
Chapter 7
Statistical Inference for Nonstationary Processes

In this chapter, statistical inference for nonstationary processes is discussed. For
long-memory, or, more generally, fractional stochastic processes this is of particu-
lar interest because long-range dependence often generates sample paths that mimic
certain features of nonstationarity. It is therefore often not easy to distinguish be-
tween stationary long-memory behaviour and nonstationary structures. For statisti-
cal inference, including estimation, testing and forecasting, the distinction between
stationary and nonstationary, as well as between stochastic and deterministic com-
ponents, is essential.

The most obvious type of nonstationarity in time series is a deterministic trend.
Related to that is the issue of parametric and nonparametric regression. Both top-
ics will be addressed (Sects. 7.1, 7.2, 7.4, 7.5, 7.7). A common feature is that there
is a distinct difference between fixed and random design regression. For most fixed
designs, long memory influences the rate of convergence of parametric and nonpara-
metric regression estimators. In contrast, random design often removes the effect of
strong dependence. The issue is, however, more complex, and will be discussed in
detail.

Standard techniques in nonparametric regression are kernel and local polynomial
smoothing. The main question one has to address is the choice of a suitable band-
width. In the context of fractional processes with an unknown long-memory param-
eter d ∈ (−1/2,1/2), this is a formidable task. The optimal bandwidth depends on
the unknown long-memory parameter d . At the same time, using an inappropriate
bandwidth leads to biased estimates of d . To complicate the matter, the possibility
of nonstationarity due to integration (i.e. random walk type behaviour) cannot be
excluded a priori, and may be masked by antipersistent dependence. Nevertheless,
it is possible to design data driven algorithms for asymptotically optimal bandwidth
selection and simultaneous estimation of dependence parameters as well as iden-
tification of random walk type structures (see Sect. 7.4.5.1). Extensions to nonlin-
ear processes with trends are considered briefly in Sect. 7.4.10. As an alternative
to kernel and local polynomial smoothing, trend estimation based on wavelets and
the issue of optimal selection of the number of resolution levels is discussed in
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Sect. 7.5. Furthermore, a semiparametric regression model, also known as partial
linear regression, is considered in Sect. 7.7.

Another important class of nonstationary models can be subsumed under the
notion of local stationarity, in the sense that certain parameters change as a function
of time. Quantile estimation along this line is discussed in Sect. 7.6. Local FARIMA
type estimation is considered in Sect. 7.8.

The chapter concludes with a section on change point detection (Sect. 7.9). This
is an important issue in the long-memory context because occasional structural
changes often generate sample paths that resemble stationary processes with long-
range dependence. A typical example is a model with occasional shifts in the mean.
Various methods have been developed in the literature for distinguishing between
structural changes and long-range dependence. We discuss a selection of typical
methods.

7.1 Parametric Linear Fixed-Design Regression

In this section, we discuss estimation in fixed design linear regression with resid-
uals exhibiting long memory. The least squares estimator (LSE) is compared with
the BLUE. It turns out that under long memory (as well as under antipersistence)
the LSE usually loses efficiency compared to the BLUE. This is in contrast to the
case of weak dependence studied in Grenander (1954) and Grenander and Rosen-
blatt (1957). The concrete asymptotic results, however, depend on the combination
of long-memory properties of the residuals and the type of regression functions (Ya-
jima 1988, 1991). A practical problem with the BLUE is that the weights depend on
the unknown autocovariance function of the residual process. For certain situations,
Dahlhaus (1995) designed explicit weights that eliminate this problem. The asymp-
totic results for the LSE can be extended to robust estimation (see Giraitis et al.
1996a which is an extension of Beran 1991 to the regression context). Finally, we
briefly discuss the question of optimal design in the linear (fixed-design) regression
context.

7.1.1 Asymptotic Distribution of the LSE

We consider linear regression of the form

Yt =
p∑

j=1

βjxtj + et (t = 1,2, . . . , n) (7.1)

where

et =
∞∑

j=0

aj εt−j (7.2)
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is a linear process with εt i.i.d., E(εt ) = 0, var(εi) = σ 2
ε < ∞ and aj = caj

d−1

(0 < d < 1
2 ). The following notation will be used:

β =
⎛

⎜⎝
β1
...

βp

⎞

⎟⎠ , y(n) =
⎛

⎜⎝
Y1
...

Yn

⎞

⎟⎠ , e(n) =
⎛

⎜⎝
e1
...

en

⎞

⎟⎠ ,

xt ·(n) =
⎛

⎜⎝
xt1
...

xt

⎞

⎟⎠ , x·j (n) =
⎛

⎜⎝
x1j

...

xnj

⎞

⎟⎠

and

X
n×p

= [
x·1(n), . . . , x·p(n)

]=
⎡

⎢⎣
xT

1·
...

xT
n·

⎤

⎥⎦ .

Then

y(n) = Xβ + e(n). (7.3)

The least squares estimator of β is equal to

β̂LSE = (
XT X

)−1
XT y(n) (7.4)

so that

β̂LSE − β = (
XT X

)−1
XT e(n) = (

XT X
)−1

⎛

⎜⎝
xT·1e(n)

...

xT·pe(n)

⎞

⎟⎠ .

More generally, for a weighted least squares estimator with weights qj

(j = 1,2, . . . , n) we have

β̂ = (
XT QX

)−1
XT Qy(n) (7.5)

and

β̂ − β = (
XT QX

)−1
XT Qe(n) = (

XT QX
)−1

⎛

⎜⎝
xT·1Qe(n)

...

xT·pQe(n)

⎞

⎟⎠ (7.6)

where the n × n matrix Q is given by Q = diag(q1, . . . , qn). The covariance matrix
of β̂ is equal to

Σ
β̂

= var(β̂) = (
XT QX

)−1
XT QΣeQ

T X
(
XT QX

)−1
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where Σe = [cov(ei, ej )] is the covariance matrix of e(n). In particular, the best
linear unbiased estimator (BLUE) is given by

β̂BLUE = (
XT Σ−1

e X
)−1

XT Σ−1
e y(n) (7.7)

and its covariance matrix is equal to

Σ
β̂

= var(β̂) = (
XT Σ−1

e X
)−1

.

To obtain a nondegenerate limit theorem for β̂ defined in (7.5), we need to stan-
dardize the estimator by a matrix that takes into account that var(β̂) depends on the
design matrix X, the matrix Q and on the covariance matrix Σe of the residuals.
The first issue is taken into account by the normalizing diagonal p × p matrix

Dn = diag
(
X′X

)=
⎛

⎜⎝
‖x·1‖2 · · · 0

...
. . .

...

0 · · · ‖x·p‖2

⎞

⎟⎠

where for a ∈ R
p , ‖a‖ =

√
a2

1 + · · · + a2
p denotes the Euclidian norm. Then we can

write

D
1
2
n Σ

β̂
D

1
2
n = (

D
− 1

2
n XT QXD

1
2
n

)−1(
D

− 1
2

n XT QΣeQ
T XD

− 1
2

n

)(
D

− 1
2

n XT QXD
− 1

2
n

)−1

= C−1
n

(
D

− 1
2

n XT QΣeQ
T XD

− 1
2

n

)
C−1

n .

For most deterministic design matrices X and weights qj (i.e. Q), Cn converges to
a nondegenerate p × p matrix C so that

D
1
2
n Σ

β̂
D

1
2
n ≈ C−1(D− 1

2
n XT QΣeQ

T XD
− 1

2
n

)
C−1

and

D
1
2
n (β̂ − β) ≈ C−1(D− 1

2
n XT Q

)
e(n)

= C−1Wne(n) =: Zn.

Thus it is sufficient to study the asymptotic behaviour of Wne(n). If the elements of

Wn = D
− 1

2
n XT Q = [wj,n]i,j=1,...,p

can be written as a function of i/n, then this amounts to studying the joint distribu-
tion of weighted sums

Zn,j =
n∑

i=1

wj,n

(
i

n

)
ei (j = 1, . . . , p).
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If, in addition,

wj,n(u) ≈ n−κwj (u)

for a fixed weight functions wj and a suitable power n−κ , then results from Pipiras
and Taqqu (2000c) can be used to obtain

nκ−HD
1
2
n (β̂ − β) →

d
Z = C−1Z̃

where H = d + 1
2 and

Z̃ =
∫ 1

0
w(u)dBH (u) =

⎛

⎜⎝

∫ 1
0 w1(u) dBH (u)

...∫ 1
0 wp(u)dBH (u)

⎞

⎟⎠ .

The vector Z is normally distributed with zero mean and covariance matrix
var(Z) = C−1V C−1 where the elements of V = (vij )i,j=1,...,p are given by

vij = E

[(∫ 1

0
wi(x) dBH (x)

)(∫ 1

0
wj(y)dBH (y)

)]

=
∫ 1

0

∫ u

0
wi(x)wj (y)(x − y)2d−1 dy dx. (7.8)

In terms of fractional integrals (see Sect. 7.3) this can also be written as

vij =
(

Γ (d + 1)

c1

)2 ∫ ∞

−∞
(
I d−wi

)
(s)
(
I d−wj

)
(s) ds (7.9)

where

(
I d−wj

)
(s) = 1

Γ (d)

∫ 1

0
uj−1(u − s)d−1+ du

for 0 ≤ s ≤ 1 and zero otherwise, and c1 is a constant that depends on d . To make
sure that vij are all finite, certain conditions on wj must be imposed. For instance,
Deo (1997) defines the conditions wj ∈ C(0,1) and xα(1 − x)αwj (x) bounded for
x ∈ [0,1] and a some 0 < α < min( 1

2 ,2d).

Example 7.1 Consider a polynomial regression model of degree p defined by
Yi =∑p

j=0 β0i
j + ei . Note that, for obvious reasons, we deviate slightly from the

previous notation by including j = 0. Here, we have X = [x·1(n), . . . , x·p+1(n)],
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x·j (n) = (1,2j−1, . . . , nj−1)T , xi·(n) = (1, i1, . . . , ip)T ,

∥∥x·j (n)
∥∥2 =

n∑

i=1

i2j−2 = n2j−1
n∑

i=1

(
i

n

)2j−2

n−1

∼ n2j−1
∫ 1

0
s2j−2 ds = n2j−1

2j − 1

and the (p + 1) × (p + 1) matrix

Dn ≈

⎛

⎜⎜⎜⎜⎜⎝

n 0 · · · 0

0 n3

3

...
...

. . .
. . . 0

0 · · · 0 n2p−1

2p−1

⎞

⎟⎟⎟⎟⎟⎠
.

Furthermore,

(
XT X

)
kl

= xT·k(n) · x·l (n) =
n∑

i=1

ik+l−2

∼ nk+l−1
∫ 1

0
sk+l−2 ds = nk+l−1

k + l − 1
.

For the LSE the elements of Cn = (cij )i,j=1,...,p+1 are then given by

ckl = (
D

− 1
2

n XT XD
− 1

2
n

)
kl

= (XT X)kl

‖x·k(n)‖‖x·l‖

∼
√

(2k − 1)(2l − 1)

k + l − 1

and

[Wn]ji = (
D

− 1
2

n XT
)
ji

= xij

‖x·j‖ = ij−1

nj− 1
2

√
2j − 1

= n− 1
2

(
i

n

)j−1√
2j − 1

so that

wj,n(u) = n− 1
2 wj(u),

w(u) = uj−1
√

2j − 1.
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Thus, we have κ = 1
2 . Putting these results together and noting that κ − H = −d ,

we obtain

n−dD
1
2
n (β̂ − β) →

d
Z = C−1Z̃ ∼ N

(
0,C−1V C

)
.

The explicit form of V is given by (Yajima 1988)

vij =
√

(2i − 1)(2j − 1)Γ (1 − 2d)

Γ (d)Γ (1 − 2d)

∫ 1

0

∫ 1

0
xi−1yj−1|x − y|2d−1 dy dx. (7.10)

7.1.2 The Regression Spectrum and Efficiency of the LSE

A natural question is whether the least squares estimator should be replaced by the
best linear unbiased estimator (BLUE) that is optimally adapted to the covariance
structure. This issue was first addressed in a systematic manner by Grenander (1954)
and Grenander and Rosenblatt (1957) (also see, e.g. Priestley 1981 for a nice sum-
mary). To study the asymptotic covariance matrix of β̂LSE and β̂BLUE for a general
class of deterministic regression functions the following conditions are imposed:
Let

x·j (k) =
⎛

⎜⎝
x1+k,j

...

xn+k,j

⎞

⎟⎠

with xi,j := 0 if i /∈ {1,2, . . . , n} and

〈
x·j (0), x·l (k)

〉=
n∑

i=1

xij (0)xil(k).

Then we assume, as n → ∞,

• (R1) ‖x·j‖2 → ∞;
• (R2)

x2
nj

‖x·j‖2
→ 0;

• (R3)

r
(n)
j l (k) = 〈x·j (0), x·l (k)〉

‖x·j‖‖x·k‖ → rjl(k) ∈ R;

• (R4) Define the p×p matrix R(k) = [rjl(k)]j,l=1,...,p . Then R(0) is nonsingular.

The first condition makes sure that xij does not vanish too fast as time i tends
to infinity. The second condition means that the last observed value xnj does not
dominate all the previous ones. Condition (R3) defines a kind of a cross-correlation.



562 7 Statistical Inference for Nonstationary Processes

The last condition excludes asymptotic collinearity of the explanatory variables.
From the definition of R(k) it follows that there is a (complex-valued) function
M : λ → M(λ) assigning every frequency in [−π,π] a p × p matrix M(λ) such
that

M(λ2) − M(λ1) ≥ 0

for all λ2 ≥ λ1, where “≥ 0” means positive semidefiniteness, and

R(k) =
∫ π

−π

eikλ dM(λ)

for all k. The so-called (regression) spectral distribution function M(·) plays a key
role when comparing the relative asymptotic efficiency of the least squares estimator
compared to the BLUE.

The matrix R(k) may be interpreted as a (noncentred) asymptotic correlation
matrix for the regression functions x·j . In particular, Rjj (0) = ∫

dMjj (λ) = 1. This
implies a property of M that turns out to be important in the context of long-range
dependence. Suppose that

dMjj (0) = Mjj (0+) − Mjj (0) = 1. (7.11)

Since dMjj (λ) ≥ 0 and |dMjl(λ)| ≤ dMjj (λ)dMll(λ) this implies for all j, l,

dMjl(λ) = 0 (λ �= 0). (7.12)

As we will see below, (7.11) causes particular difficulties under long memory.

Example 7.2 Let p = 1 and xt1 = xt ≡ 1. This means that Yt is stationary and β = μ

is the expected value of Yt . Conditions (R1)–(R4) hold for obvious reasons, and
r(k) = r11(k) ≡ 1. Hence,

R(k) =
∫ π

−π

eikλ dM(λ) ≡ 1

so that M has a point mass at the origin such that (7.11) and (7.12) hold.

Example 7.3 For polynomial regression of order k we have xtj = tj−1

(j = 1, . . . , p; p = k + 1). Then, as n → ∞,

‖x·j‖2 =
n∑

t=1

t2j−2 ∼ n2j−1
∫ 1

0
u2j−2 du = n2j−1

2j − 1

and

r
(n)
j l (k) = 〈x·j (0), x·l (k)〉

‖x·j‖‖x·k‖ ∼√
(2j − 1)(2l − 1)nj+l−1

n∑

t=1

tj−1(t + k)l−1

∼√
(2j − 1)(2l − 1)

∫ 1

0
uj+l−2 du =

√
(2j − 1)(2l − 1)

j + l − 1
.
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Thus, the “lag” k does not matter, i.e. for all k we have

rjl(k) =
∫ π

−π

eikλ dMjl(λ) ≡
√

(2j − 1)(2l − 1)

j + l − 1

which implies dM(λ) = 0 (λ �= 0) and

dMjl(0) =
√

(2j − 1)(2l − 1)

j + l − 1
.

In particular,

dMjj (0) = 2j − 1

2j − 1
= 1

so that again (7.11) and (7.12) hold.

Example 7.4 Let p = 1 and xt1 = cosλ0t for some λ0 ∈ (0,π). Then

‖x·1‖2 ∼ n

2

and

r
(n)
11 (k) = 〈x·1(0), x·1(k)〉

‖x·1‖2
= 2n−1

n∑

t=1

cos(λ0t) cos
(
λ0(t + k)

)

= cosλ0k + n−1
n∑

t=1

cos(2λ0t + λ0k) ∼ cosλ0k.

Thus, dM(±λ0) = 1
2 and dM(λ) = 0 otherwise.

Example 7.5 Let p = 1 and xt = xt1 = (−1)t = cosπt . Then xtxt+k = (−1)k =
cosπk, ‖x·1‖2 = n so that r(k) = (−1)k . This implies dM(±π) = 1

2 and dM(λ) =
0 otherwise.

Example 7.6 Let p = 1 and xt = xt1 = t (1 + e−iλ0t ) for some λ0 ∈ (0,π). Note
that the definitions above can be extended in a natural way to complex valued
x-variables, with 〈x·j (0), x·l (k)〉 =∑

xtj (0)x̄tl(k). Then

‖x·1‖2 = 2
∑

t2(1 + cosλ0t) ∼ 2

3
n3
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and

〈
x·1(0), x·1(k)

〉=
n∑

t=1

t (t + k)
(
1 + e−iλ0t

)(
1 + eiλ0(t+k)

)

∼ (
1 + eiλ0k

) n∑

t=1

t2 ∼ (
1 + eiλ0k

)1

3
n3.

Hence

r(k) = r11(k) = 1

2

(
1 + eiλ0k

)=
∫ π

−π

eikλ dM(λ)

so that

dM(0) = M(0+) − M(0) = 1

2
,

dM(λ0) = 1

2

and dM(λ) = 0 otherwise.

For residual processes with short-range dependence and spectral density fe, the
asymptotic covariance matrix of β̂LSE and β̂BLUE can be expressed in terms of M

and fe as follows (Grenander 1954; Grenander and Rosenblatt 1957):

Theorem 7.1 Let fe ∈ C[−π,π], Dn = diag(‖x·1‖, . . . ,‖x·p‖) and assume that
(R1)–(R4) hold. Then, as n → ∞,

Dn var(β̂LSE)Dn → 2πR−1(0)

∫ π

−π

fe(λ)dM(λ)R−1(0). (7.13)

Theorem 7.2 Under same assumptions as in Theorem 7.1, and fe > 0,

Dn var(β̂BLUE)Dn →
[

1

2π

∫ π

−π

1

fe(λ)
dM(λ)

]−1

. (7.14)

Theorem 7.1 includes not only the case of short memory (with f continuous) but
also antipersistence with fe(λ) = L(λ)|λ|−2d (− 1

2 < d < 0), provided that L(λ) is
continuous. However, if M is such that dM(λ) = 0 for all λ �= 0, then

∫
dM(λ) = 0.

In other words, for such explanatory variables the actual rate of convergence is
faster than captured by (7.13). Theorem 7.2 does not include antipersistence be-
cause fe(λ) = 0. The reason for the condition fe > 0 is to avoid a pole in the integral∫

f −1
e dM . It should be noted, however, that the conditions as stated here are suffi-

cient but not necessary. For instance, piecewise continuous spectral distributions fe

may be considered or even cases where fe(0) = 0 provided that dM is zero in the
neighbourhood of the origin. Long memory is, however, not included in any of the
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two theorems (or possible simple modifications) because fe has a pole. This causes
difficulties with some of the integrals. A partial extension of the results was obtained
by Yajima (1991). The main problem caused by the pole of fe at the origin occurs
when dM(0) > 0. The reason is that then

∫
fe(λ)dM(λ) is infinite. Moreover, if

dM(λ) = 0 outside the origin, then
∫

f −1
e (λ) dM(λ) = 0 so that we would divide

by zero in (7.14).
Two cases have to be distinguished when considering long memory, namely

Mjj (0+) − Mjj (0) = 0 (case 1) (7.15)

and

Mjj (0+) − Mjj (0) > 0 (case 2). (7.16)

For the second case, a more refined distinction will have to be made, namely

0 < Mjj (0+) − Mjj (0) < 1 (case 2a) (7.17)

and

Mjj (0+) − Mjj (0) = 1 (case 2b). (7.18)

First, we state the result for case 1. Since M does not have any mass at zero, the
pole of fe does not disturb, i.e. there is no “interference” between long memory and
the regression function.

Theorem 7.3 Let fe(λ) = L(λ)|1−e−iλ|−2d (0 < d < 1
2 ), L ∈ C[−π,π], and sup-

pose that (7.15) holds for all j = 1, . . . , p. Moreover, for j, l = 1, . . . , p define

M
(n)
jl (λ) =

∫ λ

−π

m
(n)
j l (u) du,

m
(n)
j l (u) =

∑n
t=1 xtj e

−itu
∑n

s=1 xsle
isu

2π‖x·j‖‖x·l‖ .

Then, under (R1)–(R4),

Dn var(β̂LSE)Dn → 2πR−1(0)

∫ π

−π

fe(λ)dM(λ)R−1(0) (7.19)

if and only if for all δ > 0 there exists a finite constant c > 0 and n0 ∈ N such that
∫ c

−c

fe(λ) dM
(n)
jj (λ) < δ (7.20)

for all j = 1, . . . , p and n ≥ n0.

Proof Suppose first that (7.19) holds. For the left-hand side of (7.19), we have

Dn var(β̂LSE)Dn = (
D−1

n XT XD−1
n

)−1(
D−1

n XT ΣXD−1
n

)(
D−1

n XT XD−1
n

)−1
.
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Due to (R3), D−1
n XT XD−1

n converges to R(0). Hence (7.19) and the definition of
M(n) imply

D−1
n XT ΣXD−1

n = 2π

∫ π

−π

fe(λ) dM(n)(λ) → 2π

∫ π

−π

fe(λ) dM(λ). (7.21)

Since Mjj (0+) − Mjj (0) = 0, there exists a c > 0 such that
∫ c

−c
fe(λ) dMjj (λ) < δ

for all j . Moreover, M(n) converges weakly to M and fe is continuous on {|λ| ≥ c}
so that

∫

|λ|≥c

fe(λ) dM(n)(λ) →
∫

|λ|≥c

fe(λ) dM(λ). (7.22)

Since also
∫ π

−π
fe(λ) dM(n)(λ) converges to

∫ π

−π
fe(λ) dM(λ) (7.21), (7.20) follows

for n large enough.
Suppose now that (7.20) holds. Again, by the same argument, (7.22) holds.

Therefore, (7.20) implies that
∫ π

−π
fe(λ) dM(n)(λ) converges to

∫ π

−π
fe(λ) dM(λ). �

Condition (7.20) holds, for instance, if dM(λ) = 0 in an open neighbourhood of
the origin.

In case 2, components where (7.16) holds have to be standardized by a larger
power of n as follows.

Theorem 7.4 Let fe be as in Theorem 7.3, cf = L(0) > 0 and M such that (7.16)
and (7.20) hold for j = 1, . . . , p. Define the p × p matrix V ∗ = [v∗

j l]j,l=1,...,k with
the elements

v∗
j l = cf lim

n→∞n−2d

∫ π

−π

∣∣1 − e−iλ
∣∣−2d

dM
(n)
jl (λ)

and assume that all v∗
j l are finite. Then

n−2dDn var(β̂LSE)Dn → VLSE = 2πR−1(0)V ∗R−1(0). (7.23)

Proof First, note that, by setting

D̃n = diag
(‖x·1‖nd, . . . ,‖x·p‖nd

)= ndDn,

we have

D̃−1
n

(
XT X

)
var(β̂LSE)

(
XT X

)
D̃−1

n = n−2dD−1
n

(
XT X

)
var(β̂LSE)

(
XT X

)
D−1

n

∼ n−2dR(0)Dn var(β̂LSE)DnR(0).

Thus, we may consider

D̃−1
n

(
XT X

)
var(β̂LSE)

(
XT X

)
D̃−1

n = D̃−1
n XT ΣXD̃−1

n .
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Now

D̃−1
n XT ΣXD̃−1

n =
n∑

t,s=1

xtj

‖x·j‖
xsl

‖x·l‖γ (t − s)

=
∫ π

−π

(
n∑

t,s=1

xtj

‖x·j‖
xsl

‖x·l‖e−i(t−s)λ

)
f (λ)dλ

= 2π

∫ π

−π

fe(λ)dM(n)(λ),

by definition of M
(n)
jl (λ) and m

(n)
jl (λ). For j ≥ k + 1 the result follows as in the

previous theorem. Moreover, since fe is continuous for |λ| ≥ c and M(n) → M

weakly, we have

∫

|λ|≥c

fe(λ) dM
(n)
jl (λ) →

∫

|λ|≥c

fe(λ) dMjl(λ) < ∞.

The only integral we need to take care of is
∫ c

−c
fe(λ) dM

(n)
jl (λ). Using the property

fe(λ) ∼ cf |1 − e−iλ|−2d (λ → 0), one can show that

n−2d

∫ c

−c

fe(λ) dM
(n)
jl (λ) ∼ n−2d

∫ π

−π

∣∣1 − e−iλ
∣∣−2d

dM
(n)
jl (λ)

which converges to v∗
j l by assumption. �

The difference to case 1 characterized by (7.15) (and also to short memory) is
that an additional normalization by n−2d is required and a different limiting ma-
trix VLSE is obtained. The reason for the slower rate of convergence is that under
(7.16) the regression functions have a strong low-frequency component in the sense
that M includes a point mass at the origin. This interferes with the pole of fe so
that it becomes difficult to distinguish the low-frequency signal of the regression
functions from low-frequency components in the residual process. Heuristically, the
point mass of M at zero implies

∫
fe(λ)dM(λ) ≥ fe(0) dM(0) = ∞ so that n−2d

has to be introduced to obtain a finite limit. A further interesting feature of (7.23)
is that the asymptotic covariance matrix does not depend on the shape of fe outside
the origin. Only cf and d are relevant. This is convenient for statistical inference
since only these two parameters need to be estimated.

The evaluation of the matrix V ∗ is not always easy. An explicit formula is avail-
able for polynomial regression (Yajima 1988; also see Example 7.3):

Theorem 7.5 Let fe be as in Theorem 7.3, cf = L(0) > 0 and xtj = t j−1. Then

n−2dDn var(β̂LSE)Dn → VLSE = 2πR−1(0)V ∗R−1(0). (7.24)
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Fig. 7.1 Yt = 3 + 0.025t + et

(t = 1,2, . . . ,1000) where et

is a FARIMA(0, d,0) process
et = (1 − B)−dεt with
d = 0.4 and var(εt ) = 1. The
true trend function (full line)
and the fitted least squares
line (dotted line) are also
plotted

where [Dn]jj ∼ nj/j , and R(0) = [rjl]j,l=1,...,p and V ∗ = [v∗
j l]j,l=1,...,p have the

elements

rjl ≡
√

(2j − 1)(2l − 1)

j + l − 1

and

v∗
j l = cf

√
(2j − 1)(2l − 1)Γ (1 − 2d)

Γ (d)Γ (1 − d)

∫ 1

0

∫ 1

0
xj−1yl−1|x − y|2d−1 dy dx,

respectively.

Example 7.7 Figure 7.1 illustrates which problems long memory in the resid-
ual process may cause when the regression function has a zero-frequency com-
ponent characterized by (7.16). Specifically, we observe Yt = 3 + 0.025t + et

(t = 1,2, . . . ,1000) where et is a FARIMA(0, d,0) process et = (1 − B)−dεt with
d = 0.4 and var(εt ) = 1. The sample path of the residual process et (lower curve)
has a spurious downward trend. The actual trend function with slope β1 = 0.025
(full line) is therefore hardly visible in Yt . The least squares estimate is indeed
β̂1 = 0.0002 so that the fitted trend (dotted line) is practically horizontal. On the
other hand, fitting a least squares line to the estimated residual process êi yields
β̂1 = −0.025. This is actually a spurious trend. If we use the usual t-test which as-
sumes independence, then we come to the wrong conclusion that β̂1 is significantly
different from zero with a p-value far below 1 %. Clearly, a correction of this test is
needed to take into account the possibility of spurious trends in ei . This is reflected
in the additional norming constant n−2d in Theorem 7.4. Theorem 7.5 leads to

V ∗ = 2

3
cf

Γ (1 − 2d)

(2d + 1)Γ (1 − d)Γ (1 + d)
= 1.29,

D2
n ∼ 1

3n3 and R(0) = 1. Hence, an approximate corrected 95 %-confidence interval
for β1 is given by −0.025 ± 2

√
3 · 2π · 1.29nd−3/2 ≈ [−0.09,0.04] which includes

zero.
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Fig. 7.2
Yt = cos(2πt/100) + ei

(t = 1,2, . . . ,1000) where et

is a FARIMA(0, d,0) process
et = (1 − B)−dεt with
d = 0.4 and var(εt ) = 1. The
true trend function (full line)
is also plotted. The shaded
area represents a
95 %-confidence region for
the trend function, based on
Theorem 7.3

Example 7.8 In Fig. 7.2, the same residuals as in the previous example are superim-
posed on a seasonal trend, namely Yt = cos(2πt/100) + ei . In spite of the spurious
trend in the residual sample path, it is not too difficult to distinguish the seasonal
fluctuation from ei . The reason is that the frequency λ0 = 2π/100 ≈ 0.0628 is iso-
lated and relatively far from zero. Therefore, according to Theorem 7.3, β̂LSE has
asymptotically the same rate of convergence as under independence. The only quan-
tity that changes, depending on fe, is the finite constant

Dn var(β̂LSE)Dn → 2πR−1(0)

∫ π

−π

fe(λ) dM(λ)R−1(0),

2π

∫ π

−π

fe(λ) dM(λ) = 2πfe(λ0) = ∣∣1 − e−iλ0
∣∣−2d

.

The concrete estimate for the observed series in Fig. 7.2 is β̂LSE = 1.00. Since

n∑

t=1

cos2(λ0t) ≈ 1

2

n∑

t=1

∣∣eiλ0t
∣∣2 = n/2,

we have D2
n ∼ 1

2n. An approximate 95 %-confidence interval for β1 is therefore
given by

β̂LSE ± 2
√

2 · 2πfe(λ0)n
− 1

2 = 0.6 ± 2
√

31.9n− 1
2 = [0.64,1.36].

This is shown in Fig. 7.2 as shaded area for the trend function.

A mixed result can also be obtained. If (7.15) holds for j = 1, . . . , k and (7.16)
for j = k + 1, then, by setting

D̃n = diag
(‖x·1‖, . . . ,‖x·k‖,‖x·k+1‖nd, . . . ,‖x·p‖nd

)
,



570 7 Statistical Inference for Nonstationary Processes

the asymptotic covariance matrix is of the form

VLSE =
(

V1 0
0 V2

)

where V1 is as in Theorem 7.3 and V2 as in 7.4.
The derivation of the asymptotic variance of β̂BLUE is a more challenging task.

The first question is in how far formula (7.14) may be carried over to the long-
memory case. The problem is that the integral

∫
f −1

e (λ) dM(λ) may be zero. More
specifically, suppose that Mjj (0+) − Mjj (0) = 1. This implies dMjl(λ) = 0 for all
λ �= 0 and j , l = 1, . . . , p (see (7.11) and (7.12)) so that

∫
f −1

e (λ) dM(λ) = 0 and
the inverse does not exist. Therefore, we have to distinguish between the cases 2a
(7.17) and 2b (7.18), i.e. 0 < Mjj (0+) − Mjj (0) < 1 and Mjj (0+) − Mjj (0) = 1,
respectively. Under assumption (7.17), formula (7.14) indeed carries over to the
long-memory case. The same is true for case 1 (7.15).

Theorem 7.6 Let fe be as in Theorem 7.3, fe > 0 and M such that either (7.15)
or (7.17) holds for j = 1, . . . , p. Moreover, under (7.17) assume further that, for all
j = 1, . . . , p and a suitable δ > 1 − 2d ,

max
1≤t≤n

x2
tj

‖x·j‖2
= o

(
n−δ

)
.

Then (7.14) holds, i.e.

Dn var(β̂BLUE)Dn → VBLUE =
[

1

2π

∫ π

−π

1

fe(λ)
dM(λ)

]−1

. (7.25)

Proof For case 1 with Mjj (0+) − Mjj (0) = 0, the result follows by analogous
arguments as in the short-memory case because on {|λ| ≥ c} (with c arbitrary) fe

is continuous and such that 0 < f −1
e (λ) < ∞. For frequencies where dMjj (λ) > 0,

the function f −1
e (λ) is bounded away from zero.

Consider now case 2a, i.e. 0 < Mjj (0+) − Mjj (0) < 1. Since

Dn var(β̂BLUE)Dn = (
D−1

n XT Σ−1XD−1
n

)−1
,

we need to show that D−1
n XT Σ−1XD−1

n converges to (2π)−1
∫

f −1
e (λ) dM(λ).

The essential problem is that we have to deal with the inverse of the covariance
matrix. It can be shown by some extended algebra that indeed

D−1
n XT

(
Σ−1 − An

)
XD−1

n → 0 (7.26)

where An = [ajl]j,l=1,...,n has the elements

ajl = 1

(2π)2

∫ π

−π

ei(j−l)λ 1

fe(λ)
dλ.
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Showing (7.26) is the main difficulty of the proof (see Yajima 1991 for details).
Using this approximation, we obtain for Cn = [c(n)

j l ]j,l=1,...,p = D−1
n XT AnXD−1

n ,

c
(n)
j l =

n∑

t,s=1

xtj

‖x·j‖
xtl

‖x·l‖
∫ π

−π

ei(j−l)λg(λ)dλ =
∫ π

−π

g(λ)dM
(n)
jl (λ)

where 2πg(λ) = 1/fe(λ). Since g(λ) ∈ C[−π,π] and M(n) converges weakly to M ,
this leads to

lim
n→∞ c

(n)
j l =

∫ π

−π

g(λ)dM(λ) = 1

2π

∫ π

−π

1

fe(λ)
dMjl(λ). �

This result means that if the regression spectral distribution is not completely
concentrated at the origin (cases 1 and 2a), then the pole of fe at zero does not
disturb the asymptotic covariance matrix of β̂BLUE. In contrast, in order that the
asymptotic covariance matrix of β̂LSE is unaffected by the pole of fe, M must not
have any mass at the origin. What happens otherwise is illustrated in Theorem 7.4.

A general result for β̂BLUE under condition (7.18) does not seem to be available
currently. For polynomial regression, Yajima derived the following expression.

Theorem 7.7 Let fe be as in Theorem 7.3, fe > 0 and xtj = t j−1 (j = 1, . . . , p).
Then

n−2dDn var(β̂BLUE)Dn → VBLUE (7.27)

where VBLUE = 2πcf W−1 and W = [wjl]j,l=1,...,p with

wjl =
√

(2j − 1)(2l − 1)

j + l − 1 − 2d

Γ (j − d)Γ (l − d)

Γ (j − 2d)Γ (l − 2d)
. (7.28)

Note that, as for the LSE in case 2, the asymptotic covariance matrix V in (7.27)
does not depend on the shape of fe outside the origin.

Example 7.9 For Yt = μ + et = β0 + et with et generated by any stationary long-
memory process with long-memory parameter d and a constant cf , we have

W = w11 = 1

1 − 2d

[
Γ (1 − d)

Γ (1 − 2d)

]2

= Γ 2(1 − d)

Γ (1 − 2d)Γ (2 − 2d)

so that

VBLUE = 2πcf W−1 = 2πcf

Γ (1 − 2d)Γ (2 − 2d)

Γ 2(1 − d)
.

In comparison, for the LSE which is the sample mean ȳ, R(0) = 1 and

VLSE = 2πcf

Γ (1 − 2d)

Γ (d)Γ (1 − d)

∫ 1

0

∫ 1

0
|x − y|2d−1 dy dx
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with
∫ 1

0

∫ 1

0
|x − y|2d−1 dy dx = 2

2d(2d + 1)
.

Thus,

VLSE = 2πcf

Γ (1 − 2d)

d(2d + 1)Γ (d)Γ (1 − d)
.

Note that in Sect. 1.3.1 we derived the asymptotic variance of the sample mean to
be equal to

ν(d)cf = cf

2Γ (1 − 2d) sinπd

d(2d + 1)
.

This is indeed the same as the previous formula because

Γ (d)Γ (1 − d) = π

sinπd
.

The asymptotic relative efficiency of the LSE compared with the BLUE is equal to

e(d) = VBLUE

VLSE
= (2d + 1)Γ (2 − 2d)Γ (d + 1)

Γ (1 − d)
. (7.29)

This formula was first obtained by Adenstedt (1974) (also see Samarov and Taqqu
1988 and Beran and Künsch 1985), and holds for the whole range −1/2 < d < 1/2.
We refer to the discussion in Sect. 5.2.2.

Example 7.10 Next, consider a linear trend model Yt = β0 + β1t + et with et gen-
erated by any stationary long-memory process. Then

w11 = 1

1 − 2d

[
Γ (1 − d)

Γ (1 − 2d)

]2

,

w22 = 3

3 − 2d

[
Γ (2 − d)

Γ (2 − 2d)

]2

= 3(1 − d)2

(3 − 2d)(1 − 2d)
w11

and

w12 = w21 =
√

3

2 − 2d

Γ (1 − d)Γ (2 − d)

Γ (1 − 2d)Γ (2 − 2d)

=
√

3(1 − d)

2 − 2d
w11.

Thus

W = w11

(
1

√
3(1−d)
2−2d√

3(1−d)
2−2d

3(1−d)2

(3−2d)(1−2d)

)
.
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Fig. 7.3 Relative asymptotic
efficiency e(d) =
det(VBLUE)/det(VLSE) of the
least squares estimator in a
linear regression model
Yt = β0 + β1t + et (full
linear) and a regression
model with β1 = 0, i.e.
Yt = β0 + et (dotted line)

The inverse of W is equal to

W−1 = w−1
11

(
4(1 − d)2 − 2√

3
(3 − 2d)(1 − 2d)

− 2√
3
(3 − 2d)(1 − 2d) 4

3 (1 − 2d)(3 − 2d)

)
.

The determinant of W−1 is equal to

det
(
W−1)= w−2

11

(
4 − 32

3
d + 16

3
d2
)

so that

det(VBLUE) =
(

2πcf

w11

)2(
4 − 32

3
d + 16

3
d2
)

.

By similar calculations, one can derive an explicit formula for VLSE and the relative
efficiency

e(d) = det(VBLUE)

det(VLSE)
= (3 + 2d)(3 − 2d)

36

[
(1 + 2d)Γ (1 + d)Γ (3 − 2d)

Γ (2 − d)

]2

.

(Note that there is a typo in Yajima 1988 in that 1/e(d) instead of e(d) is given.)
Figure 7.3 shows slightly larger efficiency losses than for the previous case where
β0 = 0. However, qualitatively the behaviour of e(d) is quite similar.

Example 7.11 Let Yt = β1(1 + cosλ0t) + et . Then this corresponds to case 2a with
0 < M(0+) − M(0) < 1. Thus, Theorem 7.6 can be applied.

The next question is the comparison of the asymptotic covariance matrices for
β̂LSE and β̂BLUE. The previous examples illustrated that for polynomial regression
β̂LSE is asymptotically efficient under short memory whereas this is not the case
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when d �= 0. In how far is this a general phenomenon? The short-memory case has
been considered by Grenander (1954) (also see Grenander and Rosenblatt 1957).
An essential notion in this context is the so-called regression spectrum:

Definition 7.1 Let M be a regression spectral distribution function. Then

S = {
λ ∈ [−π,π] : dM(λ) > 0

}

is called the regression spectrum.

Each (regression) spectral distribution function M can be decomposed in the
following way.

Lemma 7.1 There exist disjoint subsets S1, . . . , Sm (for some m ≤ p) such that

S =
m⋃

j=1

Sj

and

M(Sj )M
−1(π)M(Sj ) = M(Sj ),

M(Sj )M
−1(π)M(Sl) = 0 (j �= l)

where M(Sj ) = ∫
Sj

dM(λ) and M(π) = ∫ π

−π
dM(λ).

Lemma 7.1 leads to the following definition.

Definition 7.2 The sets Sj are called the elements of the regression spectrum.

Using these definitions, Grenander derived the following necessary and sufficient
conditions for the asymptotic efficiency of the LSE.

Theorem 7.8 Let fe ∈ C[−π,π], fe > 0, Dn = diag(‖x·1‖, . . . ,‖x·p‖), assume
that (R1)–(R4) hold and denote by S1, . . . , Sm the elements of the regression spec-
trum. Then

lim
n→∞ var(β̂BLUE)

[
var(β̂LSE)

]−1 = I

if and only if there are constants cj (j = 1, . . . ,m) such that fe(λ) ≡ cj for λ ∈ Sj

(i.e. fe is constant on each Sj ). Moreover, this is equivalent to

|S| ≤ p,
∑

λ∈S

rank
{
dM(λ)

}= p.

This is a classical result (see, e.g. Grenander and Rosenblatt 1957), and we there-
fore only outline the basic idea only. Suppose that fe is indeed constant on each
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element of the regression spectrum. Then Theorems 7.1 and 7.2 imply

var(β̂BLUE)
[
var(β̂LSE)

]−1

∼ 2πR−1(0)

∫
fe(λ)dM(λ)R−1(0) · 1

2π

∫
1

fe(λ)
dM(λ).

Using R(0) = M(π) and Lemma 7.1, the right-hand side is equal to

M−1(π)

m∑

j,l=1

cjM(Sj )M
−1(π)M(Sk)c

−1
k

= M−1(π)

m∑

j=1

M(Sj ) = M−1(π)M(π) = I.

The question is under which circumstances Theorem 7.8 can be carried over to the
case where d �= 0. As we saw in the examples discussed previously, Theorem 7.8 no
longer holds for polynomial regression, whereas β̂LSE turns out to be fully efficient
for a periodic component. The essential argument in Theorem 7.8 is based on for-
mulas (7.13) and (7.14) for the asymptotic covariance matrix of β̂LSE and β̂BLUE,
respectively. However, it is assumed implicitly that all quantities involved are finite.
This is no longer the case, if fe has a pole at the origin and dM(0) > 0. It can there-
fore be concluded that the LSE is asymptotically efficient, compared to the BLUE,
if Theorems 7.3 and 7.6 are applicable and dM(0) = 0:

Theorem 7.9 Let fe and xtj be as in Theorem 7.6 and Dn = diag(‖x·1‖, . . . ,
‖x−p‖). Assume that (R1)–(R4) hold and denote by S1, . . . , Sm the elements of the
regression spectrum S =⋃

Sj (m ≤ p). Then

lim
n→∞ var(β̂BLUE)

[
var(β̂LSE)

]−1 = I

if and only if Sj = {λj } with λj ∈ (0,π] and

∑

λ∈S

rank
{
dM(λ)

}= p.

Formally, the result is due to the fact that if dM(0) < 1, then there is at least one
nonzero frequency where dM(λ) > 0. The integral

∫
f −1

e (λ) dM(λ) is therefore no
longer zero and the usual formula for the asymptotic covariance matrix (which re-
lies on the inverse of this integral) is applicable. Thus, essentially the LSE does not
lose efficiency as long as the regression spectrum does not include the frequency
zero. A loss of efficiency usually occurs, if dM(0) > 0. The intuitive reason is that
in this case both the regression function and the residual process have a strong zero-
frequency component. Incorporating the covariance structure in the estimator re-
lieves this problem up to a certain extent. In fact, comparing Theorems 7.2 and 7.6,
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in cases where 0 < dM(0) < 1, this even leads to an improvement of the rate of
convergence, matching the rate under short range dependence! This is illustrated by
the following example.

Example 7.12 Let Yt = β1(−1)t +et with long-memory residuals et as above. Then
dM(±π) = 1

2 and zero otherwise, Dn = √
n and R(0) = 1. Thus, by Theorem 7.9,

the LSE is asymptotically efficient. The asymptotic variance is given by

n · var(β̂1) → V = 2π

∫ π

−π

fe(λ)dM(λ) = 2πfe(π).

For instance, if et is a FARIMA(0, d,0) process with variance one, then

V = ∣∣1 − e−iπ
∣∣−2d Γ 2(1 − d)

Γ (1 − 2d)
= 2−2d Γ 2(1 − d)

Γ (1 − 2d)
.

This is a monotonically decreasing function of d . In particular, for d = 0, we have
V = 1 whereas, for instance, for d = 0.4 one obtains V = 0.28. The intuitive ex-
planation for the better performance under long memory is that the sample paths of
et tend to be “smoother” so that it is easier to distinguish them from the alternating
function xt = (−1)t .

In summary, one can say that the efficiency of the LSE compared to the BLUE
very much depends on the combination of the long-memory properties of ei and the
type of regression functions xtj . A practical problem with the BLUE is, however,
that the weights depend on the autocovariance function γe of the residual process.
For observed data, γe is usually unknown and has to be estimated from the same
data. Thus, in cases where only minor efficiency gains are to be expected, the LSE
is preferred. In other cases, the BLUE is much more efficient so that one would
like to use it. However, since γe has to be estimated, a balance between efficiency
gain due to weighing by Σ−1 and additional inaccuracy induced by estimation of
Σ has to be found. A further complication is that for large sample sizes and strong
long memory inversion of Σ may be computationally difficult. As an alternative,
Dahlhaus (1995) suggested using explicit weights without the need of inverting an
n×n matrix. In particular, for polynomial regression with xtj = t j−1 (j = 1, . . . , p)
he shows that the weighted estimator

β̂G = (
XT GX

)−1
XT Gy(n)

with

G
p×p

= diag
(
g(t1), g(t2), . . . , g(tn)

)
,

ti = i/n and g(u) = u−d(1 − u)−d has the same asymptotic covariance matrix as
the BLUE. In applications, one would use, for instance, gn(u) = u−d(1−u− 1

2n)−d

to avoid g(1) = ∞. This result can be generated to regressors generated by Jacobi
polynomials (see Dahlhaus 1995 for details; also see Sect. 3.1.4 for the definition of
Jacobi polynomials).
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7.1.3 Robust Linear Regression

Consider

Yt =
p∑

j=1

βjxtj + et = x′
t ·β + et (t = 1,2, . . . , n) (7.30)

as in (7.1) and a long-memory residual process as in (7.2). Denote by pe the proba-
bility density function of the marginal distribution of et . A standard class of robust
estimators of β (robust in the y-direction, see Hampel et al. 1986) can be defined as
M-estimators, i.e. as solutions of p equations

n∑

t=1

ψ
(
Yt − x′

t ·β̂
)
xt · = 0

p×1
(7.31)

where ψ is such that E[ψ(Yt − x′
t ·β)xt ·] = 0. By similar arguments as for location

estimation, it can be shown that the limit theorem (Theorem 4.33) for the empirical
process implies asymptotic equivalence of any M-estimator and the LSE. If ψ is
continuously differentiable, then this can be seen even more directly since (7.31)
and consistency imply

n∑

t=1

ψ
(
Yt − x′

t ·β
)
xt · −

n∑

t=1

ψ̇
(
Yt − x′

t ·β
)
xt ·x′

t ·(β̂ − β) ≈ 0

so that

β̂ − β ≈ {
E
[
ψ̇(e)

]
X′X

}−1 1

n

n∑

t=1

ψ(et )xt ·. (7.32)

If we can use the approximation

ψ(et ) = −
∫

ψ(u)p′
e(u) du · et + rt = −aapp,1et + rt

with aapp,1 = E[ψ̇(et )] and rt in (7.32) is negligible (for instance, when a unique
Appell expansion is valid), then

β̂ − β ≈ (
X′X

)−1 1

n

n∑

t=1

xt ·et = (
X′X

)−1
X′e(n) = β̂LSE − β.

For more general, not necessarily differentiable, functions ψ , the limit theorem for
the empirical process has to be applied more directly, along the lines of the proof
of Theorem 5.1. A simplified version of the result in Giraitis et al. (1996a) can be
stated as follows:
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Theorem 7.10 Let ψ be nondecreasing, right-continuous and bounded. Further-
more, suppose that (X′X)−1 exists for n large enough,

√
n max

1≤t≤n

∣∣x′
t ·
(
X′X

)− 1
2
∣∣= O(1), (7.33)

et =∑
aj εt−j is a linear process with aj ∼ caj

d−1 (0 < d < 1
2 ), E[|εt |k] < ∞ for

all k ∈ N and denote by I the p × p identity matrix. Then

var(β̂LSE)
[
var(β̂)

]−1 → I
p×p

and
[
var(β̂LSE)

]− 1
2 (β̂ − β̂LSE) → 0.

Example 7.13 For polynomial regression

ckl = (
D

− 1
2

n X′XD
− 1

2
n

)
kl

= (X′X)kl

‖x·k(n)‖‖x·l‖ ∼
√

(2k − 1)(2l − 1)

k + l − 1

so that
∣∣x′

t ·
(
X′X

)− 1
2
∣∣2 = x′

t ·
(
X′X

)−1
xt · ∼ x′

t ·D−1
n C−1D−1

n xt ·

= 1′C−11 ≤ p2 max
1≤j,l≤p

|cjl |.

Thus (7.33) holds and the theorem can be applied, for instance, if et are generated
by a FARIMA(0, d,0) process, then Theorem 7.10 holds.

