
Chapter 4
Limit Theorems

4.1 Tools

4.1.1 Introduction

Most statistical procedures in time series analysis (and in fact statistical inference in
general) are based on asymptotic results. Limit theorems are therefore a fundamental
part of statistical inference. Here we first review very briefly a few of the basic
principles and results needed for deriving limit theorems in the context of long-
memory and related processes.

4.1.2 How to Derive Limit Theorems?

To prove the convergence of an appropriately normalized process Sn(·), one has to
verify the convergence of finite-dimensional distributions and tightness. With re-
spect to the first issue, we usually prove just one-dimensional convergence because
in most situations extensions to the multivariate case are straightforward. The tools
we describe here are applicable to many statistics, not only partial sums. On the
other hand, most of the statistics we will consider are just partial sums.

4.1.2.1 How to Verify Finite-Dimensional Convergence?

Suppose that Xt (t ∈N) is a stationary process. One of the common methods for de-
riving limit theorems is to evaluate its characteristic function. This is however rarely
successful in a long-memory setting. An alternative method for partial sums of long-
memory sequences is to study the asymptotic behaviour of cumulants. Recall that
for a given random variable X, its cumulants are the coefficients in the power series
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expansion of κX(z) = logE(ezX), i.e. κj = κj (X) in

κX(z) =
∞∑

j=0

zj

j ! κj .

In particular, κ1 = μX = E(X), κ2 = σ 2
X = var(X). If E(X) = 0, then κ4 =

E(X4) − 3E2(X2). One of the useful properties of cumulants is that for a normal
random variable X, we have κj = 0 for all j ≥ 3, and this is only the case for the
normal distribution. Moreover, a normal distribution is uniquely determined by its
moments.

The justification for the approach based on cumulants is the following well-
known result (see e.g. Rao 1965):

Theorem 4.1 Let Sn (n ∈ N) be a sequence of random variables such that
E[|Sn|j ] < ∞ for all j , and let Y be a random variable whose distribution is
uniquely determined by its moments μj = E(Y j ) (j ∈ N). Then the convergence
of all cumulants κj (Sn) of Sn (j ∈ N) to the cumulants κj (Y ) of Y implies that Sn

converges to Y in distribution.

Cumulants are useful if all moments exist. An approach that does not require
finiteness of higher-order moments is referred to as a K-dependent approximation
method and is adapted from Billingsley (1968, Theorem 4.2).

Proposition 4.1 Let Xt (t ∈ N) be a stationary sequence, cn a sequence of con-
stants, and Xt,K (t ∈ N) a sequence of K-dependent random variables. Define
Sn =∑n

t=1 Xt and Sn,K =∑n
t=1 Xt,K , and suppose that the following holds:

(a) c−1
n Sn,K

d→ SK as n → ∞;

(b) SK
P→ S as K → ∞;

(c)

lim
K→∞ lim sup

n→∞
P
(
c−1
n |Sn,K − Sn| > γ

)= 0

for each γ > 0.

Then, as n → ∞,

c−1
n Sn

d→ S.

To apply this theorem, we mention that if v2
K → v2 as K → ∞, then N(0, v2

K)
d→

N(0, v2). Furthermore, this approach requires the following result for K-dependent
sequences.
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Lemma 4.1 Let Xt,K (t ∈ N) be a stationary sequence of K-dependent random
variables with var(X0,K) < ∞, and define Sn,K =∑n

t=1 Xt,K . Then

n− 1
2 Sn,K

d→ σKN(0,1),

where σ 2
K = var(X0,K) + 2

∑K
j=1 cov(X0,K,Xj,K).

Another useful result is the following martingale central limit theorem.

Lemma 4.2 Let (Xt,n,Ft ) (t ∈ N, n ≥ 1) be a martingale difference array, and
define X̃t,n = Xt,n − E(Xt,n|Ft−1). Furthermore, assume that the following condi-
tions hold:

(a) for each δ > 0,
n∑

t=1

E
(
X̃2

t,n1
{|X̃t,n| > δ

})→ 0,

(b)
n∑

t=1

E
(
X̃2

t,n

∣∣Ft−1
) p→ 1.

Then
n∑

t=1

Xt,n
d→ N(0,1).

4.1.2.2 How to Verify Tightness?

There are several ways to prove tightness. A particularly useful result given in Theo-
rem 15.6 of Billingsley (1968) provides sufficient conditions for tightness in D (the
space of right-continuous functions with left limits):

Lemma 4.3 A stochastic process Yn(u) (u ∈ [0,1]) is tight if there exist η > 1,
a > 0 and a nondecreasing function g such that for all v1 < u < v2 ∈ [0,1],

E
[∣∣Yn(v2) − Yn(u)

∣∣a∣∣Yn(u) − Yn(v1)
∣∣a]≤ (g(v2) − g(v1)

)η
.

In particular, assume that Xt (t ∈ N) is a stationary sequence of random variables
and G is a function such that E[G(Xt)] = 0. Consider the partial sum process

Sn(u) =
[nu]∑

t=1

G(Xt)
(
u ∈ [0,1]). (4.1)

Applying Lemma 4.3 to the partial sum process Yn(u) = d−1
n Sn(u) yields the fol-

lowing result (see Theorem 2.1 in Taqqu 1975).
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Lemma 4.4 Assume that

(a) E[G(X1)] = 0 and E[G2(X1)] < ∞.
(b) d2

n ∼ n2d+1LS(n) with − 1
2 ≤ d < 1

2 and a slowly varying function LS .
(c) E[S2

n(1)] = O(d2
n).

(d) There exists a > (2d + 1)−1 such that E(|Sn(1)|2a) = O((E[S2
n(1)])a).

Then d−1
n Sn(·) is tight.

Proof Assume for simplicity that LS ≡ 1. We note that the process Sn(u), u ∈ [0,1],
has stationary increments. In particular, for 0 ≤ u ≤ v ≤ 1, Sn(v) − Sn(u)

d=
Sn(v − u). Thus, applying the Cauchy–Schwarz inequality and stationarity of in-
crements, we have for v1 < u < v2, and a suitable constant 0 < C < ∞,

d−2a
n E

[∣∣Sn(v2) − Sn(u)
∣∣a∣∣Sn(u) − Sn(v1)

∣∣a]

≤ d−2a
n

(
E
[∣∣Sn(v2 − u)

∣∣2a])1/2(
E
[∣∣Sn(u − v1)

∣∣2a])1/2

≤ d−2a
n d2a

n

{
(v2 − u)2d+1(u − v1)

2d+1}a/2
C ≤ {(v2 − u)(u − v1)

}(d+ 1
2 )a

C

≤ (v2 − v1)
(2d+1)aC.

Since (2d + 1)a > 1, Billingsley’s criterium is fulfilled, and the process is tight. �

If we restrict ourselves to d > 0, then Lemma 4.3 leads to a particularly use-
ful criterion in the long-memory case because it amounts to finding a bound on
E[(Yn(v2) − Yn(v1))

2] only.

Lemma 4.5 Assume that Yn(u) (u ∈ [0,1]) is a stochastic process with stationary
increments. If

E
[∣∣Yn(v2) − Yn(v1)

∣∣2]≤ (v2 − v1)
2d+1, (4.2)

d > 0, then the process is tight.

Indeed, if we consider again Yn(u) = d−1
n Sn(u), then

d−2
n E

[∣∣Sn(v2) − Sn(u)
∣∣∣∣Sn(u) − Sn(v1)

∣∣]

≤ d−2
n

(
E
[∣∣Sn(v2 − u)

∣∣2])1/2(
E
[∣∣Sn(u − v1)

∣∣2])1/2

≤ d−2
n d2

n

{
(v2 − u)2d+1(u − v1)

2d+1}1/2
C ≤ {(v2 − u)(u − v1)

}(d+ 1
2 )

C

≤ (v2 − v1)
(2d+1)C,

and the exponent exceeds one since d > 0. We note that this approach does not
work when d ≤ 0. Hence, in a sense, showing tightness in a long-memory case is
easier than in a weakly dependent and antipersistent situation. We note further that
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condition (4.2) is almost the same as a moment condition for tightness of processes
in C; see Theorem 12.3 in Billingsley (1968).

4.1.2.3 Functional Central Limit Theorem for Processes

The following result is used to establish a functional limit theorem for a sum of
independent stochastic processes; see e.g. p. 226 of Whitt (2002).

Lemma 4.6 Let Xt(u) (u ∈ [0,∞), t ∈N) be an i.i.d. sequence of processes viewed
as random elements in D[0,∞). If E(X1(u)) = 0, E(X2

1(u)) < ∞ for each u ∈
[0,∞) and there exist continuous nondecreasing functions f , g and numbers a >

1/2, b > 1 such that

E
[(

X1(v) − X1(u)
)2] ≤ (g(v) − g(u)

)a
,

E
[(

X1(v2) − X1(u)
)2(

X1(u) − X1(v1)
)2] ≤ (g(v2) − g(v1)

)b
,

for all 0 ≤ u < v ≤ ∞, 0 ≤ v1 < u < v2 < ∞, then

n−1/2
n∑

t=1

Xt(u) ⇒ G(u),

where G is a zero-mean Gaussian process with continuous sample paths, cov(G(0),

G(u)) = cov(X1(0),X1(u)), and ⇒ denotes weak convergence in D[0,∞).

4.1.2.4 Functional Central Limit Theorem for Inverses

The following result, known as Vervaat’s lemma (see Vervaat 1972 or De Haan
and Ferreira 2006), plays a crucial role in deriving limit theorems for appropri-
ately scaled and normalized quantile processes (as inverses of empirical processes;
see Sect. 4.8.2), or counting processes (as inverses of partial sum processes; see
Sect. 4.9).

Lemma 4.7 (FCLT for Inverse Functions) Denote by D0([0,∞)) the subset of
D[0,∞) consisting of non-decreasing, non-negative, unbounded functions. Let
yn(·) (n ≥ 1) be a sequence of elements of D0([0,∞)). Moreover, let y(·) be a
continuous function on [0,∞), and cn (n ≥ 1) a sequence of positive numbers such
that cn → 0. If

yn(u) − u

cn

→ y(u)

uniformly on compact sets in [0,∞), then

y−1
n (u) − u

cn

→ −y(u)
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uniformly on compact sets in [0,∞), where y−1
n (u) := inf{v : yn(v) > u} is the

generalized inverse of yn(·).

It is important to mention that the continuity assumption on y(·) cannot be re-
laxed. If the limiting function has jumps, then the uniform convergence of the in-
verse processes does not follow necessarily. In particular, this theorem will be appli-
cable to situations where we have weak convergence in D[0,1] equipped with the
standard J1-topology, to a continuous process, and from that we will conclude weak
convergence in that topology for the inverse processes. If the limiting process has
jumps, we may not be able to conclude weak convergence of the inverse processes
in the same topology, even though we may have weak convergence of the original
processes. Nevertheless, at least finite-dimensional convergence follows. We refer
to Whitt (2002, Chap. 13) for more details.

