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Abstract. The normalized edit distance is one of the distances derived from the 
edit distance. It is useful in some applications because it takes into account the 
lengths of the two strings compared. The normalized edit distance is not defined 
in terms of edit operations but rather in terms of the edit path. In this paper we 
propose a new derivative of the edit distance that also takes into consideration 
the lengths of the two strings, but the new distance is related directly to the edit 
distance. The particularity of the new distance is that it uses the genetic 
algorithms to set the values of the parameters it uses. We conduct experiments 
to test the new distance and we obtain promising results.  
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1 Introduction 

Similarity search is an important problem in computer science. This problem has 
many applications in data mining, computational biology, pattern recognition, and 
others. In this problem a pattern or a query is given and the task is to retrieve the data 
objects in the database that are “close” to that query according to some semantics that 
quantify that closeness. This closeness or similarity is depicted using a principal 
concept which is the similarity measure or its more powerful form; the distance 
metric.  

Because of its topological properties, the metric model (reflexivity, non-negativity, 
symmetry, triangle inequality) has been widely used to process similarity queries, but 
later other models were proposed.   

The edit distance is the main distance used to measure the similarity between two 
strings. It is defined as the minimum number of delete, insert, and change operations 
needed to transform string S into string T.  
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But the edit distance has its limitations because it considers local similarity only 
and does not imply any global level of similarity. 

In [10], [11], and [12] we presented two new extensions of the edit distance. These 
new extensions consider a global level of similarity which the edit distance didn’t 
consider. But the parameters used with these two distances were defined using basic 
heuristics, which substantially limited the search space.  

 In this paper we propose a new extension of the edit distance. This extension aims 
to normalize the edit distance using an approach that relates it directly to the edit 
distance. The new distance uses the genetic algorithms as an optimization method to 
set the parameters it uses.  

Section 2 of this paper presents the related work. Section 3 introduces the new 
distance. Section 4 validates it through different experiments and Section 5 concludes 
the paper. 

2 Related Work   

Strings, also called sequences or words, are a way of representing data. This data type 
exists in many fields of computer science such as molecular biology where DNA 
sequences are represented using four nucleotides which correspond to the four bases:  
adenine (A), cytosine (C), guanine (G) and thymine (T). This can be expressed as a 4-
symbol alphabet. Protein sequences can also be represented using a 20-symbol 
alphabet which corresponds to the 20 amino acids.  

Written languages are also expressed in terms of alphabets with letters (26 in 
English). Spoken languages are represented using phonemes (40 in English). Texts 
use alphabets with a very large size (the vocabulary items of a language). These 
examples show that strings are ubiquitous.  

One of the main distances used to handle sequential data is the edit distance (ED) 
[13], also called the Levenshtein distance, which is defined as the minimum number 
of delete, insert, and substitute operations needed to transform string S  into string R .     

Formally, ED is defined as follows: Let Σ be a finite alphabet, and let 
*Σ be the 

set of strings on Σ . Given two strings ns....ssS 21=  and mr....rrR 21= defined on
*Σ . 

An elementary edit operation is defined as a pair: ( ) ( )λλ ,b,a ≠ , where a and b  are 

strings of lengths 0 and 1, respectively. The elementary edit operation is usually 
denoted ba →  and the three elementary edit operations are λ→a (deletion)  

b→λ (insertion) and ba → (substitution) . Those three operations can be weighted 
by a weighting function γ which assigns a nonnegative value to each of these 
operations. This function can be extended to edit transformations mT...TTT 21= .  

The edit distance between S  and R can then be defined as:  
 

ED (S, R) = {γ (T)| T is an edit transformation of S into R }                  (1) 
 



 Towards Normalizing the Edit Distance Using a Genetic Algorithms-Based Scheme 479 

ED is the main distance measure used to compare two strings and it is widely used in 
many applications. Fig. 1 shows the edit distance between the two strings 

{ }N,A,W,R,A,MS =1 and { }D,A,U,FS =2 . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. The edit distance between two strings 

ED has a few drawbacks; the first is that it is a measure of local similarities in 
which matches between substrings are highly dependent on their positions in the 
strings [5]. In fact, the edit distance is based on local procedures both in the way it is 
defined and also in the algorithms used to compute it. Another drawback is that ED 
does not consider the length of the two strings.  