7.1.4 Optimal Deterministic Designs

So far, it was assumed that the regression functions were evaluated at equidistant
(time) points. For instance, for polynomial regression we considered xij = ij−1 (i =
1, . . . , n). Replacing the diagonal matrix Dn = diag(n

1
2 , n

3
2 , . . . , n

2p−1
2 ) by D̃n = n ·

diag(1,1, . . . ,1) we may consider an analogous regression with xij = t
j−1
i = gj (ti)

where ti = i/n. In some situations, it is possible to choose the points ti where the
regression functions are observed. This can be modelled as follows. For a given
T ∈ R, let

h : [0,1] → [−T ,T ] (7.34)

be a function such that h(t) can be written as a quantile h(t) = F−1
h (t) of a distribu-

tion function Fh(x) = ∫ x

−∞ ϕ(u)du. Then it is assumed that the regression functions
are generated at points

ti,n = h

(
i − 1

n − 1

)
.
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The collection of all points,

Ξn = {t1,n, . . . , tn,n} = {
h(0), . . . , h(1)

}
,

is called the experimental design of the regression model. To obtain asymptotic
results regarding the variance of β̂ , observations are assumed to be given by

Yt = β1g1(t) + · · · + βpgp(t) + en(t) (t = 1, . . . , n) (7.35)

where en(t) = e
(1)
n (t) + e

(2)
n (t), e

(1)
n and e

(1)
n are zero mean processes, independent

of each other, with variances σ 2
j (j = 1,2), e

(1)
n (t) being uncorrelated and e

(2)
n (t)

having autocorrelations

corr
(
e(2)
n (t), e(2)

n (t + k)
)= ρn(k) = ρ(nk) (7.36)

with ρ(u) ∼ cρu2d−1 (0 < d < 1
2 ) as u → ∞. Moreover, gj are “explanatory” lin-

early independent functions. We will use the notation

κ = σ 2
2

σ 2
1 + σ 2

2

.

Note that (7.36) is equivalent to letting T in (7.34) tend to infinity while keeping ρn

fixed. By similar arguments as in the previous sections, it can be shown that, under
suitable regularity conditions, the asymptotic covariance matrix of the least squares
estimator is given by Dette et al. (2009)

n1−2d · var(β̂LSE) = 2σ 2cρκR−1
h (0)VhR

−1
h (0) (7.37)

= 2σ 2cρκΨ (ϕ) (7.38)

where

[
Rh(0)

]
j l

=
∫ 1

0
gj

(
h(u)

)
gl

(
h(u)

)
du,

[Vh]j,l =
∫ 1

0
gj

(
h(u)

)
gl

(
h(u)

)
Q
(
h′(u)

)
du

and

Q(v) = c−1
ρ lim

n→∞n−2d

n∑

j=1

ρ(jv) = v2d−1

2d
.

Note in particular, that for an equidistant design with h(u) = (2u − 1)T (and hence
h′(u) ≡ 2T ), (7.37) gives back the asymptotic formulas in the previous section.
An asymptotically optimal design is obtained by minimizing the function Ψ with
respect to the design density ϕ.
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Example 7.14 For Yt = βt + en(t), Dette et al. (2009) derived explicit expressions
for the optimal design density ϕopt. Essentially, as d approaches 0, ϕopt tends to
the uniform distribution on [−T ,T ]. This result is directly related to the fact that
for short-memory processes the LSE is asymptotically efficient. Recall that for the
same regression (however, with t ∈ [0,1]), w(u) = u−d(1 − u)−d was the weight
function yielding the same efficiency as the BLUE (Dahlhaus 1995). As d → 0,
w also converges to a constant function w ≡ 1. On the other hand, when d ap-
proaches 1

2 , then the optimal design density ϕopt puts more and more weight close
to the left and right end of the interval. This is in correspondence with Dahlhaus’
optimal weight function w(u) in the equidistant case to having increasingly steeper
poles at the ends of the interval. Intuitively, this means that one tries to estimate β

from two parts of the series (the beginning and the end) that are as far apart in time
as possible—thus avoiding too much correlation.

7.2 Parametric Linear Random-Design Regression

In this section, we address the problem of parameter estimation in a linear regression
model

Yt =
p∑

j=1

βjXtj + et (t = 1, . . . , n), (7.39)

where the explanatory variables Xt,j are random, and the processes Xt,j (t ∈ Z)
and/or et (t ∈ Z) may be strongly dependent or nonstationary. In Sect. 7.2.1, we
start with two examples that illustrate possible effects of long memory in errors
and predictors on parameter estimation in the random design case. These examples
will provide some intuition for asymptotic results on contrast estimation. Estimation
of contrasts is, historically, one of the first illustrations of the phenomenon that
estimators in random design regression tend to perform better than in a typical fixed
design case (Künsch et al. 1993, also see Beran 1994a, Chap. 9).

In Sect. 7.2.2, we focus on the heteroskedastic case

Yt = β0 + β1Xt + σ(Xt )et ,

where σ(·) is a positive function. We assume that predictors and errors are station-
ary with possible long memory, independent from each other. The general theory for
the LSE is based on randomly weighted partial sums (see Sect. 7.2.3) as presented
in Kulik and Wichelhaus (2012), see also Guo and Koul (2008). Other approaches,
tailored for the homoscedastic case σ(·) ≡ σ are presented, following Robinson
and Hidalgo (1997) and Choy and Taniguchi (2001). Further results can be found
in Koul (1992), Koul and Mukherjee (1993), Giraitis et al. (1996a), Koul and Sur-
gailis (1997, 2000), Hallin et al. (1999), Chung (2002), Koul et al. (2004), Lazarova
(2005).

Section 7.2.4 addresses the problem of spurious correlation between nonstation-
ary series Xt , Yt that are independent of each other. In the case of a random walk and
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related integrated processes, it is well known that the sample correlation between
two independent series does not converge to zero (see, e.g. Granger and Newbold
1974 and Phillips 1986). The same is true for fractionally integrated processes. We
summarize detailed results including various combinations of nonstationarity, sta-
tionarity and long-range dependence as derived in Tsay and Chung (2000). Related
results have been established in Phillips (1986, 1995), Phillips and Loretan (1991),
Marmol (1995), Jeganathan (1999), Robinson and Marinucci (2003, 2003), Buch-
mann and Chan (2007).

Finally, Sect. 7.2.5 briefly addresses the problem of fractional cointegration. The
idea of cointegration dates back to Granger (1981, 1983) and Engle and Granger
(1987). In fractional cointegration, the reduction of the degree of integration is al-
lowed to assume noninteger values. In some situations, this can lead to the lack of
consistency of the LSE so that modifications are required (see, e.g. Robinson 1994a,
1994b and Marinucci 2000). Because the issue is of major interest in economics,
there is meanwhile an extended literature. Important references are, for instance,
Marinucci and Robinson (1999, 2001), Velasco (1999a, 1999b, 2003), Chen and
Hurvich (2003a, 2003b, 2006) among others.

7.2.1 Some Examples, Estimation of Contrasts

As we saw in the previous section, the rate of convergence of (weighted) least
squares estimators of β depends on the properties of the explanatory variables, i.e.
on the regression design matrix X. If the explanatory themselves are random, then
this means that the properties of β̂ depend on the distribution of Xtj (j = 1, . . . , p).
Relevant are mainly two questions:

1. Is μj = E(Xtj ) zero?
2. What is the temporal dependence structure of Xtj ?

This is illustrated by the following examples.

Example 7.15 Let Yt = βXt + et with Xt uncorrelated, E(Xt) = 0, var(Xt ) =
σ 2

X < ∞, et a zero mean stationary process with spectral density fe(λ) ∼ cf |λ|−2d

(0 < d < 1
2 ) and independent of the process Xt . Then, by the law of large numbers,

the asymptotic distribution of

β̂LSE =
∑n

t=1 XtYt∑
X2

t

∼ σ−2
X n−1

n∑

t=1

XtYt

is the same as that of

σ−2
X n−1

n∑

t=1

XtYt .
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Furthermore,

var

(
σ−2

X n−1
n∑

t=1

XtYt

)
= var

(
σ−2

X n−1
n∑

t=1

Xtet

)
∼ σ−4

X n−2 · nσ 2
Xσ 2

e = σ 2
e

σ 2
X

n−1.

Thus, Xt having zero mean and being uncorrelated removes a possible effect of
(long-range) dependence in the residual process.

Example 7.16 Consider the same process as in the previous example; however, with
μ = E(Xt) �= 0. Then the asymptotic distribution of β̂LSE is the same as that of

(
σX + μ2

X

)−2
n−1

n∑

t=1

XtYt .

Furthermore,

var

(
n∑

t=1

XtYt

)
=

n∑

t,s=1

E[etesXtXs]

= 2μ2
X

n−1∑

k=1

(
n − |k|)γe(k) + (

σX + μ2
X

)
nσ 2

e

∼ μ2
X · const · n2d+1 + o

(
n2d+1).

Hence, even though Xt are uncorrelated, the possible long-range dependence stem-
ming from the residuals is not removed.

Example 7.17 Let Xt = (−1)Zt where Zt are i.i.d. Bernoulli random variables with
P(Zt = 1) = P(Zt = 0) = 1

2 and independent of et . Then σ 2
X = 1 and

var(β̂LSE) ∼ σ 2
e n−1 = n−1

∫ π

−π

fe(λ) dλ.

It is in particular interesting to compare this with the asymptotic variance of β̂LSE
for the fixed-design regression with Xt = (−1)t = cosπt where, from Theorem 7.3,
one obtains n−12πfe(π). If fe achieves its minimum at λ = π , then this means that
alternating the sign systematically yields a better estimate of β than if assigning
the sign purely randomly. For instance, for a fractional ARIMA(0, d,0) model with
d > 0, fe(π) coincides with minimum of fe whereas the contrary is true for d < 0.
For d = 0, fe is constant so that 2πfe(π) and

∫ π

−π
fe(λ) dλ are the same.

From the applied point of view, a simple principle that may be deduced from
these examples is that estimation of ‘absolute’ constants is more difficult than esti-
mation of contrasts (for the definition of contrasts, see (7.43)). Or in other words, it
is easier to compare constants than to estimate their individual values. This has been
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known to applied statisticians for a long time. In the context of long-memory pro-
cesses and simple experimental designs, this principle can be formulated explicitly
as follows (see Künsch et al. 1993). Suppose p treatments are assigned randomly
to n observational units that are observed in a certain temporal (or other) sequence.
Assuming an additive effect of the treatments leads to the regression model

Yt =
p∑

j=1

βjxt,j + et = xT
t · β + et (7.40)

where β = (β1, . . . , βp)T , βj is the j th treatment effect and et is a zero mean pro-
cess with spectral density fe ∼ ce|λ|−2d (λ → 0). The explanatory variables are
defined by

xt,j = 1{at = j}
with at ∈ {1, . . . , p} defining the treatment used. The question is now in how far
long memory in the residuals affects the estimation of β and, in particular, whether
the least squares estimator is asymptotically efficient. Furthermore, one may ask
whether there are designs (random allocations of treatments) that improve the accu-
racy of estimates.

Künsch et al. (1993) considered the following standard designs:

(a) Complete randomization: at are i.i.d. with

P(at = j) = πj .

(b) Restricted randomization: Given n, the number of assignments to treatment j

(j = 1, . . . , p) is fixed, i.e. n = n1 + · · · + np and

n∑

t=1

xt,j = nj ,

and all possible allocations of this type have the same probability

P(a1, . . . , an | n1, . . . , np) = p(a1, . . . , an) = n!
n1! · · · np! .

(c) Complete blockwise randomization: Restricted randomization within blocks,
i.e. define b = [n/l] blocks of length l,

Bk = {
(k − 1)l + 1, . . . , kl

}

and, within each block (and independently of other blocks), apply restricted
randomization subject to

∑

t∈Bk

xt,j = lj ≥ 1,

l = l1 + · · · + lp.
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The main difference between (a) and (b) is that in (a) nj (j = 1, . . . , p) are ran-
dom whereas they are fixed in (b). However, in (a) nj/n converges to πj almost
surely so that for n large enough, nj is “in the neighbourhood” of the fixed num-
ber nπj . The randomization in case (c) is even more restricted than in (b) because
the number of assignments to treatment j is also fixed within each block. A typical
choice of l and lj in (c) is l = p and lj = 1.

In vector form, model (7.40) can be written as

Y(n) = Xβ + e(n) (7.41)

with Y(n) = (Y1, . . . , Yn)
T ,

X = (x·1, . . . , x·p) =
⎛

⎜⎝
xT

1·
...

xT
n·

⎞

⎟⎠ ,

and column and row vectors x·j = (x1j , . . . , xnj )
T and xt · = (xt1, . . . , xtj )

T , respec-
tively such that

1T xt · =
p∑

j=1

xtj = 1, 1T x·j =
n∑

t=1

xtj = nj .

By definition, column vectors are orthogonal, i.e.

〈x·j , x·l〉 =
n∑

t=1

xtj xtl = nj · δjl

so that

XT X =

⎛

⎜⎜⎜⎜⎝

n1 0 · · · 0

0 n2
. . .

...
...

. . .
. . . 0

0 · · · 0 np

⎞

⎟⎟⎟⎟⎠
.

Therefore, the least squares estimator of β can be written in a simple form

β̂LSE = (
XT X

)−1
XT y(n) =

⎛

⎜⎝
n−1

1

∑n
t=1 xt1yt

...

n−1
p

∑n
t=1 xtpyt

⎞

⎟⎠ . (7.42)

For the BLUE, we have the usual formula

β̂BLUE = (
XT Σ−1X

)−1
XT Σ−1y(n).
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Now, instead of β itself, we are interested in estimation of contrasts. A contrast is
defined by

c = ηT β =
p∑

j=1

ηjβj , (7.43)

where η is a deterministic vector such that

1T η =
p∑

j=1

ηj = 0.

The variance of any estimated contrast can be written in terms of variances of esti-
mates of the simple contrasts

cjk = βj − βk.

It is therefore sufficient to study the variance of ĉjk = β̂j − β̂k . Since usually in-
ference is carried out conditionally on the given (randomly generated) design, one
has to consider the asymptotic behaviour of the conditional variance Vn(ĉjk | X) =
var(ĉjk | X). Comparing the LSE and the BLUE of cjk , the corresponding condi-
tional variances Vn(ĉjk;LSE | X) and Vn(ĉjk:BLUE | X) will be denoted by Vn,LSE(X)

and Vn,BLUE(X), respectively. The following result can be obtained by relatively
simple approximations of the second moment.

Theorem 7.11 Let fe satisfy one of the following conditions: (i) fe is piecewise
continuous and 0 < c ≤ fe ≤ C for suitable finite constants c and C, or (ii) fe(λ) =
L(λ)|λ|−2d with 0 < d < 1

2 , L(·) continuous, of bounded variation and 0 < c ≤
L ≤ C. Then, under complete randomization (design (a)), we have, as n → ∞,

nVn,LSE(X) →
a.s.

σ 2
e

(
1

πj

+ 1

πk

)
,

nVn,BLUE(X) →
a.s.

σ 2
e

(
1

πj

+ 1

πk

)[
σ 2

e

(2π)2

∫ π

−π

1

fe(λ)
dλ

]−1

.

(7.44)

The first remarkable result in this theorem is that contrasts can be estimated with
the same rate of convergence as under independence, since Vn = O(n−1). This is
in sharp contrast to estimates of the slope parameters βj themselves. Since the ex-
pected value of the explanatory variables is not zero, the rate of convergence of
β̂j,LSE and β̂k,BLUE is slower, namely var(β̂) ∼ const ·n2d−1. In contrast to the case
of uncorrelated residuals, however, β̂j,LSE and ĉjk,LSE loses efficiency compared to
β̂j,BLUE and ĉjk,BLUE. This is even true for cases where d = 0 but fe is not constant.
Note that this is very much in contrast to fixed-design regression under Grenander’s
conditions. There, under short memory, β̂j,LSE (and hence also ĉjk,LSE) does not
lose efficiency. Here, under the given random design, conditionally on X (and hence
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also unconditionally), the asymptotic efficiency of ĉjk,LSE = β̂j,LSE − β̂k,LSE com-
pared to the best linear unbiased estimator ĉjk,BLUE = β̂j,BLUE − β̂k,BLUE can be
written as

eff (ĉjk,LSE) =
[

σ 2
e

(2π)2

∫ π

−π

1

fe(λ)
dλ

]−1

.

Note that although the result was derived originally for d > 0 only and d = 0 under
the given assumptions, analogous arguments lead to (7.44) for d < 0.

Example 7.18 For et generated by a FARIMA(0, d,0) process with variance
σ 2

e = 1, we have

fe(λ) = 1

2π

∣∣1 − e−iλ
∣∣−2d · Γ 2(1 − d)

Γ (1 − 2d)
,

1

fe(λ)
= 2π

∣∣1 − e−iλ
∣∣2d · Γ (1 − 2d)

Γ 2(1 − d)

= (2π)2 Γ (1 − 2d)

Γ 2(1 − d)
· 1

2π

∣∣1 − e−iλ
∣∣2d

.

Using the equality
∫ |1 − e−iλ|2d dλ = 2πΓ (1 + 2d)/Γ 2(1 + d), we obtain

1

(2π)2

∫ π

−π

1

fe(λ)
dλ = Γ (1 − 2d)

Γ 2(1 − d)

∫ π

−π

1

2π

∣∣1 − e−iλ
∣∣2d

dλ

= Γ (1 − 2d)Γ (1 + 2d)

[Γ (1 − d)Γ (1 + d)]2
,

and the relative asymptotic efficiency

eff (ĉjk,LSE) = [Γ (1 − d)Γ (1 + d)]2

Γ (1 − 2d)Γ (1 + 2d)
.

Figure 7.4 shows eff (ĉjk,LSE) for all values of d . Towards the two extremes
d → ± 1

2 , the efficiency converges to zero. Thus, although the LSE keeps the same
rate of convergence, it may be worthwhile using the BLUE, when d is far away from
zero.

Similarly, for restricted and blockwise randomisation (designs (b) and (c)) it can
be shown that the same asymptotic formulas for Vn,LSE hold as under independence
(see Künsch et al. 1993). For Vn,BLUE this is conjectured to be true.

A possibility of improving the variance of the LSE is to apply blockwise ran-
domization. The reason is that, under design (c), we have
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Fig. 7.4 Relative asymptotic
efficiency of the LSE of a
contrast βj − βk compared to
the BLUE, as a function of d .
The model considered here is
a FARIMA(0, d,0) process

E[Vn,LSE] =
(

1

nj

+ 1

nk

)[
σ 2

e − 2

l − 1

l−1∑

k=1

(
1 − k

l

)
γe(k)

]

=
(

1

nj

+ 1

nk

)
σ 2

l .

If the autocovariance function γe(k) is strictly positive and (strictly) monotonically
decreasing with limit zero, then σ 2

l is strictly increasing in l and σ 2
l → σ 2

e (see, e.g.
Cochran 1946). Therefore, the smallest variance is expected under blockwise ran-
domization with blocks of length l = p. Note, however, that this does not mean nec-
essarily that, under this design, the efficiency of the LSE (compared to the BLUE)
is better.

7.2.2 Some General Results and the Heteroskedastic Case

In this section, we consider a parametric random design regression model given by

Yt = β0 + β1Xt + σ(Xt )et (t = 1, . . . , n), (7.45)

where σ(·) is a positive, deterministic function. As illustrated above, under random
design, regression estimators may have a faster rate of convergence than in most
fixed design cases. General results including the heteroskedastic case with σ(·) not
constant can be derived, for instance, under the following conditions:

• (P1) The sequence Xt (t ∈ Z) is i.i.d.;
• (P2) The sequence Xt (t ∈ Z) is a linear process

Xt = μX +
∞∑

j=0

bj ξt−j ,
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where ξt (t ∈ Z) are centred, i.i.d. random variables such that var(Xt ) = σ 2
X = 1.

Moreover, we assume bj = jdX−1Lb(j), dX ∈ (0,1/2). Unless stated otherwise,
we assume μX = 0;

• (E1) The sequence et (t ∈ Z) is i.i.d.;
• (E2) The sequence et (t ∈ Z) is a linear process

et =
∞∑

j=0

aj εt−j ,

where εt (t ∈ Z) are centred, i.i.d. random variables, var(εt ) = σ 2
ε and aj =

jde−1La(j), de ∈ (0,1/2).

Let fX and fe be the spectral densities of Xt and et , respectively. Under (P2)
and (E2), we have fX(λ) = |λ|−2dXLfX

(λ−1), fe(λ) = |λ|−2deL
f̃
(λ−1), where the

functions LfX
and Lfe are slowly varying at infinity. Furthermore,

var

(
n−1

n∑

t=1

et

)
∼ n2de−1Le(n), var

(
n−1

n∑

t=1

Xt

)
∼ n2dX−1LX(n),

where

Le(n) = 2L2
a(n)

2de(2de + 1)
σ 2

ε

∫ ∞

0

(
u + u2)de−1

du = 2Γ (1 − 2de) sinπde

de(2de + 1)
Lfe (n),

(7.46)

LX(n) = 2L2
b(n)

2dX(2dX + 1)
σ 2

ξ

∫ ∞

0

(
u + u2)dX−1

du = 2Γ (1 − 2dX) sinπdX

dX(2dX + 1)
LfX

(n).

(7.47)

Recall also that (see Sect. 4.2.4)

nde−1L
−1/2
e (n)

n∑

t=1

et
d→ Z0, ndX−1L

−1/2
X (n)

n∑

t=1

Xt
d→ Z1, (7.48)

where Z0 and Z1 are standard normal random variables. Throughout this section, it
is also assumed that the sequences Xt and et (t ∈ Z) are mutually independent (the
results are not applicable otherwise, see Sect. 7.2.5). Thus, Z0 and Z1 are indepen-
dent. We recall also that

E[e0ek] = γe(k) = L2
a(k)σ 2

ε

∫ ∞

0

(
u + u2)de−1

du. (7.49)

We start our discussion with the classical least squares estimator (LSE), which
leads to

β̂1 − β1 = 1

V 2
n

1

n

n∑

t=1

Xtσ(Xt )et , (7.50)
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β̂0 − β0 = 1

n

n∑

t=1

σ(Xt )et , (7.51)

where

V 2
n = 1

n

n∑

t=1

X2
t .

If σ 2
X = 1, then the sample standard deviation Vn converges (in probability) to σX .

For the purpose of limit theorems, we can replace V 2
n by σ 2

X = 1 in the expression
for β̂1.

As we will see in Theorem 7.12, for stochastic regression, the rate of convergence
of β̂0 is always influenced by a possible memory in the errors et . However, the rate
of convergence of β̂1 depends properties of the regressors Xt (t ∈ Z), the errors et

(t ∈ Z) and on the function σ(·). We start with a simple example.

Example 7.19 Consider the homoskedastic linear regression model without inter-
cept,

Yt = β1Xt + et (t = 1, . . . , n), (7.52)

and assume that (P1) and (E2) hold. We note that

var

(
n−1

n∑

t=1

Xtet

)
= n−2

n∑

t,s=1

E[XtXs]E[et es] = n−1σ 2
e .

According to the law of large numbers, n−1∑n
t=1 X2

t

p→ σ 2
X = 1. Therefore, the

asymptotic behaviour of β̂1 − β1 is the same as that of n−1∑n
t=1 Xtet . The formula

for the variance suggests that β̂1 behaves as if the errors et were uncorrelated. We
expect that

√
n(β̂1 − β1) converges in distribution to a normal random variable; see

(7.58) of Theorem 7.13.

Example 7.20 We consider the heteroskedastic linear regression model without in-
tercept:

Yt = β1Xt + σ(Xt )et (t = 1, . . . , n). (7.53)

We assume again that (P1) and (E2) hold, and furthermore 0 �= E[σ(X1)X1] < ∞.
Then

Var

(
n−1

n∑

t=1

Xtσ(Xt )et

)
∼ E2[σ(X1)X1

]
n2de−1Le(n)

so that the rate of convergence of β̂1 is influenced by long memory in et .

Example 7.21 Consider the homoscedastic model without intercept (7.52) and as-
sume that the errors and predictors fulfill (E2) and (P2), respectively. If 2(de +
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dX) > 1

var

(
n−1

n∑

t=1

Xtet

)
= n−2

n∑

t,s=1

E[XtXs]E[et es]

= n−2
n−1∑

k=−(n−1)

(
n − |k|)γe(k)γX(k)

∼ n2(de+dX)−2Le(n)LX(n).

Otherwise, if 2(de + dX) < 1, then the variance is of order n−1. Thus, long mem-
ory in both errors and predictors may influence the limiting behaviour of β̂1; see
Theorem 7.12.

The complete convergence of the least squares estimators (7.51) and (7.50) is
characterized in the following two theorems. These theorems were proven in Guo
and Koul (2008) and Kulik and Wichelhaus (2012). The proof is given in Sect. 7.2.3
in a general context of randomly weighted partial sums.

Theorem 7.12 Consider the random design regression model (7.45) and let β̂1, β̂0
be least squares estimators defined in (7.50) and (7.51).

• Assume that (P1) or (P2), and (E1) hold. Then

√
n(β̂0 − β0)

d→
√

E
[
σ 2(X1)

]
σ 2

e Z0 (7.54)

and
√

n(β̂1 − β1)
d→
√

E
[
σ 2(X1)X

2
1

]
σ 2

e Z1, (7.55)

where Z0, Z1 are independent standard normal random variables.
• Assume that (P1) and (E2) hold. If E[σ(X1)X1] �= 0, then

n
1
2 −deL

−1/2
e (n)(β̂1 − β1)

d→ E
[
σ(X1)X1

]
Z0 (7.56)

and

n
1
2 −deL

−1/2
e (n)(β̂0 − β0)

d→ E
[
σ(X1)

]
Z1, (7.57)

where Z0, Z1 are independent standard normal random variables.
• Assume that (P2) and (E2) hold and that Xt , et are Gaussian. If E[σ(X1)X1] �= 0,

then (7.56) and (7.57) hold.

If E[σ(X1)X1] = 0, then the limiting behaviour of LS estimators changes.

Theorem 7.13 Consider the random design regression model (7.45) and let β̂1, β̂0
be LS estimators defined in (7.50) and (7.51). Assume that (P1) or (P2) and (E2)
hold with E[σ(X1)X1] = 0 and that Xt , et are Gaussian.
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• If 2(dX + de) > 1 and E[σ(X1)X
2
1] < ∞, then

n1−(de+dX)
(
LfX

(n)Lfe (n)
)−1/2

(β̂1 − β1)
d→ E

[
σ(X1)X

2
1

]
Z1,1 (7.58)

where the random variable Z1,1 is defined in (7.63).
• If 2(dX + dε) < 1 and E[σ 2(X1)X

2
1] < ∞, then

√
n(β̂1 − β1)

d→ N
(
0,C2

0

)
, (7.59)

where C2
0 = limn→∞

∑∞
k=0 E[X0σ(X0)Xkσ (Xk)]E[ε0εk].

Of course, the LSE is not the only possible method. In the homoscedastic model
without intercept it is possible to remove the dependence in et first before estimat-
ing β1. This way one can achieve

√
n-convergence. This is the case by definition

for the BLUE. An alternative method that does not require inversion of the covari-
ance matrix was suggested by Robinson and Hidalgo (1997). Thus, consider the
homoscedastic regression model (7.52). Assume that (P2) and (E2) hold, possibly
with μX �= 0. Define the following weighted least squares estimator of β1:

β̂φ,LSE =
1
n

∑n
t=1

∑n
s=1(Xt − x̄)(Ys − ȳ)φt−s

1
n

∑n
t=1

∑n
s=1(Xt − x̄)(Xs − x̄)φt−s

,

where

φj = 1

(2π)2

∫ π

−π

φ(λ) cos(jλ)dλ,

and φ(·) is some function such that φj = O(j−γ ), γ ≥ 2de + 1. This holds in par-
ticular if φ = f −1

e is the reciprocal of the spectral density of et (t ∈ Z). One can
verify that

var

(
1

n

n∑

t=1

n∑

s=1

(Xt − x̄)(Ys − ȳ)φt−s

)
= O

(
n−1).

Consequently, the asymptotic variance of β̂φ,LSE is not influenced by LRD in Xt

or et . This observation leads to the following result, proven in Robinson and Hidalgo
(1997).

Theorem 7.14 Consider the model (7.52). Assume that (P2) and (E2) hold. Under
appropriate technical conditions,

√
n(β̂φ,LSE − β1)

d→ N
(
0,Σ−1

φ ΣψΣ−1
φ

)
,

where ψ(λ) = φ2(λ)fe(λ) and we use the notation Σh = (2π)−1
∫ π

−π
h(λ)dλ for

h = ψ,φ.
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The “appropriate technical conditions” are in particular continuity of ψ(·) and
independence between errors and predictors. Moreover, it has to be mentioned that√

n-consistency does not hold, in general, in the heteroskedastic case. To see this,
assume for simplicity that (P1) holds and μX = 0. Then

var

(
1

n

n∑

t=1

n∑

s=1

Xtσ(Xt )esφt−s

)
∼ φ2

0E2[σ(X1)X1
]

var

(
1

n

n∑

t=1

et

)
.

Finally, we consider again the model (7.52) and the following estimators:

β̂R :=
n∑

t=1

Yt

/ n∑

t=1

Xt

and

β̂BLUE = (
XT Σ−1X

)−1
XT Σ−1Y,

with column vectors of X = (X1, . . . ,Xn)
′, X = (Y1, . . . , Yn)

′, respectively, and Σ

being the covariance matrix of e1, . . . , en. The following result (under a slightly
different set of assumptions) was proven in Choy and Taniguchi (2001).

Theorem 7.15 Consider the model (7.52). Assume that (P2) and (E2) hold and that
μX = E[X1] �= 0. Then

n1/2−deL
−1/2
e (n)(β̂R − β1)

d→ μ−1
X Z0

and
√

n(β̂BLUE − β1)
d→ CZ0,

where C−1 = (2π)−1
∫ π

−π
f −1

e (λ)fX(λ)dλ.

Proof We prove only the convergence of β̂R . We have

β̂R − β1 = n−1∑n
t=1 et

n−1
∑n

t=1 Xt

.

By the law of large numbers, we may replace the denominator by μX . The conver-
gence of the nominator, and hence of β̂R , follows from (7.48). �

By definition, β̂BLUE is better than β̂R and β̂LSE (in the sense of a smaller vari-
ance of the asymptotic distribution). However, in the heteroskedastic case, Σ is
the covariance matrix of σ(X1)e1, . . . , σ (Xn)en. This involves knowledge of σ(·).
In most situations with heteroskedastic errors, one may therefore prefer to use
the LSE.
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7.2.3 Randomly Weighted Partial Sums

Asymptotic results in the context of regression with stochastic explanatory variables
are usually based on limit theorems for weighted sums, where weights are stochas-
tic. It is therefore useful to consider such sums in general. Thus let

Rn := 1

n

n∑

t=1

ν(Xt )et (7.60)

where ν(·) is a deterministic function such that E[ν(Xt )] �= 0. Also, define the
σ -algebras Xt = σ(X1, . . . ,Xt ), Hi = σ(εt , εt−1, . . .). The following properties
will be used under different combinations of (E1), (E2), (P1) and (P2)1 (we used
some of these properties also in Sect. 5.14 on density estimation):

• (M) If (E1) holds, then Rn (n ≥ 1) is a martingale with respect to a sigma-field
Xn ∨ Hn.

• (M/L) If (P1) holds, we use the decomposition

1

n

n∑

t=1

{
ν(Xt )et − E

[
ν(Xt )et |Xt−1 ∨ Ht−1

]}+ E
[
ν(X1)

]1

n

n∑

t=1

E[et |Ht−1].
(7.61)

The first part is a martingale, so that its convergence with scaling
√

n can
be described by an appropriate martingale central limit theorem. Furthermore,
E[et |Ht−1] = ∑∞

j=1 aj εt−j so that the second sum is just the sum of long-
memory moving averages and the asymptotic behaviour of

∑n
t=1 E[et |Ht−1] is

the same as that of
∑n

i=1 et (cf. (7.48)):

n−de− 1
2 L

−1/2
e (n)

n∑

t=1

E[et |Ht−1] d→ Z0.

We will call the second term the LRD part. It contributes (and dominates) only if
E[ν(X1)] �= 0.

• (H) In general, under (E2) and (P2), we assume for simplicity that Xt are standard
Gaussian. We decompose Rn as

Rn = E
[
ν(X1)

]1

n

n∑

t=1

et +
∞∑

m=1

J (m)

m!
1

n

n∑

t=1

etHm(Xt), (7.62)

where J (m) is the mth Hermite coefficient of z → ν(z). If E[ν(X1)] �= 0, then
the first term dominates, and convergence of Rn is equivalent to convergence
of the sum n−1∑n

i=1 et . Indeed, let us note that from Lemma 3.5 the random

1(M), (M/L) and (H) stand for martingale property, martingale/long-memory decomposition and
Hermite expansion, respectively.
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variables Hm(Xt), (m ≥ 1) are uncorrelated. Since the sequences Xt and et are
independent, we have for each m �= k and all t, s,

cov
(
Hm(Xt)et ,Hk(Xs)

)= E
(
Hm(Xt)Hm(Xs)

)
E(etes) = 0.

Thus,

var

( ∞∑

m=1

J (m)

m!
1

n

n∑

t=1

etHm(Xt)

)
=

∞∑

m=1

J 2(m)

(m!)2
var

(
1

n

n∑

t=1

etHm(Xt )

)
.

Furthermore, for a given m ∈N we have

var

(
1

n

n∑

t=1

etHm(Xt )

)
= n−2

n∑

t,s=1

E
[
Hm(Xt)Hm(Xs)

]
E[et es]

= m!n−2
n−1∑

k=−(n−1)

(
n − |k|)γ m

X (k)γe(k)

= O
(
max

{
n(2dX−1)m+(2de−1)L(n),n−1}),

where L is a slowly varying function.

These decompositions provide a general framework that will be used several
times. In particular, we will use it to prove Theorem 7.12. We note, however, that
the situation with E[σ(X1)X1] = 0 and (E2) is not covered by any of these cases.
To study this situation, we shall consider

Tn := n−1
n∑

t=1

Xtet

directly, assuming (P2), (E2), and also that Xt , et (t ∈ Z) are two independent cen-
tred Gaussian sequences. We recall some spectral theory from Sect. 4.1.3, see also
proof of Theorem 4.2. The innovation processes ξt and εt have the spectral repre-
sentation

ξt = 1√
2π

∫ π

−π

eitλ dM0,ξ (λ), εt = 1√
2π

∫ π

−π

eitλ dM0,ε(λ) (t ∈ Z),

where M0,ξ and M0,ε are two independent complex-valued Gaussian random mea-
sures with independent increments such that E[|dMξ(λ)|2] = σ 2

ξ dλ, E[|dMε(λ)|2]
= σ 2

ε dλ. Furthermore,

Xt =
∫ π

−π

eitλ dMX(λ), et =
∫ π

−π

eitλ dMe(λ),
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where

dMX(λ) = 1√
2π

( ∞∑

j=0

bj e
−ijλ

)
dM0,ξ (λ) = b(λ)dM0,ξ (λ),

dMe(λ) = 1√
2π

( ∞∑

j=0

aj e
−ijλ

)
dM0,ε(λ) = a(λ)dM0,ε(λ).

Repeating the same argument as in the proof of Theorem 4.2,

Tn = 1

n

n∑

t=1

∫ π

−π

∫ π

−π

b(λ)a(ω)eitλeitω dM0,ξ (λ) dM0,ε(ω)

= 1

n

n∑

t=1

∫ nπ

−nπ

∫ nπ

−nπ

b

(
λ

n

)
a

(
ω

n

)
Dn

(
λ + ω

n

)

× n1/2 dM0,ξ

(
n−1λ

)
n1/2 dM0,ε

(
n−1ω

)
.

If fX and fe are spectral densities of the two sequences, respectively, then by taking

b(λ) = L
1/2
fX

(
λ−1)|λ|−dX , a(ω) = L

1/2
fe

(
ω−1)|ω|−de ,

we may conclude for dX + de > 1/2 that

n1−(dX+de)
(
LfX

(n)Lfe (n)
)−1/2

Tn

d→
∫ ∞

−∞

∫ ∞

−∞
1

|λ|dX

1

|ω|de

ei(λ+ω)

i(λ + ω)
dM0,ξ (λ) dM0,ε(ω) =: Z1,1. (7.63)

Having this general framework, we are ready to prove Theorems 7.12 and 7.13.

Proof of Theorem 7.12 Recall the formulas (7.50) and (7.51) for β̂1 and β̂0, and also
that we may replace V 2

n by σ 2
X = 1.

1. If (E1) holds, i.e. the errors are i.i.d., we apply the (M)-decomposition to (7.60)
with ν(Xt ) = σ(Xt )Xt and ν(Xt ) = σ(Xt ), respectively. The martingale central
limit theorem (Lemma 4.2) yields (7.54) and (7.55).

2. If (P1) and (E2) hold and E[σ(X1)X1] �= 0, then we apply the (M/L)-de-
composition to (7.60) with ν(Xt ) = σ(Xt )Xt . The limiting behaviour of β̂1 − β1 is
determined by

E
[
σ(Xt )Xt

]1

n

n∑

t=1

E[et |Ht−1]. (7.64)
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Similarly, the limiting behaviour of β̂0 − β0 is determined by

E
[
σ(Xt )

]1

n

n∑

t=1

E[et |Ht−1]. (7.65)

We conclude (7.56) and (7.57). Independence of the limiting random variables fol-
lows from

cov(β̂1, β̂0) → 0.

3. Under the conditions (E2) and (P2), and E[σ(X1)X1] �= 0, we apply (7.62) to
ν(Xt ) = σ(Xt )Xt and to ν(Xt ) = σ(Xt ). Convergence of the regression estimates
can be concluded the same way as under (P1) and (E2). �

Proof of Theorem 7.13 Under the conditions (E2), (P2) and E[σ(X1)X1] = 0, we
apply the (H)-decomposition (7.62) with ν(Xt ) = σ(Xt )Xt . Since E[ν(X1)] = 0,
the limiting behaviour of β̂1 − β1 is determined by

J (1)
1

n

n∑

t=1

Xtet +
∞∑

m=2

J (m)

m!
1

n

n∑

t=1

etHm(Xt ),

where J (1) = E[σ(X1)X
2
1] is the first Hermite coefficient of ν(z) = σ(z)z. Clearly,

the first part dominates. Applying (7.63),

n1−(de+dX)
(
LfX

(n)Lfe (n)
)−1/2

(β̂1 − β1)
d→ J (1)Z1,1. (7.66)

�

Finally, it is worth mentioning another possibility. Consider assumptions (P2)
and (E2), but with the modification μX �= 0 and instead of E[σ(X1)X1] = 0 (which
was used in Theorem 7.13) the condition E[σ(X1)(X1 − μX)] = 0. Then, the esti-
mator of β1 has to be replaced by

β̂1 − β1 = 1

V 2
n

(
1

n

n∑

t=1

Xtσ(Xt )et − 1

n

n∑

t=1

Xt

1

n

n∑

t=1

σ(Xt )et

)
, (7.67)

with V 2
n = n−1∑n

t=1(Xt − x̄)2. Again, we may replace V 2
n by σ 2

X = 1 asymptoti-
cally. Applying the (H)-decomposition to n−1∑n

t=1 σ(Xt )et yields

1

n

n∑

t=1

σ(Xt )et = E
[
σ(Xt )

]1

n

n∑

t=1

et +
∞∑

m=1

J ∗(m)

m!
1

n

n∑

t=1

etHm(Xt ),
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where now J ∗(m) = E[σ(X1)Hm(X1)]. As in the proof of Theorem 7.13 (see also
proof of Theorem 4.2),

n
1
2 −deL

−1/2
fe

(n)
1

n

n∑

t=1

et
d→ Z0, n

1
2 −dXL

−1/2
fX

(n)
1

n

n∑

t=1

Xt
d→ Z1,

where Z0 and Z1 are independent and standard normal. Independence is clear since
E[Xt,σ (Xs)es] = 0 for all s, t . Combining this with (7.66), we obtain

n1−(de+dX)
(
LfX

(n)Lfe (n)
)−1/2

(β̂1 − β1)
d→ (

J (1)Z1,1 − E
[
σ(X1)

]
Z0Z1

)
.

7.2.4 Spurious Correlations

So far it has been assumed that the explanatory variable(s) Xt and the residual pro-
cess et are stationary. In practice, this is not always clear. In some applications, such
as financial time series, it is, in fact, often more likely that none of the observed
series is stationary. This is known to cause considerable problems for regression,
even without introducing the complication of long memory or antipersistence. For
instance, Granger and Newbold (1974) and Phillips (1986) considered two indepen-
dent random walks

Xt =
t∑

j=1

ξj , Yt =
t∑

j=1

ηj ,

i.e. with ξj , ηj , i.i.d. and independent of each other. Suppose we set up an equation
of the form

Yt = βXt + et

with et zero mean stationary. Since et is stationary but Yt and Xt are not, we cer-
tainly cannot have β = 0. Of course, the model is misspecified. However, in prac-
tice we do not know that. The problem is then to see what happens if we actually
fit a linear regression to the x − y-observations. For instance, if ξt ∼ N(0, σ 2

ξ ) and

ηt ∼ N(0, σ 2
η ), then

∑t
s=1 ξt =d B1(t),

∑t
s=1 ηt =d B2(t) where B1, B2 are two

Brownian motions that are independent from each other. Hence,

n∑

t=1

XtYt =
n∑

t=1

(
t∑

s=1

ξt

)(
t∑

s=1

ηt

)
=
d

n∑

t=1

B1(t)B2(t)

=
d

n2
n∑

i=1

B1(ui)B2(ui)
1

n
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where ui = in−1 so that

n−2
∑

XtYt →
d

∫ 1

0
B1(u)B2(u) du.

Similarly,
n∑

t=1

X2
t =

d
n

n∑

i=1

B2
1 (ui) = n2

n∑

i=1

B2
1 (ui)

1

n

implies

n−2
n∑

t=1

X2
t →

d

∫ 1

0
B2

1 (u) du.

Thus,

β̂LSE =
∑

XtYt∑
X2

t

→
d

∫ 1
0 B1(u)B2(u) du
∫ 1

0 B2
1 (u) du

.

In other words, instead of tending to zero, β̂LSE tends to a random variable that is
not equal to zero with probability one. This means that, if a regression of Y on X

is carried out, we will (for n large enough) always find a relationship even though
it is not there. This is a famous phenomenon in econometrics, known as ‘spurious
correlation’ or ‘spurious regression’. Initiated by Granger and others, methods for
determining the relationship between integrated time series has become an extended
branch of the econometric literature, mostly subsumed under the label ‘cointegra-
tion’.

Results on spurious correlations can be generalized to long-memory processes.
For instance, Tsai (2006) and Tsay and Chung (2000) consider the following sit-
uation. Let ηt and ξt be i.i.d. and independent of each other, E(ηt ) = E(ξt ) = 0,
var(ηt ) = σ 2

η and var(ξt ) = σ 2
ξ . Furthermore, define the FARIMA processes

vt = (1 − B)−d1ηt ,

wt = (1 − B)−d2ξt

with 0 < d1, d2 < 1
2 , and the corresponding integrated processes, i.e. the

FARIMA(0,1 + d1,0) and FARIMA(0,1 + d2,0) processes (starting at zero for
t = 0),

v∗
t = v∗

t−1 + vt ,

w∗
t = w∗

t−1 + wt .

Now we consider β̂LSE for the following regressions with intercept,

Yt = β0 + β1Xt + et ,
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Table 7.1 Models
considered in the context of
spurious correlation

xt stationary xt nonstationary

yt stationary M2 M4, M6

yt nonstationary M3 M1, M5

where Xt , Yt are defined as follows:

• Model 1: Yt = v∗
t , Xt = w∗

t ;
• Model 2: Yt = vt , Xt = wt with d1 + d2 > 1

2 ;
• Model 3: Yt = v∗

t , Xt = wt with d2 > 0;
• Model 4: Yt = vt , Xt = w∗

t with d1 > 0;
• Model 5: Yt = v∗

t on Xt = t ;
• Model 6: Yt = vt on Xt = t with d1 > 0.

Table 7.1 gives an overview. The following notation will be used:

β̂LSE =
(

β̂0

β̂1

)
,

β̂1 =
∑

(Xt − x̄)Yt∑
(Xt − x̄)2

, β̂0 = ȳ − β̂1x̄,

ŷt = β̂0 + β̂1Xt,

σ 2
y = var(Yn), σ 2

x = var(Xn).

Moreover, s2 = (n − 2)−2∑n
t=1(yt − ŷt )

2 will denote the usual estimate of the
variance of Yt (note, however, that for a nonstationary Yt , σ 2

y grows with t , i.e. the

estimate s2 is actually meaningless) and similarly, s2
β0

and s2
β1

are the usual estimates

of var(β0) and var(β1). Finally, tβ0 = β̂0/sβ0 and tβ1 = β̂1/sβ1 are the corresponding
t -statistics for β0 and β1. For simplicity of presentation, we assume all moments of
ηt and ξt to be finite.

For Model 1, the limit theorems in Sect. 4.2 can be applied to obtain

σ 2
y ∼ σ 2

η c1n
1+2d1 ,

σ 2
x ∼ σ 2

ξ c2n
1+2d2

with

cj = Γ (1 − 2dj )

(1 + 2dj )Γ (1 + dj )Γ (1 − dj )
(j = 1,2).

Assume for a moment that our FARIMA sequences vt and wt are replaced by fGn,
i.e. increments of two independent fractional Brownian motions BH1 , BH2 with
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Hj = dj + 1
2 . Then

n∑

t=1

Xt =d

n∑

t=1

BH2(t) =d n1+H2

n∑

t=1

BH2

(
t

n

)
1

n
,

and an analogous embedding applies to
∑n

t=1 Yt . Similarly, we can consider the
other quantities in β̂LSE, including

∑n
t=1 XtYt and

∑n
t=1 X2

t :

n∑

t=1

XtYt =d

n∑

t=1

BH1(t)BH2(t) =d n1+H1+H2

n∑

t=1

BH1

(
t

n

)
BH2

(
t

n

)
1

n
.

Using the notation

∫ 1

0
BHi

(u)BHj
(u)du = Zi,j ,

∫ 1

0
BHj

(u)du = Zi,

we have

n−(1+H2)
n∑

t=1

Xt = n−( 3
2 +d2)

n∑

t=1

Xt →d

∫ 1

0
BH2(u) du = Z2,

n−(1+H1)
n∑

t=1

Yt = n−( 3
2 +d1)

n∑

t=1

Yt →d

∫ 1

0
BH1(u) du = Z1,

n−(1+H1+H2)
n∑

t=1

XtYt = n−(2+d1+d2)
n∑

t=1

XtYt →d

∫ 1

0
BH1(u)BH2(u) du = Z1,2,

and similarly,

n−(1+2H2)

n∑

t=1

X2
t = n−(2+2d2)

n∑

t=1

X2
t →d

∫ 1

0
B2

H2
(u) du = Z2,2.

All asymptotic limits can be considered jointly. Since

β̂1 =
∑n

t=1 XtYt − 1
n

∑n
t=1 Xt

∑n
t=1 Yt

∑n
t=1 X2

t − 1
n

∑n
t=1 Xt

∑n
t=1 Xt

= nd1−d2
n−(2+d1+d2)

∑n
t=1 XtYt − n− 3

2 +d2
∑n

t=1 Xtn
− 3

2 +d1
∑n

t=1 Yt

n−(2+2d2)
∑n

t=1 X2
t − n− 3

2 +d2
∑n

t=1 Xtn
− 3

2 +d2
∑n

t=1 Xt

,

we obtain

nd2−d1 β̂1 →d

Z1,2 − Z1Z2

Z2,2 − Z2
2

=: β∗
1 .
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Similar arguments apply to the other regression quantities of interest, and (due
to convergence to fGn in D[0,1]) we may state the following result for general
FARIMA models:

Theorem 7.16 Assume that the FARIMA processes have all moments finite. Then,
under Model 1,

σXn

σYn

β̂1 →d β∗
1 ,

1

σYn

β̂0 →d Z1 − β∗
1 Z2,

1

σYn

s2 →d Z1,1 − Z2
1 − (

β∗
1

)2(
Z2,2 − Z2

2

)=: σ 2∗ ,

σ 2
Xn

σ 2
Yn

s2
β1

→d

σ 2∗
Z2,2 − Z2

2

=: σ 2∗β1
,

n

σ 2
Yn

s2
β0

→d σ 2∗
{

1 + Z2
2

Z2,2 − Z2
2

}
=: σ 2∗β0

,

1√
n
tβ1 →d

β∗
1

σ∗β1

,
1√
n

tβ0 →d

β∗
0

σ∗β0

,

R2 →d

(
β∗

1

)2 Z2,2 − Z2
2

Z1,1 − Z2
1

.

For related results, also see, e.g. Phillips (1995), Phillips and Loretan (1991),
Marmol (1995), Jeganathan (1999), Robinson and Marinucci (2003, 2003), Buch-
mann and Chan (2007). Theorem 7.16 can be interpreted as follows. Model 1
deals with the case where Yt and Xt are both integrated processes, independent
of each other and such that the first difference exhibits (stationary) long mem-
ory. The estimated intercept β̂0 always diverges. For the slope, it is more com-
plicated. If long memory in the dependent variable Yt is at least as strong as in
Xt (i.e. d1 ≥ d2) then the estimated slope β̂1 does not converge to zero. In par-
ticular, if d1 = d2, we have spurious correlation in the standard sense, namely
β̂1 converges to a non-constant random variable. If d1 > d2, then β̂1 assumes
asymptotically the values ±∞ only. If Xt has stronger long memory than Yt , then
β̂1 does converge to zero; however, at a very slow rate. What is even worse is
that the R2-statistic does not converge to zero, irrespective of the concrete val-
ues of d1 and d2. Furthermore, we also have spurious correlation at a second-
order level for all values of d1, d2 > 0, in the sense that the usual t -tests for
β0 and β1 asymptotically reject the null hypothesis that these parameters are
zero.