It is also important to see that in this lemma we assume the identity function
to be the correct quantity to subtract. Thus, for instance, when dealing with the
empirical distribution function Fn(x) = n−1∑n

t=1 1{Xt ≤ x} (where X ∼ FX), the
result actually refers to F̃n(x) = n−1∑n

t=1 1{FX(Xt) ≤ x} and the corresponding
inverse. The reason is that FX(X) is uniformly distributed, so that we are in the
situation described in Vervaat’s lemma. The result for Fn (and F−1

n ) then follows by
the continuous mapping theorem.

4.1.3 Spectral Representation of Stationary Sequences

In this section we collect several standard results on spectral theory for stationary
processes. Some of these properties have been used in the preliminary discussion on
long memory, see Chap. 1. We state these results without a reference since they can
be found in standard textbooks on time series such as Brockwell and Davis (1991).

Recall that for a zero-mean second-order stationary process Xt (t ∈ Z) with au-
tocovariances γX(k), there is a spectral distribution function F such that

γX(k) =
∫ π

−π

eikλ dF (λ).

Moreover, Xt has a spectral representation of the form

Xt(ω) =
∫ π

−π

eitλ dM(λ;ω),

where M(·;ω) is a spectral measure (for simplicity, we will often write M(λ) in-
stead of M(λ;ω)). The spectral measure is a complex-valued zero mean stochastic
process on [−π,π] with (a.s.) right-continuous sample paths and uncorrelated (but
not necessarily independent) increments with a variance that is directly related to F .
More specifically, we have

cov
(
dM(λ), dM(ν)

)= E
[
dM(λ)dM(ν)

]= 0 (λ 
= ν),

var
(
dM(λ)

)= E
[∣∣dM(λ)

∣∣2]= dF(λ).
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In particular, if the spectral density exists, then we may write the infinitesimal equa-
tion var(dM(λ)) = E[|dM(λ)|2] = f (λ)dλ.

It is important to distinguish between the role of the spectral distribution F and
the spectral measure M . The spectral distribution determines the autocovariance
structure, i.e. linear dependence, of the process only. In contrast, the spectral mea-
sure fully specifies the process (in the sense of the probability distribution of sample
paths). In the special case where M = Mε with E[|dMε(λ)|2] = σ 2

ε /(2π) · dλ we
obtain a white noise process with variance σ 2

ε where “white noise” stands for un-
correlated observations. This follows directly from the spectral representation

εt =
∫ π

−π

eitλ dMε(λ) (t ∈ Z) (4.3)

since

E[εt εs] =
∫ π

−π

∫ π

−π

ei(tλ−sν)E
[
dMε(λ)dMε(ν)

]

= σ 2
ε

2π

∫ π

−π

ei(t−s)λ dλ = σ 2
ε δts .

The spectral density of εt is fε(λ) = σ 2
ε /(2π). One should bear in mind that, in

general, this does not imply the independence of εt (t ∈ Z). Such a direct conclusion
can only be made if M(λ;ω) is a Gaussian process.

A zero mean, purely nondeterministic second-order stationary process always
has a Wold decomposition

Xt =
∞∑

j=0

aj εt−j = A(B)εt (t ∈ Z)

with uncorrelated (i.e. “white noise”) innovations εt and A(z) =∑aj z
j such that∑∞

j=0 a2
j < ∞. Therefore, the spectral measure and spectral distribution have a sim-

ple form, namely (with equality in the L2(Ω) sense)

Xt =
∫ π

−π

eitλ dMX(λ) =
∫ π

−π

eitλA
(
e−iλ

)
dMε(λ) (t ∈ Z). (4.4)

In other words,

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ).

The spectral density

fX(λ) = 1

2π

∞∑

k=∞
γX(k) exp(−iλk)
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is then given by

fX(λ) = σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

aj e
−ijλ

∣∣∣∣∣

2

= σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2.

These formulas are valid generally. More specifically, if we consider linear pro-
cesses only, the εt s in the Wold representation are not only uncorrelated but even
independent. This means that the increments of Mε are independent (instead of be-
ing just uncorrelated). Even more specifically, a Gaussian process is a linear pro-
cess that has normally distributed εt s, namely εt ∼ N(0, σ 2

ε ). This means that we
are in the following situation. The measure Mε is a Gaussian spectral measure such
that for all sets A, E[Mε(A)] = 0, Eε[M(A ∩ B)] = 0 for all disjoint sets A and
B , and E[Mε(A)Mε(A)] = σ 2

ε |A|/(2π), where | · | denotes the Lebesgue mea-
sure. Moreover, for all λ1 ≤ λ2 < λ3 ≤ λ4, the increments Mε(λ4) − Mε(λ3) and
Mε(λ2) − Mε(λ1) are independent. (For simplicity of notation, we will mostly as-
sume that σ 2

ε = 1, which means that Mε(·) is a spectral measure of an i.i.d. N(0,1)

sequence.) The Gaussian process Xt is then given by

Xt =
∞∑

j=0

aj εt−j =
∫ π

−π

eitλ dMX(λ) (t ∈N), (4.5)

where MX is the Gaussian spectral measure defined by

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ) =: √2πa(λ)dMε(λ).

Note that in the notation with a(λ), the spectral density can be written as

fX(λ) = σ 2
ε

∣∣a(λ)
∣∣2.

Thus, for σ 2
ε = 1, we have the identity fX(λ) = |a(λ)|2.

Another result that is very useful in many situations, such as prediction or (Gaus-
sian) maximum likelihood estimation, is the following factorization of the spectral
density. Let us write logfX as a Fourier series

logfX(λ) =
∞∑

j=−∞
αje

−ijλ

with coefficients

αj = α−j = 1

2π

∫ π

−π

eijλ logfX(λ)dλ. (4.6)

Then we obtain the factorization

fX(λ) = exp(α0)
∣∣A
(
e−iλ

)∣∣2 = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 =: σ 2
ε

2π
hX(λ), (4.7)
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where

A(z) =
∞∑

j=0

aj z
j = exp

( ∞∑

j=1

αjz
j

)

and

σ 2
ε

2π
= exp(α0).

The last equation, together with (4.6), implies

α0 = 1

2π

∫ π

−π

logfX(λ)dλ = logσ 2
ε − log 2π.

For the function hX(·) defined in (4.7), we therefore obtain

∫ π

−π

loghX(λ)dλ = 0. (4.8)

This property is particularly useful for the asymptotic theory of (Gaussian) quasi-
maximum likelihood estimation.

Finally, the following lemma is useful in spectral analysis of stationary sequences
(see Lemma 2 in Moulines et al. 2007a). Consider the spectral radius Sp(A) of an
n × n matrix A, defined as the maximal absolute eigenvalue, or

Sp(A) = sup
x∈Rn:‖x‖≤1

xT Ax.

Now let A = Σn = [γX(i − j)]i,j=1,...,n be the covariance matrix of X =
(X1, . . . ,Xn)

T , where Xt is a zero-mean stationary process with spectral density
fX . Then

xT Ax =
n∑

j,l=1

γX(j − l)xj xl

=
∫ π

−π

fX(λ)

∣∣∣∣∣

n∑

j=1

xj exp(−ijλ)

∣∣∣∣∣

2

dλ

≤ sup
λ∈[−π,π]

∣∣fX(λ)
∣∣
∫ π

−π

∣∣∣∣∣

n∑

j=1

xj exp(−ijλ)

∣∣∣∣∣

2

dλ = 2π |x|2 sup
λ∈[−π,π]

∣∣fX(λ)
∣∣,

where the last expression follows from the Parseval identity. Hence, we have the
following result.
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Lemma 4.8 Assume that Xt (t ∈ Z) is a stationary process with the spectral den-
sity fX . Assume that Σn is the covariance matrix of X1, . . . ,Xn. Then

Sp(Σn) ≤ 2π sup
λ∈[−π,π]

∣∣fX(λ)
∣∣.

4.2 Limit Theorems for Sums with Finite Moments

4.2.1 Introduction

Let Xt (t ∈ N) be a stationary process. The asymptotic behaviour of partial sums

Sn(u) = Sn,G(u) =
[nu]∑

t=1

G(Xt) (4.9)

is at the core of probability theory. In this section we present limit theorems for
partial sums associated with long-memory or antipersistent processes. Two types
of distinctions have to be made. One is between linear and nonlinear processes.
The other is between processes with finite and infinite variance. The case of infinite
variance is studied in Sect. 4.3. Depending on which of these cases is considered,
different results and mathematical techniques are required.

In this section we discuss finite-variance processes only. We will begin our ex-
position by assuming that Xt (t ∈ N) is a Gaussian process, since computations and
proofs are technically less challenging than for instance for general Appell poly-
nomials. The limiting phenomena related to partial sums of subordinated Gaussian
sequences were observed first by Rosenblatt (1961) and then developed indepen-
dently by Taqqu (1975, 1977, 1979), Dobrushin (1980) and Dobrushin and Major
(1979). Further developments can be found in Breuer and Major (1983), Giraitis
and Surgailis (1985), Ho and Sun (1987, 1990), Dehling and Taqqu (1989a, 1989b)
and Arcones (1994). Although the original technique in Taqqu (1975) to show con-
vergence to the so-called Hermite–Rosenblatt distribution was based on character-
istic functions, the common method to obtain a non-central limit theorem is based
on (multiple) Wiener–Itô integrals, together with the diagram formula. For long-
memory linear processes, the first result was obtained in Davydov (1970a, 1970b);
see also Gorodetskii (1977), Lang and Soulier (2000), Wang et al. (2003).

As for subordinated linear processes, there are two common approaches: Ap-
pell polynomials (Surgailis 1981, 1982; Giraitis 1985; Giraitis and Surgailis 1986,
1989; Avram and Taqqu 1987; Surgailis and Vaičiulis 1999; Surgailis 2000; also see
Surgailis 2003 for a review) and a martingale decomposition (Ho and Hsing 1996,
1997; Giraitis and Surgailis 1999; Wu 2003; see also Hsing 2000 for a review).

The theory for nonlinear models with long memory is less well developed.
EGARCH-type models were considered in Surgailis and Viano (2002), whereas re-
sults for LARCH(∞) processes can be found for instance in Giraitis et al. (2000c),
Giraitis and Surgailis (2002), Berkes and Horváth (2003), Beran (2006).
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4.2.2 Normalizing Constants for Stationary Processes

Before getting into the details of limiting distributions, a first question can be an-
swered relatively easily, namely which normalizing sequences should be used to
obtain nondegenerate limits. Let Sn =∑n

t=1 Xt , where Xt (t ∈N) is a stationary se-
quence with appropriate moment conditions. We consider the asymptotic behaviour
of var(Sn) in three cases: long memory, short memory and antipersistence.

