
Using Partially-Ordered Sequential Rules

to Generate More Accurate Sequence Prediction

Philippe Fournier-Viger1, Ted Gueniche1, and Vincent S. Tseng2

1 Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Computer Science and Inf. Eng., National Cheng Kung University, Taiwan

philippe.fournier-viger@umoncton.ca, ted.gueniche@gmail.com,

tsengsm@mail.ncku.edu.tw

Abstract. Predicting the next element(s) of a sequence is a research
problem with wide applications such as stock market prediction, con-
sumer product recommendation, and web link recommendation. To ad-
dress this problem, an effective approach is to mine sequential rules from
a set of training sequences to then use these rules to make predictions for
new sequences. In this paper, we improve on this approach by proposing
to use a new kind of sequential rules named partially-ordered sequential
rules instead of standard sequential rules. Experiments on large click-
stream datasets for webpage recommendation show that using this new
type of sequential rules can greatly increase prediction accuracy, while
requiring a smaller training set.

Keywords: symbolic sequence prediction, sequential rules, partial order.

1 Introduction

Predicting the next element(s) of a sequence is an important research problem
with wide applications such as stock market analysis, consumer product recom-
mendation, weather forecasting, text generation and web link recommendation.
Techniques for sequence prediction can be categorized according to the types of
sequences on which they are applied. There are two main types. On one hand,
time series are sequences of numeric data typically recorded at an equal time
interval (e.g. sale data and temperature data). On the other hand, symbolic se-
quences are sequences of events or nominal data generally recorded at unequal
time intervals (e.g. customer shopping sequences, program execution sequences
and web click streams). Previous research on sequence prediction has mainly
focused on predicting time-series. This is usually done by applying statistical
methods to find mathematical functions that fit the data. These functions are
then used to make predictions [3]. In this paper, we are interested by the case
of symbolic sequences, which has many applications [13]. Because the data in
symbolic sequences is not numeric, techniques for time-series forecasting cannot
be applied to this problem.

To predict symbolic sequences, researchers have used techniques such as re-
current neural networks [11] and Markov models [2] (see [13] for a comprehensive

S. Zhou, S. Zhang, and G. Karypis (Eds.): ADMA 2012, LNAI 7713, pp. 431–442, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



432 P. Fournier-Viger, T. Gueniche, and V.S. Tseng

survey). Limitations of those techniques are that they (1) require labeled train-
ing data, (2) require defining a reward function and/or (3) assume that the
next element of a sequence only depends on the previous element or requires
building a model that is exponentially large if more than one element has to be
considered [13], [2]. These assumptions are unrealistic or unpractical for many
real applications [13]. To perform symbolic sequence prediction without making
these assumptions, an effective solution is to use algorithms to discover sequen-
tial rules occurring in a set of training sequences. These rules are then used to
make predictions [14], [8], [9], [12]. This approach has the advantage of being
unsupervised, scalable, and to generate accurate predictions [10], [9], [12]. In this
paper, we improve on this approach by proposing to use a new type of sequential
rules named partially-ordered sequential rules [5], [6], [7] that we have proposed
in previous works. We compare the prediction accuracy of these rules with stan-
dard sequential rules [14], [10], [9], [12]. for the task of webpage recommendation
for large clickstream datasets. Experimental results show that using the new
type of sequential rules can greatly improve prediction accuracy, while requiring
a smaller training set.

The rest of this paper is organized as follows. Section 2 defines the problem of
sequence prediction. Section 3 defines the two types of sequential rules that are
compared. Section 4 presents our comparison framework that we have named
the Predictor. Section 5 reports experimental results. Finally, section 6 draws a
conclusion and discusses future works.

2 The Problem of Sequence Prediction

To define the problem of sequence prediction, we first need to define what are a
sequence and a sequence database.

An itemset I = {i1, i2, ..., im} is an unordered set of items, where an item is
a symbolic value. For example, {a, b, c} represents the sets of items a, b and c.