Example 7.22 Figures 7.5(a)–(f) display simulated distributions and boxplots of
β̂1 for the cases d1 = d2 = 0.4 and d1 = 0.1, d2 = 0.4, respectively, and sample
sizes n = 20,50,100,200,400,1000 and 2000. As expected from Theorem 7.16,
the results for the two cases are very different. In case 2, the distribution of β̂1
(Figs. 7.5(d)–(e)) is increasingly concentrated around the true value of β1 as n

grows. In case 1, however, the distribution remains essentially the same (Figs. 7.5
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Fig. 7.5 Simulated distributions and boxplots of β̂1 in a regression of two independent integrated
FARIMA(0, d,0) processes with d1 = d2 = 0.4 ((a) and (b)) and d1 = 0.1, d2 = 0.4 ((d) and (e)),
respectively. The sample sizes are n = 20,50,100,200,400,1000 and 2000. Also shown are box-
plots of the R2-statistic ((c) and (f), respectively)

(a)–(b)). For R2, the behaviour is the same in both cases. As expected from
the asymptotic result, the distribution of R2 stabilizes at a nondegenerate level
(Figs. 7.5(c) and (f)). In other words, one is led to believe that there is a linear
relationship between the two series, although in reality they are independent of each
other.
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The results for the other models (Models 2 through 6) can be obtained by sim-
ilar arguments. In the following, only the order of the variables is written down
since this is the essential part of the statements. To simplify notation, we will write
“O∗

p(nα)” for a random quantity that is equal to nα times a random variable with
positive variance. In contrast to Model 1, Model 2 involves the estimated relation-
ship between two stationary long-memory processes. For obvious reasons, the least
squares estimators of β0 and β1, as well as R2, do converge to zero (see also (7.58)
in Theorem 7.13). However, if d1 + d2 > 1

2 , then

tβ1 = O∗
p

(
nd1+d2− 1

2
)
.

Thus, if the two variables have enough “joint” long memory, then second-order spu-
rious correlations occur in the sense that the usual t -test rejects H0 : β1 = 0 asymp-
totically. Long memory has to be taken into account to obtain correct rejection re-
gions. This is analogous to tests and confidence intervals for the location parameter,
as considered in Sect. 5.2.1.

A different result is obtained in Model 3 where a nonstationary series Yt is re-
gressed on a stationary series Xt . Here, nonstationarity of the response series alone
leads to spurious correlations, as described in the following theorem.

Theorem 7.17 Under Model 3,

β̂1 = O∗
p

(
nd1+d2

)
, β̂0 = O∗

p

(
n

1
2 +d1

)
,

s2 = O∗
p

(
n1+2d1

)
, s2

β1
= O∗

p

(
n2d1

)
, s2

β0
= O∗

p

(
n2d1

)
,

tβ1 = O∗
p

(
nd2
)
, tβ0 = O∗

p

(
n

1
2
)
,

R2 = O∗
p

(
n2d2−1).

Thus, regressing a nonstationary long-memory process on an independent sta-
tionary long-memory series leads to spurious correlations in the sense that |β̂1| di-
verges to infinity, and the t -test for β1 needs adjustment. On the other hand, there
is no spurious correlation as such because R2 (which is in the case of simple linear
regression equal to the square of the sample correlation) converges to zero. In con-
trast, regressing a stationary process on a nonstationary series leads to a spurious
effect only when considering the (unadjusted) t -test.

Theorem 7.18 Under Model 4,

β̂1 = O∗
p

(
nd1−d2−1), β̂0 = O∗

p

(
nd1− 1

2
)
,

s2 →
p

σ 2
v , s2

β1
= O∗

p

(
n−2−2d2

)
, s2

β0
= O∗

p

(
n−1),

tβ1 = O∗
p

(
nd1
)
, tβ0 = O∗

p

(
nd1
)
,

R2 = O∗
p

(
n2d1−1).
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Thus, apart from the need for an adjustment in the t -test, nothing too serious
happens when regressing a stationary series on an unrelated nonstationary one.

The situation is different, when fitting a liner trend function to an integrated pro-
cess:

Theorem 7.19 Under Model 5,

β̂1 = O∗
p

(
nd1− 1

2
)
, β̂0 = O∗

p

(
n

1
2 +d1

)
,

tβ1 ∼ O∗
p(

√
n), tβ0 = O∗

p(
√

n),

R2 = O∗
p(1).

Thus, the t -test and the value of R2 indicate asymptotically the presence of a
linear trend. On the other hand, β̂1 itself is asymptotically zero with probability
one, but the convergence to zero is very slow. Finally, if the differenced series (i.e.
a stationary long-memory process) is regressed on a linear trend, then the only re-
maining problem is that the t -test would need adjustment. Specifically, one obtains
for Model 6

tβ1 = O∗
p

(
nd1
)
.

7.2.5 Fractional Cointegration

The problem of spurious correlations leads to the natural question how to recognize
which (linear) relationships between observed nonstationary time series are real and
which ones are spurious. The original definition of cointegration of random walk
type processes (or integrated processes with an integer valued degree of integra-
tion) was introduced by Granger (1981, 1983) and further developed in Engle and
Granger (1987) and many subsequent papers. Qualitative considerations suggesting
that certain nonstationary time series should not drift arbitrarily far apart existed be-
fore, for instance, in Davidson et al. (1978). Much later, cointegration was extended
to fractionally integrated processes. There is an extended literature on this topic, and
fractional cointegration is still somewhat controversial among economists. Here,
only a very brief introduction is given.

For simplicity, we consider the bivariate case, i.e. two series Yt and Xt . The first
step is to specify exactly what kind of nonstationarity is considered. This leads to
the notion of integrated processes. There are at least two possible ways of defin-
ing such processes, and these definitions are, in fact, quite different (see, e.g. Chen
and Hurvich 2009). The first definition was used, for instance, in Velasco (1999a,
1999b), Chen and Hurvich (2003a, 2003b, 2006) and Velasco (2003):

Definition 7.3 A univariate process Xt is called I (d) of Type I or integrated of
order d > − 1

2 if either (a) − 1
2 < d < 1

2 , Xt is stationary and with spectral density
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fX(λ) ∼ cf |λ|−2d (λ → 0), or (b) d > 1
2 and there is an integer m such that − 1

2 <

d∗ = d − m < 1
2 and (1 − B)mXt is I (d∗).

The second definition was used in Marinucci and Robinson (2000):

Definition 7.4 A univariate process Xt (t ≥ 1) is called I (d) of Type II or integrated
of order d > − 1

2 if, for t ≥ 1,

Xt =
t−1∑

j=0

aj ξt−j =
∞∑

j=0

aj ξ
∗
t−j = (1 − B)−dξ∗

t

where ξt are zero mean i.i.d. with finite variance, ξ∗
t = ξt · 1{t ≥ 1}, and

aj = δ0j (d = 0),

aj =
(−d

j

)
= Γ (1 − d)

Γ (j + 1)Γ (1 − d − j)
∼ c · jd−1.

The second definition may be generalized by imposing the asymptotic condi-
tion on aj only. It should be noted that the two definitions are quite different. For
d > 1

2 , both imply a nonstationary process. For − 1
2 < d < 1

2 , Xt obtained from
Definition 7.3 is stationary, whereas this is only the case asymptotically when Def-
inition 7.4 is used. Moreover, different limits for partial sums are obtained. For
example, if Xt is I (d) according to Definition 7.4 with 1

2 < d < 3
2 , then

Xn = X∗
1 + X∗

2 + · · · + X∗
n

where

X∗
t = (1 − B)−(d−1)ξ∗

t ,

and the partial sums

Sn(u) =
[nu]∑

i=1

X∗
i (0 ≤ u ≤ 1)

are such that Zn(u) = Sn(u)/
√

var(Sn(1)) converges to a so-called Type II or
Riemann–Liouville fractional Brownian motion (Marinucci and Robinson 2000;
also see Akonom and Gourieroux 1987; Silveira 1991) which is defined for all
H = d + 1

2 > 0. On the other hand, if Xt is obtained from Definition 7.3, then Zn(u)

converges to the usual fractional Brownian motion as in Mandelbrot and van Ness
(1968) (see Sect. 1.3.5) which is defined for 0 < H < 1 only. For limit theorems for
Fourier transforms under the two definitions, see, e.g. Velasco (2007).

More generally, I (d) may be defined for bivariate (or multivariate) processes
Xt = (Xt1,Xt2) as follows. Using the spectral representation

Xt,j =
∫ π

−π

eitλ dMj (λ) (j = 1,2),
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the cross-covariance is

γ12(k) = cov(Xt+k,1,Xt,2) =
∫ π

−π

f12(λ)eikλ dλ

=
∫

eikλE
[
dM1(λ) dM2(λ)

]
.

Thus, in this notation,

f12(λ) = E
[
dM1(λ) dM2(λ)

]
.

If, for instance, dM2(λ) = e−iφ12(λ) dM1(λ) with φ12(λ) = φλ and φ > 0, then this
means that Xt,2 is delayed with respect to Xt,1 by the time span φ. For the cross-
spectral density, we have

f12(λ) = eiφ12(λ)
∣∣f12(λ)

∣∣= eiφλ
∣∣f12(λ)

∣∣.

Thus, in the notation used here, the slope of the phase, φ′
12(λ), corresponds to the

time delay of dM2(λ) with respect to dM1(λ) (see, e.g. Brockwell and Davis 1991).
A possible definition of bivariate fractionally integrated processes is as follows:

Definition 7.5 A stationary process Xt = (Xt,1,Xt,2)
T ∈ R

2 is called I (d1, d2) of
Type I if there exist − 1

2 < d1, d2 < 1
2 such that Xt has a 2 × 2 spectral density

fX(λ) ∼ Λ(λ)Cf Λ̄(λ) (λ → 0)

with Cf a constant, real, positive semidefinite and symmetric p × p matrix such
that [Cf ]ii �= 0, and

Λ(λ) =
( |λ|−d1 0

0 e−iφ12(λ)|λ|−d2

)

for some differentiable function φ12 with derivative φ′
12 such that limλ→0 φ′

12(λ) =
φ0 ∈ (0,π]. A nonstationary process Xt is called I (d1, d2) of Type I if there is an
integer m such that − 1

2 < d∗
i = di − m < 1

2 and (1 − B)mXt = ((1 − B)mXt,1,

(1 − B)mXt,2)
T is I (d∗

1 , d∗
2 ).

The generalization to p-dimensional cointegrated vector series is obvious. More
explicitly, a stationary I (d1, d2) process has a spectral density that behaves at the
origin like

f (λ) ∼
( |λ|−d1 0

0 e−iφ0λ|λ|−d2

)(
C11 C12
C12 C22

)( |λ|−d1 0
0 eiφ0λ|λ|−d2

)

=
(

C11|λ|−2d1 C12|λ|−d1−d2eiφ0λ

C12|λ|−d1−d2e−iφ0λ C22|λ|−2d2

)
.
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In particular, this means that for low frequency components of Xt there is an ap-
proximately constant phase shift corresponding to Xt,2 being behind by Δt = φ0. In
the simplest case with limλ→0 φ′

12(λ) = 0 (see, e.g. Christensen and Nielsen 2006),
there is no phase shift for very low frequencies (more precisely, for λ → 0).

Example 7.23 Consider a multivariate FARIMA model defined as the stationary
solution of

(
(1 − B)d1 0

0 (1 − B)d2

)
Xt = ϕ−1(B)ψ(B)ξt = ηt =

(
ηt,1

ηt,2

)
(7.68)

(see, e.g. Lobato 1999; Robinson and Yajima 2002; Shimotsu 2006) with i.i.d. ξt =
(ξt,1, ξt,2)

T , zero mean random variables and ξt,1 independent of ξs,2 for all s, t .
The spectral density of Xt is given by

f (λ) =
(

(1 − e−iλ)−d1 0
0 (1 − e−iλ)−d2

)
fη(λ)

(
(1 − eiλ)−d1 0

0 (1 − eiλ)−d2

)

where

fη
2×2

(λ) = σ 2
ξ

2π
ψ
(
e−iλ

)
ϕ−1(e−iλ

)
ϕ−1(eiλ

)
ψ
(
eiλ
)

=: σ 2
ξ

2π

∣∣ψ
(
e−iλ

)
ϕ−1(e−iλ

)∣∣2.

For λ → 0,

fη(λ) → Cf = σ 2
ξ

2π

∣∣ψ(1)ϕ−1(1)
∣∣2

and
(
1 − eiλ

)d ∼ (1 − 1 − iλ)d = λde−i π
2 d .

Thus,

f (λ) ∼
(

λ−d1ei π
2 d1 0

0 λ−d2ei π
2 d2

)
Cf

(
λ−d1e−i π

2 d1 0
0 λd2e−i π

2 d2

)

=
(

λ−d1 0
0 λ−d2ei π

2 (d2−d1)

)
Cf

(
λ−d1 0

0 λd2e−i π
2 (d2−d1)

)

so that Definition 7.5 applies with

φ12(λ) ≡ π

2
(d1 − d2)

and

φ0 = φ′
12(λ) ≡ 0.
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This means that for FARIMA models as defined above there is no time shift, al-
though the phase φ12 itself is not zero except for d1 = d2. (For less restrictive mod-
els, see, e.g. Robinson 2007). Note, however, that this only refers to λ → 0. Outside
any open neighbourhood of the origin, the AR- and MA-matrices ϕ and ψ can
model any kind of phase shifts with φ′

12 �= 0.

Similarly, a Type II I (d1, d2)-process can be defined (see, e.g. Robinson and
Marinucci 2001, 2003, Marinucci and Robinson 2000; Marmol and Velasco 2004;
Nielsen and Shimotsu 2007).

A simple, though not most general, definition of cointegration can be given as
follows (Chen and Hurvich 2003a, 2003b, 2006).

Definition 7.6 Let Xt ∈ R
2 be I (d1, d2) with d1 = d2 = d > − 1

2 . Then Xt is coin-
tegrated of order d , b (or CI (d, b)) if there exists a vector β ∈ R

2 such that β �= 0
and Yt (β) = βT Xt ∈R is I (d∗) with d∗ = d − b < d . Any such vector β is called a
cointegrating vector.

By definition, β is determined up to a scaling constant. Thus, for a bivariate

series, there is at most one β with ‖β‖ =
√

β2
1 + β2

2 = 1. More generally, for p-
dimensional series, there are at most p − 1 such vectors. The number of linearly in-
dependent cointegrating vectors is then called the cointegrating rank. Note that orig-
inally, cointegration was defined for integer valued differencing parameters dj only
(Engle and Granger 1987): the components of Xt ∈ R

p are said to be cointegrated of
order d, b ∈N in the sense of Engle and Granger (Xt ∼ CI (d, b)) if all components
of Xt are I (d) and there exists a vector β ∈ R

p such that βT Xt ∼ I (d − b), b > 0.
Definition 7.6 is applicable to any d and b = d − d∗. The possibility of extending
cointegration to fractional differences was suggested before by Granger (Granger
1981, 1986). Note also that d∗ may be less or equal − 1

2 . This means that Yt (β)

may turn out to be non-invertible. More general definitions that allow for d1 �= d2

were also introduced in the literature, but are more complicated due to the variety
of possible subsets with equal dj ’s (see, e.g. Robinson and Yajima 2002; Robinson
and Marinucci 2003, 2003).

Example 7.24 Suppose that Xt1 and Xt2 are both Type I I (d) with d ∈ (0, 1
2 ) and

et ∈ R is Type I I (de) with 0 < de < d < 1
2 . If there is an α �= 0 such that

Xt2 = αXt1 + et , (7.69)

then Xt = (Xt1,Xt2)
T is fractionally cointegrated with cointegrating vector β =

(1,−α)T and fractional integration parameters d and de (see, e.g. Robinson 1994b).

Example 7.25 Let Xt be defined as in the previous example and X̃t be such that
(1 − B)X̃t = Xt . Also denote by ẽt an I (de + 1) process such that (1 − B)ẽt = et .
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Then

X̃t,2 = μ + αX̃t,1 + ẽt (7.70)

where μ is an arbitrary constant. The integrated process X̃t is cointegrated with
cointegrating vector β = (1,−α)T and fractional integration parameters d + 1 and
de + 1 (see Chen and Hurvich 2003a for a generalization to d + m).

Example 7.26 A Type I p-dimensional fractional common component model pro-
posed in Chen and Hurvich (2006) is defined as

Xt = A0ξ
(0)
t + A1ξ

(1)
t + · · · + Asξ

(s)
t

with latent (unobserved) I (dj )-processes ξ
(j)
t ∈ R

pj such that

−m0 + 1

2
< ds < · · · < d0 <

1

2
,

A0, . . . ,As are p × pj full-rank matrices with all columns linearly independent,
p0 +· · ·+ps = r , 1 ≤ r < p and 1 ≤ s ≤ r . This means that Xt can be decomposed
orthogonally into s cointegrating subspaces defined by A1, . . . ,As and the cointe-
gration rank is r . Moreover, by definition, Xt is I (d0). If we choose β as a linear
combination of the columns of matrix Aj (j �= 0), then—due to orthogonality—

Yt (β) = βT Xt = βT Ajξ
(j)
t

so that Yt (β) is I (dj ).

Example 7.27 Sowell (1990) and Dueker and Startz (1998) consider a cointegrated
FARIMA process of the form Xt = (Xt1,Xt2)

T with

ϕ
2×2

(B)

(
(1 − B)d1 0

0 (1 − B)d2

)(
1 0

−α 1

)
Xt = ψ

2×2
(B)ξt (7.71)

where − 1
2 < d2 < d1 < 1

2 , and ϕ and ψ are AR- and MA-operators of order
p and q . This means that X∗

t = (Xt1,Xt2 − αXt1)
T is the usual multivariate

FARIMA process. The bivariate process Xt is cointegrated with cointegrating vec-
tor β = (−α,1)T . If the i.i.d. innovation variables ξt are assumed to be Gaussian,
then, in principle, the parameters in (7.71) can be estimated by a maximum like-
lihood type method. For non-Gaussian innovations, the same method may be used
(under moment assumptions), though it may not be optimal (see, e.g. Dueker and
Startz 1998; Jeganathan 1999).

For further results, discussions and literature, see, e.g. Chan and Terrin (1995),
Breitung and Hassler (2002), Davidson (2002), Dolado et al. (2003), Robinson and
Hualde (2003), Nielsen (2005a, 2005b), Johansen (2008, 2008), Lasak (2010).
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In classical cointegration with integer valued d and b, the cointegrating vector
β = (1,−α)T can be estimated by minimizing

∑
(X1t − μ − αX2t )

2 with respect
to μ and α. (The generalization to higher dimensions p > 2 is obvious.) In addition,
because of the problem of spurious correlation, one has to test whether β̂ is “real”
or spurious. The classical method suggested by Engle and Granger is to test for unit
roots in the residuals êt = X1t − μ̂− α̂X2t (i.e. H0 : ϕ = 1 vs. H1 : |ϕ| < 1 where we
assume et = ϕet−1 +ut ). This is typically done by a suitable version of the Dickey–
Fuller test (Dickey and Fuller 1981). If H0 is not rejected, then cointegration is
assumed to be real. An alternative method is based on reduced rank regression of a
multivariate ARMA process the cointegration model can be embedded in (see, e.g.
Johansen 1996).

At first sight, the generalization of estimation and identification techniques to
fractional cointegration is not obvious because unit root testing is not sufficient. The
first question is estimation of β in the case where cointegration applies. The sec-
ond question is how to guard against spurious correlations. In particular, the usual
Dickey–Fuller test is not applicable. With respect to estimation no fundamentally
new problem occurs if a parametric model, such as (7.71), is acceptable. In this case,
maximum likelihood estimation of the cointegration vector β and other parameters
of the model (including d1, d2) can be carried out in principle because everything
is specified. However, in models where only the behaviour of the (cross-) spectrum
near the origin is specified (see some of the examples above), the task is more diffi-
cult. Consider, for example, (7.69) with

Xt2 = αXt1 + et , (7.72)

Xt1 stationary with autocovariance function γ11(k), variance var(Xt1) = γ11(0) =
σ 2

1 and I (d) for some 0 < d < 1
2 , and et stationary and I (de) with de < d . For the

least squares estimator of α, we then have

α̂LSE = α +
∑n

t=1 Xt1et∑n
t=1 X2

t1

→
p

α + cov(Xt1, et )

σ 2
1

.

This is equal to zero only if Xt1 and et are uncorrelated. The result is different
from nonfractional cointegration where, for instance, Xt,1, Xt,2 are CI (1,1) which
implies that

∑n
t=1 X2

t1 is of a larger order than
∑n

t=1 Xt1et . A possible solution for
the fractional cointegration model here is to apply least squares regression to low
frequency components only. The reason is that

cov(Xt1, et ) =
∫ π

−π

f1,e(λ) dλ,

var(Xt1) =
∫ π

−π

f11(λ) dλ

where

f (λ) =
(

f11(λ) f1,e(λ)

fe,1(λ) fee(λ)

)
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is the (real-valued) bivariate spectral density of (Xt1, et )
′. Since 0 ≤ |f1,e| ≤√

f11fee and de < d , we have for λ → 0,

f1,e(λ) = O
(
λ−d−de

)= o
(
λ−2d

)
.

Denote by

Zj (λk) = 1√
2πn

n∑

t=1

Xtj e
iλkt (j = 1,2)

the discrete Fourier transform of Xtj at Fourier frequencies λk = 2πk/n and define

α̂LSE(mn) =
∑mn

k=1 Re(Z1(λk)Z2(λk))∑mn

k=1 |Z1(λk)|2 (7.73)

with mn → ∞ such that mn/n → 0. For Zj we have

E
[
Z1(λk)Z2(λk)

]= 1

2πn

n∑

t,s=1

E
[
Xt1(αXs1 + es)

]
eiλk(t−s)

= α
1

2πn

n∑

t,s=1

γ11(t − s)eiλk(t−s)

+ 1

2πn

n∑

t,s=1

cov(Xt1, es)e
iλk(t−s)

∼ α · O(λ−2d
k

)+ O
(
λ

−de−d
k

)

and

E
[∣∣Z1(λk)

∣∣2]= 1

2πn

n∑

t,s=1

γ11(t − s)eiλk(t−s) = O
(
λ−2d

k

)
.

Similar arguments apply to the variance of the enumerator and denominator in (7.73)
so that, under suitable detailed regularity conditions,

α̂LSE(mn) = α + Op

(
λd−de

)= α + op(1)

(see Robinson 1994b). Robinson and Marinucci (2001) showed that α̂LSE(mn) is
also consistent for a Type II nonstationary cointegration model. Similarly, Chen
and Hurvich (2003a) showed consistency and derived the asymptotic distribution
of α̂LSE(mn) refined by tapering, under a Type I cointegration model with arbitrary
integer integration parameter (also see, e.g. Chen and Hurvich 2006; Robinson and
Yajima 2002; Velasco 2003; Nielsen and Shimotsu 2007). Also note that an alterna-
tive estimator based on the Whittle approximation is proposed in Robinson (2008).
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Moreover, Johansen and Nielsen (2010a, 2010b) show how to generalize reduced
rank regression to fractional cointegration (also see Johansen 2010a, 2010b, 1996,
2008, Lütkepohl 2006).

The second question is how to design “unit roots” tests that detect fractional de-
partures from stationarity. More generally, the question is how to identify the coin-
tegration rank in the fractional cointegration context. Tests along this line are dis-
cussed, for instance, in Breitung and Hassler (2002, 2006), Davidson (2002, 2006),
Robinson and Yajima (2002), Marmol and Velasco (2004), Nielsen (2004b, 2004c,
2004a, 2005a, 2005b), Chen and Hurvich (2006), Nielsen and Shimotsu (2007),
Hualde and Velasco (2008), Avarucci and Velasco (2009), Lasak (2010), MacKin-
non and Nielsen (2010). For additional references to fractional cointegration, see,
e.g. Cheung and Lai (1993), Baillie and Bollerslev (1994), Ravishanker and Ray
(1997, 2002), Kim and Phillips (2001), Gil-Alana (2004), Nielsen (2004b, 2004c),
Robinson and Iacone (2005), Hualde and Robinson (2007, 2010), Robinson (2008),
Berger et al. (2009), Davidson and Hashimzade (2009a, 2009b), Gil-Alana and
Hualde (2009), Sela and Hurvich (2009), Franchi (2010), Nielsen (2010, 2011),
Nielsen and Frederiksen (2011).

7.3 Piecewise Polynomial and Spline Regression

We consider a process of the form

Xt = m

(
t

n

)
+ et (t = 1, . . . , n) (7.74)

where et is a zero mean second-order stationary process. In some situations, a natu-
ral model for the expected value m is a piecewise polynomial. For instance, Fig. 1.18
in Sect. 1.2 shows typical olfactory response curves to an odorant stimulus adminis-
tered at a known time point t0. In this case, a continuous piecewise linear polynomial
(or in other words, a linear spline function) with one known knot at time t0 and one
subsequent unknown knot characterizes the essential features of the expected value
as a function of time. The residual processes et often exhibit long memory.

More generally, we may consider an arbitrary continuous piecewise polynomial
function

m(s) =
l∑

k=0

pk∑

j=1

ak,j (s − ηk)
βj,k

+

with βj,k < βj+1,k , knots 0 = η0 < η1 < · · · < ηl < 1 of which some (but not nec-
essarily all) are unknown. Note that m is continuous if βj,k ≥ 1 for k ≥ 1. The
definition includes splines, but is more general since apart from continuity no dif-
ferentiability conditions are imposed. For simplicity of presentation, we will discuss
the case with one unknown knot η only. As we will see, however, results can be for-
mulated in a general form so that all cases with an arbitrary number of knots and
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arbitrary polynomials are included. Thus, suppose that there is one unknown knot η.
Then m(s) has the representation

m(s) =
p∑

j=1

αjfj (s)
(
s ∈ [0,1]) (7.75)

with αT = (α1, . . . , αp) denoting unknown regression coefficients and

f1(s) = 1, f2(s) = s, . . . , fq(s) = sq−1,

fq+1(s) = (s − η)+, . . . , fp(s) = (s − η)
p−q
+

(7.76)

(where (s − η)l+ := max(0, (s − η)l)). The unknown parameter vector is θ =
(αT , η)T . The true value of θ will be denoted by θo. Note that for identifiability
of η0, one needs the condition that α0

j �= 0 for at least one j ≥ q + 1. Beran and
Weiershäuser (2011) and Beran et al. (2013) derived the asymptotic distribution of
the least squares estimator of θ0 under long memory, short memory and antipersis-
tence of the residual process et . In particular, if et is linear, then unified formulas
applicable to all three cases can be derived. The key to obtaining these results is a
linearization of the nonlinear regression estimator of θ and convergence of weighted
sums of et to integrals with respect to fractional Brownian motion. Combined with
fractional calculus unified formulas follow.

We will use the notation ν(d) as in Corollary 1.2. Minimizing the sum of the
squared residuals, Q(θ) =∑n

t=1[Xt − m(sn; θ)]2 (with sn = t/n) with respect to θ

can be done in two steps. First of all, for each value of η, the optimal value of α is
obtained by standard linear least squares regression on the functions fj defined by
using knot η. Thus, for each η ∈ (0,1) we define the n × p matrix

Wn = Wn(η) = (wij )i=1,...,n;j=1,...,p = (w1,n, . . . ,wp,n) (7.77)

with wi,j = fj (
i
n
) (1 ≤ i ≤ n;1 ≤ j ≤ p), and column vectors denoted by wj,n

(j = 1, . . . , p). For n large enough, WT
n Wn is invertible so that the projection matrix

on the column space of Wn(η) may be written as

PWn
= PWn

(η) = Wn

(
WT

n Wn

)−1WT
n . (7.78)

Thus, given observations X = (X1, . . . ,Xn)
T , η̂ is obtained by minimizing

‖X − PWn
(η)X‖2 with respect to η. The slope estimates are given by

α̂ = (
WT

n Wn

)−1WT
n X

and m(s1), . . . ,m(sn) are estimated by

[
m

(
1

n
; θ̂
)

,m

(
2

n
; θ̂
)

, . . . ,m(1; θ̂ )

]T

= PWn(η̂)X. (7.79)
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Note that, in spite of the projection, neither α̂ nor η̂ are linear in X. For general
piecewise polynomials, linearization of θ̂ has to take into account that derivatives
of m with respect to η may not exist for t = η. Denoting by m(j+) the right-hand
partial derivatives of m with respect to θj and defining the n × (p + 1) matrix

Mn+ = [
m(j+)(t/n)

]
t=1,...,n;j=1,...,p+1 ∈R

n×(p+1) (7.80)

the limit

lim
n→∞n−1(MT

n+Mn+
)
jk

=
∫ 1

0
m(j+)(s, θ)m(k+)(s, θ) ds (7.81)

exists. Therefore, the matrix MT
n+Mn+ is of full rank for n large enough, and we

can also define the asymptotic matrix

Λ = lim
n

n
(
MT

n+Mn+
)−1

. (7.82)

Suppose now that the spectral density of et is of the form fe(λ) ∼ cf |λ|−2d for
λ → 0 where d ∈ (− 1

2 , 1
2 ). Using the notation e(n) = (e1, . . . , en)

T it can then be

shown that ‖θ̂ − θ − (MT
n+Mn+)−1Mn+e(n)‖ = op(nd− 1

2 ) and

lim
n→∞ cov

(
n

1
2 −dν− 1

2 (d)
(
MT

n+Mn+
)−1MT

n+e(n)
)= ΛΣ0Λ (7.83)

where Σ0 depends on d . At first sight, the formulas for Σ0 seem to be quite different
depending on whether we have long memory, short memory or antipersistence:

1. d > 0:

Σ0 = d(1 − 2d)

(∫ 1

0

∫ 1

0

m(j)(s)m(k)(t) dt ds

|s − t |1−2d

)

j,k=1,...,p+1
. (7.84)

2. d = 0:

Σ0 =
(∫ 1

0
m(j)(t)m(k)(t) dt

)

j,k=1,...,p+1
. (7.85)

3. d < 0:

Σ0 = c

(∫ 1

0
m(j)(t)

∫

R\[0,1]
m(k)(t)

|s − t |1−2d
ds

−
∫ 1

0

m(k)(s) − m(k)(t)

|s − t |1−2d
ds dt

)

j,k=1,...,p+1

(7.86)

with c = d(1 − 2d).

However, using fractional calculus (as discussed in Sect. 3.7.3), one formula for
all three cases can be given. This approach also helps deriving the asymptotic dis-
tribution of θ̂ in an elegant way similar to Pipiras and Taqqu (2000a, 2000c, 2003).
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Extending m(j+) to the real axis by setting m(j+)(t) = 0 (j = 1, . . . , p + 1) for
t /∈ [0,1), the unified formula for Σ0 can be given as follows (Beran et al. 2013):

Theorem 7.20 Define

c2
1(d) :=

∫

R

(
(1 + s)d − sd

)2
ds + 1

2d + 1
.

Then

Σ0 =
[
Γ (d + 1)2

c2
1(d)

∫

R

(
I d−m(j+)

)
(s)
(
I d−m(k+)

)
(s) ds

]

j,k=1,...,p+1
.

Finally, recalling the linearization

n
1
2 −dν− 1

2 (d)(θ̂ − θ) ≈ n
1
2 −dν− 1

2 (d)
(
MT

n+Mn+
)−1Mn+e(n),

convergence to a normal distribution can be derived by extending limit theorems
for weighted sums given in Pipiras and Taqqu (2000a, 2000c). The limit is a linear
transformation of the (p + 1)-dimensional Gaussian variable

Z :=
(∫

m(j+)(s) dBH (s)

)

j=1,...,p+1

where BH (s) denotes a fractional Brownian motion with Hurst parameter H =
d + 0.5 and the integral

∫ ·dBH (s) is understood in the sense of Pipiras and Taqqu
(2000a, 2000c). The asymptotic distribution can then be expressed as follows.

Theorem 7.21 Under the assumptions summarized above (see Beran and Weier-
shäuser 2011 and Beran et al. 2013 for detailed assumptions) we have, as n → ∞,

n
1
2 −dν− 1

2 (d)(θ̂ − θ) →
d

ΛZ ∼ N(0,ΛΣ0Λ). (7.87)

Note that the formulation of the asymptotic distribution in terms of fractional
integration is general so that it directly applies to any continuous piecewise polyno-

mial function m(s) =∑l
k=0

∑pk

j=1 ak,j (s − ηk)
βj,k

+ as specified above.
An application of these results to calcium imaging data in the context of olfactory

research was introduced in Sect. 1.2. The data displayed in Fig. 1.18 are part of a
data set consisting of estimated entropy series for 25 adult forager bees (Apis mel-
lifera carnica). The original series were based on calcium imaging data reflecting
the response in the antennal lobe of bees to an odorant stimulus (more specifically,
hexanol). For the response series in Fig. 1.18, a linear spline function (i.e. a con-
tinuous piecewise linear function) with one known knot at the time of intervention
and two subsequent unknown knots provides a rather accurate approximation of the



616 7 Statistical Inference for Nonstationary Processes

main characteristics. For each bee, two response series were measured under two
different conditions, namely without and with the addition of the neurotransmit-
ter octopamine. The research hypothesis was that under the influence of the neuro-
transmitter, the change in entropy should be faster. Using a linear splines fit with one
known knot η0 at the time of intervention and two subsequent unknown knots η1,η2,
we have m(s) = α0 +α1s +α2(s −η0)+ +α3(s −η1)+α4(s −η2)+ with unknown
parameter vector θ = (α0, . . . , α4, η1, η2). Let θwithout and θwith be the parameters
without and with octopamine. Then checking the research hypothesis can be inter-
preted as testing the null hypothesis H0 : α2,without = α2,with. Using least squares
estimation for each of the response series, the distribution of α̂2,without and α̂2,with,
respectively, follows from the theorem above. Since the two series are always mea-
sured within one individual bee, the estimates are correlated so that a paired test has
to be applied that takes into account the correlation ρ between the two estimates.
The difference Δ̂ = α̂2,with − α̂2,without is then approximately normal with variance
var(Δ̂) = var(α̂2,with) + var(α̂2,without) − ρ

√
var(α̂2,with)var(α̂2,without). The vari-

ances are obtained from the asymptotic results above whereas ρ may be replaced by
the sample correlation based on all bees in the data set. Beran et al. (2013) used these
estimates to calculate an optimally weighted mean as an estimate of μΔ = E(Δ̂).
Using asymptotic normality or bootstrap, it could indeed be shown that μΔ > 0 with
a p-value below 1 %.

7.4 Nonparametric Regression with LRD Errors—Kernel
and Local Polynomial Smoothing

In this section, we consider the nonparametric regression model

Yi = m(Xi) + σ(Xi)ei (i = 1, . . . , n), (7.88)

where m(·), σ(·) are unknown functions, Xi are predictors (deterministic or ran-
dom), and ei is a second-order stationary process. First, in Sect. 7.4.1, we give a
brief introduction to kernel (Priestley–Chao, Nadaraya–Watson) and local polyno-
mial smoothing. We provide some preliminary calculations of the bias and vari-
ance and point out important differences between fixed and random design. It turns
out that random design may improve rates of convergence. We have observed this
already for parametric regression in Sects. 7.1 and 7.2 . Methods for estimating
derivatives and boundary effects are also discussed.

In Sects. 7.4.2–7.4.3, we present general results for fixed design kernel and lo-
cal polynomial estimation. In particular, it is shown that long memory or antiper-
sistence influences rates of convergence. Hall and Hart (1990b) were the first to
derive an asymptotic formula for the mean squared error of kernel estimators of
the trend function in fixed-design regression with long-memory errors. This result
was extended further in Beran and Feng (2001a, 2001b, 2002a, 2002b, 2002c),
including kernel estimation with boundary corrections, local polynomial estima-
tion of derivatives and integrated processes. Further results have been obtained in
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Csörgő and Mielniczuk (1995b, 1995a), Robinson (1997), Beran and Feng (2001a,
2007), Pawlak and Stadtmüller (2007), Feng et al. (2007). Extensions to LARCH-
type residuals are given in Beran and Feng (2007). Optimal convergence rates are
derived in Feng and Beran (2012), but will not be discussed here. The nonexis-
tence of optimal kernels in the long-memory setting is shown in Beran and Feng
(2007). Sections 7.4.4 and 7.4.6 are devoted to bandwidth choice in nonparamet-
ric kernel and local polynomial regression. Bandwidth choice in the long-memory
context by cross-validation originates from Hall et al. (1995a), whereas the plug-
in approach is discussed in Ray and Tsay (1997), Beran and Feng (2002a, 2002b,
2002c). Sections 7.4.5 and 7.4.6 include a discussion of the so-called SEMIFAR
models and iterative procedures to estimate the trend function and, in particular,
the long-memory parameter simultaneously (Beran 1999; Beran and Feng 2001a,
2001b, 2002a, 2002b, 2007, Beran and Ocker 2001). Furthermore, robust versions
of local polynomial estimators in the long-memory context are considered in Be-
ran et al. (2002) and Beran et al. (2003). Extensions to nonequidistant time se-
ries and tests for rapid change points are discussed in Sect. 7.10 (Menéndez et al.
2010).

Section 7.4.8 is devoted to random design regression. It turns out that the choice
of a bandwidth is even more fundamental than for fixed design regression. We
show a dichotomy between small and large bandwidths. This is the same phe-
nomenon as observed already for density estimation (see Sect. 5.14). For small
bandwidths, long-range dependence in the residuals has no influence and one ob-
tains exactly the same asymptotic distribution as for i.i.d. data. This is in contrast
to fixed-design kernel (and local polynomial) regression. For large bandwidths, we
have a long-memory behaviour. We also show an improvement in the rate of con-
vergence for shape functions. Such observations have its origin in the work by
Cheng and Robinson (1994). Further references include Csörgő and Mielniczuk
(1999, 2000), Mielniczuk and Wu (2004), Zhao and Wu (2008), Kulik and Lorek
(2011). In the latter article, the authors consider a very general class of errors that
includes FARIMA–GARCH and antipersistent processes. In Bryk and Mielniczuk
(2008), the authors consider a randomization scheme for fixed-design regression.
As a consequence, the resulting kernel estimator has a rate of convergence as in the
random-design case. Results for the Nadaraya–Watson estimator have further ex-
tensions to local linear regression estimators (see Masry and Mielniczuk 1999 and
Masry 2001). Furthermore, Benhenni et al. (2008) considered consistency of a ker-
nel estimator in functional regression with stochastic regressors and long-memory
errors.

In Sect. 7.4.9, we deal with estimation of the conditional variance σ 2(·) in
random-design regression. Rates of convergence are different than for estimation
of the conditional mean m(·) in the model (7.88). Such results are obtained in Guo
and Koul (2008), Zhao and Wu (2008), Kulik and Wichelhaus (2011, 2012), and
also have some connections to residual empirical processes. The latter topic is not
discussed here, we refer to Chan and Ling (2008) and Kulik and Lorek (2012).
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7.4.1 Introduction

Here we briefly recall some basic results from kernel- and local polynomial smooth-
ing. Also some first heuristic comments are made on the role of long-range depen-
dence and antipersistence in the context of nonparametric regression.

7.4.1.1 The Priestley–Chao Regression Estimator—Deterministic Design

We consider the nonparametric regression model with a response variable Y being
a function of a deterministic design variable X. In the simplest case, we have the
regression model

Yi = m(xi) + ei (i = 1,2, . . . , n) (7.89)

with fixed (i.e. deterministic) equally spaced design variables x1, x2, . . . , xn. Often
one uses xi = ti = in−1 ∈ [0,1]. To emphasize that the “explanatory” variables xi

are deterministic and equally spaced, we will use the notation ti instead of xi . Note
that, strictly speaking, one actually has a sequence of models Yi,n because the grid
of t -values (x-values) changes slightly with each n, i.e.

Yi = Yi,n = m(ti) + ei .

The residual process ei is assumed to be second-order stationary with E(ei) = 0,
autocovariances γe(k) and variance σ 2

e = γe(0). The regression function m(ti) is
not specified except for suitable regularity conditions. In kernel and local polyno-
mial smoothing, one usually assumes that m is at least continuous, or even a few
times continuously differentiable (see, e.g. standard books such as Härdle 1990a,
1990b; Wand and Jones 1994; Fan and Gijbels 1996; Simonoff 1996; Eubank 1999;
Tsybakov 2010).

Effective estimation of m can be quite difficult in the presence of long-range de-
pendence. The reason is that long-memory processes tend to exhibit spurious trends
which may be mistaken for deterministic ones. At the same time, smooth trends can
lead to increased values of the periodogram near the origin and to sample autocovari-
ances with a high positive bias. For example, considering a sample autocovariance
at a fixed lag k ≥ 0,

γ̂ (k) = n−1
n−k∑

i=1

(yi − ȳ)(yi+k − ȳ) (7.90)

we have, as n → ∞, var(γ̂ (k)) = o(1), but

Bias = E
[
γ̂ (k)

]− γe(k) ∼
∫ [

m(t) −
∫

m(s)ds

]2

dt, (7.91)

which is a positive constant, unless m is constant almost everywhere. Thus, not
removing the trend function leads to the overestimation of d . Related to this is the
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problem that the choice of a good estimate of m depends on approximate knowledge
of d . A feasible solution that will be described below (Sects. 7.4.4 and 7.4.6) can
be given in terms of an iterative procedure where trend estimation and estimation
of the dependence parameters of ei are applied repeatedly (Beran and Feng 2002a,
2002b; Ray and Tsay 1997).

Suppose now that m is smooth (in a sense to be specified). The problem is non-
parametric estimation of this function. The Priestley–Chao estimator (0 < x < 1) is
given by

m̂PC(t) = 1

nb

n∑

i=1

yiK

(
ti − t

b

)
(7.92)

(Priestley and Chao 1972) where b > 0 is a bandwidth, and K ≥ 0 is a symmetric
kernel function with support [−1,1] and

∫
K(u)du = 1. The idea is that, since m

is continuous, the value of m(t) may be estimated by taking a weighted average
over a neighbourhood of x. For instance, if K(u) = 1

2 1{−1 ≤ u ≤ 1}, then m̂PC(t)

is the average over all yi with t − b ≤ ti ≤ t + b. Since ti = in−1, this condition
means n(t − b) ≤ i ≤ n(t + b) so that we are taking an average over 2[nb] + 1
observations. Since the grid of t -values is increasingly dense and m is continuous,
the bias of m̂PC(t) converges to zero, provided that the neighbourhood we are taking
observations from shrinks. At the same time, however, one needs to make sure that
the variance of m̂PC(t) tends to zero which means that the number of observations
in the weighted mean must increase to infinity. This leads to the conditions b → 0
and nb → ∞.

The most important decision in kernel regression is the choice of the band-
width b. If b is chosen too small, then the number of averaged observations is small
so that the variance is large. On the other hand, if b is too large, then one averages
the function m over a large neighbourhood of x. For highly nonlinear functions, this
leads to a large bias. This dilemma leads to a trade-off between minimizing bias and
variance. If the mean squared error is used as a criterion, then the separation of the
two effects is additive,

MSE = E
[(

m̂PC(t) − mPC(t)
)2]

= [
E
(
m̂PC(t)

)− mPC(t)
]2 + E

[(
m̂PC(t) − E

(
m̂PC(t)

))2]

= Bias2 + Variance.

Asymptotic expressions for the bias do not depend on the autocovariance struc-
ture of ei . Suppose that m is twice continuously differentiable. Using the notation
i0 := [nt] and ui = (ti − t)/b, the standard argument is a Taylor expansion of the
form

Bias
(
m̂PC(t)

)= E
(
m̂PC(t)

)− m(t) = 1

nb

n∑

i=1

K(ui)m(t + bui) − m(t)
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= 1

nb

n∑

i=1

K(ui)

[
m(t) + buim

′(t) + 1

2
b2u2

i m
′′(t) − m(t) + o

(
b2)
]

= b2 1

2
m′′(t)

∫ 1

−1
u2K(u)du + o

(
b2)+ O

(
1

nb

)
.

(Note that the symmetry of K implies
∫

K(u)udu = 0.) Thus, the bias is propor-
tional to the squared bandwidth and to the second derivative of m(t). If we can
assume a higher degree of smoothness of m(t), then an even better order of the bias
can be achieved by using a different type of kernel. Suppose that m(t) is k times
differentiable. Using a Lipschitz continuous kernel with

∫
K(u)ui du =

⎧
⎨

⎩

1, i = 0,

0, i = 1, . . . , k − 1,

βk, i = k,

(7.93)

we obtain

Bias
(
m̂PC(t)

)≈ 1

nb

n∑

i=1

K(ui)

[
buim

′(t) + 1

2
b2u2

i m
′′(t) + · · ·

]

=
k∑

j=1

bj m(j)(t)

j !
∫ 1

−1
ujK(u)du + o

(
bk
)+ O

(
1

nb

)

= bk m(k)(t)

k! βk + o
(
bk
)+ O

(
1

nb

)
,

provided that the error term in the Taylor expansion can be controlled well. Thus the
bias is order O(bk). Kernels with property (7.93) are called kernels of order k, the
kth moment of K , denoted by βk = ∫

K(u)uk du �= 0, is the so-called kernel con-
stant in the asymptotic bias. In most cases, one uses kernels of order 2 for estimating
m(t) because one would like to keep the assumptions on the unknown function as
general as possible. More comments on the choice of a kernel are given in the next
section.

In contrast to the bias, the variance of m̂PC(t),

var
(
m̂PC(t)

)= (nb)−2
n∑

i,j=1

K

(
ti − t

b

)
K

(
ti − t

b

)
γe(i − j),

depends on the autocovariance structure of ei . In particular, the distinction between
short memory, long memory or antipersistence is essential because the variance
turns out to be proportional to (nb)2d−1. This implies that a bandwidth chosen by
minimizing the MSE will be of a different order for different values of d . It should
be noted that the choice of b is not only important for estimating m but also for
reliable estimation of the parameters d and cf which, in turn, determine the optimal
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Fig. 7.6 The four pictures show the same series Yi = m(ti ) + ei with m(t) = tanh( 1
2 (t − 1

2 )) and
ei generated by a FARIMA(0,0.3,0) process with innovation variance one. The four figures show
nonparametric fits m̂(t) based on kernel regression with the rectangular kernel and different band-
widths: (a) very small bandwidth; (b) medium size bandwidths; (c) large bandwidth; (d) b = ∞.
In (d), the true trend function is also shown

value of b. Moreover, knowledge of these two parameters is needed for tests and
confidence intervals for m, as well as for forecasting.

If one lets d vary freely, then the choice of a good bandwidth is not only more
difficult but also more important than in situations where one assumes short mem-
ory (i.e. d = 0) a priori. The reason is that, as mentioned above, the estimation
of d from the residuals êi = yi − m̂(ti) very much depends on the choice of b.
This is illustrated in Fig. 7.6 with m(t) = tanh( 1

2 (t − 1
2 )) and ei generated by a

FARIMA(0,0.3,0) process with innovation variance one. The four figures show
nonparametric fits m̂(t) based on kernel regression with the rectangular kernel
and different bandwidths: (a) very small bandwidth; (b) medium size bandwidths;
(c) large bandwidth; (d) b = ∞ (so that m̂(t) ≡ ȳ). The true trend function m(t) is
also displayed in Fig. 7.6(d). The bandwidth in (a) is clearly too small. The fitted
line follows the data too closely. The corresponding residual series êi (Fig. 7.7(a))
therefore resembles an antipersistent process. Fitting a FARIMA(0, d,0) process to
êi by maximum likelihood estimation (including model choice by the BIC) indeed
yields a value of d̂ = −0.34. The moderate and large bandwidths used in (b) and (c)
provide much better trend estimates. The corresponding values of d̂ are equal 0.23
and 0.25, respectively, and thus much closer to the true value of d = 0.3. On the
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Fig. 7.7 Residuals êi = Yi − m̂(ti ) based on the fits in Figs. 7.6(a)–(d)

other hand, choosing an infinite bandwidth, and thus not removing any trend esti-
mate at all (Fig. 7.7(d)) leads to slight overestimation with d̂ = 0.33.

The easiest way to see the essential difference between long memory, short
memory and antipersistence more formally is to look at the rectangular kernel
K(u) = 1

2 1{−1 ≤ u ≤ 1}. For this second-order kernel, m̂PC(t) is simply a sample
mean of 2[nb] + 1 consecutive observations. From Corollary 1.2, we know that the
variance can be approximated by cf ν(d)22d−1(nb)2d−1 where the spectral density
of ei is assumed to be such that fe(λ) ∼ cf |λ|−2d , as λ → 0, and

ν(d) = Γ (1 − 2d)2 sinπd

d(2d + 1)
(d �= 0), ν(0) = 2π.

