
Chapter 6
Statistical Inference for Nonlinear Processes

In this section, we consider nonlinear processes with long memory. We will
mainly focus on volatility models: stochastic volatility (see Definitions 2.3–2.4
and Sect. 4.2.6 for limit theorems), ARCH(∞) processes (see Definition 2.1 and
Sect. 4.2.7) and LARCH(∞) models (see (2.47) and (2.48), and Sect. 4.2.8). Sta-
tistical inference for traffic models is not well developed yet (see Faÿ et al. 2006,
2007; Hsieh et al. 2007 for some results in this direction).

Volatility models considered in this book have the general form Xt = ξtσt , where
ξt (t ∈ Z) is an i.i.d. sequence and σt depends on the past (ξt−1, ξt−2, . . .) and/or a
latent process ζt . In particular, in the stochastic volatility model (SV),

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

where (ξt , εt ) (t ∈ Z) is a sequence of i.i.d. random vectors. If furthermore σ(x) =
exp(x) and ζt is a long-memory Gaussian sequence independent of the i.i.d. centred
sequence ξt , then the model is called LMSV.

If

σt = b0 +
∞∑

k=1

bkXt−k

and bj decay slowly like a constant times jd−1 (d ∈ (0,1/2)), then we obtain a
LARCH(∞) model with long memory (recall that σt can be expressed explicitly in
terms of ξt−1, ξt−2, . . .). Finally, if

σ 2
t = b0 +

∞∑

k=1

bkX
2
t−k,

∑∞
k=1 |bk| < ∞, we obtain a second-order stationary ARCH(∞) sequence. Other

models, e.g. FIGARCH, are not discussed in this chapter.
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As in Chap. 5, we start our discussion with location estimation. In this case, the
stochastic volatility (like LMSV) and LARCH(∞) models follow a similar pattern.
The asymptotic distribution of the sample mean is not affected by long memory. The
same applies to M-estimators, as long as the function ψ that defines the M-estimator
is antisymmetric and the distribution of the noise variables ξt is symmetric. Other-
wise, asymptotic properties of M-estimators are influenced by long memory. Such
results were obtained in Beran (2006) and Beran and Schützner (2008), and are
presented in Sects. 6.1.1 and 6.2.1, respectively, for SV and LARCH models. Fi-
nally, in Sect. 6.3.1, we discuss location estimation for ARCH(∞) processes. At the
moment, a theory for M-estimators is not available.

As for estimation of memory parameters, one may note that long memory ap-
pears (if at all) in the squares. It is therefore tempting to apply methods described
in Chap. 5 to the squared sequence X2

t . However, it may be more natural to di-
vide volatility processes into two groups: stochastic volatility-type models (with a
possible leverage) and LARCH(∞)-type models.

In the first case, direct maximum likelihood estimation is not always feasible
because of the presence of an unobserved latent process. Note, however, that, for
instance, for a stochastic volatility model with an exponential volatility function
σ(x) = ex , one may consider a log-transformation. This approach is taken, among
others, in Zaffaroni (2009) using parametric Whittle estimation and in Deo and
Hurvich (2001), Hurvich and Soulier (2002), Hurvich et al. (2005b) or Dalla et al.
(2006) who consider semiparametric estimation.

For the LARCH models, a maximum likelihood approach is feasible in principle
because σt is an explicit function of past observations (see Beran and Schützner
2009). Up to date there are no theoretical results on semiparametric estimators
in the Fourier or wavelet domain. Teyssière and Abry (2006) as well as Jach
and Kokoszka (2008) study the numerical performance of wavelet estimators, in
particular for LARCH models. For ARCH(∞) processes, σ 2

t is again a direct
function of past observations and MLE-type estimators are not difficult to calcu-
late. In particular, one can show that the MLE is more efficient than Whittle es-
timation based on the squared observations (which is not really an approximate
MLE), see Giraitis and Robinson (2001), Straumann (2004), Berkes and Horváth
(2003).

Finally, we consider tail index estimation for heavy-tailed stochastic volatility
models. Recall that for linear processes we considered in Sect. 5.15 the tail index
M-estimation based on the assumption of stable innovations. Here we consider in-
stead the Hill estimator which is consistent without specifying a particular model.
Asymptotic normality of the Hill estimator for SV models was established in Ku-
lik and Soulier (2011) and is presented in Sect. 6.1.3. For LARCH processes, a
numerical, although wavelet-based, tail index estimation can be found in Jach and
Kokoszka (2008).
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6.1 Statistical Inference for Stochastic Volatility Models

In this section, we consider statistical inference for stochastic volatility models of
the form

Xt = σtξt (t ∈ N), (6.1)

where σt = σ(ζt ), ζt =∑∞
j=1 aj εt−j and (ξt , εt ) (t ∈ Z) is a sequence of i.i.d. ran-

dom vectors. It is assumed that E(ε1) = 0, however, there is no a priori assumption
that the random variables ξt are centred.

In Sect. 6.1.1, we consider location estimation in a model Yt = μ+Xt , where Xt

is an SV process. As mentioned in the introduction, the asymptotic distribution of
the sample mean is not affected by long memory. The same applies to M-estimators,
as long as the function ψ that defines the M-estimator is antisymmetric and the
distribution of the noise variables ξt is symmetric (Beran and Schützner 2008).

We proceed with estimation of the memory parameter. Consider the volatility
model (6.1). We recall that the memory parameter d appears in the asymptotics for
the covariance function of the squares (see (2.61)). The graphical methods consid-
ered in Sect. 5.4 can be also applied in this case, by replacing Xt there by Yt = X2

t

here. For example, the R/S statistic can be defined as Rn/Sn, where

Rn = max
1≤k≤n

k∑

t=1

(Yt − ȳn) − min
1≤k≤n

k∑

t=1

(Yt − ȳn)

and S2
n = (n − 1)−1∑n

t=1(Yt − ȳn)
2 is the sample variance of Yt = X2

t . The sample
variance S2

n converges in probability to var(X2
1) (provided it is finite). The same ap-

proach can be applied to all other methods considered in Sect. 5.4 (see, e.g. Giraitis
et al. 2000b).

However, using the squares may not be appropriate for heavy-tailed data. For
instance, the data may have a finite variance, but infinite fourth moments. Then the
graphical methods can be quite misleading (see, e.g. Wright 2002).

In general, maximum likelihood estimation is not suitable for SV models because
the likelihood function cannot be written in an explicit form (see, e.g. Robinson and
Zaffaroni 1997, 1998). Asymptotic normality of the Whittle estimator applied to
transformed data was considered explicitly in Breidt et al. (1998) and in case of
leverage in Zaffaroni (2009). Some results can be deduced from earlier theory for
models with signal and additive noise (Hosoya 1974; Hosoya and Taniguchi 1982).
Note, however, that the Whittle approach does not have much to do with maximum
likelihood estimation here because the (transformed) data the method is applied to
are by definition far from normal.

As for semiparametric methods, asymptotic results in the SV case are a rel-
atively simple generalization of the theory for linear processes considered in
Chap. 5. Specifically, if Xt = ξt exp(

∑∞
j=1 aj εt−j ), then one can apply the log-

transformation to X2
t and the resulting model has the form of a linear long-memory
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process corrupted by i.i.d. noise. Asymptotic properties of semiparametric estima-
tors in SV models were considered in Deo and Hurvich (2001), Hurvich and Soulier
(2002), Hurvich et al. (2005b).

