

T.-h. Kim et al. (Eds.): MulGraB/BSBT/IUrC 2012, CCIS 353, pp. 135–140, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Study on the Java Compiler
for the Smart Virtual Machine Platform∗

YunSik Son1 and YangSun Lee2

1 Dept. of Computer Engineering, Dongguk University
26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Korea

sonbug@dongguk.edu
2 Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Korea
yslee@skuniv.ac.kr

Abstract. SVM(Smart Virtual Machine) is the virtual machine solution that
supports various programming languages and platforms, and its aims are to
support programming languages like ISO/IEC C++, Java and Objective-C and
smart phone platforms such as Android and iOS. Various contents that devel-
oped by supported language on SVM can be execute on Android and iOS
platforms at no additional cost, because the SVM has the platform independent
characteristic by using SIL(Smart Intermediate Language) as an intermediate
language. In this paper, we will introduce the Java compiler to support the con-
tents written in Java language on SVM which generates platform independently
stack-based SIL code as target code.

Keywords: SVM(Smart Virtual Machine), SIL(Smart Intermediate Language),
Java Compiler, Compiler Construction.

1 Introduction

The previous development environments for smart phone contents are needed to
generate specific target code depending on target devices or platforms, and each
platform has its own developing language. Therefore, even if the same contents are to
be used, it must be redeveloped depending on the target machine and a compiler for
that specific machine is needed, making the contents development process very inef-
ficient. SVM(Smart Virtual Machine) is a virtual machine solution which aims to
resolve such problems, and it uses the SIL(Smart Intermediate Language) code which
designed by our research team as an input at the execution time[1-4].

In this study, a compiler for use in a program designed in the Java programming
language[5] to be used on a SVM is designed and implemented. In order to effectively

∗ This research was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(No.20110006884).

136 Y. Son and Y. Lee

implement the compiler, it was designed to five modules; syntax analysis, class file
loader, symbol information collector, semantic analyzer and code generator.

2 Relative Studies

2.1 SVM(Smart Virtual Machine)

The SVM is a platform which is loaded on smart phones. It is a stack based virtual
machine solution which can independently download and run application programs.
The SVM consists of three main parts; compiler, assembler and virtual machine. It is
designed in a hierarchal structure to minimize the burden of the retargeting process.

The SVM is designed to accommodate successive languages, object-oriented
languages and etc. through input of SIL as its intermediate language. It has the advan-
tage of accommodating C/C++ and Java, which are the most widely used languages
used by developers. SIL was a result of the compilation/translation process and it is
changed into the running format SEF(SIL Executable Format) through an assembler.
The SVM then runs the program after receiving the SEF[1-4].

2.2 SIL(Smart Intermediate Language)

SIL[6], the virtual machine code for SVM, is designed as a standardized virtual ma-
chine code model for ordinary smart phones and embedded systems. SIL is a stack
based command set which holds independence as a language, hardware and a plat-
form. In order to accommodate a variety of programming languages, SIL is defined
based on the analysis of existing virtual machine codes such as bytecode[7], .NET
IL[8] and etc. In addition, it also has the set of arithmetic operations codes to accom-
modate object-oriented languages and successive languages.

SIL is composed of meta-code(shows class declarations and specific operations)
and arithmetic codes (responds to actual commands). Arithmetic codes are not subor-
dinate to any specific hardware or source languages and thus have an abstract form. In
order to make debugging of the languages such as the assembly language simple, they
apply a name rule with consistency and define the language in mnemonics, for higher
readability. In addition, they have short form arithmetic operations for optimization.
SIL’s arithmetic codes are classified into seven and each category has its own detailed
categories.

3 Java to SIL Compiler

In this study, the Java to SIL compiler was designed as can be seen in Fig. 3 it has
five parts and 10 detailed modules.

 A Study on the Java Compiler for the Smart Virtual Machine Platform 137

Fig. 1. Java to SIL Compiler Model

The Java to SIL compiler embodies the characteristics of the Java language and
therefore was designed with five different parts; syntax analysis, class file loader,
symbol information collection module, semantic analysis and code generation. The
detailed information for each part is as follows.

The syntax analysis part carries out syntax analysis regarding the given input pro-
gram(*.java) and converts it into an AST(Abstract Syntax Tree) which holds the
equivalent semantics. There are largely three steps in the syntax analysis part; lexical
analysis, syntax analysis and error recovery [9-11].

