a university which includes a group of faculties, teachers, students, etc.,
is a composite agent.

3.2 Types of Role Enactment

In the proposed framework, the following rules are applied to role enactments.
From the perspective of roles, an atomic role can be enacted by any type of agents
while a composite role can be (1) directly enacted by a composite agent providing
that the internal organization of the agent matches that of the composite role,
or (2) indirectly enacted by a set of independent agents each enacting a sub-role
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respectively. From the perspective of agents, each agent can enact one or more
roles if its capabilities meet the requirements of the roles. Moreover, when an
agent enacts a role, it can further extend the role specification according to its
own requirements and functionalities which are not known in advance.

It should be noticed that each role can be enacted by a single agent or by
multiple independent agents of the same kind. When a role is enacted by multiple
agents of the same kind, it means that the agents accomplish the objectives
multiple times independently. For example, several people independently enact
the role of cashier in a supermarket.

A specification can have multiple enactments. For one enactment, there are a
set of agents enacting the roles in the specification. Some of the agents may have
their own understanding of the objectives of the roles they enact. Therefore,
agents can extend the inherited specification according to their own capabilities,
i.e., they may further refine the specification to better achieve the objectives. In
this way, a balance between conformity and autonomy can be achieved.

3.3 Towards a Formal Framework for OperA+

The specification dimension of OperA+ is from the designer’s perspective. It
describes organizational collaborations in terms of interrelated objectives that
should be achieved, i.e., what roles are needed and how they interact with each
other. Business rules and social norms applying to this collaboration can be
described by elaborating on the inner structure of the roles at different levels of
abstraction and by the use of normative models. In this paper, we focus on the
structural aspects and leave normative issues for future work.

Definition 3 (specification). A specification S of an inter-organizational col-
laboration model is a role r0S .

A role in our model is a tree-like structure consisting of sub-roles and role de-
pendencies at different abstraction levels. That is, a specification of an inter-
organizational collaboration model is a set of hierarchically organized entities
and their collaborating relations. To simplify the following definitions based on
specifications (i.e. r0S), we define the function unbox. Given a role r, unbox re-
turns all the roles in the specification starting from r.

Definition 4 (unbox). Let r be a role.We define the function unbox as follows:
unbox(r) = Rorgr

⋃
(
⋃

r′∈Rorgr
unbox(r′)).

Then the set of all roles in a specification starting from r can be obtained. As a
role is either atomic or composite, the set of all roles is divided into two subsets,
i.e., the set of all atomic roles and the set of all composite roles. Given a role r,
we can obtain the two subsets respectively by the following functions.

R∗
A(r) = {r′|r′ ∈ unbox(r) ∧ orgr′ = φ},

R∗
C(r) = {r′|r′ ∈ unbox(r) ∧ orgr′ �= φ}.

To accomplish the objectives of the roles following tree-like structures, a de-
scription from an implementation perspective (i.e., an enactment) is required.
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From a practical perspective, an enactment can be seen as a set of arrangements
of objectives in collaborations. We define an enactment as follows.

Definition 5 (enactment). An enactment E of a specification S is a tuple
(S,A∗, RE) such that:

• A∗ is a set of agents such that A∗ = A∗
A

⋃
A∗

C , A
∗
A

⋂
A∗

C = φ, where A∗
A is

the set of all atomic agents and A∗
C is the set of all composite agents,

• RE = {re1, re2, · · · , red} is a set of role enactments where re = (r, a), r ∈
unbox(r0S), a ∈ A∗,

• ∀(r, a) ∈ RE : RCapr ⊆ Capa,
• ∀(r, a) ∈ RE, r ∈ R∗

C(r0S), ∃a ∈ A∗
C :

(∀r′ ∈ {r′′|r′′ ∈ orgr , orgr′′ = φ}, ∃a′ ∈ Aa : (r′, a′) ∈ RE).

A∗ specifies all the agents participating in an enactment. RE is used to indi-
cate which agent enacts which role. For the moment, we assume a role-enacting
agent to be such that ∀(r, a) ∈ RE : RCapr ⊆ Capa, i.e., when an agent en-
acts a role, its obtained capabilities cover the required capabilities of the role.
∀(r, a) ∈ RE, r ∈ R∗

C(r0S), ∃a ∈ A∗
C : (∀r′ ∈ {r′′|r′′ ∈ orgr, orgr′′ = φ}, ∃a′ ∈

Aa : (r′, a′) ∈ RE) indicates that if a composite agent enacts a composite role,
it must contain corresponding sub-agents for all the atomic roles in the composite
role.

It can be seen that Definition 5 only describes the formation rules of an enact-
ment but not specify whether a specification can be fulfilled by the enactment.
Therefore, we give the definition of complete enactment as follows.

Definition 6 (complete enactment). An enactment E = (S,A∗, RE) is a
complete enactment when ∀r ∈ R∗

A(r0S), ∃a ∈ A∗ : (r, a) ∈ RE, indicating
that for each atomic role in the specification S, there is at least one agent
enacting it.

In open inter-organizational collaborations where agents are free to decide their
partnership, an enactment may not be a complete enactment. While in closed
inter-organizational collaborations, an enactment must be a complete enactment
to make sure that the objectives of corresponding specifications can be accom-
plished.

In our example, a particular instance of specification and enactment is illus-
trated in Figure 2. In the project, the Project Manager in the top level organiza-
tion is enacted by a research and technology organization in which two employees
enact the sub-roles Project Director and Project Coordinator. The Knowledge
Disseminator is enacted by two independent agents. One is an academy on lo-
gistics while the other is a set of interest groups. The Research & Development is
enacted through four independent agents each enacting a sub-role. In particular,
the Information Governance Modeler is enacted by a university that transforms
this atomic role into a composite role and further elaborates it into an organiza-
tion containing two atomic roles Team leader and Team member shown at the
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lowest level. The Team leader is enacted by a person while the Team mem-
ber is multi-enacted by a group of researchers. All the role enacting agents in
this project are selected by the project owner through comparing the capa-
bilities of the candidate agents with the required capabilities of the roles. In
addition, if a new role Norm modeler is added in the organization of Research
& Development, it will only influence the related roles and their enacting agents
within this organization, which makes the whole model more stable. It can be
seen that the organizational interactions of the project are described from ab-
stract to concrete in a hierarchical structure, which not only decomposes the
complexity of the project into sub components that can be designed or con-
trolled by different entities, but also provides flexile role enactments for agents
since they can further elaborate the role specification according to their own
characteristics.
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Fig. 2. The specification and enactment of the project

4 Design Guidelines

OperA+ describes organizational interactions at multiple levels of abstraction
with the process of role elaboration in terms of composite roles and organizations.
After a number of case analysis using the OperA+ framework in our research,
we give the following guidelines.
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4.1 Role Identification

Roles are the core building blocks of organizational collaboration models. They
give instructions for agents’ interactions that will finally achieve the objectives
of a system. An organization is a set of interdependent roles. Therefore, the
global behavior embodied by an organization is decomposed into finer-grained
behaviors captured by the roles in the organization. When identifying roles in
an organization, the following aspects can be considered.

(1) Functions. An organization is designed for a specific purpose which defines
the overall function of the organization. Role identification in an organization
results in the distribution of the overall function to a set of smaller functions.
Therefore, when a relatively independent sub function can be derived from the
overall function of a system, the sub function may indicate a role in the or-
ganization of the system. For example, in an international trade organization,
the overall function is to transport goods from the place where the goods are
produced to the place where the goods are demanded. Within this organization,
the overall function can be decomposed into several sub functions such as pro-
ducing, exporting, importing, which can be accomplished by different entities.
Correspondingly, we will identify the roles as producer, exporter, importer.

(2) Regulations. In addition to the functions, regulations are another im-
portant issue that need to be taken into account for role identification. In real
applications which involve authorities as a main participant, regulations are al-
ways a key element for role identifications. For example, in international trade,
customs is a very important role which regulate other participants’ behavior.
Therefore, customs can be seen as a focal point of the organization from which
other roles can be identified through the regulative relationships they have with
the customs.

4.2 Lower-Level Organization Identification

A lower-level organization is an elaboration of a composite role in terms of
finer-grained sub-roles which contain more specific objectives and dependencies.
However, if the specification is too detailed, i.e., the specification contains a lot
of constraints describing by lower-level organization of roles, the agents enact the
specification will have little autonomy to achieve the overall objectives, which is
not the case in socio-technical systems. On the other hand, if the specification
is very abstract, the agents will not have sufficient guidance and constraints
to perform the tasks, which may lead to deviation from the original goals of
the system. Therefore, a balance should be achieved when designing lower-level
organizations.

(1) Importance in the Regulative Process. In an organization, some of the
roles are more important with respects to their functionalities and their connec-
tions with other roles. These roles normally need more analysis and regulations.
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For example, exporters and importers are the main roles in international trade
since they have more interactions with other participants such as producers,
logistic service provider, customs. Such roles generally need to be specified at
lower levels for clearness of their organization so that customs can regulate them
more easily and other participants can have better interactions with them. On
the other hand, logistic service provider, whose main objective is transporting
goods from one place to another in time, is usually considered as a supporting
role to help exporters/importers achieve their objectives. Thus, we do not need
to elaborate its organization in most of the cases. Besides, customs is a very
important role since it regulates the whole business process and functions as the
director in international trade.

(2) Capabilities. Capabilities are the key factor to determine which agents
can be assigned to which roles within an organization. If the required capabili-
ties of a role are quite diverse and related to several domains, the role usually
needs to be elaborated in a lower-level organization in which capabilities of the
same domain are assigned to a sub-role. For example, in the EU project we in-
troduced in Section 3, the role of Research & Development requires knowledge
of several domains such as service architecture, information governance. In or-
der to employ agents who have expertise in these different domains, the role
is refined into a lower-level organization which contains more detailed explana-
tion of what objectives should be done and what kind of domain knowledge is
required.

4.3 Modeling Process

Following a modular way, an OperA+ model subdivides a system into lower-level
organizations that can be independently designed and then re-used in different
systems to drive multiple functionalities. Based on the compositionality of roles
and agents in OperA+, we divide the whole modeling process into four phases
as shown in Figure 3. The vertical dimension is from abstract contexts to spe-
cific contexts while the horizontal dimension is from roles to agents. In abstract
contexts, organizational interactions are described by roles with very general ob-
jectives so that agents have much autonomy but little guidance and constraints.
To ensure that the objectives of the roles can be accomplished, on the one hand,
roles in abstract contexts will be elaborated with more specific information, and
on the other hand, eligible agents will be admitted to join in the organization
and enact the roles. Finally, the whole picture of the organizational interaction
model can be obtained.

(1) Roles in Abstract Contexts. For a system to be modeled, there must be
some initiative objectives that trigger the system. These objectives are always
described at an abstract level and only give the general ideas about what to
do. The roles in this phase can be derived from related applications according to
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Fig. 3. Modeling process

the initial requirements of the model. Therefore, they can be reused by other
organization models with similar requirements. In practice, organizational col-
laboration models are of different types such as inter-organizational projects,
supply chains. These types of collaboration models have their own universal set
of basic roles which can be seen as templates. Based on the nature of an organi-
zational collaboration, we can inherit the basic roles from the related templates.
That is, we have some patterns to use in the first phase. Specifically, some orga-
nizational collaboration models may cover multiple types and they can inherit
the basic roles from all the templates of these types. For role dependencies, a
similar mechanism can be used.

(2) Roles in Specific Contexts. Based on the roles derived from abstract
contexts, further elaboration is needed for specific applications. In this phase,
the roles are case specific and are obtained based on the characteristics of specific
collaboration requirements. Organizational collaboration models with the same
set of roles in an abstract context may have different requirements in specific
contexts and result in different lower-level organizations of sub-roles. That is,
with the refinement of contexts, an organizational collaboration model at an
abstract level is contextualized into finer-grained organizations of components
with respect to different application environments. With more specific objectives,
agents can know what is actually needed to be done in a specific situation.
However, “specific” is in a relative sense and the degree of specificity should
balance both indication and autonomy. Therefore, on the one hand, enough
regulations are imposed on the agents’ behavior so that the implementation of
the system does not deviate from the original goals. On the other hand, the
agents have enough autonomy to decide their participation and collaborating
strategies.



An Agent-Based Inter-organizational Collaboration Framework: OperA+ 71

(3) Agents in Abstract Contexts. In accordance with the roles in abstract
contexts, potential agents can be identified. Generally speaking, no single agent
can accomplish the objectives of a role in an abstract context. This is due to
the fact that organizations in real business world usually focus on a few busi-
ness fields and have limited resources. No single organization can do all the
work in a large business process that involves several business fields and re-
quires a large quantity of resources. Therefore, we should construct a pool of
potential enactors, i.e. candidate agents. All the qualified agents can be added
into the pool for further selection. In this phase, we only know the general ob-
jectives from the roles in abstract contexts, and these objectives serve as the
basic requirements for the agents who want to participate in an organizational
collaboration.

(4) Agents in Specific Contexts. In the last phase, we should figure out
the specific agents for the roles in a specific context. Then the objectives of the
roles can be accomplished as expected. For this, the second phase and the third
phase which describe the different aspects of the collaboration model should be
combined to derive the final results. According to the roles in a specific context,
we know what objectives to achieve in a specific situation. From the agents in an
abstract context, we select appropriate agents for the roles in specific contexts.
Finally, we know exactly who achieves what objectives and the whole model is
constructed.

5 Related Work

Agent-based systems are increasing both in size and diversity. This growth is
pushing agent-based systems beyond a size that is manageable by individual
organizations [15]. Thus, there is a growing need for the use of organization
frameworks in agent societies. One of the first models of agent organizations is
the AGR model [15]. An AGR model describes an organization as a role-group
structure imposed on agents, which provides the basic foundational elements
required in multi-agent systems to foster dynamic group formation and opera-
tion. In AGR, a group is used as a container to organize roles and agents but it
does not consider roles and agents themselves as composite entities which can
be represented at multiple abstraction levels.

DESIRE [2] is a compositional framework for modeling multi-agent tasks,
which focuses on the composite tasks of a single agent not the composite struc-
ture of the agent itself. Moise+ [11] is an organizational model that considers
the structure, the functioning, and the deontic relation among them. In Moise+,
three main concepts, roles, role relations, and groups, are used to build the in-
dividual, social, and collective structural levels of organization, but agents are
not further refined as structural components. MaSE methodology [9] is a full-
lifecycle methodology for analyzing, designing, and developing heterogeneous
MASs. Roles are transformed from the goal hierarchy diagram and form the
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foundation for agent classes and correspond to system goals during the design
phase, while agents are defined in terms of the roles they will play and the
conversations in which they may participate.

Extended Gaia [17] is an agent-oriented methodology based on the organi-
zational concepts of roles, interactions, and organizations, but neither roles nor
agents are considered as composite components that are modeled at multiple
levels of abstraction. Roadmap [13] is another extension to Gaia, which has four
improvements: formal models of knowledge and the environment, role hierar-
chies, explicit representation of social structures and relationships, and incorpo-
ration of dynamic changes. Tropos [4] adopts the notions of actor, goal, plan,
etc., in all phases of software development, but an actor is used to represent
a physical, social or software agent as well as a role or position, which does
not explicitly represent the regulating structures independently from the acting
components.

INGENIAS [16] provides five meta-models (organization, environment, tasks/
goals, agent and interaction) to guide the development of a MAS in which the
agent model describes individual agents without composite structures. In [5], a
formal role-based framework is proposed for modeling organizations, which only
explores the composite structure of roles while takes agents as black boxes. Based
on a holonic organizational metamodel, ASPECS [6] provides a suite of refine-
ment methods for modeling systems at different levels of details from require-
ments to code. The vision of holons is similar with the recursive and composed
agent in MASs while our proposal explores the composite structures of both
roles/organizations and agents from two dimensions and establishes a flexible
combination.

6 Conclusion and Future Work

This paper proposes the framework OperA+ to model inter-organizational col-
laborations at different levels of abstraction. OperA+ presents a full illustration
of who achieves what objectives in two dimensions of specification and enact-
ment with initial steps of formalization. In particular, it provides a flexible way of
modeling organizational interactions by which designers and actors can achieve
a balance between conformity and autonomy. Targeting at modeling complex
systems where autonomous entities interact with each other to achieve collective
goals and those entities again have inner structures in which a set of sub-entities
coexist, OperA+ facilitates a composite way of modeling organizational inter-
actions, which not only distributes the complexity of the whole system but also
provides a mechanism to show the commonalities and individualities of an inter-
organizational collaboration model from different perspectives. In OperA+, for-
mal specifications at an abstract level can have different extensions according to
different situations. To help users build their own applications using OperA+,
some design guidelines are provided.

In future work, we intend to design an algorithm for the mappings between
roles and agents according to their properties. That is, how to find a proper
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enactment for a specification of an organizational model to better achieve the
objectives. Currently, the OperA+ framework only concentrates on the social
structure of the organizational model in OperA. In order to build an integral
agent society supporting inter-organizational collaborations, other structures
and models in OperA also need to be elaborated. Moreover, we will develop a
simulation platform to evaluate different extensions of an abstract specification
based on a set of indicators.
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Abstract. In this paper we present a new approach to model electronic institu-
tions (EIs) that are situated in agent environments where heterogeneous agents
reside. An EI is seen here as an entity that is deployed within an environment
infrastructure that directly mediates the agents’ interaction. The environment al-
lows the rules of the EIs, in terms of powers, permissions and obligations to
be perceivable as first class entities by the agents belonging to the institution.
We express EIs as first class abstractions that can be inspected, manipulated and
modified, created and destroyed by the agents populating the agent environment
where the institution resides. To represent the EIs we utilize the Object Event
Calculus (OEC) formalism that deals with the evolution of complex structures in
time and we extend it to deal with the mediation of the events and with the per-
ception of complex structures and events within institutions. We use an e-Health
marketplace scenario based on Dutch auctions to illustrate the properties of our
model.

Keywords: multi-agent systems, normative systems, electronic institutions, agent
environments, logic programming.

1 Introduction

In the Web 3.0 [16], human beings and software applications freely interact to carry
out complex activities, inclusive of (but not limited to) e-business and e-government
applications. People and organizations delegate many of their tasks to software applica-
tions, called agents. An agent is considered an autonomous entity which observes and
acts upon an environment and directs its activity towards achieving its goals [30]. These
agents behave as representatives acting both reactively and proactively in their princi-
pal’s interest while they are also empowered to carry out tasks that have legal effects,
like signing contracts and performing business transactions.

Many Web 3.0 applications can be defined as complex open multi-agent systems
(MASs) [15]. A MAS can be considered open [20] when it satisfies the following prop-
erties: i) agents are free to join and leave at any time and ii) agents are designed by and
represent different stakeholders with different objectives.
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Due to the properties of open MASs, a set of issues must be considered [4]: an open
MAS is by definition dynamic as the agents may join or leave at any time; it is insecure
as an agent may be programmed to be malicious; it is not deterministic as no agent
can have a global knowledge of the system; and finally it has not a central authority.
Normative systems, or as Ägotnes et al. specify in [1], systems were social rules apply,
try to tackle these issues by defining rules to coordinate heterogeneous agents.

Electronic institutions (EI) [14] are an approach to normative systems, containing
a constitutive and regulative part [5]. We can regard an EI as a means for imposing a
well-defined structure to the social reality within which agents interact [23], based on a
set of rules that mediate the interaction taking place between the agents.

However, EIs suffer from a number of drawbacks. First of all, despite the fact that
normative systems provide a level of abstraction in terms of social rules amongst agent
societies, it is not clear how these rules mediate the interaction in a MAS in terms of
concrete mechanisms. Moreover, the governor agent approach suggested by some en-
forcement based normative systems [12] has the disadvantage of mixing the concept
of infrastructure with the concept of agent, implying that everything in the system is
represented as a communicating agent, even when encapsulating low level reactive re-
sources, resulting in quite computationally expensive applications. An example of a
model where everything inside the MAS is considered as a communicating agent is the
framework proposed by Campos et al. [8] as an extension to electronic institutions.

Secondly, EIs lack of mechanisms that allow the perception of institutional entities
and events. The perception of an EI could allow the agents to decide whether participat-
ing in the institution would benefit the accomplishment of their goals. Thirdly, current
research on normative systems is mainly focused on the communication events inside
the system. While communication events are of great importance, they are not sufficient
to describe all the possible interactions of the institutional entities and they cannot fully
describe the evolution of the system.

To avoid the three drawbacks described above, we present a meta-model which con-
siders the notion of EI as the social constitutive element of an agent environment. In
particular, our contribution is to provide a model that proposes the following solutions
to the current drawbacks of EIs: i) we introduce the concept of institutional space as the
mediator of the social interaction between agents in the agent environment; ii) we pro-
pose a perception model to observe institutional spaces and their norms; iii) we present
an event system to handle the evolution of institutional spaces and of MASs related to
these institutional spaces. We illustrate the perception properties of these concepts by
means of an e-Health marketplace example. Although the perception of norms implies
that agents can interpret them, for the purposes of this paper we focus only on the social
interactions of the agents.

The remainder of this paper is structured as follows: Section 2 is a description of
the main properties of agent environment that we have to take into consideration to
define our EI meta-model; Section 3 presents our meta-model of first-class Electronic
Institutions; Section 4 shows how we apply our model within an e-Health market place
based on Dutch auctions; Section 5 shows sketches of our in Prolog; Section 6 puts our
work in comparison with existing EI frameworks; finally Section 7 concludes this paper
and shows some possible future work directions.
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2 Normative Systems and First-Class Agent Environments

Although there is not a clear definition of the agent environment in the traditional nor-
mative system models, Esteva in [11] was the first to mention that EIs can be considered
as an effort to shape the environment where the agents are situated, offering the agents
the conditions to exist and interact. Usually, in the literature, the environment is consid-
ered as a domain-specific infrastructure for agents while its main responsibility is the
objective coordination of the agents [29].

The agent environment can be used as a first-class abstraction that mediates the in-
teraction between agents taking part in a distributed MAS. First-class abstraction means
that the environment is an independent component inside the MAS structure that has its
own responsibilities irrelevant to the goals of the agents. According to Weyns [29], the
agent environment as a first-class entity can offer four different levels of support:

Basic level: at this level the environment enables agents to access to the deployment
context. By deployment context, it is meant the external resources with which the
MAS interacts (e.g. printers, databases and Web services).

Abstraction level: at this level the environment shields low-level details of external
resources defining a standard interface that the agents can access from the environ-
ment.

Interaction-mediation level: the interaction mediation level offers support to regulate
the access to resources and to mediate the interaction between agents.

Reflection level: The environment supports the modification of its composition and
function during runtime. The agents can perceive the properties of the environment
and interact in order to modify its state.

A distributed implementation of the model of agent environment proposed by Weyns
is represented by the GOLEM agent platform [7]. One of the drawbacks of GOLEM is
that it does not model the social interaction amongst the agents, handling it in an ad-hoc
manner according to the application, limiting the reusability of the agents and of the
infrastructure. Based on the basic level of support proposed by GOLEM, we want to
use the abstraction and mediation level of support provided by the agent environment to
offer a solution to the main drawbacks of electronic institutions as presented in the pre-
vious section and to provide a reusable social interaction model for agent environments.
For the purposes of this paper, we study only the environment perception provided by
the reflection level and we do not consider run-time modification of its laws.

In order to embed these levels of support into electronic institutions, we first need to
specify the appropriate type of normative systems we will use for the mediation of agent
interactions. There are two approaches to define normative systems [19]: a)regimentation
based normative systems, in which a set of rules and protocols are defined to coordinate
the behavior of the agent; b) enforcement based normative systems, in which some of
the agents in the open MAS have the role of regulator agents enforcing the rules when
they discover they have been violated.

Regimentation based normative systems are less flexible as it is necessary to spec-
ify the rules at design time and the agents are not free to perform actions outside the
rules defined by the normative system. The enforcement based approach allows agents
to take actions outside the rules of the normative system, but it has the drawback that
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sometimes the agents can behave maliciously and not being caught by the enforcer of
the law. While proper coordination of agents is crucial, at the same time, it is important
to ensure the autonomy of agents. Thus, we envisage electronic institutions as enforce-
ment based normative systems where the agents are free to perform actions outside the
rules of the system but for every forbidden action, the system is tracking the violation
and applies a corresponding sanction to punish the agent and to preserve its stability.
We use enforcement based normative systems that can be created at runtime, but where
their rules are first class citizens [25], meaning that the agents can observe the rules.

Moreover, EIs include two basic types of norms: i) constitutive norms and ii) regula-
tive norms. Constitutive norms are based on the notion that ”X count-as Y in context C”
and are used to support regulative norms by introducing institutional facts in the rep-
resentation of legal reality [5]. Regulative norms are the main mediation drivers in EIs
and are realized by using three main concepts (adapted from [3]) for mediation: power,
obligation and permission.

Power specifies that an agent can perform a designated action in a context, which
creates or changes an institutional fact. Obligation expresses the idea that at a given time
the agent should produce an action as specified by the rules of the normative system.
Obligation implies also the concept of prohibition or negative obligation as an action
that is forbidden by the rules of the system at a certain time. The concept of permission
is both related to the state of the EI and to the concept of power. An agent could either
exercise its power, if and only if the institutional conditions permit it (conditional power
[13]) or exercise its power even if it does not have the permission to do it. On the second
case the agent will be sanctioned by the system. Which of the two previous approaches
will be followed depends only on the choice of the EI designer.

3 Modeling First-Class Electronic Institutions

3.1 The MANET Meta-model

The MANET (Multi-agent Normative EnvironmenTs) meta-model is based on the as-
sumption that the agent environment is composed by two fundamental building blocks;
the physical environment, concerned with agent interaction with physical resources and
with the MAS infrastructure, and the social environment, concerned with the social
interactions of the agents and coinciding with the notion of electronic institutions.

In the MANET meta-model we assume that EIs can be composed of three structural
components inspired by Stratulat et al. [26]: agents, objects and spaces.

The notion of agent describes the proactive entities within the normative system.
For the agents, we assume a separation between a cognitive mind and a physical body
with sensors and effectors as described in [7]. The cognitive mind analyzes and reasons
about the data received by the sensors as well as reasoning about the agent strategy. The
agent uses its effectors to act inside the environment.

The notion of object describes first-class entities that represent virtual entities, vir-
tualizations of external resources or web services, offering an abstraction that hides the
low level details from the agents. From the standpoint of EIs, these virtual entities can
depict either physical objects either institutional objects.
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On one hand physical objects are considered the physical entities of the application
(web services, databases, external files etc.) that are present inside an EI. On the other
hand, institutional objects, are objects existing only in common agreement amongst the
agents of an EI. Institutional objects can be further categorized as: a) objects that can
exist within the communication amongst the agents, such as the goods to trade in a mar-
ket; b) objects that represent agreements between one or more parties; c) objects that
represent sanctions for the incorrect behavior of the agent in the EI; d) objects that rep-
resent norms of an EI; e) objects that represent institutional spaces, f) and finally objects
that represent roles of agents within an EI. Moreover, physical objects can be consid-
ered as institutional ones when they obtain institutional attributes during the evolution
of the agent environment.

Finally the third structural component of our model are spaces. By default in our
model, there always exists a root space which contains all the physical laws (derived
from the infrastructure of the MAS) of the system (as first-class objects) and where
all the other spaces of the system are been created. But in direct analogy to the hu-
man reality where we can distinguish between the physical world and the social world,
in MASs we can consider institutional spaces [26] describing the EIs in a normative
system. All the institutional spaces of a MASs are situated inside the root physical
space.

Institutional spaces constitute a first-class representation of the boundaries and the
structure of legal entities like EIs. These spaces include the objects and the agents
participating in an EI, and contain information about institutions’ topology and con-
figuration. The term boundary here implies that spaces specify the limits of the ef-
fects of the events performed by the agents. In our model we suppose that the effects
of an event produced inside one space hold only for that space. Since spaces are the
boundaries and containers of events, they manage norm violations and fulfillments.
The content of each event and the combination of role/power of the agents that pro-
duced the event are always checked by the space against the corresponding norms. In
case of a norm violation, a space will retrieve the information of the appropriate sanc-
tion objects and will apply them to the agent that did not comply with the rules of
the system. In other words, we see institutional spaces as structures whose state exist
in the physical environment, that is perceivable and modifiable through production of
events.

It is important to stress that in our model, norms, agreements and sanctions are ex-
pressed as complex structures, meaning that they can be deployed as objects in an in-
stitutional space. Institutional spaces can be folded inside other spaces or can be dis-
tributed across more than one space creating complex topologies. In this paper we show
how a space can be created inside another but we do not elaborate the details of possible
dependencies between different institutional spaces. We assume that norms of a father
space are not propagated to a child space inside it. Each institutional space is discrete
and distinct.

In general, in normative systems, agents’ interactions can create new institutional re-
alities (e.g. new EIs). In our model, each time a new EI is to be born, a new institutional
space is being created, which includes all the norms, the objects and the agents of the
institution, which combined together constitute a first-class representation of an EI.
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3.2 Modeling First-Class Electronic Institutions with the Object Event Calculus
and C-Logic

In order to describe the dynamics of our meta-model we use the Object Event Calculus
(OEC) formalization. The Object Event Calculus is a dialect of the Event Calculus (EC)
[18] that is suitable to represent the evolution in time of complex structures by means
of events. The main advantage of OEC is that it determines the state of an object by
assigning values to its attributes. Based on this property, it deals with the evolution of
an object over time, parameterizing its attributes with times at which these attributes
hold various values.

The Object Event Calculus predicates we use for the purposes of this paper are shown
below:

(C1) holds at(Id, Class, Attr, Val, T)← happens(E, Ti), Ti ≤ T, initiates(E, Id, Class, Attr, Val),
not broken(Id, Class, Attr, Val, Ti, T).

(C2) broken(Id, Class, Attr, Val, Ti, Tn)← happens(E, Tj), Ti < Tj ≤Tn, terminates(E, Id, Class, Attr, Val).
(C3) holds at(Id, Class, Attr, Val, T)← method(Class, Id, Attr, Val, Body), solve at(Body, T).
(C4) attribute of(Class, X, Type)← attribute(Class, X, Type).
(C5) attribute of(Sub, X, Type)← is a(Sub, Class), attribute of(Class, X, Type).
(C6) instance of(Id, Class, T)← happens(E, Ti), Ti ≤ T, assigns(E, Id, Class), not removed(Id, Class, Ti, T).
(C7) removed(Id, Class, Ti, Tn)← happens(E, Tj), Ti < Tj ≤ Tn, destroys(E, Id).
(C8) assigns(E, Id, Class)← is a(Sub, Class), assigns(E, Id, Sub).
(C9) terminates(E, Id, Class, Attr, )← attribute of(Class, Attr, single), initiates(E, Id, Class, Attr, ).
(C10) terminates(E, Id, , Attr, )← destroys(E, Id).
(C11) terminates(E, Id, , Attr, IdVal)← destroys(E, IdVal).

Clauses C1-C2 provide the basic formulation of OEC deriving how the value of an at-
tribute for a complex term holds at a specific time. Clause C3 describes how to represent
derived attributes of objects treated as method calls computed by means of a solve at/2
meta-interpreter as specified in [17]. C4-C5 support a monotonic inheritance of attributes
names for a class limited to the subset relation. As C1-C2 describe what holds at a spe-
cific time, C6-C7 determine how to derive the instance of a class at a specific time. The
effects of an event on a class is given by assignment assertions; the clause C8 states how
any new instance of a class becomes a new instance of the super-classes. Finally, dele-
tion of objects is catered for by clauses C9-C11. C9 deletes single valued attributes that
have been updated,while C10-C11 delete objects and dangling references.

All the structural entities of our meta-model are considered OEC objects and the
relationships between them are depicted in Fig. 1

To represent the state of the entities at a given time, we will use the C-logic for-
malism [10] as it is a convenient formalism to represent complex structures and it has

Fig. 1. Entity Categories
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a direct translation to the OEC. Complex object descriptions are considered as collec-
tions of atomic properties. An object with several attribute labels can be considered as
a collection of several atomic formulas. According to the definition of spaces we have
introduced, to describe the state of an institutional space at a given time we utilize the
following C-logic structure:
institutional space:is1[

agents ⇒ { agent:a1[ roles ⇒ {role:r1, role:r2} ], agent:a2[ roles ⇒ {role:r1, role:r3} ]},
institutional objects ⇒ {norm object:11, inst object:o2, inst object:o3},
institutional spaces ⇒ { institutional space:s2, institutional space:s3,institutional space:s4}]

that means that is1 is an institutional space, which has a set of agents a1, a2, a set of
institutional objects that the agents can manipulate in the EI and a set of sub institutional
spaces. We can translate the C-logic term above to the following first order logic clauses
that we can query utilizing the predicates of the OEC:
is a(is1, institutional space). attribute(institutional space, agents, multi).
attribute(institutional space, institutional objects, multi). attribute(institutional space, institutional spaces, multi).
time(e1,1). instance(is1,institutional space, start(e1)). object(is1,agents, a1,start(e1)).
objects(is1,agents,a2,start(e1)). object(is1,institutional objects, o1,start(e1)).
objects(is1,institutional objects,o2,start(e1)). object(is1,institutional spaces, s3,start(e1)).
objects(is1,institutional objects,s4,start(e1)).

Similarly, the following C-logic structures:
power:p1[ mediates ⇒ open auction:Ev[actor ⇒ IDActor]@T, check role ⇒ {IDActor, employee}]
sanction:s1[agent ⇒ ag1, credits ⇒ 200]

describe respectively a power rule p1, that mediates events of class open auction, by
checking the power of an agent IDActor that enters the EI as an employee to open an
auction at time T, and a sanction s1 of 200 credits, applied to agent ag1. We will show
later in this paper how such norms and sanctions are applied when the agents execute
an action.

3.3 Evolution of Institutional Spaces

To represent our EIs as first-class abstractions, we will need to define how to represent
the state of an EI, how to perceive its state and the state of the agents taking part in

Fig. 2. Events Hierarchy
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the interaction, and how to represent the events. In this Section we will illustrate our
approach in defining EIs by means of the OEC.

The event schema that we take into consideration in our system is shown in Fig.2.
We distinguish between three kinds of events that are speech events, physical events and
sensing events. This distinction is not new and it was already presented in [7], in this
paper we further extend the hierarchy of events introducing institutional events. Institu-
tional events are considered physical events. This does not go against Searle’s definition
of social events [23], as, despite the fact that the institutional events modify institutional
entitites, they actually change the state of the agent environment acting as regular phys-
ical events. Institutional events include the creation/deletion of institutional spaces and
objects and are necessary for the construction of every new first-class electronic insti-
tution that happens during the evolution of the MAS. Event descriptions are specified
as complex terms and are perceivable by any agent inside the institutional space. This
property of the events allows the agents to understand every action that happens inside
their institutional context. For example, the event description below:
open auction:e14[actor ⇒ ag1, auction ⇒ auction:au1[item⇒ medical item:item1]].

represents an institutional action of agent ag1 who attempts to open an auction about an
item item1 of class medical item. We will see later, how such an action is executed by
the agent that causes the event to happen. For the time being, we will assume that the
event has happened and we will show how the entities’ state in the agent environment
will evolve as a result of the happening of this event. To do this we need to define
domain specific initiates and terminates clauses, as shown below:
assigns(E,Obj, auction) ← open auction:E, auction of(E,Obj).
initiates(E, Au, auction, item, I) ← open auction:E [item ⇒ I].

in this way the assigns/3 domain dependent clause above deals with the creation of an
auction while the initiates/5 clause assigns an attribute item to the newly created insti-
tution. The specification would need also the definition of destroys/3 and terminates/5
clauses to deal with the destruction of an object and termination of an attribute; this is
handled in the OEC by the clause C9 shown in Section 3.

3.4 Acting and Perceiving Inside Institutions

The representation in terms of C-logic structures of the EIs allows us to have multiple
institutions recursively embedded within each others. In order to act within an insti-
tutional space, the agents have to be aware of the space where they want to perform
an action. For the purposes of this paper, we do not consider dependencies between
institutional spaces.

Moreover, the agents’ actions are going to be mediated by the regulative rules of
the institution as we have already mentioned. As a consequence we say that in order
to be performed within an EI, an action has to be attempted in that EI first. We specify
how the EI evolves in time by means of assertion of events, where we keep the events
description separated from the attempt.
attempt(e14, 120).
do:e14[actor ⇒ ag1, act ⇒ open auction:m1[institutional space⇒ IS1]].

In particular, through the rule H1a below we say that in order to happen within the EI
the event has to be attempted, the agent producing the event has to have the power to
produce the event and the event must be permitted.
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H1a)happens(Event, T)← attempt(Event[institutional space ⇒ IS], T), power(Event,T), permitted(Event, T).
H1b)happens(Event, T)← happens(Event∗,T), counts as(Event∗[institutional space ⇒ IS],Event,T).
H1c)happens(sanction:Event, T)← obligation(Event∗@T∗,T), T∗ =T.

As a consequence of defining the happens/2 relation in this way, agents must be aware
of the normative systems where they produce events. The rule H1b handles those cases
when an event produced outside the normative system, like a physical event in the agent
environment, has an effect on a normative system. To achieve this we make use of the
counts as/3 predicate, which states that if an event Event∗ happens at time T, then also
another event Event in relation to an institution identified by IS happens too. The rule
H1c specifies that if an obligation has not been satisfied until T, where @T means ”at
time T”, a sanction event happens. We specify further the predicates to enforce the
norms of the institution as follows:
H2)obligation(Ev[institutional space ⇒ IS],T)← instance of(IS,institutional space,T), holds at(IS,norm object,Oid,T),

instance of(Oid,obligation,T), apply norm(Oid,Ev,T).
H3)permission(Ev[institutional space ⇒ IS],T)← instance of(IS, space,T), holds at(IS,institutional space,norm object,Oid,T),

instance of(Oid,permission,T), apply norm(Oid,Ev,T).
H4)power(Ev[institutional space ⇒ IS],T)← instance of(Sid, institutional space,T),

holds at(Sid,institutional space, norm object, Oid,T), instance of(Oid,power,T), apply norm(Oid,Ev,T).