Several modifications have been proposed to improve ED. In [10], [11], and [12] 
two new extensions of ED; the extended edit distance (EED) and the  multi-resolution   
extended edit distance (MREED) were proposed. These two distances add a global 
level of similarity to that of ED by including the frequency of characters or bi-grams 
when computing the distance. The problem with these two distances is that they use 
parameters which are set using basic heuristics which makes the search process 
ineffective.  

It is worth mentioning that the two distances EED and MREED, as well as ED, are 
all metric distances.  

Another important modification is the normalized edit distance (NED) [8]. The 
rationale behind this distance is that the length of the two strings should be taken into 
account when computing the distance between them. An editing path P between two 
strings S  and R , of lengths n and m, respectively ( mn ≤ ), is a sequence of ordered 
pairs of integers ( )kk j,i  , where mk ≤≤0 , that satisfies the following : 

i-     Sik ≤≤0  , ;Rjk ≤≤0  

       ( ) ( ) ( ) ( )R,Sj,i,,j,i mm == 0000  

ii-    ,ii kk 10 1 ≤−≤ − 10 1 ≤−≤ −kk jj  , 1≥∀k  

iii-   111 ≥−+− −− kkkk jjii  

 2  3  4 3  3  A   5  4

 2  2  4 3  2  U   6  5

 2  1  4 3  1  F   6  5

 2  1  4 3  0     6  5

 3  4  4 3  4  D   5  5

A M WR   N A
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The weights can be associated to paths as follows: 

( ) ( )
=

+→+=
−−

m

k
kjkiR,S j...Ri...SP

kk

1

11
11

γω  

It follows that: 

ED (S, R) =min {ω (P)| P is an edit transformation of S into R } 

Let ( ) ( ) ( )PL/PPˆ ωω = , where L is the length of P , the normalized edit distance 

NDE is defined as:  

( ) ( ){ }PˆminR,SNDE ω=                                          (2) 

An important notice about this definition is that it is expressed in terms of paths and 
not in terms of the edit operations. 

It has been shown in [8] that NDE is not a distance metric.  

3 Genetic Algorithms-Based Normalization of the Edit Distance 
(GANED)   

ED we presented in Section 2 was mainly introduced to apply to spelling errors. This 
makes the edit operations a main component of ED. NDE, although takes into 
consideration the lengths of the two strings, which is an important modification in our 
opinion, is based on a different principle than that of ED, which, we think, causes it to 
lose some of the principal characteristics of ED.  

In this work we present a new modification of the edit distance that also takes the 
lengths of the strings into account. However, our proposed distance uses a completely 
different approach than that of NDE. Our new distance is directly related to the edit 
distance. In fact, the new distance is a lower bound of the edit distance.    

3.1 GANED 

Let Σ be a finite alphabet, and let 
*Σ be the set of strings on Σ . Let n be an integer, 

and let )S(
an

f be the frequency of the n-gram na in S , and )T(
an

f be the frequency of the 

n-gram na in T , where S ,T  are two strings in  
*Σ .    

The GANED distance between S and T is defined as: 

( ) ( )

( ) ( )( ) ( )
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where S , T are the lengths of the two strings S ,T  respectively, and where 

[ ]10,n ∈λ . nλ are called the frequency factors.  

Notice that  

( ) ( )( ) ( ) ( )
( )
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So ED is multiplied by a factor whose value varies between 0 and 1, so GANED as 
presented in (3) includes a form of normalization. In fact:  

( ) ( )R,SEDR,SGANED ≤≤0  can be written as 
( )

( ) 10 ≤≤
R,SED

R,SGANED
which is the 

common form of normalization, and we could have expressed our new distance in the 
latter form. However, instead of imposing a condition that the two strings be different 
(thus ED=0), we preferred to introduce the new distance in the form shown in (3).  