Thus, for the mean squared error we have

MSE(t;b) ∼ C̃1(t)b
4 + C̃2(nb)2d−1 (7.94)

with

C̃1(t) =
{

1

2
m′′(t)

∫ 1

−1
u2K(u)du

}2

= 1

36

{
m′′(t)

}2
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and C̃2 = ν(d)22d−1cf . If the approximation is uniform in t (in a suitable sense),
then we obtain an analogous formula for the integrated mean squared error

IMSE(b) =
∫ 1

0
MSE(t;b)dt ∼ C1b

4 + C2(nb)2d−1 (7.95)

with

C1 =
∫ 1

0
C̃1(t) dt = 1

36

∫ 1

0

{
m′′(t)

}2
dt

and C2 = ν(d)22d−1cf . Setting the derivative of the right-hand side of (7.95) equal
to zero, we obtain the asymptotically optimal bandwidth

bopt = Coptn
−βopt (7.96)

with

βopt = 1 − 2d

5 − 2d
= 1

5
− 8d

25 − 10d
,

Copt =
[
C2(1 − 2d)

4C1

] 1
5−2d =

[
9(1 − 2d)ν(d)22d−1cf∫ 1

0 {m′′(t)}2 dt

] 1
5−2d

.

The integrated squared curvature
∫ 1

0 {m′′(t)}2 dt is in the denominator. This means
that a smaller bandwidth is required if m has various sharp turns. The reason is that
the bias can become quite large when we average over a too large neighbourhood.
In contrast, if m is close to a straight line, then the curvature is almost zero so that
one may average with a large bandwidth without causing much damage. Note that
bopt is such that the bias and the variance terms in the MSE are of the same order.
The optimal mean squared error is then of the order b4 which means

MSEopt ∼ const · n−4βopt = const · n− 4−8d
5−2d . (7.97)

Under short memory (including independence) with d = 0, one has the well known

rates of bopt ∼ const · n− 1
5 and MSEopt ∼ const · n− 4

5 . For long memory, βopt is
smaller than 1

5 so that bopt is larger and the MSEopt converges to zero at a slower
rate. The reason is that, due to long-term positive dependence, one needs more data
to make the variance of the sample mean small. In contrast, under antipersistence
(d < 0) βopt is larger than 1

5 so that the optimal bandwidth and mean squared er-
ror converge to zero faster than under short memory. These properties carry over to
other kernels K . In summary, optimal bandwidth selection very much depends on
the type of memory we have in the residual process. In the case of long memory,
larger bandwidths are required. This is also related to the problem that it is of-
ten difficult to distinguish between long-range dependence and deterministic trend
functions or change points in the mean (see also Sect. 7.9). The basic reason is that
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trend functions tend to increase the values of the periodogram near the origin. This
can be confounded with a pole due to long memory.

The practical application of (7.95) is not straightforward in practice because it
involves the unknown quantities d , cf and m′′(t). If we are willing to assume short
memory, then the problem is less difficult because the long-memory parameter is
fixed at d = 0. Various methods have been developed for obtaining a data driven
approximation of the IMSE and thus an approximately optimal bandwidth. Well
known methods are, for instance, cross-validation and iterative plug-in methods. If
d is a free parameter in the interval (− 1

2 , 1
2 ), then the problem is more involved.

Data driven plug-in methods, however, have been developed, for instance, in Ray
and Tsay (1997) and Beran and Feng (2002a, 2002b). The idea is to start with initial
estimates of m(·) and m′′(t), estimate the parameters d and cf from the residuals,
obtain an estimate of bopt and then iterate the procedure. This will be discussed
below in the Sects. 7.4.4 and 7.4.6. In the short-memory context, similar methods
are discussed in Gasser et al. (1991) and Ruppert et al. (1995).

7.4.1.2 Higher-Order Kernel Estimators and Estimation of Derivatives

So far we assumed that the kernel function K is given. More generally, not only
the bandwidth but also the kernel K has to be chosen before carrying out a kernel
regression. Although the choice of K is generally less important, it is still worth
investigating the role of K in detail. In particular, one gains insight into the inter-
play between smoothness of the function and a suitable choice of the kernel, and it
becomes more clear how to estimate derivatives.

Commonly used second-order kernels on [−1,1] are of the form

Kμ(u) = Cμ

(
1 − u2)μ1{−1 ≤ u ≤ 1} (7.98)

for some nonnegative integer μ, where Cμ is such that
∫

K(u)du = 1. The parame-
ter μ is called the degree of smoothness (or simply smoothness) of a kernel function
of this type (see Müller 1984) which means that the (μ − 1)th derivative of the ker-
nel function is Lipschitz continuous. This also controls the degree of smoothness
of the corresponding kernel estimator. For μ = 0,1,2,3, Kμ in (7.98) corresponds
to the Uniform kernel, the Epanechnikov kernel, the Bisquare kernel and the Tri-
weight kernel, respectively. Another commonly used kernel—which has, however,
an unbounded support—is the Gaussian (or normal) kernel, i.e. the standard normal
density function. It can also be considered as a rescaled limit of Kμ for μ → ∞.
Explicit formulae of these kernel functions are given in Table 7.2.

The Uniform, the Epanechnikov and the Bisquare kernels are shown in Fig. 7.8.
Corresponding higher-order kernels and kernels for estimating derivatives m(j)(t) =
dj/dtjm(t) can be generated based on kernel functions defined in (7.98). This will
be discussed below.

As already mentioned before, higher-order kernels as defined in (7.93) can be
used to reduce the bias of m̂(t), if we are willing to assume stronger smoothness
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Table 7.2 Some
second-order kernels Name k μ Kernel (on [−1,1])

Uniform 2 0 1
2

Epanechnikov 2 1 3
4 (1 − u2)

Bisquare 2 2 15
16 (1 − 2u2 + u4)

Triweight 2 3 35
32 (1 − 3u2 + 3u4 − u6)

Gaussian 2 ∞ 1√
2π

exp(− 1
2 u2) (−∞ < u < ∞)

Fig. 7.8 Three commonly used second-order kernels with compact support

properties for m. Note that a high-order kernel with k > 2 (see (7.93)) is symmetric
but not necessarily nonnegative. Thus, for

m̂(t) = (nb)−1
∑

yiK
(
(ti − t)/b

)=
∑

wiyi

the weights wi are sometimes negative, although we still have
∑

wi = 1. Second-
order kernels defined by (7.98) are special cases of (7.93) with k = 2. Most com-
monly used higher-order kernel functions are generated by the special kernels given
in Table 7.2 (see Tables 5.7 of Müller 1988). Only kernels of polynomial form will
be used for simplicity in the following. Most of the standard kernels proposed in the
literature are of polynomial form.

Once the order of the kernel is fixed, its shape is less important and in particu-
lar does not influence the rate of convergence. If the residuals ei are i.i.d., then the
optimal second-order kernel is Epanechnikov’s function K(u) = 3

4 (1 − u2), in the
sense that it minimizes the MSE when the optimal bandwidth is used (Epanechnikov
1969; Benedetti 1977). Similarly, higher-order kernels generated by the Epanech-
nikov kernel are also optimal for the corresponding order. These findings remain
true under short memory. Despite its elegance this result is of little practical rele-
vance because using suboptimal kernels does not lead to a substantial increase in the
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asymptotic MSE (Rosenblatt 1971). Furthermore, it turns out that an optimal kernel
function does not exist in the long-memory setting.

Slightly more important than the shape is the degree of smoothness of the kernel
function because it carries over to m̂(t). If a kernel of smoothness μ is used, then m̂

has the same degree of smoothness, i.e. the (μ − 1)th derivative of m̂ is Lipschitz
continuous. Thus, the higher the μ the smoother the m̂. For instance, m̂ obtained
with the uniform kernel is discontinuous because the kernel itself is discontinuous
at both end points (u = ±1). Note in particular that this does not depend on the
smoothness of the true function m, nor is it influenced by the dependence structure
of ei .

The most important feature of a kernel is its order. As demonstrated above, the
optimal rate of convergence of m̂(t) is faster the higher the order k. One should
bear in mind, however, that, in general, this is only true if m(t) itself is smooth
enough. Otherwise the asymptotic arguments leading to a bias of order O(b2k) do
not apply. Thus, using higher-order kernels and the corresponding asymptotic results
involves rather strong assumptions on the unknown trend function m. Moreover, the
finite sample variance of a higher order kernel estimator is usually larger than for
a second-order kernel estimator. For small samples, the performance of a higher-
order kernel estimator is therefore not necessarily better, even if m has the required
smoothness properties. In practice, the order of the kernel is often chosen subjec-
tively according to the data and further analysis. The safest choice that requires
minimal assumptions is, however, a kernel of order 2.

Though the notion of higher-order kernels for estimating m(t) may seem mainly
of theoretical interest; the general approach of defining higher-order kernels via their
moments becomes practically relevant when it comes to estimating derivatives. Es-
timation of derivatives is not only important in applications where the derivatives
themselves are the object of interest. Even if the actual aim is to estimate m(t),
optimal data driven bandwidth selection based on the plug-in idea requires the es-
timation of higher-order derivatives (see, e.g. (7.96)). Kernel estimators of m(j)(t)

in the i.i.d. case are investigated, for instance, in Gasser and Müller (1984), Rice
(1986) and Ullah (1988, 1989). The simplest way of obtaining an estimate of the
j th derivative is to start with m̂(t) based on a kernel of order k > j (as in definition
(7.93)) that is at least j times differentiable, and then take the derivative. Thus we
define

dj

dtj
m̂PC(t) = 1

nb

n∑

i=1

dj

dtj
K

(
ti − t

b

)
yi (7.99)

= 1

nbj+1

n∑

i=1

(−1)jK(j)

(
ti − t

b

)
yi. (7.100)

A more systematic approach is to define a new class of kernels as follows. Let j ≥ 0
be an integer and k such that k − j ≥ 2 is an even number. A kernel function K

of order (j , k) for estimating the j th derivative of m(t) (Gasser et al. 1985; Müller
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1984, 1988) is defined as a Lipschitz continuous function satisfying the moment
conditions

∫
K(u)ui du =

⎧
⎨

⎩

0, 0 ≤ i ≤ k − 1, i �= j,

j !, i = j,

βk, i = k,

(7.101)

where βk = ∫
K(u)uk du �= 0 is again a kernel constant in the asymptotic bias.

A kernel of order (j, k) with k = j + 2 is called a standard kernel function. On the
other hand, K is called a higher-order kernel, if k > j + 2. The estimator of m(j)(t)

is then given by

m̂
(j)

PC(t) = 1

nbj+1

n∑

i=1

K

(
ti − t

b

)
yi =

n∑

i=1

w
j
i yi (7.102)

with w
j
i = (nbj+1)−1K((ti − t)/b). As will be seen below, a necessary and suffi-

cient condition for consistency of m̂
(j)

PC(t), for d ∈ (−0.5,0.5), is that b → 0 and
(nb)1−2db2j → ∞. In particular, the second condition implies nb1+j → ∞ which
is a necessary condition for w

j
i to tend to zero uniformly. More exactly, (7.102) is a

good definition for interior points only. As discussed in the next section, the kernel
has to be modified near the border to keep the bias small. This will be discussed
below. A heuristic justification of definition (7.101) and (7.102) can be given as
before, namely

E
(
m̂

(j)

PC(t)
)≈ 1

bj

k∑

i=0

bi m
(i)(t)

i!
∫ 1

−1
uiK(u)du + o

(
bk−j

)+ O

(
1

nb

)

= m(j)(t) + bk−j m(k)(t)

k! βk + o
(
bk−j

)+ O

(
1

nb

)
.

Note that kernels of order (0, k) coincide with kernels of order k according to the
previous definition (7.93). Besides the moment conditions given in (7.101), some
additional conditions are often required, such as the degree of smoothness and the
minimal number of sign changes.

7.4.1.3 Boundary Effects and Boundary Kernels

Formula (7.102) does not yield good results for boundary points t ∈ [0, b) ∪
(1 − b,1] (see, e.g. Gasser and Müller 1979 and Müller 1984). The reason is that
observations are not placed symmetrically on both sides of t . This increases the
bias. While the bias of the estimator in (7.102) is of the order O(b2), it is the or-
der O(b) at boundary points. This problem can be solved by using the so-called
boundary kernels. The solution is relatively complex in general though, in partic-
ular when higher order kernels are used or when estimation of the derivatives is
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considered. A more elegant solution is provided by local polynomial regression
discussed later, where adaptation at the boundary is automatic. Nevertheless, it is
interesting to study the approach of boundary kernels because one gains a better
understanding of boundary problems. Moreover, local polynomial fits can be repre-
sented asymptotically as kernel estimators with boundary kernels at boundary points
(see Sect. 7.4.1.6).

Consider, for instance, a second-order kernel estimator m̂(t) of m(t) and denote
by Δ(t) its bias. The contribution of the bias to the IMSE is B = ∫ 1

0 Δ2(t) dt . Al-
though the length of the boundary areas tends to zero, the contribution of Δ(t) in
the boundary region is not negligible. The reason is that the contribution of interior
points to the IMSE is

∫ 1−b

b

Δ2(t) dt =
∫ 1−b

b

O
(
b4)dt = O

(
b4)

whereas for boundary points we have

∫ b

0
Δ2(t) dt =

∫ b

0
O
(
b2)dx = O

(
b3)

and the same holds for
∫ 1

1−b
Δ2(t) dt . This means that the integrated squared bias

is dominated by the bias in the boundary regions. In the extreme case with t = 0,
the estimator in (7.102) even converges to 1

2m(0) because we have only half of the
weights (Müller 1991). The boundary effect is even worse for higher-order kernel
estimators and kernel estimators of derivatives.

The problem can be overcome by using boundary kernels that are designed to
make the bias of the same order of magnitude for all t ∈ [0,1]. To achieve that,
the moment conditions given in (7.101) should be satisfied not only at interior but
also at boundary points. Boundary kernels are solutions obtained from (7.101) and
additional side conditions. Examples of boundary kernels may be found in Gasser
and Müller (1979), Gasser et al. (1985), Müller (1991) and Müller and Wang (1994).
In the following, the discussion will only be carried out for left boundary points
t ∈ [0, b). For the right boundary, arguments are analogous. Note that asymptotically
any fixed point t ∈ (0,1) is an interior point because b → 0. A left boundary point
can be written as t = cb with 0 ≤ c = c(t) < 1. For interior points t ∈ [b,1 − b], we
define c = 1.

A left boundary kernel Kc(u) of order (j, k) is defined as a Lipschitz continuous
function with compact support [−1, c] satisfying the moment conditions

∫ c

−1
Kc(u)ui du =

⎧
⎨

⎩

0, i = 0, . . . , j − 1, j + 1, . . . , k − 1,

j !, i = j,

βc,k �= 0, i = k.

(7.103)

Boundary kernels for the right boundary t ∈ (1 − b,1] are defined in an analogous
manner.
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Table 7.3 Three commonly used second-order μ-smooth boundary kernels

j k μ Kernel function K
(μ)
c (on [−1, c])

0 2 0 1
c+1 {1 + 3( 1−c

1+c
)2 + 6 1−c

(1+c)2 u}
0 2 1 6

(c+1)3 {1 + 5( 1−c
1+c

)2 + 10 1−c
(1+c)2 u}(1 + u)(c − u)

0 2 2 30
(c+1)5 {1 + 7( 1−c

1+c
)2 + 14 1−c

(1+c)2 u}(1 + u)2(c − u)2

Table 7.4 Three second-order boundary kernels proposed by Müller and Wang (1994)

j k μ Kernel function K
(μ,μ−1)
c (on [−1, c])

0 2 0 1
c+1 {1 + 3( 1−c

1+c
)2 + 6 1−c

(1+c)2 u}
0 2 1 12

(c+1)4 {u(1 − 2c) + (3c2 − 2c + 1)/2}(1 + u)

0 2 2 15
(c+1)5 {2u(5 1−c

1+c
− 1) + (3c − 1) + 5 (1−c)2

1+c
}(1 + u)2(c − u)

For the kernel function in the interior, some additional conditions are often re-
quired such as a certain degree of smoothness. Müller (1991) proposed a class of the
so-called μ-smooth optimal boundary kernels which are obtained by solving (7.103)
under the side condition that

∫ c

−1[K(μ)
c (u)]2 du is minimized. Such kernels have the

same degree of smoothness in the boundary area as in the interior. Also, the degree
of smoothness of such boundary kernels is always μ over the whole support [−1, c].
Second-order boundary kernels of this type (for estimating the regression function
m itself) corresponding to the Uniform, the Epanechnikov and the Bisquare kernels
in the interior (see Table 1 in Müller 1991) are listed in Table 7.3. For c = 1, these
formulae reduce to the corresponding ones in the interior given in Table 7.2.

Another class of boundary kernels with a so-called (μ,μ− 1) degree of smooth-
ness was proposed by Müller and Wang (1994). These are defined as solutions of
(7.103) under certain smoothness conditions (see (K2) and (K3) in Müller and Wang
1994, with α and β there corresponding to μ and μ − 1, respectively). At a bound-
ary point t = cb with 0 ≤ c < 1, the degree of smoothness of a boundary kernel
in this class is μ at the left end point u = −1 and μ − 1 at the right end point
u = c, provided that μ > 1. In the interior, one obtains the same kernels as before.
In particular, the kernels given in Table 7.3 may be called boundary kernels with a
(μ,μ) degree of smoothness. The authors showed that these new boundary kernels
have some advantages over those proposed in Müller (1991). Note that the bound-
ary kernels given in Table 7.3 are polynomials of order 2μ − 2 in the interior and
of order 2μ − 1 at the boundary. In contrast, for μ ≥ 1, the boundary kernels pro-
posed by Müller and Wang (1994) are of the same order 2μ − 2 in the interior and
at the boundary. Boundary kernels in this class corresponding to the Uniform, the
Epanechnikov and the Bisquare kernels in the interior are listed in Table 7.4. Note
that here the boundary kernel corresponding to the Epanechnikov kernel with c < 1
is discontinuous at u = c. This means that the degree of smoothness at this end point
is μ − 1 = 0.
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Further examples of boundary kernels can be found, for instance, in Gasser et al.
(1985), Müller (1988, Sect. 5.8). Messer and Goldstein (1993) considered the con-
tinuation of equivalent spline kernels from the interior to the boundary. Gasser et al.
(1985) also proposed some boundary kernels which, for any μ, are non-smooth at
the end point u = c (c �= 1). Boundary kernels considered by Gasser et al. (1985)
belong to another class generated by local polynomial regression with a truncated
weight function at the boundary.

7.4.1.4 The Nadaraya–Watson Regression Estimator—Random Design

If we consider the same nonparametric regression model (7.89),

Yi = m(xi) + ei (i = 1, . . . , n),

but with a design variable X = x that is random, say with density function pX , then
the Priestley–Chao estimator has to be modified, in general. The reason is that by
analogous arguments as above one obtains

E
(
m̂PC(x)

)= pX(x)m(x) + O
(
b2) (

x ∈ (0,1)
)
.

Thus, in general, one has a bias that does not disappear asymptotically, unless pX

is the uniform distribution on [0,1]. (Note, in particular, that the equidistant fixed
design considered previously can be seen as a special case, or rather an extended
special case, in the sense of conditional inference given x1, . . . , xn and a uniform
limiting design density pX .) A simple solution is to divide m̂PC(x) by a consistent
estimate of pX(x). This is the idea of the Nadaraya–Watson estimator (Nadaraya
1964; Watson 1964)

m̂NW(x) =
∑n

i=1 yiK(
xi−x

b
)

∑n
i=1 K(

xi−x
b

)
= m̂PC(x)

p̂X(x)
(7.104)

where

p̂X(x) = 1

nb

n∑

i=1

K

(
xi − x

b

)

is the so-called Parzen–Rosenblatt kernel estimator of pX(x) (Rosenblatt 1956;
Parzen 1979) since, under standard conditions p̂X(x) →p pX(x) and m̂PC(x) →p

pX(x)m(x), the Nadaraya–Watson estimator m̂NW(x) converges in probability to
m(x). Expressions for the bias and variance are slightly more complicated than those
for m̂PC(x) in the deterministic equidistant case because the accuracy of p̂X(x) also
plays a role. However, the order of the bias is as before, namely O(b2) for second-
order kernels. In how far the variance of m̂NW(x) is influenced by the autocovariance
structure depends on the random mechanism generating the values of X. This is sim-
ilar to a parametric linear regression where, for instance, autocorrelations play no
role when Yi = βxi + ei with x1, . . . , xn obtained by i.i.d. sampling of a zero-mean
random variable X, whereas the opposite is true when E(X) �= 0 (see Sect. 7.2).
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7.4.1.5 Local Polynomial Smoothing

The main idea behind local polynomial smoothing (see, e.g. Ruppert and Wand 1994
and Fan and Gijbels 1995, 1996 and references therein) is based on a polynomial
approximation of a (p + 1)-times differentiable function m(x) in a small neigh-
bourhood of x. This is applicable to deterministic as well as to random designs.
By a Taylor series expansion around x, a pth-degree polynomial approximation of
m(xi) is given by

m(xi) ≈ m(x) + (xi − x)m(1)(x) + (xi − x)2

2! m(2)(x) + · · · + (xi − x)p

p! m(p)(x).

As before, we use the notation m(j) for the j th derivative. Since the coefficients

βj = βj (x) = m(j)(x)

j ! (j = 0,1,2, . . . , p)

are fixed, we can rewrite m(xi) as

m(xi) ≈
p∑

j=0

(xi − x)jβj

where the coefficients β0, . . . , βp are the same for all xi “close” to x. This enables
us to estimate m(x) and its derivatives m(j)(x) (j = 1,2, . . . , p) by fitting a local
polynomial of degree p to observations (xi, yi) with xi (fixed or random) in the
neighbourhood of x. Estimates of derivatives are then defined by

m̂(j)(x) = j !β̂j (j = 0,1, . . . , p).

In other words, we apply a polynomial regression locally. The regression parameter
β = β(x) = (β0, . . . , βp)T is estimated by minimizing a weighted sum of squared
residuals,

Q(x) =
n∑

i=1

{
yi −

p∑

j=0

(xi − x)jβj

}2

D

(
xi − x

b

)
,

with respect to β where the weights D((x − xi)/b) make sure that only values in
the neighbourhood of x are included. In matrix form, Q can also be written as

Q(x) = (y − Xβ)′D(x)(y − Xβ)

where

X = (x·1, . . . ,x·p+1) =
⎛

⎜⎝
1 x1 − x . . . (x1 − x)p

...
...

. . .
...

1 xn − x . . . (xn − x)p

⎞

⎟⎠
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and

D =

⎛

⎜⎜⎜⎜⎝

D(x1−x
b

) 0 . . . 0

0 D(x2−x
b

)
. . .

...
...

. . .
. . . 0

0 . . . 0 D(xn−x
b

)

⎞

⎟⎟⎟⎟⎠
. (7.105)

The weighted least squares solution can be written as

m̂(j)(x) = j !β̂j = j !δT
j+1

(
XT DX

)−1XT Dy (7.106)

where δj = (δ1,j , . . . , δp+1,j )
T (j = 1, . . . , p+1) denote unit vectors with δj,j = 1,

δi,j = 0 (i �= j ).

To derive asymptotic properties of m̂(j)(x), it is often convenient to write (7.106)
as a weighted sum. Defining the weighting system

wT
j ;b,n = (

wj ;b,n(x;1), . . . ,wj ;b,n(x;n)
)= j !δT

j+1

(
XT DX

)−1XT D, (7.107)

we have

m̂(j)(x) = wT
j ;b,ny =

n∑

i=1

wj ;b,n(x; i)Yi .

Note, that each weight wj ;b,n(i) associated with Yi changes with changing sample

size n. Thus, investigating the asymptotic distribution of m̂(j)(x) amounts to study-
ing the sequence of sums

Sn =
n∑

i=1

wj ;b,n(x; i)ei =
n∑

i=1

ζi,n (n ∈ N) (7.108)

of a triangular array ζi,n = wν;b,n(x; i)εi (1 ≤ i ≤ n; n ∈N). Since

δT
j+1

(
XT DX

)−1XT DX = δT
j+1 = (0, . . . ,0,1,0, . . . ,0)

(with 1 being the (j + 1)st component), the weights have the property

wT
j ;b,nx·j+1 = j !δT

j+1

(
XT DX

)−1XT Dx·j+1

=
n∑

i=1

wj ;b,n(x; i)(xi − x)j = j ! (7.109)

and

wT
j ;b,nx·l+1 =

n∑

i=1

wj ;b,n(x; i)(xi − x)l = 0 (l �= j, 0 ≤ l ≤ p). (7.110)
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These equations hold under any design that makes m̂(j) exactly unbiased in the case
where m is a polynomial of degree q ≤ p.

The bias of local polynomial estimators is of the same order for interior and
boundary points. For instance, if j = 0 and p = 1, then

E
[
m̂(x)

]=
n∑

i=1

w0;b,n(x; i)m(xi)

=
n∑

i=1

w0;b,n(x; i)
[
m(x) + (xi − x)m(1)(x) + 1

2
m(2)(x̃i)(xi − x)2

]

= m(x) + 0 + 1

2
m(2)(x)b2 + o

(
b2)= m(x) + O

(
b2)

where the latter equality follows from (7.110) and a detailed argument for the re-
mainder term using the property (xi − x)2 ≤ b2. More generally, local polynomial
estimators of m(j) are automatically boundary corrected if p − j is odd, in the sense
that the bias at interior and boundary points is of the same order. In contrast, for
kernel estimators (7.109) and (7.110) hold only approximately, and this leads to
problems at the boundary. Furthermore, these properties show that local polynomial
regression is design adaptive. In contrast to the Priestley–Chao kernel estimator, no
adjustment by the design density is required.

More specifically, if b → 0 and nb3 → ∞, then, under suitable conditions on D,
expressions for the bias of m̂(j)(x) can be shown to be of the form

Bias
(
m̂(j)(x)

)∼ c1 · m(p+1)(x)

(p + 1)! j !bp+1−j (if p − j odd),

Bias
(
m̂(j)(x)

)∼ c2 ·
{

m(p+2)(x)

(p + 2)! + m(p+1)(x)

(p + 1)!
p′

X(x)

pX(x)

}
j !bp+2−j (if p − j even)

with c1 and c2 not depending on m. In particular, this means that if p − j is even,
then the bias is affected by the design density. This can be problematic especially
near the boundary of the x-space, and thus we have another reason for choosing
p − j odd. Moreover, one would like to choose p as small as possible in order to
avoid unnecessary differentiability conditions on m. Therefore, the usual choice of
p is j + 1 which leads to a bias of the order O(b2).

The variance of m̂(j)(x) depends on the autocovariance structure and the design.
For asymptotic considerations, it is also useful to note that local polynomials can
be approximated by kernel estimators. For instance, in the case of equidistant fixed
design regression with xi = i/n =: ti , the asymptotically equivalent kernel estimator
is (see Müller 1987 and Feng 1999)

m̃(j)(t) = 1

nb

∑
K(j,p+1,c)

(
ti − t

b

)
Yi



634 7 Statistical Inference for Nonstationary Processes

where the “equivalent kernel” K(j,p+1,c) has the following properties. As before,
the notation is t = cb and 1 − cb with 0 ≤ c < 1 for boundary points t = cb and
1 − cb, and c = 1 for interior points t ∈ [b,1 − b]. Then K(j,p+1,c)(u) is such that,
for 0 ≤ j ≤ p,

∫ 1

−c

K(j,p+1,c)(u)ul = 0 (j �= l),

∫ 1

−c

K(j,p+1,c)(u)uj = j !

and

τ =
∫ 1

−c

K(j,p+1,c)(u)up+1 �= 0.

Note that the kernel is different for boundary points. This reflects the automatic
boundary correction of local polynomials. Equivalence is expressed in terms of a
uniform approximation of the weighting system wj ;b,n of m̂(j)(t) by the weighting
system w̃j ;b,n of m̃(j)(t), namely

lim
n→∞ sup

1≤i≤n

∣∣∣∣
wj ;b,n(t; i)
w̃j ;b,n(t; i) − 1

∣∣∣∣= 0

where we define 0/0 := 1 (Müller 1987; also see Lejeune 1985; Lejeune and Sarda
1992 and Ruppert and Wand 1994). Using the approximation by m̃(j)(t), one obtains
the asymptotic variance of m̂(j)(t) by similar arguments as for the Priestley–Chao
kernel estimator,

var
(
m̃(j)(t)

)= (nb)−2
n∑

i,j=1

K(j,p+1,c)

(
ti − t

b

)
K(j,p+1,c)

(
ti − t

b

)
γe(i − j)

∼ const · (nb)2d−1b−2j

(Beran and Feng 2001a, 2001b, 2002c, 2007).

Example 7.28 Let p = 0. Then we obtain a local constant fit that minimizes

Q(x) =
n∑

i=1

{yi − β0}2D

(
ti − t

b

)
.

The solution is a weighted sample mean

β̂0(x) = 1

nb

n∑

i=1

D̃

(
ti − t

b

)
yi
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with

D̃(u) = D(u)

(nb)−1
∑n

i=1 D(u)
.

Thus, D̃(u) is the equivalent kernel. Note that β̂0(x) is the Nadaraya–Watson es-
timator discussed in the previous section. Explicit formulae of the weights for the
local linear estimator of m(t) are given by (2.3) and (2.4) in Fan (1992).

In summary, the main practical advantages of local polynomial estimation com-
pared to direct kernel smoothing are the direct availability of estimated derivatives,
the automatic bias correction at the border (for more discussion on this topic, see,
e.g. Fan and Gijbels 1996) and design adaptivity. The calculation of m̂(j)(x) is very
simple because it essentially only requires a program for linear regression. The rep-
resentation by an equivalent kernel estimator is useful for deriving asymptotic re-
sults.

7.4.1.6 Calculation of Equivalent Kernels

Here we provide some details on the calculation of the equivalent kernel introduced
above. We consider the case of j = 0 only, i.e. estimation of m(x) by

m̂(x) = wT y =
n∑

i=1

w(i)Yi

with

w = wT
0;b,n = δT

1

(
XT DX

)−1XT D.

Lejeune and Sarda (1992) showed that there is a kth order equivalent kernel function
(for estimating m) where k = p + 1 if p is odd and k = p + 2 if p is even. It can be
calculated as follows. Let

Np =

⎛

⎜⎜⎜⎝

1 μ1 . . . μp

μ1 μ2 . . . μp+1
...

...
. . .

...

μp μp+1 . . . μ2p

⎞

⎟⎟⎟⎠ , (7.111)

and

Mp =

⎛

⎜⎜⎜⎝

1 μ1 . . . μp

u μ2 . . . μp+1
...

...
. . .

...

up μp+1 . . . μ2p

⎞

⎟⎟⎟⎠ , (7.112)
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where μj = ∫ 1
−1 ujD(u)du is the j th moment of D(u). The equivalent kernel func-

tion is given by

K(u) = Kk(u) = det(Mp(u))

det(Np)
D(u). (7.113)

Note that the kernel function is determined by the weight function D(u) and the
order of the polynomial p. It does not depend on the design and is therefore the same
for fixed (equi- and nonequidistant) and random design. Another representation is

K(u) =
(

p+1∑

j=1

a1j u
j−1

)
W(u), (7.114)

where N−1
p = (aij )i,j=1,...,p+1. Note that for j even, a1j = 0. Thus, all odd powers

of u in (7.114) vanish. One can also see that K(u) is a polynomial kernel whenever
D(u) is a polynomial. Moreover, if p is even, then k = p + 2 = (p + 1) + 1, and
one can see that K = Kk is the same for p and p + 1.

Let wNW(x; i) denote the weights of the Nadaraya–Watson estimator of m(·)
defined by Kk(u). It can be shown that w(x; i) = wNW(x; i)[1 + op(1)]. Hence the
kernel Kk(u) is often called the (asymptotically) equivalent kernel function of the
local polynomial regression. This interpretation is, however, somehow inaccurate
because the detailed difference between the NW-estimator and the local polynomial
estimator is only asymptotically negligible in the case of an equidistant design. This
is not true for random or non-equidistant fixed design.

We conclude the discussion with two examples of equivalent kernels.

Example 7.29 Consider a local quadratic (p = 2) or local cubic (p = 3) estimator of
m(t) using the Epanechnikov kernel D(u) = 3

4 (1−u2) (|u| ≤ 1) as weight function.
We have k = 4, a11 = 15

8 and a13 = − 35
8 . The resulting equivalent kernel is

KE
4 (u) = 15

32

(
3 − 10u2 + 7u4), (7.115)

which is a well known fourth-order kernel used in the literature (Gasser et al. 1985).

Example 7.30 Consider a local quadratic (p = 2) or local cubic (p = 3) estimator

of m(t) using the Gaussian kernel D(u) = ϕ(u) = (2π)− 1
2 exp(− 1

2u2) as weight
function. We have k = 4, a11 = 3

2 and a13 = − 1
2 . The resulting equivalent kernel is

KG
4 (u) = 1

2

(
3 − u2)ϕ(u). (7.116)

Further examples of equivalent kernel functions in the interior may be found
in Gasser et al. (1985) and Müller (1988). Examples of equivalent kernels includ-
ing boundary kernels and estimation of derivatives are given in Feng (1999, 2004a,
2004b).
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7.4.2 Fixed-Design Regression with Homoscedastic LRD Errors

7.4.2.1 Bias and Variance of Kernel and Local Polynomial Estimators

We assume a nonparametric regression model (7.89) with a fixed equidistant design,

Yi = Yi,n = m(ti) + ei,

where ti = i/n and ei is a second-order zero mean stationary process with spectral
density fe(λ) ∼ cf |λ|−2d for some d ∈ (− 1

2 , 1
2 ). In view of the discussion above,

essentially the same results are expected to hold for local polynomial estimators
and kernel estimators with boundary kernels. The following results are therefore
formulated under the assumption that m̂(j) is either a local polynomial estimator
(with polynomials of degree p) or a kernel estimator of the corresponding degree
and boundary corrections.

For reasons discussed previously, we will assume p − j to be odd. Moreover, we
will use the notation k = p + 1. Thus k ≥ j + 2 and k − j is always even. If m̂(j) is
a local polynomial estimator with polynomials of order p, then it is asymptotically
equivalent to a certain kth order kernel estimator with boundary corrections (see
discussion above). The corresponding kernel is denoted by K(j,p+1,c). Otherwise,
if we use a kernel estimator, then this denotes the kernel we use. To derive the
asymptotic mean squared error, the following assumptions are sufficient (but not
necessary).

A1. The errors ei have the Wold decomposition

ei =
∞∑

s=0

asεi−s

where E(εi) = 0, σ 2
ε = var(εi) < ∞,

fe(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 ∼ cf |λ|−2d (λ → 0)

for some d ∈ (−0.5,0.5) and εi is a martingale difference.
A2. The trend function m(t) is at least k (= p + 1) times continuously differen-

tiable on [0,1] with k ≥ j + 2 and k − j even, and m̂(j) is either a pth order
local polynomial or a kth order kernel estimator with a corresponding boundary
correction.

A3. For the bandwidth we have, as n tends to infinity,

b → 0, (nb)1−2db2j → ∞.

A4. For y = x − (x − y) (with x and y in the support of K(j,p+1,c)) the kernel
K(j,p+1,c) can be written as

K(j,p+1,c)(y) = K(j,p+1,c)(x) + K̃(j,p+1,c)(x − y), (7.117)
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where

K̃(j,p+1,c)(x − y) =
r∑

j=1

ηj (x − y)j ,

with coefficients ηj = ηj (x) determined by the value of x.

These conditions are sufficient for deriving the asymptotic results given below.
Note, however, that for the derivation of the minimax lower bounds, for estimating
the unknown dependence structure after subtracting a nonparametric trend estimate
or for the development of data-driven algorithms, stronger conditions are required.

Assumption A1 defines the linear dependence structure, including short memory
(with d = 0), long memory (d > 0) and antipersistence (d < 0). If εi are i.i.d., then
ei is a linear fractional process. However, linearity is not required. It is sufficient
that the process ei is a martingale difference. This is particularly useful when one
would like to include short-range volatility dependence. For instance, Beran and
Feng (2001a) consider the case where ei is a FARIMA–GARCH with GARCH-
innovations εi . In other words,

ei = (1 − B)−dϕ−1(B)ψ(B)εi,

εi = √
viξi,

vi = α0 +
r∑

j=1

αjε
2
i−j +

s∑

j=1

βjvi−j

where A(B) = (1 − B)−dϕ−1(B)ψ(B) is the usual FARIMA(p,d, q) operator. If
only the asymptotic variance of m̂(j) is of interest, then weaker conditions than the
martingale assumptions are sufficient. This assumption is useful when it comes to
deriving the asymptotic distribution of m̂(j). Assumption A2 is a regularity condi-
tion on the smoothness of m which, together with A3, is required for the deriva-
tion of the order of magnitude of the bias of m̂(j). If only consistency is required,
then it is sufficient that m(j) is continuous in a neighbourhood of x. As discussed
previously, the first condition in A3 is needed so that the bias converges to zero.
The second condition is needed for the variance to tend to zero. More specifically,
(nb)1−2db2j → ∞ implies nbj+1 → ∞ for all d ∈ (−0.5,0.5). This ensures that
wj ;b,n(t; i) → 0 (see (7.107)). Condition A4 is needed for the case of antipersis-
tence (see the result below). For local polynomial estimation A4 can be achieved,
for instance, by using a second-order weight function K(u) in (7.105) that is μ-
smooth and of the form

K(u) = Cμ

(
1 − u2)μ1{−1 ≤ u ≤ 1}

for some μ ∈ N. For kernel estimation a polynomial kernel can be chosen directly
by taking into account (7.117).

For any point t ∈ [0,1], the asymptotic mean squared error can be obtained by
detailed arguments following along the line of the heuristic ideas outlined so far.
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As before, for any interior point t ∈ (0,1) we write c = 1, and for boundary points
t = cb or t = 1 − cb with 0 ≤ c < 1. The corresponding support of K(j,p+1,c) is
denoted by S = [−a1, a2] with a1 = c and a2 = 1 for a left, and a1 = 1 and a2 = c

for a right boundary kernel. In the interior, we have a1 = a2 = 1.

Theorem 7.22 Assume Conditions A1–A4. We define a1 = b1 = 1 for interior
points t ∈ [b,1 − b], a1 = c, a2 = 1 for left boundary points t = cb ∈ [0, b)

and a1 = 1, a2 = c for right boundary points t = 1 − cb ∈ (1 − b,1]. Then for
d ∈ (−0.5,0.5) and any t ∈ [0,1] we have

(i) Bias:

E
[
m̂(j)(t) − m(j)(t)

]= bk−j m(k)(t)β(j,k,c)

k!
[
1 + o(1)

]
, (7.118)

where β(j,k,c) = ∫ a2
−a1

ukK(j,k,c)(u) du,
(ii) Variance:

var
(
m̂(j)(t)

)= (nb)2d−1b−2jV(j,k,c)(d)
[
1 + o(1)

]
, (7.119)

where for d = 0 we have

V(j,k,c)(0) = 2πcf

∫ a2

−a1

K2
(j,k,c)(x) dx, (7.120)

for d > 0,

V(j,k,c)(d) = 2cf Γ (1 − 2d) sinπd

×
∫ a2

−a1

∫ a2

−a1

K(j,k,c)(x)K(j,k,c)(y)|x − y|(2d−1) dx dy (7.121)

and for d < 0,

V(j,k,c)(d) = 2cf Γ (1 − 2d) sin(πd)I (j, k, c;d) (7.122)

with

I (j, k, c;d) =
∫ a2

−a1

K(j,k,c)(x)M(x)dx, (7.123)

M(x) =
∫ a2

−a1

K̃(j,k,c)(x −y)|x −y|2d−1 dy −K(j,k,c)(x)

∫

y<−a1y>a2

|x −y|2d−1 dy.

(7.124)

We note that for j = 0, k = 2 the results in Theorem 7.22 agree with the expres-
sions for bias and variance given above. Note also that being in the boundary region
not only affects the bias but also the variance. The reason is that having less data in
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the boundary regions necessarily increases the variance, though the order does not
change. A detailed proof of Theorem 7.22 can be found in Beran and Feng (2002a).
For earlier partial results in the short- and long-memory context, respectively, see,
e.g. Altman (1990), Hart (1991) and Hall and Hart (1990a). Note that, for d < 0,
the integral on the right-hand side of (7.121) is not well defined. However, the two
integrals on the right-hand side of (7.122) based on the decomposition of the kernel
function given in (7.123) and (7.124) are both well defined, since −0.5 < d < 0 and
the powers of (y − x) in K̃(j,k,c)(x − y) are at least of order one. This is why the
decomposition was needed.

Example 7.31 Let et be generated by a FARIMA(0, d,0) process. Consider the ker-
nel estimation of m with the rectangular kernel for interior points and the corre-
sponding boundary kernels for left and right boundary points. Thus, j = 0, and we
choose k = 2. For interior points, we have

K(0,2,1)(u) = 1

2
1{−1 ≤ u ≤ 1}

and, for instance, for left boundary points we have the kernel

K(0,2,c)(u) = 1

c + 1

{
1 + 3

(
1 − c

1 + c

)2

+ 6
1 − c

(1 + c)2
u

}

with 0 ≤ c < 1 (see Table 7.3). Note in particular that K(j,k,c) converges to the
rectangular kernel as c → 1. For β(j,p+1,c) we have

β(0,2,1) =
∫ 1

−1
u2K(0,2,1)(u) du = 1

2

∫ 1

−1
u2 du = 1

3

and, with c < 1,

β(0,2,c) =
∫ 1

−1
u2K(0,2,c)(u) du

= 1

c + 1

∫ 1

−1
u2
{

1 + 3

(
1 − c

1 + c

)2

+ 6
1 − c

(1 + c)2
u

}
du

= 1

c + 1

{
1

3
+
(

1 − c

1 + c

)2

+ 3
1 − c

(1 + c)2

}
.

Figure 7.9 shows how β(0,2,c) increases as c decreases to zero. The smallest value
for c = 0 is equal to β(0,2,0) = 13

3 . Thus, the bias of m̂(0) is more than four times
larger than for interior points. More specifically, we have for t ∈ [b,1 − b],

Bias = E
[
m̂(t)

]− m(t) = b2 1

6
m(2)(t) + o

(
b2)
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Fig. 7.9 Plot of β(0,2,c) for
0 ≤ c < 1 and K(0,2,c) derived
from the rectangular kernel

and for t = 0,

Bias = E
[
m̂(0)

]− m(0) = b2 13

8
m(2)(0) + o

(
b2).

The variance can be evaluated from (7.119) by inserting K(0,2,c) in the correspond-
ing integral. Figure 7.10 shows V(j,k,c)(d) as a function of c ∈ [0,1] for different
values of d . As for the bias, the variance increases the closer we are to the boundary.
However, in contrast to the bias, the effect is stronger for higher values of d . This
means that the increase in the variance near the border is much more dramatic in the
presence of strong long memory so that, for instance, confidence intervals for m(t)

near the border can differ considerably from those at interior points. Note also that
for d < 0, the function K̃(j,p+1,c) = K̃(0,2,1) is given as follows. Let y = (y−x)+x.
Then for interior points (c = 1) we have

K(0,2,1)(y) = 1

2
1{−1 ≤ y ≤ 1} = K(0,2,1)(x) + K̃(0,2,1)(x − y)

with K̃(0,2,1) being an indicator function determined by the value of x by

K̃(0,2,1)(u) = −1

2

(
1{u < x − 1} + 1{u > 1}).

For 0 ≤ c < 1 and left boundary points, we have

K̃(0,2,c)(u) = 1{−1 ≤ x ≤ c}1{x − c ≤ x − y ≤ x + 1},
and for right boundary points,

K̃(0,2,c)(u) = 1{−c ≤ x ≤ 1}1{x − 1 ≤ x − y ≤ x + c}.
Again, the variance increases with decreasing c.
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Fig. 7.10 V(0,2,c)(d) plotted
as a function of c ∈ [0,1) for
different values of d ∈ (0, 1

2 )

Theorem 7.22 implies an asymptotic formula for the MSE at t of the form

MSE(t) = E
[(

m̂(j)(t) − m(j)(t)
)2] (7.125)

∼ b2(k−j)

(
m(k)(t)β(j,k,c)

k!
)2

+ (nb)2d−1b−2jV(j,k,c)(d). (7.126)

By minimizing this expression, we obtain the asymptotically optimal local band-
width

bopt = bopt(t) = Copt(t)n
−αopt (7.127)

where

αopt = 1 − 2d

2k + 1 − 2d

and

Copt(t) =
{

2j + 1 − 2d

2(k − j)

(
k!

m(k)(t)β(j,k,c)

)2

V(j,k,c)(d)

} 1
2k+1−2d

. (7.128)

Here it was assumed tacitly that m(k)(x) �= 0. Note that a bandwidth of the optimal
order n−αopt is such that the squared asymptotic bias and the asymptotic variance are
of the same order of magnitude. Inserting bopt(x) in (7.125), we obtain an optimal
MSE of the order

MSEopt = O
(
n−r

)
, (7.129)

with

r = 2(k − j)αopt = 2(k − j) · 1 − 2d

2k + 1 − 2d
. (7.130)
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Under the assumptions of Theorem 7.22, this rate turns out to be optimal among
all possible nonparametric regression estimators (Feng and Beran 2012). Moreover,
Beran and Feng (2007) show that there is no kernel (or weighting system) that would
be optimal for all values of d ∈ (0, 1

2 ). Thus, in contrast to the case where we restrict
models to short-range autocorrelations, optimization with respect to the kernel is not
meaningful because the value of d is not known a priori.

The standard choice of k is k = j + 2 which leads to

αopt = αopt(j, d) = 1 − 2d

5 + 2j − 2d

= 1

5 + 2j
− 2d(4 + 2j)

(5 + 2j − 2d)(5 + 2j)

= αopt(j,0) − 2d(4 + 2j)

(5 + 2j − 2d)(5 + 2j)

and

ropt = ropt(j, d) = 4αopt(j, d) = 4 − 8d

5 + 2j − 2d

= 4

5 + 2j
− 8d(4 + 2j)

(5 + 2j − 2d)(5 + 2j)

= ropt(j,0) − Δropt(j, d).

Thus, compared to the case of short memory with d = 0, the optimal order of the
MSE is increased for d > 0 and decreased for d < 0 by the factor nΔropt(j,d). In
Fig. 7.11, Δropt(j, d) is plotted against j = 0, 1, 2, 3 and 4 for n = 1000, and d

ranging between −0.4 and 0.4. The effect is quite dramatic for low values of j

and strong long memory. The largest increase within the range considered here is
obtained for j = 0 and d = 0.4 with Δropt(0,0.4) ≈ 0.61. Note that, for instance,
for n = 1000 this amounts to an increase by the factor nΔropt(j,d) ≈ 67.

If one prefers to use a global bandwidth instead of a local one, then one can min-
imize an integrated MSE (IMSE). If we use local polynomial estimation or a kernel
estimator with boundary kernels, then the bias for boundary points is of the same
order as in the interior. The contribution of boundary points to the IMSE is there-
fore asymptotically negligible because the boundary intervals shrink to length zero.
(It should be emphasized, however, that this conclusion is wrong when one does
not use boundary kernels—see the previous discussion.) The asymptotic expression
therefore simplifies to

IMSE =
∫ 1

0
MSE(t) dt (7.131)

∼ b2(k−j)

(
β(j,k,1)

k!
)2

Ik + (nb)2d−1b−2jV(j,k,1)(d) (7.132)
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Fig. 7.11 Change Δr of the
optimal exponent ropt in
MSEopt(m̂

(j)) = O(n−ropt )

compared to the case of short
memory, as a function of j ,
plotted for different values
of d

where

Ik =
∫ 1

0

(
m(k)(t)

)2
dt. (7.133)

The asymptotically optimal global bandwidth is then given by

bopt = Coptn
−αopt (7.134)

where αopt is as before and

Copt =
{

2j + 1 − 2d

2(k − j)

(
k!

β(j,k,1)

)2 V(j,k,1)(d)

Ik

} 1
2k+1−2d

. (7.135)

Example 7.32 Let et be generated by a FARIMA(0, d,0) process with 0 < d < 1
2 .

Consider kernel estimation of m with the rectangular kernel for interior points and
the corresponding boundary kernels for left and right boundary points. Then j = 0,
k = 2,

K(0,2,1)(u) = 1

2
1{−1 ≤ u ≤ 1},

V(0,k,1)(d) = Γ (1 − 2d) sinπd

4π

∫ 1

−1

∫ 1

−1
|x − y|(2d−1) dx dy

= Γ (1 − 2d) sinπd

4π

22d+1

d(2d + 1)
,

β(0,2,1) = 1

2

∫ 1

−1
u2 du = 1

3
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and (with the notation from (7.133))

IMSE ∼ b2(k−j)

(
β(j,k,1)

k!
)2

Ik + (nb)2d−1b−2jV(j,k,1)(d) (7.136)

= b4
(

1

6

)2

I2 + (nb)2d−1 Γ (1 − 2d) sinπd

π

22d−1

d(2d + 1)
. (7.137)

This is the same expression we obtained in (7.95).