The clauses H2), H3), H4) specify the concepts of power, permission and obligation,
that define three distinct kind of norms. The predicate apply norm/3 is a meta-interpreter
that takes the norms in form of objects and check them against the events produced. To
express how perception takes place in the EIs, we define the H5) and H6) clauses.

H5)notify(Class:E, Sensor, T) ← happens(E, T), E[institutional space ⇒ IS], holds at(IS,agent,Ag,T),
holds at(IS,owns,Sensor,T), holds at(Sensor,senses,Class,T).

H6)perceiveE, S, T) ← happens(E, T), perceive institutional space(E), E[sensor of⇒ S, focus⇒ Focus,
institutional space ⇒ IS].

H5) specifies that whenever an event happens within an institutional space, such event
is notified to the agents that are part of such space if they have a sensor that is ca-
pable to perceive such events. H6) specifies how an agent can focus on a particular
institutional space and perceive its properties, where the solve at/3 predicate returns a
variable substitution of the variables in Focus, if any. The implications of rule H6) is
that the agents deployed in the agent environment and taking place in an institutional
space can perceive the institutional entities, such as agreements, sanctions and norms,
in the institutional space.

4 Applying MANET to an e-Health Marketplace

4.1 What Is the e-Health Marketplace

During the last decade there have been many efforts towards the reduction of health
costs [24] [28]. The public health care system rapidly is absorbing an ever-increasing
share of the gross domestic product [22]. According to the latest available data, hospital
costs account for approximately 35% physicians, 25% drugs, 15% medical equipment
and supporting IT tools while the rest 25% concerns various secondary health costs.
Although there have been numerous research projects trying to reduce the hospital costs
without losing the quality of offered services, the cost of drug and medical equipment
supplies is continuing to increase.
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An automatic negotiation mechanism would enhance the cooperation of medical
units as well as the optimal use of their medical supplies, leading to a reduction of
medical supplies costs. Such negotiation platform for hospitals and medical units could
benefit if designed as an open multi-agent system.

To illustrate our meta-model, we take as a motivating case study a network of hos-
pitals which need to trade about several different medical items. The general medical
challenges that we want to address with our negotiation system are the following ones:

– How do we exploit blood and medicament overplus?
– How do we exploit medicaments whose expiration date is approaching? How is it

possible to supply them at another hospital unit?
– How do we enhance the cooperation and the coordination of hospital units during

urgent incidents?
– How do we reduce the costs for drug supplies at the hospitals?
– How do we ensure the cost and time efficient accomplishment of inter-hospital

requests?

In particular, our concrete objective is to create a negotiation platform that supports the
trading of three different categories of products such as (a) medicaments, (b) blood,
(c) medical equipment. This negotiation platform is considered as a marketplace where
multiple Dutch auctions can occur simultaneously. Each hospital can start an auction
in order to trade a product or it can join an already running auction in order to express
interest for buying a product. A number of legal restrictions can apply at a marketplace
between different hospital units. Some of them are related to the rights of hospitals to
re-sell medical supplies. How we could overcome these legal obstacles is still a point
for further study. For the purpose of this paper we propose a solution based on the
replacement of real monetary units with virtual ones. Each product belonging to one of
the three categories mentioned above, will be negotiated with a starting price expressed
in terms of credits. This implies that each hospital unit will have an account balance
with the other hospitals on credits. The introduction of the notion of credits instead of
real monetary units is crucial in order to avoid legal restrictions on trading of medical
supplies.

Given this setting, we do not make any assumption on the kind of entities performing
the negotiation: they can be either human entities or software agents interacting with
the negotiation platform, although it is important to say that in an emergency scenario
one would expect that the trade is handled by human agents rather than from software
agents.

The case of e-Health marketplace is a typical example of an open system whom
organization can be modeled by EIs and thus it is suitable in order to depict the func-
tionalities of the MANET framework.

4.2 Formalizing the e-Health Marketplace

In order to present the properties of the MANET meta-model we model here a scenario
of the e-Health Market place, making use of the general purpose rules presented in
Section 3 and we add a set of domain dependent axioms to deal with the evolution
of an EI representing a Dutch auction in order to sell medicaments in am e-Health
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marketplace. In particular, we adapted the Dutch auction as presented in [13] to our
formalism based on the OEC and we introduce norms expressed in terms of objects of
the Object Event Calculus formalism. Fig. 3 shows the life-cycle of a Dutch auction
within the auction house agent environment.

Create
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Fig. 3. Auction House Environment State Chart

The Dutch auction electronic institution defines a set of roles for the performance of
institutional actions. The roles define the powers that the agents have in the institution.
These roles, for the purposes of the e-Health marketplace example, are: a) Employee:
it is an agent representing the auction house agent environment and that is entitled to
open auctions. The agent having this role can also run an auction assuming the role
of auctioneer for that auction; b) Participant: it is an agent that can express interest
for an auction, becoming buyers within the auction; c) Buyers: it is an agent that is
participating in an auction in the auction house agent environment trying to buy an item
of interest; d) Auctioneer: it is an agent that coordinates an auction on behalf of a seller
agent; e) Seller: it is an agent that delegates an auctioneer to sell an item in the Dutch
auction.

In Fig. 4, once the auction house is created, the environment waits for the opening
of an auction. Once a seller contacts an employee agent to open an auction, the em-
ployee agent creates an agreement institutional object in the agent environment. This
agreement is perceivable by all the agents inside the auction house, which can modify
its attributes only with institutional actions. In C-logic terms this agreement object is
described as follows:
agreement:c1[

object ⇒ medic item:b1, debtor:a1[ roles ⇒ {role:employee, role:seller}],
creditor:a3[ roles ⇒ {role:seller, role:auctioneer}], minimum price ⇒ 200, deadline ⇒ 2000,
participants ⇒ {agent:aid1, agent:aid2 . . . agent:aidn}]

The term above specifies that an agent a1 is going to open an auction before time 2000
for a medical item b1. When an agreement is created, it can be observed from the
agents populating the environment, which can express their interest in participating
in the auction by modifying the participants attribute of the agreement object with an
institutional action. In particular, when the deadline of the agreement expires, we utilize
a count as/3 as follows:
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Fig. 4. Interaction in the Auction House Agent Environment

count as(participate:Ev, assign role:Ev∗, T)← actor of(Ev,AID),instance of(C,agreement,T),
instance of(C,institution,IS,T),holds at(C,participant, AID,T), role of(Ev∗,buyer), institution of(Ev∗, IS).

to specify that the participate event Ev counts as an assign role event Ev∗ in the newly
created EI for the auction.

The powers of the agents are constrained by the permission norms in the EI: for
example an auctioneer is authorized to open an auction only if its starting time has
elapsed and if there are at least two agents registered as participants. Fig. 4 represents
the interaction taking place in the agent environment represented by the auction house
where the auctions are created and dissolved. In particular, as defined in the auction
life-cycle in Fig. 3, the e-Health auction is dissolved when an agent wins the auction
offering a price that matches the current offer of the seller. To handle the evolution of
the auction within the agent environment represented by the auction house, we utilize
the following norms:
N1)power:n1[ mediates ⇒ start action:Ev[auctioneer⇒ agent:A, item ⇒ O, starting price ⇒ P,

institutional space ⇒ IS]@T, check role ⇒ {A, employee, T}]
N2)power:n2[mediates⇒change price:Ev[auctioneer⇒agent:A, item ⇒ O, new price ⇒ Price,institutional space ⇒ IS]@T,

check role ⇒ {IS, A,auctioneer, T}]
N3)permission:n3[mediates⇒ change price:Ev[auctioneer⇒agent:A,item ⇒O,new price ⇒ Price]@T,hasItem⇒{IS,O T}

check role ⇒ {IS,A,auctioneer, T}, hasPrice ⇒ {IS, O, CurrentPrice, T}, lessThan ⇒ {Price, CurrentPrice}]
N4)obligation:n4[mediates ⇒ assign item:Ev[auctioneer ⇒ Auc, item ⇒ O, buyer ⇒ Buyer, institutional space ⇒ IS]@T,

lastOffer ⇒ {IS,Buyer,O, LastOffer}, currentPrice ⇒ {IS, O,CurrentPrice}, equal ⇒ { LastOffer,CurrentPrice }]
N5)obligation:n5[mediates ⇒ pay:Ev[buyer ⇒ Buyer, amount ⇒ LastOffer, item ⇒ O, institutional space ⇒ IS]@T,

isAssigned ⇒ { IS, Buyer,O,T }, currentPrice ⇒ { IS,O,Price,T }, equal ⇒ LastOffer,Price]

Norm N1 specifies that an agent has the power to start an auction in the auction house
space when it is an employee for the auction house, while norm N2 and norm N3 express
the power of an agent to change the price of an item within an auction space in which
the agent is taking part with the role of auctioneer, and the permission to change the
price from the point of view of the auction if the auction has that item and the new price
is less than the previous one. Norm N4 expresses the obligation of the auctioneer to
assign an item to the winner of the auction, while norm N5 expresses the obligation of
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a buyer agent to pay for the item assigned by the auctioneer. In the case that the events
produced by the agents respect the norms of the institutional space, then the evolution of
the Dutch auction institutional space is handled in terms of initiates/4 and terminates/4
clauses that modify the attributes of the Dutch auction whenever an event takes place.
For example, the following clauses:

initiates(change price:Ev, AuID, lastoffer, NewOff)← time(Ev,T), offer(Ev, NewOff), auction(Ev,AuID), value(NewOff, NVal),
holds at(AuID, lastoffer, OldOff, T), value(OldOff, OVal), NVal < OVal.

terminates(makeoffer:Ev, AuID, lastoffer, )← initiates(makeoffer:Ev, AuID, lastoffer, NewOff).

state that a new offer, is considered the last offer, only if the value of the offer is less than
the previous offer. Finally, we introduce a domain dependent count as/3 to deal with the
case of a buyer agent leaving the institutional space of an auction before having paid:
count as(leave auction:Ev[institutional space ⇒ IS],sanction:Ev∗, T)← actor of(Ev,AID),

obligation(pay:Ev∗∗[institutional space ⇒ IS],T), actor of(Ev∗∗,AID), institution of(Ev∗, IS), credit of(Ev∗,200).

The count as/3 above specifies that an agent leaving while an obligation of paying holds
in the EI will be sanctioned of 200 credits. A further count as/3 clause has been defined
to handle the exception of an auctioneer not delivering the good after the auction, but
we omit it as it is similar to the clause above.

5 Implementation Issues

For the implementation of the normative systems we adopted a logic programming
approach due to the formal and declarative semantics of our model and we implemented
it as a Prolog theory. In particular, we utilized a version of the OEC described in [17],
which is based on caching the periods of time in which an attribute of an object holds.
For example the top-level implementation of the holds at/4 predicate is specified as
follows using object/4 facts:

holds at(ID,Attr,Val,Time):- object(ID,Attr,Val,start(Ev1)), time(Ev1,T1), T1 < Time,
not (object(ID,Attr,Val,end(Ev2)), time(Ev2,T2), T2 ≤Time, T2 > T1.

where the object/4 assertions store when an attribute has been initiated/terminated at a
certain time.

A similar implementation was used for the instance of/3 predicate, using instance/3
facts in the Prolog engine. This representation brings the advantage that indexing can be
performed on both the time interval and the object identifier, meaning that the time to
retrieve the attribute of an object is O(1), once the identifier and the interval are known
as in our specification. Using this approach, Prolog is speeding up the computation of
OEC predicates [27].

When an agent wants to produce events in MANET, it can call the act/2 predicate,
that is specified as follows:
act(E,T):- power(E,T), permission(E,T), produce(E,T).

where power/2 and permission/2 check the event against the existing powers and per-
mission within the instition where it has been produced, while the produce/2 predicate
modifies the state of the Prolog database according to the event.

An example of the state of a norm of the normative system to create an auction in the
auction house agent environment can be expressed as follows:
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instance(r1:[IDS,ID,auctioneer, T], power, start(e1)). object(r1:[IDS,ID,auctioneer, T], mediates, open auction, start(e1)).
object(r1:[IDS,ID,auctioneer, T],template, do(ID,open auction, [property(institution, IDS)]):T,start(e1)).
object(r1:[IDS,ID,auctioneer, T],check role,[IDS,ID, auctioneer,T],start(e1)). time(e1,1).

The state above specifies that there is an instance of a norm that mediates an event of
class open auction, where the template attribute defines the mediated event. The norm
also specifies that it calls the check role/4 predicate to check if the role of the agent
performing the event is the one of auctioneer. Notice that we append the variables that
will be called in the check role/4 predicate in the identifier of the rule, so that we can
instantiate their value in the apply norm/2 meta-predicate as specified below:

attempt(E,T):- power(E,T), permitted(E,T), add(E,T).
power(E,T):- E = do(Actor,EventClass, Elements), member(property(institution, IDS), Elements),

instance of(IDS, institution,T), holds at(IDS, rules, ID:Vars, T), instance of(ID:Vars,power,T),
holds at(ID:Vars,template, E:T,T), not(not(apply norm(ID:Vars,T))).

apply norm(ID:Vars,T):- holds at(ID:Vars, Attr, Vars, T), append([Attr],Vars, Var2), Pred =.. Var2, Pred.

The attempt/2 predicate implemented above checks if the agent has the power and the
permission to produce an event in the environment. If this is the case the add/2 pred-
icates add object/4 or instance/3 assertions to the Prolog database, according to the
effects of the event. The power/2 predicate, checks if there is a norm that specifies if
the agent has the power to produce a certain event with respect to a certain institution.
To do so, the power/2 predicate utilizes the apply norm/2 meta-predicate to check if the
norm specifies any constraint that prevents the agent from performing the action. For
example, we implement the check role/4 constraint as follows:

check role(IDS, ID,Role,T):- instance of(ID,agent,T), instance of(IDS,institution,T),
holds at(IDS, roles,RID,T), instance of(RID,Role,T), holds at(RID, agent, ID,T).

The check role/4 predicate implemented above checks if an agent identified with the
variable ID, has a certain role Role in an EI IDS at a certain time T.

Finally, we create spaces containing norm objects as following:
produce(do(AID,open auction,[property(institution, IDS), property(medicament, StartingPrice), AgentList]), T):-

gensym(ev,Ev),gensym(auction, AucHID), gensym(permission, Perm),
assert(instance(AucHID, institutional space, start(Ev))),
assert(instance(AucHID, auction, start(Ev))), assert(object(AucHID, employee,AID, start(Ev))),
assert(object(IDS, auction,AucHID, start(Ev))), assert(object(AucHID, state,open, start(Ev))),
assert agent roles(AucHID,Ev,AgentList),
assert(instance(Perm:[AucHID,IDS,AID,IDBuyer,Time],permission, start(Ev))),
assert(object(Perm:[AucHID,IDS,AID,IDBuyer,Time], mediates,do(AID,declare winner,

[property(auction, AucHID), property(auction house, IDS), buyer(IDBuyer), sellingPrice(Price)]):Time, start(Ev))),
assert(object(AucHID, permission, Perm:[AucHID,IDS,AID,IDBuyer,Time], start(Ev))),
assert(time(Ev,T)).

In the predicate above, an object of type permission is created as an attibute of the
auction that is being instantiated after the production of the event open auction.
Within the permission/2 and power/2 predicates we check about the norm objects of an
institution by using the apply norm/2 predicate:
apply norm(ID:Vars,T) :- holds at(ID:Vars, predicate:Attr, Vars, T), append([Attr], Vars, ListForm),Pred =.. ListForm ,Pred.

Such a meta-predicate makes use of the =.. Prolog operator to build a query for the
Prolog database using the norm objects. This allows to create dynamic auction spaces
where the norms are applied only when the object exists and not to every single event,
meaning that we can decentralise the check on norms to the single institutional spaces,
as if the institutional spaces represented the boundaries for the production of the events.
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6 Related Work

Fornara et al. have developed OCeAN [14], a meta-model for the specification of elec-
tronic institutions, and an Agent Communication Language (ACL) to model open inter-
action systems where heterogeneous software and human agents interact. The OCeAN
meta-model consists of the following components: (i) constructs to define the core on-
tology of an institution, (ii) roles and of events; (iii) the counts-as relation, which is
necessary for the concrete performance of institutional actions; (iv) and norms. One
difference between MANET and the OCeAN meta-model is that we consider institu-
tions as first-class entities, which allow the perception of their components (e.g. norms,
objects and sanctions) that are also described as first-class entities. Another difference
is related to the types of events that are possible inside an institution. In the OCeAN
meta-model only communication events are considered, whereas in our approach we
define a more detailed schema of events in order to describe all the possible situations
during the evolution of an open MAS.

Another work with a similar approach to ours, is this of Cardoso and Oliveira [9].
The authors consider EIs as a software framework which consists of a set of services
and a normative environment. The role of the services is to allow agents to create or-
ganizational structures ruled by a set of mutual commitments and norms. In MANET,
we try to solve the problem of creating organizational structures with a similar way, by
using first-class institutional objects which exist in the agent environment. The affor-
dances of the objects allow the agents to perceive them and use them in order to create
new institutional reality. The way the objects can be used is regulated by the norms of
the space wherein the obect reside.

Artikis and Sergot in [3] present a model of executable specifications of open MAS
where open MAS are considered instances of normative systems. The authors represent
the social constraints (laws) of the system in terms of physical capabilities, institutional
power, permission and prohibition as well as sanctions and enforcement policies. In our
model we adopt a very similar model of institutional rules based on powers which are
dependent on permissions, obligations and sanctions. However, in our work we consider
institutional rules as first-class entities which can be observed by the agents, allowing
them to reason about the normative constraints of the open MAS.

In [27] Urovi and Stathis define the MAGE framework. MAGE uses the OEC for-
malism to represent games as first-class entities that evolve in time. Such games are
interconnected in a hierarchy composed of atomic games and composite games. The
state of the composite games is defined by the relationships between the atomic games
and their transitions and the agents can perceive the legal actions in a game at a certain
time. MANET institutional spaces correspond to MAGE games which also evolve due
to the production of events. The main difference between MANET and MAGE is that
we include the possibility of defining institutional objects, such as norms and agree-
ments, allowing for norms to have a structure and be perceivable, meaning that the
agents can reason about whether or not complying with a norm is to their best interest.

Also related to our work is the work of Piunti et al. to unify in one model the concepts
of agents, organizations and environments [21]. This model allows for designing and
programming an environment in terms of a dynamic set of first-class computational
entities called artifacts, collected in workspaces. Artifacts represent resources and tools
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that agents can dynamically instantiate, share and use to support their individual and
collective activities. The notions of artifacts and workspaces have similarities with these
of objects and spaces. But unlike Piunti et al., spaces in our approach are not just the
containers of agents and objects modeling the locality of the application domain but in
contrast they are the main enforcers of the law and regulators of the MAS evolution.

Finally, Boissier and Fred [6] proposed a framework for normative organizations
where organizational artifacts are used in order to instrument the multi-agent environ-
ment and the organizational entities living whithin them. These artifacts can also show
as observable properties information related to the current status of the norms given the
agents behaviour related to organizations they are linked to. In MANET we follow a
different line. The norms are described as first-class objects and as result their status
and state are dirrectly obsvervable inside the organization.

7 Conclusion and Future Works

We presented a meta-model that describes institutions as social agent environments [29]
by extending upon the OEC formalism [17], based on the concept of agent environment
as presented in [7]. In particular we presented a model that can handle the life-cycle
of multiple institutions at runtime, where the institutions are represented as first-class
objects that the agents can perceive. Moreover, our model supports the definition of
institutional objects, such as agreements, sanctions and norms that the agents can per-
ceive as part of an electronic institution. We presented this model utilizing an e-Health
marketplace based on Dutch auctions as a motivating example.

There are several directions that are worth exploring for future work. First of all,
we plan to extend our framework towards an application independent model describing
all the properties of electronic institutions and whose run-time specifications are fully
explained.

Secondly, we want to handle dynamic norm change within the institution when an
agent society requires it due to an external exception. For this reason we have to provide
a complete methodology for the perception of norms by the agents. As recognized by
Artikis et al. in [2], learning the rules of an institution is recognized as a problem, as a
consequence we plan to investigate machine learning approaches that can make use of
our model to create cognitive agents capable of learning how to interact within multiple
heterogeneous institutions.

Finally, an important future contribution would be the definition of an approach for
managing institutional spaces’ interdependencies. In particular, we plan to propose an
approach based on the first-class concepts of space and object for tackling two basic
EIs interdependency questions: i) how is the behaviour of an agent affected when it
is simultaneously participating in more than one institutional space having conflicting
norms?; ii) how is it possible to monitor and mediate (if applicable) the behaviour of an
agent participating in more than one institutional space?
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Universitat Politècnica de Catalunya - BarcelonaTECH

Campus Nord UPC, Edifici K2M
C/ Jordi Girona 1-3, 08034 Barcelona, Spain

{panagiotidi,jvazquez}@lsi.upc.edu

Abstract. Nowadays there is an important increase in the adoption and use of
distributed computational solutions which are growing both in size (from tens
to hundreds or even thousands of components, computational entities or actors)
and in complexity (from closed, static, pre-defined interactions to more open,
dynamic ones stablished at run-time). In this scenario one way to tame such com-
plexity is to add a social layer on top regulating or shaping the behaviour of the
actors in the system. One of those social abstractions that has been explored in
literature is the use of computational models of (social or organisational) norms.
Most of these approaches see norms as a way to specify acceptable agent be-
haviour in some (distributed) context. In literature there is a lot of work on norm
theories, models and specifications on how agents might take norms into account
when reasoning but few practical implementations. In this paper we present a first
step into the implementation of practical normative agents by describing a frame-
work and an implementation of norm-oriented planning. In this framework norms
can be either obligations or prohibitions which can be violated, and are accom-
panied by repair norms in case they are breached. Unlike most frameworks, our
approach takes into consideration the operationalisation of norms during the plan
generation phase. Norm operational semantics is expressed as an extension/on
top of STRIPS semantics, acting as a form of temporal restrictions over the tra-
jectories (plans) computed by the planner. In combination with the agent’s utility
functions over the actions, the norm-aware planner computes the most profitable
trajectory concluding to a state of the world where no pending obligations exist
and any (obligation/prohibition) violation has been handled. An implementation
of the framework in PDDL is described.

1 Introduction

In the last 20 years software systems have moved from isolated computational nodes
with limited networked interactions into distributed solutions across (multiple) net-
works, computational systems have become more and more complex in nature, resulting
in highly complicated interconnected systems. As such systems grow in size to include
hundreds (and even thousands of computational components/entities), system designers
and managers face the problem on how to tackle the increased complexity and dynamic-
ity of such systems, in special to ensure that the system as a whole an/or its components
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behave within some acceptable bounds. One approach coming from multi-agent sys-
tems research is to add some social models where actors keep some autonomy while
their behaviour is somehow regulated in order to produce desirable and avoid unde-
sirable situations. In such models, goals and interactions are usually not specified in
terms of the mental states of individual agents, but in terms of social or organisational
concepts such as roles (or function, or position), groups (or communities), norms (or
regulations or policies) and communication protocols (including ontologies). In these
cases, agents are seen as actors that perform the role(s) described by the social/organi-
sational design.

Often the very notion of agent autonomy refers to the capability of an agent to act in-
dependently, exhibiting control over its own internal state meaning that an agent needs
to anticipate, plan and adopt actions that are in accordance to organisational specifica-
tions while, at the same time, optimising its individual outcome. Despite the fact that
such norm autonomy is important in complex systems where dynamic decision making
is a key element and where conflicts frequently occur, few systems achieve capturing
an efficient normative reasoning procedure. In literature there is a lot of work on norm
theories, models and specifications on how agents might take norms into account when
reasoning. However:

– most of these works focus in the deliberation step of an agent’s reasoning cycle
(that is, deciding WHAT to do from the agents’ beliefs, desires and intentions);

– few practical implementations exist that cover the full BDI cycle, as many ap-
proaches do not include the means-ends reasoning step (that is, deciding HOW
to achieve WHAT the agent is aiming for).

In fact in many norm-aware agent implementations the plans are pre-computed off-line,
and the means-ends reasoning is reduced into a selection of an appropriate plan to reach
some goal or state.

In this paper we aim to move towards a fully normative-aware agent by describing
a framework to support practical normative reasoning that can be used by agents to
produce their plans. Our approach is based on a extension of the well known STRIPS
language to include an extra layer of normative representation that, on top of the domain
description, adds norms acting as complex restrictions to the planning problem and
influencing the planning mechanism in a way that it produces the most beneficial plans.
We also show how a standard PDDL planner is able to receive a domain description
and additionally the normative specification and then compute executional paths that
consider the restrictions imposed by norms, either conforming to or avoiding to take
into consideration while considering any possible sanction.

The paper is structured as follows. In Section 2 we describe a simple scenario that
we will use through the paper. Then in Section 3 we describe the semantics of the
STRIPS formalisation that we use as basis for our normative model, which is presented
in Section 4. In Section 5 we explain how the framework has been adapted for its im-
plementation in PDDL. Section 6 shows code examples on how the framework and the
scenario have been translated to PDDL 2.1, and which are the results obtained from a
SGPlan 6 planner. Section 7 is devoted to discuss some related work. Finally Section 8
closes the paper.
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2 Example Scenario

The example follows a simple scenario where an actor is inside a building (which can
be on fire) and the goal of the actor is to find his way out of the building. The actions in
this domain can be:

– to get out from the door,
– to break a window (under the condition that some window is not already broken)
– to jump out the window (under the condition that some window is broken).

Norms in this scenario include:

– a norm that prohibits the person to break a window while he is inside the building
and, in case he does, the person needs to pay a fine.

Actions are accompanied by a utility function which represents the cost for the agent to
execute the action, according to the state of the world when executed. In an evacuation
scenario, it is assumed to be rather costly to get out through the door while the building
is on fire (as it involves too much risk for the agent’s health) and thus the individual
might choose to break the window (violating the norm), jump and then pay the fine, as
the total cost of following this plan would be less than any other option.

3 STRIPS Planning

Our normative planning framework will extend STRIPS with additional normative ele-
ments (see Section 5) in order to allow for normative reasoning within the planning pro-
cess. In this section, we briefly describe the semantics of the STRIPS formalisation [7].

Definition 1. We define F as set of fluents F = {f1, f2, . . . , fm} where fluent fi is an
atomic proposition (propositional property).

The state of the world is defined in terms of fluents that hold at the particular situa-
tion. We define a state to be a (possibly empty) subset of F, i.e. a state is represented by
the set of fluents that are true in it. The fluents not in the state are assumed false.

Each combination of fluents forms a different state, and the union of all the states is a
set of states as in Definition 2.

Definition 2. We define S to be the state domain (set of all states) occurring from F as
S = 2F .

Definition 3. Having a set of fluents F as in Definition 1, we define A to be a set of do-
main actions (actions with with pre and postconditions) A = {α1, α2, . . . , αn} where
αi =< Cpreci , Cposti > and Cpreci , Cposti are conjunctions of fluents or negated flu-
ents from F . Since states are represented by sets of conditions, the transition function
−→ relative to a domain instance < F,A > is a function −→: S × A → S where S
is the state domain S occurring from F . If σ, σ′ ∈ S and α ∈ A and −→ (σ, α) = σ′



96 S. Panagiotidi and J. Vázquez-Salceda

then we write σ
α−→ σ′. The transition function can be defined as follows, using the

simplifying assumption that actions can always be executed but have no effect if their
preconditions are not met:

– −→ (σ,< Cpreci , Cposti >) is σ′∪{all m where m belongs to Cpreci}\{all fluents
l where ¬l belongs to Cpreci} if {every fluent j in Cposti belongs in σ} and {every
fluent k where ¬k in Cposti does not belong in σ}

– σ otherwise

The function −→ can be extended to sequences of actions by the following recursive
equations:

σ
[]−→= σ

σ
[α1,α2,...,αn]−→ = σ

α1−→[α2,...,αn]−→
Definition 4. A goal g is a pair < P,R >, where P and R specify which fluents are
true and false, respectively, in order for a state to be considered a goal state.

In order to proceed to the definition of a plan, we assume the existence of an initial state
σ0 where σ0 ∈ S. Then:

Definition 5. A plan is a sequence of actions such that the state that results from exe-
cuting the actions in order from the initial state satisfies the goal conditions. Formally,
[α1, α2, . . . , αn] is a plan for goal g =< P,R > if the stateσ′ = −→ (σ0, [α2, . . . , αn]))
is such that P ⊆ σ′ and R ∩ σ′ = ∅.

The above means that the state reached by the execution of the actions α1, . . . , αn

should lead to a state which satisfies the specification of the goal.

4 Normative Model

Using the domain elements of the STRIPS semantics (fluents, actions, states, goals,
plans) as basis, we include norms as the additional elements that will lead to the defini-
tion of our normative model.

4.1 Norms

In our framework, norms are defined as follows:

Definition 6. Given a set of fluents F as in Definition 1 we define Nms to be a set of
normsNms={N1, N2, . . . , Nv}whereNi = {id, type, Cact, Cdeact, Cmaint, Crepair}
and id is an identificator, type is in {obligation, prohibition} andCact, Cdeact, Cmaint,
Crepair are conjunctions of fluents or negated fluents from F .

The type attribute specifies the deontic operator, expressing the deontic “flavour” of the
norm, in our case obligation or prohibition, and thereby establishes whether an agent
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should attempt to fulfil the norm or on the contrary avoid the prohibition. The activa-
tion, maintenance and deactivating conditions are specified as (partial) state descriptors,
denoting the conditions that express when the norm gets activated, violated and deac-
tivated. They add operational information to the norm, to simplify the verification and
enforcement of the norm. They work as follows1:

– The activation condition Cact specifies when a norm becomes active, i.e the state
of affairs in which the norm is triggered (and must henceforth be checked for com-
pletion/violation).

– The deactivating condition Cdeact specifies when the norm has been deactivated,
i.e. has no longer normative force.

– The maintenance condition Cmaint is needed for checking violations of the norm;
it expresses the state of affairs that should hold all the time between the activation
and the deactivation of the norm.

– The violation deactivation condition Crepair is a violation penalty proposition, a
state descriptor indicating the compulsory satisfaction/repair of the penalty of the
norm in the case of a violation of a norm.

In essence, when a norm has been activated, has not yet expired and the maintenance
condition is not fulfilled, a violation of the norm happens. Whenever a norm is violated,
the norm continues to be active but in addition, the agent always has to see to it that
the penalty is fulfilled. In this paper we adopt this rather simplistic approach to norm
violation handling, still this could be further extended by introducing complete repair
norms handling the violation of one

Additionally, a norm might have several active instances at the same time [15]. When
the terms in the activating condition hold, the variables are instantiated, creating a new
norm instance.

It is also important to note that, as discussed in [2], these kind of tuple represen-
tations including norm activation, deactivation and maintenance are as expressive as
conditional deontic statements with deadlines (such as the one presented in [6]).

4.2 Definition of Normative Model

Once we have defined the norms in our framework, the normative model can be defined
as follows.

Definition 7. Let a normative model be a tuple M = (F,A,Nms) where F is a set of
fluents as defined in Definition 1, A is the set of domain actions (labels) as in Definition
3 and Nms a set of norms as defined in Definition 6.

We define Fext as Fext = F ∪ {act(N), deact(N),maint(N), repair} where
act, deact, maint, repair are special additional fluents indicating the activating, de-
activating, maintenance and violation deactivation of a norm N in Nms.

1 The operational semantics follow our previous work on norm lifecycle semantics, found at
[15].
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The semantic entailment for the four additional propositions act(N), deact(N),
maint(N), repair(N) given a norm N = {id, type, Cact, Cdeact, Cmaint, Crepair}
is:

–
(
(M,σ) |=act(N)

)
⇔

(
∀f ∈ Cact ·f ∈σ and ∀¬f ∈Cact ·f �∈σ

)

–
(
(M,σ) |=deact(N)

)
⇔

(
∀f ∈ Cdeact ·f ∈σ and ∀¬f ∈Cdeact ·f �∈σ

)

–
(
(M,σ) |=maint(N)

)
⇔

(
∀f ∈ Cmaint ·f ∈σ and ∀¬f ∈Cmaint ·f �∈σ

)

–
(
(M,σ) |=repair(N)

)
⇔

(
∀f ∈ Crepair ·f ∈σ and ∀¬f ∈Crepair · f �∈σ

)

4.3 Path Temporal Projection

In order to be able to know whether a norm is active or violated, it is not enough to
be aware of the current state of affairs. An additional knowledge concerning the norm
status at previous states is required. For example, in order to derive that a norm gets
deactivated one needs to know not only that the deactivation condition holds at a specific
state but also that the norm was active previously. Therefore, such properties need to be
defined with respect to an entire sequence of states (trajectory path) visited during the
execution of a plan, starting from an initial point.

Definition 8. Given a set of actions A, a plan π = [α1, α2, . . . , αn] and an initial state
σ0, π generates the trajectory < σ0, σ1, . . . , σn > iff for every 1 ≤ i ≤ n: σi

αi−→ σi+1

Thus, the entailment for the norm lifecycle properties is defined with respect to a tra-
jectory path produced by a plan in Definition 9.

Definition 9. The interpretation in M of the semantic entailment over a trajectory <
σ0, σ1, . . . , σn > of a path π at a state σ (norm lifecycle) is as follows:

– (M,< σ0, σ1, . . . , σn >, σi) |= active(N) iff
(
(M,σi) |= act(N) and ¬deact(N)

)
or(

(M,< σ0, σ1, . . . , σn >, σi−1) |= active(N) and (M,σi) |= ¬deact(N)
)

– (M,< σ0, σ1, . . . , σn >, σi) |= violated(N) iff
(
(M,σi) |= ¬maint(N) and (M,<

σ0, σ1, . . . , σn >, σi) |= active(N)
)

– (M,< σ0, σ1, . . . , σn >, σi) |= rep active(N) iff
(
(M,< σ0, σ1, . . . , σn >, σi) |=

violated(N) and (M,σi) |= ¬repair(N)
)

or
(
(M,< σ0, σ1, . . . , σn >, σi−1) |= rep active(N)

and (M,σi) |= ¬repair(N)
)

4.4 Definition of the Normative Planning Problem

With all the elements introduced in the prevous definitions, we can now define the
exact nature of normative planning. In our framework normative planning is formalized
as a planning problem in a domain where there are additional norms which acquire
committing (obligation) or preventing (prohibition) force through planning paths, and
those paths failing to comply with (some of) the norms need to see to it that a repairing
state is reached. In short, the planning problem is defined as finding a plan that:
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– the final state achieves the goal,
– there are no pending obligations open
– for all possible violations of obligations and prohibitions that might have occurred,

the repair state has been accomplished.

Formally, given an initial stateσ0, a goal g and a normative modelM = (F,A,Nms)we
are looking for a planπ = [α1, α2, . . . , αn] generating the trajectory< σ0, σ1, . . . , σn >
where:

– (M,< σ0, σ1, . . . , σn >, σn) |= g
– Forall prohibitions P ∈ Nms: (M,< σ0, σ1, . . . , σn >, σn) �|= rep active(P ) (at

final state the repair norm is not active)
– Forall obligations O ∈ Nms: (M,< σ0, σ1, . . . , σn >, σn) �|= active(O)(at final

state the obligation is not active) and (M,< σ0, σ1, . . . , σn >, σn) �|=rep active(O)
(at final state the repair norm is not active)

In modern PDDL versions, actions can have an associated cost function which might
be combined with conditional effects. This allows for paths (plans) to have a total cost.
We introduce action costs in our framework in order to be able to evaluate not only
the norm conformance but also to calculate most beneficial paths while taking into
account compliance to or violation and reparation of norms. When defining what the
norm repair (penalty) state is, we require that any plan-solution that violates a norm
also takes the necessary steps to achieve its repair state. By giving the appropriate cost
function to the actions, the planner is able to determine the choice between a path that
complies to a norm and a path that violates it and afterwards compensates by reaching
the repair state. In this way, such complex reasoning over conformance to the soft re-
straints imposed by norms becomes part of the planning problem rather that an external
issue.

5 Implementation in PDDL

We introduce an intermediate state S′
i (which the planner is forced to include between

all actions for every produced plan), which comes after state Si and before state Si+1

(see Figure 1). That is so that we are able to implement the update of the norm sta-
tus (activation, violation and activation of the repair norm), which, as seen in Section
4 is dependent on the previous state of affairs as well as the current one. This tech-
nique is commonly applied in PDDL domains so as to be able to express predicates
only in terms of the previous state. In this way, the calculation of the norm lifecy-
cle happens in two stages. In the first, the effects of the action are evaluated (state
S′
i) while norm’ status remains the same as it was before taking into consideration

the action’s effects. In the second step (state Si+1) the norm’s status is evaluated.
Figure 1 depicts an example of the intermediate states introduced in the normative
planner.