Finally, we discuss tail index estimation. In Sect. 5.2.3, we considered
M-estimation for heavy-tailed long-memory processes. Such an approach requires
strong assumptions on an innovation sequence of the linear process. Rates of conver-
gence and the asymptotic distribution is affected by long memory and tail behaviour.
In the present context, based on results on M-estimators in Sect. 6.1.1 below, one
may be expected that the asymptotic behaviour of an M-estimator of the tail index
is not affected by long memory. However, such results are not known at present.
Instead, we consider the so-called Hill estimator (see, e.g. Embrechts et al. 1997).
Its asymptotic properties are built upon results for the tail empirical process consid-
ered in Sect. 4.8.5. It is proven (see Kulik and Soulier 2011) that long memory does
not affect the rate of convergence. This is confirmed in Jach et al. (2012) and Luo
(2011), both in theory and numerical studies.

6.1.1 Location Estimation

Consider a time series Yt = μ + Xt (t ∈N) such that the residuals Xt are generated
by a stochastic volatility model (6.1). Furthermore, assume that the random vari-
ables ξt that appear in the model definition (6.1) are centred. Hence E(Xt) = 0. In
Sect. 4.2.6, we found out that under appropriate moment assumptions,

n−1/2
[nu]∑

t=1

Xt ⇒ vB(u),

where v2 = var(X1) and B(u) (u ∈ [0,1]) is a standard Brownian motion. In other
words, long memory in volatility does not affect rates of convergence for the sample
mean.

More generally, if ψ is a deterministic function such that E[ψ(X1)|G0] = 0,
where Gt is the sigma field generated by (ξt , εt , ξt−1, εt−1, . . .) , then the central
limit theorem above still holds with v2 = var(ψ(X1)).

The condition E[ψ(X1)|G0] = 0 is equivalent to

∫
ψ
(
sσ (ζ1)

)
dFξ (s) = 0,

where Fξ is the distribution function of ξ1. If, for example,ψ(x) = sign(x), bearing
in mind that σ(·) > 0, this integral has the form

−
∫ 0

−∞
dFξ (s) +

∫ ∞

0
dFξ (s).
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Thus, if the random variable ξ1 is symmetric, then this expression vanishes. Re-
calling from Sect. 5.2.3 that the sign function yields the sample median (written
down as an M-estimator), we can expect that in the particular case of symmetric
random variables ξt and antisymmetric functions ψ , the asymptotic theory for M-
estimators is the same as for i.i.d. data. To be more specific, if μ̂ is a solution of∑n

t=1 ψ(Yt − μ) = 0, then

√
n(μ̂ − μ) →d N

(
0, σ 2

ψ

)
, (6.2)

where σ 2
ψ = E[ψ2(X1)]/E2[ψ ′(X1)]. A general result was obtained in Beran and

Schützner (2008) (cf. also Theorem 6.2 in Sect. 4.2.6). In particular, if

(A1) The random variables ξt are symmetric,
(A2) σt is a second-order stationary process with a finite variance such that ξt is

independent of σs , s ≤ t (but the sequences ξt and σt are not necessary inde-
pendent),

(A3) The function ψ(·) is measurable and antisymmetric, that is, ψ(x) = −ψ(−x),
and E[ψ2(X1)] < ∞,

then (6.2) holds.

Theorem 6.1 Consider the stochastic volatility model defined in (6.1). Assume that
(A1)–(A3) above hold. Under additional regularity conditions, (6.2) holds.

We note that “additional regularity conditions” refer to assumptions (A4)–(A8)
in Beran and Schützner (2008).

Proof The proof differs from the proof of the central limit theorem for M-estimators
based on linear processes with long-range dependence; see the proof of Theo-
rem 5.1. The reason is that in the proof of that theorem we were looking for the
asymptotic equivalence between an M-estimator and the sample mean.

To proceed, we expand

0 =
n∑

t=1

ψ(Yt − μ̂) =
n∑

t=1

ψ(Yt − μ) + (μ̂ − μ)

n∑

t=1

ψ ′(Yt − μ∗),

where |μ∗ − μ| ≤ |μ̂ − μ|. Under appropriate differentiability properties of ψ ,
|μ̂ − μ| < δ implies |ψ ′(Yt − μ̂) − ψ ′(Yt − μ)| < k1(δ), where k1 is a constant
that depends on δ only. Hence, recalling that Yt − μ = Xt ,

√
n(μ̂ − μ) ≈ n−1/2∑n

t=1 ψ(Xt)

n−1
∑n

t=1 ψ ′(Xt )
.

One can argue that the denominator converges in probability to E[ψ ′(X1)]. Further-
more, a martingale central limit theorem yields asymptotic normality of the nomi-
nator. Hence, the result follows. For further details, we refer to Beran and Schützner
(2008). �
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The most general statement is given in Beran and Schützner (2008). The Gaus-
sian assumption used in the statement of Theorem 4.10 is replaced by

(A1) The random variables ξt are symmetric;
(A2) σt is a second-order stationary process with a finite variance such that ξt is

independent of σs , s ≤ t (but the sequences ξt and σt are not necessary inde-
pendent).

Furthermore, as in Theorem 4.10, it is assumed that

(A3) The function ψ(·) is measurable and antisymmetric, that is, ψ(x) = −ψ(−x),
and E[ψ2(X1)] < ∞.

Finally, there is an additional assumption on extremal behaviour of the sequence
ψ(Xt), as well as further technical conditions on function ψ , see (A4)–(A5) and
(A6)–(A8) in Beran and Schützner (2008).

Theorem 6.2 Consider the stochastic volatility model defined above. Assume that
(A1)–(A3) above as well as (A4)–(A5) and (A6)–(A8) in Beran and Schützner
(2008). Then (4.68) holds.

6.1.2 Estimation of Dependence Parameters

As mentioned in the introduction to this section, maximum likelihood estimation
does not seem to be feasible for models of the form (6.1). To be more specific, let
us consider the LMSV model,

Xt = ξt exp

( ∞∑

j=1

akεt−j

)
, (6.3)

where the sequences ξt (t ∈ Z) and εt (t ∈ Z) are mutually independent. Fur-
thermore, we shall assume that all random variables are standard normal and∑∞

j=1 a2
j = 1. Then the density pX of Xt is

pX(x) =
∫ ∞

0
φ
(
log(x/y)

)
φ(y)dy (x > 0),

where φ is the standard normal density. An analogous formula is valid for x < 0.
Furthermore, the joint density of (X1, . . . ,Xn) can be written as an n-fold integral
with respect to φ(y1) · · ·φ(yn)dy1 · · ·dyn. Consequently, finding the maximum like-
lihood estimator is extremely difficult. Breidt et al. (1998) use the Whittle estimator
(see Sect. 5.5.2) applied to the logarithm of the squares instead.

Much easier is the application of semiparametric methods to stochastic volatil-
ity models. We consider for simplicity the LMSV model (6.3). Applying the log-
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transformation to X2
t , we obtain a new model

Yt = μ + 2
∞∑

k=1

akεt−k + Zt ,

where Zt = log ξ2
t − E(log ξ2

t ), μ = E(log ξ2
t ). The semiparametric estimators (in

the Fourier or wavelet domain) can be applied directly to the sequence Yt . We note
that Yt has the form of a long-memory sequence plus i.i.d. noise Zt . Hence, we
are exactly in the situation of the additive noise model considered in Example 5.13.
Specifically, if we assume that the spectral density fX̃

of the linear process X̃t :=∑∞
k=1 akεt−k has the form f

X̃
(λ) = λ−2df∗(λ), then Yt has the spectral density

fY (λ) = f
X̃
(λ) + σ 2

Z/(2π) = λ−2df∗(λ) + σ 2
Z/(2π)

≈ λ−2df∗(0) + σ 2
Z/(2π) = λ−2df∗(0)

(
1 + O

(
λ2d
))

,

where σ 2
Z = var(Z1). According to the results in Sect. 5.8, the optimal mean squared

error of a semiparametric estimator is then of order

m = O
(
n− 4d

4d+1
)
, MSE(d̂) = O

(
n− 4d

4d+1
)
,

cf. Deo and Hurvich (2001), Hurvich and Soulier (2002) for log-periodogram re-
gression (GPH), and Arteche (2004) for the local estimator. Hurvich et al. (2005b)
show that a modified version of these estimators can outperform the GPH approach.