Lemma 4.9 (Long Memory) Let Xt (t ∈N) be a stationary sequence with γX(k) ∼
Lγ (k)k2d−1 (k → ∞) for some 0 < d < 1

2 , where Lγ is slowly varying at infinity.
Then, as n → ∞,

var(Sn) ∼ LS(n)n2d+1 (4.10)

with

LS(n) = L1(n) = C1Lγ (n) = 1

d (2d + 1)
Lγ (n). (4.11)

Proof We have

var(Sn) = n

n−1∑

k=−(n−1)

(
1 − |k|

n

)
γX(k)

∼ n

n−1∑

k=−(n−1)
k 
=0

Lγ (k)|k|2d−1 −
n−1∑

k=−(n−1)
k 
=0

Lγ (k)|k|2d .

The last expression can be written as

Lγ (n)n2d+1

[
n−1∑

k=−(n−1)
k 
=0

Lγ (k)

Lγ (n)

( |k|
p

)2d−1

n−1

−
n−1∑

k=−(n−1)
k 
=0

Lγ (k)

Lγ (n)

( |k|
n

)2d

n−1

]

∼ 2Lγ (n)n2d+1
[∫ 1

0
u2d−1 du −

∫ 1

0
u2d du

]

= 2Lγ (n)n2d+1
(

1

2d
− 1

2d + 1

)
= Lγ (n)

d(2d + 1)
n2d+1. �

Lemma 4.10 (Short Memory) Let Xt (t ∈ N) be a stationary sequence with∑∞
k=−∞ γX(k) > 0 and

∑∞
k=−∞ |γX(k)| < ∞. Then, as n → ∞,

var(Sn) ∼ cSn (4.12)
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with

cS =
∞∑

k=−∞
γX(k). (4.13)

Proof Cesaro summability implies

n−1∑

k=−(n−1)

k

n
γX(k) → 0,

so that

var(Sn) ∼ n

n−1∑

k=−(n−1)

γX(k) ∼ cSn. �

Lemma 4.11 (Antipersistence) Let Xt (t ∈ N) be a stationary sequence with
γX(k) ∼ Lγ (k)k2d−1 (k → ∞) for some − 1

2 < d < 0, where Lγ is slowly varying
at infinity, and

∞∑

k=−∞
γX(k) = 0.

Then, as n → ∞,

var(Sn) ∼ LS(n)n2d+1 (4.14)

with

LS(n) = 1

d(2d + 1)
Lγ (n). (4.15)

Proof

n−1∑

k=−(n−1)

γX(k) = −2
∞∑

k=n

γX(k) ∼ −2Lγ (n)

∞∑

k=n

k2d−1

∼ −2Lγ (n)n2d

∫ ∞

1
u2d−1 du = 2Lγ (n)

2d
n2d .

Then the result follows by the same arguments as in the long-memory case. �

Note that in the proof of Lemma 4.11, the Riemann approximation could not be
applied to

∑n−1
k=−(n−1) γX(k) directly because u2d−1 is not integrable at the origin

for d < 0. Note also that in the antipersistent case, Lγ (k) < 0 for k large enough.
However, since Lγ (k) is multiplied by d−1, the slowly varying function LS(n) is
positive asymptotically.
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Taking into account Theorem 1.3, a unified formula including (4.10), (4.12)
and (4.14) can be written in terms of the spectral density. Using the notation

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)

and

ν(d) = 2 sinπd

d(2d + 1)
Γ (1 − 2d) (d 
= 0),

ν(0) = lim
d→0

ν(d) = 2π,

(4.16)

we have

var(Sn) ∼ ν(d)Lf

(
n−1)n2d+1 ∼ ν(d)fX

(
n−1)n.

4.2.3 Subordinated Gaussian Processes

We begin our exposition by assuming that Xt (t ∈ N) are normal random variables
because computations and proofs are technically less challenging than in the case of
Appell polynomials, for instance. The limiting phenomena related to partial sums
of subordinated Gaussian sequences were first observed by Rosenblatt (1961) and
then developed independently by Taqqu (1975, 1977, 1979) Dobrushin (1980) and
Dobrushin and Major (1979). Further developments can be found in Breuer and
Major (1983), Giraitis and Surgailis (1985), Ho and Sun (1987, 1990) and Arcones
(1994). Although the original technique in Taqqu (1975) to show convergence to
the so-called Hermite–Rosenblatt distribution was based on characteristic functions,
the common method to obtain non-central limit theorems is based on (multiple)
Wiener–Itô integrals, together with the diagram formula.

4.2.3.1 Moment Bounds and Normalizing Constants

Recall from Sect. 3.1.2 that each function G(·) in L2(R, φ) with φ(x) = (2π)−1/2 ×
exp(−x2/2) can be expanded as

G(X) = E
[
G(X)

]+
∞∑

l=1

J (l)

l! Hl(X) = E
[
G(X)

]+
∞∑

l=m

J (l)

l! Hl(X),

where J (l) = E[G(X)Hl(X)], X is a standard Gaussian random variable, and m

is the Hermite rank of G (i.e. the smallest m ≥ 1 such that J (m) 
= 0). Moreover,
recall the formula (3.16) for Hm(

∑l
j=1 ajxj ),

Hm

(
l∑

j=1

ajxj

)
=

∑

m1+···+mk=m

m!
m1! . . .mk!

l∏

j=1

a
mj

j Hmj
(xj ). (4.17)
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This was used for deriving the formula for covariances of Hermite polynomials
given in Lemma 3.5. For convenience, we repeat the result here:

Lemma 4.12 Let X1, X2 be a pair of jointly standard normal random variables
with covariance γ = cov(X1,X2). Then

cov
(
Hl(X1),Hl(X2)

)= l!γ l, (4.18)

whereas for j 
= l,

cov
(
Hj(X1),Hl(X2)

)= 0. (4.19)

In particular, assume now that

γX(k) ∼ Lγ (k)k2d−1

with d ∈ (0,1/2), and consider the sum of Hm(Xt). From Lemma 4.12 we see
that if d > 1 − 1

2m−1, the autocovariance γHm(k) = cov(Hm(Xt),Hm(Xt+k)) of the
transformed process Hm(Xt) is not summable because it is (up to the slowly varying
function) of the order km(2d−1) with m(2d − 1) > −1. Using the same argument as
in the proof of Lemma 4.9, we then obtain

var

(
n∑

t=1

Hm(Xt)

)
= m!

n∑

k=1

n∑

j=1

γ m
X (j − k) ∼ Lm(n)n(2d−1)m+2, (4.20)

where

Lm(n) = m!CmLm
γ (n) (4.21)

and

Cm = 2

[(2d − 1)m + 1][(2d − 1)m + 2] . (4.22)

Furthermore, if G has the Hermite rank m, then the variance of G(X) can be de-
composed into (orthogonal) contributions of the Hermite coefficients,

var
(
G(X)

)=
∞∑

l=1

(
J (l)

l!
)2

l! =
∞∑

l=m

J 2(l)

l! . (4.23)

Similarly, if X1 and X2 are as in Lemma 4.12,

cov
(
G(X1),G(X2)

)=
∞∑

l=m

J 2(l)

l! γ l. (4.24)

Consequently, applying this to the stationary Gaussian sequence Xt (t ∈ N), we
obtain

γG(k) = cov
(
G(Xt),G(Xt+k)

)=
∞∑

l=m

J 2(l)

l! γ l
X(k). (4.25)
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Thus, as k → ∞, the asymptotic behaviour of cov(G(Xt ),G(Xt+k)) is determined
by the leading term (J 2(m)/m!)γ m

X (k). From (4.25) we therefore conclude that for a
function G with the Hermite rank m, the asymptotic behaviour of the autocovariance
is given by

γG(k) ∼ J 2(m)

m! Lm
γ (k)km(2d−1) (k → ∞).

Therefore, if m(1 − 2d) < 1, then by the same argument as in (4.20),

var

(
n∑

t=1

G(Xt)

)
∼ J 2(m)

m! CmLm
γ (n)n(2d−1)m+2 =

(
J (m)

m!
)2

Lm(n)n(2d−1)m+2,

(4.26)
where Cm is the constant in (4.22), and Lm(·) is the slowly varying function defined
in (4.21). Otherwise, if m(1 − 2d) > 1, then

∞∑

k=1

∣∣cov
(
G(Xt),G(Xt+k)

)∣∣< ∞.

Therefore, one can expect two different types of convergence: either a long-memory
type where the normalization for partial sums is

n−((d− 1
2 )m+1)L

− 1
2

m (n) = n− 1
2 −((m−1)/2−d)L

− 1
2

m (n) (4.27)

or a weakly-dependent type with the usual normalization n−1/2.
We conclude the discussion of normalizing constants by mentioning two useful

bounds derived by Arcones (1994):

• If m(1 − 2d) < 1, then there is a constant C such that for any function G with
Hermite rank m,

var

(
n−1

n∑

t=1

G(Xt)

)
≤ Cγ m

X (n)var
(
G(X1)

)
.

• If m(1 − 2d) > 1, then there is a constant C such that for any function G with
Hermite rank m,

var

(
n−1

n∑

t=1

G(Xt)

)
≤ Cn−1 var

(
G(X1)

)
.

The first inequality looks very similar to (4.26). However, the important differ-
ence is that the constant C depends on the Gaussian process Xt only and not on the
function G.
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4.2.3.2 Limiting Distribution

The Hermite rank of G(x) = x is one. Furthermore,
∑[nu]

t=1 Xt is normally distributed
for all n and u ∈ [0,1]. Therefore, in view of (4.27), the following result is obvious.
Note that it is valid for all values of d ∈ (− 1

2 , 1
2 ), i.e. for long memory (d ∈ (0, 1

2 )),
short memory (d = 1

2 ) and antipersistence (d ∈ (− 1
2 ,0)). The limiting process is

Gaussian. The dependence structure of the increments depends on d .

Theorem 4.2 Assume that Xt (t ∈ N) is a stationary sequence of standard normal
random variables such that fX(λ) = Lf (λ)|λ|−2d with d ∈ (−1/2,1/2) and the
assumptions of Lemma 4.9 (for d > 0, Lemma 4.10) (for d = 0) or Lemma 4.11 (for
d < 0) hold respectively. Let Sn(u) =∑[nu]

t=1 Xt . Then

n−(d+ 1
2 )L

− 1
2

1 (n)Sn(u) ⇒ BH (u)
(
u ∈ [0,1]),

where BH (·) is a standard fractional Brownian motion with Hurst parameter H =
d + 1

2 , “⇒” denotes weak convergence in D[0,1], and L1(n) = Lf (n−1)ν(d) with
ν(d) defined in (4.16).

Proof As mentioned in the introduction to this chapter, we prove finite-dimensional
convergence just in the one-dimensional case. Clearly, Sn(u) is normal, and r2

n =
var(Sn(1))/(n2d+1L1(n)) → 1. Thus, with d2

n = n2d+1L1(n),

E
(
eiθd−1

n Sn(1)
)= exp

(
−1

2
θ2r2

n

)
→ exp

(−θ2/2
)
.