A sequence database SDB is a set of sequences S = {s1, s2...ss}and a set of
items I = {i1, i2, ..., im} occurring in these sequences [3], [4], [14].

A sequence is an ordered list of itemsets s = 〈I1, I2, ...In〉 such that Ik ⊆ I
for all 1 ≤ k ≤ n. For instance, the sequence s1 = 〈{a, b}, {c}, {f}, {g}, {e}〉
represents that items a and b occurred at the same time, and were followed suc-
cessively by c, f , g and lastly e. For example, consider the sequence database
SDB depicted in Figure 1. It contains four sequences named s1, s2, s3 and s4. In
this example, each single letter represents an item. Items between curly brack-
ets represent an itemset. The sequence of SDB could encode, for example, the
sequence of webpages visited by four users or transactions of four customers in
a store.

The problem of sequence prediction is defined as follows (adapted from [6],
[7] [9]). Let s = 〈I1, I2..., Iv−1, Iv, Iv+1, Iw−1, Iw〉 be a sequence such that
〈I1, I2, Iv−1〉 has been observed and that 〈Iv , ...Iw−1, Iw〉 has not yet been ob-
served. Lets prefix size and suffix size be positive integers. The problem of
sequence prediction is to predict an item from the subsequence < Iv, Iv+1, ...
I(v+suffix size−1) > based on the subsequence 〈I(v−prefix size), ...Iv−2, Iv−1〉.



Using Partially-Ordered Sequential Rules for Sequence Prediction 433

Fig. 1. A sequence database SDB

Consider a sequence of webpages s = 〈{c}, {a}, {b}, {e}, {g}, {c}〉 that a new
user visits. Let prefix size = 2, suffix size = 2 and v = 3. This represents
the problem of predicting an item from 〈{e}, {g}〉 based on 〈{a}, {b}〉. For this
problem a good prediction is e or g. Any other prediction is considered wrong.

3 Two Types of Sequential Rules

To perform prediction with sequential rules, two steps needs to be performed
[9], [12]. First, sequential rules are extracted from a training set of sequences (a
sequence database). Second, these rules are used to make predictions for new
sequences. For example, consider the problem of predicting the next webpages
that a user will visit. The approach consists of first extracting sequential rules
from logged sequences of webpages visited by previous users. Then, these rules
are used to predict the webpages that news users will visit. In this paper, our
contribution is to propose to use a new type of sequential rules for improving
the quality of predictions. We thereafter define the two types of sequential rules
that are compared in this paper.

3.1 Standard Sequential Rules

The first type is standard sequential rules [14], [8], [9], [12]. It is the most common
type of sequential rules used in the literature. It is defined as follows.

A sequential pattern [4], [14] is a sequence that is a subsequence of one or more
sequences of a sequence database SDB. Formally, a sequence sa = 〈A1, A2, ...Ae〉
is said to be a subsequence of a sequence sb = 〈B1, B2, ...Bf 〉 if and only if there
exists integers 1 ≤ x1 < x2 ... < xe ≤ f such that A1 ⊆ Bx1, A2 ⊆ Bx2,
...Ae ⊆ Bf . For instance, consider the sequence database of Figure 1 as SDB.
The sequence 〈{b}, {f}〉 is a sequential pattern occurring in sequences s1, s2, s3
and s4. Another example is 〈{b}, {f}, {e}〉. It is a sequential pattern occurring
in sequences s1 and s3.

A standard sequential rule sa ⇒ sb is a sequential relationship between two
sequential patterns sa and sb. The interpretation of a rule sa ⇒ sb is that if
sa occurs in a sequence, it is likely to be followed by sb in the same sequence.
Formally, a standard sequential rule 〈A1, A2, ... Ae〉 ⇒ 〈B1, B2, ...Bf 〉 occurs in
a sequence 〈C1, C2, ...Cg〉 if and only if there exists integers 1 ≤ x1 < x2 < xe

< y1 < y2 < ye ≤ f such that A1 ⊆ Cx1, A2 ⊆ Cx2, ...Ae ⊆ Cxe and B1 ⊆ Cy1,
B2 ⊆ Cy2, ...Bf ⊆ Cye. For example, the rule 〈{b}, {f}〉 ⇒ 〈{e}〉 is a sequential



434 P. Fournier-Viger, T. Gueniche, and V.S. Tseng

rule occurring in sequences s1 and s3 of the database depicted in Figure 1. This
rule is interpreted as if b is followed by f , it will be followed by e.