Furthermore, the techniques considered in Sect. 5.6.4 can be applied to the sit-
uation of additive noise as well. Consequently, we obtain the following asymptotic
normality of the local Whittle estimator (see Hurvich et al. 2005b; Dalla et al. 2006).
The result mimics Theorem 5.5. We have to adapt the bandwidth condition (LW3)
there to the present context.

Theorem 6.3 Consider the LMSV model given in (6.3). If

m−1 + m2d+1n−2d → 0, (LW3–SV)

then m1/2(d̂LW − d) → N(0,1/4).

Proof The proof follows similar lines as in the case of a linear process without
the additive noise (see Sect. 5.6.4). The main step is asymptotic normality of a
weighted sum of periodogram ordinates. Let us recall some notation: λj = 2πj/n,
j = 1, . . . ,m, are Fourier frequencies, bj = −2 logλj , In,Y (·) is the periodogram
associated with the sequence Y1, . . . , Yn. We re-write the decomposition (5.67) in
the present context to obtain

m∑

j=1

bj,m

[
In,Y (λj )

fY (λj )
− 1

]
+

m∑

j=1

bj,m

[
In,Y (λj )

gY (λj )
− In,Y (λj )

fY (λj )

]
, (6.4)
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where bj,m = (bj − b̄)/
√

m and gY (λ) = |λ|−2df∗(λ). We deal with the first part
only to illustrate the influence of the additive noise.

Let us decompose the difference between the normalized periodogram of Yt

and X̃t :

In,Y (λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λj )

= I
n,X̃

(λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λj )

+ In,Z(λj )

fY (λj )

= f
X̃
(λj ) − fY (λj )

fY (λj )

I
n,X̃

(λ)

f
X̃
(λ)

+ In,Z(λj )

fY (λj )

= σ 2
Z/2π

fY (λj )

I
n,X̃

(λ)

f
X̃
(λ)

+ In,Z(λj )

fY (λj )
.

We start with the term In,Z(λj )/fY (λj ). Since the random variables Zt are i.i.d., the
expected value of the normalized periodogram is one (cf. (4.139)). Thus

E

(
In,Z(λj )

fY (λj )

)
= E

(
In,Z(λj )

fZ(λj )

)
fZ(λj )

fY (λj )
∼ σ 2

Z

2π
|λj |2df −1∗ (λj ) ≤ C(j/n)2d .

Furthermore, we recall that E[I
n,X̃

(λj )/fX̃
(λj )] is uniformly bounded (in j ) and

that fY (λj ) = O((j/n)−2d). Thus we conclude

E

∣∣∣∣
In,Y (λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λk)

∣∣∣∣≤ C(j/n)2d .

Hence,

E

∣∣∣∣∣

m∑

j=1

bj,m

{
In,Y (λj )

fY (λj )
− I

n,X̃
(λj )

f
X̃
(λj )

}∣∣∣∣∣≤
m∑

j=1

|bj,m|(j/n)2d .

The bound is max1≤j≤m |bj,m|∑m
j=1(j/n)2d = o(1)n−2dm2d+1 which converges

to 0 if (LW3–SV) holds. Consequently, the asymptotic behaviour of

m∑

j=1

bj,m

[
In,Y (λj )

fY (λj )
− 1

]

is the same as that of
m∑

j=1

bj,m

[
I
n,X̃

(λj )

f
X̃
(λj )

− 1

]
.

The latter was studied in Sect. 5.6.4. �

The result of Theorem 6.3 can be extended to the case of stochastic volatility
models with leverage, i.e. when ρZ,ε = E[Ztεt ] �= 0. In this case, the spectral den-
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sity of Yt = logX2
t behaves like

fY (λ) ∼ f
X̃
(λ) + σ 2

Z

2π
+ Re

((
1 − eiλ

)−d)2ρZ,εσ
2
Z

√
f∗(0)√

2π
.

6.1.3 Tail Index Estimation

Consider the stochastic volatility models Xt = ξtσt given in (6.1), where ξt are i.i.d.
random variables with

P(ξt > x) ∼ A
1 + β

2
x−α, P (ξt < −x) ∼ A

1 − β

2
x−α,

as x → ∞, and α > 0 is the tail index. Furthermore, it is assumed that the sequence
σt is independent of ξt .

One of the most important problems when dealing with heavy tails is to estimate
the tail index α. A standard (though not quite unproblematic; see, e.g. Resnick 1997)
method is Hill’s estimator. Setting γ = α−1, the Hill estimator of γ is defined by

γ̂n = 1

k

k∑

j=1

log

(
Xn−j+1:n
Xn−k:n

)
=
∫ ∞

0

T̂n(s)

1 + s
ds,

where

T̂n(s) = 1

k

n∑

j=1

1
{
Xj > Xn−k:n(1 + s)

}
, T (s) = (1 + s)−α,

and Xk:n are the order statistics of the sample X1, . . . ,Xn. Since γ = ∫∞
0 (1 +

s)−1T (s) ds, we have

γ̂n − γ =
∫ ∞

0

ê∗
n(s)

1 + s
ds,

where ê∗
n(s) is the tail empirical process defined in Sect. 4.8.5:

ê∗
n(s) = T̂n(s) − T (s)

(
s ∈ [0,∞)

)
.

Thus we can apply Theorem 4.37 to obtain the asymptotic distribution of the Hill
estimator. Heuristically,

√
kn(γ̂n − γ ) →d

∫ ∞

0

B̃(T (s))

1 + s
ds

where B̃(u) = B(u) − uB(1) (u ∈ [0,1]) is a Brownian bridge. This integral is a
centred normal random variable with variance γ 2.
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Table 6.1 Simulated average values of and standard deviations of the Hill estimator γ̂ (where
γ = 1/α) for an LMSV model with standard deviation β = 0.2 and sample size n = 1000

γ = 1/α d =0 0.2 0.4 0.45

0.667 mean = 0.6631 0.6670 0.6717 0.6659

Std. dev. = 0.0664 0.0682 0.0648 0.0648

0.5 0.5001 0.5010 0.4988 0.5010

0.0506 0.0500 0.0515 0.0503

0.25 0.2513 0.2518 0.2511 0.2530

0.0249 0.0251 0.0251 0.0246

0.167 0.1711 0.1718 0.1791 0.1833

0.0174 0.0170 0.0174 0.0188

0.1 0.1208 0.1226 0.1379 0.1452

0.0114 0.0111 0.0140 0.0165

Corollary 6.1 Under the assumptions of Theorem 4.37,
√

k(γ̂n − γ ) converges
weakly to the centred Gaussian distribution with variance γ 2.

This result allows us to construct confidence intervals for γ , with a user-chosen
number k of extreme observations. The result is, in fact, the best possible rate of
convergence for the Hill estimator for i.i.d. data (see Drees 1998). The surprising
result is that it is possible to achieve the i.i.d. rate in spite of long memory. A detailed
proof is given in Kulik and Soulier (2011). Further results can be found in Jach
et al. (2012). Also, Corollary 6.1 can be extended to stochastic volatility models
with leverage, i.e. when the sequences σt and ξt are not mutually independent, see
Luo (2011).

Example 6.1 We simulate an LMSV model Xt = ξt exp(βζt ), (t = 1, . . . , n = 1000)
with β > 0, ξt independent Pareto random variables with tail parameter α and
ζt a long memory FARIMA(0, d,0) sequence with standard normal innovations
and dependence parameter d ∈ [0,1/2). We assume that {ζt , t = 1, . . . , n} and
{ξt , t = 1, . . . , n} are mutually independent. Table 6.1 shows that dependence of
ζt does not influence tail index estimation, unless α is very large. Note, however,
that from a practical point of view, large values of α are not interesting (if α > 4,
then the squares X2

t have a finite variance). Note also that further simulations (not
reported here) illustrate that, if the variability coefficient β is large, then dependence
may start to play a role for finite samples, although this influence disappears asymp-
totically, as indicated in Corollary 6.1. We refer to Luo (2011) for further details.