Notice also that GANED is a lower bound of ED, so the relation between the two 
distances is direct. 

As mentioned in Section 1, the idea of considering the frequency of characters or 
bi-grams in computing the distance has previously been proposed in [10], [11], and 
[12]. However, the definition of the frequency factors remains problematic in these 
three works. On the one hand, the search space they use is very limited, and on the 
other hand, generalizing the distances proposed in [10], [11], and [12] using the same 
basic heuristics to define the frequency factors makes this process inefficient yet 
limited to very small regions in the search space.  

GANED uses one very powerful optimization method; the genetic algorithms, to 
define the frequency factors nλ . The use of the genetic algorithms makes the search 

more effective.  

3.2 The Genetic Algorithms   

The Genetic Algorithms are a member of a large family of stochastic algorithms 
called Evolutionary Algorithms (EAs) which are population-based optimization 
algorithms inspired by nature, particularly the theory of evolution. In Fig. 2 we show 
the members of the EAs. These members differ in implementation but they use the 
same principle.  

Of the EAs family, GAs are the most widely known. GAs have the following 
elements: a population of individuals (also called chromosomes), selection according 
to fitness, crossover to produce new offspring, and random mutation of new offspring 
[9]. GAs create an environment in which a population of individuals, representing 
solutions to a particular problem, is allowed to evolve under certain rules towards a 
state that minimizes, in terms of optimization, the value of a function which is usually 
called the fitness function or the objective function.  

There are a large number of variations of GAs. In the following we present a 
description of the simple, classical GAs. GAs start by defining the problem variables  
 



482 M.M. Muhammad Fuad 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The family of evolutionary algorithms  

(genes) and the fitness function. These variables can be bounded or unbounded. A 
particular combination of variables produces a certain value of the fitness function 
and the objective of GAs is to find the combination that gives the best value of the 
fitness function. The terminology “best” implies that there is more than one solution 
and the solutions are not of equal value [2].  

After defining the variables and the fitness function GAs start by randomly 
generating a number pSize of individuals, or chromosomes. This step is called 
initialization. 

GAs were originally proposed to be binary coded to imitate the genetic encoding of 
natural organisms [15]. But later other encoding schemes were presented. The most 
widely used scheme is real-valued encoding. In this scheme a candidate solution is 
represented as a real-valued vector in which the dimension of the chromosomes is 
constant and equal to the dimension of the solution vectors [1]. This dimension  
is denoted by nPar. The fitness function of each chromosome is evaluated. The next 
step is selection. The purpose of this procedure is to determine which chromosomes 
are fit enough to survive and possibly produce offspring. This is decided according to 
the fitness function of the chromosome in that the higher the fitness function is the 
more chance it has to be selected for mating. There are several selection methods such 
as the roulette wheel selection, random selection, rank selection, tournament 
selection, and others [9]. The percentage of chromosomes selected for mating is 
denoted by sRate. Crossover is the next step in which offspring of two parents are 
produced to enrich the population with fitter chromosomes. There are several 
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approaches to perform this process, the most common of which is single-point 
crossover and multi-point crossover.   

While crossover is the mechanism that enables the GA to communicate and share 
information about fitter chromosomes, it is not sufficient to efficiently explore the 
search space. Mutation, which is a random alteration of a certain percentage mRate  of 
chromosomes, is the other mechanism which enables the GA to examine unexplored 
regions in the search space. It is important to keep a balance between crossover and 
mutation. High crossover rate can cause converging to local minima and high 
mutation rate can cause very slow convergence.   

Now that a new generation is formed, the fitting function of the offspring is 
calculated and the above procedures repeat for a number of generations nGen or until 
a stopping criterion terminates the algorithm.   

4 Empirical Evaluation 

We tested the new distance GANED on time series because this is our field of 
expertise, but we believe GANED is highly applicable in bioinformatics and text 
mining. 