7.4.2.2 Asymptotic Distribution

As mentioned previously in (7.108), local polynomial and kernel estimators can
be written as sums of triangular arrays. Investigating the asymptotic behaviour of
m̂(j)(t) amounts to studying a sequence of sums

Sn =
n∑

i=1

ζi,n (n ∈N) (7.138)

with

ζi,n = wj ;b,n(i)ei

(1 ≤ i ≤ n; n ∈ N). The asymptotic distribution of m̂(j)(t) therefore follows as a
corollary of a suitable limit theorem for triangular arrays. For instance, Beran and
Feng (2002a) consider the case of a second order stationary residual process

ei =
∞∑

s=0

asεi−s

with square integrable martingale differences εi and

fe(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 ∼ cf |λ|−2d (λ → 0)

for some d ∈ (−0.5,0.5). This includes not only second-order stationary linear pro-
cesses but also nonlinear fractional processes such as FARIMA–GARCH models.
Under relatively mild conditions on the marginal distribution of ei , one has a limit
theorem

σ−1
n

n∑

i=1

ei →
d

Z ∼ N(0,1),

where

σ 2
n = var

(
n∑

i=1

ei

)
.
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This can be extended to sums of arrays ζi,n = wi,nei as follows.

Theorem 7.23 Under the conditions stated above (see Beran and Feng 2002a),
the following holds. Let (wi,n) be a triangular array of weights such that σ 2

n,w :=
var(

∑n
i=1 wi,nei) > 0 for all n. If

max
1≤i≤n

|wi,n|/σn,w → 0 (7.139)

and

sup
i

∣∣∣∣∣

n∑

j=1

wj,nai−j

∣∣∣∣∣

/
σn,w → 0, (7.140)

then
[

n∑

i=1

wi,nei

]/
σn,w →

d
Z ∼ N(0,1). (7.141)

The detailed proof of Theorem 7.23 can be found in Beran and Feng (2002a).
Condition (7.139) means that the weights wi,n are uniformly negligible. Note that, if
max |wi,n| = O(1), then σ 2

n,w → ∞ as n → ∞. Condition (7.140) on the weighted
sum

∑
wjai−j is often related to (7.139). Theorem 4.2 in Müller (1988) on the

asymptotic normality of a weighted sum of i.i.d. random variables is a special case
of Theorem 7.23. Related results on the asymptotic normality of weighted sums can
be found, for instance, in Fuller (1996, Theorem 6.3.4).

Asymptotic normality for local polynomial and kernel estimators is now a corol-
lary of (7.141). As before, we distinguish between interior points t ∈ (0,1) with
c = 1, and boundary points t = ch or t = 1 − ch with c ∈ [0,1).

Corollary 7.1 Let m̂(j)(t) (t ∈ [0,1]) be a local polynomial estimator or a kernel
estimator with boundary kernels. Suppose that the conditions of Theorem 7.22 and
the conditions on ei in Theorem 7.23 hold. Assume furthermore that the bandwidth
is of the optimal order, i.e.

b = cb · n−αopt

(for some 0 < cb < ∞), and let

μ(j,k,c) = c
1
2 −d+k

b

m(k)(t)β(j,k,c)

k! . (7.142)

Then, for any d ∈ (− 1
2 , 1

2 ), we have

(nb)
1
2 −dbj

[
m̂(j)(t) − m̂(j)(t)

]→
d

Z(j,k,c) ∼ N
(
μ(j,k,c),V(j,k,c)(d)

)
, (7.143)

where V(j,k,c)(d) and β(j,k,c) are the constants defined in Theorem 7.22.
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Note that, as usual in nonparametric regression, using a bandwidth with the opti-
mal rate leads to a non-negligible asymptotic bias after standardization. For statisti-
cal inference about m(j)(t), this means that one needs to include an estimate of this
bias. The other option is to use a slightly faster rate for the bandwidth so that the
bias disappears asymptotically because it is dominated by the variance.

A further result that is useful for simultaneous confidence bands for the func-
tion m(t) has been shown in Csörgő and Mielniczuk (1995a) for the case of
long memory. Assuming a spectral density fe(λ) ∼ cf |λ|−2d or autocovariances
γe(k) ∼ cγ |k|2d−1 with 0 < d < 1

2 , and a second-order kernel estimator m̂, one can
show that for interior points 0 < t1 < · · · < tl < 1 one has asymptotic independence.
In other words,

(nb)1/2−dV
− 1

2
(0,2,1)

(
m̂(t1) − m(t1), . . . , m̂(tl) − m(tl)

)→
d

(Z1, . . . ,Zl) (7.144)

where Zi are independent standard normal random variables and V(0,2,1) is defined
in (7.121). The result is, of course, only valid, if the standardized sums of ei are
also asymptotically normal. Specifically, Csörgő and Mielniczuk (1995a) consider
Gaussian residuals as well as Gaussian subordination. In the latter case, the Hermite
rank of the transformation has to be one (see Sect. 4.2.3). The reason why we have
asymptotic independence can be seen quite easily. For t �= s, we have

cov
(
m̂(t), m̂(s)

)∼ cγ n2d−1b−2
∫ 1

0

∫ 1

0
K

(
x − t

b

)
K

(
y − s

b

)
|x − y|2d−1 dx dy

∼ cγ n2d−1
∫ 1

−1

∫ 1

−1
K(u)K(v)

∣∣t − s − b(u − v)
∣∣2dε−1

dudv.

Up to this point, the evaluation is almost the same as for the variance of
m̂(t). However, the crucial difference is that with b → 0 the function g(u, v) =
|t − s − b(u − v)| converges to |x − y| uniformly in (u, v) ∈ [−1,1]2. Therefore,

cov
(
m̂(t), m̂(s)

)∼ cγ n2d−1|t − s|2d−1.

However, our standardization in (7.144) is (nb)1/2−d so that

(nb)1−2dcov
(
m̂(t), m̂(s)

)∼ cγ b1−2d |t − s|2d−1 → 0.

Note finally that all asymptotic considerations above were made under the as-
sumption that fe(λ) ∼ cf |λ|−2d and γe(k) ∼ cγ |k|2d−1. More generally, the same
results follow when the constants cf and cγ are replaced by slowly varying func-
tions. Also extensions to Gaussian subordination with non-Gaussian limits can be
considered (see Csörgő and Mielniczuk 1995a). Further results can be found, for
instance, in Robinson (1997).
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7.4.3 Fixed-Design Regression with Heteroskedastic LRD Errors

Suppose we have a slightly more general model with a deterministic equidistant de-
sign, namely with a residual process that has a time-varying variance. More specifi-
cally, we assume

Yi = m(ti) + σ(ti)ei (7.145)

with σ(·) continuous and ei as before. Suppose moreover that, apart from possible
heteroskedasticity modelled by σ , the assumptions of Theorem 7.22 hold. Since the
bias is not influenced by the autocovariance structure, the asymptotic expression for
the bias remains the same. For the variance, the assumption that σ is continuous
implies that at point t only σ 2(t) comes in asymptotically. Thus, in the formulas
for the asymptotic variance given in Theorem 7.22, we just have to multiply V(j,k,c)

by σ 2(t). Formula (7.125) changes to

MSE(t) ∼ b2(k−j)

(
m(k)(t)β(j,k,c)

k!
)2

+ (nb)2d−1b−2j σ 2(t)V(j,k,c)(d). (7.146)

All other formulas for bopt and MSEopt, Theorem 7.22, Corollary 7.1, and (7.144)
have to be modified accordingly.

7.4.4 Bandwidth Choice for Fixed Design Nonparametric
Regression—Part I

Nonparametric regression works well only if an appropriate bandwidth is chosen.
Unfortunately, asymptotic expressions for the MSE and IMSE all involve unknown
parameters. If we allow d to vary, instead of being fixed at zero, the situation is
even worse because a good estimate of d is essential, in particular if d > 0 (see, e.g.
Figs. 7.6 and 7.7). It is therefore very important to design a reliable data-adaptive
method for the case of fractional residuals with unknown correlation structure.

Bandwidth selection in nonparametric regression with uncorrelated errors is
well studied. Numerous results on this topic may be found in the literature. Stan-
dard bandwidth selection rules include cross-validation (CV; Clark 1975; Bowman
1984), generalized cross-validation (GCV; Craven and Wahba 1979) and the so-
called R-Criterion (Rice 1984). Also see Härdle et al. (1988), Marron (1989) and
Jones et al. (1996) for related surveys on bandwidth selection rules in the closely
related context of nonparametric density estimation. The main drawback of those
bandwidth selection rules is that their rate of convergence is just O(n−1/10). Other,
more recent, bandwidth selection rules in nonparametric regression have higher
rates of convergence. These include, for instance, the iterative plug-in (IPI, Gasser
et al. 1991), the direct plug-in (DPI, Ruppert et al. 1995) and the double smooth-
ing approach (DS, Müller 1985; Härdle et al. 1992; Heiler and Feng 1998). Band-
width selection in nonparametric regression with dependent errors is more difficult
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because the bandwidth selection and the estimation of the dependence structure de-
pend on each other. This problem is discussed, for instance, in Altman (1990), Hart
(1991), Herrmann et al. (1992), Hall et al. (1995a), Ray and Tsay (1997), Opsomer
et al. (2001) and Beran and Feng (2002a, 2002b, 2002c). The two main approaches
discussed in the long-memory context are bootstrap based cross-validation (Hall
et al. 1995b), and the iterative plug-in method (Ray and Tsay 1997; Beran and Feng
2002a, 2002b, 2002c).

Although the case of a fractional residual process is very general, it does have a
clear structure due to the asymptotic dominance of the parameters d and cf . An iter-
ative plug-in (IPI) algorithm is therefore a natural approach. The first IPI algorithm
in the long-memory context was proposed by Ray and Tsay (1997).

Specifically, consider a second-order kernel estimator of m. Ray and Tsay (1997)
propose the following iteration.

1. Estimate an “optimal” bandwidth b̂opt, assuming only short-range dependent er-
rors, using a standard method such as the procedure in Herrmann et al. (1992).

2. Set b0 = b̂opt.
3. For j ≥ 1 estimate m(t) using bj−1 and let êi = yi − m̂(ti). Estimate d and cf

using the log-periodogram regression by Geweke and Porter-Hudak (or any other
semiparametric method) applied to êi .

4. Let b2,j = bj−1n
(1−2d̂)/(2(5−2d̂)), and estimate m′′ and I (m′′) = ∫

(m′′(t))2 dt

using a fourth-order kernel estimator for estimating the second derivative with
the bandwidth b2,j .

5. Improve bj−1 by setting

bj = Ĉoptn
(2d̂−1)/(5−2d̂) (7.147)

where Ĉopt is obtained from the current estimates of d , cf , and I (m′′).
6. Increase j by 1 and repeat Steps 3 to 5 until convergence is reached. Finally, at

the end of the iteration set b̂opt = bj .

This algorithm is based on the proposal of Herrmann et al. (1992). The formula

b2,j = bj−1n
(1−2d̂)/(2(5−2d̂)) in Step 4 is called an inflation method. An improved

algorithm was proposed in Beran and Feng (2002a, 2002b, 2002c). This is discussed
in more detail in Sect. 7.4.6.

7.4.5 The SEMIFAR Model

7.4.5.1 Introduction

As we have seen in this chapter, distinguishing between deterministic trend func-
tions and random stationary fluctuations with long memory can be quite difficult.
A further complication is that sometimes it may not even be clear whether the
stochastic component of the observed series is stationary. For practical applications,
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one would therefore like to have a data-driven methodology that is able to identify
at least certain standard types of stochastic nonstationarities and distinguish them
from stationary dependence (including short and long memory, and antipersistence)
or deterministic trend functions. A semiparametric approach along this line, the so-
called SEMIFAR (semiparametric autoregressive) models, has been developed in
Beran (1999) and Beran and Feng (2001b, 2002a, 2002b). For applications, see, e.g.
Beran and Ocker (2001), Beran et al. (2003), Beran (2007b) and Feng et al. (2007).
An implementation is available in the S-Plus module S + FinMetrics (see Zivot and
Wang 2003).

The idea is to define a semiparametric model that incorporates a nonparametric
trend function, parameters that determine whether the detrended series is integrated
or stationary, and parameters determining the detailed dependence structure of the
underlying stationary process. All parameters are estimated from the data, includ-
ing an integer valued and a fractional differencing parameter. The SEMIFAR model,
originally introduced in Beran (1999), extends the model in Beran (1995) by includ-
ing a trend function.

7.4.5.2 Definition of the SEMIFAR Model

Assume that m(t) (t ∈ [0,1]) is a trend function satisfying suitable smoothness con-
ditions, let εi (i ∈ N) be a sequence of i.i.d. zero mean random variables with finite
variance σ 2

ε = var(εi), define Bjm(ti) = m(ti−j ), where ti = i/n is rescaled time,
and denote by ϕ(z) = 1 −∑p

j=1 ϕjz
j a polynomial with all roots outside the unit

circle. A SEMIFAR model is defined as follows.

Definition 7.7 A process Xi is called a semiparametric fractional autoregressive
(or SEMIFAR) model if there exist an integer r ∈ {0,1} and a d ∈ (−0.5,0.5) such
that

ϕ(B)(1 − B)d
{
(1 − B)rXi − m(ti)

}= εi . (7.148)

For Yi = (1 − B)rXi we are back to the model with a nonparametric trend func-
tion and stationary errors generated by a FARIMA(p,d,0) process, namely

Yi = m(ti) + ei (i = 1,2, . . . , n), (7.149)

where ei = ϕ−1(B)(1 − B)−dεi . We will also use the notation

Ei = (1 − B)dei =
∞∑

j=0

bj ei−j = ϕ−1(B)εi (7.150)

for the autoregressive residuals obtained after filtering out the fractional differencing
component. Note, however, that we are assuming r to be unknown, so that taking
the appropriate r th difference cannot be applied directly.
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7.4.5.3 Fitting the SEMIFAR Model

Fitting a SEMIFAR models consists of two main parts: (a) nonparametric estima-
tion of the trend function m(t) and (b) estimation of the parameters σ 2

ε , r , d , p and
ϕ1, . . . , ϕp . Since r is an integer and d ∈ (− 1

2 , 1
2 ), r and d can be summarized by

one parameter dtotal = d + r only. The two differencing parameters can be obtained
from dtotal by r = [dtotal + 0.5] and d = dtotal − r , where [·] denotes the integer
part. Parts (a) and (b) of SEMIFAR fitting depend on each other because for (b)
we need to have subtracted a good estimate of the trend function, whereas for (a)
one would need to know r in the first place, and also have some knowledge of d ,
σ 2

ε and ϕ1, . . . , ϕp (and the second derivative of m) to calculate the optimal band-
width. The method considered in Beran (1999) and Beran and Feng (2002a, 2002b)
is an iterative plug-in algorithm. This is related (but not identical) to similar meth-
ods in the short-memory context (Gasser et al. 1991; Ruppert et al. 1995) and to the
method by Ray and Tsay (1997) introduced in Sect. 7.4.4. Note that, as discussed
in Sect. 7.4.4, other methods like cross-validation seem less appropriate. Even in
the i.i.d. context, it is well known that cross-validation and related methods (Clark
1975; Bowman 1984; Craven and Wahba 1979) lead to highly volatile bandwidths

that converge to the optimal one at the slow rate of O(n− 1
10 ). Methods based on

the plug-in principle are known to provide more reliable bandwidth estimates with
a smaller variability and much faster convergence to the optimal bandwidth (Gasser
et al. 1991; Ruppert et al. 1995; Müller 1985; Härdle et al. 1992; Heiler and Feng
1998). In the context of long memory, the situation is even worse since the estimate
of the IMSE obtained by cross-validation converges to the actual IMSE only under
very restrictive conditions. In contrast, the plug-in method (for fixed design) con-
sidered here can be shown to provide reasonable reliable estimates of the optimal
bandwidths (see results below).

The key ingredient of the plug-in method is the possibility of estimating the un-
known parameter vector consistently even though the trend estimate m̂(t) may not
be optimal. More specifically, let ϑ0 = (σ 2

ε,0, θ
0) = (σ 2

ε,0, d
0
total, ϕ

0
1 , . . . , ϕ0

p0) be the
true parameter vector defining the (possibly integrated) fractional ARIMA compo-
nent. Suppose that m̂(x) is a kth order kernel regression estimator with a bandwidth
b = O(n−α) such that 0 < α < 1/2. Then it can be shown that, under some regu-
larity conditions and the assumption kα + d0 > 0 (which always holds for d0 > 0),
the parameter θ0 (including the integer differencing parameter r0) can be estimated
consistently. The same is true when the autoregressive order p0 is chosen by the BIC
(Beran et al. 1998) as discussed in Sect. 5.5.6 (provided that p0 does not exceed the
maximal autoregressive order pmax used in the selection). Moreover, if kα+d0 > 1

4 ,
then the approximate MLE defined in Beran (1995) yields a

√
n-consistent estima-

tor of θ0 (for more details, see Beran and Feng 2002a and Feng 2004a, 2004b). Note
that this is a specific condition for avoiding too large bandwidths.
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7.4.6 Bandwidth Choice for Fixed Design Nonparametric
Regression—Part II: Data-Driven SEMIFAR Algorithms

In the following, we present two data-driven algorithms within the SEMIFAR
framework. The first algorithm (Algorithm A, AlgA) relies on a full search with re-
spect to d , and was originally proposed in Beran (1999) (also see Beran and Ocker
2001). The second algorithm (Algorithm B, AlgB) was proposed in Beran and Feng
(2002b) and runs much faster than Algorithm A because a full search is avoided.
As explained below, both methods are superior to the plug-in procedure proposed
by Ray and Tsay (1997) in different ways. To simplify the presentation, only local
linear estimates of the trend function m will be considered here, and m′′ (needed
in the constant of the bias) will be calculated using a local cubic or a fourth-order
kernel estimator.

Algorithm A

Step 1: Let pmax be the maximal order of ϕ(B) that will be tried, and define a
sufficiently fine grid G ∈ (−0.5,1.5)\{0.5}. First, carry out Steps 2 through
4 for p = pmax in order to select the integer differencing order r .

Step 2: For each dtotal ∈ G, set r = [dtotal + 0.5], d = dtotal − r , and Yi(r) =
(1 − B)rXi , and carry out Step 3.

Step 3: Carry out the following iteration:
Step 3a: Let b0 = Δ0 min(n(2d−1)/(5−2d),0.5) (for some fixed Δ0 > 0) and

set j = 1.
Step 3b: Calculate m̂(ti; r) using the bandwidth bj−1. Set êi (r) = Yi(r) −

m̂(ti; r).
Step 3c: Set Êi,dtotal = ∑i−1

j=0 bj (d)êi−j (≈ (1 − B)d êi ), where bj =
(−1)j

(
d
j

)
.

Step 3d: Estimate the autoregressive parameters ϕ1, . . . , ϕp , from Êi,dtotal

and obtain the estimates σ̂ 2
ε = σ̂ 2

ε (dtotal; j) and ĉf = ĉf (j). Esti-
mation of the parameters can be done, for instance, by using the
S-PLUS function ar.burg or arima.mle or an analogous R-function
for autoregressive MLE. If p = 0, set σ̂ 2

ε equal to n−1∑ Ê2
i,dtotal

and ĉf equal to σ̂ 2
ε /(2π).

Step 3e: Set b2,j = (bj−1)
α with α = α0 = (5−2d)/(9−2d), and improve

bj−1 by defining

bj =
(

1 − 2d

I 2(K)

(1 − 2d)V̂

Î (m′′(t;b2,j ))

)1/(5−2d)

· n(2d−1)/(5−2d) (7.151)

where I (K) = ∫
u2K(u)du, I (m̂′′(t;b2,j )) is an estimate of

I (m′′) = ∫ [m′′(t)]2 dt using bandwidth b2,j and V̂ is an estimate
of the constant in the asymptotic variance (see Theorem 7.22).
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Step 3f: Increase j by one and repeat Steps 3b to 3e until convergence is
reached or until a given number of iterations has been carried out.
This yields, for each dtotal ∈ G separately, the ultimate value of
σ̂ 2

ε (dtotal), as a function of dtotal.
Step 4: Define d̂total to be the value of dtotal for which σ̂ 2

ε (dtotal) is minimal, and let
r̂ = [d̂total + 0.5].

Step 5: For each p = 0,1, . . . , pmax, carry out Steps 2 through 4 for l = r̂ . Define
d̂total to be the value of dtotal for which σ̂ 2

ε (dtotal) is minimal. This, together
with the corresponding estimates of the AR parameters, yields a value of
an information criterion for the given order p, e.g. BIC(p) = n log σ̂ 2

ε (p)+
p logn, as a function of p and the corresponding values of θ̂ and m̂.

Step 6: Select the order p that minimizes the BIC(p). This yields the final estimates
of θ0 and m.

This algorithm differs from Ray and Tsay (1997) mainly in the inflation method
and in the estimation of the integer differencing parameter r . The inflation method
used here in Step 3e is b2,j = (bj−1)

α with α = α0 = (5 − 2d̂)/(9 − 2d̂). This
is also called an exponential inflation method (EIM). Ray and Tsay (1997) use
instead a multiplicative inflation method (MIM) of the form b2,j = bj−1n

β with
β = βv = 1

2 (1 − 2d̂)/(5 − 2d̂). The constants α or β in the two inflation methods

are called inflation factors. The asymptotic rate of convergence of b̂ depends on
the choice of the inflation factor only, not on the choice of the inflation method.
However, an algorithm based on the EIM requires a smaller number of iterations to
reach a consistent bandwidth estimate. Commonly used choices of the inflation fac-
tors are: (i) αv or βv such that the variance of b̂ is minimized; (ii) αopt or βopt such
that the MSE of Î is minimized and the rate of convergence of b̂ is optimized; or (iii)
α0 or β0 such that the MSE of m̂′′ is minimized. Explicit formulae for these inflation
factors may be found in Beran and Feng (2002b). The rate of convergence of b̂ based
on αv or βv is the worst of all three choices, namely O(n(2d0−1)/(5−2d0)). The rate of
convergence of AlgA—which is based on α0—is of the order O(n2(2d0−1)/(9−2d0))

which is slightly faster than for the algorithm in Ray and Tsay (1997). Another
advantage of AlgA compared to Ray and Tsay (1997) is the choice of the initial
bandwidth. Although it does not affect the rate of convergence of b̂, the initial band-
width in AlgA is already of the correct optimal order. This reduces the number of
required iterations.

Algorithm B AlgA is straightforward and intuitive. However, the iterative proce-
dure has to be carried out for each trial value d ∈ G. This makes the algorithm
computationally slow. Beran and Feng (2002b) therefore proposed a much faster
algorithm where all parameters, except for p and r , are estimated directly from the
residuals by maximizing the likelihood function. In the practical implementation,
the S-PLUS function arima.fracdiff or an analogous R-function can be used. The
algorithm can essentially be described as follows:
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Step 1: First, we obtain a bandwidth for estimating r0:
Step 1a: Set r = 1. Calculate Yi(r)= (1−B)rXi , and estimate m from Yi(r)

using the initial bandwidth b0 =n−1/3. Calculate the residuals.
Step 1b: Set p = pmax and assume that the residual process follows a

FARIMA(p,d,0) model. Calculate a second initial bandwidth b1
following, e.g. AlgA or another simple bandwidth selection pro-
cedure, but with α = α̂opt = (5 − 2d̂)/(7 − 2d̂).

Step 2: Estimate r0:
Step 2a: Carry out Steps 1a and 1b with the selected b1 as new initial band-

width for r = 0 and r = 1 separately.
Step 2b: Select r following the BIC. Now we obtain an estimate r̂ of r0.
Step 2c: Set r = r̂ .

Step 3: Further iterations: Carry out further iterations for each p = 0,1, . . . , pmax
with r = r̂ and a new starting bandwidth b2 := 1

3n−1/3 (or b2 := n−5/7) un-
til convergence is reached or a given number of iterations has been reached.

Step 4: Select the best AR order p following the BIC and take the parameter esti-
mate corresponding to p̂ as the final estimate.

In this algorithm, r = 1 is used at the first iteration as a starting value of r . The
initial input of the S-PLUS function arima.fracdiff is therefore always stationary,
no matter what the value of r0 is. The purpose of this step is to obtain a starting
bandwidth for estimating r . The estimated value of r0 is then selected in the second
iteration and is asymptotically consistent. The use of p = pmax avoids the selec-
tion of p in the first two steps. Afterwards, r̂0 is used as a known parameter. At
the beginning, the starting bandwidth b0 = n−1/3 is used. Since (2 · (−0.5) − 1)/

(5−2 ·(−0.5)) = −1/3, this is the smallest possible order of optimal bandwidths for
d in the range (−0.5,0.5). The order of magnitude of b0 also ensures that, for any
r0 ∈ {0,1}, the bandwidth selected at the end of Step 1 fulfills the basic assumptions
on the bandwidth.

AlgB runs much quicker than AlgA. Furthermore, the rate of convergence of b̂ is
improved by choosing the inflation factor αopt = (5 − 2d̂)/(7 − 2d̂). The resulting

rate of convergence of b̂ is now of the order Op(n2(2d0−1)/(7−2d0)), which is the
highest known rate for an iterative plug-in bandwidth selector in the current context.
More specifically, the following results can be shown (Beran and Feng 2002b).

Proposition 7.1 Let Xi be a SEMIFAR process defined by (7.148). Suppose that
m(t) ∈ C4[0,1] and, as n → ∞, nb → ∞ and b → 0. Denote by bA the optimal
asymptotic bandwidth obtained by minimizing the asymptotic formula for the IMSE
and let bM be the actually optimal bandwidth that minimizes the exact finite sample
IMSE. Then

bA − bM

bM

= O
(
b2
M

)
.

For the data driven bandwidths obtained by AlgA and AlgB, respectively, the
following asymptotic formulas hold (Beran and Feng 2002b):
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Fig. 7.12 (a) Simulated FARIMA(p0, d0,0) series with p0 = 1, d0
total = 1.3 (r0 = 1, d = 0.3)

and ϕ0
1 = −0.4. This is the same as a SEMIFAR model with the same parameters and m(t) ≡ 0.

(b) SEMIFAR process with the same parameters as in (a), but including a non-constant trend
function m(t). The estimated trend (full line) is also plotted together with the true (integrated)
trend function (dotted line)

Theorem 7.24 Let Xi be a SEMIFAR process with autoregressive order p0, frac-
tional differencing parameter d0, and integer differencing parameter r0 ∈ {0,1}.
Suppose that m(t) ∈ C4[0,1], and denote by b̂AlgA and b̂AlgB the data driven
bandwidths obtained by Algorithms A and B, respectively, with maximal AR-order
pmax ≥ p0. Then

b̂AlgA = bM

{
1 + Op

(
n(4d0−2)/(9−2d0)

)}
,

b̂AlgB = bM

{
1 + Op

(
n(4d0−2)/(7−2d0)

)}
.

For details, see Beran and Feng (2002a, 2002b). The iterative plug-in algorithms
can easily be adapted to select bandwidths for estimating derivatives m̂(j) (j > 0).
Similar asymptotic results can be obtained for b̂ as in Theorem 7.24.

Example 7.33 Figure 7.12 shows two simulated SEMIFAR series. In Fig. 7.12(a),
the sample path was simulated by an integrated FARIMA process without trend.
More specifically, we have n = 1000 observations of a FARIMA(p0, d0,0) series
with p0 = 1, d0

total = 1.3 (r0 = 1, d = 0.3) and ϕ0
1 = −0.4. This is the same as a

SEMIFAR model with the same parameters and m(t) ≡ 0. The SEMIFAR fit using
Algorithm B is p̂ = 1, d̂total = 1.29 (hence r̂ = 1, d̂ = 0.29) and ϕ̂ = −0.43 with
95 %-confidence intervals [1.23,1.35] and [−0.50,−0.36], respectively. Also no
significant trend was found. The series in (b) is a SEMIFAR process with the same
parameters for the stochastic part, but including a trend function m(t). The esti-
mated parameters obtained by AlgB are p̂ = 1, d̂total = 1.28 and ϕ̂ = −0.37, with
95 %-confidence intervals [1.22,1.34] and [−0.44,−0.30], respectively. The esti-
mated trend function is significant (at the 5 %-level) and also plotted, together with
true trend function. Note that m(t) is the trend function of the differenced process.
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Fig. 7.13 Volatility series for the DAX between January 3, 2000 and September 12, 2011.
(a) Shows daily data together with a nonparametric trend function fitted by Algorithm B. The cor-
responding log–log-plot of the periodogram together with the fitted spectral density is displayed
in (b). (c) and (d) show analogous results, however, for weekly aggregates of the original data

Figure 7.12(b) shows, however, the integrated process. In contrast to m, the inte-
grated trend function is not bounded. This explains why the estimated trend in the
picture is relatively far from the true trend: errors m̂(ti) − m(ti) in the differenced
domain have a long lasting effect in the integrated domain. This reflects the general
uncertainty about trends when considering integrated processes.

Example 7.34 Figure 7.13(a) shows a volatility series of the DAX between Jan-
uary 3, 2000 and September 12, 2011 as defined in Sect. 1.2. A nonparamet-
ric trend function fitted by Algorithm B is also shown. The trend is significant
at the 5 %-level. The parameter estimates are p̂ = 2, d̂total = 0.26 (i.e. r̂ = 0,
d̂ = 0.26), ϕ̂1 = −0.28, ϕ̂2 = −0.09 with 95 %-confidence intervals [0.21,0.30],
[−0.33,−0.22] and [−0.14,−0.04], respectively. The corresponding log–log-plot
of the periodogram (of the detrended process) together with the fitted spectral den-
sity is displayed in (b). The results are confirmed when one looks at weekly ag-
gregates. Figure 7.13(c) shows weakly averages of the original series displayed in
(a). The SEMIFAR-fit again yields a significant trend which looks very much like
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the function fitted in (a). As expected (see Sect. 2.2.1), due to temporal aggrega-
tion, the log–log-plot of the periodogram (of the detrended series) displayed in (d)
is closer to a straight line. Applying Algorithm B indeed yields p̂ = 0 so that a
pure FARIMA(0, d,0) model seems appropriate. (Note that the spectral density of a
FARIMA(0, d,0) model is very close to the one of fractional Gaussian noise). The
estimated value of d is 0.34 with a 95 %-confidence interval of [0.27,0.40].

Example 7.35 Figure 7.14(a) shows monthly precipitation anomalies for the Sahel
region between January 1900 to December 2011 (data courtesy of Todd Mitchell,
The Joint Institute for the Study of the Atmosphere and Ocean at the University
of Washington, JISAO; the data source is the National Oceanic and Atmospheric
Administration Global Historical Climatology Network (version 2), at the National
Climatic Data Center of NOAA; http://www.ncdc.noaa.gov/temp-and-precip/ghcn-
gridded-products.php). First, we try to fit a stationary FARIMA(p,d,0) process by
selecting the order p using the BIC with p ≤ pmax = 16. Figure 7.14(b) displays
the periodogram of the data in log–log-coordinates, together with the fitted spec-
tral density. The fit appears to be quite good, and mimics in particular the seasonal
peaks. The estimated AR-order is p̂ = 13. The estimated long-memory parameter
is equal to d̂ = 0.35 with a 95 %-confidence interval of [0.14,0.55]. Note, how-
ever, that we used the restriction d < 0.5. Now the question is whether the apparent
long memory may not rather be caused by a deterministic trend function or an in-
tegrated process (i.e. dtotal > 0.5). We therefore fit a SEMIFAR process using AlgB
and the BIC with p ≤ pmax = 16. The fitted trend function indeed turns out to be
significantly different from a constant (see (c), with horizontal lines demarking the
critical limits). As suspected, the trend indicates a decline in precipitation starting
around 1960. Subtracting the trend function seems to have removed long memory,
since for the residuals we obtain a 95 %-confidence interval for d of [−0.28,0.18]
(and p̂ = 12). The corresponding log–log-periodogram and fitted spectral density of
the detrended data are shown in (d). Note also that the possibility of an integrated
process (dtotal > 0.5, r = [dtotal + 0.5]) was excluded by the estimation procedure.
A more detailed analysis can be obtained by separating the rainy season (June to Oc-
tober) from the rest of the year. Figure 7.14(e) shows the Sahel rainfall index with
each year being represented by measurements form the rainy season only (i.e. we
have June to October only for each year). The fitted trend function is very similar to
the one in Fig. 7.14(c), and significant. Also as before, the estimated value of d is not
longer significant, with a 95 %-confidence interval of [−0.20,0.13] (see (f) for the
log–log-periodogram and spectral density). Note also that the selected autoregres-
sive order of p̂ = 3 is much smaller than before because of the different (stochastic)
periodicity. Finally, Fig. 7.14(g)–(h) show the results for the other months. This time
the trend function is not quite significant at the 5 %-level. However, it is close to the
critical limits and clearly monotonously decreasing. In contrast to the rainy season,
d̂ = 0.09 with a 95 %-confidence interval of [0.03,0.15] indicates the possibility of
slight long-range dependence in the residuals. Moreover, there does not appear to be
any periodicity left (see Fig. 7.14(h)), and accordingly we have p̂ = 0. In summary,
we may say that there is relatively clear evidence for a decline in precipitation in the

http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
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Fig. 7.14 Monthly precipitation anomalies for the Sahel region between January 1900 to Decem-
ber 2011 (data courtesy of Todd Mitchell, JISAO, University of Washington; http://www.ncdc.
noaa.gov/temp-and-precip/ghcn-gridded-products.php): (a) original series; (b) log–log-peri-
odogram and spectral density obtained by stationary fit; (c) data with fitted SEMIFAR trend (and
critical limits); (d) log–log-periodogram and spectral density after SEMIFAR fit; (e) series with
rainy seasons only; (f) log–log-periodogram and spectral density after SEMIFAR fit for data in (e);
(g) series excluding rainy seasons; (h) log–log-periodogram and spectral density after SEMIFAR
fit for data in (g)

http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products.php
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Sahel zone starting around 1960. The alternative models of an integrated process or
of stationarity with long memory can probably be excluded.

7.4.7 Trend Estimation from Replicates

Suppose that we have N time series Yj (i) where j = 1,2, . . . ,N denotes a replicate,
i = 1,2, . . . , n denotes time and the problem is estimation of the common trend m(·)
in the nonparametric regression model

yj (i) = m(ti) + ej (i)

(
ti = i

n

)

by smoothing the average series ȳ(i) = N−1∑N
j=1 yj (i). The function m(t)

(t ∈ (0,1)) is assumed to be smooth whereas ej (i) are random error terms that
are stationary zero mean processes within each replicate but independent between
replicates. In other words, cov(ej (i), el(i + k)) is zero if j �= l and equals γj (k)

otherwise, where γj is a covariance function.
Specifically, we make the following assumptions on the j th error series ej (i):

• (A1) Mean: E[ej (i)] = 0;
• (A2) Spectral density: limλ→0[fj (λ)/{Dj |λ|−2dj }] = 1 where Dj > 0, 0 <

dj < 1/2 and the convergence is uniform;
• (A3) Covariances: cov(ej (i), ej (i + k)) = γj (k) ∼ Cj |k|2dj −1 as |k| → ∞,

dj �= 0, Cj > 0 where, Cj = sin(πdj )Γ (1 − 2dj )Dj/(1 + 2dj ).

Consider the Priestley–Chao estimate of m(t),

m̂(t) = 1

nb

n∑

i=1

K

(
ti − t

b

)
ȳ(i),

where the kernel K is a symmetric probability density function on (−1,1) and b is
a bandwidth such that

b → 0 and nb3 → ∞ as n → ∞.

The uniform kernel K(u) = 1
2 1{|u| ≤ 1} is an example of such a kernel which we

use in this section, but the arguments also hold for other kernels.
Clearly, the precision of such an estimator will depend on n as well as on N . Two

different cases are of interest: (i) N is fixed and finite and (ii) N → ∞.

Case (i) N is fixed and finite. As we shall see, in this case the mean squared error
of the estimated trend function will be dominated by the largest fractional
differencing parameter.
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Theorem 7.25 Let N be fixed and finite. Then, as n → ∞, the asymptotic expres-
sion of the bias of m̂(t) for t ∈ (0,1) is

E
[
m̂(t)

]− m(t) = b2

2
m′′(t)

∫ 1

−1
u2K(u)du + o

(
b2).

Proof Since E[ȳ(i)] = m(ti), the proof follows, as we have seen before in previous
sections, from a two-term Taylor series expansion of m(ti) around t and in particular
by noting that as n → ∞,

∣∣∣∣∣
1

nb

n∑

j=1

(
tj − t

b

)p

K

(
tj − t

b

)
−
∫ 1

−1
upK(u)du

∣∣∣∣∣= O

(
1

nb

)

where p is a positive integer. To simplify further, the term O((nb)−1) can be ab-
sorbed into o(b2) since nb3 → ∞. �

As an example, when K is the uniform kernel on (−1,1), since
∫ 1
−1 u2K(u)du

= 1/3 the asymptotic expression of the bias of m̂(t) is

E
[
m̂(t)

]− m(t) = b2

6
m(2)(t) + o

(
b2)

and for η ∈ (0,1/2), as n → ∞, the integrated squared bias of ĝ is:

∫ 1−η

η

{
E
[
m̂(t)

]− m(t)
}2

dt = b4

36

∫ 1−η

η

{
m(2)(t)

}2
dt + o

(
b4).

As for the covariances, note that when d = max{d1, . . . , dk}, N is fixed and finite
and ē(i) = N−1∑N

j=1 ej (i), by (A2) and (A3),

cov
(
ē(i), ē(i + k)

)= γē(k) = 1

N2

N∑

j=1

γj (k) ∼ 1

N2
Cd,N |k|2d−1 (as |k| → ∞)

where

Cd,N =
∑

j :dj =d

Cj .

Similarly, the spectral density is

fē(λ) = 1

2π

∞∑

k=−∞
γē(k)e−ikλ = 1

N2

N∑

j=1

fj (λ) ∼ 1

N2
Dd,N |λ|−2d (as λ → 0)

where

Dd,N =
∑

j :dj =d

Dj .
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These facts can be summarized as follows:

Lemma 7.2 Let d = max{d1, . . . , dN }, and let N be fixed and finite. Then the largest
fractional differencing parameter d is also the fractional differencing parameter for
the sample mean process ē(i) (i = 1,2, . . . ).

Theorem 7.26 Let N be fixed and finite. Let K(u) = 1
2 1{−1 ≤ u ≤ 1},

d = max{d1, . . . , dN } and

β(d,N) = 22d−1

d(2d + 1)
Cd,N .

Then for η ∈ (0,1/2) and as n → ∞, the integrated variance of m̂ is
∫ 1−η

η

Var
[
m̂(t)

]
dt = 1

N2
(1 − 2η)(nb)2d−1β(d,N) + o

(
(nb)2d−1).

Proof For every fixed t ∈ (0,1),

Var
(
m̂(t)

)= 1

(2nbN)2

N∑

j=1

n(t+b)∑

r,s=n(t−b)

γj (r − s)

= 1

(2nbN)2

N∑

j=1

2nb+1∑

r1,s1=1

γj (r1 − s1)

where the last expression is obtained by substituting r1 = r − n(t − b) + 1 and
s1 = s − n(t − b) + 1. Thus, we get

Var
(
m̂(t)

)= 1

(2nbN)2

N∑

j=1

2nb∑

k=−2nb

(
2nb + 1 − |k|)γj (k)

= 1

N2

N∑

j=1

[
V

(1)
n,j + V

(2)
n,j − V

(3)
n,j

]

where

V
(1)
n,j = 1

2nb

2nb∑

k=−2nb

γj (k),

V
(2)
n,j = 1

(2nb)2

2nb∑

k=−2nb

γj (k),

V (3)
n,r = 1

(2nb)2

2nb∑

k=−2nb

|k|γj (k).
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We have dj ∈ (0,1/2) so that 2dj − 1 ∈ (−1,0) and

lim
nb→∞

2nb∑

k=−2nb

γj (k) = γj (0) + 2Cj lim
nb→∞

2nb∑

k=1

|k|2dj −1 = ∞.

Also as nb → ∞,
∣∣∣∣∣

2nb∑

u=1

|u|2dj −1 − (2nb)2dj

∫ 1

0
x2dj −1 dx

∣∣∣∣∣= O
(
(nb)2dj −1).

Simplifying, and since (nb)2dj −2 = o((nb)2dj −1),

V
(1)
n,j = Cj

dj

(2nb)2dj −1 + o
(
(nb)2dj −1)

and clearly V
(2)
n,j = o(V

(1)
n,j ). As for V

(3)
n,j , |k|γj (k) ∼ Cj |k|2dj as |k| → ∞, so that

V (3)
n,r = 2Cj

2dj + 1
(2nb)2dj −1 + o

(
(nb)2dj −1).

The theorem follows by noting that V
(1)
n,j − V

(3)
n,j = (2nb)2dj −1Cj/(dj (2dj + 1)) +

o((nb)2dj −1) and, as n → ∞, the sum
∑N

j=1{V (1)
n,j − V

(3)
n,j } will be dominated by a

multiple of (nb)2d−1 where d is the largest fractional differencing parameter. �

Corollary 7.2 Let K(u) = 1
2 1{−1 < u < 1} and, as n → ∞, b → 0 and nb3 → ∞.

If N is fixed and finite and dj (j = 1,2, . . . ,N ) are fractional differencing param-
eters with d = max{d1, . . . , dN }, 0 < dj < 1

2 , then for η ∈ (0,1/2), the asymptotic
expression for the integrated mean squared error for m̂ is (as n → ∞)

IMSE(m̂) =
[

b4

36

∫ 1−η

η

{
m(2)(t)

}2
dt + 1

N2
(1 − 2η)(nb)2d−1β(d,N)

]

+ o
(
max

(
b4, (nb)2δ−1))

and the global optimum bandwidth minimising IMSE(m̂) is

bopt =
[

9(1 − 2η)(1 − 2d)β(d,N)
∫ 1−η

η
{m(2)(t)}2 dt

]1/(5−2d)

× n(2d−1)/(5−2d)N−2/(5−2δ)

where β(d,N) is defined in Theorem 7.26.

Substituting bopt in the leading term of IMSE(m̂) the optimum rate of conver-
gence can be obtained as O(n(8d−4)/(5−2d)N−8/(5−2d)). Note that when d → 0 (i.e.
the process approaches short-memory or independence) and N = 1, the familiar
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rate n−4/5 for the integrated mean squared error for estimation of the trend function
can be confirmed. As usual, the rate of convergence under long memory (d > 0)

is slower than under independence (d = 0). Compare also with (7.97) which corre-
sponds to the case N = 1.

Case (ii) In this case, infinitely many replicates are available asymptotically.

Theorem 7.27 We assume that limN→∞ N−1∑N
j=1 fj (λ) = f (λ) uniformly in λ ∈

(0,π) with f (λ) ∼ L(λ)|λ|−2d , 0 < d < 1/2 where L is slowly-varying at zero
in the sense of Zygmund. Let γ (k) = (2π)−1

∫ π

−π
f (λ)eikλ dλ ∼ L(1/|k|)|k|2d−1

(|k| → ∞). Then for η ∈ (0,1/2), the asymptotic expression for the integrated mean
squared error of m̂ (as N → ∞, n → ∞) is

IMSE(m̂) = b4

36

∫ 1−η

η

{
m(2)(t)

}2
dt

+ 1

N

1

d(2d + 1)
(1 − 2η)(2nb)2d−1L

(
1

nb

)

+ o
(
max

(
b4, (nb)2d−1)). (7.152)

Proof The expression for the bias term follows as in Theorem 7.25. As for the vari-
ance, first of all, j disappears due to the convergence of the mean N−1∑N

j=1 γj (k)

appearing in var(m̂(t)) to the limit γ (k) that follows a slow hyperbolic decay given
by (A3). The proof follows from similar arguments as for Theorem 7.26. �

Corollary 7.3 Under the conditions of Theorem 7.27, the global optimum band-
width minimizing IMSE(m̂) is

bopt =
[

9(1 − 2η)(1 − 2d)2(2d−1)/(5−2d)L(1/(nb))

d(2d + 1)
∫ 1−η

η

{
g(2)(t)

}2
dt

]1/(5−2d)

× n(2d−1)/(5−2d)N−1/(5−2d)

where the slowly-varying function L is defined in Theorem 7.27.

Remark By assumption, the spectral density fj (λ) of the j th error process ej be-
haves at zero like a constant Dj times |λ|−2dj . In the theorem above, however, we
assume the average spectral density to be a product of a slowly varying function
L and |λ|−2d where 0 < d < 1/2. In particular, L need not be a constant. An in-
sight into this may be gained, for instance, by considering the case of i.i.d. random
fractional differencing parameters having a moment generating function M where
M(−2 log |u|) = L(u)|u|−2d ; an example is the uniform distribution; see Ghosh
(2001). In this case, the expected value of the spectral density function is directly
proportional to L(λ) × |λ|−2θ where 1/2 > θ > 0, and L(u) ∝ 1/ log(|u|).
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7.4.8 Random-Design Regression Under LRD

In this section, our goal is to estimate the conditional mean function m(Yt |Xt) in a
random-design model with residuals exhibiting long-range dependence and a vari-
ance that may depend on Xt . Thus, we have

Yi = m(Xi) + σ(Xi)ei (7.153)

where now Xi is a stationary process with marginal density pX , ei is a stationary
zero mean process with long memory and σ is a continuous function of Xi . Since
the design is random, we consider the Nadaraya–Watson estimator (7.104), i.e.

m̂NW(x) = m̂PC(x)

p̂X(x)
= (nb)−1∑n

i=1 K(
Xi−x

b
)Yi

p̂X(x)
(7.154)

where

p̂X(x) = 1

nb

n∑

i=1

K

(
Xi − x

b

)
(7.155)

is a kernel density estimator of pX .
We can summarize the limiting behaviour of m̂NW in the following theorem.

This theorem summarizes results obtained under different sets of assumptions and
using different techniques in papers like Cheng and Robinson (1994), Csörgő and
Mielniczuk (1999, 2000), Mielniczuk and Wu (2004), Zhao and Wu (2008) and
Kulik and Lorek (2011).

Theorem 7.28 Suppose that m and σ are twice continuously differentiable in a
neighbourhood of x0. Then the following holds:

• Suppose that Xi are i.i.d. and ei =∑∞
j=0 aj εi−j is a linear process with i.i.d. zero

mean innovations εi , σ 2
ε = var(εi) < ∞ and aj ∼ caj

de−1 for some 0 < d < 1
2 .

Then, for a sequence of bandwidths

b = o
(
n−2de

)

we have

√
nb
√

p̂X(x0)
{
m̂(x0) − E

[
m̂(x0)

]} d→ Z

√

σ 2(x0)p(x0)

∫
K2(u) du (7.156)

where Z is a standard normal random variable.
• Under the same assumptions, but with

b � n−2de ,
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we have

n
1
2 −dec

− 1
2

e

{
m̂(x0) − E

[
m̂(x0)

]} d→ σ(x0)Z (7.157)

where ce = cfeν(de) is the constant in var(
∑n

i=1 ei) ∼ cen
2de+1.

• Suppose that Xi =∑∞
j=0 aj,Xξi−j is a zero mean Gaussian process with long-

range dependence such that γX(k) ∼ cγ |k|2d−1 (0 < d < 1
2 ). Then, keeping

the other conditions as above, the same results follow for b = o(n−2de ) and
b � n−2de , respectively.

Proof We write

p̂X(x0)
{
m̂(x0) − E

[
m̂(x0)

]}= 1

nb

n∑

i=1

K

(
Xi − x0

h

)
Yi − E

[
m̂(x0)

]
p̂X(x0)

= 1

nb

n∑

i=1

K

(
Xi − x0

b

){
m(Xi) − E

[
m̂(x0)

]}

+ 1

nb

n∑

i=1

K

(
Xi − x0

b

)
σ(Xi)ei .

It can be shown that the first term is op((nb)−1/2) and is hence asymptotically neg-
ligible. The second term has the structure Rn := n−1∑n

i=1 νn(Xi)ei (cf. (7.60)),
where

νn(Xi) = b−1K

(
x0 − Xi

b

)
σ(Xi) = b−1K

(
Xi − x0

b

)
σ(Xi).

Note that

E
[
νn(X1)

]= b−1
∫

K

(
x0 − u

b

)
σ(u)pX(u)du

=
∫

K(u)σ(x0 − ub)pX(x0 − ub)du �= 0. (7.158)

Since σ and pX are assumed to be twice continuously differentiable in a neighbour-
hood of x0, with bounded second derivatives, we have

E
[
νn(X1)

]∼ σ(x0)pX(x0), var
(
νn(X1)

)∼ b−1σ 2(x0)pX(x0)

∫
K2(u) du.

(7.159)
Thus, we can apply techniques from Sect. 7.2.3:
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• If ei are i.i.d., then Rn is a martingale. An application of a martingale central limit
theorem (Lemma 4.2) yields

√
nb

1

nb

n∑

i=1

K

(
x0 − Xi

b

)
σ(Xi)ei

d→ σ(x0)Z

√

pX(x0)

∫
K2(u) du.

• If ei is a linear long-memory process and Xi are i.i.d., then we apply the (M/L)-
decomposition

Rn = n−1E
[
νn(X1)

] n∑

i=1

E[ei |εs, s ≤ i − 1]

+ n−1
n∑

t=1

{
νn(Xi)ei − E

[
νn(Xi)ei |Xs, εs, s ≤ i − 1

]}=: Rn,1 + Rn,2.