6.2 Statistical Inference for LARCH Processes

In this section, we consider LARCH processes. As in Sect. 6.1, we start with loca-
tion estimation showing again that the asymptotic distribution of the sample mean
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as well as for M-estimators is not affected by long memory, as long as function ψ

that defines the M-estimator is antisymmetric and the noise variables ξt are sym-
metrically distributed (Beran 2006).

As for parameter estimation, it is reported in Giraitis et al. (2000b) that the
graphical methods (KPSS, V/S, R/S) perform well for LARCH processes. Giraitis
et al. (2003) claim further that for LARCH(∞) models V/S is superior to R/S

and KPSS. There is no existing theory for semiparametric estimators for LARCH
processes. Teyssière and Abry (2006) and Jach and Kokoszka (2008) study the nu-
merical performance of wavelet estimators. Giraitis and Robinson (2001) argue that
for ARCH(∞)-type models (including LARCH), the Whittle approach is less moti-
vated than the maximum likelihood procedure that yields explicit results. However,
it turns out that the issue is actually more complex. This and other detailed theoret-
ical results on MLE type estimation, including asymptotic normality, can be found
in Beran and Schützner (2009), and will be discussed below.

6.2.1 Location Estimation

Consider a time series Yt = μ + Xt with residuals Xt generated by a long-memory
LARCH process

Xt = σtεt , (6.5)

σt = a +
∞∑

j=1

bjXt−j . (6.6)

Here εt are i.i.d. random variables with E(εt ) = 0 and E(ε2
t ) = 1, and the coef-

ficients are such that a �= 0, bj ∼ cjd−1 (as j → ∞) for some 0 < d < 1
2 and∑

b2
j < 1. Since cov(Xt ,Xt+k) = 0 (k �= 0), the variance of the sample mean is not

affected by the dependence in volatility, i.e. var(X̄) = σ 2
X/n where σ 2

X = var(Xt )

(note that σ 2
X = σ 2

Y = var(Yt )). Beran (2006) defines sufficient moment conditions
under which a functional limit theorem holds for partial sums, namely

n− 1
2 σ−1

X Sn(u) = n− 1
2 σ−1

Z

[nu]∑

t=1

Xt →
D[0,1] B(u)

where convergence is in the space D[0,1] of càdlàg functions equipped with the
Skorokhod metric and B(u) denotes standard Brownian motion. More generally,
for functions ψ satisfying some moment conditions, we can write

E
[
ψ(Xt+k)ψ(Xt )

]= E
{
E
[
ψ(Xt+k)ψ(Xi) | Ft+k−1

]}

= E
{
ψ(Xt)E

[
ψ(εt+kσt+k) | Ft+k−1

]}
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where Ft denotes the σ -algebra generated by εj (j ≤ t ). In particular, if the dis-
tribution of εt is symmetric and ψ is antisymmetric, i.e. ψ(−x) = −ψ(x), then
E[ψ(εt+kσt+k) | Ft+k−1] = 0 so that ψ(Xt) (t ∈ Z) is a martingale difference and
var(
∑

ψ(Xt)) = O(n). This has direct implications for M-estimators of the loca-
tion parameter μ defined as solutions of

∑n
i=1 ψ(Yt − μ̂) = 0. It can be shown

that under regularity conditions, the asymptotic distribution of μ̂ is the same as for
Sn;ψ = E−1[ψ ′(X1)]Sn(1). Thus, we have

√
n(μ̂ − μ) →

d
N
(
0, σ 2

ψ

)

where σ 2
ψ = E[ψ2(X1)]E−2[ψ ′(X1)], cf. Sect. 5.2.3. In other words, the asymp-

totic distribution of M-estimators of location is undisturbed by LARCH type (long-
range) dependence in volatility, and is, in fact, the same as if observations were i.i.d.
For detailed conditions on ψ and εt , see Beran (2006). In conclusion, approximate
(1 − α)-confidence intervals for μ may be given by

μ̂ ± z1−α/2σψn− 1
2 (6.7)

where z1−α/2 is the standard normal (1 − α/2)-quantile.
A completely different result is obtained, however, if ψ is not antisymmetric or

if εt are not symmetrically distributed such that E[X1ψ(X1)] �= 0. In this case, μ̂

has a slower rate of convergence and limit theorems derived in Berkes and Horváth
(2003) apply; see also Sect. 4.2.8. From the applied point of view, this means that it
is important to check symmetry of the innovation process.

6.2.2 Estimation of Dependence Parameters

6.2.2.1 Basic Definitions and Problems

Consider a parametric long-memory LARCH process (Xt , σt )t∈Z as in (6.5)
and (6.6), where εt are i.i.d. continuous random variables with density function
pε , E(εt ) = 0 and E(ε2

t ) = 1, a �= 0, bj ∼ cjd−1 (as j → ∞) for some 0 < d < 1
2 ,∑

b2
j < 1 and bj = bj (θ) with θ = (d, a, c, . . .) denoting a finite dimensional pa-

rameter vector. The true parameter value will be denoted by θ0. In the following,
we summarize results from Beran and Schützner (2009). For simplicity of notation,
we will consider the case with exact equality bj = cjd−1 (j ≥ 1) which implies that
θ = (d, a, c)T .

Since σt is given explicitly as a function of past observations Xs (s ≤ t − 1),
a plausible approach to estimating θ is to use the conditional likelihood function
of εt (θ) = Xt/σt (θ). If σt (θ) can be calculated exactly and θ is equal to the true
parameter θ0, then εt (θ) (t ∈ Z) coincides with the innovations εt . Since εt (t ∈ Z)
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are i.i.d. with density pε , the log-likelihood function can be written as

Ln(θ) =
n∑

t=1

logpε

(
εt (θ)

)
.

If differentiation with respect to θ is possible, then the maximum likelihood estima-
tor of θ0 can be defined as a solution of

L̇n(θ̂) := L̇n(θ)|
θ=θ̂

= 0

(where “·” denotes differentiation with respect to θ ). In particular, if pε is a normal
density function with mean zero, then

−2

n
Ln(θ) = 1

n

n∑

t=1

X2
t

σ 2
t (θ)

+ logσ 2
t (θ) + log 2π (6.8)

and

−2

n
L̇n(θ) = ∂

∂θ

[
n∑

t=1

ε2
t (θ) + logσ 2

t (θ)

]

= 2
n∑

t=1

ε̇t (θ)εt (θ) + σ̇ 2
t (θ)

σ 2
t (θ)

.

If the innovations εt are not normally distributed, then this function can still be used
to define an estimator θ̂ , but the solution no longer coincides with the MLE and is
therefore often called a pseudo- or quasi-maximum likelihood estimator (PMLE or
QMLE).

If all quantities in the last equation are well defined, then the asymptotic distribu-
tion of θ̂ can be derived quite easily because ε̇t (θ

0)εt (θ
0) is a martingale difference.