Time series data are normally numeric, but there are different methods to transform 
them to symbolic data. The most important symbolic representation method of time 
series is the Symbolic Aggregate approXimation (SAX) [7]. The first step of SAX is 
to normalize the time series because SAX is based on the assumption that normalized 
time series have a Guassian distribution, so SAX can only be applied to normalized 
time series. The second step is to reduce the dimensionality of the time series by using 
a time series representation method called Piecewise Aggregate Approximation 
(PAA) [3], [14]. This PAA representation of the time series is then discretized. This is 
achieved by determining the breakpoints. The number of the breakpoints is related to 
the desired alphabet size and their locations are obtained using statistical lookup 
tables.  

The distance between the resulting time series after applying the above steps is 
computed using the following relation:  

 

( ) ( )( )
=

≡
N

i
ii r̂,ŝdist

N

n
R̂,ŜMINDIST

1

2
                         (4) 

 
Where n is the length of the original time series, N is the number of segments, 

Ŝ and R̂ are the symbolic representations of the two time series S and R , 
respectively, and where the function )(dist  is implemented by using the appropriate 

lookup table.  
We tested our new distance GANED on time series classification task based on the 

first nearest-neighbor (1-NN) rule using leaving-one-out cross validation. This means 
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that every time series is compared to the other time series in the dataset. If the 1-NN 
does not belong to the same class, the error counter is incremented by 1.  

We conducted experiments using datasets of different sizes and dimensions 
available at UCR [4].  

As indicated earlier, we tested GANED on symbolically represented time series 
This means that the time series were transformed to symbolic sequences using the 
first three step of SAX presented earlier in this section, but instead of using MINDIST 
given in relation (4), we use our distance GANED. The parameters nλ  in the 

definition of GANED (relation (3)) are defined using GAs. This means that for each 
value of the alphabet size we formulate a GAs optimization problem where the fitness 
function is the classification error, and the parameters of the optimization problem 
are nλ . Practically n can take any value that does not exceed that of the shortest string 

of the two strings S ,T . However, in the experiments we conducted { }321 ,,n ∈  

because these are the values of interest for time series. The values of nλ  varied in the 

interval [ ]10, . 
Notice that GANED can be applied to strings of different lengths, which is one of 

its advantages since most similarity measures in time series mining are applied only to 
time series of the same length.  

For the GAs we used, the population size pSize was 12, the number of generations 
nGen was set to 20. The mutation rate mRate was 0.2 and the selection rate sRate was 
0.5.  The dimension of the problem nPar depends on the number of parameters used 
in GANED (as mentioned earlier, they were tested for { }321 ,,n ∈ ). Table 1 

summarizes the symbols used in the experiments together with their corresponding 
values.  

For each dataset we use GAs on the training datasets to get the vector nλ that 

minimizes the classification error on these training datasets, and then we utilize this 
optimal nλ vector on the corresponding testing datasets to get the final classification 

error for each dataset. 
We compared GANED with MINDIST. This means after we represent the time 

series symbolically as indicated at the beginning of this section we classify them 
using GANED first then using MINDIST. We chose to compare GANED with 
MINDIST because we used the same symbolic representation that MINDIST uses. 
However, GANED can be used 
with any sequential data.  

 It is important to mention 

however that MINDIST has a 
lower complexity than that of 
GANED.    

In Table 2 we present some of 
the results we obtained for 
alphabet size equal to 3, 10, and 
20, respectively. 

 

  pSize   Population size   12 

  nGen   Number of generations   20 

  mRate   Mutation rate   0.2 

  sRate   Selection rate   0.5 

  nPar   Number of parameters   varies 

Table 1. The symbol table together with the 
corresponding values used in the experiments 
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Table 2. Comparison between the classification error of GANED and MINDIST 