The second part is a martingale and again an application of the martingale CLT
yields

√
nbRn,2

d→ Z

√

σ 2(x0)pX(x0)

∫
K2(u) du. (7.160)

For the first part, we have, recalling (7.48) and (7.159),

n
1
2 −dec

− 1
2

e Rn,1
d→ σ(x0)pX(x0)Z. (7.161)

• If both, Xi and ei are linear processes with long memory, then we proceed exactly
the same way as in the case of parametric linear regression. The direct application
of the Hermite polynomial decomposition does not lead to weakly dependent
behaviour (7.156). However, conditioning on ξi, ξi−1, . . . , we start with an (M/L)-
decomposition

1

n

n∑

i=1

(
νn(Xi)ei − E

[
νn(Xi)ei |ξs, εs, s ≤ i − 1

])

+ 1

n

n∑

i=1

E[ei |εs, s ≤ i − 1]
∫

K

(
x0 − (u + X̂i)

b

)
σ(u + X̂i)pξ (u) du

=: R̃n,2 + R̃n,1, (7.162)

where pξ (·) is the density of ξi and X̂i = Xi − ξi is the one-step forecast of Xi

given ξs (s ≤ i − 1). Now, R̃n,2 is a martingale and its limiting properties are
described by (7.160). For R̃n,1 we apply the Hermite polynomial decomposition
(7.62) with

ν̃n(z) =
∫

K

(
x0 − (u + z)

b

)
σ(u + z)pξ (u) du.
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Let p
X̂

be the density of X̂i . Note that pX is the convolution of p
X̂

and pξ , i.e.
pX = p

X̂
∗ pξ . Then

E
[
ν̃n(X̂t )

]=
∫ ∫

K

(
x0 − (u + z)

b

)
σ(u + z)pξ (u)p

X̂
(z) dudz

=
∫ ∫

K(u)σ(x0 − bu)pξ (x0 − z − bu)p
X̂
(z) dudz

∼ σ(x0)

∫
K(u)du

∫
pξ (x0 − z)p

X̂
(z) dz = σ(x0)pX(x0).

Thus, using the same argument as for parametric regression, we are able to con-
clude that (7.161) holds for R̃n,2. The result then follows by comparing the term
Rn,1 with Rn,2, and R̃n,1 with R̃n,2, respectively, and noting that p̂X is the con-
sistent estimator of pX (see Sect. 5.14). �

The theorem is remarkable in several ways. First of all, it reveals a dichotomy
between small and large bandwidths. This is the same phenomenon as observed
already for density estimation (see Sect. 5.14). For small bandwidths b = cn−α =
o(n−2de ), the long-range dependence in the residuals has no influence, and one ob-
tains exactly the same asymptotic distribution as for i.i.d. data. The optimal band-

width is then of the form b = cn− 1
5 , and optimal MSE has the order O(n− 4

5 ). This is
in contrast to fixed-design kernel estimation. On the other hand, this behaviour is not
unexpected in view of similar results for random design linear regression (Sect. 7.2)
and kernel density estimation (Sect. 5.14). For large bandwidths b � n−2de , the
contribution of the bias is proportional to n−4α � n−8de whereas the variance is
proportional to n−(1−2de). Since 1 − 2de < 8de is equivalent to de > 0.1, the first

conclusion is that the optimal MSE is of the order n− 4
5 (with bopt = cn− 1

5 ) only if
de < 0.1. For de > 0.1, the optimal order is n−(1−2de) which is achieved as long as
the variance dominates the bias. This is the case for a whole range of bandwidths
b = cn−α with 1 − 2de < 4α < 8de. These general results are the same as for den-
sity estimation. We therefore do not repeat the same comments and refer the reader
to Sect. 5.14. The second remarkable aspect of Theorem 7.28 is that long memory
in the explanatory process Xi does not influence the asymptotic behaviour.

The results can be generalized to multivariate time series. In the context of
(7.160), the limit is multivariate normal with independent components; in the con-
text of (7.161), the limit is multivariate normal with perfectly correlated compo-
nents. Furthermore, one can also obtain analogous results for multivariate predic-
tors.

The main conclusion is that for de > 0.1, the MSE is dominated by the variance
as long as the bandwidth is not too large but of a larger order than n−2de . An exact
choice of b is not needed to achieve the optimal rate of n−(1−2de). However, as
for density estimation, a higher-order expansion of the MSE can be used to derive
a criterion for an optimal bandwidth—even though it may not have an influence



668 7 Statistical Inference for Nonstationary Processes

asymptotically. Considering a weighted integrated mean squared error

IMSE(m̂,m;w) =
∫

E
[(

m̂(x) − m(x)
)2]

w(x)dx,

Kulik and Lorek (2011) obtained the following formula.

Proposition 7.2 Under the assumptions of the third part of Theorem 7.28 (i.e. when
both ei and Xi have long memory), we have

IMSE(m̂,m;w) ∼ 1

nb
κ1

∫
σ 2(x)

pX(x)
w(x)dx

+ b4 κ2
2

4

∫ (
m′′(x)pX(x) + 2m′(x)p′

X(x)

pX(x)

)2

w(x)dx

+ n2dε−1cε

∫
σ 2(x)w(x)dx + b2n2dε−1ceκ2

∫
ψe(x)w(x)dx,

(7.163)

where κ1 = ∫
K2(u) du, κ2 = ∫

u2K(u)du, and

ψe(x) = σ(x)
(σ (x)pX(x))′′

pX(x)
.

Of course, the weight function w must be chosen in such the way that the in-
tegrals are finite. For example, if σ(x) ≡ 1 and pX is the standard normal density,
then

∫
σ 2(x)

pX(x)
w(x)dx =

∫
w(x)

pX(x)
dx

would be infinite if we chose w(x) ≡ 1, whereas this is not the case, for instance,
for w(x) = p2

X(x).
The first term in (7.163) is due to the bias, the second one describes i.i.d.-type

behaviour. The term involving de describes a possible contribution of long memory.
Note that we have to include the term b2n2de−1ce to obtain a criterion for bandwidth
selection that can also be used for d > 0.1. For d > 0.1 this terms does not have an
influence on the optimal behaviour of the MISE, but it improves the higher-order
term in the expansion. Optimizing the higher order expansion with respect to b

yields

bopt ∼
{

Cn− 1
5 if de < 0.3,

Cn− 2
3 de if de > 0.3.

The optimal IMSE(m̂,m;w) with bopt is then proportional to n−4/5 if de < 1/10,
and to n2de−1ce(n) if de > 1/10. However, as discussed above (also see Sect. 5.14),
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for d > 1/10 the optimal order can be achieved even if b is not exactly of the order

O(n− 2
3 de ).

The optimal bandwidth depends on unknown parameters. Moreover, for de > 0.1
data driven bandwidth choice is not quite trivial because bopt is based on a higher
order expansion of the IMSE. Given an observed series where we may not know
much about the underlying process, it seems quite difficult to estimate the IMSE
with sufficient accuracy to assess the contribution of higher-order terms. For in-
stance, cross-validation turns out to be applicable for de < 0.1 only (for a precise
statement, see Kulik and Lorek 2011).

An improved result can be obtained if one is interested in the shape of the func-
tion m(x) only. This means that the aim is to estimate

m∗(x) = E[Y |X = x] − E[Y ] = m(x) −
∫

m(x)pX(x)dx.

The natural estimator is given by

m̂∗(x) = m̂NW(x) − ȳ (7.164)

where ȳ = n−1∑Yi . In contrast to Proposition 7.2, the mean squared error is now
influenced by the dependence structure of Xi (Kulik and Lorek 2011) whereas the
long-memory property of ei disappears:

Theorem 7.29 Suppose that m is twice continuously differentiable in a neighbour-
hood of x0 and σ(x) ≡ 1. Then the following holds:

• Suppose that Xi are i.i.d. and ei =∑∞
j=0 aj εi−j is a linear process with i.i.d. zero

mean innovations εi , σ 2
ε = var(εi) < ∞ and aj ∼ caj

de−1 for some 0 < de < 1
2 .

Then

IMSE(m̂,m;w) ∼ b4 κ2
2

4

∫ (
m′′(x)pX(x) + 2m′(x)p′

X(x)

pX(x)

)2

w(x)dx

+ 1

nb
κ1

∫
w(x)

pX(x)
dx, (7.165)

where κ1 = ∫
K2(u) du, κ2 = ∫

u2K(u)du.
• Suppose that Xi is a zero mean Gaussian process with long-range dependence

such that γX(k) ∼ cγ |k|2dX−1 (0 < dX < 1
2 ) and var(

∑n
i=1 Xi) ∼ cXn2dX−1.

Then

IMSE(m̂,m;w) ∼ b4 κ2
2

4

∫ (
m′′(x)pX(x) + 2m′(x)p′

X(x)

pX(x)

)2

w(x)dx

+ 1

nb
κ1

∫
w(x)

pX(x)
dx + n2dX−1cXE2[m(X)X

]
. (7.166)
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The first part of Theorem 7.29 means that for i.i.d. explanatory variables the
asymptotic mean squared error is exactly the same as for i.i.d. residuals. Thus, if
we are interested in the shape of m only, then the optimal bandwidth is the same

as under i.i.d. assumptions, namely bopt = Coptn
− 1

5 , and the optimal IMSE is of

the order O(n− 4
5 ). This is similar to results on linear regression through the ori-

gin with explanatory variables having expected value zero. Note in particular that
even if

∫
m(x)pX(x)dx = 0, the rate can be improved by subtracting ȳ. This is

similar to the improved rate of the empirical process when subtracting the sam-
ple mean (see Sect. 4.8.3) and results discussed in the context of goodness-of-fit
testing where estimation of nuisance parameters improves the rate of convergence
(Sect. 5.16). On the other hand, if Xi exhibits long memory, then the rate dete-
riorates for functions m whose Hermite rank is one. In terms of orders, we have
IMSE = O(b4)+ O((nb)−1)+ O(n2dX−1). Minimization with respect to b = cn−α

therefore yields exactly the same optimal value bopt = Coptn
− 1

5 as for i.i.d. residuals.

However, the optimal mean squared error is of the order O(n− 4
5 ) only if 4

5 ≤ 1−2dX

which means dX ≤ 0.1. For dX > 0.1 the variance dominates the optimal IMSE
which is asymptotically proportional to n2dX−1. On the other hand, for very large
bandwidths b = cn−α with α < 1

4 (1 − 2dX), the bias dominates the IMSE which is
then, however, far from the optimal one. In summary, if Xi exhibits long memory,
then the results are analogous to estimation of m; however, with de replaced by dX .

7.4.9 Conditional Variance Estimation

We go back to the parametric regression model (7.45)

Yi = β0 + β1Xi + σ(Xi)ei .

Our goal now is to estimate the conditional variance function σ 2(·) in a nonparamet-
ric way. To do so, we first estimate β0 and β1 by the least squares method studied
in Sect. 7.2. Then, in analogy to conditional mean estimation, we estimate σ 2(·) by
smoothing residuals with a kernel K and a bandwidth b,

σ̂ 2(x0) = (nb)−1∑n
i=1(Yi − β̂0 − β̂1Xi)

2K(
Xi−x0

b
)

p̂X(x0)
, (7.167)

where p̂X(x0) is the kernel density estimator defined in (7.155). It is known that in
the case of weakly dependent errors and/or predictors, estimation of β0 and β1 does
not influence the performance of σ̂ 2(·) (see Fan and Yao 1998; Zhao and Wu 2008).

To see what happens in the case of long memory, we will work under the con-
dition that Xi are i.i.d. and ei = ∑

aj εi−j is a linear long-memory process with
aj ∼ caj

d−1 (0 < d < 1
2 ). Defining

Δt = (β̂0 − β0) + (β̂1 − β1)Xt =: Δ0 + Δ1,t ,
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we can write down the decomposition

p̂X(x0)
(
σ̂ 2(x0) − σ 2(x0)

)= 1

nb

n∑

i=1

K

(
Xi − x0

b

)(
σ 2(Xi) − σ 2(x0)

)

+ 1

nb

n∑

i=1

K

(
Xi − x0

b

)
σ 2(Xi)

(
e2
i − 1

)

− 2

nb

n∑

i=1

Δiσ(Xi)K

(
Xi − x0

b

)
ei

+ 1

nb

n∑

i=1

Δ2
i K

(
Xi − x0

b

)

=: J1 + J2 − J3 + J4.

If β0 and β1 were known, then we would have Δi = 0 and thus J3 = J4 ≡ 0. Let us
recall the proof of Theorem 7.28. The first two terms J1 and J2 are very similar to
the terms appearing in the decomposition of p̂X(x0)(m̂(x0) − m(x0)). If we assume
nb5 → 0, then

√
nbJ1 = op(1) so that the term J1 is negligible. The second term

can be decomposed into two terms J21 and J22 with

√
nbJ21

d→ Z1σ
2(x0)

√

pX(x0)

∫
K2(u) du (7.168)

and, if d ∈ (1/4,1/2),

n1−2dε c
− 1

2
e,2 J22

d→ σ 2(x0)pX(x0)Z2,H0(1) (7.169)

where Z2,H0(1) is the Hermite–Rosenblatt process at time 1 and ce,2 is the constant
in var(

∑
(e2

i − 1)) ∼ ce,2n
4d+2. If d ∈ (0,1/4), then

√
nJ22 = oP (1). The reason

for the difference between (7.161) and (7.169) is that the latter involves limiting
behaviour of

∑n
t=1(e

2
t − 1).

To deal with J3, write

J3 = (β̂0 − β0)
2

nb

n∑

i=1

K

(
Xi − x0

b

)
σ(Xi)ei

+ (β̂1 − β1)
2

nb

n∑

i=1

K

(
Xi − x0

b

)
Xiσ(Xi)ei

=: (β̂0 − β0)L̃3 + (β̂1 − β1)R̃3.



672 7 Statistical Inference for Nonstationary Processes

Defining the quantity

J̃3 := 2

n2b

n∑

i=1

n∑

j=1

K

(
Xi − x0

b

)
σ(Xi)σ (Xj )XiXjeiej ,

we may decompose J3 into two parts,

J3 = L̃3
1

n

n∑

i=1

σ(Xi)εi + 1

Vn

J̃3, (7.170)

with V 2
n = n−1∑n

i=1 X2
i . Furthermore, in J̃3 we may ignore summation over i = j .

Since Xi are i.i.d., the (M/L)-decomposition suggests that J3 behaves like

E

[
b−1K

(
Xi − x0

b

)
σ(Xi)σ (Xj )XiXj

]
n−2

n∑

t=1

n∑

s=1,s �=t

et es .

Since the expected value above behaves like E[σ(X1)X1]σ(x0)x0, we conclude
from (7.48) that

n(1−2de)c
− 1

2
e J̃3

d→ 2E
[
σ(X1)X1

]
σ(x0)x0pX(x0) · Z2

0 . (7.171)

Similar arguments yield

n(1−2de)c
− 1

2
e L̃3n

−1
n∑

i=1

σ(Xi)ei
d→ 2E

[
σ(X1)

]
σ(x0)pX(x0) · Z2

0 . (7.172)

Since Vn converges in probability to 1, the last two equations mean that n1−2dec
− 1

2
e J3

converges in distribution to

2
{
E
[
σ(X1)X1

]
x0 + E

[
σ(X1)

]}
σ(x0)pX(x0) · Z2

0 .

We note that this conclusion is obtained by justifying that the convergence in (7.171)
and (7.172) is joint. Similar considerations can be applied to J4. Details can be found
in Kulik and Wichelhaus (2011). There, the results are obtained under more general
assumption on predictors; see also Guo and Koul (2008). Extension to conditional
variance estimation in the model (7.153) are given in Kulik and Wichelhaus (2012)
and Zhao and Wu (2008). In summary, the following dichotomy is obtained:

Theorem 7.30 Consider the random design regression model (7.45). Assume that
nb5 → 0 and σ is twice continuously differentiable in a neighbourhood of x0. Fur-
thermore, suppose that Xi are i.i.d. and ei =∑∞

j=0 aj εi−j is a second-order sta-

tionary linear process with aj ∼ caj
de−1 (0 < de < 1

2 ), and denote by Z and Z0
standard normal variables and by Z2,H0(1) an Hermite–Rosenblatt variable. Then
the following holds:
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• If b = o(n1−4de ), then

√
nb
√

p̂X(x0)
(
σ̂ 2(x0) − σ 2(x0)

) d→ Zσ 2(x0)

√

pX(x0)

∫
K2(u) du;

• If b � n1−4de , then

n1−2dec
− 1

2
e

(
σ̂ 2(x0) − σ 2(x0)

)

→
d

σ 2(x0)Z2,H0(1)

+ {
E2[σ(X1)X1

]
x2

0 − 2σ(x0)x0E
[
σ(X1)X1

]}
Z2

0

+ {
E2[σ(X1)

]− 2σ(x0)E
[
σ(X1)

]}
Z2

0 . (7.173)

The last two terms quantify the price we have to pay due to estimation of β0

and β1 and due to the fact that the error process has long-range dependence. Note
that the first of the two terms disappears, if E2[σ(X1)X1] = 0. Finally, note that
the assumption nb5 → 0 was used for convenience in order that the bias of σ̂ 2(x0)

be asymptotically negligible. This assumption can be dropped, but then σ̂ 2(x0) −
σ 2(x0) has to be replaced by σ̂ 2(x0) − E[σ̂ 2(x0)], and the bias of σ̂ 2(x0) has to be
treated separately (as it was done previously when estimating the conditional mean
function m(x0) nonparametrically).

7.4.10 Estimation of Trend Functions for LARCH Processes

Consider a time series model Yi = m(ti) + ei with a nonparametric trend function
m(ti) (ti ∈ [0,1]) and residuals ei that exhibit long-range dependence in volatil-
ity, and a linear dependence structure corresponding either to short memory, long
memory or antipersistence. The main question addressed here is the asymptotic be-
haviour of nonparametric estimators of m. In particular, one is interested in charac-
terizing the influence of linear and nonlinear dependence of m̂.

More specifically, Beran and Feng (2007) consider residuals ei having a Wold
decomposition

ei =
∞∑

j=0

ajXi−j = A(B)Zi

with |A(e−iλ)|2 ∼ Lfe(λ)|λ|−2d1 (− 1
2 < d1 < 1

2 ) as λ → 0, Lfe(λ) ∈ C[−π,π]
slowly varying, and Zi is a long-memory LARCH process with bj ∼ cjd2−1 (as
j → ∞) for some 0 < d2 < 1

2 and
∑

b2
j < 1. For the autocovariances of ei , we

have γe(k) ∼ Lγe(k)|k|2d1−1 with Lγe slowly varying, whereas Zi are uncorrelated
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but the squares Z2
i have autocovariances of the form γZ2(k) ∼ Lγ

Z2 (k)|k|2d2−1 (as
j → ∞) where Lγ

Z2 is another slowly varying function.
We recall that, given a polynomial degree p ∈ N and a bandwidth b > 0, a local

polynomial estimator of the j th derivative m(j)(t0) (for a fixed t0 ∈ [0,1]) can be
written as

m̂(j)(x) = j !β̂j = j !δT
j+1

(
XT DX

)−1XT Dy (7.174)

= wT
j,b;ny =

n∑

i=1

wj,b;n(i)Yi (7.175)

where δj = (δ1,j , . . . , δp+1,j )
T (j = 1, . . . , p + 1) denote unit vectors with δj,j =

1, δi,j = 0 (i �= j ) (see (7.106)). Thus, investigating the asymptotic behaviour of
μ̂(j)(t0) amounts to studying the sequence of sums

Sn =
n∑

i=1

wj,b;n(i)Yi =
n∑

i=1

ζi,n (n ∈N)

of a triangular array ζi,n = wj,b;n(i)Yi (1 ≤ i ≤ n; n ∈ N). For the specific weights
given by local polynomial estimation, Beran and Feng (2007) derive asymptotic
normality of Sn under suitable conditions on the tail behaviour of ei and on the
weights wj,b;n. In particular, one must make sure that the weights are balanced in
the sense that max1≤i≤n w2

j,b;n(i) is asymptotically of a smaller order than var(Sn)

(for the detailed assumptions, see Beran and Feng 2007). Also note that the results
for the mean squared error are the same as in Theorem 7.22 because these depend
on the linear dependence structure only.

7.4.11 Further Bibliographic Comments

Hall and Hart (1990b) were the first to derive an asymptotic formula for the mean
squared error of kernel estimators of the trend function m(t) in fixed-design regres-
sion with long-memory errors. This result was extended further in Beran and Feng
(2001a, 2001b, 2002a, 2002b, 2002c), including kernel estimation with boundary
corrections, local polynomial estimation of derivatives and integrated processes.
Results along the line of (7.144) were proven in Csörgő and Mielniczuk (1995a)
under the condition of a homoscedastic Gaussian residual process (the modification
to the heteroskedastic case is obvious). See also Csörgő and Mielniczuk (1995b)
and Robinson (1997). Nonparametric trend estimation in replicated long-memory
time series is considered in Ghosh (2001). The general results applicable to local
polynomial estimators of m(j) and kernel estimators with boundary correction was
given in Beran and Feng (2001a, 2001b, 2002a) (also see Feng et al. 2007). Prop-
erties of cross-validation and plug-in bandwidth were studied in Hall et al. (1995a)
and Beran and Feng (2002a, 2002b, 2002c), respectively. Data driven bandwidth
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selection including asymptotic results on the convergence of the estimated band-
width can also be found in Beran and Feng (2002a, 2002b, 2002c). Extensions to
LARCH-type residuals are given in Beran and Feng (2007). Opsomer et al. (2001)
give an overview of up-to-date existing results in nonparametric estimation with
short- and long-memory errors. Robust versions of local polynomial estimators in
the long-memory context are considered in Beran et al. (2002) and Beran et al.
(2003). Optimal convergence rates in the long-memory setting are derived in Feng
and Beran (2012). The nonexistence of optimal kernels in the long-memory setting
is shown in Beran and Feng (2007). Extensions to nonequidistant time series and
tests for rapid change points are derived in Menéndez et al. (2010).

Theorem 7.28 has its origin in work by Cheng and Robinson (1994). Further ref-
erences include Csörgő and Mielniczuk (1999, 2000), Mielniczuk and Wu (2004),
Zhao and Wu (2008), Kulik and Lorek (2011). In the latter article, the authors con-
sider very general class of errors, which include FARIMA–GARCH or antipersis-
tent processes. In Bryk and Mielniczuk (2008), the authors consider a randomization
scheme for fixed-design regression. As a consequence, the resulting kernel estima-
tor has a rate of convergence as in the random-design case. Results for the kernel
Nadaraya–Watson estimator have further extensions to local linear regression esti-
mators; see Masry and Mielniczuk (1999) and Masry (2001).

7.5 Trend Estimation Based on Wavelets

7.5.1 Introduction

In this section, we consider adaptive estimation of m(t) = E(X) using wavelets.
The advantage of the wavelet approach is evident for functions m that are inhomo-
geneous in time or not smooth. We start with the fixed-design case. As was shown
for kernel and local polynomial estimation, the rates of convergence are affected
by the presence of long memory. The same happens for wavelet methods (see, e.g.
Wang 1996; Wang 1997; Johnstone and Silverman 1997; Johnstone 1999; Li and
Xiao 2007; Kulik and Raimondo 2009a; Beran and Shumeyko 2012a). Again, in the
random design case, it is possible to achieve the same rates as for weakly dependent
data (Kulik and Raimondo 2009b).

7.5.2 Fixed Design

7.5.2.1 Data Adaptive Trend Estimation

As before, we consider a model with trend,

Yi = m(ti) + ei, (7.176)
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with ti = i/n, m ∈ L2[0,1] and ei a zero mean stationary process with long-
range dependence. Wavelet based trend estimation in the context of i.i.d. or short-
range dependent residuals has been considered by many authors (see, e.g. a se-
ries of pioneering papers by Donoho and Johnstone). Most results deal with op-
timality in the sense of a minimax risk, and are partially also applicable in the
long-memory setting. For an observed data set, however, the minimax principle
often leads to estimates of m that may be far from optimal in the specific sit-
uation. A useful alternative is therefore to take a data adaptive approach where
one tries to extract information about the dependence structure of ei and prelimi-
nary information about m in order to come up with a (close to) optimal solution
for m̂. Results along this line are available in Li and Xiao (2007) and Beran and
Shumeyko (2012a). For simplicity, suppose that ei is a Gaussian process with auto-
covariance function γ (k) = E(eiei+k) ∼ Cγ |k|2d−1 (k → ∞) and spectral density
f (λ) = (2π)−1∑γ (k) exp(−ikλ) ∼ Cf |λ|−2d (λ → 0). To include a larger vari-
ety of wavelets, Beran and Shumeyko (2012a) assume that the support of the father
and mother wavelets φ(t) and ψ(t) is [0,N ] with N an arbitrary integer. Moreover,
ψ(0) = ψ(N) = 0 and

∫ N

0
φ(t) dt =

∫ N

0
φ2(t) dt =

∫ N

0
ψ2(t) dt = 1. (7.177)

Then, for any J ≥ 0, the system {φJk,ψjk, k ∈ Z, j ≥ 0} with

ψjk(t) = N1/22(J+j)/2ψ
(
N2J+j t − k

)
, φJk(t) = N1/22J/2φ

(
N2J t − k

)
,

is an orthonormal basis in L2(R) (see Sects. 3.5 and 3.5). An important role is
played by the number Mψ ∈N of vanishing moments, defined by the properties

∫ N

0
tkψ(t) dt = 0 (k = 0,1, . . . ,Mψ − 1) (7.178)

and
∫ N

0
tMψ ψ(t) dt = νMψ �= 0. (7.179)

Recall that for every fixed, J ≥ 0, every function m ∈ L2([0,1]) has a unique or-
thogonal wavelet representation

m(t) =
N2J −1∑

k=−N+1

sJkφJk(t) +
∞∑

j=0

N2J+j −1∑

k=−N+1

djkψjk(t), (7.180)

with

sJk =
∫ 1

0
m(t)φJk(t) dt, djk =

∫ 1

0
m(t)ψjk(t) dt.
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Setting

ŝJ k = 1

n

n∑

i=1

YiφJk(ti), d̂jk = 1

n

n∑

i=1

Yiψjk(ti),

a (hard) thresholding wavelet estimator of m is defined by

ĝ(t) =
N2J −1∑

k=−N+1

ŝJ kφJk(t) +
q∑

j=0

N2J+j −1∑

k=−N+1

d̂jk I
(|d̂jk| > δj

)
ψjk(t). (7.181)

The constants J , q and δj are called the decomposition level, smoothing parameter
and threshold, respectively, and can be chosen quite freely except for some minimal
asymptotic requirements such as δj → 0 (with rates in a certain range), q → ∞, etc.
The decomposition level J may also tend to infinity, but a reasonable assumption is
that 2J = o(n). The reason is that the lowest resolution level which is of the order
O(2−J ) should tend to zero at a slower rate than the distance n−1 between succes-
sive observational time points. This requirement corresponds to letting the length of
the window of a kernel estimator tend to zero at a slower rate than n−1. More specif-
ically, N2J t ∈ [0,N ] if and only if 0 ≤ t ≤ 2−J , so that we need n−1 = o(2−J ).

The question of interest is now how to choose the constants J , q and δj op-
timally for a given data set. An asymptotic answer is given, at least partially, in
Beran and Shumeyko (2012a) (also see Li and Xiao 2007). The solution con-
sists of an asymptotic expression for the integrated mean squared error MISE =∫

E[(m̂(t) − m(t))2]dt that can be minimized. The result depends on the differen-
tiability of m, the number mψ of vanishing moments and further regularity prop-
erties of the mother wavelet ψ , and on the long-memory parameter d . A specific
assumption used in Beran and Shumeyko (2012a) is a uniform Hölder condition
with exponent 1/2, i.e.

∣∣ψ(x) − ψ(y)
∣∣≤ C|x − y|1/2, ∀x, y ∈ [0,N ]. (7.182)

This is, however, not necessary since analogous results can be derived, for instance,
for Haar wavelets.

In a first step, it can be shown that minimization with respect to J , q and {δj }
yields the following optimal order of the MISE:

Theorem 7.31 Suppose that m ∈ Cr [0,1], m(r)(t) �= 0 for a non-zero set (w.r.t.
Lebesgue measure), the process εi is Gaussian with covariance structure γ (k) =
E(eiei+k) ∼ Cγ |k|2d−1, and ψ is such that Mψ = r . Then, minimizing the MISE
with respect to J , q and {δj } yields the optimal order

IMSEopt = O
(
n− 2rα

2r+α
)

(7.183)

where α = 1 − 2d .
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Since only the rate is given, Theorem 7.31 is not directly applicable in practice.
Instead, an expression for the IMSE including all relevant constants is required.
Moreover, the trend function (or its derivatives) should be allowed to have at least a
finite number of jumps.

It turns out that the optimal order can be achieved without thresholding, i.e. set-
ting δj = 0 for all j . Using no thresholding simplifies asymptotic calculations. A de-
tailed analysis of the IMSE yields the following optimal values of J and q .

Theorem 7.32 Under the assumptions of the previous theorem and thresholds

δj = 0 (0 ≤ j ≤ q),

the following holds: Let

C2
φ = Cγ

∫ N

0

∫ N

0
|x − y|−α φ(x)φ(y) dx dy, (7.184)

C2
ψ = Cγ

∫ N

0

∫ N

0
|x − y|−α ψ(x)ψ(y)dx dy. (7.185)

(i) If (2α − 1)C2
φ > C2

ψ , then the asymptotic IMSE is minimized by decomposition

levels J ∗ satisfying 2J ∗ = o(n
α

2r+α ) and smoothing parameters

q∗ =
⌊

α

2r + α
log2 n + C∗

ψ

⌋
− J ∗ (7.186)

where log2 denotes logarithm to the base 2. The optimal IMSE is of the form

MISE = A1A2 · n− 2rα
2r+α + o

(
n− 2rα

2r+α
)

(7.187)

with constants A1, A2 defined explicitly as functions of d , and the wavelet func-
tions (see Beran and Shumeyko 2012a).

(ii) If (2α − 1)C2
φ < C2

ψ , then minimizing the asymptotic IMSE with respect to J

and q yields

ĝ(t) =
N2J∗−1∑

k=−N+1

ŝJ ∗kφJ ∗k(t), (7.188)

with

J ∗ =
⌊

α

2r + α
log2 n + C∗

φ

⌋
+ 1 (7.189)

and C∗
φ defined explicitly as a function of d , and the wavelet functions (see

Beran and Shumeyko 2012a). The optimal IMSE is of the form

IMSE = A3A2 · n− 2rα
2r+α + o

(
n− 2rα

2r+α
)
, (7.190)

where again A1, A2 can be given explicitly.



7.5 Trend Estimation Based on Wavelets 679

This result establishes an explicit asymptotic expression (and not just the or-
der) for optimal choices of J ∗ and q∗, for the case where g is sufficiently smooth
and when a wavelet basis is used that matches at least this degree of smoothness.
Most interesting is part (i) where the optimal estimator does not contain any mother
wavelets. Thus, smoothing is done solely by refining the resolution level J ∗ in the
father wavelet decomposition. The optimal choice is a logarithmic increase of J ∗
with constants as given in (7.189).

If jumps in the function g are expected, then the same asymptotic formula for
the MISE holds, when essentially using the same rules in this theorem; however,
adding thresholded mother wavelet components to capture local disturbances. Thus,
consider

ĝ(t) =
N2J −1∑

k=−N+1

ŝJ kφJk(t) +
q∑

j=0

N2J+j −1∑

k=−N+1

d̂jk I
(|d̂jk| > δj

)
ψjk(t). (7.191)

Then the following holds.

Theorem 7.33 Suppose that g(r)exists on [0,1] except for at most a finite number
of points, and, where it exists, it is piecewise continuous and bounded. Furthermore,
assume that supp(g(r)) has positive Lebesgue measure, Mψ = r and the process ei

is Gaussian with long memory as specified above. Then the following holds:

(i) If (2α − 1)C2
φ > C2

ψ , J is such that 2J = o(n
α

2r+α ), q = �log2 n� − J , q∗ is
defined by (7.186), and δj is such that for 0 ≤ j ≤ q∗

δj = 0 (7.192)

and for q∗ < j ≤ q

2J+j δ2
j → 0,2(J+j)(2r+1)δ2

j → ∞, δ2
j ≥ 4eC2

ψN−1+α(lnn)2

nα2(J+j)(1−α)
, (7.193)

then (7.187) holds.
(ii) If (2α − 1)C2

φ < C2
ψ , J = J ∗ with J ∗ defined by (7.189), q = �log2 n� − J and

δj such that

2J+j δ2
j → 0,2(J+j)(2r+1)δ2

j → ∞,

δ2
j ≥ 4eC2

ψN−1+α(lnn)2

nα2(J+j)(1−α)
(0 ≤ j ≤ q),

(7.194)

then (7.190) holds.

7.5.2.2 Convergence in Besov Classes

An alternative approach to convergence rates of wavelet estimators in the long-
memory context was initiated by Wang (1996). Assume that the error sequence ei



680 7 Statistical Inference for Nonstationary Processes

is Gaussian with covariance function γ (k) ∼ cγ k2d−1, d ∈ (0,1/2). As before, set
α = 1 − 2d . Then, in continuous time, a model that is analogous to Yi = m(ti) + ei

discussed above is given by

dY (t) = m(t) dt + εα dBH (t), (7.195)

where BH (t) (t ∈ [0,1]) is a standard fractional Brownian motion (fBm) with Hurst
index H = d + 1/2, and ε = n−1/2 is the “noise level”.

Recall that the function m(t) can be expanded as

m(t) =
∞∑

k=−∞
αjkφJk(t) +

∑

j≥J

∞∑

k=0

βjkψjk(t).

Equivalently, we may write

m(t) = α00φ00(t) +
∑

j≥0

∞∑

k=0

βjkψjk(t)

where φ00(t) is a suitable father wavelet. To characterize properties of m, one con-
siders the so-called Besov spaces, characterised by the behaviour of the wavelet
coefficients as follows:

Definition 7.8 Assume that m ∈ Lλ([0,1]). We say that m belongs to the Besov
space Br

λ,s([0,1]) if

∑

j≥0

2j (r+1/2−1/λ)s

[ ∑

0≤k≤2j

|βjk|λ
]s/λ

< ∞. (7.196)

The parameter r can be thought of as related to the number of derivatives of m.
With different values of λ and s, Besov spaces capture a variety of smoothness
features in a function, including spatially inhomogeneous behaviour.

The wavelet estimator is constructed similarly to (7.181):

m̂(t) = α̂00φ00(t) +
J∑

j=0

2j −1∑

k=0

β̂jk1
(|β̂jk| > δj

)
ψjk(t),

where in the continuous time model (7.195) we set

β̂jk := β̂C
jk :=

∫
ψjk(t) dYt . (7.197)

Of course, in the original model we have to take instead

β̂jk := β̂D
jk := 1

n

n∑

i=1

ψjk(ti)Yi . (7.198)
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The tuning parameters J and δj are chosen as follows:

• Fine resolution level J :

2J =
(

n

logn

)α

=
(

n

logn

)1−2d

. (7.199)

• Threshold: The threshold value δ = δj has three input parameters and is written
as

δj = ησj cn (7.200)

– η: η >
√

8α
√

2 ∨ p;
– σj : a level-dependent scaling factor

σj = τ2−j (1−α)/2, (7.201)

τ 2 = (1 − α/2)(1 − α)

∫ 1

0

∫ 1

0
ψ(u)ψ(v)|u − v|−α dudv; (7.202)

– cn: a sample size-dependent scaling factor

cn = (logn)
1
2 n− α

2 . (7.203)

The following comments have to be made here. First, in the definition of η, we
have a new parameter p that is connected to the loss function we would like to use.
Specifically, let

‖f − g‖ν
ν =

∫ ∣∣f (t) − g(t)
∣∣ν dt

be the νth norm. Then we will measure accuracy of the estimator m̂ by computing

E
(‖m̂ − m‖ν

ν

)
.

Clearly, if ν = 2, this definition agrees with the IMSE, as considered in Theo-
rem 7.31. The value of σj comes from

σ 2
j = var

(∫
ψjk(t) dBH (t)

)
.

Furthermore, the parameter τ in (7.202) is chosen for the continuous model (7.195).
For the original discrete time model, the parameter should be changed to

τ 2 = cf

∫ 1

0

∫ 1

0
ψ(u)ψ(v)|u − v|−α dudv.

We note that the estimator is adaptive with respect to the smoothness class as our
tuning paradigm does not depend on r .
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The following result was proven in Kulik and Raimondo (2009a), see also Wang
(1996), Wang (1997), Johnstone and Silverman (1997), Johnstone (1999) and Li and
Xiao (2007).

Theorem 7.34 Consider the continuous time model (7.195) with ε = n−1/2, and the
wavelet estimator with (7.199), (7.200), (7.201), (7.202) and (7.203). Assume p > 1
and m ∈ Br

λ,s with r ≥ 1
λ

. There exists a constant C > 0 such that for all n ≥ 0,

E
(‖m̂ − m‖ν

ν

)≤ C

(
(logn)

1
α

n

)γ

,

with

γ = νrα

2r + α
if r ≥ α

2

(
ν

λ
− 1

)
, (7.204)

r −
(

1

λ
− 1

ν

)

+
>

r

2r + α
, (7.205)

γ = αν(r − 1
λ

+ 1
ν
)

2(r − 1
λ

+ α
2 )

if
1

λ
< r <

α

2

(
ν

λ
− 1

)
. (7.206)

The proof of this result is based on the so-called maxiset theorem, see Kerky-
acharian and Picard (2000). In particular, the following estimates are crucial. First,
E(β̂jk) = βjk and

var(β̂jk) = var

(
εα

∫
ψκ(t) dBH (t)

)
= n−α2−j (1−α)τ 2 ≤ Cσ 2

j c2
n.

Since the random variables β̂jk − βjk are Gaussian, we have the following large
deviations inequality

P
(|β̂jk − βjk| > ησj cn/2

)≤ exp

(
− logn

η2

8

)
≤ C

(
c

2p
n ∧ c4

n

)
(7.207)

provided η >
√

8α
√

p ∨ 2.
The two rate regimes (7.204) and (7.206) are referred as the ‘dense’ and ‘sparse’

phases (see, e.g. Kerkyacharian and Picard 2000 in the i.i.d. case). The result above
shows that the boundary region r = α

2 (
p
λ

− 1) depends on the LRD index α, and the
sparse region is smaller for dependent data. In other words, some inhomogeneous
properties of the trend function are “hidden” in the LRD noise. We note further that
the condition p > 2

α
+λ is required for the sparse regime to be visible. In particular,

if p = 2 then there is no sparse region and the rate results agree (up to a logarithmic
term) with the result in Theorem 7.31.
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7.5.3 Random Design

In this part, we are interested in estimating the conditional mean function m(·) in
the heteroskedastic model

Yi = m(Xi) + σ(Xi)ei (i = 1, . . . , n). (7.208)

Again, the rates of convergence will be analysed using Besov classes, although in the
random-design context we cannot change this model to a continuous set-up as we
did before. Furthermore, the fact that we consider random design has to be addressed
appropriately. This can be done using the so-called warped wavelets. The wavelet
expansion of m(t) is replaced by

m(x) = α0,0φ00
(
F(x)

)+
∑

j≥0

∞∑

k=0

βjkψjk

(
F(x)

)
, (7.209)

with

βjk =
∫ 1

0
m(x)p(x)ψjk

(
F(x)

)
dx, (7.210)

and F(·), p = F ′ being a cumulative distribution and density function of X1, re-
spectively.

The partially adaptive wavelet estimator we are going to consider is

m̂(t) = α̂00φ00
(
F(t)

)+
J∑

j=0

2j −1∑

k=0

β̂jk1
(|β̂jk| ≥ δj

)
ψjk

(
F(t)

)
, (7.211)

where

α̂00 := 1

n

n∑

i=1

φ00
(
F(Xi)

)
Yi, β̂jk := 1

n

n∑

i=1

ψjk

(
F(Xi)

)
Yi. (7.212)

The highest resolution level is chosen as

2J ∼ n

logn
.

The theoretical level-dependent threshold parameter is set to be

δj = τ0

(
logn√

n
∨ 1

{
E
(
ψjk

(
F(X1)

)
σ(X1)

) �= 0
} (logn)1/2

nα/2

)

where τ0 is large enough and α = 1−2d . We note the significant difference between
fixed and random design. The choice of the highest resolution level J in the case
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of a random design does not involve LRD. Furthermore, in most regular cases the
threshold δj does not depend on α. Indeed, we have

E
[
ψjk

(
F(X1)

)
σ(X1)

]=
∫

ψjk(u)σ
(
F−1(u)

)
du.

Note first that if σ(·) ≡ σ , then the above integral vanishes. Furthermore, this is also
the case if σ(·) has polynomial-like behaviour and appropriately regular wavelets
are used. Consequently, in most practical cases the parameters of the wavelet esti-
mator can be tuned without knowledge of α.

Since we deal with warped wavelets, we have to consider the following weighted
norm

‖f − g‖ν
Lν(p) =

(∫ ∣∣f (x) − g(x)
∣∣νp(x)dx

)
.

Using the notation

αD := 2r

2r + 1
, αS := 2(r − ( 1

λ
− 1

ν
))

2(r − 1
λ
) + 1

, (7.213)

the following rates of convergence can be derived (Kulik and Raimondo 2009b):

Theorem 7.35 Consider the random-design regression model (7.208) such that
Xi are i.i.d. and ei is a long-range dependent Gaussian sequence such that
γe(k) ∼ cγ k2d−1. Both sequences are assumed to be independent from each other.
Assume furthermore that m◦F−1 ∈ Br

λ,s([0,1]), λ ≥ 1, where r > max{ 1
λ
, 1

2 }. Then

E
(‖m̂ − m‖ν

Lν(p)

)≤ Cn− ν
2 γ (logn)κ,

where

γ =
⎧
⎨

⎩

αD if α > αD and r > ν−π
2π

,dense phase;
αS if α > αS and 1

π
< r <

p−π
2π

, sparse phase;
α if α ≤ min(αS,αD), LRD phase,

αS , αD are given in (7.213), and κ > 0. If α = 1, then the LRD phase is not relevant.

The proof is based on the M/L technique, as discussed before in the context of
random-design regression. The main tool is a large deviation inequality for LRD
processes. Informally speaking, LRD appears at low resolution levels only and is
suppressed by the additional threshold term.

Furthermore, as in the case of kernel estimators, the rates of convergence improve
when once considers estimation of the shape function m∗(t) = m(t) − E(m(X1)).

To get full adaptiveness F(·) has to be replaced by its empirical counter-
part Fn(·). The results of Theorem 7.35 continue to hold. However, the highest
resolution level must be chosen according to 2J ∼ √

n/ logn.
The results in Theorem 7.35 are optimal. It other words, it is not possible to find

estimators that achieve better rates of convergence.
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7.6 Estimation of Time Dependent Distribution Functions
and Quantiles

Limit theorems for empirical quantiles of stationary long-memory processes, and
their direct application to quantile estimation have been discussed in Sect. 4.8.2.1.
Here we consider the more complicated situation where quantiles may change with
time. The approach introduced in the following is nonparametric.

Consider time series observations Y1, Y2, . . . , Yn such that Yi = G(Zi, ti) where
ti = i/n are rescaled times and {Zi, i = 1,2, . . .} is a zero mean stationary Gaus-
sian process with long-memory. The function G(x, ·) is assumed to be an unknown
square integrable function (with respect to the N(0,1) density). As for the Gaussian
process Zi , we assume that

cov(Zi,Zi+k) = γ (k) ∼ C|k|2H−2, as |k| → ∞,

H being the long-memory parameter with 1/2 < H < 1 and C is a positive constant.
For y ∈R, ti = i/n, define the cumulative distribution function of Y at rescaled time
ti to be

Fti (y) = P(Yi ≤ y).

For simplicity of arguments, let Ft , t ∈ (0,1) be continuous with a probability den-
sity function ft defined by

ft (y) = ∂

∂y
Ft (y).

The problem is the nonparametric estimation of Ft(·), t ∈ (0,1) and consequently
the estimation of the α-quantile (0 < α < 1)

θt (α) = inf
y

{
y|Ft (y) ≥ α

}
,

and deriving asymptotic confidence bands for these functions. The results summa-
rized in this section can be found in Ghosh et al. (1997). As for applicability of these
ideas, estimation and prediction of the time dependent probability function Ft(y)

can be of practical relevance in various situations. For instance, if Yi is precipitation
at time i (rescaled time ti ), then 1 − Ft(y) is the probability that the amount of rain
at time t will exceed a previously specified level y, having implications for regions
where heavy rainfall is the primary factor leading to floods. Equivalently, quantile
functions may be considered. Very low values of θt (α) for low α may be indicative
of a drought, also having serious implications for agriculture.

The time dependent Gaussian subordination model considered here is a model
for processes that are nonstationary in the sense that the marginal distribution func-
tion may change with time. Moreover, the distribution may be Gaussian or non-
Gaussian. Some simple examples are:

(i) Yi = μ(ti) + σ(ti)Zi , where μ and σ are real-valued functions;
(ii) Yi = μ1(ti)Z

2
i + μ2(ti)Z

3
i where μ1 and μ2 are real-valued functions;
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(iii) Yi = 1{Zi < z} − P(Zi < z), z ∈R, etc.

Let K(u), u ∈ (−1,1) be a symmetric probability density function on (−1,1). Also
let bn = b be a sequence of bandwidths such that b → 0 and nb3 → ∞ as n → ∞.
Define the Priestley–Chao estimator

F̂t (y) = 1

nb

n∑

i=1

K

(
ti − t

b

)
Ii(y)

where

Ii(y) = 1 if Yi ≤ y and Ii(y) = 0 otherwise.

Since the indicator function Ii(y) is a function of Yi , it is also Gaussian subordi-
nated. We assume that the following Hermite polynomial expansion holds

Ii(y) − P(Yi ≤ y) =
∞∑

l=m

cl(ti , y)

l! Hl(Zi).

In the above expansion, m is the Hermite rank of G, the functions cl are the Hermite
coefficients, and Hl denotes the Hermite polynomial of degree l. Note that when
H > 1 − 1/(2m), Ii(y) − P(Yi ≤ y), i = 1,2, . . . will have long-memory.

Theorem 7.36 Under the conditions stated above for H > 1 − 1/(2m) and under
further regularity conditions on the Hermite coefficients and assuming that the dis-
tribution function Ft (y) is twice differentiable with respect to t , for fixed t and y

and as n → ∞, F̂t (y) will have the following asymptotic properties:

Bias
(
F̂t (y)

)= b2

2
A(t, y) + o

(
b2),

Var
(
F̂t (y)

)= (nb)m(2H−2)B(t, y)

+ o
(
(nb)m(2H−2)

)
,

MSE
(
F̂t (y)

)= A2(t, y)b4 + B(t, y)(nb)m(2H−2)

+ o
(
max

(
b4, (nb)m(2H−2)

))

where

A(t, y) = 1

2

∂2

∂t2
Ft (y)

∫ 1

−1
u2K(u)du,

B(t, y) = Cm c2
m(t, y)

m!
∫ 1

−1

∫ 1

−1
K(u)K(v)|u − v|m(2H−2) dudv.
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Proof We have,

E
[
F̂t (y)

]= 1

nb

n∑

i=1

K

(
ti − t

b

)
E
[
Ii(y)

]= 1

nb

n∑

i=1

K

(
ti − t

b

)
Fti (y).

The proof for bias of F̂t (y) then follows by a Taylor series expansion of Fti (y)

around t and by noting that as n → ∞,
∣∣∣∣∣

1

nb

n∑

i=1

(
ti − t

b

)p

K

(
ti − t

b

)
−
∫ 1

−1
upK(u)du

∣∣∣∣∣= O

(
1

nb

)

where p is a positive integer, and also O( 1
nb

) = o(b2) since nb3 → ∞. Moreover,

since K is a symmetric probability density function,
∫ 1
−1 upK(u)du equals 1 when

p = 0 and equals 0 when p is odd.
As for the variance, since cov[Hl1(Zi),Hl2(Zj )] = 0 if l1 �= l2 and equals

l![γ (i − j)]l if l1 = l2 = l,

var
(
F̂t (y)

)= 1

(nb)2

n∑

i=1

n∑

j=1

K

(
ti − t

b

)
K

(
tj − t

b

)
cov
[
G(Zi, tj ),G(Zj , tj )

]

= 1

(nb)2

n∑

i=1

n∑

j=1

K

(
ti − t

b

)
K

(
tj − t

b

) ∞∑

l=m

cl(ti)cl(tj )

l!
[
γ (i − j)

]l

∼ 1

(nb)2

n∑

i,j=1
i �=j

K

(
ti − t

b

)
K

(
tj − t

b

) ∞∑

l=m

cl(ti)cl(tj )

l! Cl |i − j |l(2H−2).

The last step follows since
∑

i,j |i−j |l(2H−2) diverges as n → ∞. Now using a one-
term Taylor series expansion of cl(ti) and cl(tj ) around t and due to the convergence
of the Riemann sums involving the kernel K , the expression for the variance follows.
The formula for the mean squared error (MSE) follows from definition. �

By differentiating the asymptotic expression for the MSE with respect to b, a
formula for an optimal bandwidth for estimating Ft(y) can be derived as

b
(opt)
t (y) = Qt(y) × nm(2H−2)/(4+m(2−2H))

where

Qt(y) =
[
m(2 − 2H)B(t, y)

4A2(t, y)

]1/[4+m(2−2H)]
.