Standard sequential rules can be discovered by algorithms such as RuleGen
[14]. These algorithms take two thresholds named minsup and minconf as pa-
rameters, which are set by the user. The algorithms return all sequential rules
such that their support and confidence are respectively higher than these thresh-
olds. The support and confidence of standard sequential rules are defined as
follows.

The support of a standard sequential rule sa ⇒ sb for a database SDB is
denoted as sup(sa ⇒ sb). It is defined as the number of sequences from SDB
where the rule occurs divided by the number of sequences in SDB. For instance,
consider the sequence database of Figure 1 as SDB. The rule 〈{b}, {f}〉 ⇒ 〈{e}〉
has a support of 0.50 because it appears in sequences s1 and s3 and there are
four sequences in SDB.

The confidence of a standard sequential rule sa ⇒ sb for a database SDB is
denoted as conf(sa ⇒ sb). It is defined as the number of sequences from SDB,
where sa is followed by sb, divided by the number of sequence where sa occurs
in SDB. For instance, consider the sequence database of Figure 1 as SDB.
The rule 〈{b}, {f}〉 ⇒ 〈{e}〉 appears in sequences s1 and s3 and its antecedent
〈{b}, {f}〉 occurs in s1, s2, s3 and s4. The rule 〈{b}, {f}〉 ⇒ 〈{e}〉 has therefore
a confidence of 2 / 4 = 0.5.

3.2 Partially-Ordered Sequential Rules

The second type of sequential rules that we consider is partially-ordered sequen-
tial rules, a new type of sequential rules that we have proposed recently [5], [6],
[7]. We call these rules partially-ordered because the requirements of a sequential
ordering inside the antecedent and inside the consequent of rules are eliminated.
But the requirement of a sequential relationship between the antecedent and
consequent of a rule is preserved.

A partially-ordered sequential rule is a sequential relationship between two
unordered itemsets Ia ⇒ Ib such that Ia ∩ Ib = ∅ and Ia, Ib 	= ∅. The interpre-
tation of a partially-ordered sequential rule Ia ⇒ Ib is that if the items of Ia
occur in a sequence (in any order), the items in Ib will occur afterward in the
same sequence (in any order). Formally, we say that a rule Ia ⇒ Ib occurs in
a sequence s = 〈I1, I2, ...In〉 if and only if there exists an integer k such that

1 ≤ k < n, Ia ⊆ ⋃k
i=1 Ii and Ib ⊆

⋃n
i=k+1 Ii. For instance, consider the sequence

database of Figure 1 as SDB. The rule {a, b, f} ⇒ {e} appears in sequence s1
and s3. It means that if items a, b and f appears in a sequence in any order, it
will be followed by e.

Partially-ordered sequential rules have the interesting property of being more
general than standard sequential rules [5], [6], [7]. Several standard sequential
rules can be represented by a single partially-ordered sequential rule. For exam-
ple, the standard sequential rules 〈{a, b}, {c}〉 ⇒ 〈f〉 and 〈{a}, {c}, {b}〉 ⇒ 〈{f}〉
are represented by a single partially-ordered sequential rule {a, b, c} ⇒ {f}.



Using Partially-Ordered Sequential Rules for Sequence Prediction 435

Algorithms for mining partially-ordered sequential rules [5] take two thresh-
olds named minsup and minconf as parameters, which are set by the user. The
algorithms return all rules having a support and confidence respectively higher
than these thresholds. Support and confidence for partially-ordered sequential
rules are defined as follows.