However, in contrast to short-memory volatility models (Lee and Hansen 1994;
Lumsdaine 1996; Berkes et al. 2003; Robinson and Zaffaroni 2006; Francq and Za-
koian 2008; Truquet 2008), for LARCH processes with slowly decaying coefficients
bj ∼ cjd−1 (0 < d < 1

2 ) several complications arise. First of all, it is not obvious
whether σt (θ) is an ergodic process (see, e.g. Walters 2000; Krengel 1985; Petersen
1989). Moreover, for θ �= θ0, it is not even clear whether εt (θ) =∑∞

j=1 bj (θ)Xt−j

is finite with probability one. (Note that for θ = θ0 this problem disappears be-
cause εt (θ

0) is almost surely equal to the random variable εt .) The reason is that∑
bj (θ) = ∞ implies

∑ |bjXt−j | = ∞ almost surely unless P(εt = 0) = 1. Simi-
larly, it is not clear whether and in which sense the derivative of εt (θ) with respect
to θ exists (this problem occurs even for θ = θ0), and whether the derivative is equal
to
∑

ḃj (θ)Xt−j . An additional technical property that has to be established when
studying the asymptotic distribution of θ̂ is the measurability of infima involving
σt (θ) on the (uncountable) set Θ .
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Apart from these questions, there is also the problem that σ 2
t (θ) may become

arbitrarily small. In particular, for θ �= θ0, E[Ln(θ)] may be infinite or not defined.
In fact, Francq and Zakoian 2008 (also see Truquet 2008) showed that, because
of this reason, even in the case of short memory with a finite number of nonzero
coefficients bj the estimator based on (6.8) is not consistent.

Finally, for long-memory LARCH models, the issue that has to be addressed is
that σt (θ) depends on the entire past Xs (s ≤ t − 1), whereas the only available ob-
servations are X1, . . . ,Xn. This means that σt cannot be calculated exactly. Because
of the slow decay of bj , finite approximations may not be very good.

6.2.2.2 Ergodicity

Let us start with the fundamental question of ergodicity. Ergodicity of the process
σt (θ) (t ∈ Z) follows once the existence of a measurable function f : R∞ → R is
established for which σt (θ) = f (εt−1, εt−2, . . .) almost surely (Stout 1974, Theo-
rem 3.5.8). In view of the definition

σt (θ) = a + a

∞∑

k=1

∞∑

j1,...,jk=1

bj1(θ) · · ·bjk
(θ)εt−j1 · · · εt−j1−···−jk

, (6.9)

the natural choice of f is

f = a + a

∞∑

k=1

fk

with

fk(x1, x2, . . .) =
∑

1≤m≤k

∞∑

j1, . . . , jm = 1
j1 + · · · + jm = k

bj1 · · ·bjmxj1 · · ·xj1+···+jm.

Almost sure convergence of
∑

fk follows from the fact that, for each fixed t ,

Mt(k) = fk(εt−1, εt−2, . . .) (k ∈ N)

is a martingale difference with respect to the sequence of σ -algebras Fk =
σ(Mt(l), l ≤ k). Measurability of f follows, for instance, from Corollary 2.1.3 in
Straumann (2004).

6.2.2.3 Summability, Continuity and Differentiability

Next consider the existence of σt (θ) (θ ∈ Θ) and its derivatives. If the coefficients
bj were absolutely summable, then answering these questions would be straight-
forward because

∑ |bj | < ∞ implies absolute summability of the right-hand side
of (6.9) which, in turn, implies that σt (θ) inherits the differentiability properties
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of bj (θ). For nonsummable coefficients, these arguments do not apply. The solu-
tion proposed in Beran and Schützner (2009) is to consider σt (θ) (for fixed t ) as a
stochastic process with index θ ∈ Θ . To carry over the properties of bj (θ) to σt (θ),
the process σt (θ) (θ ∈ Θ) is assumed to be separable. More specifically, the techni-
cal condition can be written down as follows:

(S) For every t ∈ Z, (σt (θ))θ∈Θ is a separable stochastic process on Θ , i.e. for
every open set A ⊂ Θ and closed interval B , the sets {ω : σt (θ) ∈ B,∀θ ∈ A}
and {ω : σt (θ) ∈ B,∀θ ∈ A∩Q

3} differ only on a set N ⊂ N0 where P(N0) = 0.

Note that the original process (σt (θ))θ∈Θ can always be replaced by a separable
version (see Theorem 2.4 in Doob 1953). Before establishing differentiability of
σt (θ), we recall two different definitions of derivatives that are particularly useful
for stochastic processes.

Definition 6.1 A stochastic process ξ(x) (x ∈ [a, b]) is uniformly mean squared dif-
ferentiable (u.m.s.-differentiable), if there exists a process ζ(x) =: ξ ′(x) (x ∈ [a, b])
such that

E

[(
ξ(x + h) − ξ(x)

h
− ζ(x)

)2]
→

h→0
0

uniformly in x ∈ (a, b). The process ξ ′(x) is also called the L2-derivative of ξ(x).

Definition 6.2 Let Ψ (a,b) be the set of (test) functions ψ that are infinitely con-
tinuously differentiable on (a, b) and such that the closure K̄ψ of the support
Kψ = {x : ψ(x) �= 0} is a compact subset of (a, b). A function g ∈ L2(a, b) is called
a generalized (or distributional) derivative of a function f ∈ L2(a, b), if

∫ b

a

g(x)ψ(x)dx = −
∫ b

a

f (x)ψ ′(x) dx

for all ψ ∈ D(a,b).

Note that generalized derivatives extend differentiation to functions that are not
differentiable in the usual sense (or more generally, to generalized functions). For
an elementary introduction to generalized derivatives, see, e.g. Lighthill (1958). For
a more detailed account of the theory and further references, see, e.g. Gelfand and
Shilov (1966–1968), Kanwal (2004), Strichartz (1994), Vladimirov (2002), Zema-
nian (2010).

Example 6.2 Let H(x) = 1{x ≥ 0} be the Heaviside function defined on (−∞,∞).
For ψ ∈ Ψ (−∞,∞), we then have

−
∫ ∞

−∞
H(x)ψ ′(x) dx = −[ψ(∞) − ψ(0)

]= ψ(0).

Thus, the generalized derivative H ′ is equal to the Dirac delta function δ defined by∫
δ(x)ψ(x)dx = ψ(0) (for all ψ ∈ Ψ (−∞,∞)).
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The following result is derived in Beran and Schützner (2009).

Theorem 6.4 Suppose that there are constants du < 1
2 and 0 < C < 1 such that

bj = cjd−1 with d ∈ [0, du], c ∈ [0, cu(d)] and cu(d) = C/
√∑∞

j=1 j2d−2. Assume

furthermore that (S) holds. Then σt (θ) is almost surely infinitely many times dif-
ferentiable in θ in the generalized sense, and the kth generalized partial derivative
w.r.t. θ is given by

∂k

∂θj1 · · · ∂θjk

σt (θ) =
∞∑

j=1

∂k

∂θj1 · · ·∂θjk

bj (θ)Xt−j ,

i.e. we can write σ̇t := ∂/∂θσt =∑ ḃjXt−j .

This theorem follows by applying the following results.

Lemma 6.1 Let ξ(x) (x ∈ [a, b]) be a separable and u.m.s.-differentiable process
with the L2-derivative ξ ′(x). Then ξ ′(x) is also a generalized derivative of ξ(x).

Lemma 6.2 (Kolmogorov) Let ξ(x) (x ∈ [a, b]) be such that E[ξ(x)] = 0,
E[ξ2(x)] < ∞ and

E
[∣∣ξ(x1) − ξ(x2)

∣∣α]≤ const|x1 − x2|1+β

for some α,β > 0. Then there exists a version of ξ(x) with almost surely continuous
paths.

Lemma 6.3 Let ξ(x) (x ∈ [a, b]) be a separable process, m times u.m.s.-
differentiable with the L2-derivatives ξ (k) (k ≤ m) and such that the paths of ξ (k)

(k ≤ m) are almost surely continuous. Then ξ(x) is also (m− 1)-times continuously
differentiable in the generalized sense.

Note that the last lemma is essentially an application of Sobolev’s famous em-
bedding theorem (see, e.g. Adams and Fournier 2003). Using these lemmas, the
theorem can be proved in three steps. First of all, it is obvious that the only problem
with respect to differentiability occurs for d . The lemmas were therefore formulated
for the case of a one-dimensional index x only. The other parameter components
can be fixed, and we can write σt = σt (d) and ḃj = ∂

∂d
bj .