The Class file loader is the module to extract symbol information needed to syntax
analysis, semantic analysis and code generation from the pre-compiled class files. The
Class file loader extracts class information from the inputted class files(*.class), and
stores it in the symbol table through symbol information collector.

The module for symbol information collection consists of symbol information col-
lection routines and a symbol table. First, the symbol information collection routine
carries out the job of saving information into the symbol table which is obtained by
inserting ASTs and rounding the tree. The routines consist of the interface, protocol,
class member, ordinary declarations and others(given the characteristics of the Java
language). Next, the symbol table is used to manage the symbols(names) and infor-
mation on the symbols within a program.

The semantic analysis part is composed of the declarations semantic analysis module
and the statements semantic analysis module. The declarations semantic analysis module
checks the process of collecting symbol information on the AST level, to verify cases
which are grammatically correct but semantically incorrect. Semantic analysis of the
declarations part is handled by two parts; semantic error and semantic warning. The
statements semantic analysis module uses the AST and symbol table to carry out seman-
tic analysis of statements and creates a semantic tree as a result. A semantic tree is a data
structure which has semantic information added to it from an AST[4,10]. It is responsible
for all that has not been taken care of during the syntax analysis process and then it is
used to generate codes as it has been designed to generate codes easily.

The code generation part receives the semantic tree as an input after all analysis is
complete and it generates a SIL code which is semantically equal to the input program
(*.java). For this, the SIL code is expressed as symbols so it is convenient to generate
and handle them. For type conversion code lists, the same data structure is kept so that
the code generation process can take place efficiently. Type conversion code lists are

138 Y. Son and Y. Lee

data structures that pre-calculate the process of converting a semantic code into a SIL
code when generating a code. A code generator visits each nodes of the semantic tree
to convert them into SIL codes[10].

4 Implementation and Experiments

To implement the Java to SIL compiler, first the language’s grammar was chosen and
then using this a LALR(1) parsing table was created. The grammar used was based on
JDK 6.0 and the information on the grammar parsing table can be seen in Table 1.

Table 1. Java Grammar, Parsing Table, Tree Information

Name Count

Grammar Rules 380

Terminal Symbols 105

Nonterminal Symbols 152

Parsing Table Kernels 650

AST Nodes 153

Semantic Tree Nodes 236

Next, we show the process of converting the source program’s code(written in Java

language) into the target code, the SIL code, using the implemented Java to SIL com-
piler. Table 2 has been created so that the characteristics of the declarations and syn-
tax of the example program can be seen using the Java language.

Table 2. Example Program(TicTacToe.java)

public class TicTacToe extends Component
{
...

 public TicTacToe() {

this.player = 0;
this.computer = 0;
...

 }

 public void paint(Graphics g) {

g.setColor(getBackground());
g.fillRect(0, 0, getSize().width,

 getSize().height);

g.setColor(gridColor);
int fieldSize = this.getFieldSize();
g.drawLine(0, fieldSize, 3*fieldSize,

 fieldSize);
g.drawLine(0, fieldSize+1,

3*fieldSize, fieldSize+1);
...

}
 ...

}

…

 A Study on the Java Compiler for the Smart Virtual Machine Platform 139

Table 3 shows the AST structures generated from the input program. You can see
that the syntax have been expressed using the AST nodes defined earlier on. Table 4
shows a part of the SIL code that has been generated using a semantic tree.

Table 3. AST for an Example Program Segment

Nonterminal: PROGRAM

…

 Nonterminal: CLASS_DCL

 Nonterminal: PUBLIC

 Terminal: TicTacToe

 Nonterminal: EXTENDS

 Nonterminal: CLASS_INTERFACE_TYPE

 Nonterminal: SIMPLE_NAME

 Terminal: Component

 Nonterminal: CLASS_BODY

 Nonterminal: FIELD_DCL

 Nonterminal: PRIVATE

Nonterminal: DCL_SPEC

 Nonterminal: INT_TYPE

 Nonterminal: VAR_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal: player

 Nonterminal: FIELD_DCL

 Nonterminal: PRIVATE

 Nonterminal: DCL_SPEC

 Nonterminal: INT_TYPE

 Nonterminal: VAR_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal: computer