CBF 
α* 

n-
gr

am
 GANED MINDIST 

nλ  Classification  
Error

Classification  

E

3 

1 [0.77491] 0.026 
 

0.382 
2 [0.81776     0.87965] 0.026 

3 [0.93285     0.97274     0.75836] 0.023 

10
 

1 [0.43021] 0.031  

0.104 
2 [0.34446     0.32247] 0.031 

3 [0.13412     0.45606    0.080862] 0.039 

20
 

1 [0.37819] 0.053  

0.088 
  2 [0.8962     0.72086] 0.079 

  3 [0.96216    0.091513     0.83706] 0.062 

α*:alphabet size  

 
Coffee 

Α
 

n-
gr

am
 GANED MINDIST 

nλ  Classification  

E

Classification  

E

3 

1 [0.81472] 0.179 
 

0.464 
2 [0.43021     0.22175] 0.214 

3 [0.21868     0.19203     0.34771] 0.214 

10
 

1 [0.89292] 0.179  

0.464 
2 [0.97059     0.93399] 0.214 

3 [0.4899     0.81815     0.08347] 0.143 

20
 

1 [0.12393] 0.107  

0.143 
  2 [0.16825      0.9138] 0.107 

  3 [0.81472     0.95717     0.67874] 0.107 

 
Face Four 

 

α 

n-
gr

am
 GANED MINDIST 

nλ  Classification  

E

Classification  

E

3 

1 [0.022414] 0.057 
 

0.239 
2 [0.57462     0.57425] 0.057 

3 [0.2038     0.60654     0.38334] 0.057 

10
 

1 [0.015908] 0.045  

         0.182 2 [0.16625     0.34168] 0.057 

3 [0.57997      0.3957     0.21003] 0.057 

20
 

1 [0.54483] 0.114  

0.193 
  2 [0.92995     0.18334] 0.102 

  3 [0.57758     0.28758     0.15406] 0.090 



486 M.M. Muhammad Fuad 

Table 2. (continued) 

Gun_Point 

Α
 

n-
gr

am
 GANED MINDIST 

nλ  Classification  

E

Classification  

E

3 

1 [0.19728] 0.193 
 

0.307 
2 [0.95798     0.58518] 0.193 

3 [0.40628     0.95213     0.68035] 0.2 

10
 

1 [0.98445] 0.147 
 

0.233 
2 [0.93927     0.99038] 0.127 

3 [0.15187     0.40029     0.24364] 0.12 

20
 

1 [0.16625] 0.06 
 

0.12 
  2 [0.5852   0.0038735] 0.06 

  3 [0.32809     0.42736     0.12747]] 0.06 

 
Olive Oil 

Α
 

n-
gr

am
 GANED MINDIST 

nλ  Classification  

E

Classification  

E

3 

1 [0.70608] 0.4 
 

0.833 
2 [0.53732     0.14595] 0.4 

3 [0.96676     0.15111   0.0015139] 0.4 

10
 

1 [0.76393] 0.667 
 

0.833 
2 [0.2953     0.41039] 0.667 

3 [0.97014     0.29259    0.080068] 0.667 

20
 

1 [0.028529] 0.267 
 

0.833 
  2 [0.93581     0.20714] 0.233 

  3 [0.18231     0.09461     0.68031] 0.233 

 
Trace 

 

α 

n-
gr

am
 GANED MINDIST 

nλ  Classification  

E

Classification  

E

3 

1 [0.96149] 0.27 
 

0.54 
2 [0.80699     0.14789] 0.26 

3 [0.89336     0.01668      0.3959] 0.26 

10
 

1 [0.76432] 0.08  

0.42 
2 [0.42505     0.64252] 0.09 

3 [0.95513     0.93675     0.99434] 0.04 

20
 

1 [0.92115] 0.1  

0.36 
  2 [0.89948      0.8597] 0.12 

  3 [0.69135     0.21079      0.9382] 0.12 
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As we can see from the results, the classification errors of GANED are smaller 
than those of MINDIST for all the datasets and for all values of the alphabet size. The 
results of other datasets in the archive were similar.  

5 Conclusion and Perspectives 

In this paper we presented a new normalized edit distance. This new distance, 
GANED, is related directly to the edit distance and it takes into account the length of 
the two strings. The particularity of our new distance is that it uses an optimization 
algorithm; the genetic algorithms, to set the values of its parameters. We tested the 
new distance by comparing it to another distance applied to strings and we showed 
how our new distance GANED has a better performance. 

The new distance was applied in this work to symbolically represented time series. 
However, we believe other applications might be more appropriate for our new distance.  
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