The first step of the proof is to show that
∑

ḃjXt−j is indeed the L2-derivative
of σt in the u.m.s.-sense. This can be done directly by showing that

E

[(
σt (d + h) − σt (d)

h
−
∑

ḃjXt−j

)2]
≤ const · h2

and similar inequalities for higher derivatives. In a second step, one shows in a
similar way that the condition in Lemma 6.2 holds. Since σt (d) (d ∈ [d, du]) is as-
sumed to be separable, almost sure continuity of the paths of σ̇t (d) (d ∈ [d, du]) and
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Fig. 6.1 Log-likelihood function Ln,h(d) as a function of d for a simulated LARCH process with
bj = cjd−1 and d = 0.3. The left panel shows Ln,h for h = 0 whereas on the right h = 0.1 was
used

higher order L2-derivatives follows from Lemma 6.2. Finally, Lemma 6.3 implies
that these are also derivatives in the generalized sense and the generalized deriva-

tives σ
(k)
t (d) = ∂k

∂dk σt (d) (k ≤ m − 1) are almost surely continuous.
In a similar but slightly more involved manner, it can be shown that, under as-

sumption (S), one can find bounds for E(supθ∈Θ |σt (θ)|m) (m ≥ 1) in terms of
supθ∈Θ E(|σt (θ)|m) and supθ∈Θ E(|σ̇t (θ)|m). This is very useful for proving con-
sistency (see below).

6.2.2.4 A Modified Log-likelihood Function

As mentioned above, a QMLE based on Ln in (6.8) is not consistent even in the
case of short memory. The reason is that σt can be arbitrarily close to zero. Beran
and Schützner (2009) therefore suggest a modified (quasi-) log-likelihood function.
Multiplied by −1 it is given by

Ln,h(θ) = n−1
n∑

t=1

(
X2

t

σ 2
t (θ) + h

+ log
[
σ 2

t (θ) + h
])

(6.10)

for some h > 0. Computationally, the effect of the correction is a regularization in
the sense that the function Ln,h becomes smoother, with clearly identifiable local
minima. This is illustrated in Fig. 6.1 where Ln,h is plotted against d (for fixed
a and c) for h = 0 (left) and h = 0.1 (right), respectively. The correct value of
d = 0.3 is indicated by a dotted vertical line. Obviously, for h = 0, the function is
not suitable for minimization whereas the minimum for h = 0.1 is clearly visible
and close to the true value.

The function Ln,h can also be interpreted as a robust version of Ln in the follow-
ing sense. Suppose that εt are Gaussian and instead of Xt we observe a perturbed
process Yt = Xt + ζt where ζt are i.i.d. N(0, h)-distributed, and independent of Xt .
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Then var(Yt | Xs, s ≤ t −1) = σ 2
t +h so that the conditional log-likelihood function

of Y1, . . . , Yn is given by

Ln,Y (θ) = n−1
n∑

t=1

[
(Xt + ζt )

2

σ 2
t (θ) + h

+ log
(
σ 2

t (θ) + h
)]

.

Integrating out ζt , we obtain Eζ [Ln,Y (θ)] = Ln,h(θ).

6.2.2.5 Consistency

Let θ̂n,h be defined by minimizing Ln,h with respect to θ and denote by θ0 the true
value of θ . Sufficient conditions for almost sure consistency of θ̂n,h are: (a) θ0 ∈ Θ0

(with θ0 denoting the true parameter and Θ0 the interior of Θ) and Θ is compact;
(b) Ln,h(θ) is continuous and supθ |Ln,h(θ) − Lh(θ)| converges a.s. to zero where

Lh(θ) = E
[
Ln,h(θ)

]

and (c) Lh(θ) has a unique minimum at θ = θ0.
Continuity of Ln,h(θ) follows from continuity of σ 2

t (θ) discussed in the previous
section. Pointwise a.s. convergence of |Ln,h(θ)−Lh(θ)| follows from ergodicity of
σt (θ) (for each θ ∈ Θ) and

sup
θ∈Θ

E

[∣∣∣∣
X2

t + h

σ 2
t (θ) + h

+ log
(
σ 2

t (θ) + h
)∣∣∣∣

]
≤ const ·

{
E
[
X2

t

]+ h + sup
θ∈Θ

E
[
σ 2

t (θ)
]}

.

Since Θ is assumed to be compact, supθ∈Θ E[σ 2
t (θ)] < ∞ can be shown and thus

Birkhoff’s ergodic theorem implies |Ln,h(θ) − Lh(θ)| → 0 almost surely. The con-
vergence of supθ |Ln,h(θ) − Lh(θ)| follows from equicontinuity of Ln,h(θ) which
requires slightly more involved arguments (see Beran and Schützner 2009) involv-
ing certain moment conditions on εt .

The proof of (c) follows from

Lemma 6.4 If εt are continuous random variables with density function pε , then

P
(
σt (θ) = 0

)= 0 (for all t and θ),

P
(
σ 2

t (θ) = σ 2
t

(
θ0))= 1 =⇒ θ = θ0

and

θ �= θ0 =⇒ Lh(θ) > Lh

(
θ0).

Proof Defining the set Nt = {ω : σt (θ) = 0}, the first equation means that
P(Nt) = 0. To prove this, consider ω ∈ Nt ∩ Nc

t−1, i.e. we look at a realization
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of the process such that σt (θ) = 0 but σt−1(θ) �= 0. Then

0 = σt (θ) = a + b1(θ)

Xt−1︷ ︸︸ ︷
εt−1σt−1(θ) +

∞∑

j=2

bj (θ)Xt−j

so that

εt−1 = − 1

b1(θ)σt−1(θ)

(
a +

∞∑

j=2

bj (θ)Xt−j

)
.

However, the right-hand side involves only εs (s ≤ t − 2) which is independent
of the left-hand side εt−1. Therefore, since the εt ’s are assumed to be continu-
ous variables, this equality can only occur with probability zero. In other words,
P(Nt ∩ Nc

t−1) = 0. The same arguments lead to P(Nt,k) = 0 where

Nt,k =
k−1⋂

i=0

Nt−i ∩ Nc
t−k (k ≥ 1).

Since Nt =⋃∞
k=1 Nt,k , we obtain P(Nt ) = P(σt (θ) = 0) = 0.

Analogous arguments can be used to show that P(σ 2
t (θ) = σ 2

t (θ0)) = 1 implies
θ = θ0. Finally, the last statement in the lemma follows from

Lh(θ) − Lh

(
θ0)= E

[
σ 2

t (θ0) + h

σ 2
t (θ) + h

− log
σ 2

t (θ0) + h

σ 2
t (θ) + h

− 1

]

and the inequality u − logu − 1 > 0 (u �= 1). �

6.2.2.6 Asymptotic Normality

By similar arguments as for Ln,h, one can show that supθ ‖L̇n,h(θ) − L̇h(θ)‖ and
supθ ‖L̈n,h(θ) − L̈h(θ)‖ (with the matrix norm ‖A‖ =√tr(AT A)) converge to zero
almost surely. The asymptotic distribution of θ̂n,h can therefore be obtained by the
Taylor approximation

0 = Ln,h(θ̂n,h) ≈ L̇n,h

(
θ0)+ L̈n,h

(
θ0)(θ̂n,h − θ0)

≈ L̇n,h

(
θ0)+ L̈h

(
θ0)(θ̂n,h − θ0) (6.11)

implying

θ̂n,h − θ0 ≈ −[L̈h

(
θ0)]−1

L̇n,h

(
θ0),

where L̈h(θ) = E[L̈n,h(θ)]. Thus, apart from the deterministic matrix L̈h(θ
0), the

asymptotic distribution of θ̂n,h is determined by the asymptotic distribution of
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L̇n,h(θ
0) where

L̇n,h(θ) = n−1 ∂

∂θ

{
n∑

t=1

X2
t

σ 2
t (θ) + h

+ log
[
σ 2

t (θ) + h
]
}

= n−1
n∑

t=1

�̇t,h(θ)

with

�̇t,h(θ) = 2

(
1 − X2

t + h

σ 2
t (θ) + h

)
σt (θ)

σ 2
t (θ) + h

σ̇t (θ).