Thus, one-dimensional distributions of Sn(u) converge to the standard normal dis-
tribution.

For tightness, note that Sn(1) is normal, so that E[S2l
n (1)] (l ∈N) is proportional

to (E[S2
n(1)])l . Therefore, the conditions of Lemma 4.4 are fulfilled, and tightness

follows. �

We will now present another proof of this theorem. The reason is that it will be
easily extendable to more complicated cases of general Hermite polynomials and
non-normal random variables. Recall some notions on the spectral representation of
stationary time series from Sect. 4.1.3. Let εt (t ∈ Z) be a centred, finite-variance
i.i.d. sequence. Then εt can be represented in terms of a Gaussian spectral measure
with uncorrelated increments,

εt =
∫ π

−π

eitλ dMε(λ) (t ∈ Z).

Recall also that

E
[∣∣dMε(λ)

∣∣2]= σ 2
ε

2π
dλ = fε(λ)dλ,
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where σ 2
ε = var(εt ). Without loss of generality, we will assume that σ 2

ε = 1 in the
following. Moreover it will be convenient to use instead of Mε the spectral measure

M0(A) = √
2πMε(A),

so that

εt = 1√
2π

∫ π

−π

eitλ dM0(λ)

and E[|dM0(λ)|2] = dλ. For a linear process Xt = ∑∞
j=0 aj εt−j (t ∈ Z) with∑∞

j=0 a2
j < ∞ (and σ 2

ε = 1), one then has the spectral representation

Xt =
∫ π

−π

eitλ dMX(λ) (t ∈ Z) (4.28)

with

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ)

= 1√
2π

A
(
e−iλ

)
dM0(λ) =: a(λ)dM0(λ).

The spectral density of Xt is

fX(λ) = 1

2π

∣∣A
(
e−iλ

)∣∣2 = ∣∣a(λ)
∣∣2.

Assume that fX(λ) = Lf (λ)|λ|−2d as λ → 0 or γX(k) ∼ Lγ (k)k2d−1 as k → ∞.
Recall that, under suitable conditions, these assumptions are equivalent to

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)

and

Lγ (k) = 2Lf

(
k−1)Γ (1 − 2d) sin(πd). (4.29)

Then |a(λ)| = L
1/2
f (λ)|λ|−d . Now, we are ready to present an alternative proof of

Theorem 4.2. This type of approach was initiated in Dobrushin (1980), Dobrushin
and Major (1979); also see Arcones (1994) and Lang and Soulier (2000). We will
use a representation of a fractional Brownian motion that appears in Sect. 3.7.1.

Alternative proof of Theorem 4.2 Let Sn = Sn(1) =∑n−1
t=0 Xt (note that we take

summation from t = 0 to n − 1) and write the spectral representation
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Sn =
n−1∑

t=0

∫ π

−π

eitλdMX(λ)

=
n−1∑

t=0

∫ π

−π

eitλa(λ)dM0(λ) =
∫ π

−π

(
n−1∑

t=0

eitλ

)
a(λ)dM0(λ)

=
∫ π

−π

eiλn − 1

eiλ − 1
a(λ)dM0(λ)

= n1/2
∫ nπ

−nπ

Dn(λ/n)a

(
λ

n

)
n1/2 dM0

(
n−1λ

)
,

where

Dn(λ) = eiλn − 1

n(eiλ − 1)
1
{|λ| ≤ πn

}
. (4.30)

Since limu→0(e
λu − 1)/u = λ, we conclude that

lim
n→∞Dn(λ/n) → eiλ − 1

iλ
=: D(λ). (4.31)

Now, E(|dM0(n
−1λ)|2) = n−1dλ. Hence, n1/2M0(n

−1A) and M0(A) have the
same distribution (as stochastic processes indexed by A), and we can write

Sn
d= n1/2

∫ nπ

−nπ

Dn(λ/n)a

(
λ

n

)
dM0(λ) ≈ n1/2

∫ ∞

−∞
Dn(λ/n)a

(
λ

n

)
dM0(λ).

Consequently, we have two possible scenarios:

• limλ→0 a(λ) = a(0) = √
fX(0) 
= 0. Then we expect

n−1/2Sn
d→ a(0)

∫ ∞

−∞
eiλ − 1

iλ
dM0(λ).

• a(λ) = L
1/2
f (λ)|λ|−d , d ∈ (−1/2,0) ∪ (0,1/2). Then we expect

n−(1/2+d)L
−1/2
f

(
n−1)Sn

d→
∫ ∞

−∞
D(λ)

1

|λ|d dM0(λ). (4.32)

In the latter case, applying (4.21) and (4.22) with m = 1 and (4.29), we obtain

L1(n) = 2Γ (1 − 2d) sinπd

d(2d + 1)
Lf

(
n−1)=: K−2

1 (1, d)Lf

(
n−1).

Thus,

n−(1/2+d)L
−1/2
1 (n)Sn = K1(1, d)

∫ ∞

−∞
|λ|−d eiλ − 1

iλ
dM0(λ).
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Recall Proposition 3.1. We can verify that K1(1, d) agrees with K1(1,H) there by
setting H = d + 1

2 , so that the limiting random variable is BH (1).
To make the argument (4.32) precise, we note that for |λ| < πn,

∣∣Dn(λ/n) − D(λ)
∣∣=
∣∣∣∣

eiλ − 1

n(eiλ/n − 1)
− eiλ − 1

iλ

∣∣∣∣= O
(
n−1)

uniformly w.r.t. λ (the bound does not depend on λ). Thus,
∫ ∞

−∞
∣∣Dn(λ/n) − D(λ)

∣∣2 dλ

=
∫ nπ

−nπ

∣∣Dn(λ/n) − D(λ)
∣∣2 dλ

+
∫

|λ|>nπ

∣∣D(λ)
∣∣2dλ ≤ O

(
n−1)+ 2

∫

|λ|>nπ

1

|λ|2 dλ = O
(
n−1).

We conclude that Dn(λ/n) converges to D(λ) in L2(R, dλ) (here “dλ” stands for
the Lebesgue measure). Also,

n−dL
−1/2
f

(
n−1)Dn(λ/n)a

(
λ

n

)

converges in L2(R, dλ) to D(λ)|λ|−d . Since

E

[(∫ ∞

−∞

(
n−dL

−1/2
f

(
n−1)Dn(λ/n)a

(
λ

n

)
− D(λ)|λ|−d

)
dM0(λ)

)2]

=
∫ ∞

−∞

(
n−dL

−1/2
f

(
n−1)Dn(λ/n)a

(
λ

n

)
− D(λ)|λ|−d

)2

dλ → 0,

we conclude the convergence in L2. Thus, the result of Proposition 4.2 follows. �

The limiting distribution in formula (4.32) can be also written as

n−(1/2+d)L
−1/2
f

(
n−1)Sn(1)

d→
∫ ∞

−∞
D(λ)dWX(λ), (4.33)

where

dWX(λ) = 1

|λ|d dM0(λ). (4.34)

The measure WX is called the limiting spectral measure that depends (via the pa-
rameter d) on the sequence Xt . This representation will be essential in Sect. 4.4.

The longish version of the proof of Theorem 4.2 will allow us to obtain the lim-
iting behaviour of subordinated Gaussian sequences. First, we extend the theorem
to partial sum processes Sn,Hm(u) :=∑[nu]

t=1 Hm(Xt), where Hm is the mth Hermite
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polynomial. Remarkably, the limit is no longer an fBm process, provided that long
memory is strong enough and m ≥ 2. This was first observed in Rosenblatt (1961),
also see Taqqu (1975). Note that their method of proof is based on characteristic
functions and is different from the one used in the alternative proof of Theorem 4.2.

Theorem 4.3 Assume that Xt (t ∈ N) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k2d−1 with d ∈ (0,1/2). Let Sn,Hm(u) =∑[nu]

t=1 Hm(Xt). If m(1 − 2d) < 1, then

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,Hm(u) ⇒ Zm,H (u)

(
u ∈ [0,1]),

where Zm,H (·) is a Hermite–Rosenblatt process with H = d + 1
2 , ⇒ denotes weak

convergence in D[0,1], and Lm(n) = m!CmLm
γ (n), see (4.21) and (4.22).

Note that this type of convergence requires long memory to be strong enough. In
particular, if m = 2, we require d ∈ (1/4,1/2). If this is not the case, then the partial
sum process has weak dependence properties.

Example 4.1 Assume that m = 2. If d ∈ (1/4,1/2), then

n−2dL
−1/2
2 (n)

[nu]∑

t=1

(
X2

t − 1
)⇒ Z2,H (u),

where

L2(n) = 2C2L
2
γ (n),

C2 = 1

(2(2d − 1) + 1)(2d + 1)
.

For each fixed u ∈ [0,1], the limit is non-normal. This will be illustrated by simula-
tions in computer Example 4.3 later in this section.

Proof of Theorem 4.3 The proof is almost a copy of the alternative proof of Theo-
rem 4.2. We replace (4.28) by

Hm(Xt) =
∫ π

−π

· · ·
∫ π

−π

eit (λ1+···+λm) dMX(λ1) · · ·dMX(λm)

(we refer to Sect. 3.7.1.3 for the formula and the meaning of this integral). Recalling

dMX(λ) = √
2πa(λ)dMε(λ) = a(λ)dM0(λ),

we have
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Sn,Hm(1) =
∫ π

−π

· · ·
∫ π

−π

ein(λ1+···+λm) − 1

ei(λ1+···+λm) − 1

m∏

r=1

a(λr) dM0(λ1) · · ·dM0(λm)

= n

nm/2

∫
· · ·
∫

Dn

(
λ1 + · · · + λm

n

)

×
m∏

r=1

a

(
λr

n

)
n1/2 dM0

(
n−1λ1

) · · ·n1/2 dM0
(
n−1λm

)
,

where the integration is over [−nπ,nπ]m. Therefore, if a(λ) = L
1/2
f (λ)|λ|−d , d ∈

(0,1/2), then we expect

n−(1−m( 1
2 −d))L

−m/2
f

(
n−1)Sn,Hm(1)

d→
∫

Rm

D(λ1 + · · · + λm)

m∏

r=1

1

|λr |d dM0(λ1) · · ·dM0(λm), (4.35)

cf. (4.31). Again, we identify

Lm(n) = m!Cm

(
2Γ (1 − 2d) sinπd

)m
Lm

f

(
n−1)= K−2

1 (m,d)Lm
f

(
n−1),

and from Proposition 3.1 we recognize the representation of the Hermite–Rosenblatt
process.

A precise argument for (4.35) is the same as in the case m = 1; see the proof of
Proposition 4.2. Furthermore, we do not verify tightness here since it will be done
in the next theorem. �

Finally, convergence of partial sums Sn,G(u) = ∑[nu]
t=1 G(Xt) is just a conse-

quence of Theorem 4.3, using the so-called reduction principle, proven originally
in Taqqu (1975).