Below we detail the derivation rules for the norm lifecycle and discuss them.
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Fig. 1. Intermediate States

(1) active(Si+1) = active(S′
i) ∧ ¬deact(Si+1) = active(S′

i) ∧ ¬deact(S′
i)

2

(2) active(Si+1) = act(Si+1) ∧ ¬deact(Si+1) = act(S′
i) ∧ ¬deact(S′

i)

(3) ¬active(Si+1) = deact(Si+1) = deact(S′
i)

(1), (2) and (3) reflect definition 9. They state that a norm is active either if it was active
in the previous states and the deactivation condition cannot be inferred, or, if the activa-
tion condition can be inferred at the current state and the deactivation condition cannot
be inferred. In any other case, the norm is not active.

(4) v point(Si+1) = ¬v point(S′
i) ∧ active(Si+1) ∧ ¬maint(Si+1)

(5) ¬v point(Si+1) = v point(S′
i)

(4) and (5) introduce an implementation detail, the v point, which indicates the state
where a violation first occurs. This occurs when a norm is active, the previous state was
not a violation state and the maintenance condition cannot be inferred at the current
state.

(6) rep active(Si+1) = v point(Si+1) ∧ ¬repair(Si+1)

(7) rep active(Si+1) = rep active(S′
i) ∧ ¬repair(Si+1) = rep active(S′

i) ∧ ¬repair(S′
i)

(8) ¬rep active(Si+1) = repair(S′
i)

(6), (7) and (8) reflect definition 9. They state that the reparation of norm is active either
if it was active in the previous states and the repair condition cannot be inferred, or, if
there has been a violation state and the repair condition cannot be inferred. In any other
case, the norm reparation is not active.

2 Here we only use the state as parameter for the predicate “active” and deliberately omit the
norm (that we used in the definitions in Section 7) for reasons of simplicity.
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(4)+(1) -->

(9) v point(Si+1) = ¬v point(S′
i) ∧ active(S′

i) ∧ ¬deact(S′
i) ∧ ¬maint(S′

i)

(4)+(2) -->

(10) v point(Si+1) = ¬v point(S′
i) ∧ act(S′

i) ∧ ¬deact(S′
i) ∧ ¬maint(S′

i)

(6)+(9) -->

(11) rep active(Si+1) = ¬v point(S′
i) ∧ active(S′

i) ∧ ¬deact(S′
i) ∧ ¬maint(S′

i) ∧ ¬repair(S′
i)

(6)+(10) -->

(12) rep active(Si+1) = ¬v point(S′
i) ∧ act(S′

i) ∧ ¬deact(S′
i) ∧ ¬maint(S′

i) ∧ ¬repair(S′
i)

(9), (10), (11) and (12) occur from combining the previous rules. In fact they occur
from the expansion of rule (4) and (6), which are expressed in terms of fluents over the
current state, together with the rest rules. We do this in order to have a complete set of
rules that represent the norm lifecycle and that are all expressed in terms of the previ-
ous state fluents. The complete set of rules to be modelled in the implementation (as we
will see in the next section) will then be (1), (2), (3), (5), (7), (8), (9), (10), (11) and (12).

We adopt PDDL 2.1 [9] for our domain and problem representation. This, amongst
others, introduces plan metrics, using numeric fluents, arithmetic operators and com-
parison predicates in the pre and post conditions of the actions. Plan metrics specify,
for the benefit of the planner, the basis on which a plan will be evaluated (plan quality)
for a particular problem. We use SGPlan 6 planner [12] which implements PDDL 2 and
PDDL 3. SGPlan uses a modified Metric-FF planner for basic planning and optimises
goal preferences.

6 Implementing the Example in PDDL

In this section we will show how our framework and the example scenario has been
implemented in PDDL3.

6.1 Domain and Problem Representation

As mentioned in Section 2 actions are accompanied by a utility function which repre-
sents the cost for the agent to execute the action, according to the state of the world
when executed. In this scenario, we introduce a function parameter, the “total-cost”,
which represents the “cost” for the individual to execute it. The function change might
vary according to the value of the fluents at every state, so it is not static in that it might
increase or decrease depending on fluent formulas over the states. In our example, we
assume that the cost to open the door is 1, to get out through the door in case there is
no fire is 5 and in case there is fire is 50, to break the window is 5, to jump from the
window is 1, and to pay the price of the fine is 10. In an alternative scenario, different
values can be assumed (for example a higher price for the fine, say 100). The domain
actions can be seen in Figure 2. The objective of the planner will be to try to minimize
this cost while at the same time satisfying the conditions of Section 4.4.

3 The reader is referenced to http://www.lsi.upc.edu/˜panagiotidi/pddl-escape to find the
detailed code for the example.

http://www.lsi.upc.edu/~panagiotidi/pddl-escape
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(define (domain escape1)
(:requirements :adl :typing )
(:types person - object)
(:predicates
(door-open) (on-fire)
(out ?p - person)
(window-broken) (fine-paid)
(active-prohib1 ?p - person)
(v-point-prohib1)
(active-repair-prohib1 ?p - person)
(checked)

)
(:functions (total-cost) )

(:action open-door
:parameters ()
:precondition (and (not (door-open)) (not (checked)))
:effect (and (door-open) (checked)

(increase (total-cost) 1)))

(:action go-out-from-door
:parameters (?p - person)
:precondition (and (door-open) (not (checked)))
:effect (and (out ?p) (checked)

(when (on-fire) (increase (total-cost) 50))
(when (not (on-fire)) (increase (total-cost) 5))))

(:action break-window
:parameters ()
:precondition (not (checked))
:effect (and (window-broken) (checked)

(increase (total-cost) 5)))

(:action jump-from-window
:parameters (?p -person)
:precondition (and (not (out ?p)) (window-broken) (not (checked)))
:effect (and (out ?p) (checked)

(increase (total-cost) 1)))

(:action pay_fine
:parameters (?p -person)
:precondition (and (out ?p) (not (checked)))
:effect (and (fine-paid) (checked)

(increase (total-cost) 10)))

;; NORM LIFECYCLE ACTION CODE
)

Fig. 2. Domain actions in PDDL
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; act: not out ;;
;; deact: out ;;
;; maint: not window-broken ;;
;; repair: fine-paid ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(:action check-norms
:parameters ()
:precondition (not (checked))
:effect (and (checked)
;;;;;;;;; ACTIVE ;;;;;;;; (1) (2);;;;;;;;;;;;;;;
(forall (?p - person)
(when (and (active-prohib1 ?p) (not (out ?p)))

(active-prohib1 ?p)))
(forall (?p - person)
(when (and (not (out ?p)) (not (out ?p)))

(active-prohib1 ?p)))
;;;;;;;;;;;;;;;;;;; -ACTIVE (3) ;;;;;;;;;;;;;;;;;;
(forall (?p - person) (when (out ?p)

(not (active-prohib1 ?p))))
;;;;;;;;;;;;;;;; VIOLATION POINT (9) (10);;;;;;;;;;;;
(forall (?p - person)
(when (and (not (v-point-prohib1))

(active-prohib1 ?p)
(not (out ?p)) (window-broken))
(v-point-prohib1)))

(forall (?p - person)
(when (and (not (v-point-prohib1))

(not (out ?p)) (not (out ?p)) (window-broken))
(v-point-prohib1)))

;;;;;;;;;;;;;;; -VIOLATION POINT (5) ;;;;;;;;;;;;;;
(forall (?p - person) (when (v-point-prohib1)

(not (v-point-prohib1))))
;;;;;;;;;;;; ACTIVE REPAIR NORM (7) (11) (12);;;;;;;;;
(forall (?p - person)
(when (and (rep_active-prohib1 ?p) (not (fine-paid)))

(rep_active-prohib1 ?p)))
(forall (?p - person)
(when (and (not (v-point-prohib1))

(active-prohib1 ?p) (not (out ?p))
(window-broken) (not (fine-paid)))

(rep_active-prohib1 ?p)))
(forall (?p - person)
(when (and (not (v-point-prohib1))

(not (out ?p)) (not (out ?p)) (window-broken)
(not (fine-paid))) (rep_active-prohib1 ?p)))

;;;;;;;;;;;;;; -ACTIVE REPAIR NORM (8);;;;;;;;;;
(forall (?p - person) (when (fine-paid)

(not (rep_active-prohib1 ?p)))) )

Fig. 3. Norm lifecycle representation in PDDL
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(define (problem escape1)
(:domain escape1)
(:objects sergio - person)
(:init
(= (total-cost) 0)
(on-fire))

(:goal (and (out sergio)
(forall (?p - person) (not (active-repair-prohib1 ?p)))
(not (checked))) )

(:metric minimize (total-cost)) )

Fig. 4. Example problem representation in PDDL

; Time 0.03
; ParsingTime 0.02
; NrActions 6
; MakeSpan
; MetricValue 16.000
; PlanningTechnique Modified-FF(best-first search) as the subplanner

0.001: (BREAK-WINDOW) [1]
1.002: (CHECK-NORMS) [1]
2.003: (JUMP-FROM-WINDOW SERGIO) [1]
3.004: (CHECK-NORMS) [1]
4.005: (PAY_FINE SERGIO) [1]
5.006: (CHECK-NORMS) [1]

Fig. 5. Plan result 1

; Time 0.03
; ParsingTime 0.02
; NrActions 4
; MakeSpan
; MetricValue 51.000
; PlanningTechnique Modified-FF(best-first search) as the subplanner

0.001: (OPEN-DOOR) [1]
1.002: (CHECK-NORMS) [1]
2.003: (GO-OUT-FROM-DOOR SERGIO) [1]
3.004: (CHECK-NORMS) [1]

Fig. 6. Plan result 2

Figure 3 depicts the PDDL code for the norm lifecycle. That is, the translation of
the norm that prohibits the person to break a window while he is inside the build-
ing and in case he does, he needs to pay a fine. It consists of one action that imple-
ments the rules described in Section 5. At this point, it has to be pointed out that the
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implementation supports norm instances. We consider every norm to possibly have sev-
eral instances, in case it contains variables in its activation, deactivation and mainte-
nance condition. In this case, the norm status needs to be checked for every possible
instance of the norm.

Figure 4 depicts the PDDL code of the problem. The “total-cost” function is ini-
tialised to 0 and one person instance “sergio”, who’s objective is to be out of the build-
ing, is defined. The objectives described in Section 4.4 are directly reflected in the prob-
lem code. Since there is only one norm, a prohibition, the goal includes the requirement
that all the repair instances of the norm are not active. Additionally, the planner is re-
quired to find a plan such that the “total-cost” is minimum.

6.2 Results

We experiment by changing the values of the action costs in order to produce different
cases. We expect to see two different behaviours emerging from such changes, as ex-
plained in subsection 6.1. In case where the cost of breaking the window and paying
the fine has a noticeable advantage (in terms of “total-cost”) over the case where the
individual gets out through the door, then the planner will pick the first plan, otherwise
the second.

When running the experiment with the original values given in subsection 6.1 the
planner produces the result depicted in Figure 5 with a total value of 16 (5 for breaking
the window, 1 for jumping and 10 for paying the fine). By modifying the original cost
of the action “pay fine” to 100 instead of 10, we notice a change in the outcome of the
planner execution as can be seen in Figure 6. This time the plan produced involves the
actor getting out through the door with a total cost of 51 (1 for opening the door and
50 for getting out through the door). This can be intuitively explained, as the fine price
has become too high compared to the toll the agent has to pay by getting out through
the door. In the case the agent chose to break the window, jump and pay the fine, the
“total-cost” would sum up to 106, which would be higher than getting out through the
door.

Although this example is very simple, some preliminary test we have performed with
other toy scenarios with more actions and norms showed that it scaled quite nicely. We
foresee some scalability issues as we introduce more expressiveness in our framework
(e.g. time constraints and time durations).

7 Related Work

There exists an wide research background in the understanding of how legal, or norma-
tive, systems are established within human societies, how they impact on the activities
of social individuals and how they can be applied in electronic institutions [17,5,1]. An
extensive analysis of such background is out of the aim of our paper, as most of the
work concentrates on the theoretical aspects of the normative concepts from the soci-
etal perspective, and in those cases that the agent perspective is taken, little attention
is made on how agents are able to take normative positions into account during their
means-ends reasoning.
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Close to our work is [4], where the authors create and extend a programming lan-
guage that implements normative agents. They consider norms as being represented
by counts-as rules and sanctions as rules of the opposite direction. In [3] the authors
extend the previous by defining the properties enforcement and regimentation and a
model checking component which verifies these properties. Although the approach
seems promising, it focuses more in the deliberation step of the reasoning cycle.

In [13] the NoA system is presented. It comprises the NoA language for the specifi-
cations of plans, norms and contracts, and the NoA architecture, which operates as an
interpreter and executor of such specifications and represents a concrete implementa-
tion of an approach to norm-governed practical reasoning. The plans get instantiated at
runtime according to whether they can satisfy a norm and they are labelled as consis-
tent or inconsistent according to the currently activated permissions and prohibitions.
With this labelling mechanism, the deliberation process becomes informed about pos-
sible norm violations. However, the focus again is given to the deliberation step, not the
means-ends reasoning, as plans are pre-computed.

The framework described by [8] shares some similarities with our approach. Their
focus on sanctions (which, in our model, are implemented more via additional norms)
means that they only allow for very specific, predefined normative states, and that vio-
lations in their framework may only occur once.

Our approach bears connection with the work presented in [16], in that we both
endow norms with semantic features, using subsumption to check when a norm is trig-
gered, when it is no longer active and so on. However, our work aims at connecting
norms and plans, as plans provide pragmatic and realistic “histories” of computations
(which we represent as sequences of states).

Sergot in [18,19] extends C+ by adding expressions of the form α “counts as” β
(this implying that every transition of type α counts also in specified circumstances as a
transition of type β), calling the extended language (C+)+. In addition, Sergot extends
C+, calling the new language (C+)++, by adding the “permitted” and “not-permitted”
rules, implying in this way desired, legally permitted or not acceptable states and tran-
sitions. In this way it is possible to verify system properties that hold if all agents/sys-
tem components behave in accordance with norms/social laws and to analyse system
properties that hold when agents components fail to comply with norms. However the
extensions provide no functional semantics to work with when it comes to realistic
representation of norms and practical reasoning.

From a planning perspective our work is similar to PDDL 3.0 [10], an extension of
planning language PDDL (originally implementing STRIPS) that imposes strong and
soft constraints expressed in Linear Temporal Logic formulas on plan trajectories as
well as strong and soft problem goals on a plan. Although we explored the option of
using PDDL 3.0 soft constraints in our work, their expressiveness proved to be insuf-
ficient while trying to capture the semantics that we use for the norm lifecycle, mainly
due to two reasons: 1)it lacks the operator “until”, which would permit us to express
the norm lifecycle (ex. a norm is violated when activated at some point and mainte-
nance condition does not hold at some state after this and deactivating condition does
not hold at any state in between) and 2)a norm can be activated and deactivated (and
possibly violated) several times during the execution of a plan, something not possible
to be expressed in PDDL 3.0.
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In [14] the authors use a mechanism to choose a plan that will achieve individual
and global goals while attempting to abide by a set of norms. They represent the envi-
ronment affecting the agent as a transition system and the plans as Hierarchical Task
Networks (HTN) [11] with the nodes specifying the actions that take place. They make
use of a rule language to specify normative rules that identify the cases in which a norm
starts, and ceases, to exist. Additionally, they adopt a utility based model of norm com-
pliance. More specifically, they make the assumption that the execution of a plan results
in some base utility, and that different types of norms are associated with different util-
ity measures. They then create an algorithm that selects a path through the plan, and a
set of norms (created by the rules as actions are executed) with which to comply, that is
conflict free, and which lead to maximal utility. Conflicts are resolved by selecting ac-
tions where the cost of violating one set of norms is outweighed by the reward obtained
in complying with another.

8 Conclusions

The work presented in this paper stems from the fact that little work on practical reason-
ing mechanisms within normative environments exists. Having this in mind, we have
focused our attention on the practical introduction of norms in the plan generation pro-
cess as a first step towards a fully normative-aware agent. Our approach is based on
extending a normal STRIPS planning with a model of both the norms and their oper-
ational semantics. The result is that the planner generates optimal plans with respect
to the norms (treating norms as soft restrictions) and the user preferences (modelled as
costs) and leads to a reasoning mechanism that allows, given a set of norms, to create
the most “precious” plan path during the trajectory of which each norm might or not be
respected or violated and repaired (even more than one instances).

The strength of our normative framework lies on the realistic and fully functional
representation of the normative reasoning problem. It uses semantics which have been
implemented by several planners (STRIPS) while it only adds a small overhead to the
planning process caused by the introduction of the intermediate states. We show how
the normative concepts and the operational semantics covering norms’ lifecycle have
been represented in PDDL 2.1 and processed by a PDDL planner such as SGPlan 6.

Existing planners allow for several features to be integrated to the planning process
(durative actions, etc) and we intend to expand the framework so that it includes time
propositions and limitations within the definition of the norm. Our work can also be
further extended towards utility functions over the states of the world instead of the
actions. This alternative would allow for virtual representation of preferences of a state
over another, which can be even closer to the way human reason about whether to follow
the norm or not.

As mentioned in Section 6 no full analysis of the time overhead has been done. While
experiments with small examples have shown no significant burden in the execution
time, in larger planning domains we expect to see some cost. This is due to the fact
that we force the planner to go through the intermediate states in order to calculate the
norms’ status. We noted further executional load in cases where norms might consist of
several instances, and, the more the variable instances that relate to the norm instances
in the problem file, the more severe the cost. We aim to do extensive studies on the
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scalability of our approach in terms of the number of actions as well as the number of
norms (and instances) that might be handled during the plan formation.

As mentioned in the introduction, our final aim is to model and implement the in-
fluence of norms in all the steps of the agents’ reasoning cycle. To do that we plan to
integrate our normative planner within a BDI agent implementation. Also we aim to in-
clude in our model more complex norm representations that contain full norms as repair
norms (that might also contain their own repair norms).
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Abstract. We introduce justifications in normative systems with the
aim to better understand the compliance to norms, including situations
of conflict between norms that might arise. To stay at the level of ex-
planations on justification we employ the Hybrid Justification Logic. We
show the grounding of the abstract norms to the concrete ones within an
example for a traffic management system. The interplay between norms
is judged at the values of the society through Value-Based Argumenta-
tion. The justification for the way agents comply or not to the norms,
relative to their social values, has been implemented in the CaSAPI ar-
gumentation environment.

1 Introduction

Norms should help societies of agents to achieve higher performance without
restricting their autonomy too much. As systems evolve the need to accommo-
date different sets of norms requires a more refined understanding of their effects
on the overall behavior of agents. Jones and Sergot [14] have shown the way on
using a deontic and action logic to analyze a number of notions crucial to the un-
derstanding of organized interaction in institutions, starting with the following
introduction.

It is a commonplace feature of legal systems, and other norm-governed
organizations, that particular agents are empowered to create certain
types of states, by means of the performance of specified types of acts.
Typically, the states created will have a normative character according
to which obligations and rights are established for some agents vis-a-vis
others, as for instance when a contract is made, or a marriage is effected,
or ownership of an item is transferred. The performances by means of
which these states are established will often be of a clearly prescribed,
perhaps ritualized nature, involving the utterance of a particular form of
words (e.g., the utterance of a specific type of performative sentence), or
the production of a formal document, or the issuing of a pass, perhaps
in a particular context (e.g., in the presence of witnesses).

We are concentrating here to develop a method that can help such systems
visualize, in the sense of offering proofs, whether the norms have been complied
with or broken.
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Advantages and some of the problems when using norms in multi-agent sys-
tems have been shown lately to be of significant importance [20]. Controlling
multi-party interactions with norms [7], but also programming norm change [19]
and making norms concrete [1] have contributed to a deeper understanding of
ways to achieve flexible systems and also to monitor them [2].

Provision of explanation generating functionality has been found to be very
helpful for both developing and providing proofs when using ontologies [13] by
way of explanations via justifications. We are pursuing a similar path for the
usage of norms in multi-agent systems, looking to ways of exploiting a justifi-
cation logic version [4,11,10] of a hybrid logic [3]. As remote positive/negative
justification checkers we employ the value based argumentation [6,5].

2 Running Example

Example 1. We consider a Traffic Management System (TMS), responsible for
controlling the traffic flow through an intersection. The system’s functioning
is based on a set of predefined abstract regulations or norms (table 1) that
specify the permissions and obligations of the driver agents passing through the
intersection. The role of each norm is to ensure the safety of the passing drivers,
passengers and pedestrians, general traffic security and a continuous and regular
flow.

Table 1. Set of norms for the Traffic Management System

Norm Specification

N1 A driver must stop at the Red color of the traffic lights

N2 A driver may pass at the Green color of the traffic lights

N3 A driver must signal its intention of changing the lane or the
driving direction

N4 A driver must not exceed the speed limit of 50 km/h when pass-
ing through the intersection

Any violation of the norms N1, . . . , N4 is sanctioned by a fee and the appli-
cation of 10 penalty points for the driver agent. When summing to 50 penalty
points, the driving license of the driver is automatically suspended.

Having specified the set of abstract norms together with the corresponding
sanctions to be applied in the case of infringement of one or more norms, we
might assume that the proper functioning of the TMS is ensured. However, taking
into consideration the examples offered by the real world, which is governed by
unpredictable events, we can easily state that the above assumption is false.
Nevertheless, we have to check if the set of abstract norms can cover all the
possible concrete events inside the intersection.

In this sense, we consider the following scenario (figure 1). The driver of ve-
hicle A stops on the right lane at the Red color of the traffic lights. Other three
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Fig. 1. Example scenario in traffic intersection

drivers stop on the middle lane and four drivers stop likewise on the left lane,
waiting for the Green light of the traffic lights. In the meantime, an ambulance
carrying a patient to the hospital (represented by vehicle B) approaches the
intersection, signaling its presence for the other drivers.

Checking each of the three lanes, the driver of vehicle B decides to use the
right lane to enter the intersection as there is only one vehicle stopped. The
driver of vehicle A notices the approaching ambulance, checks its right and left
side and decides to pass on the Red color of the traffic lights and drive to the
right, clearing the right lane for the ambulance to pass. We might now raise the
questions: Did the driver from vehicle A make the right choice? Did vehicle A
violate the TMS norms? Should the driver from vehicle A be sanctioned for his
actions?

For providing a proper answer for each of the above questions, we will try
applying two reasoning methods and provide a justification for the course of
actions chosen by the driver agent of vehicle A.

3 Fragment of the Hybrid Justification Logic

Justification logic [4] is based on the classical propositional logic augmented
with justification assertions t : F , meaning that t is a justification for F . Hybrid
logics are extensions of standard modal logics, involving symbols that name
individual states in models [3]. The language of proofs we are using is a fragment
of the justification logic of hybrid logics, that internalize both semantics and
proofs [11,10].

In justification logic we can use justification variables x1, x2, . . . (capable of
making relative justification conclusions) and justification constants c1, c2, . . . .
The operation · is an application operation, used to show that if t is the justifi-
cation of X ⊃ Y and u is the justification of X then t · u is a justification of Y .
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Facts that make up a state of a possible world i should be certified by the facts
fi, the indexed family of constant symbols.

In the hybrid language H(@) the prefix operator @i is used for the formula
@iφ, for saying that φ is true at the world named by i.

Definition 1. Some of the operators of the basic hybrid justification logic [11]
that we need in our presentation are the following.

– modus ponens
X X ⊃ Y

Y
(1)

– · axiom
t : (X ⊃ Y ) ⊃ (u : X ⊃ (t · u) : Y ) (2)

– remote fact checker: For each nominal i and propositional letter P we
have the facts

@iP ⊃ fi : @iP (3)

which says that, in the possible world i, P is certified by the fact fi that it is
true, and

@j¬P ⊃ fj : @j¬P (4)

saying that, in the possible world j, the fact fj certifies that ¬P is true.
– remote positive justification checker For any formula X justified by the

term t and any nominal i the operator !i is used to show that t is checkable.

@it : X ⊃ (!it) : @it : X (5)

Here the operator !i plays the role of a certificate (e.g., as provided by some
auditor) as proof that the formula has been proved to be true.

– remote negative justification checker For any formula X justified by
the term t and any nominal i the operator ?i is used to show that t is not
checkable.

@i¬t : X ⊃ (?it) : @i¬t : X (6)

The operator ?i constitutes a kind of certificate saying that we have no evi-
dence for the formula X to be true.

Example 2 (continued). If we represent the norm N1 by

redColor ⊃ stop (7)

then we have the following derivation:

1. @1redColor ⊃ f1red : @1redColor,
(remote fact checker, with the constant f1red certifying that in situation 1
the redColor is true)

2. cN1 : (redColor ⊃ stop) ⊃ (f1red : @1redColor ⊃ (cN1 · f1red) : @1stop),
(· axiom and (7), with the constant cN1 refering to the norm N1)
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The justification for the action of the driver (stop) in the situation @1, according
to the norm N1 is given by the result of the above derivation which shows that
due to the norm certified by cN1 : (redColor ⊃ stop) and the fact of the certified
color f1red : @1redColor they jointly proved (cN1 · f1red) : @1stop, that the
driver was justified for the fact that it stopped.

Our running example shows how considering the law we have to comply to an
abstract norm. But, apart from the abstract norm we also have to face their
instantiation, that is the concrete norms, which have to take into account the
diversity of the real world [1].

Normative systems should have an important role to play in various future
implementations and deployment of such systems. But for realistic systems to
be successful there should be some proof that in certain situations the ac-
tors involved have acted according to the norms or not. We have embarked
in the study of ways to provide some proof for the behavior of agents and the
Justification in the hybrid logic seems to be appropriate due to its power of
expression.

4 Grounding the Norms

The Traffic Management System from our example represents a normative sys-
tem, whose proper functioning is ensured by a pre-established set of norms
(table 1). We can observe that each norm is defined in such a way to ab-
stract from the concrete events and situations that it is supposed to cover [1],
allowing this way to be applied for a wide range of situations and possible
events.

However, the downside of using a high level of abstraction for norm speci-
fication is represented by the difficulty in relating abstract norms to concrete
events that may occur inside the system. In order to overcome this issue, [1]
proposes a solution based on the use of counts − as statements, which provide a
link between institutional and concrete, real-world facts.

Fig. 2. Fulfillment and violation of TMS norms
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Considering our scenario, counts − as statements can offer the possibility to
represent the connection between concrete events and abstract concepts used for
specifying the norms of the Traffic Management System under the form of static
links, which highlight the connection between them, capturing the normative
consequences of an agent’s actions (figure 2). We will extend however the appli-
cation of counts − as as described in [1] to capture also the connection between
physical events and their abstracted non-instituional representation. By relating
system events to agent actions, highlighting their effects, counts − as relations
can provide a powerful reasoning means about the meaning of an agent action
and what it brings about in a certain context, focusing in the same time on the
normative impact [1] of performing those actions in order to achieve a certain
goal.

Fig. 3. Violation of TMS norms in a possible scenario

The relation between concrete or explicit actions and the events happening
inside the intersection and the abstract norms governing the traffic flow is im-
portant to understanding how agents interpret the norms. We return now to the
possible scenario highlighted in figure 1 and try to represent it based on counts-
as statements, which prove useful when trying to emphasize what happens when
the context changes (figure 3).

In the figure 3 the violation of norm N1 of the Traffic Management System by
vehicle A is highlighted when passing on the Red color of the traffic lights and
turning to the right for allowing the ambulance to pass. If we were to base our
reasoning only on the TMS norms applied to this context, then we could easily
conclude that the agent made a wrong decision and he must be sanctioned for
its actions.

However, if we extend the set of norms on which our reasoning is based and
include also a more general driving norm, more specifically the norm stating the
obligation of each driver to allow emergency vehicles (police cars, ambulances
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Fig. 4. Conflict between TMS and general applying norms

etc.) to pass, moving out of their way, then we can no longer easily arrive to the
conclusion that the agent made the right or the wrong choice. The new repre-
sentation is captured in figure 4, while the extended set of norms is emphasized
in table 2.

Table 2. Extended set of norms for the Traffic Management System

Norm Specification

N1 A driver must stop at the Red color of the traffic lights

N2 A driver may pass at the Green color of the traffic lights

N3 A driver must signal its intention to change lane or driving di-
rection

N4 A driver must not exceed the speed limit of 50 km/h when pass-
ing through the intersection

N5 A driver must allow emergency vehicles to pass by moving out
of their way

By analyzing figure 4, we can observe that a conflict is generated between
norms N1 and N5 based on the fact that the same action of passing on the Red
color of the traffic lights leads to both the violation and the fulfillment of the
TMS norms.

Example 3 (continued). If we represent the norm N5 by

emergency ⊃ ¬stop (8)

then we have
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1. @2emergency ⊃ f2emerg : @2emergency,
(remote fact checker showing that 2 was an emergency situation)

2. @2¬c2stop : stop ⊃ (?2c2stop) : @2¬c2stop : stop),
(the remote negative justification checker, showing that no constant c2stop is
able to certify that the driver did stop on the way of the ambulance in the
situation 2, where norm N5 (8) applies)

showing that the driver did ¬stop, thereby allowing the ambulance to pass.
The fact that we have no proof that the driver did stop is obtained from some
monitor [1] (video, witness, etc.), a trusted source.

5 Value-Based Argumentation for Compliance

If some of the remote justification checkers, needed for justification, can be ob-
tained from trusted monitors, in more complicated real situations we need to
also consider the values supported by the specific agent society. For our running
examples these can be traffic security, pedestrian safety , etc.

Definition 2. [5] A value based argumentation framework (VAF) is a 5-tuple:
V AF {̄AR, attacks, V , val, P}, where AR represents a finite set of arguments,
attacks is an irreflexive relation on the set AR, V is a finite nonempty set of
values, val is a function mapping the elements of AR to the elements of V and
P is a set of possible audiences. Moreover, an argument A relates to value v if
accepting A promotes or defends v, where v = val(A), val(A) ∈ V , for every
A ∈ AR.

By allowing ordering on the values to be applied [15] extends the VAF, so that an
argument A ∈ AR successfully attacks (defeats) an argument B ∈ AR only if the
value promoted by B is not ranked higher than the one promoted by A, according
to some partial ordering > of values. Furthermore, the notion of an argument
promoting or demoting values to a given degree X (denoting a real number) is
introduced (val = (A,X, V, P )), meaning that if A and B would promote the
same value v, A would defeat B if it promotes the value v to a higher degree. In
practical reasoning, arguments are used to provide a presumptive justification
for a certain action, which instantiates an argument scheme, representing an
extension of the Walton’s sufficient condition scheme [6]:

In the current circumstances R
We should perform action A
Which will result in new circumstances S
Which will realize goal G
Which will promote value V.

If we consider again the Traffic Management System example, we can observe
that, similarly to the real world, norms are defined to ensure values, such as traf-
fic security, pedestrians safety, efficiency and flow control, by their fulfillment.
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The violation of one or more norms brings about insecurity and traffic distur-
bances as the mentioned values are no longer supported. A special case is rep-
resented by norm N5 stating the obligation of each driver to allow emergency
vehicles to pass, a norm whose fulfillment brings about values such as life for our
example in which the driver agent must allow an ambulance carrying a patient
in critical condition to pass. If norm N5 is violated, the life of the patient is
in danger as it may delay the arrival to the hospital and his condition might
aggravate.

Table 3. Arguments for justifying the actions of the driving agent relative to our
values, and in current circumstances

Arg. Argument Specification Promoted/Demoted

A1 Should wait for the Green light +traffic security
before driving to the right. +flow control
Does not affect traffic in intersection, +pedestrians safety
and promotes security, safety and flow. -life

A2 Should climb on right sidewalk. -pedestrians safety
Allows ambulance to pass, +flow control
promotes life, flow and +traffic security
traffic security +life

A3 Should not climb on right sidewalk, +pedestrians safety
but wait for the Green light. +flow control
May not create enough space for ambulance, +traffic security
may injure pedestrians, promotes safety. -life

A4 Should try moving on middle lane -traffic security
in front of the first car, and waiting -flow control
for traffic lights, allowing ambulance. +life
Promotes life and pedestrians safety. +pedestrians safety

A5 Should not move on middle lane, +traffic security
but wait for the Green light. +flow control
May not be enough space in front of first car. +pedestrians safety
Promotes security, flow, pedestrian safety. -life

A6 Should drive to right and pass -traffic security
on the Red light allowing ambulance, -flow control
signaling and slowing down. +life
Promotes life and safety. +pedestrians safety

Each of the previously mentioned values will be further considered in the
reasoning process based on the value-based argumentation [9] for what would
be the right solution to apply in such a context and, based on the outcome, to
provide a positive or negative justification for the choice of the driving agent.
If we were to take into consideration only those actions that fulfill the initial
TMS set of norms as the right choices, thus actions that promote values such as
traffic security, flow control and pedestrians safety, then the agent should choose
to stop at the Red color of the traffic lights. If we consider that the life of the
patient is of higher importance, then the choice will be totally different.
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We notice that the selection of the right action depends merely on the impor-
tance of promoting a certain value over another. Thus, as a first step we must de-
cide over a hierarchy of values ranked according to their importance. In this direc-
tion, we apply an ordering relation α over the set of values V={pedestrians safety ,
traffic security, flow control , life}, obtaining the following hierarchy of values:
flow control < traffic security < pedestrians safety < life, where the value of
flow control has the lowest priority in the reasoning process and the value of life
the highest priority. Moreover, the entire reasoning process will be translated
from the normative level to the agent actions level, which comprises also the
promoted or demoted values by each action. The arguments used for justifying
each of the possible options are presented in table 3.

Fig. 5. Dung argumentation scheme for the traffic system

If we consider the Dung abstract argumentation scheme and the fact that only
the actions that promote the value of life are to be chosen according to the α
ordering relation, then any pair of arguments that do not support it are conflict-
ing. Figure 5 summarizes the different conflicts between arguments. The system
has two maximal sets A2, A4, A6 and A1, A3, A5, the first one encapsulating
all the options that promote the value of life, while the second one those that
demote that value. Thus, the actions suggested by arguments A2, A4 and A6 are
equally preferred in a Dung system.

As can be seen from figure 5, the Dung argumentation scheme is not enough
for making decisions as we cannot establish which option promoting the value
of life is the best one to be selected. Therefore, we will extend the above
presented scheme and consider also the strength of the arguments in decision
making. In this way we can reduce the number of attack relations considering
the fact that an attack may fail if the attacked argument is stronger than the
attacker.

Therefore, we will consider as a stronger argument the one that promotes,
besides the value of life , the maximum number of values immediately following
life in the ordering relation α. The set of admissible arguments will be reduced
in this case to the three A2, A4, A6. The new attack relations are: A6 → A2 and
A4 → A2, both arguments A6 and A4 successfully attacking A2, as they promote
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Fig. 6. Reduced argumentation scheme for the traffic system

the value of pedestrians safety , the second in the value ranking, while argument
A2 promotes the values of traffic security and flow control, both of them being
lower ranked values.

In the reduced argumentation scheme presented in figure 6, both arguments
A6 and A4 successfully attack A2. However, a new criterion must be considered
in order to decide upon the best action to take from the ones suggested by the
two mentioned arguments. In this direction, we consider an extension of the
argumentation framework based on contextual preferences. For the case here,
we can observe that we have two arguments that promote the same values. In
order to decide which of the two arguments is stronger, we must consider also
other aspects strictly applicable to the context in which the decision must be
taken. Regarding our example, if we consider that the middle lane is free, then
vehicle A can move to that lane allowing the ambulance to pass and promoting
the value of life without the need to violate norm 5, thus promoting life at a
greater extent than argument A6.

However, if we consider the situation in which the middle lane is not free,
then vehicle A cannot change lane safely and therefore the ambulance may not
be able to pass. Therefore for this context, argumentA6 promotes life at a greater
extent. Considering the contextual-based preference argumentation framework
(CPAF) definition from [8], we define the set C of contexts as containing two
different contexts: c1, referring to the situation in which the middle lane is free
and c2 referring to the situation in which cars are stopped on the middle lane. If
we consider context c1, then argument A4 will successfully attack argument A6:
A4 → A6, while for context c2: A6 → A4.

Considering the likelihood for contexts c1 and c2, we can state that the like-
lihood for context c2 has a higher probability than the one for context c1, as it
is more likely for cars to be stopped also on the middle lane in an intersection
than for the middle lane to be free. Finally, we can say that argument A6 suc-
cessfully attacks argument A2 and therefore the right solution for our agent is
to pass on the Red color of the traffic lights and turn to the right allowing for
the ambulance to pass without jeopardizing the life of the patient.

However, we also have to consider the negative aspect of his choice, that is
the risk of jeopardizing the traffic flow through the intersection and the safety
and security of the other agents.
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Moreover, we can observe that using a VAF based reasoning approach in such
a situation provides us with the possibility to decide upon the course of actions to
follow, and, additionally, it offers us a viable justification [9] for the infringement
of one or more norms in order to achieve a goal and promoting a higher ranking
value.

Example 4 (continued). Here the assumption is that we do not have norm N5,
but we can consider an argument like A6 that promotes the value life.

emergency ⊃ (¬stop ⊃ promotesLife) (9)

Then we have

1. @2emergency ⊃ f2emerg : @2emergency,
(remote fact checker)

2. @2emergency ⊃ @2(¬stop ⊃ promotesLife),
(modus ponens axiom (1))

3. c2stop : @2¬stop ⊃ (!2c2stop) : @2(c2stop : ¬stop)),
(remote positive justification checker with the constant c2stop certifying that
the driver did not stop in situation 2)

4. f2emerg : (cA6 : (¬stop ⊃ promotesLife) ⊃ (c2stop : @2¬stop)) ⊃
(f2emerg · c2stop · cA6) : @2promotesLife,
(applying axiom (2) with argument A6 given by (9))

showing that the driver did not stop on Red light, promoting life (A6).
For the given situation @2 where we have an emergency, we have the justifi-

cation of the fact f2emerg to apply argument A6 for ¬stop ⊃ promotesLife with
the constant justifier cA6. Therefore, the justification that proves that the driver
acted to promote life, is expressed by the term f2emerg · c2stop · cA6 showing that
in the situation referred to we indeed have @2promotesLife.