For θ = θ0, E[�̇t,h(θ
0) | εs, s ≤ t −1] = 0 so that �̇t,h(θ

0) is a martingale difference.
Therefore,

√
nL̇n,h

(
θ0)→

d
Z1

where Z1 is a normal random vector with zero mean and covariance matrix

Gh = E
[
�̇t,h

(
θ0)�̇T

t,h

(
θ0)]

= 4E

{
σ 6

t (θ0)[E(ε4
t ) − 1]

(σ 2
t (θ0) + h)4

σ̇t

(
θ0)σ̇ T

t

(
θ0)
}
.

For the matrix L̈h(θ
0), we have

L̈h

(
θ0)= Hh = 4E

[
σ 2

t (θ0)

(σ 2
t (θ0) + h)2

σ̇t

(
θ0)σ̇ T

t

(
θ0)
]
.

Thus, we obtain (see Beran and Schützner 2009):

Theorem 6.5 Suppose that Hh is nonsingular. Then, under suitable moment condi-
tions,

√
n
(
θ̂n,h − θ0)→ Z ∼ N(0,Vh)

d

with covariance matrix

Vh = H−1
h GhH

−1
h .

It is interesting to see that in general Hh need not be of full rank. A sufficient
condition for nonsingularity of Hh is that εt are continuous random variables. The
proof essentially follows from P(σt = 0) = 0. To see this, we have to consider the
quadratic form

uT Hhu = 4E

[
σ 2

t

(σ 2
t + h)2

uT σ̇t σ̇
T
t u

]
.
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Since σt is not zero with probability one, the condition uT Hhu = 0 can only be
true if P(σ̇t = 0) > 0 or if u = 0. Considering, for instance, the specific case with
θ = (a, c, d)T and bj = cjd−1 (j ≥ 1), the equation uT σ̇t = 0 can be written as

0 = u1
∂

∂a
σt + u2

∂

∂c
σt + u3

∂

∂d
σt

= u1 +
∞∑

j=2

(
u2j

d−1 + u3c log j · jd−1)Xt−j + u2σt−1εt−1.

Since P(σt−1 = 0) = 0, this can be rewritten as

−u2εt−1 = σ−1
t−1

[
u1 +

∞∑

j=2

(
u2j

d−1 + u3c log j · jd−1)Xt−j

]
.

However, the left-hand side is independent of the right-hand side. Since εt (and
hence also Xt ) has a continuous distribution, equality can only occur with positive
probability if all components of u are zero. In other words, Hh is of full rank. Note
that in a similar manner Gh can be shown to be positive definite.

It is interesting to look at the asymptotic covariance matrix of θ̂n,h for small
values of h. Letting h tend to zero, we obtain in the limit

lim
h→0

Vh = [E(ε4
t

)− 1
]
H−1

0

with

H0 = 4E

[
σ̇t (θ

0)σ̇ T
t (θ0)

σ 2
t (θ0)

]
.

In particular, if E[σ−2
t (θ0)] = ∞, then the asymptotic variance of θ̂1 = â is zero.

(Note, however, that this does not necessarily follow for the other components
θ̂2 = ĉ and θ̂3 = d̂ .) It is also remarkable that θ̂n,h has the same rate of conver-
gence, and formally also the same type of asymptotic covariance matrix, as esti-
mators of comparable parameters for GARCH(p,q) and ARCH(∞) processes (cf.
Berkes et al. 2003; Robinson and Zaffaroni 2006).

6.2.2.7 Estimation Given the Finite Past

Since σt depends on the complete past Xs (s ≤ t − 1), it cannot be calculated ex-
actly. The simplest approximation is obtained by truncating the sum, i.e. setting all
unobserved values Xs (s ≤ 0) equal to zero. This leads to the approximate estimator

θ∗
n,h := arg min

θ∈Θ
L∗

n,h(θ),
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where

L∗
n,h(θ) := 1

n

n∑

t=1

X2
t + h

σ̄ 2
t (θ) + h

+ ln
(
σ̄ 2

t (θ) + h
)

and

σ̄t (θ) = a(θ) +
t−1∑

j=1

bj (θ)Xt−j .

However, because of the slow decay bj ∼ cjd−1, the error σt (θ) − σ̄t (θ) may be
quite large (note that the error is larger for smaller values of t ). In fact, we have, as
t → ∞,

E
[(

σt (θ) − σ̄t (θ)
)2]=

∞∑

j=t

b2
j (c, d) ∼ c1t

2d−1.

The question is therefore whether this approximation changes the asymptotic distri-
bution of the estimator. As before, a Taylor expansion yields (cf. (6.11))

0 = L̇∗
n

(
θ∗
n,h

)= L̇∗
n,h(θ0) + L̈∗

n,h(θ̃ ) · (θ∗
n,h − θ0)

so that the asymptotic distribution of θ∗
n,h follows from the asymptotic distribution

of L̇∗
n,h(θ

0). The latter is the same as for L̇n,h(θ
0) provided that

Δn := √
n
(
L̇∗

n,h

(
θ0)− L̇n,h

(
θ0)) p→ 0

as n → ∞ which means that

1√
n

n∑

t=1

˙̄σt (θ)σ̄t (θ)(X2
t + h)

σ̄ 2
t (θ) + h

(
1

σ̄ 2
t (θ) + h

− 1

σ 2
t (θ) + h

)
→p 0.

Using the mean value theorem for (x2 + h)−1 and the asymptotic behaviour of
E[(σt (θ) − σ̄t (θ))2], an upper bound for E(|Δn|) can be given by E(|Δn|) ≤
const ·nd . Unfortunately, for d > 0, this bound does not converge to zero. The errors
E[(σt (θ) − σ̄t (θ))2] do not decay fast enough (in t ) to be negligible when summing
over all values of t . As a simple remedy, Beran and Schützner (2009) propose to use
only those time points where a sufficient number of past observations is available.
Specifically, let mn = [nβ ] − 1 for some 0 < β < 1 where [·] is denotes the integer
part,

Ln,h;β(θ) := 1

mn

n∑

t=n−mn

X2
t + ε

σ̄ 2
t (θ) + ε

+ ln
(
σ̄ 2

t (θ) + ε
)

and

θ
(β)
n,h := arg min

θ∈Θ
Ln,h;β(θ).
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Then, by similar arguments as before, and under suitable moment conditions,

n
β
2
(
θ

(β)
n,h − θ0) d→ N

(
0,H−1

h GhH
−1
h

)

provided that 0 < β < 1 − 2d . This means that the asymptotic normal distribution

is the same as for θ̂n,h; however, the rate of convergence is much slower than n− 1
2 .

For the “best” rate of nd− 1
2 , one can at least show E[|θ(β)

n,h − θ0|] ∼ c2n
−( 1

2 −d),
but it seems more difficult to derive the asymptotic distribution. The problem with a
slower rate becomes worse if the long memory becomes stronger because β cannot

exceed 1 − 2d . For instance, for d = 0.1 we have n
1
2 −d = n−0.4 whereas for d =

0.4 the rate of convergence is n−0.1 only. This makes a huge difference even for
moderate sample sizes. For instance, for n = 1000, n−0.1/n−0.4 ≈ 7.9.