The support of a partially-ordered sequential rule Ia ⇒ Ib for a database
SDB is denoted as sup(Ia ⇒ Ib). It is defined as the number of sequences from
SDB where the items in the rule occurs, divided by the number of sequences in
SDB.The confidence of a partially-ordered sequential rule for a database SDB
is denoted as conf(Ia ⇒ Ib). It is defined as the number of sequences in SDB
where items the rule occurs divided by the number of sequence where items in
Ia appears.For instance, consider the sequence database of Figure 1 as SDB.
The rule {a, b, c} ⇒ {e} has a support of 0.5 because it appears in s1 and s2.
Moreover, its confidence is 1 because its antecedent only appears in s1 and s2.
Another example is the rule {a} ⇒ {b, c, e}, which has a support of 0.5 and a
confidence of 0.6.

4 The Comparison Framework

We now present our comparison framework that we have designed to compare the
prediction accuracy of standard sequential rules and partially-ordered sequential
rules. We named this framework the Predictor. It a framework for sequence
prediction that can be used with the two types of sequential rules. The predictor
works in two phases.

1) Training. The first phase consists of mining sequential rules from a sequence
database containing a set of training sequences. The user has to provide the
sequence database and has to choose the types of sequential rules to be mined.
If standard sequential rules are chosen, the RuleGen [14] algorithm is applied. If
partially-ordered sequential rules are selected, TRuleGrowth [5] is applied. Note
that TRuleGrowth allow specifying a parameter named window size, which is
not found in RuleGen. It allows specifying that patterns have to occur within a
maximum number of consecutive itemsets. To provide the same functionality for
RuleGen, we have modified it to also accept this parameter. As it will be shown in
the experimental section, considering this additional constraint can improve the
accuracy of predictions. Besides, note that we here only consider sequential rules
containing a single item in the consequent because we are interested in predicting
one item at a time for the application of web recommendation described in this
paper.

2) Prediction. The second phase consists of predicting an item that will follow
a sequence provided by the user. This phase is accomplished in two substeps.
The first step is to scan all the rules to identify those that match with the
sequence provided by the user. Here, a rule is said to match with a sequence if
the antecedent appears in the sequence.



436 P. Fournier-Viger, T. Gueniche, and V.S. Tseng

The second step is to generate a prediction based on the matching rules. This
is performed by selecting one of the matching sequential rules. To select a rule,
several criteria can be used. We have tested several of them and found that the
criterion that gives the best results is to choose the rule with the highest score.
We define the score of a rule p as Score(p) = (c1conf(p)+c2sup(p)) ×length(p),
where c1 and c2 are constants and length(p) is the number of items contained
in p that match with the sequence. In our tests, c1 = 0.7 and c2 = 0.3 generated
the best results. Note however that other values of c1 and c2 could be used for
other datasets and may provide better results. After a sequential rule has been
selected based on the score, the Predictor makes the prediction by choosing the
item in the rule consequent.

5 Experimentation

We have implemented the RuleGen and TRuleGrowth sequential rule mining
algorithms, and the Predictor framework in Java.

Experiments were carried with two public click-stream datasets commonly
used in the sequential pattern mining literature. The first dataset is Kosarak
(http://fimi.cs.helsinki.fi/data/). It contains 990,000 sequences of click-
stream data from an online news portal. To make the experiment faster, we
only used the first 50,000 sequences of Kosarak. Each sequence has an average
length of 7.97 items from 21,144 different items. The second dataset is BM-
SWebView1 (BMS). It contains 59,601 sequences of click-stream data from
an e-commerce website (http://www.ecn.purdue.edu/KDDCUP/). BMS differs
from Kosarak in that sequences are shorter and that the set of different items
is much smaller (497 items compared to 21,144 items). The average length of
sequences in BMS is short with 2.51 items (σ =4.85). But it also contains several
long sequences.