6 Implementation of Norm Justification

The reasoning process presented in the previous section has been implemented in
the CaSAPI [12] argumentation environment1, based on the MARGO platform2

for practical reasoning. MARGO uses a logic language L to represent knowledge,
goals, and decisions of an agent, allowing to assign to each of these items different
priorities according to knowledge probabilities, preferences or decision utilities.

Based on this information and on an assumption-based argumentation frame-
work to which a general argumentation framework is translated [17] , MARGO
evaluates and suggests decisions, justifying at the same time the choice made.

For the implementation of the decision making process in the traffic system,
first a main goal is established for our agent and that is to have the right reaction
in that situation, followed by the definition of the three sets of rules on which
the decision process is based [17]:

1 Available at http://www.doc.ic.ac.uk/~dg00/casapi.html
2 Available at http://margo.sourceforge.net/
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Fig. 7. Agent dilemma representation in MARGO

– goal rules: R: G0 ← G1, ..., Gn, where n > 0 and Gi is a goal literal in
L, meaning that the abstract goal in the head of the rule is promoted or
demoted by the goals in the body.

– epistemic rules: R: B0 ← B1, ..., Bn, where n � 0 and Bi is a belief literal in
L, meaning that B0 is true if the conditions B1, ..., Bn are satisfied.

– decision rules: R: G ← D(a), B1, ..., Bn, where n � 0 and D(a) is a decision
literal in L, meaning that the concrete goal G is promoted or demoted by
the decision D(a) with the condition that B1, ..., Bn are satisfied.

For our example, the goal is divied into three subgoals:

– G1 ← waitForGreen(X)

– G2 ← passOnRed(X)
– G3 ← moveAside(X),

each of which representing a possible solution corresponding to three possible
decisions:

– d(doNotAllowAmbulanceToPass(X))

– d(allowAmbulanceToPass(X))
– d(allowButAmbulanceCannotPass(X))
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According to the goal theory, the achievement of the main goal is done by de-
ciding on one of the three possible options. However, the moral dilemma comes
from deciding upon the proper reaction in such a context. Therefore, the selec-
tion must take into consideration also the values brought about by performing
a certain action: traffic security, flow control , pedestrians safety and life, with
the implementation of the reasoning process shown in figure 8.

%Goal theory

goalrule(r01, react(X), [waitForGreen(X)]).

goalrule(r02, react(X), [passOnRed(X)]).

goalrule(r03, react(X), [moveOnMiddleLaneOrSidewalk(X)]).

%Decision theory

decisionrule(r10(X), waitForGreen(X), [d(X),

doNotAllowAmbulanceToPass(X),

traffic_security(X), pedestrians_safety(X),

flow_control(X), sn(life(X))]).

%life

decisionrule(r20(X), passOnRed(X), [d(X),

allowAmbulanceToPass(X),

sn(traffic_security(X)), pedestrians_safety(X),

sn(flow_control(X)), life(X)]).

%flow control

decisionrule(r30(X), moveOnMiddleLaneOrSidewalk(X), [d(X),

allowButAmbulanceCannotPass(X), sn(traffic_security(X)),

sn(pedestrians_safety(X)), flow_control(X),

sn(life(X))]).

%Priorities

decisionpriority(r20(X), r30(X)).

decisionpriority(r20(X), r10(X)).

%Epistemic theory

epistemicrule(f00, doNotAllowAmbulanceToPass(traffic_participants),[]).

epistemicrule(f01, doNotAllowAmbulanceToPass(patient),[]).

epistemicrule(f02, allowAmbulanceToPass(traffic_participants),[]).

epistemicrule(f03, allowAmbulanceToPass(patient), []).

epistemicrule(f04, ambulanceCannotPass(traffic_participants),[]).

epistemicrule(f05, ambulanceCannotPass(patient),[]).

...

decision([d(allowAmbulanceToPass(patient)),

d(doNotAllowAmbulanceToPass(traffic_participants)]).

assumable(life(patient)).

...

Fig. 8. CaSAPI description of reasoning process
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The basic sets of rules are further represented for our example. First, the set of
goal rules {passOnRed(X), waitForGreen(X), moveOnMiddleLaneOrSide−
walk(X)} followed by the decision rules, establishing the implied actions and
the promoted (and/or demoted) values. Each decision rule corresponds to one
argument from the argumentation scheme (table 3) as follows: the first deci-
sion rule r10 represents the option of waiting for the Green light, corresponding
to argument A1, which promotes traffic security(X), pedestrians safety(X),
flow control(X) and demotes ¬life (sn(life(X)), which is represented by ap-
plying a strong negation on the value of life . Similarly, the second decision rule
r20 corresponds to argument A6, promoting the values of life (life(X)) and
pedestrians safety, while rule r30 corresponds to either of the arguments A2

and A4.
Considering the α ordering relation, the achievement of the main goal is done

by choosing an action that promotes the value of life, therefore the priority rules:

– The decision of passing on Red has a higher priority than the decision of
waiting for green

– The decision of passing on Red has a higher priority than the decision of
moving aside

According to the epistemic theory [17], the agent has conflicting beliefs about
which decision represents the right one and whether by selecting one option the
security of the traffic participants will not be affected or whether the life of the
patient inside the ambulance will be jeopardized. The agent does not know for
sure the exact gravity of the condition of the patient carried by the ambulance
and therefore considering the life of the patient in jeopardy by one of his actions
represents in this case an assumption. Taking into consideration all these aspects,
six epistemic rules are specified, one for each different belief of the agent about
the possible actions (doNotAllowAmbulanceToPass, allowAmbulanceToPass,
ambulanceCannotPass) to perform for protecting either the patient (X=patient)
or the traffic participants (X=traffic participants).

admissibleArgument(react(patient),P,S).

SENT= [d(patient), wn(del(f03)), wn(del(f13)),

wn(del(f23)), wn(del(f33)), wn(del(f41)),

wn(del(r02)), wn(del(r20(patient)))]

P = [passOnRed(patient)],

S = [d(allowAmbulanceToPass(patient))]

Fig. 9. Solution considering the best interest of the patient

After the knowledge description and representation of possible decisions, dif-
ferent admissible arguments are generated and solutions are suggested taking
into consideration the best interest of the patient from the ambulance on one
side (figure 9) and that of the traffic participants on the other side (figure 10).
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admissibleArgument(react(traffic_participants),P,S).

SENT= [d(traffic_participants), wn(del(f00)), wn(del(f10)),

wn(del(f20)), wn(del(f30)), wn(del(f42)), wn(del(r01)),

wn(del(r10(traffic_participants)))]

P = [waitForGreen(traffic_participants)],

S = [d(doNotAllowAmbulanceToPass(traffic_participants))]

Fig. 10. Solution considering the best interests of the traffic participants

Figure 9 displays the result returned by the admissibleArgument(react (pa-
tient),P,S) predicate, result referring to the agent reaction when considering the
best interest of the patient. P can be understood as the strongest combination
of sub-goals which can be reached by an alternative. This sub-goal can be chal-
lenged. In this direction, admissibleArgument(passOnRed(patient),P,S) returns
P = [allowAmbulanceToPass (patient)], and
S = [d(allowAmbulanceToPass(patient))].

Since this argument is a sub-argument of the previous one, they suggest the
same alternatives. Similarly, figure 10 displays the admissible argument sustain-
ing the agent reaction when considering the best interest of all traffic partici-
pants. In this case, the admissible argument suggests the action of waiting for
the Green color of the traffic lights and thus not allowing the ambulance to pass.

We can observe that the solution proposed when considering the best interest
of the patient as the main criterion (X = patient) is that of passing on the
Red color of the traffic lights to allow this way the ambulance to enter the
intersection (figure 9), while choosing to wait for the Green color of the traffic
lights and not allowing the ambulance to pass is considered to be the best option
when selecting as main criterion the best interest of the traffic participants (X =
traffic participants) (figure 10).

7 Related Work

Vasconcelos et al. [20] define conflicts as situations that arise when an action is
simultaneously prohibited and permitted/obliged, and its variables have over-
lapping values. The variables of a norm specify its scope of influence, that is,
which agent/role the norm concerns, and which values of the action it addresses.
Moreover, they propose a normative conflict resolution mechanism based on the
addition of constraints that will prevent variables from having overlapping val-
ues. However, the proposed solution restricts the norm representation selection
to the use of atomic formulas and might prove difficult or too complex to be
applied in different situations as, for example, when dealing with deontic con-
flicts, that is when an action may be simultaneously prohibited and obliged. As
an alternative solution to the normative conflict resolution problem, we further
propose a method based on the reasoning power of value based argumentation.

Making norms concrete [1] relate the abstract concepts used in the specifica-
tion to concrete ones used in practice. The assumption is that the “counts-as”
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mechanism will also take care of the conflicts that might appear between the con-
crete norms. This could be the case in simple organizations, but in more realistic
ones, due to the complexity of the real world conflicts are bound to appear. It is
in such cases that our approach, showing a justification for how norms are being
complied to, could be found useful.

Considering how power may be used by agents to govern the imposition of
norms and the management of norms [18], it is also important to justify why and
how in some specific situations the agents have behaved in a particular manner.
Although having agents that can play certain roles and are able to apply power
by changing the system’s norms are quite natural, it is also necessary for the
agents to understand how the norms are being enforced in the running of such a
society. Our contribution provides a justification of how norms, that may conflict
in some situation, are being interpreted by the agents for the values of the society.

8 Discussion and Conclusions

In the conclusions of their paper [16], the authors present the following situation
regarding the requirements for the deployment of normative systems.

Providing explanations of norm violations is important if managers are
to appropriately assign responsibility and apply sanctions. Explanations
can also help to evolve the normative specification of a system in order to
prevent future violations. Thus far, monitors provide limited explanation
of violation and fulfillment, in terms of the labels of the arcs transitioned.
Future work will investigate generation of more comprehensive explana-
tions. This may require reference to representations of work-flow separate
from that implicitly specified by norms. This information may in turn
be gleaned from observers.

Our aim in this paper has been to provide a method that can show in a concise
and precise manner whether some norms have been complied to or broken.

Mechanisms for the detection and resolution of normative conflicts [20] to
avoid them at design time are very important, but we have focused here on
proofs for the justifications of agent behavior, by allowing the agents to make
the proper decision considering the current environmental situation. Work on
adequately dealing with unpredictable and dynamic environments where norma-
tive frameworks are deployed, by providing mechanisms for modifying the norms
at runtime [19] obviously require understanding of the workings of norms. This
is a significant aspect since otherwise the developers cannot know exactly how
the norms should be changed.

Although we have used a very simple illustrative example, we are aiming at
a general behavior of collaborating/competing agents, including interaction in
normative organizations [7].

Considering the formalism for the monitoring of both regulative and sub-
stantive norms using monitoring [2] we feel that our approach can bring some
light in this direction. One issue that has been raised during the presentation
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at the workshop concerned the monotonicity of the hybrid justification logic.
For justifying just some aspects along with the behavior of agents, in a kind of
postmortem check, the lack of non-monotonicity should not be a problem.
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Abstract. Institutions, also referred to as normative systems, offer a
means to govern open systems, in particular open multi-agent systems.
Research in logics, and subsequently tools, has led to support for the
specification, verification and enactment of institutions. Most effort to
date has focused on the design-time properties of institutions (either on
the normative or the system level), such as whether a particular state of
affairs is reachable or not from a given set of initial conditions. Such mod-
els are useful in forcing the designer to state their intentions precisely,
and for testing (design-time) properties. However, we identify two prob-
lems in the direct utilization of design-time models in the governance of
live (run-time) systems: (i) over-specification of constraints on agent au-
tonomy and (ii) generation of design-time model artefacts. In this paper
we present a methodology to tackle these two problems and extract run-
time reasoning components from a design-time model. We demonstrate
how to derive an event-based run-time model of institutions that can be
incorporated into the capabilities of autonomous BDI agents to address
the issues above in order to realize practical norm-governed multi-agent
systems.

1 Introduction

The motivation for this work is two-fold: the first is the goal of the run-time
governance of open distributed systems and the second is a case study of such
a system: using institutions to govern the interaction of participants to demon-
strate the economic viability of future mobile phone networks (called wireless
grids)

The general idea in these future mobile phone networks is that mobiles dynam-
ically construct ad-hoc wireless grids with the objective of achieving (i) faster
download times by splitting content into parts, downloading some using 3G and
acquiring the rest from nearby phones using wifi (ii) reducing power consumption
by trading off high-cost 3G communication for low-cost wifi communication [7].

The main challenge within this context is how to encourage participants to
contribute actively to the collective by downloading their share of parts via the
high-cost 3G link and then to share them with the others, rather than free-ride
by only receiving parts from the other participants in the system.

S. Cranefield et al. (Eds.): COIN 2011, LNCS 7254, pp. 129–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We propose an agent-based simulation to analyse cooperation effects in these
mobile phone networks, using institutions as a mechanism to encourage and
enforce cooperation. Results from the simulation can then be used to determine
the viability of the system.

Typically institutions and agents co-exist in a state of tension: agents are
(supposed to be) autonomous, while institutions constrain autonomy. Often, in
norm-governed MAS, this tension is alleviated by regimenting agents and their
actions [12], thus not allowing any norm-deviation. We, in contrast, use a more
social form of institution. An agent can query institutional properties at run-time
in order to examine how situations were achieved, or can possibly be achieved in
the future, to determine which normative context is applicable to their current
situation and to evaluate possible futures and make a decision on being norm-
compliant or not, on the basis of this information.

Given the event-based nature of the simulation, the institutional approach
described in [3] offers a suitably compatible model, as well as a complementary
computational model that could be adapted to provide agents with information
about the institutional state. At the same time, we also needed a suitable agent
architecture, with a programming model that would fit the requirements for both
being able to process institutional events and taking a goal-driven approach to
the tasks to be fulfilled in the simulation.

Traditionally, when trying to analyse normative effects on a system, the real
world is formalized as two separate (i.e. no dependencies) models: a system model
and a normative/institutional model of which only the design-time properties
are analysed separately. While useful, this can be problematic when wanting
to analyse the interplay between agents and the institution. Furthermore, it
poses the problem of how and when to account for run-time effects. Thus, in
contrast to the separate analysis of the normative and system models, we are
interested in an integrative and coherent analysis of the two models indvidually
and jointly. Thus, we approach the institutional and system modelling in two
phases:

1. Design-Time Model: we start traditionally with a design-time model, which
in contrast to the standard approaches, integrates the system and normative
model and allows for design-time reasoning about the interplay between
agents on the system level and the institutions on the normative level. For
instance, we build an institutional model of the wireless grid concept to
evaluate whether it makes sense to pursue the idea, i.e. whether enforcement
improves collaboration even in the most favourable circumstances. A design-
time model is less labour intensive than implementing a full system. This
model hard-codes simplifications of the environment in which the agents
interact, but it can be used for validation purposes and helps to expose
requirements issues.

2. Run-Time Model: Using the design-time model as a starting point, we then
derive a run-time model. This is created by removing all but the norma-
tive information and domain facts from the design-time model, in order
to avoid design artifacts and restrictions with respect to agent autonomy.
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Instead of using the formal model on the system level, we employ a multi-
agent simulation that is linked with the normative model. The run-time
model provides the (BDI) agents in the simulation or the MAS system with
a kind of oracle, that can respond to queries both about the current state
and the normative consequences of actions.

The experience gained during the development and execution of these two
phases leads to the main contribution of this paper: a methodology for devel-
oping design-time and run-time institutional models—that is, models that play
a key part in the development and the running of either an application or, as
in our case, a simulation, and expressing the rules of governance of an open
system. In this respect, the simulation and its results are tangential to the main
contribution, which is normative design and making such models accessible to
agents.

The remainder of the paper is laid out as follows: in the next section (Section 2)
we briefly describe the wireless grid scenario to provide the problem context.
The background on norm-governed systems and the normative model adopted
is provided in Section 3. In Section 4 we contrast the design and run-time model
to highlight the different features of each and put forward some design rules
to observe in deriving the run-time model from the design-time one. This is
followed by a presentation of the both models for our scenario and a description
how the normative state is monitored and accessed by the agents. Section 5 then
goes on to explain how this normative model can be incorporated into a BDI
platform and how agents interact with the institutional model. We finish with
related work (Section 6) and some conclusions and directions for future work
(Section 7).

2 Case Study: Wireless Grids

The process and implications of modelling normative systems for agent reason-
ing can best be illustrated by a case study. The case study is set against the
background of the next generation of mobile phones, where wireless grids have
been proposed to address the energy issues inherent in these phones [7]. Batteries
have fixed capacity that limits the operational time for a device. The increasing
sophistication of mobile phones and their evolution into smart phones offering
Internet access, imaging (still and video), audio and access to new services, has
had a significant impact on power consumption, leading to shorter stand-by
times, as well as the problem of rising battery temperature unless there is active
cooling [19].

Wireless grids provide a mechanism that, in contrast to distributing digital
content exclusively via an expensive (in terms of power and money) connection
to a structured network, allows mobile phones to cooperate and share content
via a cheap(er) ad-hoc connection1 as well.

1 In this paper we assume the use of the IEEE802.11 WLAN specification for the
ad-hoc connection, which has the highest energy saving potential [19].
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While providing energy gains, the scheme has the intrinsic weakness of dis-
tributed cooperative architectures: it depends on the cooperation of the par-
ticipants to succeed. Cooperation in this context is understood as participants
volunteering their resources, forming a common pool, that can be used by all to
achieve a common goal, such as downloading a file. The utility that users can
obtain from pooled resources is much higher than they can obtain on their own.
Unfortunately this commitment comes at a cost, in the form of battery consump-
tion for sending parts of files. As a consequence, (bounded) rational users would
prefer to access the resources in the common pools without any commitment of
their own, which puts the whole concept at risk.

Network users do not necessarily obediently cooperate by making their re-
sources available without the prospect of rewards for good behaviour. Unrecip-
rocated, there is no value to cooperation for a user. A lone cooperating user
draws no benefit from its cooperation, even if the rest of the network does, as
they receive parts via the cheaper connection. Guaranteed costs, paired with
uncertainty or even lack of any resulting benefit does not induce cooperation in
a (bounded) rational, utility-maximizing user. Without any incentives, rational
users do not cooperate in such an environment and all will be worse off [1].

In this paper we show that an institution can be used to prototype and ver-
ify a cooperation mechanism—the design-time model—and subsequently use the
mechanism to govern a simulation of a live system, using the run-time model.
This two-phase approach demonstrates that we can build a norm-governed
system that is: (i) flexible: by changing the institutional model, it is possible
to influence agent behaviour, without modifying individuals—assuming a suit-
ably goal-driven agent (ii) realistic: in this scenario, as in those foreseen for
multi-agent systems, we cannot either predict or control with total certainty
the behaviour of agents, but it is hoped that social institutions can provide
functions similar to those found in the physical world, thus it is important to
be able to test the potential impact of institutional control on suitably adapted
agents.

3 Norm Governed Systems

Having briefly described the use case scenario, we now set out the formal model
that we have adopted and its accompanying normative specification language.

3.1 The Institutional Model

We use the institutional model presented by Cliffe et al [3]. Its event-driven
approach and mathematical foundation with computational support make it
ideal for use in an agent-based simulation, as the actions of the agents advance
both the simulation and the institutional state. The mathematical foundations
provide verifiability and the underlying computational model using answer set
programming allows for reasoning with incomplete information. In this section
we provide an informal description of the model and its implementation.
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The premise of the model is that events trigger the creation of institutional
fluents. Inspired by Jones and Sergot’s [15] account of institutional power and
the notion of ‘counts-as’, the generation relation is used to define the connection
between actions and their interpretation in the context of the institution. The
effects of events, actions or institutional events – in terms of the initiation or
termination of brute facts [14] and institutional fluents – is defined by the con-
sequence relation. Thus, given an event and a state of the institutional model,
represented as a set of (institutional) fluents, the next state can be determined
by the composition of the transitive closure of the generation relation and the
consequence relation.

The formal model is necessarily rather more detailed and precise than the
sketch above. The essential elements of the institutional model are: (i) events
(E), that bring about changes in state, and (ii) fluents (F), that characterise
the state at a given instant, where a fluent is a term whose presence in the
institutional state indicates it is true, and absence implies falsity. Fluents can
either be initiated (i.e. become true) or terminated (i.e. become false) The model
distinguishes two kinds of events: institutional events (Einst), that are the events
defined by the model and exogenous (Eex), that are outside its scope, but whose
occurrence triggers institutional events in a direct reflection of the counts-as
principle. Institutional events are partitioned into institutional actions (Eact)
that denote changes in institutional state and violation events (Eviol), that signal
the occurrence of violations. Violations may arise either from explicit generation,
from the occurrence of a non-permitted event, or from the failure to fulfil an
obligation. The model also distinguishes two kinds of fluents: institutional fluents
that denote institutional properties of the state such as permissions P , powersW
and obligations O, and domain fluents D that correspond to properties specific
to the institutional framework itself. The set of all fluents is denoted as F .

The evolution of the state of the framework is achieved through the definition
of two relations: (i) the generation relation, that specifies how the occurrence of
one (exogenous or institutional) event generates another (institutional) event,
subject to the empowerment of the actor. Formally, this can be expressed as
G : X × E → 2Einst , where X ⊂ 2F denotes a formula over the (institutional)
state and E an event, whose confluence results in an institutional event, and
(ii) the consequence relation, that specifies the initiation and termination of
fluents subject to the performance of some action in a state matching some
expression, or formally C : X × E → 2F × 2F .

The semantics is defined over a sequence, called a trace, of exogenous events.
Starting from the initial state, each exogenous event causes a state change,
through initiation and termination of fluents, that is achieved by a three-step
process: (i) the transitive closure of G with respect to a given exogenous event de-
termines all the (institutional) events that result (ii) to this, add all violations of
events not permitted and all obligations not fulfilled, giving the set of all events
whose consequences determine the new state, so that (iii) the application of C to
this set of events, identifies all fluents to initiate and terminate with respect to
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the current state in order to obtain the next state. So for each trace, a sequence
of states is obtained constituting the model of the institutional framework.

Example 1. A very simple example could be the institution where pressing a
button (exogenous event) indicates that you wish to buy (institutional event).
Buying a good means you obtain ownership. Permission to buy is only obtained
by registering (exogenous event). For this example we have that:

– F={registered, own, pow(buy), perm(buy), perm(press), perm(register)}
– Eex = {press, register}
– Einst = {buy, viol(buy), viol(register), viol(press)}
– G = {(∅, press, {buy})}
– C = {(∅, register, ({registered, perm(buy)},∅)), (∅, buy, ({own}, ∅))}

Given an initial state Δ = {perm(press)}, the trace 〈register, press〉 does not
lead to violations while the trace 〈press〉 produces viol(buy) indicating that
perhaps the generate rules need to be adjusted such that buy only occurs if the
user is registered.

3.2 Implementation

This formalization is realized as a computational model through Answer Set
Programming (ASP) [11]. AnsProlog, the language of ASP, is a declarative
knowledge representation language that allows the programmer to describe a
problem and the requirements on the solutions. Answer set solvers like clingo
[10] process the AnsProlog specification and return the solutions, in this case
the traces, as answer sets. ASP permits, in contrast to related techniques like the
event calculus, the specification of both problem and query as an executable pro-
gram, thus eliminating the gap between specification and verification language.
But perhaps more importantly, both – verification and specification language –
are identical, allowing for more straightforward verification and validation. Cliffe
et al. [3] show that the formal model of a normative framework can be translated
to an AnsProlog program—a logic program under answer set semantics—such
that the answer sets of the program correspond to the traces of the framework.
A detailed description of the mapping can be found in [3].

Cliffe et al. [3] also put forward a domain-specific action language InstAL ,
for institution specification which compiles into AnsProlog. We use InstAL to
describe our scenario. An InstAL program consists of two parts: the normative
specification and a domain file. The normative specification consists of a static
part and dynamic part. The former includes the name of the institution, and its
events and fluents defined over a set of monomorphic types, such that it can be
instantiated to create specific copies of the institutions for use by different (ac-
tual) participants. The dynamic part contains the description of the initial state
of the institution which is instance specific. The range of values each type vari-
able can have are specified in the domain file. The initial part of the specification
identifies the fluents that comprise the normative state at the start.
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InstAL uses semi-natural language to describe the various components of the
normative framework. We introduce the language features of InstAL through
fragments taken from the case study:

– institution name declares the name of the institutional framework, such
as institution grid.

– type identifier declares a type, such as type Handset. Type declarations
establish a disjoint set of monomorphic types. The types are specified in a
domain file providing the acceptable values for each declared type. InstAL
will then substitute those values whenever a type is specified for the events
and fluents. An example is given in Fig. 5.

– exogenous event event-name(type+) declares a new physical world
event and the types of its parameters, such as exogenous event

download(Handset, Chunk, Channel).
– inst event event-name(type+) declares a new institutional event and the

types of its parameters, such as inst event intDownload(Handset, Chunk,
Channel).

– violation event event-name(type+) declares a new violation event, such as
violation event misuse(Handset).

– fluent fluent-name(type+) declares a new institutional fact—that is, an
object that can be an element of the institutional framework state, such
as fluent downloadChunk(Handset, Chunk).

– noninertial fluent fluent-name(type+) declares a fluent that is non-
inertial, i.e. is not automatically persistent between states without termina-
tion. An example could be noninertial fluent busyHSending(Handset).

– event-name generates institutional-event+ [condition] adds a new pair to
the generation relation with domain event (physical or institutional) and
range institutional world event, subject to an optional condition. For exam-
ple: send (A, X) generates intSend(A) if hasChunk(A, X);, where the condi-
tion is the presence of the fluent hasChunk, with the corresponding A and X

(these variables are unified) in the institutional state.
– event-name initiates institutional-fluent+ [condition] adds a new pair

to the consequence (addition) relation, with domain event (physical or
institutional) and range fluent. Thus, instDownload(A, X, C) initiates

hasChunk(A, X) adds the corresponding fluent to the institutional state.
– event-name terminates institutional-fluent+ [condition] adds a new pair

to the consequence (deletion) relation, with domain event (physical or
institutional) and range fluent. Thus, intDownload(A, X, C) terminates

pow(intDownload(A, X1, C1) deletes the corresponding fluent from the insti-
tutional state.

– non-inertial-fluent-name when [condition] adds the conditions in which
a non-inertial fluent should be true in a given state, like for example
busyHReceiving(A) when areceive(A, T2).

– perm(event) is a special fluent whose presence indicates that the event is
permitted, such as perm(intDownload(A, B, C)), and is typically the subject
of an initiates or terminates rule.
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– pow(event) is a special fluent whose presence indicates that the event is
empowered, such as pow(intDownload(A, X1, C1)) (as above), and is typically
the subject of an initiates or terminates rule.

InstAL also provides the notion of obligation, represented by the special flu-
ent obl(event, event, event)., but since they are not used in the model under
consideration, we do not discuss them further.

The declarative nature of ASP allows for a straightforward and efficient trans-
lation from the institutional requirements to a program that can compute all
possible traces of the institution. Providing the same functionality using a pro-
cedural approach would be significantly harder.

4 Design-Time vs. Run-Time Models in the Wireless
Grid Scenario

Most research to date on institutional modelling and reasoning focusses on the
static properties of institutions. A model is used, for example, to determine
whether a particular state of affairs is reachable or not from a given set of initial
conditions. As such it can be used to design and verify properties of protocols
and the effectiveness of sanctions. In our wireless grid scenario, the design-time
model is used as a prototype to demonstrate that normative reasoning can be
applied to the domain and to evaluate whether cooperation between the handsets
is beneficial to the individual agents.

The design-time model is an abstraction of a possible running system and
cannot take into account participants’ reasoning capabilities as some of the par-
ticipants might not be norm-aware or even irrational. In the design-time, it
should be possible for participants to download the same chunk (i.e. part of the
file) over and over again, while in reality this would be a waste of battery power.
Additionally, the model does not have access to the information available in a
running system so it might have to synthesize some information for itself. In the
grid example, the base-station uses several different frequencies (frequency di-
vision multiplexing), and many users may download chunks simultaneously. We
refer to a frequency division in the model as a channel. The design-time model
has to keep track of which channels are in use at any given time in order to pre-
vent simultaneous downloads on the channel. This also implies it has to monitor
the duration of the download. The same is true for the sending and receiving
of the chunks. In a running system, this is taken care of by the system and its
components (such as the base-stations) or through the physical limitations of
the devices.

The modelling of such extra details in the design-time model forces the de-
signer to be very precise about his or her intentions, ultimately leading to better
normative specifications.

While the design-time model assists the design of protocols, the run-time
model assists in the running of and adherence to the protocol. The run-time
model allows the participants to reflect upon the normative state of the system
and their actions, enforces the normative specification by penalising violations
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and helps in planning for agents’ future actions taking into account normative
repercussions.

For a given normative system, both the run-time and design-time model
should have the same normative intentions, making the design-time model a
good starting point for the development of the run-time one. A first step of the
creation of the run-time model is to remove rules and conditions that deal with
simulating a live system, because the purpose of the run-time model is to moni-
tor the normative behaviour of participants, not the system’s behaviour. It only
monitors the external events resulting from agent actions, however, it does not
predetermine all agent behaviour.

The design-time model might also contain enforcement mechanisms. In gen-
eral, norm enforcement in a running system is the responsibility of the agents
rather than the normative model. The only exception is the granting or removal
of permissions to actions (the exogenous events) of the agents, which is part of
the normative specification. In a running system, agent’s actions can have side
effects. Removing power from institutional events, limiting these in the design-
time model might be sensible or useful in an design-time context but cannot
be enforced in a running system. An example of this is removing the power of
agents to receive chunks in the design-time model when they violate the sharing
norm. In the running system this is impossible because the data is broadcast and
asking an agent to penalise themselves is hardly sensible. A more appropriate
sanction may be to exclude the agent from future interactions. While different in
execution, both sanctions have the same result: the offending agent is shunned
by the community—an approach which was previously demonstrated to be an
effective enforcement mechanism [20].

To illustrate both the issues arising from design-time and run-time models,
we describe each briefly in the following sections, highlighting aspects where
they differ. Figs. 1-5 provide the full specification of both the design-time and
the run-time model and an example of a domain file. As the run-time model is
created from the design-time model by removing system data and enforcement
mechanisms, we have chosen to show one specification, in which the run-time
specification is in bold and the additional parts from the design-time model are
in normal font; thus reinforcing that one is part of the other.

4.1 The Design-Time Model

The wireless grid scenario can be broken down into three phases (i) negotia-
tion, where it is decided which handset needs to download which chunk from
the base-station (ii) downloading, where a handset downloads a chunk from the
base-station and (iii) sharing, where a handset broadcasts a chunk to receiv-
ing handsets. These three phases are distinct, but although negotiation must
come first, obtaining and sharing can be interleaved as soon as downloading has
commenced.

To avoid details that would unnecessarily complicate the specification, we
impose the simplification that each file chunk is assigned to exactly one hand-
set and that each handset is assigned the same number of chunks. Neither are
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1 ����������� ���	

2

3 ��� ���	��

4 ��� �����

5 type Time;
6 ��� ������

7

8 � ������� ���
9 exogenous event clock;

10 ������� ��� 	������	����	����������������

11 ������� ��� ��	����	���������

12

13 � ������� ���
14 ���� ��� �������	

15

16 � �������� ����
17 ���� ��� ����������	����	����������������

18 ���� ��� �����	����	���

19 ���� ��� �����������	���������

20 inst event transition;
21

22 % violation event
23 violation event misuse(Handset);
24

25 �  �����
26  ���� 	������	���������	���������

27  ���� ������������	���������

28 fluent areceive(Handset,Time);
29 fluent asend(Handset,Time);
30 fluent creceive(Handset,Time);
31 fluent csend(Handset,Time);
32 fluent transmit(Channel,Time);
33 fluent previous(Time,Time);
34

35 % Non-inertial fluents
36 noninertial fluent busyHSending(Handset);
37 noninertial fluent busyHReceiving(Handset);
38 noninertial fluent busyBReceiving(Handset);
39 noninertial fluent busyChannel(Channel);

Fig. 1. Declaration of types and events in the model

we concerned (for now) with the negotiation process that brings this about. A
suitable allocation is given in the initial state of the model (see Fig. 4, lines 139–
142) where the downloadChunk fluents indicate which handsets are tasked with
downloading which chunks from the base-station. The handsets are also given
the necessary permissions (lines 134–138). In the download phase each handset
downloads its assigned chunks from the base-station.

The full specification of this phase is given in Fig. 2. Each handset can only
obtain one chunk at a time from the base station, and each channel can only
be used to download a single chunk. This is modelled using the non-inertial
fluents busyBReceiving and busyChannel (lines 38–39) which are implied on the
basis of the handset downloading and the base-station transmitting (lines 75–
76). In a running system, this would be dealt with by the system rather than the
normative model. The first InstAL rule (lines 47–49) indicates that a request to
download a chunk is granted whenever there is an available channel, the handset
is not currently receiving from the base-station and is not busy sending another
chunk. When a chunk is downloaded, the handset and the channel are busy
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41 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
42 � ����  �� 	������	���
43 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
44

45 � ���� �"���� � �����  ��� �� #�� �������
46 � �� ������ �
47 	������	�$�%��� ������ ����������	�$�%���
48 if not busyChannel(C), not busyBReceiving(A),
49 not busyHSending(A);
50

51 download(A,X,C) generates transition;
52 clock generates transition;
53

54 ����������	�$�%��� �������� ���������$�%�

55

56 intDownload(A,X,C) initiates creceive(A,4),
57 transmit(C,4);
58

59 transition initiates transmit(C,T2) if transmit(C,T1),
60 previous(T1,T2);
61 transition initiates creceive(A,T2) if creceive(A,T1),
62 previous(T1,T2);
63 transition initiates pow(intDownload(A,X,C))
64 if creceive(A,1);
65

66 intDownload(A,X,C) terminates pow(intDownload(A,X1,C1));
67 intDownload(A,X,C) terminates pow(intDownload(B,X1,C));
68 ����������	�$�%��� �������� 	������	������$�%�

69 ����������	�$�%��� �������� ����	������	�$�%��&��

70

71 transition terminates csend(A,Time);
72 transition terminates creceive(A,Time);
73 transition terminates transmit(C,Time);
74

75 busyChannel(C) when transmit(C,T2);
76 busyBReceiving(A) when creceive(A,T2);

Fig. 2. Generation and consequence relations for downloading

for a fixed amount of time—4 time steps in this case (lines 56–57). From the
first instant of the handset interacting with the base-station, it is deemed to have
downloaded the chunk, so parts can be shared (line 54). As soon as a channel and
a handset are engaged, the institution (i) removes the power from the handset
and from the channel to engage in any other interactions (lines 66–67), (ii) stops
the handset from needing the chunk (line 68) and (iii) cancels the permission to
download the chunk again later on (lines 69).

In the design-time case, we need a mechanism to mark the passing of time.
For this purpose, each exogenous event generates a transition event (lines 51–
52), while the clock event indicates that no handset was interacting with the
institution. The transition event counts down the period of the interaction
between the channel and handset (line 59–62). When the the interaction finishes,
transition restores the power for a handset to download chunks via the channel
and for the handset to download more chunks (lines 63–64). The event also
terminates any busy fluents that are no longer needed (lines 71–73).