Theorem 4.4 Assume that Xt (t ∈ N) is a stationary sequence of standard nor-
mal random variables such that γX(k) ∼ Lγ (k)k2d−1 (d ∈ (0,1/2)). Let Sn,G(u) =∑[nu]

t=1 G(Xt), where G is a function such that E[G(X1)] = 0, E[G2(X1)] < ∞. If
m is the Hermite rank of G and m(1 − 2d) < 1, then

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,G(u) ⇒ J (m)

m! Zm,H (u)
(
u ∈ [0,1]),

where Zm,H (·) is a Hermite–Rosenblatt process, H = d + 1
2 , ⇒ denotes weak con-

vergence in D[0,1], and Lm is given in (4.21):

Lm(n) = m!CmLm
γ (n).
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Proof Decompose

G(x) = J (m)

m! Hm(x) +
∞∑

l=m+1

J (l)

l! Hl(x) =: J (m)

m! Hm(x) + G∗(x).

Using (4.18) and (4.25), we have

cov

[
J (m)

m! Hm(X0),
J (m)

m! Hm(Xk)

]
= J 2(m)

m! γ m
X (k)

and

cov
[
G∗(X0),G

∗(Xk)
]=

∞∑

l=m+1

J 2(l)

l! γ l
X(k).

Furthermore, for any t, s, the random variables G∗(Xt ) and Hm(Xs) are uncorre-
lated. Therefore,

var

(
n∑

t=1

G(Xt)

)
=

n∑

t=1

n∑

s=1

E
[
G∗(Xt )G

∗(Xs)
]+ J 2(q)

m!
n∑

t=1

n∑

s=1

γ m
X

(|t − s|)

=
n∑

t=1

n∑

s=1

E
[
G∗(Xt )G

∗(Xs)
]+
(

J (m)

m!
)2

var

(
n∑

t=1

Hm(Xt)

)
.

(4.36)

The Hermite rank of the function G∗ is at least m + 1. Consequently, we have
two scenarios. Either

∑
k γ m

X (k) < ∞, and then both terms in (4.36) are of the or-
der O(n), or

∑
k γ m

X (k) = +∞, and then the second term dominates the first one.
The latter happens if m(1 − 2d) < 1, and in this case the asymptotic behaviour of∑n

t=1 G(Xt) is the same as that of (J (m)/m!)∑n
t=1 Hm(Xt).

A proof of tightness is immediate. If we set

S′
n,G(u) := n−(m(d−1/2)+1)L

−m/2
m (n)Sn(u),

we have

E
[(

S′
n,G(u) − S′

n,G(v)
)2]∼ |u − v|m(2d−1)+2.

Since m(1 − 2d) < 1, the exponent is greater than one, and tightness follows from
Lemma 4.3. �

In contrast, if the Hermite rank is large enough such that m(1 − 2d) > 1, then we
have a weakly dependent-type behaviour of partial sums. The statement and proof
of this result is postponed to the section on limit theorems for Appell polynomials.

Example 4.2 We illustrate the theoretical findings by a simulation example. First,
we generate n = 1000 i.i.d. standard normal random variables Xt and plot the partial
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Fig. 4.1 Partial sum sequence Sk =∑k
t=1 Xt (k = 1, . . . , n) with Xt i.i.d. N(0,1) (left) and Xt

generated by a FARIMA(0,0.4,0) process (right)

sum sequence Sk =∑k
t=1 Xt , k = 1, . . . , n. This procedure is repeated for a Gaus-

sian fractional ARIMA(0, d,0) process with parameter d = 0.4. The corresponding
partial sum processes are plotted in Fig. 4.1. They can be considered approximations
of a Brownian motion and a fractional Brownian motion with H = 0.9 respectively.
Note that the path of the fractional Brownian motion is much smoother than the one
of Brownian motion. This is due to long memory, which acts like a smoothing filter.

Example 4.3 In this example we generate n = 1000 random variables Xt from a
Gaussian fractional ARIMA(0, d,0) process with parameter d = 0.4 and compute
their sum. This procedure is repeated N = 1000 times. A normal probability plot
of the N = 1000 sums

∑n
t=1 Xt is displayed in the left panel of Fig. 4.2. The right

panel shows a normal probability plot for the sums
∑n

t=1 X2
t . The non-normal be-

haviour is clearly visible.

4.2.4 Linear Processes

In this section we consider a causal linear process

Xt =
∞∑

j=0

aj εt−j (t ∈N), (4.37)

where, without loss of generality,
∑∞

j=0 a2
j = 1, and εt (t ∈ Z) are i.i.d. zero mean

random variables with var(ε1) = σ 2
ε < ∞. Thus, var(X1) = σ 2

X = σ 2
ε . Note that

Gaussian processes are included in this definition, but the class is much more gen-
eral. Three different assumptions on the coefficients will be considered as j → ∞
and with La denoting a slowly varying function at infinity:
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Fig. 4.2 Illustration of Theorem 4.3: normal probability plots of partial sums
∑k

t=1 Xt (left) and∑k
t=1 X2

t , where Xt is generated by a FARIMA(0,0.4,0) process

• (B1) long memory:

aj ∼ La(j)jd−1
(

0 < d <
1

2

)
;

• (B2) short memory:

∞∑

j=0

|aj | < ∞,

∞∑

j=0

aj 
= 0.

• (B3) antipersistence:

aj ∼ La(j)jd−1

with − 1
2 < d < 0, and

∞∑

j=0

aj = 0.

Under the short-memory assumption (B2), limiting behaviour is classical (see
Theorem 4.5); see Brockwell and Davis (1991). Under long memory (B1), the first
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result was obtained in Davydov (1970a, 1970b); see also Gorodetskii (1977), Lang
and Soulier (2000), Wang et al. (2003).

4.2.4.1 Asymptotic Covariances and Normalizing Constants

The behaviour of the autocovariance function γX and the spectral density fX for
the three cases can be characterized as follows. Combining Lemmas 4.13–4.15 with
Lemmas 4.9–4.11, respectively, yields the asymptotic behaviour of var(Sn) (where
Sn(u) =∑[nu]

t=1 Xt , Sn = Sn(1)).

Lemma 4.13 Under assumption (B1), we have, as λ → 0 and k → ∞ respectively,

fX(λ) ∼ Lf (λ)|λ|−2d ,

γX(k) ∼ Lγ (k)k2d−1,
(4.38)

where

Lγ (k) = L2
a(k) · σ 2

ε

∫ ∞

0
vd−1(1 + v)d−1 dv = σ 2

ε L2
a(k)B(1 − 2d, d), (4.39)

B(x, y) denotes the Beta function, and Lf is obtained from Lγ by (cf. (1.1))

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)
. (4.40)

Hence, via Lemma 4.9,

var(Sn) ∼ LS(n)n2d+1 = 1

d(2d + 1)
Lγ (n)n2d+1. (4.41)

Proof We have

γX(k) ∼ σ 2
ε

∞∑

j=1

La(j)La(j + k)jd−1(j + k)d−1 = σ 2
ε S∞,k · k2d−1,

where

S∞,k = lim
n→∞Sn,k

and

Sn,k =
nk∑

j=1

La(j)La(j + k)

(
j

k

)d−1(
j

k
+ 1

)d−1

n−1

= L2
a(k)

nk∑

j=1

La(j)

La(k)

La(j + k)

La(k)

(
j

k

)d−1(
j

k
+ 1

)d−1

n−1

∼
k→∞ L2

a(k)

∫ n

0
vd−1(v + 1)d−1 dv,
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where the last approximation is uniform in n. The approximation formula for fX

follows from Theorem 1.3. �

Example 4.4 (ARFIMA Model) Consider an ARFIMA(0, d,0) model, d ∈
(0,1/2). This process has the linear representation Xt =∑∞

j=0 aj εt−j , where

aj = Γ (j + d)

Γ (j + 1)Γ (d)
∼ 1

Γ (d)
jd−1 (j → ∞).

Thus, La ∼ 1/Γ (d), so that

γX(k) ∼ cγ k2d−1

with

cγ = σ 2
ε Γ −2(d)

∫ ∞

0
vd−1(1 + v)d−1 dv

= σ 2
ε Γ −2(d)B(1 − 2d, d) = σ 2

ε

Γ (1 − 2d)Γ (d)

Γ 2(d)Γ (1 − d)

= σ 2
ε

Γ (1 − 2d)

Γ (d)Γ (1 − d)
= σ 2

ε

π
Γ (1 − 2d) sin(πd).

The last equality follows from Γ (d)Γ (1 − d) = π/ sinπd . Moreover,

Lf (λ) = σ 2
ε

π
Γ (1 − 2d) sin(πd)π−1Γ (2d) sin

(
π

2
− πd

)

= σ 2
ε

π

sin(πd) sin(π
2 − πd)

sin(2πd)
= σ 2

ε

π

sin(πd) cos(πd)

sin(2πd)

= σ 2
ε

π

sin(πd) cos(πd)

2 sin(πd) cos(πd)
= σ 2

ε

2π
,

so that

fX(λ) ∼ σ 2
ε

2π
|λ|−2d .

Lemma 4.14 Under assumption (B2), we have

∞∑

k=−∞

∣∣γX(k)
∣∣< ∞,

∞∑

k=−∞
γX(k) > 0.

If, in addition,
∑∞

j=0 j |aj | < ∞, then fX(λ) is continuous on [−π,π].
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Proof We have

∞∑

k=−∞

∣∣γX(k)
∣∣= σ 2

ε

∞∑

k=−∞

∣∣∣∣∣

∞∑

j=0

ajaj+|k|

∣∣∣∣∣≤ 2σ 2
ε

∞∑

k=0

∞∑

j=0

|aj ||aj+|k||

= 2σ 2
ε

( ∞∑

j=0

|aj |
)2

< ∞.

Furthermore,

∞∑

k=−∞
γX(k) = 2πfX(0) = 2π

σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

aj

∣∣∣∣∣

2

> 0.

To show that fX is continuous, consider

ã(λ) =
∞∑

j=0

aj e
−ijλ.