Although the explicit proofs in Beran and Schützner (2009) are written down for
the specific case bj = cjd−1 (θ = (a, c, d)T ) the generalization to general weights
with bj ∼ cjd−1 follows directly. A natural starting point is for instance given by
coefficients defined by the fractional differencing operator, i.e. coefficients in the
series (in z ∈ C)

∞∑

j=1

bj z
j = c(d)

[
(1 − z)−d − 1

]

where

c2(d) ≤
[ ∞∑

j=1

(−d

j

)2
]−1

(to ensure stationarity, see Sect. 2.1.3.6). This can easily be extended by multiply-
ing the

∑∞
j=1 bj z

j by a function ψ(z)/ϕ(z) corresponding to an ARMA filter and

adjusting the constant to satisfy the stationarity condition
∑

b2
j < 1.

6.3 Statistical Inference for ARCH(∞) Processes

In this section, we briefly mention the existing theory for ARCH(∞) models. Lo-
cation estimation mimics the results for SV and LARCH models; however, there
are no available theorems for M-estimators. As for parametric estimation of depen-
dence parameters, we note that the maximum likelihood estimation is much easier
than in the LARCH(∞) case (Berkes and Horváth 2004). Furthermore, the MLE
seems to be the most suitable approach. The Whittle estimator applied to squared
sequences is no longer an approximation of the MLE and is indeed less efficient
than the actual MLE (Giraitis and Robinson 2001).
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6.3.1 Location Estimation

As in Sect. 6.2.1, we consider a time series Yt = μ+Xt ; however, now the residuals
Xt are generated by an ARCH(∞) process

Xt = ξtσt , (6.12)

σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j . (6.13)

The random variables ξt are such that E(ξt ) = 0 and σ 2
ξ = E(ξ2

t ) = 1. Furthermore,
b0 > 0, bj ≥ 0 and

∑
bj < 1 (see Sect. 4.2.7). Then the central limit theorem holds

for Sn =∑n
t=1 Xt (see Corollary 4.4) so that

√
n(ȳ − μ) →

d
N
(
0, σ 2

X

)

with

σ 2
X = b0

1 −∑∞
j=1 bj

.

Thus, an approximate (1 − α)-confidence interval for μ can be given by

x̄ ± z1− α
2

σX√
n
.

Since var(Y1) = var(X1), the parameter σX can be estimated based on the observed
data Y1, . . . , Yn.

6.3.2 Estimation of Dependence Parameters

Consider a parametric ARCH(∞) process with μ = 0 and coefficients bj = bj (θ
0)

(j ≥ 0) depending on a finite dimensional parameter vector θ0 = (b0
0, ϑ

0). As in
the LARCH case, quasi maximum likelihood estimation of θ0 can be obtained by
maximizing the Gaussian conditional log-likelihood function

−2

n
Ln(θ) = 1

n

n∑

t=1

X2
t

σ 2
t (θ)

+ logσ 2
t (θ) (6.14)

where σ 2
t (θ) = b0 +∑∞

j=1 bjX
2
t−j . In contrast to LARCH processes, no problems

with respect to summability and differentiability of σ 2
t (θ) occur because the coef-

ficients bj are absolutely summable. For the same reason, the approximation of σ 2
t

by the truncated sum b0 +∑t−1
j=1 bjX

2
t−j is accurate enough to be negligible asymp-

totically. Moreover, by definition, σ 2
t is bounded away from zero by b0. Asymptotic
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normality of θ̂MLE = arg maxLn is shown in Weiss (1986) for ARCH(p) processes,
Lee and Hansen (1994) and Lumsdaine (1996) for the GARCH(1, 1) model and
Hall and Yao (2003) for GARCH(p,q) models. Similar results are also given in
Berkes et al. (2003), Berkes and Horváth (2004). For more general ARCH(∞) pro-
cesses, including the case of hyperbolically decaying coefficients bj , Robinson and
Zaffaroni (2006) derived the consistency of θ̂MLE.

Results on the asymptotic distribution for general ARCH(∞) processes are
known for an alternative estimator (Giraitis and Robinson 2001), namely the Whit-
tle estimator θ̂Whittle based on the squared observations X2

t (see also Bollerslev 1986
and Robinson and Zaffaroni 1997, 1998 for earlier uses of Whittle estimation in
volatility models). The idea is to write X2

t in the autoregressive form

X2
t = E

[
X2

t | Ft−1
]+ X2

t − E
[
X2

t | Ft−1
]

= σ 2
t + X2

t − σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j + ζt

with ζt = X2
t − σ 2

t and Ft the σ -algebra generated by Xs (s ≤ t ). The residual
process is a martingale difference with variance σ 2

ζ = var(ζt ). Since the equation
can also be written as

X̃2
t = b−1

0 X2
t = 1 +

∞∑

j=1

b−1
0 bjX

2
t−j + b−1

0 ζt

= 1 +
∞∑

j=1

b̃j X̃
2
t−j + ζ̃t ,

we may assume without loss of generality that b0 = 1. Under moment assumptions
(in particular, fourth-order stationarity of Xt ), X2

t then has the spectral density

fX2

(
λ; θ0)= σ 2

ζ

2π
gX2

(
λ; θ0)= σ 2

ζ

2π

∣∣∣∣∣1 −
∞∑

j=1

bj e
−jλ

∣∣∣∣∣

−2

.

The Whittle estimator θ̂Whittle of θ0 based on this spectral density is obtained by
minimizing

Ln,Whittle(θ) = 2

n

[(n−1)/2]∑

j=1

In,X2(λj )

gX2(λj ; θ)

with respect to θ , where In,X2 is the periodogram of the sequence X2
t evaluated

at the Fourier frequencies λj = 2πj/n (cf. (5.42)). It should be noted, however,
that, in contrast to Ln, the function Ln,Whittle is not associated with a likelihood.
In particular, for the case of Gaussian innovations ξt , Ln essentially corresponds to
a (conditional) log-likelihood function whereas this is not the case for Ln,Whittle.



554 6 Statistical Inference for Nonlinear Processes

The reason is simply that the process X2
t is not Gaussian. This implies that, for

Gaussian ξt , θ̂Whittle is asymptotically less efficient than θ̂MLE. Specifically, Giraitis
and Robinson (2001) derive for general ARCH(∞) processes (and suitable moment
conditions) the limit

√
n
(
θ̂Whittle − θ0)→

d
N
(
0,2W−1 + W−1V W−1)

where

W = 1

2π

∫ π

−π

∂

∂θ
loggX2(λ)

[
∂

∂θ
loggX2(λ)

]T
dλ,

V = 2π

σ 2
ζ

∫ π

−π

∂

∂θ

1

gX2(λ1)

[
∂

∂θ

1

gX2(λ2)

]T
h(λ1,−λ2, λ2) dλ1 dλ2.

Here h(λ1,−λ2, λ2) denotes the fourth-order cumulant spectral density of X2
t de-

fined by

h(λ1, λ2, λ3) = 1

(2π)3

∞∑

k1,k2,k3=−∞
exp
(−i(k1λ1 + k2λ2 + k3λ3)

)
c0,k1,k2,k3

where c0,k1,k2,k3 = cum(X2
t ,X

2
t+k1

,X2
t+k2

,X2
t+k3

) is the joint cumulant of the vari-

ables Y1 = X2
t , Y2 = X2

t+k1
, Y3 = X2

t+k2
, Y4 = X2

t+k3
. Recall that the cumulants

κj1,...,jm = cum(Y
j1
1 , Y

j2
2 , . . .) of a random vector Y ∈ R

m are the coefficients in the
series expansion of the cumulant generating function

κ(u) = logE
[
exp
(
iuT Y

)]=
∞∑

j1,...,jm=0

κj1,...,jm

u
j1
1 · · ·ujm

m

j1! · · · jm! ij1+···+jm.

For other estimators and a nice overview on estimation for ARCH(∞) processes,
see, e.g. Giraitis et al. (2006).
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