In the sharing phase each handset sends chunks to or receives chunks from
another handset, with the goal that at the end of the process, each handset
has a complete set of the chunks. The full specification is given in Fig. 3.
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78 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
79 � ����  �� �������
80 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
81

82 � $��� $ #���	����� ����� %' (��� �� #���� 	���
83 � �� ��	��� ��	 ������� ������� �������
84 ��	�$�%� ������ �����	�$� � ���������$�%��
85 not busyHSending(A), not busyHReceiving(A),
86 not busyBReceiving(A)

87

88 ��	�$�%� ������ ��������)�%�
89 � ��� ���������)�%�� not busyHSending(B),
90 not busyHReceiving(B), ���������$�%��
91 not busyHSending(A), not busyHReceiving(A),
92 not busyBReceiving(A)

93

94 send(A,X) generates transition;
95 clock generates transition;
96

97 viol(intReceive(A,X)) generates misuse(A);
98

99 ��������$�%� �������� ���������$�%�

100

101 �����	�)� �������� ������������)�%��

102 intReceive(A,X) initiates areceive(A,2);
103 intSend(B) initiates asend(B,2);
104

105 transition initiates asend(A,T2)
106 if asend(A,T1), previous(T1,T2);
107 transition initiates areceive(A,T2)
108 if areceive(A,T1), previous(T1,T2);
109 transition initiates pow(intReceive(A,X))
110 if areceive(A,1);
111 transition initiates pow(intSend(A)) if asend(A,1);
112

113 ��������$�%� �������� ������������$�%��

114 intReceive(A,X) terminates pow(intReceive(A,X));
115 intSend(A) terminates pow(intSend(A));
116

117 misuse(A) terminates pow(intReceive(A,X));
118

119 intReceive(A,X) terminates perm(intReceive(A,Y));
120

121 transition terminates asend(A,Time);
122 transition terminates areceive(A,Time);
123

124 busyHReceiving(A) when areceive(A,T2);
125 busyHSending(A) when asend(A,T2);

Fig. 3. Generation and consequence relations for sharing

The idea behind the model is similar to the downloading phase, but with two
critical differences. First, the sending of one chunk by one handset automatically
triggers the reception of the respective chunk by the partners (line 88), thus the
design-time model assumes no network failures, etc. Furthermore, we build in a
very basic mechanism to encourage handsets to share their chunks with others
rather than just downloading them: when a chunk is received through sharing,
the receiving handset loses permission to receive another chunk until it has sent
a chunk (lines 119 and 101 respectively). Continuous receiving without sending
(no permission is granted to intReceiving) results in a violation event named
misuse (line 97). The simple penalty we chose to implement in our model is that
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127 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
128 � *������ ����  �� 	������	���
129 � ����������� �����	 �� ����� ���
130 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
131 ��������� pow(transition), perm(transition),
132 perm(clock),
133 ��������������	�$�)�����
134 ��������������	�$�)�����
135 ����	������	�������&�����
136 ����	������	�������+�����
137 ����	������	�#�#��,�����
138 ����	������	�#�#��-�����
139 	������	������������&��
140 	������	������������+��
141 	������	������#�#��,��
142 	������	������#�#��-�

143

144 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
145 � *������ ����  �� �������
146 � ����������� �����	 �� ����� ���
147 �!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
148 ��������� pow(transition), perm(transition),
149 perm(clock),
150 ���������������	�����������
151 ���������	����	�����
152 ������	����	�����������
153 ���������	����	�����
154 ���������������	�����������
155 ���������	����	����

156

157 %------------------------------------------------
158 % time
159 %------------------------------------------------
160 initially previous(4,3);
161 initially previous(3,2);
162 initially previous(2,1);

Fig. 4. Initial state of the model, post negotiation

1 % This is dynamically created in the online case
2 ���	��' ���� #�#
3 �����' �& �, �+ �-
4 ������' �& �,
5 Time: 1 2 3 4

Fig. 5. The domain information

the violating handset permanently loses the power to intReceiving (line 117),
which means that for all intents and purposes it has been expelled from the
group.

Fig. 5 shows the domain file for a scenario of two agents sharing four chunks.
The traces generated by this design-time model verify that when agents follow
the norms the entire community benefits—except if norms are breached at the
end of the trace, as the penalty has no effect. While this might not cause problems
if participants never meet again, penalties can always be applied at the next
encounter. This information gives us sufficient reassurance to implement the
protocol in our energy-saving simulation, where handsets might engage in several
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sharing contracts over a period of time and past information can be used against
them and propagated through the network.

4.2 The Run-Time Model

As mentioned earlier, for a given normative system, both the design-time and
run-time model should have the same normative intentions. A first step for mov-
ing from the design-time model to the run-time one, is to remove rules and
conditions that deal with simulating a live system. Thus, it only monitors the
external events resulting from agents’ actions.

As a consequence of moving to a run-time model, we no longer need to model
system data. Concretely for our example, this means that the model does not
have to track whether a channel is being used at a given moment or that a
particular handset is incapable, from a technical perspective, of sending or re-
ceiving chunks. This means that the exogenous event clock and institutional
event transition are no longer required (Fig. 1 lines 9 and 20). By the same rea-
soning, we longer need fluents to indicate that a handset or channel is engaged
or to indicate elapsed time. This means that lines 28 to 39 in Fig. 1 are no longer
necessary. With all of these events and fluents gone, the type Time is no longer
needed.

In the design-time model, we penalize misbehaviour by taking away the power
of a handset to receive chunks. While this may be a reasonable simplification in
a design-time model for verification purposes, it cannot be enforced in a running
system unless one expects agents to penalize themselves. Instead the system
notes the violation and agents may use this information in future interactions
with the offending agent. Thus, we remove the violation event misuse (Fig.1
line 23), its generate rule (Fig. 3 line 97) and any rules that terminate the power
of agents.

In the run-time model, the assignment of chunks to agents (i.e. the initial con-
figuration of the agent/chunk combinations indicated by the initially identifier
in the InstAL specification) is determined at run-time by agents, which meet,
decide to cooperate and negotiate which agent is to download and share which
chunk. This information is then added to the fixed part (i.e. everything but the
initially part of the InstAL specification).

4.3 Monitoring Run-Time State

For maintaining the normative state in our running system we introduce a spe-
cial type of agent or entity: the InstitutionKeeper, which is conceptually similar
to the well-know “Governor”-idea (see [17] for example). The task of the Institu-
tionKeeper is to monitor the actions of the agents in the context of the institu-
tion(s) in which they participate and consequently update the institutional state
as a result of these actions. Agents can query this normative entity regarding
the current state or possible future states of the institution, allowing them to
take this information into account when deciding on their actions. In order to
do so, the InstitutionKeeper is given the static part of the institution, which
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clingo Governor Environment

Agent
1: getPercepts()2: query3: ASP query (InstAL)

3.1: InstAL translation and grounding

3.2: ASP result 4: result 5: result

6: agent reasoning7: executeAction()7.1: externalEvent()

7.2: newState()

Fig. 6. Interaction between the various components

can then be instantiated when agents participating in it are known. This way a
InstitutionKeeper can be responsible for as many instantiations of the same in-
stitutional specification as needed. We refer to these instantiations as contracts.
In our wireless grid example, when two agents agree to collaborate they create
a contract comprising their agent IDs, the chunks involved, the channels they
can use and their allocation of which agent is downloading which chunks from
the base station. This information is expressed as a custom domain file and an
initial institutional state. Each contract is represented as a new instantiation
of the institution. Whenever an action takes place that affects a contract, the
InstitutionKeeper is informed of the agent ID and the action and computes the
next normative state for that contract using the current state (for the initially

part) and the associated domain file. Having the information for the initial con-
tract, as well as tracking the normative state of each contract by analysing the
respective exogenous events, the InstitutionKeeper can act as an institutional
query processor for the agents. Contracting agents can query the current state
and establish consequences of potential actions.

Currently we have three kinds of queries implemented that are useful for
agents: (i) queries about the current state, including the norms applying to that
state, (ii) queries about the possible impact of the agent’s own actions, and
(iii) general queries on what might happen in the future.

5 BDI Agents and Institutions

For the implementation of our simulation and the run-time reasoning of the
agents we use Jason [2], a Java-based interpreter for an extended version of
AgentSpeak. We link it to the institutional model and the answer set solver
using system calls. The BDI architecture allows agents to reason easily about
environmental and normative percepts alike while the Jason implementation
takes care of the simulation side.

The UML sequence diagram in Fig. 6 shows the architecture of the run-
time reasoning model and the dataflow in the simulation. The agents use
the getPercepts() method to retrieve environmental percepts and normative
percepts—the latter provided by the InstitutionKeeper. The InstitutionKeeper is
implemented in Java and handles all the instantiations of the institution, storing
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1 /* downloading */
2 +!check_download_channel: free(CHANNEL)
3 <- ?assigned_chunk(GN,X,N,CHUNKNUMBER,CHUNKSIZE);
4 check__permission_download(GN,CHUNKNUMBER,
5 CHANNEL);
6 !download_decision.
7

8 +!check_download_channel: true
9 <- .send(basestation, askOne, free(CHANNEL), Reply);

10 !check_download_channel.
11

12 +!download_decision: power(P) & permission(PE) &
13 P == true & PE == true
14 <- ?assigned_chunk(GN,X,N,CHUNKNUMBER,CHUNKSIZE);
15 ?event(E);
16 .send(basestation, tell, download(CHANNEL));
17 update_download_costs(CHUNKSIZE,E);
18 external_event_download(GN,CHUNKNUMBER,CHANNEL);
19 .send(basestation, untell, download(CHANNEL));
20 !sending_decision(GN,CHUNKSIZE,S,D).
21

22 +!download_decision: true
23 <- !check_download_channel.
24

25 /* sending */
26 +!sending_decision(GN,CHUNKSIZE,S,D):
27 assigned_chunk(_,_,N,_,_) & S <= D & N==3
28 <- ?assigned_chunk(GN,X,3,CHUNKNUMBER,CHUNKSIZE);
29 !check_violation(GN,CHUNKNUMBER);
30 !sending_decision_violation(GN).
31

32 +!check_violation(GN,CHUNKNUMBER): true
33 <- ?partner(PARTNER);
34 query_violation(PARTNER,CHUNKNUMBER,GN).
35

36 +!sending_decision_violation(GN): violation(V) &
37 V == true
38 <- check_missing_chunks.
39

40 +!sending_decision_violation(GN): true
41 <- ?assigned_chunk(GN,X,3,CHUNKNUMBER,CHUNKSIZE);
42 ?partner(PARTNER);
43 .send(PARTNER,tell,sharing(GN,CHUNKNUMBER));
44 update_sending_costs(CHUNKSIZE,GN,CHUNKNUMBER);
45 check_missing_chunks.

Fig. 7. Code fragment of the Agent Reasoning

the state of each. The state gets updated whenever an agent performs a relevant
action by running the run-time model of the institution with the current state
as initial state and obtaining the new state after the trace containing the action
has been executed. Agent queries are answered by checking the current state for
fluent presence or absence, or by executing the model of the institution with a
complete or partial trace and examining the answer set(s) returned.

The code fragment in Fig. 7 shows how the agent can use normative informa-
tion in its reasoning process. The central elements of Jason agent code are plans
(i.e. steps an agent has to take in order to achieve its current intentions) that
have the form −/+ !intention: precondition ← steps .

The first part of the agent code (lines 1–23) shows some of the agent’s con-
siderations for downloading a chunk. Notice that in contrast to the design-time
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case, the agent is not automatically allocated a chunk, but has to check whether
the base station has a free channel itself (lines 2–10). Beside this channel check-
ing, the agent checks whether it has permission to perform the action (line 4)
and being a norm-abiding agent, this agent only performs the action if it has
both (line 11).

Lines 25–45 of the code fragment show the agent reasoning about sending its
last (in our example the third) chunk. First, it checks whether receiving a chunk
would be a violation for its partner (because the partner has not been sending)
(line 29, 32–34). If so, the agent only checks which chunks it is missing and
download these for itself (code not given). If the partner has been collaborating,
the agent sends the agent the chunk (lines 43–44), if the costs are lower than a
potential sanction for non-cooperation (precondition line 27).

6 Related Work

We contrast what we have presented here with several frameworks for organi-
zational/institutional modelling and implementation, namely Opera/Operetta,
Moise+ Islander, OCeAN and the constraint framework of Garcia-Camino.

The focus in Opera [18] is the specification of (valid) normative states: how
the states are achieved is not addressed, nor is the matter of which agents are
responsible for the actions that brought about these states. The model on which
our work is based ([3]) is complementary to Opera, focussing instead on ac-
tions and whether they are empowered or permitted and whether obligations
are fulfilled, as well as maintaining a complete trace of the institutional history.
Furthermore, the computational model put forward here enables a direct, model-
checking approach, both to the verification of the design-time model and to its
utilisation by agents enquiring about the institutional state as it evolves.

Moise+ [13] is potentially the most similar to what we have set out: it is
described as a middleware for organizational programming, which like us uses
Jason as the agent framework and extends Jason to allow agents to perceive
their organization. However, it would appear from [13], that agent autonomy is
quite constrained by the roles they take on at any one time. In particular, it is
notable that individual actions can be restricted by the group to which an agent
belongs. In contrast, the agents in our model are simply subject to the norms of
the institution and can choose whether to observe them or not.

Islander [6]—and associated tools—offer a comprehensive environment for
the specification of electronic institutions through state diagrams labelled with
speech acts, coupled with simulation via Ameli, supported by JADE. The agents
are constructed from the specification and are in essence regimented by speech
acts, rather than being autonomous, perceiving an illocution and then taking
some action that may or may not have meaning in the (single) pervading in-
stitutional context. Although it would appear to be possible to author agents
that can operate in this environment, using an internal architecture of choice,
they would be without access to any formal model of the institution in which
they act, and so are functionally blind. Garcia-Camino [9] adds a computational
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model to this framework that is very similar to the one taken as a basis here, but
the objective seems to be limited to institutional specification with no run-time
connection in support of agent reasoning.

Fornara et al [8] describe OCeAN, which is a meta-model for institutions, de-
scribing the abstract syntax and semantics for the constructs that characterize
an institution. The whole purpose of OCeAN is not to commit to a concrete
language for specification, but instead to express the properties of a modelling
language through UML and the Object Constraint Language. Similar to our
approach described here, they distinguish between natural attributes (which we
call brute facts) and institutional attributes (resp. fluents), while identifying an
institutional state, changes in which are brought about by actions that are con-
strained by pre-conditions and effects. Thus there would appear to a fairly close
correspondence between their (design-time) model and the concrete language
used here, however it is only through the dynamics of a computational model,
that agents can actually examine how the current state was achieved and eval-
uate possible futures.

The attraction of connecting BDI agents and norms goes back to at least [5],
which discusses a form of deontic logic to accommodate norms and a pseudo-code
extension of the BDI agent loop. However, practical connections appear to be
few, and even these do not appear to offer actual implementations: (i) Meneguzzi
and Luck [16] discuss how BDI agents may assimilate (changes in) permissions,
prohibitions and obligations, but unlike here, do not appear to address the uti-
lization of norms in the agent reasoning process (ii) Criado, Argente and Botti [4]
also describe a form of norm assimilation process via bridge rules, so agents may
recognize and acquire norms from their environment, but the recognition process
is unclear, nor is it apparent whether the norms are acquired from observation
or supplied by an institutional framework.

7 Discussion

In this paper we demonstrated how social institutions can be incorporated in
a multi-agent simulation, and consequently, in live MAS, since the only differ-
ence between the two is the source of the events. To achieve this, the traditional
design-time institutional model, used for verifying design-time properties of the
system, can be reduced to a run-time model that just contains normative in-
formation and the relevant domain fluents. In a live system, one would expect
one or several of the agents to police the community and enforce normative
behaviour—just as in the physical world the law is enforced by judges and po-
lice officers—and to control the non-normative side of the system.

To use the run-time model in a live system, it needs to be encapsulated in a
monitor object—which we call an InstitutionKeeper—whose sole purpose is to
manage normative state and to answer queries from norm-aware agents.

In our simulation, one InstitutionKeeper object manages several instantia-
tions of the same normative framework, which are referred to as contracts.
We observe that often more than one normative framework is active within
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an application. Furthermore, some of these may interact with one another. In
[3], the authors present the concept of multi-institutions where events in one
institution cause events in another or change another institution’s state. Exten-
sion of the InstitutionKeeper to accommodate multi-institutional reasoning is
an important part of future work, along with the issue of using conventional
distributed systems techniques, such as replication, as a means to avoid the
InstitutionKeeper becoming a bottleneck or single point of failure.
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2. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley Series in Agent Technology. John Wiley & Sons
(2007)

3. Cliffe, O., De Vos, M., Padget, J.: Specifying and Reasoning About Multiple Insti-
tutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006 Workshops. LNCS (LNAI), vol. 4386,
pp. 67–85. Springer, Heidelberg (2007)

4. Criado, N., Argente, E., Botti, V.J.: A BDI architecture for normative decision
making. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S.
(eds.) International Conference on Autonomous Agents and Multiagent Systems,
pp. 1383–1384. International Foundation for Autonomous Agents and Multiagent
Systems (2010)

5. Dignum, F., Morley, D.N., Sonenberg, L., Cavedon, L.: Towards socially sophisti-
cated BDI agents. In: ICMAS, pp. 111–118. IEEE Computer Society (2000)

6. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor.
In: International Conference on Autonomous Agents and Multiagent Systems, pp.
1045–1052. ACM (2002)

7. Fitzek, F.H.P., Katz, M.D.: Cellular controlled peer to peer communications:
Overview and potentials. In: Cognitive Wireless Networks, pp. 31–59. Springer
(2007)
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Abstract. Previous research on modelling and monitoring norms, contracts and
commitments has studied the semantics of concepts such as obligation, permis-
sion, prohibition and commitment; languages for expressing behavioural con-
straints (such as norms or contracts) to be followed by agents in specific con-
texts; and mechanisms for run-time monitoring of fulfilment and violation of
these constraints. However, there has been little work that provided all of these
features while also allowing the current expectations of agents and the fulfilment
and violation of these expectations to be expressed as first-class constructs in the
language. This paper demonstrates the benefits of providing this capability by
considering a variety of use cases and demonstrating how these can be addressed
as applications of a previously defined temporal logic of expectations and an as-
sociated monitoring technique.

1 Introduction

Much research in multi-agent systems has been influenced by organisational principles
from human society, and in particular social concepts such as norms and commitments
have been extensively studied due to their potential to enable the efficient specification
and management of agent interaction in open societies of autonomous agents.

Previous research on modelling and monitoring norms, contracts and commitments
has studied the semantics of concepts such as obligation, permission, prohibition and
commitment; languages for expressing behavioural constraints (such as norms or con-
tracts) to be followed by agents in specific contexts; and mechanisms for run-time mon-
itoring of fulfilment and violation of these constraints. However, there has been little
work that provides all of these features while also allowing the existence, fulfilment
and violation of obligations and commitments to be expressed as first-class constructs
in the language. We believe that the ability to directly express statements about these
features of an agent’s social context is important as it allows the investigation of richer
types of norms and contracts that are interdependent. Our aim in this paper is to demon-
strate that this is a capability that is desirable but not adequately addressed to date, and
to show how a logic and monitoring technique developed in our previous work can meet
our requirements.

In this paper, we are not concerned with distinctions between norms and commit-
ments, and generalise both concepts to the notion of expectations on future world states,
events and/or agent actions, while ignoring social issues such as where these expecta-
tions come from (e.g. mandated by authorities or requested and accepted via agent
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c© Springer-Verlag Berlin Heidelberg 2012



150 S. Cranefield, M. Winikoff, and W. Vasconcelos

messaging) and how they are embedded in the relationships that exist between agents.
In our view these issues can be largely decoupled from the questions of what it means
to have an expectation that is active, fulfilled or violated, and how these expectations
change from one state to the next.

Expectations can also exist for reasons other than agents creating commitments or
being subject to norms. A team tactic in a sport involves each involved player playing
its role under the expectation that each other participant will correctly play their role.
If a player detects the violation of this expectation (e.g. if a player falls over), then
an alternative tactic must be initiated. An agent may also choose to base its practical
reasoning based on expectations inferred through observation and experience, but may
wish to monitor the status of these expectations. The semantics and uses of expecta-
tions have been studied by a number of researchers [14,3,18,32,41]. In this paper, the
focus is on the representation and semantics of expectations and their fulfilment and
violation.

The structure of this paper is as follows. In Section 2 we present a survey of a range
of approaches to modelling and monitoring various types of expectations. Section 3
provides an overview of our previously defined logic of expectations, for which we
have built an associated model checker for monitoring expectations, and explains why
previously imposed restrictions on the nesting of expectation-related modalities can be
lifted. Some use cases illustrating the utility of modelling interdependent expectations
are presented in Section 4. Section 5 demonstrates that the expectation monitor we have
developed in previous work, after a simple extension, can handle nested expectations,
and Section 6 concludes the paper.

2 Previous Work

A wide variety of approaches have been investigated for modelling and monitoring con-
straints on agents’ future behaviour in the context of electronic institutions, normative
multi-agent systems and commitment-based semantics for agent communication. Early
work on electronic institutions [23,38] focused on the development of middleware that
can directly interpret an institution specification provided by a designer and ensure that
agents follow the norms, and for this reason considered norm representations that have
a procedural rather than declarative flavour, giving rise to the so-called “protocol-based
norms”. Work in the related field of normative multi-agent systems [11] has tended to
focus on higher-level declarative representations of norms. Research on commitment-
based semantics for agent communication [35,42] aims to explain the individual speech
acts and/or complete dialogs exchanged between agents in terms of the commitments
requested and made by one agent towards another.

There are strong links between these research fields with much work crossing the
boundaries between them, e.g. the design of a norm representation language that in-
cludes operational details such as violation checks and repair strategies alongside a
declarative norm [39], the extension of e-institution middleware to handle rule-based
norms as well as protocol-based norms [27], and an institution specification language
that models both norms and agent communications in terms of commitments [25].
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Below we discuss work in these areas, focusing on the formalisms used, whether con-
cepts such as expectation, fulfilment and violation are expressible in those formalisms,
and whether (and how) the monitoring of expectations has been addressed.

The approaches discussed below range from high-level logical models, investigated
mainly to gain semantic understanding of norms, commitments or general expectations,
to operational models that can be directly executed and are therefore amenable to run-
time monitoring. However, there has been no work that provides a good semantic ac-
count of the activation, fulfilment and violation of expectations of any sort, allowing
these concepts to be explicitly represented, and also providing a technique for monitor-
ing expectations, except for the work of Governatori and Rotolo [29], which addresses
only the recovery from violations via contrary-to-duty norms. In Section 3 we show
how our prior work on modelling and monitoring expectations can be extended to pro-
vide all three features, and argue why this ability opens up a new range of interesting
use cases in expectation modelling and monitoring.

2.1 Logical Approaches

Shoham and Tennenholtz [34] addressed the problem of how to specify the behaviour
of agents acting concurrently (and, in their framework, synchronously). Each agent is
modelled by a set of possible states, a set of actions it can perform, and a transition func-
tion that maps a state, an action, and a set of social laws to a set of possible next states.
A social law is a set of constraints associated with actions, where each constraint is a
first order logical formula specifying the conditions (in terms of states) under which
the agent is prohibited from performing the action. The aim was to enable the coor-
dination of the agents’ actions without the need to specify global system transitions.
They studied a particular problem in the design of social laws. Later work has adapted
this concept to multi-agent systems modelled by Kripke structures, e.g. to detemine the
influence that each agent has in the success of a given normative system leading to a
desired system objective (specified in CTL) [1]. In this later work, the normative system
is specified semantically—as a subset of the transition relation representing forbidden
transitions—rather than syntactically.

Dignum and colleagues investigated the extension of dynamic [21] and temporal [12]
logics with deontic concepts to allow the expression of obligations involving deadlines.
The obligations studied address either the performance of specific actions [21] or the
fulfilment of (atemporal) propositions [12] by a deadline. In one approach [21], the
semantics of formulae were defined relative to a state and a trace so that “the history
(i.e. the trace) of an ideal world might differ from the history of the present world”,
and this feature was used to define the notion of ideality represented by obligations.
Later work used simpler semantics in which models of the logic are assumed to include
a propositional constant V iol1. Broersen et al. [12] also used an ideality proposition
Idl to allow a more subtle account of deadline obligations. These propositions have no
semantics of their own—they are given semantics indirectly via the definitions of the
obligation operators, which constrain the states in which Viol and Idl should hold.

1 In some work it is noted that this propositional constant could be qualified, e.g. with a norm
index [20], so that different types of violation can be distinguished.
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The research cited above did not address the modelling of obligations dependent on
the fulfilment or violation of other obligations, except for the simple case of the viola-
tion or fulfilment of single actions. Also, in the examples of interdependent obligations
considered in this [21] and earlier work [20], rather than explicitly using Viol and Idl
predicates as conditions of norms, predicates directly expressing the occurrence or lack
of occurrence of the specific desired action are used. While this demonstrates how, for
specific examples, an obligation can be made conditional on a predicate that happens to
correspond to fufilment or violation of another obligation, there is no systematic treat-
ment of nested violation and fulfilment operators within obligations. This is reasonable
given the restricted setting (obligations to perform a given action), but this approach
leaves open the question of how inter-related norms with more complex temporal struc-
ture could be expressed.

Raimondi and Lomuscio [33] present an approach for model checking multi-agent
system specifications written in a logic combining epistemic, deontic and temporal op-
erators, with semantics based on the interpreted systems model enhanced by partition-
ing the agents’ local states into two disjoint sets of allowed and disallowed states (which
are specified in an MAS definition). Two operators are interpreted in terms of the al-
lowed states, a deontic operator Oiφ (under all the correct alternatives for agent i, φ
holds) and a knowledge operator K̂j

i φ (agent i knows φ under the assumption that
agent j is functioning correctly). A standard epistemic operator is also included. The
aim is to verify statically specified properties of specifications rather than to represent
and monitor run-time behaviour.

Alberti et al. [3] describe a means to perform run-time protocol compliance mon-
itoring based on logical constraints expressing positive and negative expectations as
the consequences of observed actions. At run time, agent messages are detected and as-
serted as facts, and abductive inference [2] is used to keep track of pending, fulfilled and
violated expectations. However, this information about the state of expectations cannot
be expressed using constraints, so interdependent expectations cannot be modelled.

Verdicchio and Colombetti [40] use a variant of CTL∗ to provide axioms defining the
lifecycle of commitments that arise through the exchange of messages. The language
includes predicates to represent a commitment being made and whether it is fulfilled,
violated or pending. It seems that these predicates could appear within the content of
commitments. There is no discussion of how the language could be used for practical
reasoning.

Bentahar et al. [8] define model-theoretic semantics for their Commitment and Argu-
ment Network (CAN) formalism that models agent communication in terms of social
commitments and argumentation. Their logical language can express the creation of
commitments of various sorts and requests for commitments to be made, as well as the
satisfaction and violation of commitments. It appears that the satisfaction and violation
operators can be nested within the content of a commitment. Their discussion of prag-
matic aspects of their formalism [7] does not address the monitoring of commitments.

Singh [35] provides model-theoretic semantics for commitments, with two modali-
ties defining practical and dialectical commitments between a debtor x and creditor y.
The language allows these modalities to be nested. The paper discusses possible rea-
soning postulates and their soundness and completeness, but there is no discussion of
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how this logic could be used in practice. It is, however, claimed that the approach pro-
vides a basis for specifying precisely how commitments arise in a context and can be
manipulated. Modalities corresponding to fulfilment and violation are not discussed.

Governatori and Rotolo [29] propose a technique for design-time checking of a set
of rules specifying some process against a set of normative rules regulating it. This is in
contrast with the run-time checking of actual behaviour that is the focus of this paper,
and is therefore contingent on the process descriptions to be checked being available
for this purpose. The normative language used is based on defeasible logic and has a
special focus on “contrary to duty” norms. It thus has an implicit notion of violation of
a norm expressible in the language.

Dastani et al. [19] describe an assertion-based debugging technique for BDI-based
multi-agent programs. They use an assertion language based on linear temporal logic
(LTL) that can refer to agents’ beliefs, goals, plans and perceived events. In this ap-
proach, assertions are added to individual agent programs, and are associated with a
particular debugging tool (such as a breakpoint or watch tool). An extended agent in-
terpreter evaluates the assertions against the current trace of the multi-agent system.
As this is a debugging technique designed to provide information to human designers
rather than agents, there is no explicit notion of fulfilment or violation within the asser-
tion language. Also, social concepts such as norms and commitments are not addressed.

Cranefield and Winikoff [18] define an extension of propositional linear temporal
logic that includes temporal operators stating that an expectation currently exists, is ful-
filled, or is violated as a result of a particular conditional rule of expectation. In contrast
to the work discussed above, the concepts of violation and fulfilment of expectations
are given their own first class semantics. The logic, as described previously, did not al-
low formulae representing existence, fulfilment or violation of an expectation to appear
nested within a rule of expectation; for example, a rule could not be triggered by the vi-
olation of another rule. A model checking procedure allows the truth of these formulae
to be determined either off-line (e.g., when checking an audit trail) or incrementally as
new states become available. This logic is the basis of the discussion in this paper, and
a modified version is described in Section 3.

2.2 Rule Languages

Garcı́a-Camino et al. [27] present a language for defining conditional norms and the
sanctions or rewards associated when norms are fulfilled or violated. Norms control the
utterance of speech acts within particular periods (specified in terms of dates or relative
to other speech acts). Sanctions can modify attributes of an agent, such as its available
credit. The language is given an operational semantics in terms of the Jess expert system
shell, and this allows norm fulfilments and violations to be detected at run-time and
sanctions to be applied. However, the occurrence of fulfilments and violations cannot
be expressed within the normative rules themselves.

Boella and van der Torre [10] propose a normative systems approach for defin-
ing document access control policies in distributed virtual communities. Community
and individual policies are represented using beliefs, desires and goals described using
rules of the form l1 ∧ · · · ∧ ln → l, where l and each li are literals built from a set of
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propositional decision variables and system parameters. Decision variables may be
defined to represent the situation where a given agent is considered to be in a state
of violation if some specific variable is true, and this allows nested violations to be rep-
resented. For example, agent a2 may be deemed to be in violation if it does not consider
the state of affairs represented by variable q to be a violation by agent a1. There is no
underlying semantics for violation—the determination that a violation exists is local to
an agent based on its rules. This approach allows the negotation of agents for access to
information to be characterised using game-theoretic techniques.

Garcı́a-Camino et al. [28] define an expressive rule language with constraints for
specifying conditional norms and explicitly tracking the normative state of a multi-
agent system as agents exchange messages. Rules may refer to norms, so it is possible to
define rules stating, for example, that one obligation triggers another. Although the rules
track the normative state of the multi-agent system and therefore detect violations of
norms, these cannot be represented using the proposed set of predicates for representing
normative states. As the rule language is not dependent on the predicates used to model
states, additional fulfilment and violation predicates could be added. However, the only
semantics for predicates are any operational ones defined by rules.

Fornara et al. [25] describe an approach for specifying institutions in which agents
communicate. The content of commitments comprise an action, proposition or refer-
ential expression existentially or universally bound to an interval of time. Norms are
event-driven rules to create, update or cancel commitments. Although the authors ad-
vocate the suitability of an operational approach to checking agent norm-compliance,
they do not give details as to how this could be done, and their language cannot express
fulfilments and violations of commitments and norms.

Tinnemeier et al. [37] propose an approach for specifying normative artifacts: coor-
dination artifacts that are endowed with a knowledge of a set of norms and the ability to
impose sanctions. The specification defines actions in terms of pre- and post-conditions
expressed in terms of the brute (non-normative) state of the system. In addition, there
is a set of norm schemes with parameterised labels that are conditional on either the
brute state or the violation of another norm (using its label)—this latter feature allows
contrary-to-duty situations to be specified. The body of a norm scheme specifies an obli-
gation or a prohibition, and the scheme also includes a deadline and a sanction, which
are represented by conjunctions of literals. The sanction represents a change that will
be made to the brute state if the norm is violated. The execution of normative artifacts
is specified using operational semantics.

Aldewereld et al. [4] have considered the use of “counts-as” predicates to link nor-
mative (abstract) events with real-world (concrete) events. In particular, obligation and
prohibition norms in deontic logic are operationalised as “counts-as” statements: an
obligation (respectively prohibition) with content φ maps to the statement that ¬φ (re-
spectivelyφ) counts as a norm violation. Norms can have a maintenance condition (once
active, the norm is deemed violated if this condition evaluates to false), and this allows
a limited degree of temporal expressiveness. It is not clear if the violations of different
norms can be distinguished and there is no discussion of whether the norm violation
and fulfilment conditions can be used within the content of norms. The approach is
implemented using the DROOLS forward-chaining engine.
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2.3 Action Description Languages

Yolum and Singh [43] use the event calculus to define the social semantics of agent
interaction protocols in terms of commitments. An event calculus planner is then used
to generate possible execution paths of the protocol in which all pending commitments
have been resolved. Commitments are modelled as atemporal propositions with a debtor
and creditor, and there is no explicit representation of violation.

Chesani et al. [15] also provide commitment-based semantics for agent interaction
protocols using the event calculus, but focus on run-time monitoring of commitments.
To allow this, they implement the cached event calculus [16] using the abductive proof
procedure SCIFF [2], which includes positive and negative expectation predicates.
Commitments are expressed using the approach of Yolum and Singh extended with
temporal constraints that allow deadlines to be expressed.

Artikis and Sergot [5] use the event calculus for specifying and tracking normative
states of multi-agents systems based on the concepts of obligation, power and permis-
sion. Their approach specifies how the actions agents perform affect the values of flu-
ents (dynamic properties) encoding the state of the domain and the powers, permission
and obligations of the actors. Obligations represent actions that agents should perform
(rather than states of the world they should bring about). A violation fluent is used to
declare that an action causes a violation, but this has no special semantics. Farrell et
al. [24] present a similar approach for modelling and monitoring the state of contracts.

Cliffe et al. [17] present an approach for modelling norms using an action description
formalism based on events, fluents, causal rules (similar to those in the event calculus)
and generation rules (which describe when certain events count as other, institutional,
events). Fluents representing institutional power, permission and obligation are used to
define the effects of events in the application domain. The semantics of violation are
given by generic rules that define how violation events are triggered when actions are
not permitted or obligations aren’t satisfied by their deadline. There is a violation event
defined for each normative action and each non-normative event, and it appears that
these events could be included in the conditions of rules. Answer set programming is
used to perform queries about possible traces of a specified normative framework that
satisfy certain properties of interest.

Commitment machines [42] define agent interaction protocols by specifying the pre-
conditions and effects of the agent actions in terms of commitments that exist between
participants. A set of protocol states are defined in terms of the propositions and com-
mitments that hold in them and domain actions are defined in terms of the proposi-
tions and commitments they cause to hold (their “effects”). Actions cause transitions
between states if the new state is a logical consequence of the original state and the
action’s effects. Agents interpret commitment machines at run time to determine a de-
sired path through the protocol, or they can execute a finite state machine compiled
from the commitment machine. There is no notion of violation of a commitment in
this formalism—an execution of the protocol either reaches a state in which a desired
commitment exists, or it does not. Commitments can be conditional on the existence
of other commitments, but these represent instances of conditional commitments be-
tween agents that were created during the protocol execution, not general rules that one
commitment should always create another.
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2.4 Automata-Based Approaches

Spoletini and Verdicchio [36] present an automata-based technique for monitoring com-
mitments expressed in a propositional temporal logic with both past and future opera-
tors. The monitoring problem is modelled as a word recognition problem over an al-
phabet comprising propositions representing the contents of “sniffed” agent messages
and the values of past-oriented subformulae of the formula to be monitored. The for-
mula is preprocessed using Gabbay’s rules [26] to separate out any future operators
nested within past operators. The values of subformulae formed from past operators
with no nested future operators are recognised dynamically by deterministic Büchi au-
tomata, and these subformulae are replaced by special propositions representing the
outputs of the automata. The resulting formula is then translated into an alternating
modulo counting automata. In this approach, fulfilment and violation are represented by
the operational condition of the automaton reaching an acceptance or non-acceptance
state—there is no representation of fulfilment or violation within the language used for
representing commitments.

Lomuscio et al. [30] describe an approach to modelling contracts governing Web ser-
vices using timed automata with discrete data (TADD). These automata include a par-
tition of the states into ideal and non-ideal ones and a set of integer variables. Run-time
monitoring of contracts is done by collecting system snapshots comprising valuations
for the variables and checking these against the TADD encoding the contract to deter-
mine whether each execution step is in conformance with the contract. Like the work of
Spoletini and Verdicchio, this symbolic approach avoids the need to keep an execution
history in memory. However, the trade-off is that there is no declarative representation
of the contract and its current state for use in an agent’s reasoning.

Modgil et al. [31] model norms with augmented transition networks (ATNs), com-
prising three states representing the norm being inactive, active and either fulfilled or vi-
olated. ATNs are processed via an architecture in which observer agents send messages
to monitors, which trigger transitions in the ATNs and notify a manager agent of norm
fulfilments and violations. The norms could, in principle, include messages announcing
fulfilments and violations in arc labels, with the manager having the responsibility of
sending these, but this extension is not proposed in the paper. The approach is defined
in terms of a highly procedural account of the architecture and the interaction between
its components, and it is difficult to relate it to more declarative approaches.

3 A Temporal Logic of Expectation

The logic used in this paper is based on an extension of propositional linear temporal
logic proposed by Cranefield and Winikoff [18]. However, in this paper we introduce
some changes2 from the original presentation and omit some features of the language

2 The syntax of the previous version of the logic did not include four-argument versions of Exp,
Fulf, Viol nor TruncS and Progress operators. However, these operators were defined seman-
tically and used in the definitions of the two-argument versions of Exp, Fulf and Viol (which
we have renamed here from their original names ExistsExp, ExistsFulf and ExistsViol). Here,
to allow a concise presentation, we include all these operators in the syntax.
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that are not relevant to the discussion in this paper. The syntax of the logic is described
by the following grammar:

φ ::= Exp(φ, φ, n, φ) | Fulf(φ, φ, n, φ) | Viol(φ, φ, n, φ) |
Exp(φ, φ) | Fulf(φ, φ) | Viol(φ, φ) |
p | ¬φ | φ ∧ φ | φ | φ | φUφ; | φSφ | n | TruncS | Progress(φ, φ)

where p is a proposition, is the standard temporal “next” operator, is the standard
temporal “previous” operator, U is the standard temporal “until” operator, S (“since”)
is a backwards-looking version of until, and n is a nominal: a proposition that is con-
strained to be true in exactly one state in the model. We assume that the model contains
at least one nominal for each state, as these are used in the semantics to identify the
states in which “rules of expectation” fire and introduce new expectations. Nominals
are a feature of hybrid logic [9], and the original version of the logic [18] contained
other hybrid logic constructs. However, only nominals are needed in this paper. The
TruncS and Progress operators are explained below.

We assume the propositions include � (true) and ⊥ (false), with their usual mean-
ings, and define as abbreviations the Boolean connectives ∨ and →, the derived tem-
poral operators “eventually φ” (φ ≡ �Uφ), and “always φ” (φ ≡ ¬¬φ), and
similar backwards-looking versions (φ ≡ � Sφ andφ ≡ ¬¬φ).