Since, as x → 0, sinx ∼ x and cosx − 1 ∼ x2/2, we obtain for ε < 1,

∣∣ã(λ + ε) − ã(λ)
∣∣≤

∞∑

j=0

|aj |
∣∣e−ijλ

(
e−ijε − 1

)∣∣

≤ 2ε

∞∑

j=0

j |aj |,

so that ã(·) is continuous, and hence so is fX(λ) = σ 2
ε /(2π) |ã(λ)|2. �

Lemma 4.15 Under assumption (B3), we have, as λ → 0 and k → ∞ respectively,

fX(λ) ∼ Lf (λ)|λ|−2d , (4.42)

γX(k) ∼ Lγ (k)k2d−1,

∞∑

k=−∞
γX(k) = 0, (4.43)

where

Lγ (k) = L2
a(k) · σ 2

ε

∫ ∞

0
vd−1[1 − (v + 1)d−1]du

= σ 2
ε L2

a(k)B(1 − 2d, d),

and Lf is obtained from Lγ by (4.40).
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Proof Similarly to the proof of Lemma 4.13,

γX(k) = σ 2
ε

∞∑

j=0

ajaj+k = σ 2
ε S∞,k · k2d−1

with S∞,k = limn→∞ Sn,k ,

Sn,k = k1−2d

nk∑

j=0

ajaj+k = Sn,k(1) + Sn,k(2)

and

Sn,k(1) = k1−2d
nk∑

j=0

aj (aj+k − ak) ∼ L2
a(n)

∫ n

0
vd−1[(v + 1)d − 1

]
du,

Sn,k(2) = k1−2dak

nk∑

j=0

aj = −k1−2dak

∞∑

j=nk+1

aj ∼ L2
a(n)

∫ ∞

n

vd−1 dv = o(n),

where the approximations are uniform in n. Moreover,

∞∑

k=−∞
γX(k) = 2πfX(0) = 2π

σ 2
ε

2π

∣∣∣∣∣

∞∑

j=0

aj

∣∣∣∣∣

2

= 0.

The approximation of fX for λ → 0 follows from Theorem 1.3. �

4.2.4.2 Asymptotic Distribution

Proofs of the next results illustrate different techniques that are applicable in various
situations:

• Under short memory (B2), we apply the K-dependent approximation method, i.e.
a combination of Proposition 4.1 and Lemma 4.1. This is easier than the cumulant
method and does not require restrictive moment assumptions. It is particularly
suited for linear processes (see Brockwell and Davis 1991).

• Under long memory (B1), we apply the method based on random spectral mea-
sures, as outlined in the alternative proof of Theorem 4.2; see Lang and Soulier
(2000).

Theorem 4.5 Assume that Xt (t ∈ N) is a stationary linear process (4.37) such that
(B2) holds. Then

n−1/2Sn = n−1/2
n∑

t=1

Xt → N
(
0, ν2),

where the variance ν2 = σ 2
X + 2

∑∞
k=1 γX(k).



4.2 Limit Theorems for Sums with Finite Moments 237

This theorem can be formulated in terms of functional convergence to Brownian
motion.

Proof Let Xt,K =∑K
j=0 aj εt−j . Since the sequence Xt,K (t ∈ N) is K-dependent,

an application of Lemma 4.1 yields

n−1/2Sn,K = n−1/2
n∑

t=1

Xt,K
d→ N

(
0, ν2

K

)

with ν2
K = var(X0,K) + 2

∑K
k=0 γXK

(k), where

γXK
(k) = E[Xt,KXt+k,K ] = σ 2

ε

K∑

j=0

ajaj+k.

Since νK → ν as K → ∞, we conclude N(0, ν2
K)

d→ N(0, ν2). It suffices to prove
that for all δ > 0,

lim
K→∞ lim sup

n→∞
P
(
n−1/2|Sn − Sn,K | > δ

)= 0.

The result of our theorem will then follow by Proposition 4.1. By Markov’s inequal-
ity, it is sufficient to verify that

lim
K→∞ lim

n→∞n−1 var(Sn − Sn,K) = 0.

Let X̄t,K = Xt − Xt,K . Then

lim
n→∞n−1 var(Sn − Sn,K) = lim

n→∞σ 2
ε

n−1∑

k=−(n−1)

(
1 − |k|

n

) ∞∑

j=K+1

ajaj+k

= σ 2
ε

∞∑

k=−∞

∞∑

j=K+1

ajaj+k = σ 2
ε

∞∑

j=K+1

aj

∞∑

k=−∞
aj+k.

The limn→∞ behaviour above is obtained by applying the dominated convergence
theorem. For this, we need

∑
k

∑
j |ajaj+k| < ∞. This is true under the summa-

bility condition
∑∞

j=0 |aj | < ∞. Under this condition, we can also exchange the
summations

∑
k and

∑
j . Finally,

lim
K→∞ lim

n→∞n−1 var(Sn − Sn,K) ≤
∞∑

k=−∞
|ak| lim

m→∞

∞∑

j=K+1

|aj | = 0.
�

Under (B1), the asymptotic behaviour of partial sums changes. This result was
proven first in Davydov (1970a, 1970b). The method below is adapted from Lang
and Soulier (2000), where the reader is referred to for details.
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Theorem 4.6 Assume that Xt (t ∈ N) is a stationary linear process (4.37) such that
the long-memory condition (B1) holds, i.e. aj ∼ La(j)jd−1, d ∈ (0, 1

2 ). Then

n−(d+ 1
2 )L

−1/2
S (n)Sn(u) = n−(d+ 1

2 )L
−1/2
S (n)

[nu]∑

t=1

Xt ⇒ BH (u)
(
u ∈ [0,1]),

where BH (u) is a standard fractional Brownian motion, H = d + 1
2 , ⇒ denotes

weak convergence in D[0,1], and

LS(n) = 1

d(2d + 1)
Lγ (n)

with Lγ defined in (4.39):

Lγ (k) = L2
a(k)σ 2

ε

∫ ∞

0
vd−1(v + 1)d−1 dv

= L2
a(k)σ 2

ε B(1 − 2d, d).

Proof We use the spectral method, as in the alternative proof of Theorem 4.2. Recall
that any stationary sequence with finite variance can be written as

εt = 1√
2π

∫ π

−π

eitλM0 (dλ), t ∈ Z.

The only difference between the spectral measure M0 here and M0 in the proof of
Theorem 4.2 is that the measure here is not necessarily Gaussian. In particular, there
is no guarantee that n1/2M0(n

−1·) and M0(·) have the same distribution. Neverthe-
less, the same argument can be applied (see Lang and Soulier 2000). �

Example 4.5 (ARFIMA) Assume that Xt (t ∈ N) is a FARIMA(0, d,0) model as in
Example 4.4. Then

γX(k) ∼ cγ k2d−1,

cγ = σ 2
ε

π
Γ (1 − 2d) sin(πd).

Hence,

n−(d+ 1
2 )L

−1/2
S (n)

[nu]∑

t=1

Xt ⇒ BH (u)

and

LS(n) = cγ

1

d(2d + 1)
.

Note that the innovations εt do not need to be Gaussian.
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4.2.5 Subordinated Linear Processes

Next we consider the case where instead of the linear process Xt (t ∈ N) a subor-
dinated process, i.e. a transformation Yt = G(Xt) (t ∈ N), is observed. Recall that
in the Gaussian case asymptotic properties of partial sums of Xt and Hm(Xt) (and,
via the reduction principle of Theorem 4.4, of general functionals) can be stud-
ied using the spectral method. For linear processes, we applied again the spectral
method in Theorem 4.6. However, this extension is not feasible for subordinated
linear processes. In this setup, there are two common approaches: Appell polyno-
mials (Surgailis 1982; Giraitis 1985; Giraitis and Surgailis 1986, 1989; Avram and
Taqqu 1987; Surgailis and Vaičiulis 1999; Surgailis 2000; see also Surgailis 2003,
for overview) and a martingale decomposition (Ho and Hsing 1996, 1997; Wu 2003;
see also Hsing 2000 for an overview).

4.2.5.1 Normalizing Constants: Simple Example

Before we develop a general formula, let us consider the simple case of G(Xt) = X2
t .

Example 4.6 Let Xt (t ∈ N) be a linear process defined by (4.37). Assume that
E[ε4

1] < ∞ and that the long-memory condition (B1) holds. Using formula (4.38)
for the covariance of Xt (t ∈ N), we have

γ 2
X(k) ∼ L2

γ (k)k2(2d−1).

On the other hand,

γ 2
X(k) = cov2(Xt ,Xt+k) =

( ∞∑

j=0

ajaj+k

)2

=
∞∑

j=0

a2
j a

2
j+k +

∞∑

j,l=0; j 
=l

aj alaj+kal+k.

Note that under (B1) the limiting behaviour of γ 2
X(k) is determined by the second

term. Now,

X2
0 =

∞∑

j=0

a2
j ε

2
0−j +

∞∑

j,l=0; j 
=l

aj alε0−j ε0−l =: X0,1 + X0,2.

Analogously, we define X2
k := Xk,1 + Xk,2. Note that X0,1 and Xk,2 are uncorre-

lated. The same holds for X0,2 and Xk,1. Furthermore,

cov(X0,1,Xk,1) = E
[
ε4

1

] ∞∑

j=0

a2
j a

2
j+k
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and

cov(X0,2,Xk,2) = 2
∞∑

j,l=0; j 
=l

aj alaj+kal+k.

Recalling that the second covariance is of a larger order than the first one, we con-
clude

γX2(k) ∼ 2
∞∑

j,l=0; j 
=l

aj alaj+kal+k ∼ 2γ 2
X(k) ∼ 2L2

γ (k)k2(2d−1).

4.2.5.2 Normalizing Constants: Appell Polynomials

Now, we turn our attention to general nonlinear functionals. For a general non-
normal distribution, in view of Sect. 3.3, a natural approach is to start with the
Wick product Yt = Am(Xt) = :Xt, . . . ,Xt : where Am is the mth Appell polynomial
associated with the marginal distribution of Xt . Suppose that γX(k) is known, either
exactly or its asymptotic behaviour. Can we give a simple formula for γY (k)? In
principle, the diagram formulas given in Theorem 3.10 provide an answer because

κ(Yt , Yt+k) =
[

∂2

∂z1∂z2
logE

[
exp(z1Yt + z2Yt+k)

]]

z=0
= γY (k).

To apply the diagram formula, consider a table W with two rows W1, W2 of
length m. The positions in W1 are associated with Xt and those in W2 with
Xt+k , i.e. we may write W1 = {X̃(1,1), . . . , X̃(1,m)} with X̃(1,t) = Xt and W2 =
{X̃(2,1), . . . , X̃(2,m)} with X̃(2,j) = Xj+k . Using the same notation as in Theo-
rem 3.10, we obtain from (3.81)

γY (k) = κ
(:XW1 :, :XW2 :)=

∑

γ∈Γ

−,c
W

κ
(
X′V1

) · · · κ(X′Vr
)
. (4.44)

Unfortunately, this is a rather complicated expression because in general κ(X′V )

may not be zero for any subset V . There is one exception where (4.44) simplifies
considerably, namely if Xt (t ∈N) is a Gaussian process. In this case, all cumulants
κ(X′V ) are zero except for normal edges, i.e. κ(X′V ) = 0 if |V | 
= 2, so that the sum
in (4.44) is over Γ


−,c,N
W , and, up to a constant, we obtain a sum of correlations to

the power m, see Corollary 3.5.
Although (4.44) is complicated, it is possible to give simple asymptotic formulas

for γY (k) and, consequently, the variance of Sn,Am =∑n
t=1 Am(Xt). A first sim-

plification can be obtained in the representation of Appell polynomials of linear
processes:
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Lemma 4.16 Let Xt (t ∈N) be a linear process (4.37) such that the Appell polyno-
mials of its marginal distribution Am (m ∈ N) exist. Then

Am(Xt) =
∞∑

k1,...,km=0

ak1 · · · akm(:εt−k1 · · · εt−km :). (4.45)

Proof The result follows from

Am(Xt) = :Xt, . . . ,Xt︸ ︷︷ ︸
m

:

and multilinearity of the Wick product. �

A direct consequence of this result is a simplified expression for Sn:

Corollary 4.1 Let Xt (t ∈ N) be a linear process defined by (4.37) such that the
Appell polynomials of its marginal distribution Am (m ∈N) exist. Let

Sn,Am =
n∑

t=1

Am(Xt).