We have performed several experiments with the datasets. For each experi-
ment, we have randomly divided each dataset into two sets: a training set and a
test set. The division was made according to a parameter training ratio that we
have initially set to 50%. This parameter indicates the percentage of sequences
from a dataset that is used for training. The training set is used for generat-
ing sequential rules. These rules are then used to generate predictions for each
sequence of the test set. Statistics are recorded about the number of correct pre-
dictions and the total number of predictions generated. This allows computing
two measures.

The first measure is the accuracy. We define it as the number of good predic-
tions divided by the number of sequences in the test set. The second measure
is named matching rate. It is defined as the number of sequences where a pre-
diction was generated divided by the number of sequences in the test set. It
is important to consider this measure because no prediction is generated for a
sequence if there is no matching rule.

The initial parameters for all the experiments are as follows. The param-
eter minsup is set to 0.00055 for BMS and 0.002 for Kosarak. These values

http://fimi.cs.helsinki.fi/data/
http://www.ecn.purdue.edu/KDDCUP/


Using Partially-Ordered Sequential Rules for Sequence Prediction 437

were determined has the best values (giving the highest accuracy and matching
rate) after executing several preliminary experiments. Similarly, we have found
that 0.5 was the best value for minconf for both datasets. The parameters
prefix size and suffix size (cf. section 2) were set to 3. This means that the
problem of sequence prediction is to predict an item from the last three itemsets
of a sequence given the three preceding itemsets. Because we used these parame-
ters, we only kept sequence containing at least 6 itemsets in each dataset. Lastly,
the window size parameter (cf. section 4) was set to 5.

5.1 Influence of prefix size

The first experiment consists of varying prefix size to assess its influence on
the accuracy and matching rate for the two types of sequential rules (SSR =
Standard Sequential Rules, POSR = Partially-Ordered Sequential Rules). As
previously explained, prefix size represents the number of preceding itemsets
that are used for making a prediction (cf. section 2). Figure 2 respectively show
the impact of varying this parameter from 1 to 10 for BMS and Kosarak. It
can be seen that partially-ordered sequential rules can improve accuracy by
up to 28% and matching rate by up to 60% compared to standard sequential
rules.

Fig. 2. Influence of prefix size on accuracy and matching rate

5.2 Influence of suffix size

The second experiment consists of varying suffix size to assess its influence on
prediction accuracy and matching rate. As explained in section 2, suffix size
indicates the number of itemsets that should be considered for making a pre-
diction. Figure 3 respectively show the results obtained of varying suffix size
from 1 to 10 for BMS and Kosarak. These results show that partially-ordered
sequential rules can improve accuracy by up to 26% and matching rate by up to
60% compared to standard sequential rules.



438 P. Fournier-Viger, T. Gueniche, and V.S. Tseng

Fig. 3. Influence of suffix size

5.3 Influence of training ratio

The third experiment consists of assessing the impact of the size of the training
set on the accuracy of predictions by varying training ratio from 10% to 90%.
Figure 4 respectively show the results obtained with BMS and Kosarak. Predic-
tions based on partially-ordered sequential rules were from 11% to 19% more
accurate than predictions based on standard sequential rules. It can be observed
that this is true even if a smaller training set is used for partially-ordered sequen-
tial rules. Note that for BMS, no results are available for training ratio = 60
for standard sequential rules (SSR) because not enough rules were found during
the mining process.

Fig. 4. Influence of the training ratio

5.4 Influence of the Rule Selection Criterion

The fourth experiment consists of assessing the influence of the rule selection
criterion to make a prediction when several rules match with a sequence. The



Using Partially-Ordered Sequential Rules for Sequence Prediction 439

criterion previously suggested in section 4 was to select the matching rule with
the highest score. An alternative approach that we have tested is to keep the
top W matching rules with the highest score, and then to perform a majority
vote on the items predicted by the W rules. The item with the most votes is
then chosen as the prediction. Note that if W is set to 1, the result is the same
as before. Results from his experiment are shown on Figure 5 for W = 1, 10, 20,
...90 for BMS and Kosarak. Results show that using a majority vote improves
accuracy by up to 6% for partially-ordered sequential rules, and up to 5% for
standard sequential rules.