The semantics determine the truth of a formulae at a given state in a model compris-
ing a finite or infinite sequence of states together with a valuation function specifying
the propositions that hold in each state. In the case of a finite model, either strong or
weak semantics can be used to evaluate the and U operators [22]. The strong seman-
tics assume a formula is false if the model does not include enough states to evaluate a
formula, while the weak semantics assume a formula is true in this situation. Thus, in
the final state of a finite model,p is false under the strong semantics and true under
the weak semantics. The operator TruncS is a simplified form of an operator defined by
Eisner et al. [22], and its semantics truncate the model at the current state and use the
strong semantics to evaluate its argument formula. Essentially this means to determine
whether the argument formula can be known to be true without using any information
in future states. Formally, TruncS φ is true in state i of a model M if and only if φ is
strongly true (|=+) in a truncated model Mi where all states after i have been removed:

M, i |= TruncS φ iff Mi, i |=+ φ

3.1 Expectation Operators

The first two arguments, of the Exp, Fulf and Viol operators represent a conditional
rule of expectation. Although the condition and expectation of a rule always appear as
separate arguments of an operator in our logic, for convenience we will write λ � ρ as
shorthand3 for “the rule given by the pair λ and ρ”. The meaning of a rule λ � ρ is that
if λ evaluates to true in any state, given the information in the model up to that state,
then ρ is an expected constraint on the model at that state.

3 Note that ‘�’ does not represent logical implication and is not formally part of our language.
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Unlike most approaches to modelling norms and commitments, our expectations are
not limited to propositions that describe a desired property of a single state (e.g. the
performance of a given action by an agent) in conjunction with a simple deadline con-
straint. Instead we aim to study the fulfilment and violation of more general types of
expectation, such as those that aren’t brought about by agents’ actions (“The sun will
rise each morning”) and those with complex temporal structure (“If I pay for a sub-
scription then the publisher will send me a magazine issue each month for a year from
the month after my payment is received”). Thus, λ and ρ can be any formula in our
logic, although the semantics ensure that the rule can only fire if the condition λ can be
evaluated without the use of information from future states4. The expectation ρ can be a
formula expressing desired properties of the states up to the present and/or a constraint
on the future sequence of states that should be monitored for fulfilment or violation.

A formula Exp(λ, ρ, n, φ) means that the formula φ is an active expectation as a
result of the rule λ � ρ having fired (i.e. its condition λ becoming true) in a (possibly
prior) state specified by nominal n. If the rule fired in a prior state but the expectation
was not immediately fulfilled or violated, then the current form of the expectation φ
may be different from the expectation ρ in the rule due to the use of formula progression
(explained below) to carry forward an expectation from one state to the next.

The operators Fulf(λ, ρ, n, φ) and Viol(λ, ρ, n, φ) have the same argument structure
as Exp, and mean that the rule λ � ρ firing in the state specified by n has resulted in an
active expectation φ that is fulfilled or (respectively) violated in the current state. These
three operators are defined as follows (where n is a nominal):

Exp(λ, ρ, n, φ) ⇐⇒ (n ∧ TruncS λ ∧ φ≡ρ)∨
∃ψ(Exp(λ, ρ, n, ψ)∧

¬TruncS ψ ∧ ¬TruncS ¬ψ ∧ Progress(ψ, φ))

Fulf(λ, ρ, n, φ) ⇐⇒Exp(λ, ρ, n, φ) ∧ TruncS φ

Viol(λ, ρ, n, φ) ⇐⇒Exp(λ, ρ, n, φ) ∧ TruncS ¬φ

The definition of Exp states that there are two ways for an expectation to result from
a rule λ � ρ: either λ holds in the current state (without recourse to future informa-
tion) and therefore ρ is now expected (i.e. it is an expected constraint on the model),
or some other formula ψ was expected in the previous state as a result of the rule, ψ
was not known to be true or false in that state given the model up to that point, and
thus a “progressed” form of ψ is now expected. Progress is a temporal operator corre-
sponding to the progression function defined by Bacchus and Kabanza [6] for planning
with “temporally extended goals”. Details are beyond the scope of this paper, but essen-
tially, progression transforms a temporal formula from the viewpoint of one state into
the viewpoint of the next state. A formula that can be determined to be true (respec-
tively false) without recourse to any future states progresses to � (respectively ⊥). A
formula that requires future information in order to be fully evaluated is partially eval-
uated using information from the model up to the current state and is then re-expressed

4 Future states might be available in offline monitoring of expectations, such as the examination
of an audit trail.
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as an equivalent constraint in the context of the next state. For example, if p holds in the
current state, then p ∧q progresses to q, expressed as Progress(p ∧q, q).

The Exp, Fulf and Viol operators defined above are rather specific in the information
they express about a currently active, fulfilled or violated expectation: the third and
fourth arguments record the state in which the rule’s condition became true and the
current form of the expectation. In many cases, it may be sufficient to know there is
currently an active, fulfilled or violated expectation resulting from a given rule. We
therefore overload these operators and define alternative versions in which the last two
arguments are omitted due to an implicit existential quantification:

Exp(λ, ρ) ≡ ∃n,φExp(λ, ρ, n, φ)

Fulf(λ, ρ) ≡ ∃n,φFulf(λ, ρ, n, φ)

Viol(λ, ρ) ≡ ∃n,φViol(λ, ρ, n, φ)

Using these operators and the model checker described previously [18] we can now
analyse an observed execution trace to check for the activation, fulfilment or violation
of expressive temporal rules of expectation, or, as special cases, more restricted rep-
resentations used in prior work. For example, fulfilment of an obligation O(ρ ≤ δ),
stating that condition ρ must be brought about before deadline proposition δ becomes
true [12], can be represented as Fulf(�,¬δ U (ρ ∧ ¬δ))).

Note that we could also introduce additional versions of the Exp, Fulf and Viol oper-
ators that existentially quantify over only n or only φ; however in the remainder of this
paper we will focus on the two-argument versions of the operators.

3.2 Nesting Expectation Operators

In the previous account of the logic, the Exp, Fulf and Viol operators could not contain
nested occurrences of these operators. In this paper we allow this nesting, and explain
why the previous restriction was unnecessary.

It follows from the definitions given above that the truth of the two versions of the
Exp, Fulf and Viol formula do not depend on any future states in the model. This is
because they depend only on the truth of a nominal (a special type of proposition) in
the current state, Exp and Progress formulae in the prior state, and formulae prefixed by
the TruncS operator in the current and prior states. Formula progression, by definition,
does not depend on future states, and the TruncS operator eliminates them from consid-
eration. Therefore it is meaningful for Exp, Fulf and Viol operators to appear within a
condition of a rule (the first argument) inside one of these operators; the use of TruncS
to evaluate rule conditions will work correctly. For example, suppose that a library ap-
plication has the rule of expectation book borrowed � book returned (where each
state represents a day). Suppose that we also have a contrary-to-duty rule [13] of the
form Viol(book borrowed ,book returned) � fine, indicating that failure to return
a book on time results in a fine (or, more precisely, in the expectation that a fine be im-
posed). In order to evaluate the formula Exp(Viol(book borrowed ,book returned),
fine) we need to check whether in the current or any previous state a book was bor-
rowed, and whether this book was returned on time or not. The key point is that in order
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to evaluate the nested Viol formula, we never need to consult any future timepoints, due
to the use of TruncS in the semantics of Exp and Viol.

Additionally, to appear as the expectation of a rule (the second argument) within one
of these operators, a formula must be able to be progressed when required—see the
second line of the definition of the four-argument Exp operator. The axioms defining
the progression operation that were defined previously [18] include the following base
cases5 (adapted slightly here for simplicity of presentation):

M, i |= Progress(φ,�) if Mi, i |=+ φ

M, i |= Progress(φ,⊥) if Mi, i |=+ ¬φ
where M is a model, i is the index of a state in the model, and Mi denotes the model
with all states after index i removed.

As Exp, Fulf and Viol can be evaluated without using any future states in the model,
then one of the two base cases above will apply, and formulae having these operators
as their principal functor will progress to either � or ⊥. Therefore, these operators can
also appear nested within the second arguments of these three types of formula and the
restriction on nesting Exp, Fulf and Viol imposed in our previous work is unnecessary.
Finally, the model checking process described in our earlier work [18] can be easily
extended to apply to nested expectations, and we have extended our tool to be able to
do so (as we will demonstrate in Section 5).

4 Use Cases for Nested Expectation Operators

In the previous section we argued that the restriction in previous work which did not
allow expectations to be nested was unnecessary, and that the semantics of nested ex-
pectations are well defined and unproblematic. We also argued that checking whether
nested expectations hold, are fulfilled or are violated, can be easily done within the
existing framework and tool [18].

In this section we argue that allowing for nested expectations allows for a range of
scenarios to be easily specified. Since we are making the case that nested expectations
provide additional expressivity that is useful in a broad range of cases, we provide a
number of different use cases in which nested expectations are used to specify desired
normative behaviour. Space limitations prevent us from developing each of the sce-
narios in detail, but the aim is not to provide details on any given case, but, rather, to
argue that a wide range of scenarios exists where there is a benefit from allowing nested
expectations in a declarative way.

Chained expectations. One use case scenario for nested expectations is to allow for
causality relationships between expectations to be captured. In this case, we may
want to specify that a certain expectation ω exists when some other expectation has
been fulfilled. We can express this as follows:

Fulf(φ, ψ) � ω

5 Other axioms for Progress (not shown here) define Progress(φ, ψ) compositionally based on
the principal functor of φ and involve recursive progression of the top-level subformulae of φ.
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In other words, once rule φ � ψ is fulfilled, ω is expected.
This sequential fulfilment of expectations could arise when the two commitments
must be fulfilled in a certain order due to one setting up the conditions for the other
to be attempted, or when an agent’s responsibilities are escalated as a result of suc-
cessful performance.

Fulfilment ends probationary period. Another scenario, which is complementary to
the one above, is that an expectation ω exists (only) until another expectation is
fulfilled:

� � ω WFulf(φ, ψ)

where W is the “weak until” operator: αWβ ≡ (αUβ) ∨ α. In other words, ω
is (unconditionally) expected until rule φ � ψ is fulfilled, or, if the rule is never
fulfilled, it is always expected.
This encodes the situation where some condition applies (e.g. a requirement not to
operate some equipment without a qualified supervisor) until an agent ends a pro-
bationary period by fulfilling a certain expectation (such as passing a test).

“Contrary to duty” expectation or expectation to act on violation. Whereas the
previous two cases dealt with the fulfilment of expectations, and how fulfilment
may specify the termination or creation of another expectation, this rule deals with
violation, and how it may result in the creation of another expectation:

Viol(φ, ψ) � ω

In other words, when rule φ � ψ is violated, ω is expected.
This type of rule represents the well known concept of a contrary to duty expec-
tation: if one expectation is violated an alternative expectation is created [13]. If
ω involves a different agent to the one that violated the first expectation, this can
represent the requirement for that agent to respond to the violation. A concrete ex-
ample of this case that we discussed earlier is the expectation that a fine be imposed
should a library book not be returned on time.

Just-in-time expectation management. The following form of rule could be used to
encode a policy that resources for fulfilling a given expectation should be made
available while that expectation is active.

Exp(φ, ψ) � ω

In other words, ω is expected while an expectation is active due to rule φ � ψ.

Delaying rule activation. The next few scenarios show how nested expectations can
be used to specify constraints on the timing of expectations. The following rule
expresses the policy to avoid the conditions that trigger an expectation until appro-
priate resources are in place for fulfilling it (“ω”).

� � ¬Exp(φ, ψ)Uω

In other words, avoid triggering the rule φ � ψ until ω is true. When φ does not
refer to the future, this is equivalent to the simpler rule � � ¬φUω. However,
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this formulation makes the reason for the policy explicit: to avoid having ψ as an
expectation.

Delaying rule fulfilment. Similar to the previous example, this is a constraint on the
timing of an expectation relative to ω, but here we are specifying that the agent
should not fulfil the expectation until ω. This may be desirable if, for example, an
agent has a policy to not be over-diligent in fulfilling an expectation, e.g. it might
only pay bills on the last possible day for payment.

� � ¬Fulf(φ, ψ)Wω

In other words, avoid fulfilling the rule φ � ψ until (and only if6) ω becomes true.

Expectation handling priority. This is a special case of the previous use case. The
following rule expresses a priority between two expectations:

� � ¬Fulf(φ, ψ)W Fulf(λ, ρ)

In other words, rule φ � ψ should not be fulfilled until rule λ � ρ has been ful-
filled. This could be used to express a policy for placing a priority on the order of
fulfilment of rules.

Avoid violation between two states. Finally, this and the subsequent scenario deal
with constraints over a time interval. Given two nominals, n1 and n2 we can specify
that in the interval defined by the two end points a given condition must hold. For
example, we may require that within a designated time interval a certain expectation
should not be violated:

n1 � ¬Viol(φ, ψ)U n2

In other words, avoid violating the rule φ � ψ between the states referenced by
the nominals n1 (inclusive) and n2 (exclusive).
This example may be used in situations where an agent may be willing to risk vio-
lation of an expectation, but not during certain periods (e.g. when the boss is in the
office).

Fulfil a rule sometime between two states. Similarly to the previous scenario, within
a given time interval we can specify a condition, in this case that something (such
as an expectation being fulfilled) should happen:

n1 � ¬n2 U (¬n2 ∧ Fulf(φ, ψ))

In other words, the rule φ � ψ must be fulfilled sometime between the states
referenced by the nominals n1 (inclusive) and n2 (exclusive). The formalisation
can be paraphrased as once n1 has occurred, n2 cannot occur until after Fulf(φ, ψ).
This example may be used in situations where an agent subject to an expectation
may adopt the policy of fulfilling it in a more restricted period than was originally
required, e.g. while the boss is in the office and able to directly observe the fulfil-
ment.

6 As before, W is the “weak until” operator: αWβ ≡ (αUβ) ∨α.
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5 Monitoring Nested Expectations through Model Checking

In this section we briefly illustrate that our model checker [18], extended with the abil-
ity to progress expectation modalities, enables nested expectations to be monitored. Al-
though our model checker has an online mode, allowing states to be added and checked
incrementally, for simplicity of presentation we illustrate the offline mode in which a
complete model is checked.

We use the last use case above as an example. Consider the rule p � q (once
p holds, q is expected to hold eventually). We can encode the property that this rule
will be fulfilled using our Python-based model checker as follows, where formulae are
written in prefix form as nested tuples.

f = Formula((’Fulf’, ’p’, (’U’, True, ’q’)))

Now consider a model with four states s0, . . . , s3 in which p holds in state s1 and q
holds in state s3. We encode this as follows, where the first argument (4) is the number
of states in the model and the second argument maps each proposition to a list of indices
of states in which it holds, e.g. ’p’:{1} indicates that proposition p holds in state 1.

m = Model(4,{’p’:{1}, ’q’:{3})

After invoking the model checker on this formula and model we can examine the value
of property f.labels to find that the fulfilment formula f is only satisfied in state s3
(we simplify the data structure to suppress details of the label structure not relevant to
this paper):

{0: False, 1: False, 2: False, 3: True}

We now modify the formula so that our policy is to only fulfil the original rule from s1
onwards and before s3:

f = Formula((’Fulf’, ’s1’,
(’U’, (’not’, ’s3’),
(’and’, (’not’, ’s3’),

(’Fulf’, ’p’, (’U’, True, ’q’))))))

This definition for f is simply the Python-based encoding of the formula:

Fulf(s1,¬s3 U (¬s3 ∧ Fulf(p,q)))

which is the last use case scenario (“Fulfil a rule sometime between two states”).
Invoking the labelling function again and examining f.labels we now find that

the formula is false everywhere:

{0: False, 1: False, 2: False, 3: False}

This is the expected result as the new formula can only possibly be satisfied in states s1
and s2, and the original formula does not hold in those states.

6 Conclusion

In this paper we have considered the ability of approaches for modelling and moni-
toring various sorts of expectations to represent the existence, fulfilment and violation
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of expectations as first-class entities, and to allow these to appear nested within rules
of expectation. Having found no work in the literature that fully meets these needs,
we demonstrated how our existing approach to modelling and monitoring expectations
extends readily to address this issue. We listed some use cases to show that the expec-
tations expressible using this new modelling ability are of interest in practical settings.

At present our focus is on passive detection of expectation creation, fulfilment and
violation (i.e. monitoring). However, as our use cases included several examples of poli-
cies that agents might adopt, we need to investigate ways in which agents informed by
these expectations can understand them and proactively adjust their behaviour to fulfil
such policies. Specifically, an agent could use the model checker to reason about hypo-
thetical extensions of the history so far. Given a history H , and an agent who is consid-
ering either action A1 (resulting in state S1) or action A2 (resulting in state S2), then we
could use the model checker to label the extended history H ⊕ S1 (where “⊕” denotes
sequence concatenation) and the extended history H ⊕ S2, and use the results to guide
decision making by the agent. More generally, an agent might realise via analysing
traces that its current expectation doesn’t meet some soft constraint (e.g. getting praised
by the boss), and therefore follow a heuristic or apply some reasoning technique to re-
strict the period in which it aims to satisfy the expectation (e.g. so that the boss will
witness it). To allow this we must also extend our framework to allow the content of ex-
pectations to identify which agents are responsible for particular expectations. Finally,
the fulfilment operator (and other operators) could be extended to allow not just a single
rule to be given as an argument, but a set of rules.
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4. Aldewereld, H., Álvarez-Napagao, S., Dignum, F., Vázquez-Salceda, J.: Making norms con-
crete. In: Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems, pp. 807–814. IFAAMAS (2010)

5. Artikis, A., Sergot, M.: Executable specification of open multi-agent systems. Logic Journal
of the IGPL 18(1), 31–65 (2010)

6. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for
planning. Artificial Intelligence 116(1-2), 123–191 (2000)

7. Bentahar, J., Moulin, B., Chaib-draa, B.: Commitment and Argument Network: A New For-
malism for Agent Communication. In: Dignum, F. (ed.) ACL 2003. LNCS (LNAI), vol. 2922,
pp. 146–165. Springer, Heidelberg (2004)

8. Bentahar, J., Moulin, B., Meyer, J.J.C., Lespérance, Y.: A New Logical Semantics for Agent
Communication. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI),
vol. 4371, pp. 151–170. Springer, Heidelberg (2007)



Modelling and Monitoring Interdependent Expectations 165

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)
10. Boella, G., van der Torre, L.: Security policies for sharing knowledge in virtual communities.

IEEE Transactions on Systems, Man and Cybernetics, Part A 36(3), 439–450 (2006)
11. Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on normative

multiagent systems. Autonomous Agents and Multi-Agent Systems 17(1), 1–10 (2008)
12. Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Designing a Deontic Logic of Dead-

lines. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 43–56.
Springer, Heidelberg (2004)

13. Carmo, J., Jones, A.J.I.: Deontic logic and contrary-to-duties. In: Gabbay, D., Guenthner, F.
(eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 265–343. Kluwer Academic
Publishers (2002)

14. Castelfranchi, C.: For a systematic theory of expectations. In: Proceedings of the 2nd Euro-
pean Cognitive Science Conference. Taylor & Francis (2007)

15. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event
calculus. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI), pp. 91–96. Morgan Kaufmann (2009)

16. Chittaro, L., Montanari, A.: Efficient temporal reasoning in the cached event calculus. Com-
putational Intelligence 12(3), 359–382 (1996)

17. Cliffe, O., De Vos, M., Padget, J.: Modelling Normative Frameworks Using Answer Set Pro-
graming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753,
pp. 548–553. Springer, Heidelberg (2009)

18. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking truncated
paths. Journal of Logic and Computation 21(6), 1217–1256 (2011)

19. Dastani, M., Brandsema, J., Dubel, A., Meyer, J.-J.C.: Debugging BDI-Based Multi-Agent
Programs. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS,
vol. 5919, pp. 151–169. Springer, Heidelberg (2010)

20. Dignum, F., Meyer, J.J.C., Wieringa, R.: A dynamic logic for reasoning about sub-ideal
states. In: Proceedings of the ECAI Workshop on Artificial Normative Reasoning, pp. 79–92
(1994)

21. Dignum, F., Weigand, H., Verharen, E.: Meeting the Deadline: On the Formal Specification
of Temporal Deontic Constraints. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS
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Abstract. With the advent of highly distributed and populated artificial societies
where centralized coordination is unfeasible, normative multiagent systems have
moved into the focus of attention – as they are promising for improving agent
interactions and minimize social frictions. However, an important point that de-
serves to be studied in detail is what happens when agents behave egoistically and
possibly violate the norms they should comply with. The objective of this work
is to present an integrated view of the sanctioning process and analyze each of
its phases with regard to its operationalization in artificial societies. Moreover we
review several sanctioning mechanisms presented in the multiagent literature and
examine them in the context of our proposed process.

1 Introduction

Crime and punishment have been a constant in human affairs for as long as love and
greed, or feed and fight; and have moved the will of men, and men have found the need
to control that will for the benefit of society. Likewise, in order to function well, artificial
and technologically enabled societies are finding it necessary to establish regulatory
frameworks and ways to enforce them.

Enforcement is concerned with trying to ask (and answer) what happens if an agent
does not comply with the obligations or prohibitions of a normative system as well as
how to react to that. As stated by Ågotnes et al. [1] or Coleman [13], for this reason
compliance is one of the most important issues associated with normative systems.
In this paper we will focus in detail on one aspect of enforcement: we will analyze
sanctioning1 as one device to motivate normative compliance2.

The main motivation of this work is to build a complete map of the sanctioning
process. Thus, although many papers have dealt with sanctioning already (e.g. see the
works mentioned in Sec. 4), to the best of our knowledge, the works existing to date

1 Despite one of the authors elsewhere [39] differentiated between sanction and punishment, for
the scope of this work both words are considered synonyms and refer to the same process.

2 For us, enforcement is a process and sanctioning is one possible specification of this enforce-
ment process. Another enforcement specification – which we do not focus on in this paper –
could for example be to reward positive behaviour.

S. Cranefield et al. (Eds.): COIN 2011, LNCS 7254, pp. 167–185, 2012.
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do not attempt to give an overview of the design options available in the sanctioning
process or the roles involved in it. Instead, they normally fix the restrictions necessary
for their environment and focus on a particular mechanism or framework. These restric-
tions of the environment and the assumptions made about the assignment of roles, as
well as the different foci of the analyzed works, make the information on these design
options very dispersed. As a consequence it is difficult to get an overview of the choices
that can be made when designing a sanctioning mechanism.

We try to close this gap by presenting a comprehensive overview on the design op-
tions and roles relevant when talking about sanctioning. We do not intend to reinvent
the wheel. On the contrary, our first aim is to to elucidate the relevant facets of sanction-
ing in this context, establish pertinent conceptual distinctions and eventually provide a
coherent framework so that available complementary developments may be brought to-
gether and missing pieces become evident. Moreover, as we indicated above, we have
a second aim which is to make practical use of sanctioning as a motivational device for
normative compliance in actual MAS.

As mentioned before, to us sanctioning, being one means of enforcement, is a pro-
cess. This process is composed of different phases that – although interlinked – can be
designed with a degree of independence. That is why in this paper we will analyze the
sanctioning process and the phases it consists of. By identifying all the features in each
of the phases that compose the sanctioning process, we aim at obtaining a general view
of the overall process.

In order to arrive at our overall sanctioning process, in the next section, an introduc-
tion to the general state of the question and the literature associated with enforcement
and sanctioning will be given. Furthermore, we delineate our object of study, make our
simplifying assumptions explicit and set our work within the context of the research do-
main. One of the assumptions is that we think about utilitarian agents. Thus, emotions,
despite playing a significant role in the sanctioning process, will not be investigated at
this stage3. In Sec. 3 we then study the sanctioning process as a sequence of phases
and particular components that we believe deserve serious ulterior formal treatment.
Next, in Sec. 4, we take a step towards our second aim and do a first matching exercise
against five well documented MAS platforms for regulated open MAS. We close this
paper with an outline of our current and future work.

2 State of the Question

Literature associated with the notion of sanctioning is overwhelming. Two traditional
approaches, moral and legal, over centuries of study and practice, have established not
only a rich conceptual universe around the notion of sanctioning but innumerable de-
vices to address its practical aspects as well [33]. We will draw inspiration from these
sources; however we will base our proposal on works that are closer to the MAS world.

A crude classification of sanctioning-related MAS literature may end up with four
major blocks, which will now be explained in more detail.

In the first block it is assumed that the actors (and/or their actions) in a system
can be controlled (this includes the control of the physical power of actors) and any

3 Instead we refer the interested reader to Scheve et al. [36] as well as Staller and Petta [37].
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non-normative actions can be stopped before they can take place and affect the system.
This notion is typically referred to as regimentation [28] or control-based enforcement
(CBE) [35, p. 14]. Regimentation tries to bring about a state in which the deviation from
a norm is physically not possible, or where the deviation from the norm does not have
any effect on the rest of the participants in a system. Minsky [33] distinguished two
modes of regimentation which together comprise the regimentation idea: regimentation
by interception and regimentation by compilation.

Regimentation by compilation assumes that all participants’ mental states are acces-
sible to the system (closed systems), and can be altered to be in accordance with the
norms effecting the system. Thus, participants are treated as a “white box” whose con-
tent can be analysed and altered as needed by the regimenting entity of the system [3].
Minsky gives an example of a computer program component that is supposed to join a
running system. In his example the source code of this new program is accessible to the
regimenting entity of the system and this entity can check whether based on the source
code the program can conduct any actions that deviate from the norms of the system. If
this is the case it can either stop the program from joining the system or urge a change
to the program. This concept is applied for example in the KAoS architecture [7].

In the case that the mental states are not accessible to the system (i.e. the inner states
of the participants are a black box to the system) norm compliance is ensured by in-
directly constraining the actions of the individual participants. Thus, regimentation by
interception uses a regimentation component (typically a piece of middleware in com-
puter systems) that at run-time intercepts all actions (in computer systems this normally
refers to messages being sent to the rest of the components) and dismisses those that
are not in accordance with the norms of the system. Looking at the implementation side
of interception-based regimentation, in artificial societies, according to [35, p. 15] this
approach is relatively easy to implement and deploy. Nevertheless it exhibits a number
of problems which act as drawbacks to the idea and will be discussed later in this paper.

There is a second block of Economics-inspired works that have studied sanctioning
as incentive for rational behavior of utility-based agents. In this area, sanctioning is seen
as an amount taken from an agent’s benefits and the effectiveness of sanctioning is usu-
ally measured against system equilibria, in line with the theory of Becker [5]. The topic
has been framed mostly in terms of mechanism design and the issues that economists
have studied more thoroughly are the information about infraction and sanctioning [25],
as well as the amount and pervasiveness of sanctioning [18]. Methodology has been ei-
ther game-theoretic (see [13] for example) or experimental (e.g. [29]). In this latter case
classical experimental economics methods have been enriched with agent-based sim-
ulation and thus explore situations that are difficult to examine with set-ups involving
human subjects only [8]4.

4 One group of mechanisms which is sometimes seen separately, but which we bring under the
category of economic-inspired approaches, are reputation mechanisms. We view reputation
mechanisms as economic approaches, based on the rationale, often found in reputation mech-
anisms, that a bad reputation leads to future negative utilities (e.g. if no cooperation partners
can be found due to a bad reputation), and under the rational utility maximizing assumption
economic considerations are made. Alternatively, if one considers the psychological aspects
of reputation, it could also be placed in the category of cognitive-inspired solutions.
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A third block is inspired by formal normative concerns, as they apply to agents and
MAS. Some works deal with sanctioning, and incentives in general, as a component of
the notion of a norm and thus study the structural relationships of those components.
Issues addressed include the relationship between target and victims5, the syntax of
activation and deactivation conditions or links between infractions and reparatory ac-
tions [34]. Others are interested in the dynamics of norm-compliance and thus deal with
sanctioning as events triggered when an infraction occurs [27]. Finally there are works
that take sanctioning as a feature that depends on the type of norm (conventions, social,
regimented, functional,... [31]). These are interested, for instance, in the operational
semantics of compliance and enforceability [28], or in the class of incentives most nat-
urally associated with different norm types. Works in this block range from the strictly
formal to the mostly computational approaches.

The fourth block is composed of works that are concerned with the cognitive aspects
of punishment. Some works are interested in the role of sanctioning in the adoption or
internalization of norms [14], others in the role or modes of learning and adaptation
that may be associated with sanctioning [2], and yet others in the way different ways
of sanctioning being more or less effective depending on the cognitive “make-up” of
agents [2].

Our work will be based on knowledge from the three blocks and for the purpose of
this paper – since our purpose is merely exploratory here – we will use that common
knowledge without specific reference.

Our first task will be to state our subject matter with some precision. That is impose
some simplifications to the sanctioning process in open MAS, so we will state our
intended meaning of some terms and narrow down the scope of the discussion.

2.1 Regulated Open MAS

Objective MAS. Technically speaking we assume the existence of a MAS environment
–observable as an objective entity– with fixed ontology, dynamic state, regimented con-
stitutive conventions and participation of capable and entitled agents.6

Open MAS. The decision-making processes of agents may be not under the control
of the MAS. Agents may respond to their own motivations and be owned by different
owners. Agents may enter or leave the MAS at will, as long as they are capable and
entitled to be in the MAS.

5 A detailed description of our understanding of the terms is given in Sec. 2.3.
6 That is (i) there exists a world that may be populated by (ii) agents whose activity may involve

other agents and possibly other entities – like speed limits, traffic lights, or fines. (iii) At any
point in time, that world is in a state which is represented by a set of variables (sometimes
referred to as a trace [9]) whose values may change only due to the actions of agents. (iv) Out
of the many conceivable actions which agents theoretically may attempt, only the ones that are
deemed admissible in that world may have any effect in the world. (v) All actions are subject
to preconditions (on the state of the world) that make them feasible and post-conditions that
determine their intended effect in the world. (vi) Only agents that are capable of performing
admissible actions and have the proper authorization may exist and act in the world.
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Regulated MAS. Assuming: (i) Interactions are regulated by norms. (ii) Agents may
decide whether they comply with those norms or not. (iii) Only observable behavior is
subject to be regulated. (iv) Norms are intended to be enforced.

2.2 Norms

Norms are artificial restrictions on agent behavior. In principle, norms dictate what
actions are permitted, prohibited or obligatory under given conditions as well as the
effects of complying or not with those norms.7

Norm structures are the components that define a norm for the purpose of punishment.
For the moment we assume the following: the antecedent determines the activation
and termination conditions; the consequence specifies the intended behavior; the target
agents are those that should abide by the norm; the goal indicates the purpose and ben-
eficiaries; associated norms whose activation / deactivation is dependent on activation
/ deactivation of this norm; the triggered actions explains its effects and consequences
(mostly sanctions and reparatory actions).

A Normative system is formed by (i) a regulated open MAS, (ii) the set of norms
that regulate it, (iii) the conventions for the creation, issuance, diffusion and change
of norms, (iv) a social structure of the MAS involving roles and relationships among
roles, (v) appropriate governance mechanisms for norm-enforcement, (vi) performance
criteria that determine the quality of the normative system.

Normative context is (i) a normative system, (ii) a set of participating agents and (iii)
a non-empty set of states of the MAS.

Roles are a way of defining the tasks that differentiate groups of participants, and thus
may be seen as entitlements and obligations of any agent that may execute a given
collection of tasks. Hence, a normative system includes norms that define whether an
agent may change roles or perform more than one role at a given time, what roles may
be compatible or incompatible, and whether roles may have hierarchies and of what
types.

Norm types in terms of sanctioning (see [40] for example): (i) Constitutive and regi-
mented norms are impossible to violate (e.g., traffic lights have three colors). (ii) Con-
ventions, should be observed —because otherwise some action would not be effective—
but are not directly enforced and have no direct sanction associated with them (e.g.,
salute protocols). (iii) Functional, or regulative/enforceable norms should be observed
and if violated some corrective action may ensue.

2.3 Governance

The act of a system designer or governing entity in making decisions that specify rules,
defining expectations, granting power, or verifying performance in order to steer the
system in a desired direction is called governance.

7 In general, norms are explicit, although norms may indeed be an emergent feature of a norma-
tive context and sanctioning a means for turning implicit disposition of individuals into norms
to be observed in society as a whole.
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The word governance itself is derived from the greek verb κυβερναo (kubernáo)
which means “to steer”. Governance may be done in any system of any size ranging
from individuals to enterprises to complete nations.

One part of governance is the observation of normative compliance, both with re-
spect to the feasibility of compliance as well as with respect to enforcing compliance
of the system participants (i.e. agents). As pointed out earlier, in this paper we review
sanctioning as one means of supporting compliance.

Sanctions and Punishment. Non-compliance may involve some penalty on transgres-
sors and, compliance some rewards. We will only refer to sanctioning in this paper, al-
though mutatis mutandis, the framework applies to both –to rewards and to sanctions–
in general. Only prescribed and perceivable behavior may be sanctioned.

Type of Sanctions. Following [38], we recognize two: direct and indirect. Direct sanc-
tions affect the agent immediately and are noticeable directly (like bans, fines and phys-
ical punishment). Indirect sanctioning affects only the agent’s future actions and may
be ostensible or not (e.g. warnings, reputation). One interesting feature of indirect sanc-
tions, such as reputation, is the subsumption of roles involved: by spreading rumors
about a violator, every agent becomes a judge (as any agent can reinterpret the rumor in
every way it perceives to be the correct way) as well as an executor (any agent may use
the rumor in what ever way it wants, and redistribute it to whom ever it wants). Hence,
indirect sanctions might be irreversible, uncontrollable and unmeasurable, obtaining (in
a worst case scenario) an infinite sanction against the violator.

Objective of Sanctions. While the general purpose of sanctioning is to motivate norm
compliance, we may distinguish different effects such sanctions are intended to have
on future behavior. Customary objectives are deterrence, compensation, retaliation and,
finally, exemplification and learning.

Utilitarian agents will be used in this paper for illustration purposes. In the tradition of
Hedonism we assume that all agents try to maximize their own utility – hence we refer
to utilitarian artificial societies in the title. As a result – in accordance with neoclas-
sical economic tradition – for the agents we assume that their goals, motivations and
decision-making processes take into account many issues that may be amalgamated
into a single value —utility— which is computable through a “utility function” [26].
Thus any sanction will be associated with an increment or a decrement of the utility
of transgressor and victims. Furthermore, we will assume that utility functions may be
different for different individuals plus the existence of a (general) utility of the system.
For utilitarian agents, therefore, sanctions are always financial penalties. In their case,
the value of indirect penalties, like reputation, usually cannot be calculated.

Non-compliance qualifications allow the possibility of distinguishing degrees and
gravity of non-compliance of some norms and, consequently, modes and intensity of
their sanctions.

Governance roles involve entitlements and capabilities of MAS participants to detect
and evaluate transgressions, and to impose sanctions and enact reparatory actions and,
in some normative systems the possibility of adding or modifying norms (e.g. legis-
lator). Some normative systems assume complete institutional governance (all gov-
ernance is in the power of the objective MAS), while others delegate governance in
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specialized agents. Some systems are mostly self-regulated and still others may have
only the governance that each participant may grant to its own actions.

Two basic roles (with regard to norms) have already been identified [13]: the ben-
eficiaries and the targets. Targets are the actors for whom the norm is specified for.
Beneficiaries are those actors who benefit from the norm and potentially hold the norm.
However, some roles are still missing with regard to governance: the violators, the vic-
tims, the profiteers, the observers, the judges, the executors, the controllers and the leg-
islators. Violators are the actors that have taken a different action than the one specified
by the norm. Victims are the actors who suffer the consequences of a norm violation.
Profiteers are the actors who benefit from the consequences of a norm violation. Ob-
servers are those actors that identify a violator. Judges are those actors that given the
information about the violation are able to calculate the sanction to be applied to the
violator. Executors are the actors that apply the sanction to the violators. Controllers are
the actors that –after the sanction has been applied– control that the sanction had the
desired effect. Legislators are the actors that observe the efficiency of the system with
respect to the fulfillment of norms and application of sanctions.

In some cases an actor might assume more than one of these roles. The combination
of roles that each actor possesses is completely related with the type of type of society
in which agents are are located, and vice-versa. A society where all the roles are played
by different agents is completely different to a society where all the roles are played by
all agents.

Normative System Dynamics. While the manifest purpose of sanctioning is to moti-
vate compliance, a collateral effect is the adaptation of behavior of individuals to the
normative context and in a deeper level, the adaptation of the normative system to an
evolving normative context. Thus the cost and effectiveness of sanctioning may induce
changes in the sanctioning process in order to better achieve its goals, and may even-
tually call for a modification of the whole normative system. Both situations should be
contemplated in the governance devices of the regulated MAS and, depending on the
system design, they may be embedded in the system or handled off-line.

3 The Sanctioning Process

As shown in Fig. 1 we conceptualize sanctioning as a four-stage process. The first three
stages correspond roughly to the conventional processes of arrest, trial and conviction
of transgressors, while the fourth is the process of learning and adaptation that ensues.
Each stage involves distinctive activities whose performers are agents playing particular
roles. Although in general terms most activities and roles are present in every regulated
MAS that includes enforceable norms, they need to be adapted to the particularities
of the normative context where violations take place. Here we will sketch the general
contents but limit occasional comments to utilitarian agent sanctioning.