…

Table 4. Generated SIL Code for Example Program

%%HeaderSectionStart
…
%%HeaderSectionEnd
%%CodeSectionStart
 %FunctionStart
 .func_name

&TicTacToe::TicTacToe$
0

 .func_type 2
 .param_count 0
 .opcode_start
 proc 16 1 1
 lod.p 1 0
 ldc.p 0
 add.p
 ldc.i 0
 sti.i
 lod.p 1 0
 ldc.p 4
 add.p
 ldc.i 0
 sti.i

%Label ##0

lod.i 1 4
lod.i 1 0
le.i
fjp ##1
ldc.i 0
str.i 1 12
ldc.i 1
str.i 1 8

%Label ##3
lod.i 1 8
lod.i 1 4
ldc.i 2
div.i
le.i
fjp ##4
lod.i 1 4
lod.i 1 8
mod.i
ldc.i 0
eq.i
fjp ##6

lod.i 1 12
lod.i 1 8
add.i
str.i 1 12

 add.p
 ldi.p
 …
 .opcode_end
 %FunctionEnd

 …
%%CodeSectionEnd
%%DataSectionStart
…
%%DataSectionEnd

140 Y. Son and Y. Lee

5 Conclusions and Further Researches

Virtual machines refer to the technique of using the same application program even if
the process or operating system is changed. It is the core technique that can be loaded
onto recently booming smart phones, necessary as an independent download solution
software technique. In this study, the Java to SIL compiler was designed and virtua-
lized to run a program that was originally created for another platform to enable its
use on a SVM. In this paper, we defined five modules to create a compiler and gener-
ate a SIL code for use on a SVM which is independent of platforms. As a result, pro-
grams developed for use as Java contents could be run on a SVM using the compiler
developed throughout the study and therefore expenses required when producing such
contents can be minimized.

In the future, there is need for research on an Android Java-SIL compiler so that
Android contents can be run on a SVM. Further research on optimizers and assem-
blers for SIL code programs are also needed so that SIL codes that have been generat-
ed can run effectively on SVMs.

References

1. Lee, Y.S.: The Virtual Machine Technology for Embedded Systems. Korea Multimedia
Society 6, 36–44 (2002)

2. Oh, S.M., Lee, Y.S., Ko, K.M.: Design and Implementation of the Virtual Machine for
Embedded Systems. Journal of Korea Multimedia Society 8(9), 1282–1291 (2005)

3. Lee, Y.S., Oh, S.M., Son, Y.S.: Development of C++ Compiler for Embedded Systems.
Industry-Academia Cooperation Foundation of Seokyeong University (2006)

4. Son, Y., Lee, Y.: Design and Implementation of an Objective-C Compiler for the Virtual
Machine on Smart Phone. In: Kim, T.-H., Gelogo, Y. (eds.) MulGraB 2011, Part I. CCIS,
vol. 262, pp. 52–59. Springer, Heidelberg (2011)

5. The Java Language & Virtual Machine Specifications, Oracle,
http://docs.oracle.com/javase/specs/index.html

6. Yun, S.L., Nam, D.G., Oh, S.M., Kim, J.S.: Virtual Machine Code for Embedded Systems.
In: International Conference on CIMCA, pp. 206–214 (2004)

7. Meyer, J., Downing, T.: JAVA Virtual Machine. O’Reylly (1997)
8. Lindin, S.: Inside Microsoft.NET IL Assembler. Microsoft Press (2002)
9. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, &

Tools. Addison-Wesley (2007)
10. Son, Y.S.: 2-Level Code Generation using Semantic Tree, Master Thesis, Dongguk Uni-

versity (2006)
11. Graham, S.L., Haley, C.B., Joy, W.N.: Practical LR Error Recovery. In: Proceedings of the

SIGPLAN Sym. on Compiler Construction, SIGPLAN Notices, vol. 13(8), pp. 168–175
(1979)

	A Study on the Java Compilerfor the Smart Virtual Machine Platform
	Introduction
	Relative Studies
	SVM(Smart Virtual Machine)
	SIL(Smart Intermediate Language)

	Java to SIL Compiler
	Implementation and Experiments
	Conclusions and Further Researches
	References