Fig. 5. Influence of the rule selection criterion

5.5 Influence of window size

The fifth experiment consists of assessing the influence of window sizeon the
prediction accuracy by varying window size from 2 to 10. Results of this ex-
periment are shown on Figure 6. Results indicate that setting window size to a
value from 3 to 6 provided reasonable accuracy and that using larger values did
not provide a major improvement.

5.6 Influence of Making Multiple Predictions

For the sixth experiment, we have tested the possibility of making multiple
predictions for each sequence instead of only one. This experiment is motivated
by the fact that for some real applications more than one recommendation can
be made to the user. For example, for webpage recommendation, more than one
webpage recommendation can be made to the user by displaying several links
on the same page. To assess the benefits of making multiple predictions, we
have added a parameter Q, which is the number of predictions. The definition
of accuracy has been adjusted as follows for multiple predictions. The accuracy
is calculated as the number of sequences where at least one prediction is correct
divided by the total number of sequences in the test set. Results of varying



440 P. Fournier-Viger, T. Gueniche, and V.S. Tseng

Fig. 6. Influence of window size

Fig. 7. Influence of making multiple predictions

Q from 1 to 10 are shown on Figure 7. As it was expected, allowing multiple
predictions largely increased prediction accuracy (by up to 24% for partially
ordered sequential rules and 7% for standard sequential rules).

5.7 Influence of the Number of Rules

The last experiment consisted of varying minsup to assess the influence of the
sequential rule count on the prediction accuracy. For BMS, we varied minsup
from 0.0006 to 0.0005. For Kosarak, we variedminsup from 0.003 to 0.001. These
intervals were chosen because they provide an interesting view of the results. The
prediction accuracy and the number of rules generated for BMS and Kosarak
are shown in Figure 8. From these results, we can observe that the number of
rules for the two types of rules varies differently because their definitions are
different. Second, we can see that for the two types of rules, as soon as there are



Using Partially-Ordered Sequential Rules for Sequence Prediction 441

Fig. 8. Influence of the number of rules

approximately 1000 to 10,000 rules, the accuracy remains more or less the same
if the number of rules increase. This result is interesting because it provides a
solution to the problem of choosing the minsup value. The solution is to use
an algorithm for mining the top-k sequential rules such as the one that we have
designed in previous work [6]. This algorithm can discover the top-k partially-
ordered sequential rules where k is set by the user. The advantage of using this
algorithm is that the user does not need to find a suitable value for the minsup
thresholds by hand. For example, the user could set k = 10, 000 to find the top
10, 000 rules and use them to make predictions.

6 Conclusion

Predicting the next element(s) of a sequence is a research problem with wide ap-
plications such as stock market prediction, consumer product recommendation,
and web link recommendation. A popular approach to symbolic sequence recom-
mendation is to discover sequential rules in a training set of sequences to then use
these rules to make predictions. In this paper, we have explored the possibility
of using a new type of sequential rules named partially-ordered sequential rules
[5], [6] for sequence prediction. We have compared the prediction accuracy of
these rules with standard sequential rules for the task of webpage recommenda-
tion under multiple scenarios (different prefix sizes, different suffix sizes, allowing
multiple predictions, varying the size of the training set, performing a major-
ity vote, choosing different window sizes and different minsup values). Overall,
results show that using partially-ordered sequential rules instead of standard se-
quential rules can improve the prediction accuracy and matching rate by more
than 30%, depending on the scenario.