3.1 Detecting Non-compliance

This process has two goals: the ascertainment of a violation and the identification
of agents involved. Two obvious roles take part in this phase: violator and observer.
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Fig. 1. The Sanctioning Process

One should note that, depending on the structure of the norm that is violated, the ob-
server may need to gather enough evidence to ascertain what violation actually took
place before any further punitive actions can take place. Hence, in order to bring about
charges, observers may need to assess damages, to assign blame and to identify victims
and profiteers that may be affected by the non-compliance.

Each of these roles may be performed by more than one agent and, in totally self-
regulated MAS, even performed by the same agent. In the particular case of utilitarian
agents, the observer role may take different forms:

– A first-party observer who controls its own compliance.
– A second-party observer who observes a misbehavior of a transaction partner(s).

An example would be the buyer on eBay, who has bought and paid for a product,
but the seller does not send it to him. If the product was to be sent insured, he can
recognize a violation by the seller if he does not receive a parcel on time.

– Third-party observers that supervise the behaviour of other agents in the system.
– Institutional watchmen are agents whose decision-making and action is controlled

by the MAS and have as a goal the detection of transgressions and their proper
assessment. Each one of these may have limited observation capabilities, as for
example, the Second Life Governance Team [16], where a team of authority repre-
sentatives patrol the grid, ensuring the correct behaviour of the citizens. If they are
not present at the scene of a norm violation, then, they cannot detect it. Evidently,
full observability may be achieved by placing watchmen in every scene, as in the
case of staff agents in electronic institutions [19], who control every interaction.

– Institutional enforcement – in terms of regimentation or CBE discussed beforehand
– is another way of achieving full observability of violations is by embedding it as a
functionality of the MAS as a whole [28,6], however especially in open distributed
MAS this approach is unfeasible due to the nature of the system, i.e. as neither the
mental states required for regimentation by compilation seem accessible nor is it
likely that one can observe all actions by all agents in open systems.

The question of whether all violations may be detected or not may determine strategic
decisions of agents with respect to norm fulfillment. In scenarios where every viola-
tion is observed, agents would violate norms only if they consider that the benefits of a
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violation are higher than the penalty. On the other hand, when violations might pass un-
noticed, agent strategic behavior is also possible but then benefits are compared against
expected (uncertain) penalties.

Besides the strategic behaviour of agents in case no complete observation is feasible,
other questions arise in the violation detection phase. One major question is the identi-
fication of the target agents to which a norm can apply. Typically in order to violate a
norm, the agents need to be targets of that norm, i.e. the norm needs to specify that what
they are doing is a violation. When trying to observe violations it is therefore of great
importance to determine whether the presumed violators are actually targets. To give an
example: drinking strong alcohol is only allowed at the age of 18 in many countries. The
restriction thus applies to all people younger than 18 who are the targets of this norm.
When determining whether someone has violated the norm it is of importance, whether
this person is below 18 and therefore a target. In open systems where not all informa-
tion of agents are freely available this can be difficult and it can for example happen
that situations are falsely identified as violations because of a lack of knowledge that
the involved agents are no targets.

A second major problem in the detection phase is that norms can change and as
a consequence, situations / actions that have been violations earlier are not violations
any more (or earlier non-violations become violations). Disseminating norms as well
as keeping track of times of violations (in order to determine whether a norm was ap-
plicable at the point of time of the violation) therefore should be considered in this
phase.

3.2 Sanction Evaluation

This phase involves the appraisal of the applicability of the norm within the norma-
tive context of the non-compliant action and, if applicable, activation of the normative
consequences of infringement and determination of the actual sanction to be imposed.
In this stage, observers bring charges to a judge who should decide if the violator de-
serves a sanction and then determine the appropriate sanction. The determination of the
sanction can for example depend on whether the “violating agent” was actually a target
of the norm, whether the violation happened due to conflicting norms and the agent
therefore had little chance on avoiding violation or whether the agent violated the norm
intentionally or not (in case it was not aware of the norm). The latter of these consider-
ations seems difficult to determine in open systems for the same reasons regimentation
by compilation is difficult.

The judge may also command the execution of reparatory actions as a consequence
of the infringement. In some regulated MAS, violators and victims may be party to
argumentation processes to establish applicability and severity of sanctions.

Sanctions are usually calculated as a function of the violator, the victims, the effects
produced by the violation, and the normative context where the violation was detected.
This sanction calculation might imply a cost which is absorbed by the judge. Some may
need to be enacted either automatically or commissioned by the judge.

During sanction calculation for utilitarian agents, one should not assume that all
agents are regimented by the same utility function. Even though taking this factor into
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account when calculating a sanction is crucial, this is unfortunately impossible, as nor-
mally the utility function of each agent is private (i.e. only known by the respective
agent). In case this utility function was accessible, the sanctioning entities would be
able to calculate a perfect sanction to decrement the utility function of the violator,
even if they do not share that function. Consequently, to ensure the intended effect of a
sanction we have to be aware of the agents’ utility function, or at least, the judges and
the executors agents do use a sanction that affects the utility of the violator.

One final decision has to be made before applying the sanction, and this is how the
sanction should applied. The way a sanction is applied can be decided by the judge or
be imposed by the normative context.

3.3 Sanction Application

The sanction application phase is composed of the actual execution of a sanction and
the assessment of its proper application. The outcome of the previous stage is a sentence
to be carried out, and the role that the respective agents perform in order to bring about
the sanction is the executor role. Executors may be [3]:

– the violator itself, who for example after violating a norm (un)intentionally might
want to repay the damage done (maybe to avoid a loss in reputation).

– A first-party victim: depending on the types of norms that are controlling the soci-
ety, one agent can be directly harmed by another agent’s norm violation. If this is
the situation, the victim can act as the observer, judge and executor of the sanction
to the violator. Agents being victims of a violation and deciding not to interact with
the violator again in the future are one example of such a setting.

– A third-party observer: if an agent is seen violating a norm, the observing agent can
have the right to apply a sanction to the violator, even if this agent did not suffer
from the violation.

– A group of third-party observers: the act of sanctioning can be distributed amongst
a group of agents. This type of sanctioning act is often used in indirect sanctions
such as reputation (which has an aggregated effect, the more agents use it, the more
powerful).

– Institutional enforcers such as authority agents who do not observe all actions but
only the ones within their vicinity, and do have the power (designated by the insti-
tution that they all belong to) to apply the sanction.

Two problems typically occuring in the sanction application phase are (i) that in order
to apply a sanction the executors might need power and permission to do so. A lack of
these two might therefore result in the intention to apply a sanction whose execution
is unsuccessful. (ii) If several agents perform the roles of executor, it might result in
situations in which the agent that has violated the norm is sanctioned several times by
the different executor agents, and not only once. Although this might be intentional
(e.g. in reputation mechanisms), in the current legal considerations on direct sanctions
the view that one should only be sanctioned once for a violation is taken.

Another aspect that needs to be considered is that sanctions may not come for free
but may have a cost associated to their application that may be bore by executors or the



Operationalization of the Sanctioning Process in Utilitarian Artificial Societies 177

regulated MAS. Sometimes the cost is directly associated with the sanction. A straight
forward example of costly sanction is imprisonment, where the state has to support
jailmates. However, the application of other sanctions imply an unknown cost to the
executors but still inflict damage to the violator. Reputation is normally one of the most
effective relativized-cost sanctioning mechanism. Transmission of (bad) information
regarding an agent has a relative cost (depending on the degree of desposability of the
information transmitted and the retaliation level of the members of the society) to the
agent transmitting the information, however, it might also affect the target of the rumor.

After the executor has acted, the controller is in charge of controlling that the violator
has indeed received the sanction, and that the sanction has served the purpose for which
it was designed. The controller is also responsible for ensuring that other actions that
are associated with the infringed norm are properly triggered and carried out. In case of
compensational sanctions, in particular, the controller will ensure that the victims are
compensated.

3.4 Assimilation

Assimilation is the processes through which individuals or the normative system itself
take advantage from a sanction to modify ulterior behavior.

As we have seen, by performing the corresponding roles, violators, observers, vic-
tims, judges, executors come in contact with information about norm compliance that
they could ideally incorporate in their decision-making mechanism and may hence
shape their own future behavior. This learning – typically by the norm targets – is
the main focus in most systems that take into account normative learning. In addition
to this learning by interaction, in a normative system other means of communicating
learning-relevant information to the participants can be implemented. This facilitates
that norms about punishment may give shape to a space for individual evolution where
specific aspects of compliance are given more relevance than others and therefore facil-
itate evolution of the system along different lines.

While punishment is intended as a motivation for actions and the sanctions of specific
specific norms may have an ostensible objective (compensation, retaliation, deterrence,
exemplarity), the actual effect of punishment in an agent’s motivations is a private mat-
ter of convictions, thus directly unobservable for the MAS. Nevertheless, the ulterior
behavior of agents is observable, hence the MAS as a whole, or its legislators, may
use evolution of the behavior of individuals as input for purposeful evolution of the
normative system. Autonomic MAS would use evolution of individuals’ behavior for
self-adaptation. In either case, modifications of behavior need to be observable some-
how. The natural means are probes and indicators that must be aligned with performance
parameters accessible to legislators or the system dynamic features.

This way, the choice and balance of those conventions that determine the availabil-
ity and form of information about punishment and norm-compliance have significant
effects in the overall collective behavior8.

8 By collective behavior we refer to both, collective behaviour that results from the aggregate
behavior of informed individuals, as well as collective behavior determined by new norms that
result from legislative or autonomic adaptation.
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4 Contrasting the Process

Having presented our sanctioning process in the last section, in this section we review
some of the existing MAS sanctioning approaches in the context of our process (due to
space constraints this review is not complete, although we believe it is representative).
In the next paragraphs we will contrast the approaches in more detail. Table 1 gives an
overview over the approaches contrasted.

4.1 eInstitutions [19,27]

The eInstitutions (eI) framework was first described in [22]. The framework consists of
three components: (i) a formal specification of a normative system (called institution
by the authors [23,21]), (ii) the ISLANDER tool for editing the specifications [20], and
(iii) AMELI, a run-time environment for executing the system, based on the specifica-
tions [24].

With respect to institutions the eI specifications consist of formal semantics for the
notion of an institution and its components (abstract and concrete norms, empowerment
of agents, roles) and defines a formal relation between institutions and organizational
structures. In the original design of the eI the sanctioning was done with the help of reg-
imentation mechanisms. In the eI, all actions are triggered with the help of messages.
These messages that trigger actions by the individual agents are observed by staff agents
(that are implemented in the middleware of the system). The staff agents check every
message and do not forward them further in case they violate a norm. This way norma-
tive compliance was unavoidable. As a consequence of this rigorous non-compliance
identification, very little options for the remaining two phases exist. However, recent
work [27] has started to include norm violations considerations, although these viola-
tions are detected by the institution, which is ready to apply the sanction to the violator.

4.2 OperA [17]

The OperA model is a framework for agent societies with the goal to legitimise the
concept of autonomy between agent goals and society requirements. The model makes
use of contracts that predefine the norms and their corresponding sanctions in case of
violations. All the parameters of the contract are negotiated and are used to define the
transaction partners the targets, beneficiaries, potential violators, and judges. Hence in
the calculation phase of our model, existing well defined sanctions are assumed and
do not have to be reasoned about. In order to verify that agents fulfill the contracts,
Dignum introduces the idea of Trusted Third Parties (TTPs) that verify the compliance
at “run-time”. These TTPs are called monitoring agents. Even though in theory one can
sign a contract without a TTP, this is rarely done. TTP observe the system and in case
of violations induce the further sanctioning process playing the role of observer.

4.3 López y López et al. [32]

The work by López y López et al. has its roots in the SMART agent framework. This
framework is structured similar to our sanctioning process idea although no specification
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of the phases is given. Moreover, a much more abstract (compared to our utilitarian)
concept of agents is considered. In the work by López y López et al. agents follow
norms to obtain their normative goals, without considering how these goals are ful-
filled. More specifically, the authors make a distinction between primary and secondary
level norms, and their relation with the concept of interlocking. When a primary norm
is violated, it activates (as they are interlocked) a second level norm in charge of sanc-
tioning.

The agents responsible for the sanctioning on this platform are the norm defenders.
In our role classification, they act as observers, executors and controllers. It is not clear
who plays the role of the judge, as the second level (sanctioning) norm already specifies
the sanction and different situations with conflicting norms that might influence the
calculation of this sanction are considered.

One very interesting point of the work by López y López et al. is the formalization
of an autonomous normative reasoning process. This process is composed of three oth-
ers that allow agents to decide whether to adopt a norm, whether to comply with the
norm, and to update the goals of agents. This process is very important in open dis-
tributed systems as it allows adaptation and dynamicity against this rapidly changeable
environments.

4.4 MOISEIns [6]

The MOISEIns framework follows a similar structure to the eI approach. It employs
generic supervisor agents, aiming at controlling and enforcing the rights and duties
of autonomous “domain” agents operating in a normative organization expressed with
MOISEIns. Whereas supervisor agents (who play the roles of observers, judges and
executor) are dedicated to the control of the system at the normative and sanctioning
level, the domain agents implement the functionalities of the application level. Hence,
MOISEIns envisions agents to be forced to comply with norms (although they have
the freedom of violation) because the violations are being detectable by the system. One
aspect of special interest to the sanctioning process that the authors of the model empha-
sise is the normative learning and adaption by the society as a result of the sanctioning
act. Thus, in MOISEIns agents may decide to adapt and change the organization in
a bottom-up process if they feel that the current normative system is not suitable, in-
stalling a new normative pattern/structure. The phases of our process are also very well
identified from the observation by the supervisor agents, passing through the calcula-
tion of the sanction (done during the design of the system), and the application of the
sanction by the supervisor agent.

4.5 EMIL-I-A [2]

EMIL-I-A is an agent architecture able to process the normative cues in the social en-
vironment where agents interact. This architecture allow agents to self-organize and
regulate their own norm-compliance within the system in a decentralized manner, with-
out the necessity of a central authority. Agents’ decision of whether to follow the norms
is orchestrated by the internalization mechanism agents are endowed with, and by the
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norms’ salience, as the baton that orchestrates the intelligent norm compliance. Fol-
lowing the philosophy of decentralization, agents assume all the roles, working as ob-
servers, judges and executors. Because of this unification of roles and adaptability of
the EMIL-I-A architecture, agents have a plastic notion of norms, making the terms
of compliance and violation also dynamic and dependent on agents’ perception of the
environment. The authors present a running example of their architecture using a simu-
lation framework that approaches the establishment the of cooperation norm.

The identification of a norm-violation is achieved by peers, reducing the system’s
costs invested in specific norm-controllers, as happens in eI. Once a violation is de-
tected, in the initial version of the work [2], the sanction was specified by the pol-
icy maker/system designer. However in a latter version [39], the authors developed a
heuristic that allowed agents to intelligently change the sanctions associated to norm-
violations. The determination and the application is done by the same peer-agent, and
the punished agent automatically receives the sanction. Finally, when an EMIL-I-A
agent receives the different types of sanctions studied, they assume the effect of such
sanctions to follow empirical trends obtained from experiments with human subjects.

4.6 Cliffe et al. [9,10]

The InstAL framework by Cliffe et al. [11,12,9,10] is a normative framework architec-
ture with a formal mathematical model to specify, verify and reason about the norms
that might be operational in an open distributed system. The InstAL approach has opted
for an event-driven normative approach: violations are based on the events/actions
rather than states and the norms are centrally located and not explicitly internalised
within the system’s participants. The premise of the model is that events trigger the
creation of normative fluents. Inspired by Jones and Sergot’s [30] account of institu-
tional power and the notion of ‘counts-as’, the generation relation is used to explain
the connection between actions and their interpretation in the context of the norma-
tive framework. The InstAL framework enables to reason about normative systems and
verify their properties (e.g. whether certain states be reached, and which (sequence of)
actions result in which states) at design-time. The InstAL framework can thus be used
to reason about violation actions, however what is important to note is that it can only
reason about violation actions that have been defined as violations in the design-time
specifications. Emergent properties and changes in the normative setting are currently
not considered, but future extensions taking into account these properties are being
worked on (see [15] for example).

With the perspective of run-time normative systems, a methodology to to migrate
InstAL’s design-time (verification) set of norms to a run-time set presented in [4]. Norm
compliance within a running InstAL framework is enabled by a Governor/normative
monitor entity who monitors the events in the system that are relevant to the normative
system. The normative monitor can be configured to observe all actions in the system,
as well as be configured as passive logging entity, that does not monitor directly itself
but only reacts to messages from agents that observe a violation. These agents could
be the following: second party and third party agents, normative-empowered agents as
well as the violating agents themselves. The set-up is up to the system designer. The
same is true for the sanctioning calculation and enforcement action. Thus, depending



182 T. Balke and D. Villatoro

on the context, the normative monitor can act as the observer, sanction calculator and/or
enforcer or can leave it up the the participants to use its logged violation information
how they see fit. The normative monitor can also act as a normative information base for
the participant to use normative planning purposes. The InstAL framework thus leaves
it to the system designer to set up the sanctioning as required. It can incorporate any
of the settings described in the first three stages of our process. Concerning the final
stage – the assimilation, some work has been done by Corapi et al. [15] to allow for an
inductive learning about the norms of the system from a system designer’s point of view.
Again the learning on the side of the agents can be incorporated by the agent designer
as required and is not specifically regimented by the InstAL framework.

5 Closing Remarks

This paper is a toddling start towards an organization of features akin to sanctioning, to
facilitate their use in the design of regulated open MAS. We chose the unconventional
perspective of sanctioning as a process, in order to plot a field where available resources
are easily harvested while unexplored opportunities are more crisply revealed. Thus, we
outlined the bounds of the punitive process and advanced core conceptual distinctions.
Our quick exploration of these elements in the context of five MAS platforms suggests
our proposal is valid and points out obvious topics to address next. In this last section
we will touch upon the not so obvious.

We have sidestepped the fundamental question of why sanctioning works. If ad-
dressed from the assumption that sanctioning not only motivates but modifies behavior,
it entails, first, an examination of tenets about an agent’s rationality; in particular, in
relation to the agent’s motivations and in the context of the agent’s conformity to a so-
ciety. It also entails an analysis of the type of modification that is desired or achievable
through sanctioning, those factors that bear upon behavior modification and the way
behavior modification is achieved and ascertained. Utilitarianism on one hand, and on
the other BDI architectures of different flavors, are standard approaches to avoid many
of the problematic aspects of rationality. With respect to punishment, however, even
these simplifications still leave hard questions open. At any rate, our description of the
four-stage process should have made clear that a designer of sanctioning mechanisms
for a given MAS may have to consider many different facets of the mechanism, even
assuming absolute control over the cognitive capabilities of agents.

A similar type of concern, likely as rich, may arise with respect to the “assimilating
sanctioning” stage of the punitive process. We hinted at two foci of analysis: individuals
and system, hinted at the pertinence of the abundant work on agent and MAS evolution
and, in particular, that of emergence and immersion of norms, but there is more. The
process of sanctioning may be understood, also, as a resource to modulate those dy-
namics thus making evolution faster, or more sensitive to the success of sanctioning, or
the other way around to take the intended evolution as the modulator of sanctioning.
In both directions, the study of how to determine the efficiency of a normative system
and its sensitivity to changes in sanctioning is paramount. Of special significance is the
interplay of these matters with the moral and cognitive disposition of agents.

Our last comment is on implementational aspects of the punitive process. The dis-
tinctions we outlined in this paper are but a fraction of the number of design features
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that are amenable for use in actual MAS. Still more work is needed to come up with
a concise framework for a design methodology and the development and assembly of
tools that allow for a convenient use of a sanctioning process on top of generic MAS
development platforms. The first steps should be to start with platforms like the five we
examined and make sanctioning available as a service on top.
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Abstract. Norms are a valuable mechanism for establishing coherent
cooperative behaviour in decentralised systems in which no central au-
thority exists. In this context, Axelrod’s seminal model of norm estab-
lishment in populations of self-interested individuals [2] is important in
providing insight into the mechanisms needed to support this. However,
Axelrod’s model suffers from significant limitations: it adopts an evolu-
tionary approach, and assumes that information is available to all agents
in the system. In particular, the model assumes that the private strate-
gies of individuals are available to others, and that agents are omniscient
in being aware of all norm violations and punishments. Because this is an
unreasonable expectation, the approach does not lend itself to modelling
real-world systems such as peer-to-peer networks. In response, this paper
proposes alternatives to Axelrod’s model, by replacing the evolutionary
approach, enabling agents to learn, and by restricting the metapunish-
ment of agents to only those where the original defection is perceived, in
order to be able to apply the model to real-world domains.

1 Introduction

In many application domains, engineers of distributed systems may choose, or be
required, to adopt an architecture in which there is no central authority and the
overall system consists solely of self-interested autonomous agents. The rationale
for doing so can range from efficiency reasons to privacy requirements. In order
for such systems to achieve their objectives, it may nevertheless be necessary
for the behaviour of the constituent agents to adhere to certain constraints, or
norms. In peer-to-peer file sharing networks, for example, we require (at least
a proportion of) peers to provide files in response to the requests of others,
while in wireless sensor networks nodes must share information with others for
the system to determine global properties of the environment. However, there is
typically a temptation in such settings for individuals to deviate from the desired
behaviour. For example, to save bandwidth peers may not provide files, and to
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conserve energy the nodes in a sensor network may not share information. It is
therefore desirable to minimise the temptation for agents to deviate from the
desired behaviour, and encourage the emergence of cooperative norms.

Norms have been studied by very many different researchers, over several dif-
ferent areas (for example, [6–8, 16, 18–20, 23]. Most notably, Axelrod’s seminal
investigation of norm establishment in populations of self-interested individu-
als [2] provides an analysis of the conditions in which norms can be established.
In his experiments, a population of agents repeatedly play a simple game, in
which agents make decisions about whether to comply with a desired norm of
cooperation and whether to punish those who are seen to violate this norm.
These decisions may result in certain penalties or rewards, with the strategies
of agents being determined through an evolutionary process, in which the more
successful strategies are reproduced. In this setting, Axelrod explored how the
emergence of norm compliant strategies can be encouraged.

Although Axelrod’s investigation is successful in establishing cooperative
norms, the model makes several assumptions that are unrealistic in real-world
settings. In particular, in many domains it is not possible to remove unsuccess-
ful agents and replicate those that are more successful, and there is no cen-
tralised control that could oversee this process. Instead, we need a mechanism
through which individuals can learn to improve their strategies over time. If we
enable individuals to compare themselves to others, and adopt more success-
ful strategies, then we can take a learning interpretation of the evolutionary
mechanism [13], without needing to remove and replicate individuals. However,
this learning interpretation requires that the private strategies of individuals
are available for observation by other agents, which is again an unreasonable
assumption. Furthermore, as has been shown elsewhere, Axelrod’s model is un-
able to sustain cooperation over a large number of generations [10]. Axelrod’s
approach, as discussed below, relies on agents being able to punish both those
that defect and those that fail to punish defection, yet this is unrealistic since
it assumes omniscience through agents being aware of all norm violations and
punishments.

In this paper we investigate alternatives that allow us to make use of the
mechanisms resulting from Axelrod’s investigations, in more realistic settings.
Specifically, we first take a learning interpretation of evolution and describe an
alternative technique, strategy copying, which prevents norm collapse in the long
term. Second, we remove the assumption of omniscience and constrain the ability
of agents to punish according to the defections they have observed. Finally, to
obviate the need for information on the private strategies of others, we propose
a learning algorithm through which individuals improve their strategies based
on their experience.

The paper begins by reviewing Axelrod’s original norms game and metanorms
game, in which our work is situated. Then, in Section 3, we present our strategy
copying technique, and show how it performs in the original context and in
situations in which observation of defection is not guaranteed. In Section 4,
we describe a reinforcement learning algorithm designed to avoid the need for
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access to the private strategies of others. Section 5, considers related work, before
presenting our conclusions in Section 6, with a discussion of the significance of
our results.

2 Axelrod’s Model

2.1 The Norms Game

Axelrod’s norms game adopts an evolutionary approach in which successful
strategies multiply over generations, potentially leading to convergence on coop-
erative norms [2]. Each agent in the population has a number of opportunities
(o) in which it can choose to defect by violating a norm, and such behaviour has
a particular known probability of being observed, or seen (So). An agent i has
two decisions, or strategy dimensions, as follows. First, it must decide whether
to defect, determined by its boldness (Bi); and second, if it sees another agent
defect in a particular opportunity (with probability So) it must decide whether
to punish this defecting agent, determined by its vengefulness (Vi), which is the
probability of doing so. If So < Bi then i defects, receiving a temptation pay-
off, T = 3, while hurting all other agents with payoff H = −1. If a defector
is punished (P ), it receives an additional punishment payoff of P = −9, while
the punishing agent pays an enforcement cost, E = −2. The initial values of Bi

and Vi are chosen at random from a uniform distribution of a range of 8 values
between 0

7 and 7
7 .

Axelrod’s simulation had 20 agents, with each having four opportunities to
defect, and the chance of being seen for each drawn from a uniform distribution
between 0 and 1. After playing a full round (all four opportunities), scores for
each agent are calculated to produce a new generation, as follows. Agents that
score better or equal to the average population score plus one standard deviation
are reproduced twice in the new generation. Agents that score one standard
deviation or more under the average score are not reproduced, and all others are
reproduced once. Finally, a mutation operator is used to enable new strategies
to arise. Since Bi and Vi (which determine agent behaviour) take eight possible
values they can be represented by three bits, to which mutation is applied (by
flipping a bit) when an agent is reproduced, with a 1% chance.

In this model, cooperative norms are established when Vi is high and Bi is
low for all members of the population, so that defection is unlikely, and observed
defections are likely to be punished. In 100 generations, Axelrod found only
partial establishment of a norm against defection, so introduced an additional
mechanism to support norms in his metanorm model.

2.2 The Metanorms Game

The key idea underlying Axelrod’s metanorm mechanism is that some further
encouragement for enforcing a norm is needed. In the metanorms game, if an
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agent sees a defection but does not punish it, this is itself considered as a form
of defection, and others in turn may observe this defection (with probability
So) and apply a punishment to the non-enforcing agent. As before, the decision
to punish is based on vengefulness, and brings the defector (namely, the non-
punisher) a punishment cost of P ′ = −9 and the punisher an enforcement cost of
E′ = −2. Applying the simulation to the metanorms game gives runs with high
vengefulness and low boldness, which is exactly the kind of behaviour needed to
support the establishment of a norm against defection.

However, Axelrod’s analysis of results was limited. As has been shown sub-
sequently, allowing Axelrod’s metanorms game to run for an extended period
(1,000,000 generations) ultimately results in norm collapse [9]. As Mahmoud et
al. have shown [10], this norm collapse arises as a consequence of two aspects.
First, a sufficiently long run (compared to Axelrod’s limited run of 100 gen-
erations) provides the opportunity for a sequence of mutations to cause norm
collapse even after a norm has been established in the population. Second, such
mutation is magnified by the evolutionary manner of replication, generating a
new population of agents.

3 Strategy Copying

As indicated above, the evolutionary approach causes some problems in extended
runs, leading to norm collapse. In addition, for use in domains such as peer-
to-peer or wireless sensor networks, the agents themselves cannot be deleted
or replicated, but instead must modify their own behaviour. In this section,
therefore, we examine a simple alternative to Axelrod’s model in which an agent
that performs poorly in comparison to others in the population can learn new
strategies (in terms of vengefulness and boldness attributes) by adopting the
strategy of other, better performing agents, replacing the existing strategy with
a new one. Agents can achieve this in different ways: they can copy the strategy
of the agent with the highest score or they can copy the strategy of one of the
group of agents that perform best in the population.

3.1 Strategy Copying from a Single Agent

Intuitively, copying the strategy of the agent with the highest score appears to
be a promising approach. However, it leads to poor results in the long term be-
cause it draws strategies from only one agent rather than a population of agents.
This makes the approach vulnerable to strategies that are only successful in a
small number of possible settings. Moreover, by failing to draw strategies from a
variety of agents, the strategies tend to converge prematurely. To illustrate, con-
sider a group of students taking an examination, with one of the students having
cheated. If the cheating student has not been seen, they may achieve the best
exam performance. However, if all other students copy this behaviour and cheat
in the next exam, there is a high possibility that they will be caught, and will thus
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Fig. 1. Strategy copying from the best agent; 100 timesteps

suffer from much worse results than if they had not cheated. This is supported
by the results shown in Figures 1 and 2, illustrating experiments with runs of
100 and 1,000,000 timesteps (where a timestep represents one round of agents
having opportunities to defect and learning from the results, and is equivalent to
a generation in the evolutionary approach). Each point on the graph (shown as a
diamond to increase visibility) represents the average boldness and vengefulness
of the population at the end of a single simulation run.

In the short term, as can be seen from Figure 1, copying from the best agent
leads to norm establishment. However, in the long term the norm collapses, as
shown in Figure 2. This can be explained by the fact that an agent with low
vengefulness that does not punish a defector (and thus does not pay an enforce-
ment cost) but is also not metapunished, scores better than any other agent
with high vengefulness that does punish (and thus pays the enforcement cost).
As a result, other agents copy the low vengefulness of this agent so that low
vengefulness becomes prevalent in the population. In the same way, when low
vengefulness prevails in the population, an agent with high boldness defects,
gaining a temptation payoff, and hurting others without receiving punishment.
As a result, other agents copy the high boldness of this agent so that low venge-
fulness and high boldness are propagated through the population, leading to
norm collapse. This transition from high vengefulness to low vengefulness and
from low boldness to high boldness requires time to manifest, but the duration
of the period of time is not fixed.

3.2 Strategy Copying from a Group of Agents

Alternatively, and as we have suggested, we might seek to copy the strategy
of one in a group of high-performing agents. In this view, agents choose one
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Fig. 2. Strategy copying from the best agent; 1,000,000 timesteps

agent, at random, from the group of agents with scores above the average,
and copy its strategy. As previously, experiments of different durations (be-
tween 100 and 1,000,000 timesteps) were carried out; the results in Figure 3,
for 1,000,000 timesteps, show that all runs ended with norm establishment in
the long term, indicating that this approach is effective in eliminating the prob-
lematic effect of the replication method. This approach avoids norm collapse
since it does not limit itself to the best performing agent, and thus does not
run the risk of only adopting a strategy that performs well in a small number of
settings.

3.3 Observation of Defection

As stated in Section 2, in Axelrod’s model, an agent Z is able to punish another
agent Y that does not punish a defector X, even though agent Z did not see the
defection of agent X. However, such metapunishment is not possible if the origi-
nal defection is not observed: guaranteed observation of the original defection is
an unreasonable expectation in real-world settings. In consequence, our model
needs adjustment so that metapunishment is only permitted if an agent observes
the original defection. However, because this observation constraint limits the
circumstances in which metapunishment is possible, its introduction corresponds
to removing the metapunishment component from part of the game. In Axelrod’s
original experiments, metapunishment was introduced as a means to stabilise an
established norm. In his setting, norms tend to collapse shortly after they are
established without metapunishment. In fact, this remains the case in our model
and our results confirm this.

More precisely, the observation constraint causes all runs to end in norm col-
lapse when simulations are run for 1,000,000 timesteps, as shown in Figure 4.
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Fig. 3. Strategy copying from a group of agents

This is due to the fact that, as in the original model, runs initially stabilise on
high vengefulness and low boldness, and then mutation causes vengefulness to
reduce. If an agent Y with high vengefulness and low boldness changes through
mutation to give lower vengefulness, while boldness for all remains low, there
is no defection and the mutated agent survives. In addition, if boldness then
mutates to become just a little higher for a different agent X , with average
vengefulness remaining high, X will still rarely defect because of relatively low
boldness.

If it does defect, however, and is seen by others, it receives a low score, unless
it is not punished, in which case the non-punishing agents may themselves be
punished because of the high vengefulness in the general population. Here, agent
Y may not punish X because of the low probability of being seen (which must be
below the low boldness level to have caused a defection) or because it has mutated
to have lower vengefulness. In the former case, Y will not be metapunished
for non-punishment (since there is a low probability of some other agent Z
having seen it), but in the latter case, Y might be metapunished if it is seen by
others. The likelihood of agent Y ’s non-punishment being seen requires first X ’s
defection being seen by Y, and then Y ’s non-punishment being seen by others.
Importantly, in this new model, agents that metapunish Y must themselves
see X ’s defection. Since this combination of requirements is rare, such mutants
survive for a longer duration, enabling their strategy to propagate through the
population, and causing vengefulness to decrease. In addition, if another such
event occurs, it will cause vengefulness to drop further until it reaches a very low
level. When the model runs over an extended period, such a sequence of events
is much more likely, and low vengefulness allows a mutant of higher boldness to
survive and spread among the whole population, which is the cause of the norm
collapse.
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Fig. 4. Strategy copying with observation of defection

4 Strategy Improvement

Once the observation constraint is introduced, strategy copying becomes inad-
equate. Furthermore, it requires that agents have access to the strategies and
decision outcomes of others in order to enable the copying mechanism. As we
have argued, in real-world settings such observations tend to be unrealistic. Re-
inforcement learning offers an alternative to Axelrod’s evolutionary approach to
improving performance of the society while keeping agent strategies and decision
outcomes private. There are many reinforcement techniques in the literature,
such as Q-learning [21], PHC and WOLF-PHC [4], which we use as inspiration
in developing a learning algorithm for strategy improvement in the metanorms
game.

4.1 Q-Learning

Q-learning is a reinforcement learning technique that allows the learner to use
the (positive or negative) reward, gained from taking a certain action in a certain
state, in deciding which action to take in the future in the same state. Here, the
learner keeps track of a table of Q-values that record an action’s quality in a
particular state, and updates the corresponding Q-value for that state after each
action. The new value is a function of the old Q-value, the reward received,
and a learning rate, δ, and the action with the highest updated Q-value for the
current state is chosen. However, for us, Q-learning suffers from two drawbacks.
First, it considers an agent’s past decisions and corresponding rewards, which
are not relevant here; doing so would inhibit an agent’s ability to adapt to new
circumstances. Second, actions are precisely determined by the Q-value; there is
no probability of action, unlike Axelrod’s model.
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Bowling and Veloso [4] proposed policy hill climbing (PHC), an extension
of Q-learning that addresses this latter limitation. In PHC, each action has a
probability of execution in a certain state, determining whether to take the ac-
tion. Here, the probability of the action with the highest Q-value is increased
according to a learning rate δ, while the probabilities of all other actions are
decreased in a way that maintains the probability distribution, with each proba-
bility update occurring immediately after the action. In enhancing the algorithm,
a variable learning rate is introduced, which changes according to whether the
learner is winning or losing, inspired by the WOLF technique (win or learn fast).
This suggests two possible values for δ: a low one to be used while an agent is
performing well and a high one to be used while the agent is performing poorly.

However, in one round of Axelrod’s game, an agent can perform multiple pun-
ishments (potentially one per defection and non-punishment observed), while
only having a small number of opportunities to defect (four in Axelrod’s config-
uration). Therefore, punishment and metapunishment actions would be consid-
ered much more frequently than defection, leading to disproportionate update
of probabilities of actions, with some converging more quickly than others. To
address this imbalance, we can restrict learning updates to occur only at the
end of each round, rather than after each individual action, so that boldness
and vengefulness are reconsidered once in each round and evolve at the same
speed. The aim here is to change the probability of action significantly when
losing, while changing it much less when winning, providing more opportunities
to adapt to good performance.

While basic Q-learning is not appropriate because of the lack of a probability
of taking action, PHC-WOLF suffers from a disproportionate update of prob-
abilities of action. Nevertheless, the use of the variable learning rate approach
in PHC-WOLF is valuable in providing a means of updating the boldness and
vengefulness values in determining which action to take. However, since agents
that perform well need not change strategy, we can consider only one learning
rate. The next section details our algorithm, inspired by this approach.

4.2 BV Learning

To address the concerns raised above, in this section, we introduce our BV
learning algorithm. This requires an understanding of the relevant agent actions
and their effect on boldness and vengefulness, as summarised in Table 1, which
outlines the different actions available to an agent and the consequences of each
on the agent’s score.

Now, since boldness is responsible for defecting, an agent that obtains a good
score as a result of defecting should increase its boldness, and an agent that finds
defection detrimental to its performance should decrease its boldness. Learning
suitable values for vengefulness is more complicated, since while it is responsible
for both punishment and metapunishment, these also cause enforcement costs
that decrease an agent’s score. Low vengefulness allows an agent to avoid paying
an enforcement cost, but can result in receiving metapunishment. Vengefulness
thus requires a consideration of all these aspects. This intuition is formalised as
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Table 1. Effects of decisions on score

Decision Effects

Defect Gain temptation payoff
Hurts all other agents
Potentially suffer punishment cost

Cooperate —

Punish Punisher pays enforcement cost
Defector pays punishment cost

Not punish Potentially suffer metapunishment
(incurring punishment cost)

Metapunish Punisher pays enforcement cost
Defector pays punishment cost

Not metapunish —

in Algorithm 1, as follows. (Note that we use subscripts to indicate the relevant
agent only when needed.)

First, in order to determine the unique effect of each individual action on agent
performance, note that we decompose the single combined total score (TS ) of
the original model into distinct components, each reflecting the effect of different
classes of actions. The defection-cooperation action brings about a change only
if an agent defects (Line 9): the agent’s score increases by a temptation payoff,
T (Line 10), but it hurts all others in the population, whose scores decrease by
H (line 12), where H is a negative number that is thus added to the score. If an
agent cooperates, no scores change. We can therefore use just one distinct value
to keep track of this score, referred to as the defection score (DS ), and which
determines whether to increase or decrease boldness.