Thus, for instance, when m = 1 and H ≈ 1/2, b
(opt)
t (y) ∝ n−1/5. As H moves away

from 0.5 and approaches 1, b
(opt)
t (y) becomes large as well. This has to do with
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the fact that long memory creates an apparent smoothness in the data as a result of
which larger bandwidths suffice for optimum smoothing.

The quantile function θt (α) for a given α can be estimated by inverting the esti-
mated distribution function F̂t (y), y ∈ R as follows:

θ̂t (α) = inf
y

{
y|F̂t (y) ≥ α

}
.

It turns out that the estimator θ̂t inherits the asymptotic properties of F̂t . Specifically,
we have the following result:

Theorem 7.37 Let θt (α) be unique and ft (θt (α)) > 0. Then,

Bias
(
θ̂t (α)

)= b2

ft (θt (α))
A
(
t, θt (α)

)+ o
(
b2),

Var
(
θ̂t (α)

)= (nb)m(2H−2) B(t, θt (α))

f 2
t (θt (α))

+ o
(
(nb)m(2H−2)

)
,

MSE
(
θ̂t (α)

)=
[
A2(t, θt (α))

f 2
t (θt (α))

b4 + B(t, θt (α))

f 2
t (θt (α))

(nb)m(2H−2)

]

+ o
(
max

(
b4, (nb)m(2H−2)

))
.

Proof For additional information, refer to Rao (1973, Chap. 6f.2) and Serfling
(1980, Chap. 2.3). First of all, as n → ∞, θ̂t (α) → θt (α) in probability. Secondly,
as in Pollard (1984, p. 98),

(nb)m(2−2H)
[
θ̂t (α) − θt (α)

]= −(nb)m(2−2H)[F̂t (θ̂t (α)) − Ft(θ̂t (α))] − op(1)

ft (θt (α)) + op(1)
.

The result follows from the continuous mapping theorem. �

Remark It is easy to see that the asymptotically optimal local bandwidth that mini-
mizes the leading term in the MSE of θ̂t (α) (term inside the square brackets) is the
same as the bandwidth needed for the estimation of Ft(θt (α)).

Under the condition that the Hermite rank of the function G is equal to 1, we
have the following central limit theorem:

Theorem 7.38 Let m = 1.

(a) CLT for F̂ti (y): Let y ∈ R, k ≥ 1 and t0
1 < t0

2 < · · · < t0
k (with t0

i ∈ (0,1)) be
fixed. Define

Ui,n = (nb)1−H [F̂ti (y) − Fti (y) − b2A(ti, y)]√
B(ti, y)

, ti = tin = in/n
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with ti → t0
i (i = 1,2, . . . , k) as n → ∞. Then as n → ∞, the random vector

Un = (U1,n,U2,n, . . . ,Uk,n)
T

converges in distribution to Zu = (Zu
1 ,Zu

2 , . . . ,Zu
k )T where Zu

i , i = 1,2, . . . , k

are independent and identically distributed standard normal random variables.
(b) CLT for θ̂ti (α): Let α ∈ (0,1) and k ≥ 1 be fixed, and t0

i as before. Define

Wi,n = (nb)1−H [θ̂ti (α) − θti (α) − b2A(ti, θti (α))/fti (θti (α))]√
B(ti, θti (α))/fti (θti (α))

,

ti = tin = in/n

with tin as above. Then as n → ∞, the random vector

Wn = (W1,n,W2,n, . . . ,Wk,n)
T

converges in distribution to Zw = (Zw
1 ,Zw

2 , . . . ,Zw
k )

T
where Zw

i , i = 1,2,

. . . , k are independent and identically distributed standard normal random vari-
ables.

Proof (a) Due to Theorem 7.36, as n → ∞, for each t ∈ (0,1)

(nb)1−H
∣∣F̂t (y) − Ft(y) − b2A(t, y) − Rn(t, y)

∣∣→ 0

in probability, where

Rn(t, y) = (nb)−1
n∑

i=1

K

(
ti − t

b

)
c1(ti , y)Zi.

Note that (nb)1−H Rn(t, y) has a normal distribution because it is a linear com-
bination of standard normal random variables that are also jointly normal. Also,
cov((nb)1−H F̂t (y), (nb)1−H F̂s(y)) for t �= s converges to zero in probability. The
result follows by considering the sequence of random vectors Un and Theo-
rem 7.36(i) in Csörgő and Mielniczuk (1995a).

(b) The proof follows from (a) above and the arguments of Theorem 7.37(b). �

7.7 Partial Linear Models

A partial linear model is a semiparametric regression model containing a nonpara-
metric as well as a linear parametric regression component. An example is as fol-
lows:

y(i) = xT (i)β + μ(ti) + ε(i)
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where y(i), i = 1,2, . . . , n is an observation on the dependent variable y, xT (i) is
a (row) vector of explanatory variables

xT (i) = (
x1(i), x2(i), . . . , xp(i)

)
, p ≥ 1,

β is a (column) vector of regression parameters

βT = (β1, β2, . . . , βp)

and ti = i/n is rescaled time. The nonparametric component μ is an unknown but
smooth function in C2[0,1] whereas ε(i) is the error term with zero mean. Of spe-
cial interest is the case when ε(i) is a stationary long-memory process. Specifically,
let ε(i) have a covariance function γε and a spectral density fε

γε(k) = Cov
(
ε(j), ε(j + k)

)=
∫ π

−π

exp(ikλ)fε(λ)dλ,

fε(λ) ∼ cε|λ|−2dε as λ → 0

where as usual ∼ means that the left-hand side divided by the right-hand side con-
verges to one, cε is a positive constant and 0 ≤ dε < 1

2 . Let E(εεT ) = Γε,n = Γε =
[γε(i − j)]i,j=1,2,...,n. The uncorrelated case, namely when β and μ are unknown
but the errors are uncorrelated, is considered in Speckman (1988). He suggests a√

n-consistent estimator for β under the assumption that also the explanatory vari-
ables contain a rough component. Beran and Ghosh (1998) examine Speckman’s
method of estimation under long-memory in the errors. As it turns out, even under
long-memory, a

√
n-rate of convergence of the slope estimates can be achieved. In

this section, we take a closer look at some of these results.
To start with, we set our notations: we observe (xT (i), y(i)) at time points i =

1,2, . . . , n. Using vector notations, we define

xT (i) = (
x1(i), x2(i), . . . xp(i)

)
, i = 1,2, . . . , n,

yT = (
y(1), y(2), . . . , y(n)

)
,

μT = (
μ(t1),μ(t2), . . . ,μ(tn)

)
, ti = i/n,

εT = (ε1, ε2, . . . , εn).

Let the n × p full design matrix be

X = M + η

where M is a deterministic matrix of order n × p and η is a random matrix, its
elements being zero mean random variables. The ith row of X is xT (i), the columns
of M are (m1,m2, . . . ,mp),

mT
j = (

mj(t1),mj (t2), . . . ,mj (tn)
)
, j = 1,2, . . . , p
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whereas the ith row of M is

(
m1(ti),m2(ti), . . . ,mp(ti)

)
, i = 1,2, . . . , n.

The functions mj(·) are in C2[0,1]. The columns of the random matrix η are de-
noted by ej , i.e.

η = (e1, e2, . . . , ep)

where

eT
j = (

ej (1), ej (2), . . . , ej (n)
)
, j = 1,2, . . . , p,

rows are given by

eT (i) = (
e1(i), e2(i), . . . , ep(i)

)
.

The random “error” terms in X are assumed to have the following properties: η is
independent of ε. As for the covariances,

γej
(k) = Cov

(
ej (s), ej (s + k)

)=
∫ π

−π

exp(ikλ)fej
(λ) dλ,

fej
(λ) ∼ cej

|λ|−2dej as |λ| → 0

where cej
is a positive constant and 0 ≤ dej

< 1
2 . Let σe(j, l) = Cov(ej (i), el(i))

so that the p × p matrix of zero-lag cross-covariances is E(e(i)eT (i)) = Γe =
[σe(j, l)]j,l=1,2,...,p . The partial linear model is then of the form

y = Xβ + μ + ε = Mβ + ηβ + μ + ε.

In the above formula, Mβ +μ is deterministic whereas ηβ + ε is random. The main
idea is to smooth the values of y to obtain an estimate of the deterministic part and
consequently an estimate of the error. Similarly, the error in X can be estimated
by detrending the data series containing the values of the explanatory variables.
These error estimates are then used in a regression model to recover β . For instance,
consider the Nadaraya–Watson kernel (see Gasser et al. 1985)

K(ti, tj , n, b) = w(
ti−tj

b
)

n−1
∑n

i=1 w(
tl
b
)

and define the kernel matrix

K = [
K(ti, tj , n, b)

]
i,j=1,2,...,n

.

Here b is a bandwidth satisfying in particular that as n → ∞, b → 0, nb → ∞,
and w is a bounded, non-negative, symmetric and piecewise continuous function
with support [−1,1] such that

∫ 1
−1 w(s)ds = 1. Additional conditions on b that are
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used to prove the asymptotic results concerning the estimated slope are in Beran and
Ghosh (1998).

Define the residuals

X̃ = (I − K)X, ỹ = (I − K)y.

Then the semiparametric regression estimate of the slope parameter β can be given
by

β̂ = (
X̃T X̃

)−1X̃T ỹ.

In addition to the conditions stated earlier, let, as n → ∞,

n
(
ηT η

)−1
ηT Σεη

(
ηT η

)−1 → A

almost surely, and
√

n
(
ηT η

)−1
ηT ε → N(0,A)

in distribution where N(0,A) denotes a p-variate normal distribution with zero
mean and covariance matrix A. These conditions ensure that β can be estimated with√

n-convergence. For sufficient conditions for these to hold, see Sect. 7.2 (and in
particular Yajima 1991 and Künsch et al. 1993). Under the conditions stated above,
the following asymptotic results can be derived.

Theorem 7.39 Let d0 = maxj=1,...,p dej
. Then as n → ∞, conditionally on X,

E(β̂|X) − β = O
(
b4)+ O

(
(nb)d0− 1

2 b2),

nVar(β̂|X) → A almost surely,
√

n(β̂ − β) → N(0,A) in distribution.

Note in particular that asymptotically the bias is of a smaller order than the vari-
ance. For the proof of the theorem and additional technical conditions on the band-
width, see Beran and Ghosh (1998). In applications, the covariance matrix A would
have to be estimated. These authors recommend fitting a parametric model fε(λ; θ̂ )

for the spectral density to the residuals ε̂(i) = ỹ(i)− x̃T (i)β and setting Γ̂ε = Γε(θ̂).
For an extension of these results to testing for partial linear models with long mem-
ory, see Aneiros-Pérez et al. (2004).

7.8 Inference for Locally Stationary Processes

7.8.1 Introduction

In this short section, we discuss estimation for locally stationary long-memory pro-
cesses. In the context of weakly dependent processes, the mathematical background
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stems from Dahlhaus (1997) (also see, e.g. Priestley 1981 for earlier references). In
a long-memory setting, the general idea is that the long-memory parameter is treated
as a smooth function of time (that is, the dependence parameter becomes a curve).
Specifically, Whitcher and Jensen (2000) propose locally stationary ARFIMA pro-
cesses. Ghosh et al. (1997) consider subordinated locally stationary Gaussian pro-
cesses in the context of quantile estimation. Asymptotic theory for estimators of the
“dependence curves” is presented in Beran (2009). The results use tools from ker-
nel regression, as discussed before in Sect. 7.4. Roueff and von Sachs (2011) discuss
estimation for locally stationary processes using wavelet methods.

The motivation for considering locally stationary processes is the observation
that often time series appear to be stationary when one looks at short time pe-
riods; however, in the long run, the structure changes. If changes are not abrupt,
then such data can be modelled by the so-called locally stationary processes. The
general idea is that the probabilistic structure of the process changes smoothly in
time such that locally the series are stationary in a first approximation. In engi-
neering, this idea has been used long before exact mathematical definitions of local
stationarity were introduced. A systematic mathematical approach was initiated by
pioneering contributions of Subba Rao (1970), Hallin (1978) and Priestley (1981),
followed by Dahlhaus (1997) who developed a general theory based on an exact
definition of locally stationary processes in terms of their spectral representation
Xt = ∫

eitλA(e−iλ;ut,n) dMε(λ) where Mε is the spectral measure of white noise,
ut,n = t/n and A depends (smoothly) on rescaled time ut,n. More exactly, we have
a sequence of processes

Xt,n =
∫ π

−π

eitλA0
t,n

(
e−iλ; θ(ut,n)

)
dMε(λ) (7.214)

with transfer functions A0
t,n(e

−iλ; θ) such that

sup
λ∈[−π,π],t=1,2,...,n

∣∣A0
t,n

(
e−iλ; θ(ut,n)

)− A
(
e−iλ; θ(ut,n)

)∣∣≤ Cn−1 (7.215)

for all n, some constant C and a certain transfer function A(e−iλ; θ). This definition
allows for changes in the linear dependence structure. As an alternative definition
that also includes the possibility of changes in the spectral measure dMε(·), Ghosh
et al. (1997) and Ghosh and Draghicescu (2002a, 2002b) propose using the con-
cept of subordination, defining Xt,n = G(ζt ;un) where ζt is a stationary process
and G(·;u) is a smooth function of u. In the following, we discuss inference for
processes that are locally stationary in the sense of definition (7.214).

In the context of long-memory processes, changes in the long-memory parame-
ter d are of particular interest. Numerous data examples are reported in the litera-
ture where d may be changing in time (see, e.g. Vesilo and Chan 1996; Whitcher
and Jensen 2000; Whitcher et al. 2000, 2002; Lavielle and Ludena 2000; Ray
and Tsay 2002; Granger and Hyung 2004; Falconer and Fernandez 2007). This
motivated Whitcher and Jensen (2000) to consider locally stationary fractional
ARIMA (FARIMA) processes. Optimal fitting of parameters in locally stationary
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Fig. 7.15 (a) Central England temperature series with fitted linear and nonparametric trend func-
tion respectively; (b) local maximum likelihood estimates of d for detrended series, based on mov-
ing blocks of 176 years and a fractional ARIMA(0, d,0) model

long-memory processes is discussed in Beran (2009). An example is plotted in
Figs. 7.15(a)–(b). After subtracting the nonparametric trend (see the nonlinear line
in Fig. 7.15(a)), estimated values of d based on moving (overlapping) blocks of 175
years are plotted against the year in the middle of each block. The plot indicates that
long memory is stronger for the initial measurements and then declines to a lower
level.

7.8.2 Optimal Estimation for Locally Stationary Processes

In the following, we consider a locally stationary long-memory model of the fol-
lowing form. Define a sequence of processes Xt,n with a time-varying infinite au-
toregressive representation given by

Xt,n =
∞∑

j=1

bj,nXt−j,n + εt (7.216)

where εt are i.i.d. zero-mean random variables with finite variance σ 2
ε = σ 2

ε (un)

(un = t/n) and coefficients bj,n = bj (θ(un)). For fixed u, it is assumed that d(u) ∈
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(0, 1
2 ) and the coefficients are such that

bj

(
θ(u)

) ∼
j→∞ cb(u)j−d(u)−1 < ∞ (7.217)

σ 2
ε (u)

2π

∣∣∣∣∣1 −
∞∑

j=1

bj e
−ijλ

∣∣∣∣∣

−2

∼|λ|→0
cf (u)|λ|−2d(u) (7.218)

where cb , cf are positive constants. Specifically, we may consider a locally station-
ary fractional ARIMA(p,d, q) process. Then cf (u) = σ 2

ε (u)/(2π) and for z ∈ C,
with |z| ≤ 1 and z �= 1,

1 −
∞∑

j=1

bj

(
θ(u)

)
zj = ϕ(z;u)ψ−1(z;u)(1 − z)d(u) (7.219)

where θ(u) = [d(u),ϕ1(u), . . . , ϕp(u),ψ1(u), . . . ,ψq(u)]T ,

ϕ(z;u) = 1 − ϕ1(u)z − · · · − ϕp(u)zp �= 0
(|z| ≤ 1

)
, (7.220)

ψ(z;u) = 1 + ψ1(u)z + · · · + ψq(u)zq �= 0
(|z| ≤ 1

)
. (7.221)

Separating σε from the other parameters in the spectral representation, we can write

Xt,n = σε(ut,n)

∫ π

−π

eitλA0
t,n

(
e−iλ; θ(ut,n)

)
dMε(λ) (7.222)

with

A0
t,n

(
z; θ(u)

)= ψ(z;u)

ϕ(z;u)
(1 − z)−d(u). (7.223)

Let θ0(u) denote the true parameter function, and Xt,n a locally stationary
FARIMA process. In general, the shape of θ0(·) is unknown. Under smooth-
ness conditions, estimation of θ0(·) can be done in a similar manner as regression
smoothing. Suppose we would like to estimate θ0 at a fixed rescaled time point
u0 ∈ (0,1). A natural approach is to apply quasi-maximum likelihood estimation
based on time points in a small neighbourhood of u0. Using the Gaussian likelihood,
this is essentially equivalent to local minimization of the sum of squared residu-
als estimated from (7.216). Thus, let t0(n) = [nu0], ut0,n = t0(n)/n. Given a kernel
function K ≥ 0 with K(−x) = K(x), K(x) = 0 (|x| > 1) and

∫
K(x)dx = 1, a ker-

nel estimate of θ0(u0) minimizes

Ln(θ) =
t0+[nb]∑

t=t0−[nb]
K

(
t0(n) − t

nb

)
e2
t (θ) (7.224)
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or solves the equation

L̇n(θ̂ ) =
t0+[nb]∑

t=t0−[nb]
K

(
t0(n) − t

nb

)
ε∗
t (θ̂ )ε̇∗

t (θ̂ ) = 0 (7.225)

where

ε∗
t (θ) = Xt −

t−1∑

j=1

bj (θ)Xt−j , ε̇∗
t (θ) = ∂

∂θ
ε∗
t (θ) = −

t−1∑

j=1

ḃj (θ)Xt−j (7.226)

are approximations of

εt (θ) = Xt −
∞∑

j=1

bj (θ)Xt−j (7.227)

and

ε̇t (θ) = −
∞∑

j=1

ḃj (θ)Xt−j , (7.228)

respectively, and ḃj = ∂/∂θbj ∈ R
p+q+1. The asymptotic distribution of θ̂ (u0) was

derived in Beran (2009) in an analogous manner as for stationary processes. The
same result was later also shown to hold for the local Whittle estimator (Palma and
Olea 2010).

Theorem 7.40 Let Xt,n be a locally stationary FARIMA process defined by (7.222)
and (7.223) and let u0 ∈ (0,1). Moreover, assume that, as n tends to infinity, b → 0
and nb3 → ∞. Then, under regularity assumptions and moment conditions (see
Beran 2009), there is a sequence θ̂n such that L̇n(θ̂n) = 0 and θ̂n → θ0(u0) in
probability. Moreover,

√
nb
(
θ̂n − E(θ̂n)

)→d N(0,V ) (7.229)

where

V = J−1(θ0)
∫ 1

−1
K2(x) dx (7.230)

with

J
(
θ0)=

[
1

4π

∫ π

−π

∂

∂θr

logg
(
λ; θ0) ∂

∂θs

logg
(
λ; θ0)dλ

]

r,s=1,...,k

(7.231)

and g(λ; θ(ut,n)) = |A0
t,n(e

−iλ; θ(ut,n))|2.
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Once the estimate of θ0(u0) is given, σ 2
ε (u0) can be estimated by

σ̂ 2
ε (u0) =

t0+[nb]∑

t=t0−[nb]
K

(
t0(n) − t

nb

)(
ε∗
t (θ̂ )

)2
. (7.232)

As in the stationary case, σ̂ 2
ε (u0) is asymptotically independent of θ̂ and the asymp-

totic distribution of θ̂ does not depend on σ 2
ε .

Example 7.36 Let Xt,n be a local fractional ARIMA(0, d,0) process. Then J =
π2/6 for any value of θ0(u0). The asymptotic variance of

√
nb(d̂ − d0(u0)) is

therefore nuisance parameter free. If we use, for instance, the rectangular kernel
K(x) = 1

2 1{|x| ≤ 1}, then
∫

K2(x) dx = 1
2 and

V = 6

π2

1

2
= 3

π2
≈ 0.304. (7.233)

The limit theorem cannot be used directly for inference about θ0 because it refers
to the deviation of θ̂ from its expected value. What we would need instead is a re-
sult for θ̂ − θ0. As always in nonparametric smoothing, an asymptotic formula for
the bias E(θ̂) − θ0 is required. Since the order of the bias is not influenced by the
dependence structure, we have E(θ̂) − θ0 = O(b2). Moreover, in contrast to non-
parametric regression smoothing with long-memory errors, the rate of convergence
of θ̂ − E(θ̂) is the same as under independence. Therefore, the mean squared er-
ror E[‖θ̂ (u0) − θ0(u0)‖2] can be approximated by the sum of a bias term of order
O(b4) and a variance term of order O((nb)−1), and the optimal bandwidth is of the

order O(n− 1
5 ).

More specifically, suppose, for instance, that Xt,n is a locally stationary fractional
ARIMA(0, d,0) process. Then the optimal choice of b can be based on the following
result.

Theorem 7.41 Let d ∈ C2[0,1] and d ′′(u0) �= 0. Then under regularity and moment
assumptions (see Beran 2009), we have, as n → ∞,

1. Bias:

E
[
d̂(u0)

]− d0(u0) = b2 1

2
d ′′(u0)

∫ 1

−1
K(x)x2 dx + o

(
b2); (7.234)

2. Variance:

var
[
d̂(u0)

]= (nb)−1J−1
∫ 1

−1
K2(x) dx + o

(
(nb)−1) (7.235)

= (nb)−1 6

π2

∫ 1

−1
K2(x) dx + o

(
(nb)−1); (7.236)
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3. Mean squared error:

MSE(d̂) = E
[(

d̂ − d0)2]= b4C1 + (nb)−1C2 + o
{
max

(
b4, (nb)−1)} (7.237)

with

C1(u0) =
[

1

2
d ′′(u0)

∫ 1

−1
K(x)x2 dx

]2

(7.238)

and

C2 = J−1
∫ 1

−1
K2(x) dx = 6

π2

∫ 1

−1
K2(x) dx. (7.239)

By minimizing the asymptotic expression (7.237) with respect to b, the asymp-
totically optimal bandwidth is of the form

bopt(u0) = Copt(u0)n
−1/5 (7.240)

with

Copt(u0) =
[

C2

4C1(u0)

]1/5

. (7.241)

The resulting MSE is of the order O(n−4/5). This result is analogous to nonparamet-
ric regression with uncorrelated residuals. The reason is the

√
n-rate of convergence

of θ̂ . The second derivative d ′′ of the estimated d-curve influences the constant Copt.
The stronger the curvature of d(u) at the point u0, the smaller the locally optimal
bandwidth bopt(u0). Similar results are derived in Dahlhaus and Giraitis (1998) for
locally stationary AR(p) processes. For practical purposes, one may prefer using a
global bandwidth that minimizes the asymptotic integrated mean squared error. To
avoid boundary effects, one may use the formula

IMSE = b4
∫ 1−δ

δ

C1(u) du + (nb)−1
∫ 1−δ

δ

C2(u) du (7.242)

where 0 < δ < 1
2 . The constant Copt in (7.240) has to be adjusted accordingly.

If the optimal bandwidth or a bandwidth of the same order is used, then inference
about the curve d0(u) has to take into account that the bias is of the same order as
the standard deviation. This means that a bias correction has to be subtracted before
using the bounds based on the CLT. An easier solution is to used a bandwidth that is
of a slightly smaller order than O(n−1/5). This way one can avoid a bias correction.
Approximate (1 − α/2)-confidence intervals can then be given by

d̂(u0) ± z1−α/2

√
6

π

(∫ 1

−1
K2(x) dx

) 1
2

(nb)−
1
2 .
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In particular, for the rectangular kernel we have
∫

K2 dx = 1
2 , so that the interval

reduces to

d̂(u0) ± z1−α/2

√
3

π
(nb)−

1
2 .

Analogous formulas can be given for FARIMA(p,d, q) processes with p and q

arbitrary. However, in general the optimal bandwidth and the confidence intervals
are no longer parameter free.

7.8.3 Computational Issues

In practice, the involved parameters and hence also Copt and bopt are unknown and
have to be estimated. In the context of nonparametric regression with i.i.d. errors,
various data driven methods for bandwidth choice are known (see, e.g. Gasser et al.
1991; Herrmann et al. 1992). Similar algorithms may be applied here. A possible
solution to this problem is an iterative plug-in algorithm where one obtains initial
parameter estimates using a first bandwidth. This yields new estimates of bopt so that
one can again obtain new parameter estimates and so on. Beran (2009) suggests, for
instance, the following algorithm for locally stationary fractional ARIMA(0, d,0)
processes:

Algorithm 1

• Step 1: Set j = 0 and set bj equal to an initial bandwidth.
• Step 2: Estimate d(·) using the bandwidth bj .
• Step 3: For each uo, fit a local polynomial regression β0(u0) + β1(u0)(u − u0) +

1
2β2(u0)(u − u0)

2 directly to d̂(u) (plotted against u) using a suitable bandwidth
b2.

• Step 4: For each u0, set d̂ ′′(u0) = 2β2(u0), and calculate an estimate of Copt(u0)

(or a global value Copt minimizing the integrated mean squared error).
• Step 5: Set j = j + 1 and bj = Coptn

−1/5. If bj and bj−1 are very similar (ac-
cording to a specified criterion), go to Step 6. Otherwise go to Step 2.

• Step 6: Fit a kernel regression with kernel K and bandwidth bj to d̂(u) directly.

Note that the only purpose of Step 6 is to obtain a somewhat smoother curve,
without changing the order of the mean squared error. This step is, however, not
necessary. The algorithm can easily be generalized to FARIMA(p,d, q) or more
general processes. To do so, one needs to define a suitable mean square error crite-
rion such as E[‖θ̂ − θ‖2] and plug-in θ̂ into the asymptotic expression of the cri-
terion. A more complicated algorithm has to be designed, if one wants to combine
optimal bandwidth selection with data driven choice of the AR- and MA-orders p

and q . A proposal in the context of short-memory AR(p) processes is given in Van
Bellegen and Dahlhaus (2006) under the assumption that p (which is unknown)
remains constant. Note, however, that even in the AR(p) case the assumption that
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p is constant may not be reasonable. In view of the fact that even for stationary
fractional ARIMA(p,d, q) processes choosing p and q in a data adaptive way is
not easy (see, e.g. Sect. 5.5.6), the problem of including unknown orders p and q

(which may also change in time) is far from trivial in the context of locally station-
ary processes. Alternatively, if the interest lies solely in estimating the long-memory
curve d(u), a possibly more elegant solution is to apply a semiparametric method
for estimating d(u) locally. This approach is discussed in Roueff and von Sachs
(2011) where results on local wavelet estimation of d are obtained.

7.9 Estimation and Testing for Change Points, Trends
and Related Alternatives

7.9.1 Introduction

Modelling time series by locally stationary processes is closely related to change
point detection and estimation. The main difference is that in change point analysis
the emphasis is on abrupt changes. Changes can occur in any aspect of the prob-
ability distribution, but most frequently these are the expected value, the marginal
distribution or the correlation structure. Here we consider such questions in the long-
memory context. An additional issue is that sample paths of short-range dependent
processes with change points may be almost indistinguishable from a stationary pro-
cess with long-range dependence (see, e.g. Bhattacharya et al. 1983; Künsch 1986;
Granger and Ding 1996; Teverovsky and Taqqu 1997; Hidalgo and Robinson 1996;
Bai 1998; Krämer and Sibbertsen 2000; Mikosch and Starica 2000, 2004; Diebold
and Inoue 2001; Granger and Hyung 2004; Davidson and Sibbertsen 2005, also see
Sibbertsen 2004 and Banerjee and Urga 2005 and references therein). An important
question is therefore how to distinguish “genuine” long memory from such models.

Change point analysis is a classical field of probability theory and statistics, and
the literature is enormous (for an overview, see, e.g. Basseville and Nikiforov 1993;
Csörgő and Horváth 1998 and references therein), even if we restrict attention to
long-memory processes. In the following, some exemplary change point problems
are discussed in the context of long-memory processes.

We start with change points in the mean. The standard approach is based on
the so-called CUSUM statistics and the asymptotic results follow directly from the
asymptotic behaviour of partial sums discussed in Sect. 4.2. In the long-memory
context, CUSUM tests are discussed in Horváth and Kokoszka (1997).

Changes in the distribution are detected using empirical processes. In a weakly
dependent situation, a sequential empirical process converges to a bivariate Gaus-
sian process, the so-called Kiefer process. In the long-memory set-up the latter pro-
cess has to be replaced by a process that is degenerate in one dimension and a frac-
tional Brownian bridge in the other. Such results follow from Dehling and Taqqu
(1989a, 1989b), see also Sect. 4.8.
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Changes in the spectrum (i.e. in the linear dependence structure) are consid-
ered in Giraitis and Leipus (1992), Beran and Terrin (1994) and Horváth and Shao
(1999), among others. In the last two papers, the dependence parameter before
and after a potential change is estimated using Whittle’s estimator. Hence, the
asymptotic distribution under the “no-change” assumption follows from results for
quadratic forms.

Tests that distinguish between changes in the mean (as null hypothesis) and sta-
tionary long memory. The best available results are obtained in Berkes et al. (2006),
further improvements are suggested in Baek and Pipiras (2011).

Finally, this section is concluded with the question of detecting so-called rapid
change points. This notion refers to smooth but very fast changes in the mean. Re-
sults in the long-memory context and applications to paleoclimatology are discussed
in Menéndez et al. (2010).

7.9.2 Changes in the Mean Under Long Memory

Suppose we would like to test whether a process is stationary against the alternative
that there may be changes in the expected value. If, under the alternative, the mean
function μ(t) = E(Xt) is expected to follow certain regularity conditions such as
differentiability or L2-integrability, then we are back to the question of simultane-
ous modelling of trend functions and dependence structure. We refer to Sects. 7.1,
7.4 and 7.5 for a discussion of this topic. On the other hand, if abrupt changes are
expected, then this leads to questions in the realm of change point detection and esti-
mation. (Another situation that is somewhere between standard nonparametric trend
estimation and change point analysis is the so-called rapid change point detection
discussed in Sect. 7.10.)

Specifically, consider the null hypothesis

H0 : Yt = μ + Xt

where Xt is a zero mean second-order stationary process against the alternative

H1 : Yt = μ + Δ · 1{t > t0 + 1} + Xt (Δ �= 0)

where t0 (1 ≤ t0 < n) is an unknown change point. The best known approach is
based on the CUSUM statistic (originally introduced by Page 1954 in the context of
quality control; also see Barnard 1959) defined by

D1,n = max
1≤i≤n

|Vi |

≈ sup
0<u<1

∣∣Sn(u) − uSn(1)
∣∣
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where we use the notation

Vi = S1,i − i

n
S1,n, Si,j =

j∑

t=i

Yt

and

Sn(u) =
[nu]∑

t=1

Yt .

Note that n−1Vi can also be written as a weighted sum of the difference between
the two sample means before and after i, namely

n−1Vi = i

n

(
1 − i

n

)(
1

i
S1,i − 1

n − i
Si+1,n

)
.

In the classical change point analysis, the process Xt is assumed to be in the area
of attraction of Brownian motion in the sense that Sn(u), properly standardized,
converges in the space of càdlàg functions D[0,1] to a standard Brownian mo-
tion B(u) (u ∈ [0,1]). This result usually applies to second-order stationary short-
memory processes where var(Sn(1)) ∼ cSn. Thus, under H0, we have a functional

limit theorem with Z̃n(u) = (Sn(u) − uSn(1))c
− 1

2
S n− 1

2 converging to a Brownian
bridge B̃(u) = B(u) − uB(1), and hence

c
− 1

2
S n− 1

2 D1,n →
d

sup
u∈[0,1]

∣∣B̃(u)
∣∣.

In view of the limit theorems discussed in Chap. 4, this result can be generalized
quite easily to processes with long memory and antipersistence, respectively. Sup-
pose that Xt is in the domain of attraction of fractional Brownian motion BH (u)

(again in the sense of a functional limit theorem) with self-similarity parameter
H ∈ (0,1). The case of short memory is included here, with H = 1

2 , antipersistence
corresponds to H < 1

2 and long memory to H > 1
2 . Then, under the null hypothesis

formulated above, the process

Z̃n(u) ≈ L
− 1

2
S (n)n−H

(
Sn(u) − uSn(1)

)

(with LS a slowly varying function as defined in Sect. 4.2.2) converges to a frac-
tional Brownian bridge B̃H (u) = BH (u) − uBH (1). For the standardized statistic,
we then have

T = L
− 1

2
S (n)n−H D1,n →

d
sup

u∈[0,1]
∣∣B̃H (u)

∣∣.

In contrast, under the alternative H1 with a change point in μ(t) = E(Yt ), the ex-
pected value of Sn(u) − uSn(1) is of the order n � nH so that T →p ∞ (for fur-
ther results and detailed regularity assumptions, see, e.g. Csörgő and Horváth 1998;
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Berkes et al. 2006). Note that an analogous result can be obtained in principle for
processes in the domain of attraction of a Hermite process of any order.

The standardization L
− 1

2
S (n)n−H contains the unknown self-similarity parameter

H and the slowly varying function LS . Both have to be estimated from the observed
data. For most practical purposes, it is sufficient to assume that LS converges to
a constant cS > 0 so that var(Sn(1)) ∼ cS · n2H (n → ∞). In view of Sect. 1.3.1,
a natural way of rewriting the standardization is

L
1
2
S (n)nH =

√
ν(d)cfX

nd+ 1
2 =

√
ν(d)fX

(
n−1

)
n

1
2

with d = H − 1
2 ,

ν(d) = 2 sinπd

d(2d + 1)
(d �= 0),

ν(0) = 2π

and cfX
such that fX(λ) ∼ cfX

|λ|−2d (λ → 0). In the classical change point analy-
sis, H is assumed to be equal to 1

2 a priori so that only the constant cf , or equiva-
lently fX(0), needs to be estimated (see, e.g. Csörgő and Horváth 1998 and refer-
ences therein). However, if we calculate T under this assumption but the true value
of H is actually larger than 1

2 , then the asymptotic rejection probability tends to one
even if the null hypothesis is true (for a further discussion along this line, see, e.g.
Horváth and Kokoszka 1997; Wright 1998; Krämer et al. 2002; Sibbertsen 2004;
for extensions to linear regression, see, e.g. Krämer and Sibbertsen 2000). In other
words, assuming independence or short-range dependence ultimately leads to the
erroneous conclusion that the mean is not constant. The formal reason is that the
standardization by n

1
2 is too small by a factor proportional to nH− 1

2 → ∞ so that
T tends to infinity. The intuitive explanation is that long-range dependent series ex-
hibit local spurious trends and tend to stay on one side of the expected value for a
long time. This often looks as if the mean were changing occasionally.

If we are not assuming H = 1
2 a priori, then both parameters, cf and H , need to

be estimated consistently. Given such estimates, we define the statistic

T = n−Ĥ ν̂− 1
2 ĉ

− 1
2

fX
D1,n

with Ĥ = d̂ + 1
2 and ν̂ = ν(d̂). The null hypothesis of no change point is rejected at

the level of significance α, if T > q1−α where q1−α is defined by

P
(

sup
u∈[0,1]

∣∣B̃
Ĥ

(u)
∣∣> q1−α

)
= α.

(Note that here the probability is evaluated for a fractional Brownian bridge with Ĥ

being fixed.)
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Fig. 7.16 Simulated sample paths of Yt = Δ · 1{t ≥ 120} + Xt (a) and Xt (b) where Xt is a
FARIMA(0,0.3,0) process and Δ = 1. The values of Vi = S1,i − (i/n)S1,n are plotted against
i in (c) and (d), with 5 %- and 10 %-critical values (horizontal lines) based on the true (c) and
estimated parameters d and cf (d), respectively

Example 7.37 Let Xt be generated by a fractional ARIMA(0, d,0) process with
zero mean i.i.d. innovations εt . Then cf = σ 2

ε /(2π) and we may estimate θ =
(σ 2

ε , d) by one of the (quasi-) maximum likelihood methods discussed in Sect. 5.5.
The test statistic simplifies to

T̃ = n− 1
2 −d̂ ν̂− 1

2
√

2πσ̂−1
ε D1,n.

Example 7.38 Figure 7.16(a) displays simulated sample paths of

Yt = Δ · 1{t ≥ 120} + Xt

(t = 1,2, . . . ,400) with Δ = 1 and 0, respectively, and Xt generated by a fractional
ARIMA(0,0.3,0) process. The shift is hardly visible by eye. Nevertheless, H0 is
rejected at the 5 %-level of significance. The fact that H and cf have to be estimated
does not make much of a difference. This can be seen from Figs. 7.16(c)–(d) where
the values of S1,i − i

n
S1,n are plotted against i, together with critical 10 %- and

5 %-limits (horizontal lines) based on the true parameters (Fig. 7.16(c)) and the
estimated parameters (Fig. 7.16(d)), respectively. The estimated value of H is 0.78.
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Although in this example the estimation of d and cf has almost no influence on
the result, this may not always be the case. In fact, under the alternative, the observed
process is no longer stationary. This may have undesirable effects on the estimates.
Sometimes it may first be necessary to remove an estimated trend function μ̂(t)

before estimating d and cf . This brings us back, however, to the question how to
fit a trend function in the presence of dependent errors (see Sects. 7.1, 7.4 and 7.5).
If a step function with a finite but unknown number of change points is expected
under the alternative, then one may try, for instance, wavelet thresholding with Haar
wavelets (see Sect. 7.5) or nonlinear regression with piecewise constant polynomials
(see Sect. 7.3). Another possibility is to first calculate parameter estimates based on
relatively short disjoint blocks of observations and then take their average. For quasi-
maximum likelihood estimation, this can be done without any loss of asymptotic
efficiency (Beran and Terrin 1996). This approach is illustrated in the following
example.

Example 7.39 Figure 7.17(a) displays a sample path of Yt = μ(t)+Xt where Xt is a
FARIMA(0,0.1,0) process and μ(t) has multiple change points with values switch-
ing between 0 and 1 as displayed in Fig. 7.17(b). The values of Vi = S1,i −(i/n)S1,n

are plotted in Figs. 7.17(c)–(d). In Fig. 7.17(c), the horizontal lines correspond to
10 %- and 5 %-critical values when using d̂ and ĉf estimated (by QMLE) from
the complete series Yt (t = 1,2, . . . , n) directly, whereas in Fig. 7.17(d), the crit-
ical boundaries are based on averages of estimates d̂j and ĉf,j (j = 1,2, . . . ,10)
obtained from disjoint blocks Yt+(j−1)100, . . . , Yj100 of length 100. In the first case,
d0 = 0.1 is overestimated by the amount of d̂ − d0 = 0.13 whereas in the second
case overestimation is less severe with d̂ − d0 = 0.06. This leads to clear rejection
of H0 at the 5 %-level in the second case; however, no rejection in the first case.

The test statistics above do not take into account that the variance function of
B̃H (u) is not constant. More specifically, we have

var
(
B̃H (u)

)= E
[
B2

H (u)
]+ u2E

[
B2

H (1)
]− 2uE

[
BH (u)BH (1)

]

= u(1 − u)
[
u2H−1 − 1 + (1 − u)2H−1]

=: wH (u).

Since wH is zero at both ends and achieves its maximum in the middle (see
Fig. 7.18), the test based on T or T̃ may have little power when change points oc-
cur near the two ends. One therefore sometimes prefers to standardize by

√
wH (u)

before taking the supremum. This means that one defines a test based on D∗
1,n =

max |Vi |/
√

w( i
n
). The asymptotic distribution of D∗

1,n is, however, more difficult to
derive.

The statistics w− 1
2 Vi (i = 2, . . . , n − 1) are also often used for estimating the

change point t0 itself, namely by choosing t̂0 = i such that |w− 1
2 Vi | is minimal.

For i.i.d. data, the asymptotic distribution of t̂0 has been derived by Antoch et al.
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Fig. 7.17 Figure (a) shows a sample path of Yt = μ(t) + Xt where Xt is a FARIMA(0,0.1,0)
process and μ(t) has multiple change points with values switching between 0 and 1 as displayed
in (b). The values of Vi = S1,i − (i/n)S1,n are plotted in (c) and (d). The horizontal lines corre-
spond to 10 %- and 5 %-critical values using estimates of d and cf . In (c), the estimates were based
on Yt (t = 1,2, . . . , n), whereas in (d) these are averages of estimates d̂j and ĉf,j (j = 1,2, . . . ,10)
obtained from disjoint blocks Y1+(j−1)100, . . . , Yj100 of length 100

(1995) (also see Hinkley 1970; Yao 1987 for earlier results). Similar results in the
context of short-range dependence can be found, for instance, in Bagshaw and John-
son (1975), Davis et al. (1995), Horváth (1993), Johnson and Bagshaw (1974) and
Tang and MacNeill (1993). Horváth and Kokoszka (1997) derive limit theorems for
t̂0 under more general dependence assumptions in the domain of attraction of frac-
tional Brownian motion with H ∈ (0,1), and also consider a more general class of
estimators.

Change point estimation in the mean can be extended to the problem of structural
breaks in regression models. Results along this line in the long-memory context can
be found, for instance, in Wright (1998), Krämer and Sibbertsen (2003), Sibbertsen
(2004), Lazarova (2005), Gil-Alana (2008). Also see Ben Hariz and Wylie (2005)
and Ben Hariz et al. (2007) for general results. Change point estimation in the long-
memory context based on the Wilcoxon two-sample test is considered in Dehling
et al. (2013), rank tests are developed in Wang (2008).
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Fig. 7.18 Standard deviation
of a fractional Brownian
bridge B̃H (u)

7.9.3 Changes in the Marginal Distribution

Instead of testing for changes in the mean, one may more generally test whether
any changes in the marginal distribution occur. If we do not want to specify which
features of the distribution may change, then we are led to nonparametric testing
based on the empirical distribution function. This problem has been addressed, for
instance, in Giraitis et al. (1996b) by studying a test based on the Kolmogorov–
Smirnov statistic. In the i.i.d. and short memory context, such tests have been studied
extensively (see, e.g. Picard 1985; Carlstein 1988; Leipus 1988; Dümbgen 1991;
Ferger and Stute 1992; Carlstein and Lele 1993; Ferger 1994; also see Csörgő and
Horváth 1988, 1998; Brodsky and Darkhovsky 1993 and references therein).

The essential probabilistic result one needs is the asymptotic distribution of the
empirical process. More specifically, suppose we observe Y1, . . . , Yn generated by a
stationary process with marginal distribution F(y) = P(Y ≤ y). A natural statistic
for testing for changes in the marginal distribution function can be constructed by
comparing an estimated cumulative distribution of Y1, . . . , Yi with the correspond-
ing estimate for Yi+1, . . . , Yn. Let

Fi,j (y) = 1

(j − i + 1)

j∑

t=i

1{Yt ≤ y}

where j ≥ i, and

F1,[nu](y) = F[nu](y)

with u ∈ [0,1] and [nu] denoting the largest integer not exceeding nu. Then we
consider weighted differences

Vi(y) = i

n

(
1 − i

n

)[
F1,i (y) − Fi+1,n(y)

]
(i = 1, . . . , n − 1).
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Let u ∈ (0,1) and i = [nu]. Then we can rewrite Vi(y) as

Vi(y) = V[nu](y)

= [nu]
n

(
1 − [nu]

n

)[
F1,[nu](y) − F[nu]+1,n(y)

]

=
(

1 − [nu]
n

){ [nu]
n

F[nu](y)

}
− [nu]

n

{
Fn(y) − [nu]

n
F[nu](y)

}

= F[nu](y) − [nu]
n

Fn(y).

This is analogous to the quantities used for the CUSUM statistic in the previous sec-
tion. The only difference is that instead of the observations themselves we average
the 0–1-variables 1{Yt ≤ y}. The CUSUM statistic is then of the form

D1,n = sup
1≤i≤n−1

y∈R

∣∣Vi(y)
∣∣

= sup
n−1≤u≤1−n−1

y∈R

∣∣∣∣
[nu]
n

(
1 − [nu]

n

)[
F1,[nu](y) − F[nu]+1,n(y)

]∣∣∣∣

= sup
u,y

∣∣∣∣F[nu](y) − [nu]
n

Fn(y)

∣∣∣∣

(see, e.g. Picard 1985). The asymptotic distribution of D1,n follows easily, once we
have a suitable functional limit theorem for the difference F[nu](y) − F(y), under-
stood as a stochastic process in (u, y) ∈ [0,1] × [−∞,∞].

Suppose that there is a suitable sequence of numbers vn → 0 such that

v
− 1

2
n

[
F[nu](y) − F(y)

]

converges (weakly in a suitable manner) to a process W(u,y). Then we define the
test statistic

T = v
− 1

2
n D1,n.

Under the null hypothesis that the marginal distribution remains the same, we have

T = sup
u,y

∣∣∣∣v
− 1

2
n

{
F[nu](y) − [nu]

n
Fn(y)

}∣∣∣∣

=
d

sup
(u,y)∈[0,1]×R

∣∣W(u,y) − uW(1, y)
∣∣+ op(1).
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Thus, a rejection region at a level of significance α can be defined by Kα =
{T > q1−α} where q1−α are (1 − α)-quantiles defined by

P
(

sup
(u,y)∈[0,1]×R

∣∣W(u,y) − uW(1, y)
∣∣> q1−α

)
= α.

For i.i.d. observations, it is well known that the asymptotic limit of

Wn(u,y) = n
1
2
[
F[nu](y) − F(y)

]

is a Kiefer process W(u,y) where convergence is in the space D([0,1] ×
[−∞,∞]). Recall that a Kiefer process is a Gaussian process (in (u, y)) with zero
mean and covariance function

cov
(
W(u1, y1),W(u2, y2)

)= min{u1, u2} · [F (min(y1, y2)
)− F(y1)F (y2)

]

(see, e.g. Shorack and Wellner 1986 and references therein). This result can be gen-
eralized to standard short-memory conditions to obtain a Gaussian limiting process
with covariance function

cov
(
W(u1, y1),W(u2, y2)

)= min{u1, u2} · σ(y1, y2)

where

σ(y1, y2) =
∞∑

t=−∞

[
P(Y0 ≤ y1, Yt ≤ y2) − P(Y0 ≤ y1)P (Yt ≤ y2)

]

(see, e.g. Berkes and Philipp 1977). In contrast, under long memory the rate of con-
vergence is slower and one obtains a degenerate limiting process (see Sect. 4.8).
For instance, let Yt = G(Zt) where Zt is a zero mean Gaussian process with vari-
ance one, slowly decaying autocovariances γZ(k) ∼ Lγ (k)|k|2d−1 and assume that
1{G(Zt) ≤ y} has Hermite rank m = 1. Then Dehling and Taqqu (1989b) showed
that

Wn,H (u, y) = L
− 1

2
S (n)n1−H

[
F[nu](y) − F(y)

]

(with H = d + 1
2 and LS(n) = Lγ (n)(d(2d + 1))−1, see Sect. 4.2.2) converges in

D([0,1] × [−∞,∞]) equipped with the sup-norm to a constant (depending on y)
times a fractional Brownian motion BH , or more specifically,

W(u,y) = WH (u,y) = J1(y)BH (u)

where J1(y) = E[1{G(Z) ≤ y}Z]. An analogous result holds for higher Hermite
ranks with BH replaced by the corresponding Hermite process of order m. This
result is remarkable because along the y-axis, no stochasticity is involved. Once u

is fixed and the random variable BH (u) is generated, the process evolves in y only
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via multiplication by the deterministic function J1(y). The asymptotic distribution
of D1,n is therefore much simpler than under short memory. Defining

T = L
− 1

2
S (n)n−H D1,n,

we obtain

T =
d

ζ + op(1)

with

ζ = sup
y∈R

∣∣J1(y)
∣∣ · sup

u∈[0,1]

∣∣BH (u) − uBH (1)
∣∣

= sup
y∈R

∣∣J1(y)
∣∣ · sup

u∈[0,1]

∣∣B̃H (u)
∣∣.

The first factor is a deterministic constant that only depends on the transforma-
tion G. The second term is the usual supremum of a fractional Brownian bridge.
Now we can calculate critical values for testing the null hypothesis that we observe
a stationary process Yt = G(Zt) with a certain (unknown) marginal distribution F

against the alternative

H1 : Yt = Xt,1 (1 ≤ t ≤ t0), Yt = Xt,2 (t0 < t ≤ n)

where Xt,1, Xt,2 are two stationary processes with marginal distributions F1 �= F2
and t0 is an unknown change point. A rejection region at level of significance α can
be defined by

T > sup
y∈R

∣∣J1(y)
∣∣ · q1−α,

or equivalently,

D1,n > L
1
2
S (n)nH · sup

y∈R

∣∣J1(y)
∣∣ · q1−α

where q1−α is defined by

P
(

sup
u∈[0,1]

∣∣B̃(u)
∣∣> q1−α

)
= α.

Example 7.40 Let Yt be a Gaussian FARIMA(0, d,0) process with var(εt ) = 1.
Then Yt = σY Zt with σ 2

Y = var(Yt ) = Γ (1 − 2d)/Γ 2(1 − d) and

J1(y) = E
[
1{σY Z ≤ y}Z]=

∫ σ−1
Y y

−∞
z

1√
2π

e− 1
2 z2

dz = − 1√
2π

e− 1
2 σ−2

Y y2
.