Then

Sn,Am =
∞∑

k1,...,km=0

ak1 · · · akm

n∑

t=1

(:εt−k1 · · · εt−km :)

with ak = 0 for k < 0.

Furthermore, the diagram formula can be used to obtain an expression for the
asymptotic autocovariance function of the subordinated sequence Yt (t ∈ N) under
long memory:

Corollary 4.2 Let Xt (t ∈ N) be a linear process defined by (4.37) such that the
Appell polynomials of its marginal distribution Am (m ∈ N) exist and the long-
memory assumption (B1) holds. Then Yt = Am (Xt) has an autocovariance function
γY (k) with

γY (k) ∼ m!γ m
X (k)

∼ m!
(

L2
a(k)σ 2

ε

∫ ∞

0
vd−1(v + 1)d−1 dv

)m

· k(2d−1)m

= m!Lm
γ (k)k(2d−1)m (4.46)

as k → ∞, cf. (4.39).



242 4 Limit Theorems

Proof Here, only an outline of the extended proof in Giraitis and Surgailis (1989)
and Surgailis and Vaičiulis (1999) is given. Lemma 4.16 and the multilinearity of
cumulants imply

cov
(
Am(Xt),Am(Xt+k)

)

= κ
(
Am(Xt),Am(Xt+k)

)

= κ

( ∞∑

j1,...,jm=0

aj1 · · · ajm(:εt−j1 · · · εt−jm :),

∞∑

j1,...,jm=0

aj1 · · · ajm(:εt+k−j1 · · · εt+k−jm :)
)

=
∞∑

j1,...,jm=0,

j ′
1,...,j

′
m=0

aj1 · · · ajmaj ′
1
· · · aj ′

m
κ(:εt−j1 · · · εt−jm :, :εt+k−j ′

1
· · · εt+k−j ′

m
:).

Now consider a table W with two rows Wi = {ε(i,1), . . . , ε(i,m)} (i = 1,2) with
ε(1,s) = εts and ε(2,s) = εt ′s . The diagram formula for cumulants of Wick products
implies

κ(:εt−j1, . . . , εt−jm :, :εt+k−j ′
1
, . . . , εt+k−j ′

m
:) =

∑

γ∈Γ

−,c
W

κ
(
ε′V1
) · · ·κ(ε′Vr

)
.

Using this equation, we have

κ
(
Am(Xt),Am(Xt+k)

)= rmain + rk,

where

rmain =
∑

γ∈Γ

−,c,N
W

∑

j1,...,jm=0
j ′

1,...,j
′
m=0

(
m∏

i=1

aji
aj ′

i

)
κ
(
ε′V1
) · · · κ(ε′Vr

)

and

rk =
∑

γ∈Γ

−,c
W \Γ 
−,c,N

W

∑

j1,...,jm=0
j ′

1,...,j
′
m=0

(
m∏

i=1

aji
aj ′

i

)
κ
(
ε′V1
) · · · κ(ε′Vr

)
.

It can be shown that, as k → ∞, rk = o(k(2d−1)m), so that only diagrams in Γ

−,c,N
W

matter asymptotically. For instance, for γ =⋃m−1
i=1 Vi with Vi = {(1, i), (2, i)} (i =

1, . . . ,m−2) and Vm−1 = {(1,m−1), (2,m−1), (1,m), (2,m)}, we have, because
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of independence of the random variables εi ,

κ
(
ε′V1
) · · · κ(ε′Vm−1

)= 0,

unless j ′
1 = j1 + k,. . . , j ′

m−1 = jm−1 + k and jm−1 = jm, j ′
m−1 = j ′

m = jm−1 + k.
Thus, the contribution of γ to rm is

σ 2
ε

( ∞∑

j=0

ajaj+k

)m−2 ∞∑

j=0

a2
j a

2
j+k ∼ γ m−2

X (k)L(k)k4d−3 = o
(
k(2d−1)m

)
.

For κmain, the calculation simplifies considerably because each γ ∈ Γ

−,c,N
W con-

sists of edges Vj = {(1, j), (1,π(j))} (j = 1,2, . . . ,m) where π is a permutation

of {1,2, . . . ,m}. Thus, the number of diagrams in Γ

−,c,N
W is |Γ 
−,c,N

W | = m!. More-
over, for each permutation π ,

∑

j1,...,jm=0
j ′

1,...,j
′
m=0

(
m∏

i=1

aji
aj ′

i

)
κ
(
ε′V1
) · · · κ(ε′Vr

)= σ 2m
ε

( ∞∑

j=0

ajaj+k

)m

= γ m
X (k).

Thus, taking the sum over all m! permutations, we have

rmain = m!γ m
X (k). �

Note that, if Xt (t ∈N) is a Gaussian process, then we have the exact relationship
γAm(k) = m!γ m

X (k) for any finite k because all cumulants above order 2 are zero, so

that all contributions except those from Γ

−,c,N
W are zero. (cf. Sect. 4.2.3).

The combination of Lemma 4.9 and formula (4.38) yields an asymptotic formula
for the variance of SAm,n =∑n

t=1 Am(Xt) under the assumption of long memory
(see Giraitis and Surgailis 1989; Surgailis and Vaičiulis 1999):

Theorem 4.7 Let Xt (t ∈N) be a linear process defined by (4.37) such that the Ap-
pell polynomials Am (m ∈N) of its marginal distribution exist and the long-memory
assumption (B1) holds. Assume further that m(1 − 2d) < 1. Then, as n → ∞,

var(Sn,Am) = var

(
n∑

t=1

Am(Xt)

)
∼ Lm(n)n(2d−1)m+2

with

Lm(n) = m!CmLm
γ (n),

Cm = 2

((2d − 1)m + 1)((2d − 1)m + 2)

(4.47)

and Lγ given by (4.39). On the other hand, if m(1 − 2d) > 1, then

var(Sn,Am) = O(n).
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We recognize the same formula as in the Gaussian case, see (4.20). Furthermore,
note that, in general, antipersistence is not inherited because the condition that au-
tocovariances add up to zero is destroyed much more easily than nonsummability.

4.2.5.3 Asymptotic Distributions: Appell Polynomials

In the previous sections we obtained asymptotic expressions for the autocovariance
function γAm(k) = cov(Am(Xt),Am(Xt+k)) and the variance v2

n := var(Sn,Am). The
remaining question is which processes one obtains as limits of Sn,Am(t)/vn. It turns
out that, under suitable moment conditions, the only possible limiting processes
are Hermite–Rosenblatt processes. In fact this question has been answered in the
Gaussian case, see Theorem 4.4.

Theorem 4.8 Let Xt (t ∈ N) be a linear process defined by (4.37) such that the
Appell polynomials Am (m ∈ N) of its marginal distribution exist and the long-
memory assumption (B1) holds, i.e. aj ∼ La(j)jd−1, d ∈ (0,1/2). Let

Sn,Am(u) =
[nu]∑

t=1

Am(Xt)
(
u ∈ [0,1])

and assume that E(ε
2j

1 ) < ∞ for all j . Then, if m(1 − 2d) < 1,

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,Am(u) ⇒ Zm,H (u)

(
u ∈ [0,1]), (4.48)

where Zm,H (·) is the Hermite–Rosenblatt process with H = d + 1
2 , ⇒ denotes weak

convergence in D[0,1], and Lm is given in (4.47):

Lm(n) = m!CmLm
γ (n),

Cm = 2

((2d − 1)m + 1)((2d − 1)m + 2)
,

with Lγ given by (4.39):

Lγ (k) = L2
a(k) · σ 2

ε

∫ ∞

0
vd−1(v + 1)d−1 dv.

On the other hand, if m(1 − 2d) > 1, then var(Sn,Am) ∼ σSn for some σS > 0, and

n− 1
2 Sn,Am(u) ⇒ σSB(u)

(
u ∈ [0,1]), (4.49)

where B(·) is a standard Brownian motion, and ⇒ denotes weak convergence in
D[0,1].
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In other words, the asymptotic distribution is the same as in case of Hermite
polynomials. Moreover, Lm agrees with Lm in Theorem 4.3.

Proof At first consider the case with m(1 − 2d) > 1. The proof is rather long, so
that only a sketch is given here (for details, see e.g. Surgailis 2003). To prove the
convergence of finite-dimensional distributions, we use the cumulant method (cf.
Theorem 4.1). Recall that for the normal distribution, all cumulants of order j ≥ 3
equal zero, and there is no other distribution with this property. It is therefore suffi-
cient to show that for j ≥ 3,

lim
n→∞κj

(
n− 1

2 Sn,Am(t)
)= n− j

2 lim
n→∞κ

(
Sn,Am(t), . . . , Sn,Am(t)︸ ︷︷ ︸

j

)= 0.

Without loss of generality, we may fix t at t = 1, and we write Sn,Am = Sn,Am(1).
Now for s1, . . . , sj ∈N, consider a table W with rows

Wr = {X(r,1) = Xsr , . . . ,X(r,j) = Xsr } (1 ≤ r ≤ j).

Then, because of multilinearity of κ ,

κ(Sn,Am, . . . , Sn,Am) =
n∑

s1,...,sj =1

κ
(
Am(Xs1), . . . ,Am(Xsj )

)

=
n∑

s1,...,sj =1

κ
(:XW1 :, . . . , :XWj :).

The diagram formula implies

κ
(:XW1 :, . . . , :XWj :)=

∑

γ∈Γ

−,c
W

κ
(
X

′V1
) · · · κ(X′Vr

)
,

and hence,

κj

(
n− 1

2 Sn,Am(t)
)=

∑

γ∈Γ

−,c
W

n− j
2

n∑

s1,...,sj =1

κ
(
X

′V1
) · · · κ(X′Vr

)

=
∑

γ∈Γ

−,c
W

n− j
2 Jn,γ .

Since the number of diagrams in Γ

−,c
W is finite and does not depend on n, it is

sufficient to show that n− j
2 Jn,γ converges to zero. Note first that, for any s1, . . . , sj

and V ⊆ W ,

κ
(
X′V )= κ

(
Xs1, . . . ,Xs1︸ ︷︷ ︸
|V ∩W1|-times

, . . . ,Xsj , . . . ,Xsj︸ ︷︷ ︸
|V ∩Wj |-times

)
.
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Since Xt (t ∈ N) is a linear process with i.i.d. innovations εj (t ∈ Z), this can be
written as

κ
(
X′V )= const · BV,s1,...,sj ,

where

BV,s1,...,sj =
∞∑

i=−∞
a

|V ∩W1|
i+s1

· · ·a|V ∩Wj |
i+sj

.