Conversely, punishment and metapunishment both have two-sided
consequences: if an agent j sees agent i defect in one of its opportunities (o)
to do so, with probability So (Line 13), and decides to punish it (which it does
with probability Vj ; Line 14), i incurs a punishment cost, P , to its DS (Line 15),
while the punishing agent incurs an enforcement cost, E, to a different score, its
punishment score, PS (Line 16). Note that both P and E are negative values,
so they are added to the total when determining an overall value. As the name
suggests, PS captures the total score obtained by an agent as a result of punish-
ing another, and applies to both punishment and metapunishment (enforcement
costs). There is also a different change (resulting from potential subsequent re-
ceived metapunishment) if it decides not to punish (Line 17). If j does not punish
i, and another agent k sees this in the same way as previously (Line 19), and
decides to metapunish (Line 20), then k incurs an enforcement cost, E, to its PS,
and j incurs a punishment cost P to its no punishment score, NPS. (An agent’s
NPS is obtained from not punishing, and comprises the metapunishment cost
alone.)

In Axelrod’s original model, those agents that are one standard deviation or
more below the mean are eliminated and replaced in the subsequent population
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Algorithm 1. The Simulation Control Loop: simulation(T,H, P,E, γ, δ)

1. for each agent i do
2. {Initialising}
3. Bi = random() {Random generator that uses uniform distribution}
4. Vi = random() {Random generator that uses uniform distribution}
5. for each round do
6. for each agent i do
7. {Decision making}
8. for each opportunity to defect o do
9. if Bi > So then
10. DSi = DSi + T
11. for each agent j: j �= i do
12. TSj = TSj +H
13. if see(j,i,So) then
14. if punish (j, i, Vj) then
15. DSi = DSi + P
16. PSj = PSj + E
17. else
18. for each agent k : k �= i ∧ k �= j do
19. if see(k,j,So) then
20. if punish (k, j, Vk) then
21. PSk = PSk +E
22. NPSj = NPSj + P
23. Temp = 0
24. for each agent i do
25. TSi = TSi +DSi + PSi + NPSi

26. Temp = Temp+ TSi

27. AvgS = Temp/no agents
28. for each agent i do
29. {Learning}
30. if TSi < AvgS then {AvgS is the mean score of all agents}
31. if explore(γ) then
32. Bi = random()
33. Vi = random()
34. if DSi < 0 then
35. Bi = max(Bi − δ, 0)
36. else
37. Bi = min(Bi + δ, 1)
38. if PSi < NPSi then
39. Vi = max(Vi − δ, 0)
40. else
41. Vi = min(Vi + δ, 1)
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generation with new agents following the strategy captured by the boldness and
vengefulness values of those agents that are one standard deviation or more above
the mean. Thus, poorly performing agents are replaced by those that perform
much better. In contrast, in our model, we distinguish more simply between good
and poor performance, with only agents that score below the mean reconsidering
their strategy. Thus, for each agent, we combine the various component scores
into a total, TS and, if the agent is performing poorly (in relation to the average
score, AvgS in Line 30), we reconsider its boldness and vengefulness. Note that
this average score is established through the lines in the algorithm around 27.

Now, in order to ensure we allow a degree of exploration (similar to mutation
in the original model’s evolutionary approach, to provide comparability) and to
enable an agent to step out of the learning trend, here we adopt an exploration
rate, γ, which regulates adoption of random strategies from the available strate-
gies universe (Line 31). If the agent does not explore then, if defection is the
cause of a low score (Line 34), an agent decreases its boldness, and increases it
otherwise. Similarly, agents increase their vengefulness if they find that the effect
of not punishing is worse than the effect of punishing (Line 38), and decrease
vengefulness if the situation is reversed. As both PS and NPS represent the
result of two mutually exclusive actions, their difference for a particular agent
determines the change to be applied to vengefulness. For example, if PS > NPS,
then punishment has some value, and vengefulness should be increased.

Finally, given a decision on whether to modify an agent’s strategy, the degree
of the change, or learning rate (δ), must also be considered. Since vengefulness
and boldness have eight possible values from 0

7 to 7
7 , we adopt the conservative

approach of increasing or decreasing by one level at each point, corresponding
to a learning rate of δ = 1

7 . Thus, an agent with boldness of 5
7 and vengefulness

of 3
7 that decides to defect less and punish more will decrease its boldness to 4

7
and increase its vengefulness to 4

7 .

4.3 Evaluation

The algorithm is designed to mimic the behaviour of Axelrod’s evolutionary
approach as much as possible, while relaxing Axelrod’s unrealistic assumptions.
This allows us to replicate Axelrod’s results and investigate his approach in more
realistic problem domains. The analysis of a sample run reveals that agents with
low vengefulness and agents with high boldness start changing their strategies.
Here, agents with high boldness defect frequently, and are punished as a result,
leading to a very low DS, in turn causing these agents to decrease their bold-
ness. Agents with low vengefulness do not punish and are consequently frequently
metapunished; as a result, their PS is much better (lower in magnitude) than
their NPS, causing them to increase their vengefulness. The population eventu-
ally converges to comprise only agents with high vengefulness and low boldness.
While noise is still introduced via the exploration rate causing random strategy
adoption, the learning capability enables agents with such random strategies to
adapt quickly to the trend of the population.
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Fig. 5. Strategy improvement (with γ = 0.01)

As before, we also consider the problem of ensuring that an original defection
is observed in order to provide a metapunishment. Introducing this constraint
into our new algorithm, we ran experiments over different periods, with results
indicating that norm establishment is robust in all runs. An example run for
1,000,000 timesteps is shown in Figure 6. This is because agents that use this new
learning algorithm only change their strategy incrementally without wholesale
change at any single point. The effect of a mutant with low vengefulness is not
significant since, while the mutant might survive for a short period and cause
some agents to change their vengefulness, any such change will be slight. It thus
does not prevent such agents from detecting the mutant subsequently, in turn
causing the mutant to increase its vengefulness.

5 Related Work

In multi-agent systems, research on norm propagation can be divided into two
distinct approaches: top-down and bottom-up. In the top-down approach, a norm
is introduced through a certain authority, which is then responsible for the moni-
toring and enforcement of this norm. In the bottom-up approach, agents discover
and learn about the norm as a direct result of their interactions and, in most
cases, there is no central authority that can enforce such norms. The former ap-
proach has been studied and analysed by many (for example, [22, 1, 3]), and this
is not the focus of the work in this paper. In contrast, the bottom-up approach,
also known as norm emergence, has not received the same sort of attention and
this is just what this paper addresses.

Nevertheless, the basic notions underlying norm emergence, as understood in
this paper, have themselves also been recognised and considered previously. For
example, like the work in this paper, Epstein [7] also used imitation techniques in
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Fig. 6. Strategy improvement with defection observation (with γ = 0.01)

the context of norm emergence. In his model, agents must decide which side of a
road to drive on, where the decision of each agent is determined by observation of
which side of the road already has more agents driving on it, within a particular
area. In this respect, agents imitate what the majority of their neighbours are
doing.

Similarly, Savarimuthu et al. [15] also use imitation in their work, which con-
siders the ultimatum game in the context of providing advice to agents on
whether to change their norms in order to enhance performance. In the ulti-
matum game, two agents must decide how to share a certain amount of money
between them, starting with one agent offering a certain division of the money
to the other. If the second agent agrees, then the money is divided between the
agents according to the proposal, otherwise both agents gain nothing. Here, each
agent has a personal norm that defines its proposal strategy. In addition, agents
are able to request advice regarding their proposal strategy from only one agent,
the leader, which is believed to have the best performance in the requesting
agent’s neighbourhood. Moreover, agents are capable of accepting of refusing
the advice according to their autonomy level.

In relation to the learning aspects of our work, different forms of learning
have also been used by other researchers. For example, Walker et al. [20] used
a simple strategic update function in their model, based on Conte et al.’s [5]
work. In their model, agents wander around searching for food in order to gain
energy. However, since this movement causes them to lose energy, they need to
find as much food as they can, and incurring the least movement in doing so.
For this reason, agents follow different strategies, and change from one strategy
to another according to a majority rule, which instructs an agent to switch to
another strategy if it finds that the other strategy is used by more agents that
its current strategy.
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A more complex form of learning has been used by Mukherjee et al. [11, 17],
who adopt Q-learning and some of its variants (WOLF-PHC and fictitious play)
to show the effect of learning on norm emergence. They experimented with
two different scenarios, first of homogeneous learning agents (where all agents
have the same learning algorithm), and second heterogeneous learning agents
(where agents can have different learning algorithms). Their results suggest that
norm emergence is achieved in both situations, but is slower in heterogeneous
environments.

In addition, some researchers (for example, [14, 19, 12]) have also considered
the effect of various types of interaction networks on the achievement and speed
of norm emergence, with results indicating that different types of networks give
different outcomes. Though this is an interesting and valuable area to consider,
it is outside the scope of this particular paper, so we say no more about it here.
Nevertheless, our approach, as reported in the previous sections, is consistent
with the broad approach taken by these previous effrorts in terms of analysing
the different factors that affect norm emergence. Indeed, the aim of our work is
to investigate the effects of metanorms on norm emergence, particularly when
metanorms are integrated in a model that reflects key characteristics of dis-
tributed systems.

6 Conclusion

In systems of self-interested autonomous agents we often need to establish co-
operative norms to ensure the desired functionality. Axelrod’s work on norm
emergence [2] gives valuable insight into the mechanisms and conditions in which
such norms may be established. However, there are two major limitations. First,
as Mahmoud et al. [10] have shown previously, and explained in detail, norms
collapse even in the metanorms game for extended runs. Second, the model suf-
fers from limitations relating to assumptions of omniscience. In response to this
latter point of concern, this paper has (i) investigated those aspects of Axelrod’s
investigation that are unreasonable in real-world domains, and (ii) proposed BV
learning as an alternative mechanism for norm establishment that avoids these
limitations.

More specifically, we replaced the evolutionary approach with a learning in-
terpretation in which, rather than remove and replicate agents, we allow them
to learn from others. Two techniques were considered: copying from a single
agent and copying from a group. The former suffers the same problems of long
term norm collapse associated with Axelrod’s approach [10] but, by avoiding
strategies that only perform well in restricted settings, the latter addresses the
problems and brings about norm establishment. In addition, we addressed Ax-
elrod’s assumption of omniscience, in which agents considering metapunishment
are not explicitly required to see the original defection. By doing so, however, the
metapunishment activity in the population, for stabilising an established norm,
decreases and leads to norm collapse.

Since learning strategies from others (either individuals or groups) is un-
able to establish norms for cooperation (and is, in addition, unrealistic since it



Overcoming Omniscience for Norm Emergence in Axelrod’s Model 201

assumes that agent strategies are not private), we have developed an alterna-
tive, BV learning, in which agents learn from their own experiences. Through
this approach we have shown that not only is it possible to avoid the unrealistic
assumption of knowledge of others’ strategies, but also that by enabling individ-
uals to incrementally change their strategies we can avoid norm collapse, even
with observation constraints on metapunishment.

In term of future work, our aim is to focus on applying the model to interaction
networks in order to analyse how different network structures can impact on the
achievement of norm emergence. In particular, our current model is limited in
that the algorithm relies on agents comparing their own score to the average score
of all other agents to determine if learning is warranted. This constrains our move
towards turning Axelrod’s model into something more suitable for real-world
distributed systems and, in consequence, we aim to enable agents to estimate
their learning needs based on their own, individual, experience by monitoring
their past performance. Moreover, we also plan to investigate the possibility
of integrating dynamic punishments, rather than the current static ones (that
are fixed regardless of what has happened), by which agents can modify the
punishments they impose on others according to available information about
the severity of violation, or according to whether the violating agent is a repeat
offender, and if so, how many times.
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Abstract. In order to establish a norm in a society of agents, metanorms
have previously been proposed as a means of ensuring not that norms are
complied with, but that they are enforced. Yet while experimental results
have shown that metanorms are effective in fully-connected environments
such as that used by Axelrod, there has been limited consideration of
such metanorm models with different but more realistic topological con-
figurations. In this paper, therefore, we consider the use of metanorms
in supporting norm establishment in lattices and small world networks.
Our results suggest that norm establishment is achievable in lattices and
small worlds.

1 Introduction

In peer-to-peer systems, agents share resources (hardware, software or informa-
tion) with others, but if there is no cost to access files nor any limit on the
number of files accessible, then there is no incentive to respond to requests nor,
more generally, to establish cooperation in the system. Yet cooperation is needed:
when self-interested autonomous agents must exchange information without any
central control, non-compliance (due to selfish interests) can compromise the
entire system. The use of norms to provide a means of ensuring cooperative
behaviour has been proposed by many [3, 5, 6, 10, 13–15, 17] but, as shown
by Axelrod [1], norms alone may not lead to the desired outcomes. In conse-
quence, metanorms have been proposed as a means of ensuring not that norms
are complied with, but that they are enforced. While experiments have shown
that metanorms are effective in fully-connected environments as used by Axel-
rod, there has been limited consideration of metanorms with different but more
realistic topological configurations, which fundamentally change the mechanisms
required to establish cooperation.

Some work has already been undertaken on examining the impact of different
topologies on norm establishment. For example, Savarimuthu et al. [9] consider
the ultimatum game in the context of providing advice to agents on whether
to change their norms in order to enhance performance for random and scale-
free networks. Delgado et al. [4] study norm emergence in coordination games
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in scale-free networks, and Sen et al. [11] examine rings and scale-free networks
in a related context. Additionally, Villatoro et al. [14] explore norm emergence
with memory-based agents in lattices and scale-free networks.

While these efforts provide valuable and useful results, the context of appli-
cation has been limited, with only two agents involved in each encounter, rather
than a larger population of agents. This simplifies the problem when compared
with those in which the actions of multiple interacting agents can impact on
norm establishment. In particular, Axelrod’s seminal model [1] has provided the
foundation for several investigations into norm emergence, yet offers a very gen-
eral framework, comprising the use of norms and metanorms in populations of
agents where the overall behaviour determines whether a norm is established.
In this paper we extend Axelrod’s model to address the context of different
topological configurations.

The paper begins with an outline of Axelrod’s metanorms game, adjusted
to suit the purposes of this paper, and augmented with a learning mechanism.
Section 3 then considers the problems that arise from the use of different topolo-
gies, and Sections 4 and 5 describe in detail the impact of applying the model
in lattices and small worlds.

2 The Metanorms Game

Our model aims to simulate a realistic distributed system in which a community
of self-interested agents is encouraged, without being instructed to do so by a cen-
tral authority, to adhere to a behavioural constraint, or norm, that benefits the
community but not the individual agent adhering to the norm. This simulation
provides an experimental setting that enables us to test under what conditions
a situation arises in which the norm governs the behaviour of individual agents.

2.1 Axelrod’s Model

Inspired by Axelrod’s model [1], our simulation focusses only on the essential
features of the problem. In the simulation, the agents play a game iteratively; in
each iteration, they make a number of binary decisions. First, each agent decides
whether to comply with the norm or to defect. Defection brings a reward for the
defecting agent, and a penalty to all other agents, but each defector risks being
observed by the other agents and punished as a result. These other agents thus
decide whether to punish agents that were observed defecting, with a low penalty
for the punisher and a high penalty for the punished agent. Agents that do not
punish those observed defecting risk being observed themselves, and potentially
incur metapunishment. Thus, finally, each agent decides whether to metapunish
agents observed to spare defecting agents. Again, metapunishment comes at a
high penalty for the punished agent and a low penalty for the punisher.

The behaviour of agents in each round of the game is random, but governed
by three variables: the probability of being seen S, boldness B, and vengefulness
V . Each round agents are given a fixed number of opportunities o to defect or
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Algorithm 1. The Simulation Control Loop: simulation(T,H, P,E, γ, δ)

1. for each round do
2. interact(T , H , P , E)
3. learn(γ, δ)

comply, each of which has a randomly selected probability of a defection being
seen. Boldness determines the probability that an agent defects, such that if
an agent’s boldness exceeds the probability of a defection being seen then the
agent defects. Vengefulness is the probability that an agent punishes or meta-
punishes another agent. Thus the boldness and vengefulness of an agent are said
to comprise that agent’s strategy. After several rounds of the game, each agent’s
rewards and penalties are tallied, and successful and unsuccessful strategies are
identified. By comparing themselves to other agents on this basis, the strategies
of poorly performing agents are revised such that features of successful strategies
are more likely to be retained than those of unsuccessful ones. We need not be
concerned with the details of the learning algorithm in this paper, beyond the
fact that boldness and vengefulness are simply revised upward or downward as
appropriate, in line with a specified learning rate. If most agents employ a strat-
egy of low boldness and high vengefulness, it can be argued that the norm has
become established in that community, because strategies that lead to defection
or to sparing defecting agents are unlikely and lead to high penalties.

2.2 Our Simulation Algorithm

Given Axelrod’s model as a starting point, we have previously developed re-
finements of it that are better suited to real-world distributed systems, by not
requiring agents to have information on the private strategies of others, and by
allowing agents to improve performance, via a reinforcement learning technique.
Since this is not the focus of this paper, we will not provide a full explanation;
the full details of why and how are provided in a sister paper [8]. Nevertheless,
since these refinements are the starting point for our work here, in this section
we briefly review the presentation in [8] to set up subsequent sections.

First, in order to determine the unique effect of each individual action on
agent performance, each agent keeps track of four different utility values: the
defection score (DS) incurred by an agent who defects, the punishment score
(PS) incurred by an agent who punishes or metapunishes another (as a result of
an enforcement cost, and the no punishment score (NPS) incurred by an agent
who does not punish another when it should, and is consequently metapunished.
In addition these are combined into a total score (TS).

In this context, we can consider the algorithms used in our simulation, in
two phases, as represented in Algorithms 2 and 3, called by Algorithm 1. More
precisely, in Algorithm 2, each agent has various defection opportunities (o),
and defects if its boldness is greater than the probability of its defection being
seen. if an agent defects (Line 3), its DS increases by a temptation payoff, T
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Algorithm 2. Interact(T , H , P , E)

1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. DSi = DSi + T
5. for each agent j : j �= i do
6. TSj = TSj +H
7. if see(j,i,So) then
8. if punish (j, i, Vj) then
9. DSi = DSi + P
10. PSj = PSj + E
11. else
12. for each agent k : k �= i ∧ k �= j do
13. if see(k,j,So) then
14. if punish (k, j, Vj) then
15. PSk = PSk +E
16. NPSj = NPSj + P

(Line 4), but it hurts all others in the population, whose scores decrease by
H (line 6), where H is a negative number that is thus added to the score. If
an agent cooperates, no scores change. DS thus determines whether an agent
should increase or decrease boldness in relation to its utility.

However, each hurt agent can in turn observe the defection and react to it
with punishment that is probabilistic to its vengefulness. Punishment and meta-
punishment both have two-sided consequences: if an agent j sees agent i defect
in one of its opportunities (o) to do so, with probability So (Line 7), and decides
to punish it (which it does with probability Vj ; Line 8), i incurs a punishment
cost, P , to its DS (Line 9), while the punishing agent incurs an enforcement
cost, E, to its PS (Line 10). Note that both P and E are negative values, so
they are added to the total when determining an overall value. If j does not
punish i, and another agent k sees this in the same way as previously (Line 13),
and decides to metapunish (Line 14), then k incurs an enforcement cost, E, to
its PS, and j incurs a punishment cost P to its NPS.

In the learning phase, in Algorithm 3, and as mentioned above, each agent
uses the various scores to determine how to improve its actions in the future.
At the beginning of the learning procedure, the agent calculates its total score
by combining all the other scores. In order to ensure a degree of exploration
(similar to mutation in the original model’s evolutionary approach, to provide
comparability), we adopt an exploration rate, γ, which regulates adoption of
random strategies from the available strategies universe (Line 8).

If the agent does not explore, then if defection is the cause of a low score
(Line 12), an agent decreases its boldness, and increases it otherwise. Similarly,
agents increase their vengefulness if they find that the effect of not punishing
is worse than the effect of punishing (Line 22), and decrease vengefulness if the
situation is reversed. As both PS and NPS represent the result of two mutually
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Algorithm 3. Learn(γ, δ)

1. Temp = 0
2. for each agent i do
3. TSi = TSi +DSi + PSi + NPSi

4. Temp = Temp+ TSi

5. AvgS = Temp/no agents
6. for each agent i do
7. if TSi < AvgS then
8. if explore(γ) then
9. Bi = random()
10. Vi = random()
11. else
12. if DSi < 0 then
13. if Bi − δ < 0 then
14. Bi = 0
15. else
16. Bi = Bi − δ
17. else
18. if Bi + δ > 1 then
19. Bi = 1
20. else
21. Bi = Bi + δ
22. if PSi < NPSi then
23. if Vi − δ < 0 then
24. Vi = 0
25. else
26. Vi = Vi − δ
27. else
28. if Vi + δ > 1 then
29. Vi = 1
30. else
31. Vi = Vi + δ

exclusive actions, their difference for a particular agent determines the change
to be applied to vengefulness. For example, if PS > NPS, then punishment has
some value, and vengefulness should be increased. As indicated previously, this
is covered in more detail in [8], but we will provide no further details here.

3 Imposing Topologies on Metanorms

Axelrod’s model is interesting and valuable in examining how norms can be
established in a population of agents. Using our simulation model, we are able
to match Axelrod’s results (and in fact improve on them, since Axelrod’s model
fails for extended runs of the simulation, as demonstrated by [7]). In a fully
connected network (in which each agent is connected to every other agent),



208 S. Mahmoud et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ve
ng
ef
ul
ne

ss

Boldness

Each diamond represents the final average 
vengefulness and boldness of a single run

Fig. 1. Strategy improvement

matching Axelrod’s initial configuration, we get the results shown in Figure 1,
and detailed in [8]. This provides a valuable illustration of the value of norms
and the use of metanorms to avoid norm collapse in a system in which there is
no central control, but Axelrod’s model omits consideration of some important
aspects. In particular, in real-world computational domains, such as peer-to-peer
and wireless sensor networks, the network of agents is not fully connected, with
agents tending to interact with a small subset of others on a regular basis, yet it
is only through such interactions that defection can be observed and punishment
administered. Note that we restrict ourselves here to computational abstractions
that apply to such environments rather than to physical or human networks.

Thus, while Axelrod’s model assumes a fully connected network, an unlikely
and unreasonable assumption, other network topologies must instead be consid-
ered, reflecting different potential configurations of agents, in which agents are
connected only to a subset of other agents, their neighbours. This constraint on
connectivity between agents implies some adjustments to Axelrod’s model, as
follows.

First, in Axelrod’s model it is assumed that an agent’s defection penalises all
other agents in the population. The introduction of a topology enables us to re-
strict the penalty to only those agents with which the defector interacts. Second,
in Axelrod’s model, agents are assumed to be able to observe the entire popula-
tion. By introducing a topology, we employ a more realistic model in which an
agent can only observe those agents with which it interacts. Third, punishment
requires observation of misbehaviour. In Axelrod’s model, this requirement is im-
plicit as it makes no meaningful distinction. However, by introducing constraints
on observation and rendering the model more realistic, a further refinement is
required: an agent can only punish a defector if the agent can observe the de-
fector. In addition, an agent can only metapunish an agent that fails to punish
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(a) NB Size 1

 

(b) NB Size 2

 

(c) NB Size 3

Fig. 2. Examples of lattice topologies

a defector if it can observe both the defector and the agent that fails to punish
the defector. Finally, in order to enhance an agent’s individual performance, it
compares itself to others in the population before deciding whether to modify
strategy. However, since agents can only observe their neighbours, these are the
only agents they are able to learn from.

In consequence, the algorithms presented above are no longer adequate, and
need to be changed as follows. First, in Algorithm 2, Line 5 needs to consider
only agent i’s neighbours rather than all of the agents in the population, and
Line 12 needs to consider only agent j’s neighbours. Then in Algorithm 3, the
average score in Line 3, AvgS should instead refer to the average score of the
neighbourhood (that is, those agents to which agent i is connected. In this way,
and with these simple modifications, our algorithms now address the needs of
different topological structures.

In what follows, we consider these modifications to the basic model in the
context of different kinds of topologies, in particular small world models and
scale-free networks. However, to start, we introduce lattices, since they provide
the foundation on which small-worlds are based.

4 Metanorms in Lattices

A lattice (typically a simple ring structure) is perhaps the simplest network
topology we consider, in particular, because it is also used as a base for more
interesting and valuable topologies. In a (one-dimensional) lattice with neigh-
bourhood size n, agents are situated on a ring, with each agent connected to its
neighbours n or fewer hops (lattice spacings) away, so that each agent is connect
to exactly 2n other agents. Thus, in a lattice topology with n = 1, each agent
has two neighbours and the network forms a ring as shown in Figure 2(a). In a
lattice topology with n = 3, each agent is connected to 6 neighbours, as shown
in Figure 2(c).
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4.1 Neighbourhood Size

It is clear that, depending on the neighbourhood size, lattices may be more
or less connected. Those with larger neighbourhood sizes are more similar to
Axelrod’s fully connected model; our hypothesis is that as the neighbourhood
size increases, the greater connections between agents enable punishment and
metapunishment to become more effective in reducing boldness and increasing
vengefulness. In order to investigate this hypothesis, we ran several experiments.

In our first set of experiments, we used 51 agents (so we have an even number,
plus one, to account for the 2n neighbours plus our original agent), and varied
the neighbourhood size between the least connected lattice (the ring topology)
and the most connected lattice (n = 25). Each experiment involved 10 separate
runs, with each run comprising 1,000 timesteps. for a particular neighbourhood
size.

For the least connected lattice (n of 1), no norm is established, as runs ended
in both relatively low boldness and relatively low vengefulness (see Figure 3(a)).
In this case, though agents rarely defect, they also rarely punish a defection.
This constitutes an unstable situation in which defecting could be a rewarding
behaviour for agents as it is relatively unlikely to be penalised. However, increas-
ing the neighbourhood size slightly to 3 (Figure 3(b)) has a noticeable impact
on the results, as the boldness of the population drops almost to 0, which means
that agents do not defect. While the level of vengefulness increases, it is still not
at a level that can be considered to correspond to norm emergence, since agents
might still not punish a defection without being metapunished for not doing so.

In addition, increasing the neighbourhood size to 13 has the same effect on
boldness and a stronger effect on vengefulness (see Figure 4(a)), as vengeful-
ness increases further, and almost to its maximum, of 1, when the neighbour-
hood size of 19 is used (see Figure 4(b)). These results suggest that increasing
neighbourhood size strengthens norm emergence, by virtue of agents being more
willing to punish norm violators. In seeking to provide more detail for analy-
sis, the results of all runs were averaged, and shown on the graph in Figure 5,
with neighbourhood size plotted against boldness and vengefulness. This shows
that a neighbourhood size as small as 2 is enough to maintain boldness near
0, indicating that agents do not defect except when they explore as a result of
sometimes adopting random strategies (introduced for comparability with Axel-
rod’s model). Conversely, increasing the neighbourhood size has a major impact
on vengefulness, until the neighbourhood size reaches around 15 (at which point
an agent is connected to half the population) when it brings only very minor
change. This is because, in a poorly connected environment, agents that do not
punish defection can more easily escape metapunishment than in a more con-
nected environment.

As we hypothesised, increasing neighbourhood size brings a corresponding ef-
fect on the strategy of agents (in terms of boldness and vengefulness). Only the
most poorly connected lattices have moderate levels of boldness, with vengeful-
ness increasing monotonically over a longer period before it stabilises at a level
consistent with norm establishment. The connections between agents give rise
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to this behaviour, with an increase in connections providing more opportunities
for agents to respond to defectors appropriately.

4.2 Population Size

Now, if we increase the population size while keeping the neighbourhood size
static, we decrease the relative number of connections among the overall popu-
lation. This suggests that convergence to norm establishment should decrease, in
line with the results obtained above. In the second set of experiments, therefore,
the neighbourhood size was fixed and the population size varied between 51 and
1,001 agents. However, the results obtained, shown in Figure 6 for a neighbour-
hood size of 3 (though other values gave similar results), are not as expected,
and suggest that increasing the population size has no effect on the rate of norm
emergence, as all runs for all sizes of population end almost with the same level
of boldness and vengefulness.

These results suggest that norm emergence in a community of agents that
interact in a lattice is not affected by total population size but by neighbourhood
size. By increasing the number of neighbours, norm establishment becomes more
likely, irrespective of the size of the population. In other words, the likelihood of
norm establishment is governed by the total amount of punishment that could
potentially be brought upon a defector or an agent failing to punish a defector,
which may be termed the potential peer pressure of a lattice. This is because such
lattices essentially comprise multiple overlapping localities in which agents are
highly connected: via punishments, the agents in these localities impose a strong
influence on their neighbours. Increasing the population size simply increases
the number of such overlapping regions.
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5 Metanorms in Small Worlds

While lattices are regular structures, as opposed to random structures, Watts and
Strogatz noted that many biological, technological and social networks lie some-
where between the two: neither completely regular nor completely random [16].
They instead proposed small world networks as a variation of lattices in which
agents are connected to others n or fewer hops (on the ring) away, but with some
of the connections replaced by connections to other randomly selected nodes in
the network, in line with some specific rewiring probability (RP ).

Thus, while lattices essentially create overlapping localities of well connected
agents (since agents are connected to 2n agents immediately surrounding them),
the effect of small worlds is to break these connections. Though the number of
connections does not change, the locality effect does, since there may no longer
be localities of well connected agents, but instead agents with some connections
to their local neighbours, and some connections to others elsewhere in the net-
work. As these local regions break down, the strong influence of an agent’s local
neighbours, causing compliance with norms, should also break down because of
the more sparse connections.

To verify this hypothesis, we investigated the impact of the rewiring proba-
bility by running the model with different values, in populations of 51 agents,
for different neighbourhood sizes of 3 and 5. The results of the experiment with
a neighbourhood size of 3 are shown in Figure 8, which indicates that increas-
ing the RP decreases the final average vengefulness in the population. With a
neighbourhood size of 5 the results are similar (not shown).

This is because, as a result of rewiring, agents no longer affect just their lo-
cality, but now affect agents that are much further away, consequently requiring
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n = 3)

establishment of the norm in multiple localities. For example, in the case of
neighbourhood size of 3, it is clear that not only is the norm not established,
but as the RP rises above small values, the trend moves further away from
establishment, since the connections of agents are increasingly rewired, giving
a locality effect similar to lattices with a neighbourhood size of 2 (discussed
in Section 4.1). In addition, rewiring to other agents further away brings the
need to establish the norm in all those localities to which an agent is connected,
making it much more difficult.

In term of boldness, it is clear from the results that the RP of small worlds
does not impact on the level of defection in the population since, independently,
boldness remains very low, indicating that agents are very unlikely to defect.
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5.1 Neighbourhood Size and Rewiring

As discussed in Section 4.1, increasing neighbourhood size causes an increase in
vengefulness in lattices. In seeking to understand the impact in small worlds,
we repeated the lattice experiments in this new context, for different values of
the RP. Results for a rewiring probability of 0.4 are shown in Figure 9 (with
results for other values of the RP being similar in trend), again showing that
neighbourhood size increases vengefulness. However, note that, in comparison to
lattices, vengefulness in small worlds is lower for the same neighbourhood size.
This is because the agents must now respond to defections in different regions
of the network, where there is less influence on behaviour, and thus potentially
incurring greater enforcement costs.
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5.2 Population Size and Rewiring Probabilities

Population has been shown to have no effect on norm establishment in lattices
due to the potential peer pressure arising from the multiple overlapping localities.
However, since these concentrated local regions of connected agents are weakened
in small worlds, we repeated the previous experiments to determine the effect
with RPs of 0.2, 0.4, 0.6, 0.8 and 1.0, and n of 5. The results indicate that
boldness is not affected by the changes of the population size as it is always
close to zero (not shown), but vengefulness decreases as the RP increases. More
specifically, when the RP is 0.2, increasing the population size has little effect, as
shown in Figure 10. However, for the other RP values, increasing the population
size decreases vengefulness. Again, this is due to rewiring breaking down the
strong locality effect, and this is magnified with increasing population sizes,
since there is a greater opportunity for connections to other localities, causing
a greater cost for agents seeking to bring about norm establishment in all these
localities at once.
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6 Related Work

There has been much work that focusses on the issue of norm emergence in
societies of interacting agents. However, most of this concentrates on analysing
norm emergence over fully-connected networks [2, 12, 13, 15], and it was only
relatively recently that attention shifted towards the effect of the structure of
these societies. In this section, we review that part of the literature that does
address these concerns.

In a particular effort, Delgado et al. [4] study the emergence of coordination in
scale-free networks. Their study involves an interaction model of a multi-agent
system, by which they try to analyse how fast coordination can spread among
agents. Coordination here is represented through agents being in the same state,
which is achieved when 90% of the agents do so. The framework they use is rather
simple, however: an agent makes a choice between two different actions and they
receive a positive payoff if they both choose the same action, or a negative payoff
if their actions are different. Agents record the outcome of taking each of the
two actions and pick the action with the better outcome for next interaction.
The results of the work demonstrate that coordination can indeed be achieved
over scale-free networks, but in a rather restricted setting.

Similarly, Sen et al. [11] use a game to investigate norm emergence over lattices
and scale-free networks. In particular, they analyse the effect of increasing the
number of actions available to agents, as well as the effect, on the speed of norm
emergence, of increasing the number of agents in both scale-free networks and
lattices. Their results suggest that both increasing the number of actions and
increasing the number of agents causes a delay to the norm emergence in the
population over a scale-free network. Similarly, norm emergence in lattices is



218 S. Mahmoud et al.

much slower when agents have a larger set of actions to choose from, or when
the number of agents in the population is increased. Overall, their analysis shows
that, for a small set of actions, it is faster for a norm to spread in a ring than
in other topologies, followed by fully connected structures, and then scale-free
networks. In contrast, for a large set of actions, it turns out that this is much
faster in scale-free networks than in rings and fully connected structures.

As we have suggested, the models used in these previous pieces of work are
relatively unsophisticated, with only two agents involved in an interaction, and
reward values remaining fixed and not changing during the game. In response,
Villatoro et al. [14] adopted the same concept of two-agent interactions, but
introduced the notion of the reward of an action being determined through the
use of the memory of agents, thus adding some dynamism to the model. Here,
the reward of a certain action is determined by whether the action represents the
majority action in both agents’ memories, and the reward is proportional to the
number of occurrences of this majority action in the their memories. However, it
is not clear from where these rewards derive nor who applies them, as agents only
have access to their memory. With regard to interaction networks, their work
illustrates that increasing the neighbourhood size of a lattice accelerates norm
emergence.In contrast, in the case of scale-free networks, norms do not emerge
using the basic model. This is because of the development of sub-conventions
that are persistent and hard to break, and which prevent the whole population
from converging towards a single convention. A solution to this problem was
found by giving hub agents (those with the majority of connections to others)
more influence on the reward function.

Savarimuthu et al. [9] analyse the effect of advice on norm emergence over
random and scale-free networks. For this reason, they use the ultimatum game
in which two agents must decide how to share a certain amount of money. One
agent offers a particular division of the money to the other and, if the second
agent agrees, then the money is divided between the two agents according to
this proposal. If the second agent does not agree, both agents gain nothing.
Here, each agent has a personal norm that defines its proposal strategy and, in
addition, agents are able to request advice about their proposal strategy from a
leader agent that is believed to have the best performance in the neighbourhood.
However, agents are capable of accepting or refusing the advice according to their
autonomy level. The results obtained in this work show that norm emergence
increases in speed over both random and scale-free networks with an increase in
the average degree of connectivity.

Our work is rather different to these previous efforts in that we have investi-
gated a more sophisticated model. In addition, we are not restricted to only two
agents, and consider arbitrary numbers of them, since any agent’s actions can be
observed by all of its neighbours. These neighbours can in turn react by choosing
to punish or to avoid doing so, potentially generating further metapunishments
by other observing agents. Finally, sanctions applied in our case are dependent
on the decisions of all agents that observe a violation, thus making them change
with the number of agents involved.
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7 Conclusions

In this paper, we have investigated mechanisms that encourage norms to emerge
in communities of self-interested agents, without interference of a central or out-
side authority, under the realistic constraint that agents can only influence one
another if they regularly interact. Based on Axelrod’s seminal work, our model’s
substantial novel extension examines the impact of different types of topologies
of interaction on norm emergence. Our results show that in circumstances in
which each agent regularly interacts with a small number of other agents, as in
lattices and small worlds, Axelrod’s mechanisms to encourage norm emergence
remain largely effective. More precisely, it is very effective for lattices, but its
effectiveness varies with the rewiring probability in small worlds. Moreover, we
have demonstrated that, given fixed penalties, for lattices, the effectiveness of
Axelrod’s approach only depends on the number of neighbours of each agent,
not on the total population size. For small worlds, increasing the population size
with a high rewiring probability decreases vengefulness, constraining norm emer-
gence significantly. Thus, topology must be considered: in the case of a lattice
or a small world, Axelrod’s proposed approach will be effective for sufficiently
large neighbourhood sizes.

References

1. Axelrod, R.: An evolutionary approach to norms. American Political Science Re-
view 80(4), 1095–1111 (1986)

2. Boman, M.: Norms in artificial decision making. Artificial Intelligence and
Law 7(1), 17–35 (1999)

3. de Pinninck, A.P., Sierra, C., Schorlemmer, W.M.: Friends no more: norm en-
forcement in multiagent systems. In: Proceedings of the Sixth International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pp. 640–642 (2007)
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