The supremum of |J1(y)| is 1/
√

2π . Moreover,

Lγ (n) = Γ (1 − 2d)/
[
Γ (d)Γ (1 − d)

]
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so that

LS(n) = Lγ (n)
(
d(2d + 1)

)−1 = Γ (1 − 2d)

Γ (1 + d)Γ (1 − d)(2d + 1)
.

A critical region at level α is therefore given by

{
T >

1√
2π

· q1−α

}
=
{
D1,n > nH ·

√
Γ (1 − 2d)

2πΓ (1 + d)Γ (1 − d)(2d + 1)
· q1−α

}

where H = d + 1
2 .

7.9.4 Changes in the Linear Dependence Structure

Often the dependence structure in an observed time series is not constant. Slow
changes can be captured by locally stationary processes. This has been discussed
in Sect. 7.8. On the other hand, there are situations where the dependence structure
changes suddenly. Such situations are in the realm of change point analysis. The null
hypothesis we are testing is that the observed process Yt is stationary with a fixed
spectral distribution FY . The alternative is that there is a change point t0 such that
Yt has the spectral distributions F1 and F2 for t ≤ t0 and t > t0, respectively, with
F1 �= F2. Note that here F denotes the spectral distribution, and not the marginal
distribution.

A simple way of testing for change points in the correlation structure is con-
sidered in Beran and Terrin (1994). Suppose we have a parametric model with
θ = (σ 2

ε , d, . . . )T = (σ 2
ε , η)T where the central limit theorem holds for quasi-

maximum likelihood estimates as discussed in Sect. 5.5. For instance, we may as-
sume a FARIMA(p,d, q) process with spectral density

f (λ; θ) = σ 2
ε

∣∣1 − exp(−iλ)
∣∣−2d

∣∣∣∣
ψ(e−iλ)

φ(e−iλ)

∣∣∣∣
2

.

First, we divide the time axis into m blocks I1 = {1,2, . . . , n1}, I2 = {n1 +
1, . . . , n1 + n2}, . . . such that

∑
nj = n and nj/n → pj ∈ (0,1). For each block

of observations Yt (t ∈ Ij ) a quasi-MLE η̂j is computed. Similar arguments as in
Sect. 5.5 (Beran and Terrin 1994) show that, as n → ∞, Zj,n = √

nj (η̂j − η) (j =
1,2, . . . ,m) are asymptotically independent of each other, with limiting N(0,Σj )-
distribution where Σj = 4πV −1 and

V =
{∫

∂

∂η
logf (λ; θ)

[
∂

∂η
logf (λ; θ)

]T

dλ

}−1

.

This can be used for testing whether the parameter η remains constant over time.
For simplicity suppose that we are only interested in changes of the long-memory
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parameter d . Then the null hypothesis is that Yt is stationary, which means in par-
ticular that d is constant. Denoting by dj the long-memory parameter in block
Ij (j = 1,2, . . . ,m), the null hypothesis implies d1 = · · · = dm = d . The alterna-
tive is specified by the existence of at least one pair j1, j2 ∈ {1,2, . . . ,m} such
that dj1 �= dj2 . Suppose for simplicity that n1 = · · · = nm = nm−1 and denote by
vm,n = 4π[V −1]11mn−1 the approximate variance of each d̂j . Using the notation
d̄ = m−1∑ d̂j , a simple test statistic of H0 can be based on

χ2 = v−1
m,n

m∑

j=1

(d̂j − d̄)2

= 1

4π[V −1]11

n

m

m∑

j=1

(d̂j − d̄)2.

Under H0, the statistic is approximately χ2
m−1-distributed. In contrast, under the

alternative,
∑

(d̂j − d̄)2 converges in probability to
∑m

j=1(dj − d)2 > 0 where

d = m−1∑dj so that χ2 diverges to infinity.

Example 7.41 Let Yt be a FARIMA(0, d,0) process. Then 4π[V −1]11 = 6/π2. The
null hypothesis is rejected at the level of significance α, if

π2

6

n

m

m∑

j=1

(d̂j − d̄)2 > χ2
m−1;1−α

with χ2
m−1;1−α

denoting the (1 − α)-quantile of a χ2
m−1-distribution. We apply

this test to the detrended central England temperatures displayed in Fig. 7.19(b).
The sample size is n = 352. Using m = 4 blocks of length nj = 88, and
a FARIMA(0, d,0) fit for each block, the maximum likelihood estimates d̂j

(j = 1,2,3,4) are equal to 0.30, 0.07, 0.02 and 0.29, respectively. The value
of the χ2-statistic is about 9.15 which corresponds to a p-value (based on a
χ2

3 -distribution) of 0.027. Thus, there is quite strong evidence for a change in d .
This confirms the visual impression of the log–log-periodogram plots for the four
blocks in Figs. 7.19(c)–(f), and also the impression obtained by fitting a locally sta-
tionary FARIMA(0, d,0) process in Sect. 7.8. (Note also that the FARIMA(0, d,0)
model does indeed fit the data reasonably well, locally.)

In situations where the location of change points is unknown, one would prefer
a method where one does not have to divide the time axis into blocks by hand. As-
sume again a parametric model with spectral density f (λ; θ) and a p-dimensional
parameter θ = (σ 2

ε , d, . . . )T = (σ 2
ε , η)T . Suppose for simplicity of presentation that

we are only interested in changes in the long-memory parameter d . A CUSUM type
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Fig. 7.19 Yearly Central England temperatures 1659–2010 (a) and the detrended series (b) af-
ter subtracting a nonparametric trend function. Also displayed are log–log-periodograms and
FARIMA(0, d,0) spectral densities fitted to four disjoint blocks of length nj = 88

statistic can be defined by

D1,n = max
nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣

with d̂1,i = [η̂1,i]1, d̂i+1,n = [η̂i+1,n]1 where η̂1,i and η̂i+1,n are estimates of η =
(d, . . . )T based on X1,X2, . . . ,Xi and Xi+1, . . . ,Xn, respectively. Note that, in
contrast to the sample mean, the estimates require a certain minimal size of the
sample. Therefore, in practice nlow has to be chosen larger than 1, and nup smaller
than n.

Suppose now that under the null hypothesis H0 the observed time series Yt

(t = 1, . . . , n) is generated by a stationary process in the parametric class with
θ = θ0. The alternative H1 we would like to test against is that there is a change
point 1 < t0 < n such that the long-memory parameter is d = d1 for t ≤ t0 and
d = d2 �= d1 for t > t0. To estimate θ0 we use one of the approximate quasi-
maximum likelihood estimators derived from the normal likelihood. Recall that un-
der H0, the central limit theorem holds for θ̂ with a

√
n-rate of convergence, and

the scale estimator is asymptotically independent of η̂. The proof of this result relies
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either on a central limit theorem for quadratic forms or on an approximation by mar-
tingale differences (see Sect. 5.5). For instance, if we use the second approach, then
η̂ is defined by minimizing

∑
e2
t (η) where et (η) =∑t−1

j=0 bj (η)Yt−j is an approxi-
mation of εt obtained from the autoregressive representation εt =∑∞

j=0 bj (η)Yt−j ,

and θ̂1 = σ̂ 2
ε is set equal to n−1∑ e2

t (η̂). Then, based on n observations, we have
the approximation

η̂ − η0 = n−1Sn + op

(
n−1)

where

Sn = (
S1

n, . . . , Sp−1)T = M−1
n∑

t=2

ε̇t

(
η0)εt

(
η0),

M = E(ε̇t ε̇
T
t ) and ε̇t = ∂/∂ηεt (η) |η=η0=∑

ḃj Yt−j . Using the notation

ζt = (
ζ 1
t , . . . , ζ

p−1
t

)T = M−1ε̇t

(
η0)εt

(
η0)

and

ζ
j
t =

p−1∑

l=1

m̃jl

{
∂

∂ηl

εt

(
η0)εt

(
η0)
}

with M−1 = [m̃jl]j,l=1,...,p−1, we can write Sn =∑n
t=2 ζt . Since we are only inter-

ested in d , the only relevant component of Sn is

S1
n =

n∑

t=2

ζ 1
t .

This means that asymptotically d̂ − d0 can be approximated by a sample mean, and
D1,n can be written in the form of a usual CUSUM statistic with sample means.
Furthermore, since ε̇t (η

0)εt (η
0) is a martingale difference, we have, under suitable

moment conditions, a functional limit theorem

n− 1
2 S1

n(u) = n− 1
2

[nu]∑

t=2

ζ 1
t → const · B(u)

where convergence is in D[0,1] and B(u) (u ∈ [0,1]) is a standard Brownian mo-
tion. Assuming that nlow/n → 0 and nup/n → 1, we may therefore write

√
nD1,n = √

n max
nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣

= √
n max

nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)(
i−1S1

i − (n − i)−1(S1
n − S1

i

))∣∣∣∣+ op(1)
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= max
nlow≤i≤nup

∣∣∣∣n
− 1

2

(
S1

i − i

n
S1

n

)∣∣∣∣+ op(1)

= const · sup
0≤u≤1

∣∣B̃(u)
∣∣+ op(1)

with B̃ denoting a standard Brownian bridge. Analogous arguments can be carried
out using a quasi-MLE based on quadratic forms. The derivation given here is, of
course, purely heuristic, an exact proof is more difficult. For the approach based
on quadratic forms, a complete proof can be found in Horváth and Shao (1999).
Specifically, the following result is derived.

Theorem 7.42 Consider a parametric family Yt = ∑∞
j=−∞ aj (η)εt−j of second-

order stationary linear processes with θ = (σ 2
ε , ηT )T = (σ 2

ε , d, . . . )T ∈ Θ ⊆ R+ ×
(0, 1

2 ) × R
p−2. Suppose that we observe Y1, . . . , Yn with the true parameter θ0 in

the interior of Θ0. Let d̂1,i and d̂i+1,n be the first components of η̂1,i and η̂i,n re-
spectively obtained by Whittle estimation. Assume furthermore that the conditions
in the central limit theorem for Whittle estimators given in Giraitis and Surgailis
(1990) hold, and also E(ε4+r

t ) < ∞ for some r > 0. Denote by Ση = 4πV −1 the
asymptotic covariance matrix of η̂ with

V =
∫

∂/∂η logf [∂/∂η logf ]T dλ

and by vd = [Ση]11 the asymptotic variance of d̂ . Then

n
1
2 u(1 − u)(d̂1,i − d̂i+1,n) → √

vdB̃(u)

where B̃(u) is a standard Brownian bridge.

The theorem implies that under the null hypothesis

T = √
nD1,n = √

nv
− 1

2
d max

nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣→d sup
u∈[0,1]

∣∣B̃(u)
∣∣.

Thus, we reject H0 at the level of significance α, if T > q1−α where q1−α is the
(1 − α)-quantile of supu∈[0,1] |B̃(u)|.

Example 7.42 Let Yt be a FARIMA(0, d,0) process. Then vd = 6/π2 so that an
approximate rejection region at level α is given by

T = √
n

π√
6

max
nlow≤i≤nup

∣∣∣∣
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣> q1−α.

We apply this method to the detrended central England temperature series con-
sidered before. The practical difficulty one encounters is that it is not clear how



716 7 Statistical Inference for Nonstationary Processes

to choose nlow and nup. Although the results in Horváth and Shao suggest that
asymptotically one may choose nlow = 1 and nup = n, this is not really true be-
cause the calculation of the MLE based on one (or a very small number of) obser-
vation is not meaningful; in fact, for very small samples, numerical optimization
often fails to find a solution in the interior of the parameter space. Here, we chose
nlow = 100 and nup = n− 100 = 252. This means, however, that u = n/nlow ≈ 0.28
and u = nup/n ≈ 0.72 are far from the left and right border of the interval [0,1]. In-
stead of using quantiles of the supremum of |B̃(u)| over the whole range of u ∈ [0,1]
we therefore calculated quantiles of supu∈[0.28,0.72] |B̃(u)|. The critical 5 %-level
value is about 1.34. The observed value of T is 0.99 so that, in contrast to the sim-
ple χ2-test calculated previously, H0 is not rejected.

The failure to reject in this example may be due to the (conjectured) possibility
that the potential change points are near the two borders of the observational period
(recall that the estimates of d calculated for the four blocks were 0.30, 0.07, 0.02
and 0.29). The test based on T has little power when changes occur near the borders
because the variance of B̃(u) is equal to u(1 − u) and thus approaches zero at the
two ends. One may increase the power by changing the standardization by the factor

[u(1 − u)]− 1
2 and hence using the statistic

T̃ = √
nD̃1,n = √

nv
− 1

2
d max

nlow≤i≤nup

∣∣∣∣

√
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣.

The derivation of the asymptotic distribution of T̃ is more involved, however, be-
cause convergence in D[0,1] no longer holds. The statistic T̃ was suggested in
Beran and Terrin (1996), its asymptotic distribution was derived by Horváth and
Shao (1999). Under additional regularity conditions, Horváth and Shao obtain the
asymptotic expression

lim
n→∞P

{√
2 logn

√
nv

− 1
2

d max
1≤i<n

∣∣∣∣

√
i

n

(
1 − i

n

)
(d̂1,i − d̂i+1,n)

∣∣∣∣≤ c(x)

}

= exp
(−2e−x

)

where

c(x) = x + 2 logx + 1

2
log logx − 1

2
logπ.

Thus, given a level of significance α, we first need to determine xα such that
exp(−2e−xα ) = 1 − α. We reject H0 at the level of significance α, if

T̃ >
c(xα)√
2 logn

,
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Fig. 7.20 Plot of
| i
n
(1 − i

n
)(d̂1,i − d̂i+1,n)| and

|
√

i
n
(1 − i

n
)(d̂1,i − d̂i+1,n)|

against i = 100, . . . ,252 for
detrended yearly Central
England temperatures. The
horizontal line corresponds to
the 5 %-critical value for the
second statistic. The
corresponding critical value
for the first statistic is outside
the plotted range

where

xα = − log log
1√

1 − α
.

For instance, for α = 0.05 we have xα = 3.66 and c(xα) = 5.82.

Example 7.43 We apply the test based on T̃ to the detrended Central England
series, using a FARIMA(0, d,0) model. For α = 0.01 and 0.05 we have c(xα)/√

2 logn = 2.43 and 1.70, respectively. The value of T̃ turns out to be 2.13. Thus,
in contrast to the test based on T , we can reject H0 at α = 0.05. Figure 7.20 shows
a comparison between |i/n(1 − i/n)(d̂1,i − d̂i+1,n)| and |√i/n(1 − i/n)(d̂1,i −
d̂i+1,n)|. Due to the new standardization, the second statistic is indeed much larger
near the left border.

7.9.5 Changes in the Mean vs. Long-Range Dependence

One of the controversial issues in the applied literature is whether long-memory
phenomena may not be caused by changes in parameters of a short-memory pro-
cess rather than stationary long-range dependence (see, e.g. Klemes 1974; Boes and
Salas 1978; Roughan and Veitch 1999; Veres and Boda 2000; Karagiannis et al.
2004; Diebold and Inoue 2001; Granger and Hyung 2004; Mikosch and Starica
2004; Charfeddine and Guegan 2009; Mills 2007). One way to answer this is the
pragmatic view that in situations where the data were actually generated by a more
complex short-memory mechanism, stationary processes with long-range depen-
dence often provide a convenient parsimonious model (by including just one addi-
tional parameter d or H ). Nevertheless, one would at least like to be able to dis-
tinguish long memory from certain simple alternatives. Among the most important
competitors are short-memory processes with changes in the expected value. Essen-
tially, we may distinguish two situations: (a) E(Yt ) changes gradually; (b) E(Yt )
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changes abruptly. In the first case, the standard nonparametric approach is to con-
sider a sequence of models Yt,n = m(t/n) + Xt where Xt is a zero mean sta-
tionary process and m : [0,1] → R satisfies certain regularity conditions such as
m ∈ C[0,1] or L2[0,1]. This leads back to the question of estimating a determinis-
tic trend function m and parameters describing the stochastic dependence structure
simultaneously. This topic is discussed in Sects. 7.4 and 7.5. (Note, in particular,
that wavelet thresholding provides a way of distinguishing m from the dependence
structure of Xt even if m is not smooth, which is the case under alternatives in
change point analysis.)

In this section, we turn to scenario (b) where changes in the expected value
are abrupt. The fundamental difficulty of distinguishing between a stationary long-
memory process and a short-memory process with change points can be illustrated
by the following example. Suppose that Xt are i.i.d. with zero mean. We observe
Yt = μ(t) + Xt with μ(t) = μ(t;ω) ∈ {0,1} generated by an ON–OFF process that
is independent of Xt and has long memory. In other words,

μ(t;ω) = W(t) =
∞∑

j=−∞
1{τj−1 ≤ t < τj−1 + Tj,on},

with Tj = τj − τj−1 = Tj,on + Tj,off as defined in Sect. 2.2.3 (there we used the no-
tation Xj,on, Xj,off instead of Tj,on, Tj,off). The distributions of the ON and OFF in-
tervals are such that P(Tj,on > x) ∼ Conx

−αon and P(Tj,off > x) ∼ Coffx
−αoff with

1 < αon < αoff < 2. Then cov(μ(t),μ(t + k)) ∼ const · |k|−(αon−1). This means that
μ(t) and hence also Yt has long-range dependence. On the other hand, conditionally
on μ(t;ω) the observations Yt (t = 1,2, . . . , n) are independent. Figures 7.21(a)–
(f) show simulated sample paths of μ(t;ω), Xt and Yt , respectively, and the cor-
responding empirical correlograms. Here, Tj,on and Tj,off are equal to 10 times
standard Pareto-distributed variables with αon = 1.1 and αoff = 1.2, respectively,
i.e. P(Ti,off > x) = (x/10)−1.1 and P(Ti,off > x) = (x/10)−1.2 (for x ≥ 10). The
correlogram of Xt —which is the same as the conditional correlogram of Yt given
μ(t;ω)—does not show any dependence, whereas in the (unconditional) correlo-
gram of Yt the long memory of μ leaks in. If we observe one sample path of the
process Yt only, then in principle we are not able to tell whether μ(t) has been gen-
erated randomly or if it is deterministic, unless we know or assume a priori that
the class of possible deterministic functions has certain properties that make them
distinguishable asymptotically from typical sample paths of the long-memory ON–
OFF process. If, however, no assumptions are imposed on the function E(Yt ), then
one realization of the process Yt with μ generated by the ON–OFF process can also
be interpreted as a series of independent observations with deterministic shifts in
the expected value. More generally, one can say that the question whether we have
stationarity with long memory or short memory with shifts in the mean function is
ill-posed, unless one specifies a priori some detailed properties of the shifts in E(Yt ).
Such restrictions may be, for example, the maximal number, the frequency, the lo-
cation, the spacing, integrability or the size of shifts.
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Fig. 7.21 Figure (g) shows a simulated sample path of Yt = μ(t/n) + Xt where Xt are i.i.d.
N(0,1)-variables and μ(u) (u ∈ [0,1]) is generated by an ON–OFF-process with long-range de-
pendence. The ON–OFF-process is displayed in (a), the residual process Xt in (d). Also shown are
the corresponding correlograms ((b), (e) and (h)) and log–log-periodograms ((c), (f) and (i))

Once we have decided on what type of change point models we would like to
compare with, an appropriate statistical test can be set up. Depending on the appli-
cation, the assumption of stationarity with long memory can be assigned to the null
hypothesis H0 or to the alternative H1. The former is considered, for instance, in
Ohanissian et al. (2008), Müller and Watson (2008), Qu (2010), Kuswanto (2011),
the latter in Berkes et al. (2006), Jach and Kokoszka (2008) and Baek and Pipiras
(2011).

As an example, we discuss the method proposed by Berkes et al. (2006). The
idea is to start with testing

H0 : Yt = μ + Δ · 1{t > t0 + 1} + Xt (Δ �= 0)

where 1 ≤ t0 < n and Xt is a fourth-order stationary zero mean short-memory pro-
cess with absolutely summable autocovariances γX(k) in the domain of attraction
of a Brownian motion. The alternative is

H1 : Yt = μ + Xt
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where Xt is a fourth-order stationary zero mean long-memory process with auto-
covariances γX(k) ∼ cγ |k|2d−1 (|k| → ∞) for some 0 < d < 1

2 , in the domain of
attraction of a fractional Brownian motion. An additional technical assumption is
that under H0 the fourth-order cumulants

κ(k1, k2, k3) = cum(Xt ,Xt+k1,Xt+k2,Xt+k3)

= E(XtXt+k1Xt+k2Xt+k3)

− (
γX(k1)γX(k2 − k3) + γX(k2)γX(k1 − k3) + γX(k3)γX(k1 − k2)

)

are such that

sup
k1

∞∑

k2,k3=−∞

∣∣κ(k1, k2, k3)
∣∣< ∞.

Under H1, the fourth-order cumulants are assumed to be such that

sup
k1

n∑

k2,k3=−n

∣∣κ(k1, k2, k3)
∣∣= O

(
n2d

)
.

The idea of the test proposed in Berkes et al. (2006) is to use a CUSUM statistic with
a standardization of the order O(

√
n) that leads to a well known limiting distribution

under H0, but to divergence under H1 because there dividing by n
1
2 is not enough.

The distribution of CUSUM statistics is well known under the assumption of no
change in the mean. Under the null hypothesis considered here, we have one change
point. If we knew the change point t0, then we could consider a CUSUM statistic
for Y1, . . . , Yt0 and another CUSUM statistic for Yt0+1, . . . , Yn separately. For each
statistic, the asymptotic distribution could be calculated using the supremum of a
Brownian bridge. A natural approach to testing H0 is therefore to first estimate the
change point t0, and then to consider the two CUSUM statistics for Yt (t ≤ t̂0) and
Yt (t ≥ t̂0 + 1). Estimation of t0 can also be done by means of a CUSUM statistic.
Thus, we define

t̂0 = min
{
i : |Vi | = max

1≤i≤n
|Vi |

}

where

Vi = S1,i − i

n
S1,n.

Given t̂0, we consider

D1,t̂0
= max

1≤i≤t̂0

∣∣∣∣S1,i − i

t̂0
S1,t̂0

∣∣∣∣

and

Dt̂0+1,n = max
t̂0+1≤i≤n

∣∣∣∣St̂0+1,i − i − t̂0

n − t̂0
St̂0+1,n

∣∣∣∣.
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Note that in both cases, the location parameter is removed automatically. The es-
sential part is therefore the standardization of D1,t̂0

and Dt̂0+1,n. To obtain a stan-

dardization that corresponds to
√

var(S1,t0) and
√

var(St0+1,n) asymptotically under
H0, but remains of the order O(

√
n) under H1, Berkes et al. (2006) propose Bartlett

estimators defined by

v1,t̂0
=

mt̂0
−1∑

u=−(mt̂0
−1)

(
1 − |u|

mt̂0

)
γ̂1,t̂0

(u),

vt̂0+1,n =
mn−t̂0

−1∑

u=−(mn−t̂0
−1)

(
1 − |u|

mn−t̂0

)
γ̂t̂0+1,n(u)

where mt̂0
and mn−t̂0

tend to infinity at a slower rate than n. Here we use the notation

γ̂i,j (u) = 1

ni,j

j−|u|∑

t=i

(Yt − ȳi,j )(Yt+|u| − ȳi,j )

for the sample autocovariance at lag u (where j > i), based on observations
Yi, Yi+1, . . . , Yj , with ni,j = j − i + 1 and ȳi,j = n−1

i,j Si,j . If it is assumed that un-

der H0 the change point t̂0 is asymptotically proportional (but not equal) to n, then
v1,t̂0

and vt̂0+1,n both converge in probability to
∑∞

u=−∞ γX(u) = 2πfX(0). This is
the asymptotic variance of a standardized sum since var(S1,n) ∼ 2πfX(0)n. On the
other hand, under H1, var(S1,n) ∼ cSn2d , but v1,t̂0

and vt̂0+1,n diverge to infinity at
a slower rate than n2d . This essentially follows from

∑m
k=1 k2d−1 ∼ const · m2d =

o(n2d). Thus we obtain the desired asymptotic properties for the test statistics

T1,t̂0
= t̂0

− 1
2 v

− 1
2

1,t̂0
D1,t̂0

and

Tt̂0+1,n = (n − t̂0)
− 1

2 v
− 1

2
t̂0+1,n

Dt̂0+1,n.

More specifically, Berkes et al. (2006) use following additional conditions:

t0 = [nϑ] for some 0 < ϑ < 1,

Δ → 0, nΔ2 → ∞, mnΔ
2 = O(1),

and

Δ2|t̂0 − t0| = Op(1).

The joint distribution of the two statistics under H0 is given by
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Theorem 7.43 Suppose H0 holds, and mn is nondecreasing, mn → ∞ and such
that

sup
k≥0

m2k+1

m2k

< ∞, mn(logn)4 = O(n).

Then, under the conditions above,

(T1,t̂0
, Tt̂0+1,n) →

d

(
sup

0≤u≤1

∣∣B̃(1)(u)
∣∣, sup

0≤u≤1

∣∣B̃(2)(u)
∣∣
)

where B̃(1), B̃(2) are two independent Brownian bridges, i.e. B̃(i)(u) = B(i)(u) −
uB(i)(1) with B(i) (i = 1,2) two independent standard Brownian motions.

In contrast, under the alternative, we have long-range dependence so that the rate
of convergence of sums is slower, the two statistics are no longer asymptotically in-
dependent and their distribution can be expressed in terms of one common fractional
Brownian motion:

Theorem 7.44 Suppose that H1 holds, and mn is nondecreasing, mn → ∞ and
such that

sup
k≥0

m2k+1

m2k

< ∞, mn(logn)
7

2−4d = O(n).

Then, under the conditions above,
((

mt̂0

n

)d

T1,t̂0
,

(
mn−t̂0

n

)d

Tt̂0+1,n

)
→
d

(Z1,Z2)

where

Z1 = τ− 1
2 sup

0≤u≤τ

∣∣∣∣BH (u) − u

τ
BH (τ)

∣∣∣∣,

Z2 = (1 − τ)−
1
2 sup

τ≤u≤1

∣∣∣∣BH (u) − BH (τ) − u − τ

1 − τ

(
BH (1) − BH (τ)

)∣∣∣∣,

BH is a fractional Brownian motion with self-similarity parameter H = d + 1
2 and

τ = inf
{
t ≥ 0 : ∣∣BH (t)

∣∣= sup
0≤u≤1

∣∣BH (u)
∣∣
}
.

By assumption mt̂0
/n and mn−t̂0

/n converge to zero so that, under H1, the vector
(T1,t̂0

, Tt̂0+1,n) diverges to (∞,∞) in probability. Defining

T = max{T1,t̂0
, Tt̂0+1,n},

we have

T →
d

max
{

sup
0≤u≤1

∣∣B̃(1)(u)
∣∣, sup

0≤u≤1

∣∣B̃(2)(u)
∣∣
}
,
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under H0 whereas under H1 the statistic diverges to infinity. The results can be
extended to H0 including several shifts in the mean.

An essential element in the test procedure by Berkes et al. (2006) is the Bartlett
estimator based on sample autocovariances. Apart from the difficulty of choosing
appropriate sequences mt̂0

and mn−t̂0
, more efficient estimators of the asymptotic

values of γX(k) exist because γX(k) ∼ cγ |k|2d−1 is characterized by two parameters
only. A test where all autocovariances are estimated by the sample autocovariance
is likely to have relatively low power. Baek and Pipiras (2011) therefore suggest
a more powerful test procedure where the hyperbolic shape of the autocovariances
and the spectral density is exploited more directly. As before, in a first step t̂0 is
calculated. In a second step, the data are centred using t̂0 by defining

X̂t = Yt − ȳ1,t̂0
(1 ≤ t ≤ t̂0),

X̂t = Yt − ȳt̂0+1,n (t̂0 + 1 ≤ t ≤ n).

The third step is to estimate the long-memory parameter from X̂1, . . . , X̂n. If t̂0 con-
verges to t0 fast enough, then d̂ converges to the true value d0 under H0 and under
H1. Thus, if we are able to establish that under H0 a standardized statistic nβ(d̂−d0)

converges to a nondegenerate random variable ζ , then we may use the test statistic
T ∗ = |nβ(d̂ − 1

2 )|. Under H0, T ∗ converges in distribution to |ζ | whereas under H1

the statistic diverges to infinity because the true value of d is not 1
2 . For instance,

Baek and Pipiras (2011) show the following result for the local Whittle estimator.

Theorem 7.45 Let d̂ be a local Whittle estimator based on X̂t using m Fourier
frequencies λj = 2πj/n (j = 1,2, . . . ,m). Suppose that conditions used in the the-
orems above as well as regularity conditions needed for the Whittle estimator (see
Theorem 2 in Robinson 1995b; also see Chap. 5) hold. Furthermore, assume

m log2 m

nΔ2
→ 0.

Then, under H0,

√
m

(
d̂ − 1

2

)
→
d

ζ ∼ N

(
0,

1

4

)
,

whereas under H1 with d0 ∈ (0, 1
2 ),

d̂ →
d

d0.

For exact regularity conditions and detailed proofs, see Baek and Pipiras (2011).
Note that Δ is even allowed to tend to zero; however, at a slower rate than
logm

√
m/n. The theorem essentially says that estimation of t0 does not change the

asymptotic distribution of the local Whittle estimator under H0, and under H1 the
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estimator remains consistent. We may therefore reject H0 at the level of significance
α if

T ∗ =
∣∣∣∣
√

m

(
d̂ − 1

2

)∣∣∣∣>
1

2
z1− α

2

where z1− α
2

is the (1 − α
2 )-quantile of the standard normal distribution.

7.10 Estimation of Rapid Change Points in the Trend Function

In this section, we address rapid change point detection in a nonparametric regres-
sion function where the regression residuals are Gaussian subordinated via an un-
known function (see Sect. 7.6) with long-memory. Due to a specific application
that we have in mind, we base our estimation procedure on time series observed at
unevenly spaced time points. In fact, this type of problem tends to occur in palaeo-
climatic research where in order to answer questions concerning past environmental
changes, one may analyse environmental proxies such as pollens, oxygen and other
gas isotopes that are found in ice or sediment samples. Such environmental prox-
ies give rise to time series data, where the successive observations are unevenly
spaced in time. One important topic is rapid climate change where one is concerned
with identification of rapid change points in the trend function; see Ammann et al.
(2000) for background information on palaeoclimatic research. Most of the material
covered in this section can be found in Menéndez et al. (2010); also see Menén-
dez (2009) and Menéndez et al. (2012). We start by introducing a continuous time
stationary Gaussian process Z(u) (u ∈R) with E[Z(u)] = 0, var(Z) = 1 and

γZ(v) = cov
(
Z(u),Z(u + v)

)∼ CZv2H−2

as v → ∞ where H ∈ (0,1). Here “∼” means that the ratio of the left and right hand
side tends to one. The observed time series Y1, . . . , Yn is assumed to be generated
by a nonparametric regression model of the form

Yi = m(ti) + εi

where εi = G(Z(Ti), ti), Ti ∈ R+, T1 ≤ T2 ≤ · · · ≤ Tn, ti = Ti/Tn ∈ [0,1] and
m(·) is a smooth function. For each fixed t ∈ [0,1] the function G(·, t) is assumed
to be in the L2-space of functions (on R) with E[G(Z, t)] = (2π)− 1

2
∫

G(z, t)

exp(−z2/2) dz = 0 and ‖G‖2 = E[G2(Z, t)] < ∞. This implies a convergent L2-
expansion

G(Zi, ti) =
∞∑

k=q

ck(ti)

k! Hk(Zi)

where Hk(·) are Hermite polynomials and q ≥ 1 is the Hermite rank. The function G

provides the possibility of having non-Gaussian residuals with a changing marginal
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distribution (see Sect. 7.6). The spacings between the successive time points is arbi-
trary except for some technical conditions (similar in spirit as the equidistant case,
where Ti = iTn/n and ti = i/n).

Rapid change is defined in terms of derivatives of the trend function. Such a
change may be rapid but it is a continuous change in the trend function m. More
specifically, rapid change is said to occur whenever the absolute value of the first
derivative of m has a local maximum and exceeds a certain threshold. Let m(i)(t)

denote the ith derivative of m with respect to t . We shall follow this definition of a
rapid change point considered in Müller and Wang (1994) in the context of hazard
rate estimation:

Definition 7.9 Given a threshold η > 0, the p time points {τ1, τ2, . . . , τp} ∈ (0,1)

are rapid change points of the trend function m if

∣∣m(1)(τ1)
∣∣≥ ∣∣m(1)(τ2)

∣∣≥ · · · ≥ ∣∣m(1)(τp)
∣∣≥ η,

m(2)(τi) = 0, i = 1, . . . , p and

0 <
∣∣m(3)(τi)

∣∣< ∞.

In applications, the trend derivatives will have to be estimated. Thus consider the
non-parametric curve estimates using Priestley–Chao type kernel estimator

m̂(ν)(t) = (−1)ν

bν+1

n∑

i=1

(ti − ti−1)K
(ν)

(
ti − t

b

)
Yi

where ν = 0,1,2, . . . , t0 = 0 and the kernel K satisfies the following conditions
(Gasser and Müller 1984):

(i) K ∈ Cν+1[−1,1];
(ii) K(x) ≥ 0, K(x) = 0 (|x| > 1),

∫ 1
−1 K(x)dx = 1;

(iii) ∀x, y ∈ [−1,1], |K(ν)(x)−K(ν)(y)| ≤ L0|x−y| where L0 ∈R
+ is a constant;

(iv) K is of order (ν, k), ν ≤ k − 2, where k is a positive integer, i.e.

∫ 1

−1
K(ν)(x)xj dx =

⎧
⎨

⎩

(−1)νν!, j = ν,

0, j = 0, . . . , ν − 1, ν + 1, . . . , k − 1,

θ, j = k

where θ �= 0 is a constant;
(v) K(j)(1) = K(j)(−1) = 0 for all j = 0,1, . . . , ν − 1.

It turns out that by Lemma 1 in Gasser and Müller (1984) one can also write

∫ 1

−1
K(x)xj dx =

⎧
⎨

⎩

1, j = 0,

0, j = 1, . . . , k − ν − 1,

(−1)νθ
(k−ν)!

k! , j = k − ν.
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For a given sample and a fixed value of the first derivative threshold η, the num-
ber of change points p̂ where m̂(2) is zero is random whereas the true number of
change points p is unknown. However, as the sample size increases, under suitable
regularity conditions on m, consistency of m̂ and p̂ follows. The following technical
conditions are used to prove the consistency result in the theorem below:

(A1) The coefficients ck(t) = E[G(Z, t)Hk(Z)] in the Hermite expansion of
G(Z, t) are continuously differentiable with respect to t ∈ [0,1];

(A2) 1 − (2q)−1 < H < 1;
(A3) m ∈ Cν+1[0,1];
(A4) 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn, ti = Ti/Tn ∈ [0,1];
(A5) α−1

n ≤ tj − tj−1 ≤ β−1
n where αn ≥ βn > 0 and βn → ∞;

(A6) b → 0, b2ν(Tnb)(2−2H)q → ∞, and bβn → ∞;
(A7) limn→∞(bαn)

1+(2−2H)q(bβn)
−2 = 0;

(A8) K ∈ Cν+1[0,1] with 0 < cν+1 = supu∈[0,1] |K(ν+1)(u)| < ∞.

The following observations can be made. (A1) implies a slowly changing marginal
distribution of the regression residuals. This may be understood as a type of local-
stationarity. Due to (A2), the long-memory property of Zi is inherited by the subor-
dinated error process. (A5) ensures that no repeated time points and, more generally,
no extreme clustering of the time points occurs. A special case is when the observa-
tions are available at equidistant time points (set αn = βn = n). The first condition
in (A6) is needed to avoid an asymptotic bias in m̂(ν)(t) whereas the second and
the third conditions ensure convergence of the asymptotic expression for the vari-
ance of m̂(ν)(t) to zero. (A7) is needed for the asymptotic approximation of the
mean squared error. Due to (A2), (2 − 2H)q < 1 so that (A7) is possible although
αn ≥ βn. For additional discussions and related results, specifically for monotone
transforms G and slightly different conditions on the spacings between successive
observations Ti − Ti−1, see Menéndez et al. (2012).

Theorem 7.46 Under the assumptions stated earlier in this section and (A1)–(A7),
we have for t ∈ (0,1):

Bias
(
m̂(ν)(t)

) = E
[
m̂(ν)(t)

]− m(ν)(t) = bk−νJν,k + o
(
bk−ν

)
,

Var
(
m̂(ν)(t)

) = b−2ν(Tnb)(2H−2)qIq(t) + o
(
b−2ν(Tnb)(2H−2)q

)
,

MSE
(
m̂(ν)(t)

) = E
[(

m̂(ν)(t) − m(ν)(t)
)2]

= b2(k−ν)J 2
ν,k(t) + b−2ν(Tnb)(2H−2)qIq(t)

+ o
(
max

(
b2(k−ν), b−2ν(Tnb)(2H−2)q

))

where

Iq(t) = c2
q(t)

q! C
q
Z

∫ 1

−1

∫ 1

−1
K(ν)(u)K(ν)(v)|u − v|(2H−2)q dudv
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and

Jν,k(t) = m(k)(t)

k!
∫ 1

−1
K(ν)(u)uk−ν du.

Proof Let t ∈ (0,1) be a scalar. The expression for the bias follows from a Tay-
lor series expansion of m and properties of the kernel. To prove the result for the
variance, note that

b2ν(Tnb)(2−2H)q Var
(
m̂(ν)(t)

)

= b−2(Tnb)(2−2H)q
n∑

i,j=1

(ti − ti−1)(tj − tj−1)K
(ν)

(
t − ti

b

)
K(ν)

(
t − tj

b

)
Vi,j

where

Vi,j = Cov(Yi, Yj ) =
n∑

l=q

cl(ti)cl(tj )

l! γ l
Z(Ti − Tj ).

Recalling

γZ(Ti − Tj ) ∼ CZ|Ti − Tj |2H−2

and −1 < (2H − 2)q < 0, we have

Cov(Yi, Yj ) ∼ c2
q(t)

q! γ
q
Z(Ti − Tj )

for i, j ∈ Ub(t) with Ub = {k ∈N : |t − Tk/Tn| ≤ b}. It is then sufficient to consider

Sn = b−2(Tnb)(2−2H)q
∑

i �=j

(ti − ti−1)(tj − tj−1)K
(ν)

(
ti − t

b

)
K(ν)

×
(

tj − t

b

)
|Ti − Tj |(2H−2)q .

Since K(u) = 0 for |u| > 1, we have

Sn =
∑

i:|Ti−tTn|≤Tnb

K(ν)

(
ti − t

b

)
ti − ti−1

b
[Si,1 + Si,2]

where

Si,1 =
∑

j∈Ai

K(ν)

(
tj − t

b

)
·
(

ti − tj

b

)(2H−2)q tj − tj−1

b
,

Si,2 =
∑

j∈Bi

K(ν)

(
tj − t

b

)
·
(

ti − tj

b

)(2H−2)q tj − tj−1

b
,



728 7 Statistical Inference for Nonstationary Processes

Ai = {
j ∈N : 1 ≤ j ≤ i − 1, |Ti − tTn| ≤ Tnb

}
and

Bi = {
j ∈N : i + 1 ≤ j ≤ n, |Ti − tTn| ≤ Tnb

}
.

Setting

hn(x) = K(ν)

(
x − t

b

)
×
(

ti

b
− x

)(2H−2)q

,

we have

Si,1 =
∫ ti−1/b

t1/b

hn(x) dx +
∑

j∈Ai

h′
n(xj )

(
tj − tj−1

b

)2

=
∫ ti−1/b

t1/b

hn(x) dx + rn,i,1

and an analogous expression for Si,2 where tj−1/b ≤ xj ≤ tj /b and h′
n(x) =

gn,1(x) + gn,2(x) with

gn,1(x) = K(ν+1)

(
x − t

b

)
×
(

ti

b
− x

)(2H−2)q

and

gn,2(x) = K(ν)

(
x − t

b

)
×
(

ti

b
− x

)(2H−2)q−1

× (2 − 2H)q.

By assumption we have α−1
n ≤ |tj − tj−1| ≤ β−1

n , −1 < (2H − 2)q < 0 and

0 ≤ sup
u∈[0,1]

∣∣K(ν+1)(u)
∣∣= cν+1 < ∞.

Also note that the assumption bβn → ∞ implies bαn → ∞. Using the notation
j1 = [αn(t − b)] and j2 = [αn(t + b)], an upper bound can be given by

∣∣∣∣
∑

j∈Ai

gn,1(xj )

(
tj − tj−1

b

)2∣∣∣∣≤ cν+1b
−2β−2

n

j2∑

j=j1

(
ti − tj

b

)(2H−2)q

≤ cν+1b
−2β−2

n

[2bαn]∑

j=1

(
j

bαn

)(2H−2)q

= cν+1b
−1αnβ

−2
n

[2bαn]∑

j=1

(
j

bαn

)(2H−2)q 1

bαn

≤ cν+1b
−1αnβ

−2
n

∫ 2

o

x(2H−2)q dx.

Thus if (2H − 2)q > −1 and limn→∞ b−1αnβ
−2
n = 0 there is a uniform (in i)

upper bound on the remainder term rn,i,1. Note that 1 + (2 − 2H)q > 1 and
bαn → ∞ so that limn→∞ bαn(bβn)

−2 = 0 follows from the assumption that



7.10 Estimation of Rapid Change Points in the Trend Function 729

limn→∞(bαn)
1+(2−2H)q(bβn)

−2 = 0. Similarly, considering the remainder term
rn,,i,2 for gn,2, we have

∣∣∣∣
∑

j∈Ai

gn,2(xj )

(
tj − tj−1

b

)2∣∣∣∣≤ cν+1(bβn)
−2

j2∑

j=j1

(
ti − tj

b

)(2H−2)q−1

≤ cν+1(bβn)
−2

[2bαn]∑

j=1

(
j

bαn

)(2H−2)q−1

= cν+1(bαn)
1+(2−2H)q(bβn)

−2
[2bαn]∑

j=1

j (2H−2)q−1

≤ cν+1(bαn)
1+(2−2H)q(bβn)

−2
∞∑

j=1

j (2H−2)q−1

so that, under the assumption that H < 1 and limn→∞(bαn)
1+(2−2H)q

(bβn)
−2 = 0, there is a uniform (in i) upper bound on the remainder term rn,i,1.

Analogous arguments apply to Si,2 so that the sum Sn converges to the correspond-
ing double integral and c2

q(t)/q!CZ times Sn converges to the asymptotic variance
as given in the theorem. �

The asymptotic formula for the mean squared error stated above implies an
asymptotically optimal bandwidth of the form

bopt =
[

2ν + (2 − 2H)q

2(k − ν)

Iq

J 2
ν,k

] 1
2k+(2−2H)q

T

(2H−2)q
2k+(2−2H)q

n .

The central limit theorem in the corollary below states that if the Hermite rank q

equals 1, the limiting distribution of m̂(ν)(t) is normal and the estimates at different
fixed values t1, . . . , tk are asymptotically independent. If, however, q ≥ 2, a similar
limit theorem can be derived but with a non-normal asymptotic distribution which
would correspond to the marginal distribution of a Hermite process of order q .

Corollary 7.4 Suppose that the Hermite rank q of G is one. Let t = (t1, . . . , tk)
′,

m̂(ν)(t) = [m̂(ν)(t1), . . . , m̂
(ν)(tk)]′ and define the k × k diagonal matrix

D = diag
(√

I1(t1), . . . ,
√

I1(tk)
)
.

Then, under the assumptions of Theorem 7.46, we have, as n tends to infinity,

bν(Tnb)1−H D−1{m̂(ν)(t) − E
[
m̂(ν)(t)

]}→
d

(ζ1, . . . , ζk)
′

where ζi are i.i.d. standard normal variables.
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Proof The result follows from the previous theorem and the fact that asymptotically
the distribution of

Δn = (Tnb)(1−H)q
{
m̂(2)(τi) − E

[
m̂(2)(τi)

]}

is equivalent to the asymptotic distribution of

Δ̃n = (Tnb)(1−H)q (−1)ν

nbν+1

n∑

j=1

K(ν)

(
tj − τi

b

)
cq(τi)

q! Hq(Zj )

= (Tnb)1−H (−1)ν

nbν+1

n∑

j=1

K(ν)

(
tj − τi

b

)
c1(τ1)Zj

which is a sequence of normal variables. Asymptotic independence of m̂(ν)(t) and
m̂(ν)(s) for t �= s follows by analogous arguments as in the proof of the last theorem,
along the lines of Csörgő and Mielniczuk (1995b). �

Note that the estimate of the change points will involve estimates of the trend
derivatives, which in turn will depend on the respective bandwidths. As we have
seen in the theorem earlier, if b is too large, and in particular if b−2ν(Tnb)(2H−2)q

is of smaller order than b2(k−ν), then the bias of τ̂n will dominate the mean squared
error and no reasonable confidence interval for τ can be given. Consider, however,
(i) b2k = o((Tnb)(2H−2)q) which allows the bias to be asymptotically negligible, or
(ii) b2k ∼ C · (Tnb)(2H−2)q which makes the asymptotic contribution of both bias
and variance of the same order. For these cases, if the Hermite rank of G is one,
asymptotic normality of τ̂n follows.

Theorem 7.47 Let τ = (τ1,τ2, . . . , τp)′ be the points of rapid change of m, and
suppose that the assumptions of the corollary to the last theorem hold. Then there
is a sequence τ̂n = (τ̂n;1,τ̂n;2, . . . , τ̂n;p)′ such that m̂(2)(τ̂n;i ) = 0 (1 ≤ i ≤ p) and
τ̂n →p τ . Moreover, define the p × p diagonal matrix

D̃ = diag
(√

I1(τ1)
/∣∣m(3)(τ1)

∣∣, . . . ,
√

I1(τp)
/∣∣m(3)(τp)

∣∣).

Then the asymptotic distribution of τ̂n is given as follows:

(i) If b2k = o((Tnb)2H−2) then (Tnb)1−H D̃−1(τ̂n − τ) →
d

(ζ1, . . . , ζp)′ where ζi

are i.i.d. standard normal variables;
(ii) If b2k ∼ C · (Tnb)2H−2 then (Tnb)1−H D̃−1(τ̂n − τ) →

d
(μ1 + ζ1, . . . ,μp + ζp)′

where ζi are as in (i) and

μi =
[

m(k)(τi)

k!
∫ 1

−1
K(ν)(u)uk−ν du

]/
m(3)(τi).
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Fig. 7.22 Top: Oxygen isotope values plotted against age (years before present or 1989) and an
estimated trend curve. Left middle: Distance between successive time points. Right middle: Peri-
odogram of residuals and fitted spectral density in log-log coordinates. Bottom: Estimated trend
derivatives m̂(ν) (ν = 0,1,2,3). The curve estimates are rescaled for better visibility. The two ver-
tical lines mark rapid climate change points where the threshold for the speed of change is set at
η = 100. The two main points of rapid climate change points are estimated to be at around 11,560
and 14’658 years before 1989. The asymptotic 95 %-confidence intervals for the change points
(in years before 1989) ignoring bias in estimation are (11,554;11,566) and (14,646;14,670),
respectively. Data source: Greenland Ice Core Project dataset, Johnsen et al. 1997. The figure is
reproduced from the Journal of Statistical Planning and Inference (2010), vol. 40, 3343–3354



732 7 Statistical Inference for Nonstationary Processes

Proof Consistency follows from m(t) ∈ Cν+1[0,1] and the consistency of m̂(2)(t).
For the asymptotic distribution of τ̂n, we have by Taylor expansion

τ̂n:i − E(τ̂n:i ) = −m̂(2)(τi)
[
m(3)(τi)

]−1 + op

(
b−2(Tnb)H−1).

Since the Hermite rank q of G is equal to one, the limiting behaviour given in (i)
and (ii) then follows from the last theorem and its corollary. �

Note that, a similar non-Gaussian limit theorem can be derived for q ≥ 2. By
analogous arguments as above, it can be shown that the number of zeros of m̂(2)

with |m̂(2)| > η converges to p in probability, so that when n is sufficiently large,
p can be estimated with arbitrary precision and in particular, the estimate of p can
be plugged-in for computing confidence intervals for the change points.

The example below is concerned with evidence of rapid climate changes in the
northern hemisphere approximately 20,000 years before present (‘present’ being set
at 1989). The observations are oxygen isotope ratio measurements from a Greenland
ice core (Johnsen et al. 1997) resulting in unevenly spaced time series observations,
so that a continuous time process is appropriate for modelling the regression errors.
The data are analysed and rapid change points in the trend functions are identified
by using the methods described in this section. For curve estimation, the Gaussian
kernel and its derivatives with support R were used which gave very smooth curve
estimates. This is appropriate in the current example. The regression residuals are
estimated by detrending the data series locally, using an optimal bandwidth (formula
given in the text above). The distribution of the residuals turned out to be very close
to normal so that one may assume q = 1 and c2

1(ti) ≈ var(Yi). On the original time
scale in years (before 1989) the method identifies the main points of rapid change
around the epoch known as the Younger Dryas at about 11,560 and 14,658 years
before 1989 (see Fig. 7.22). For further details of the data analysis, see Menéndez
et al. (2010).
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