In this paper, we have focused on improving prediction accuracy and matching
rate. For future work, we plan to work on enhancing the performance in terms of



442 P. Fournier-Viger, T. Gueniche, and V.S. Tseng

execution time. We are working on designing a storage structure that will allow
an efficient storage and retrieval of sequential rules to test if they are matching
with a sequence. We also plan to consider the problem of sequence prediction
with a user profile as it was done for standard sequential rules in [12]. We are
also considering integrating ideas such as rule prioritization and rule pruning
from works on associative classification to further improve the results (e.g. [8],
[1]). The source code of the software presented in this paper is available for free
at http://www.philippe-fournier-viger.com/spmf/.

References

1. Antonie, M.-L., Chodos, D., Zaiane, O.: Variations on Associative Classifiers and
Classification Results Analyses. In: Zhao, Y., Zhang, C., Cao, L. (eds.) Post-Mining
of Association Rules: Techniques for Effective Knowledge Extraction (2008)

2. Begleiter, R., El-Yaniv, R., Yona, G.: On Prediction Using Variable Order Markov
Models. Journal of Artificial Intelligence Research 22, 385–421 (2004)

3. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 3rd edn. Morgan
Kaufmann, San Francisco (2011)

4. Pei, J., et al.: Mining Sequential Patterns by Pattern Growth: The PrefixSpan
Approach. IEE Trans. on Knowledge and Data Engineering. 16(11), 1420–1440
(2004)

5. Fournier-Viger, P., Wu, C.-W., Tseng, V.S., Nkambou, R.: Mining Sequential Rules
Common to Several Sequences with the Window Size Constraint. In: Kosseim,
L., Inkpen, D. (eds.) Canadian AI 2012. LNCS, vol. 7310, pp. 299–304. Springer,
Heidelberg (2012)

6. Fournier-Viger, P., Tseng, V.S.: Mining Top-K Sequential Rules. In: Tang, J., King,
I., Chen, L., Wang, J. (eds.) ADMA 2011, Part II. LNCS, vol. 7121, pp. 180–194.
Springer, Heidelberg (2011)

7. Fournier-Viger, P., Nkambou, R., Tseng, V.S.: RuleGrowth: Mining Sequential
Rules Common to Several Sequences by Pattern-Growth. In: ACM SAC 2011,
pp. 954–959. ACM Press (2011)

8. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining.
In: Fourth International Conference on Knowledge Discovery and Data Mining
(KDD 1998), pp. 80–86. AAAI Press, New York (1998)

9. Liu, D.-R., Lai, C.-H.: A hybrid of sequential rules and collaborative filtering for
product recommendation. Information Sciences 179, 3505–3519 (2009)

10. Lo, D., Khoo, S.-C., Wong, L.: Non-redundant sequential rules Theory and algo-
rithm. Information Systems 34(4-5), 438–453 (2009)

11. Pérez-Ortiz, J.A., Calera-Rubio, J., Forcada, M.L.: Online Symbolic-Sequence Pre-
diction with Discrete-Time Recurrent Neural Networks. In: Dorffner, G., Bischof,
H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 719–724. Springer, Hei-
delberg (2001)

12. Pitman, A., Zanker, M.: An Empirical Study of Extracting Multidimensional Se-
quential Rules for Personalization and Recommendation in Online Commerce. In:
10th Intern. Conf. on Wirtschaftsinformatik (2011)

13. Sun, R., Giles, C.L.: Sequence Learning: From Recognition and Prediction to Se-
quential Decision Making. IEEE Intelligent Systems 16(4) (2001)

14. Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Ma-
chine Learning 42(1/2), 31–60 (2001)

http://www.philippe-fournier-viger.com/spmf/

	Using Partially-Ordered Sequential Rulesto Generate More Accurate Sequence Prediction
	Introduction
	The Problem of Sequence Prediction
	Two Types of Sequential Rules
	Standard Sequential Rules
	Partially-Ordered Sequential Rules

	The Comparison Framework 
	Experimentation
	Influence of prefix_size
	Influence of suffix_size
	Influence of training_ratio
	Influence of the Rule Selection Criterion
	Influence of window_size
	Influence of Making Multiple Predictions
	Influence of the Number of Rules

	Conclusion
	References