Hence,

κ
(
X′V1

) · · · κ(X′Vr
)= const ·

r∏

u=1

BVu,s1,...,sj ,

so that it is sufficient to show that each n− j
2 BVu,s1,...,sj converges to zero. This re-

quires a rather laborious detailed argument. However, the essential idea used in Sur-
gailis (2003, Lemma 6.1) is to show this first for a finite moving average process
Xt,K =∑K

j=0 aj εt−j (actually Surgailis allows for a two-sided moving average)

and then give an upper bound for the difference between the approximation JK
n,γ and

Jn,γ that converges to zero as K tends to infinity. Note that a similar approximation
argument was used to establish convergence of partial sums of weakly dependent
linear processes, see Theorem 4.5.

Tightness is easier than fidi-convergence but is omitted here; we refer the reader
to Giraitis (1985).

Next, consider the case m(1 − 2d) < 1. This case has been considered for in-
stance in Surgailis (1981, 1982), Giraitis and Surgailis (1986, 1989) and Avram and
Taqqu (1987); see also Surgailis (2003) for an overview.

Recall from Corollary 4.1 that

Sn,Am =
n∑

t=1

∞∑

j1,...,jm=0

aj1 · · · ajm(:εt−j1 · · · εt−jm :).

Consider

Un,m := m!
n∑

t=1

∞∑

0=j1<j2<···<jm

aj1 · · · ajm(:εt−j1 · · · εt−jm :). (4.50)

Since the random variables εj1 · · · εjm in this expression are independent, we have

:εj1 · · · εjm : = A1(εj1) · · ·A1(εjm) = εj1 · · · εjm.

Therefore, we may write

Un,m = m!
n∑

t=1

∞∑

0=j1<j2<···<jm

m∏

s=1

ajs εt−js =: m!
n∑

t=1

Vt,m. (4.51)
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If we recall now (cf. proof of Theorem 4.6) that

εt = 1√
2π

∫ π

−π

eitλM0 (dλ),

where M0 is a spectral measure with independent increments, then combining ar-
gument from the proof of Theorem 4.3 with the proof of Theorem 4.6, we expect
that

n−(1−m( 1
2 −d))L

−m/2
f

(
n−1)Un,m

d→ m!
∫

λ1<···<λm

D(λ1 + · · · + λm)dWX(λ1) · · ·dWX(λm), (4.52)

where dWX(λ) = |λ|−d dM0(λ) is the limiting spectral measure defined in (4.34).
The spectral-domain function Lf is replaced by the time-domain slowly varying
function Lm using the same argument as in the proof of Theorem 4.3:

Lm(n) = m!Cm

(
2Γ (1 − 2d) sin(πd)

)m
Lm

f

(
n−1).

Then,

n−(1−m( 1
2 −d))L

−1/2
m (n)Un,m

d→ Zm,H (1). (4.53)

Finally,

Sn,Am = Un,m + rn,m,

where the remainder rn,m involves summation over j1, . . . , jm such that at least two
indices agree. The remainder is of a smaller order (see Avram and Taqqu 1987 for
details).

Tightness is very easy. We use the same argument as in the proof of Theorem 4.4,
together with the variance estimates in Theorem 4.7. �

As noted in the proof, in the case with m(1 − 2d) < 1, the convergence of Sn,Am

is determined by the term Un,m defined in (4.51). In fact, the convergence equa-
tion (4.52) will play a crucial role in some of the results following below.

The assumptions of the theorem can be relaxed in various ways. For instance,
in order to obtain the usual central limit theorem in (4.49), only

∑ |γX(k)|m < ∞
is required instead of the specific decay of γX (see Surgailis 2003). Moreover, the
result can be extended to

Sn,G(u) =
[nu]∑

t=1

G(Xt)

with

G(x) =
∞∑

j=m

aapp,j

j ! Aj(x).
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Assuming that aapp,m 
= 0 (i.e. G has Appell rank m), the contribution of aapp,m ×
Am(Xt)/m! dominates, provided that m(1−2d) < 1. For example, Surgailis (2000)
considers arbitrary polynomials G. Furthermore, Surgailis and Vaičiulis (1999) re-
place independent εt (t ∈ Z) by martingale differences, and Surgailis (2000) consid-
ers X̃t = Xt + Vt where Vt (t ∈N) is a stationary short-memory process.

In view of the fact that for each distribution different Appell polynomials are ob-
tained, and in general they are not orthogonal, it is quite remarkable that the same
asymptotic limit is obtained as under Gaussian subordination and Hermite polyno-
mials. Moreover, it is worth noting that, for fixed m, the condition m(1 − 2d) < 1
means that d > 1

2 (1 − m−1). Thus, a nonstandard limiting behaviour (which is also
called noncentral limit theorem) is achieved for sufficiently strong long-range de-
pendence. The higher the degree m of the Appell polynomial, the stronger depen-
dence has to be to satisfy the condition. This is essentially due to (4.46). Since at
the same time d does not exceed 1

2 , there is no such d for m = 1. In other words, for
Xt (t ∈N), a noncentral limit theorem holds for all 0 < d < 1

2 .

4.2.5.4 Asymptotic Distributions: Martingale Approach and Power Ranks

Recall now that the j th Appell coefficient can be obtained either by

aapp,j = E
[
G(j)(X)

]
(4.54)

if the j th derivative of G exists and its expected value is not zero (see (3.66)) or by

aapp,j = (−1)j
∫

G(x)p
(j)
X (x) dx (4.55)

(see (3.69)), where pX = F ′
X is the density of X. Note that due to (4.54), a similar

definition of Appell rank that has been proposed in the literature is the so-called
power rank.

Definition 4.1 Let X be a random variable. The power rank of a function G (with
respect to X) is the smallest integer m ≥ 1 such that G

(m)∞ (x) 
= 0, where G∞(x) =
E[G(X + x)].

Example 4.7 Let FX be the distribution of a random variable X with E(X) = 0.
If G(x) = x2 − E(X2), then G

(1)∞ (0) = 2
∫

udFX(u) = 2E(X) = 0. Furthermore,

G
(2)∞ (0) = 2

∫
dFX(u) = 2. This implies that for a centred linear process Xt =∑

aj εt−j , the power rank of the quadratic function is always 2, regardless of the
distribution of εt (and the marginal distribution of Xt ).

Using the power rank, Ho and Hsing (1996, 1997) developed a different approach
to studying limit theorems for functionals of linear processes. To describe the idea,
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let us again consider

Xt,K =
K∑

j=0

aj εt−j ,

X̃t,K = Xt − Xt,K =
∞∑

j=K+1

aj εt−j

and

GK(y) := E
[
G(Xt,K + y)

]
(K ≥ 0), G∞(y) = E

[
G(Xt + y)

]
. (4.56)

We also use the convention G−1 = G and X̃0,−1 = X0. Note now, that if F is a
sigma field, ξA is a random variable that is F -measurable and ξB is a random vari-
able that is independent of F and has distribution FB , then

E
[
G(ξA + ξB + y)|F]=

∫
G(ξA + v + y)dFB(v) =: GB,∗(ξA + y) (4.57)

and

G∗(y) := E
[
G(ξA + ξB + y)

]= E
[
GB,∗(ξA + y)

]
. (4.58)

Now let FK = σ(εj ,−∞ < j ≤ K) (K ∈ Z). We apply (4.57) and (4.58) with
(ξA, ξB,F) = (X̃t,K−1,Xt,K−1,Ft−K) and (ξA, ξB,F) = (X̃t,K,Xt,K,Ft−(K+1))

respectively. We obtain

n∑

t=1

{
G(Xt) − E

[
G(X1)

]}

=
n∑

t=1

∞∑

K=0

{
E
[
G(Xt)|Ft−K

]− E
[
G(Xt)|Ft−(K+1)

]}

=
n∑

t=1

∞∑

K=0

(
GK−1(X̃t,K−1) − GK(X̃t,K)

)

≈
n∑

t=1

∞∑

K=0

(
GK(X̃t,K−1) − GK(X̃t,K)

)

≈
n∑

t=1

∞∑

K=0

atεt−KG
(1)
K (X̃t,K) (4.59)

≈ G(1)∞ (0)

n∑

t=1

Xt +
n∑

t=1

∞∑

K=0

aKεt−K

(
G

(1)
K (X̃t,K) − G(1)∞ (0)

)
. (4.60)



250 4 Limit Theorems

The point of this approximation is that the first term in the last expression is just the
partial sum of the linear sequence, multiplied by a constant. The first term is of a
larger order than the second term. Consequently, using Theorem 4.6, we expect

n−(d+ 1
2 )L

−1/2
S (n)

n∑

t=1

{
G(Xt) − E

[
G(X1)

]} d→ G(1)∞ (0)BH (1).

This is useful, of course, only if G
(1)∞ (0), the first power rank of G, does not vanish.

If G
(1)∞ (0) = 0, then the expansion is continued until we obtain a non-vanishing

quantity G
(m)∞ (0). In that case we say that the power rank of G is m. If for example

the power rank is 2, the expansion reads further

n∑

j=1

{
G(Xt) − E

[
G(X)

]}

=
n∑

t=1

∞∑

K=0

{
E
[
G(Xt)|Ft−K

]− E
[
G(Xt)|Ft−(K+1)

]}

≈ G(2)∞ (0)

n∑

t=1

∞∑

j1=0

∞∑

j2=j1+1

aj1aj2εt−j1εt−j2

+
n∑

t=1

∞∑

j1=0

∞∑

j2=j1+1

aj1aj2εt−j1εt−j2

(
G

(2)
j2

(X̃t,j2) − G(2)∞ (0)
)
.

As before, the second term in the last expression is of a smaller order than the first
one. We recognize the first term as G

(2)∞ (0)Un,2/2! (cf. (4.51)). Therefore, using the
convergence result (4.52), we have

n−2dL
−1/2
2 (n)

n∑

j=1

{
G(Xt) − E

[
G(X1)

]}⇒ G(2)∞ (0)Z2,H (1)/2!.

This can be generalized to arbitrary power ranks. There are a lot of technical details
missing in the heuristic explanation above. We make it more precise, using a mod-
ified version of Ho and Hsing’s approach (see Wu 2003). In order to do this, let G

be a function, and p ∈ N. Define (cf. (4.51))

Tn(G;p) =
n∑

t=1

{
G(Xt) − E

[
G(X1)

]−
p∑

r=1

G(r)∞ (0)Vt,r

}
,

where

Vt,r =
∑

0≤j1<···<jr

r∏

s=1

ajs εt−js .
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In particular,

Tn(G;1) =
n∑

j=1

{
G(Xt) − E

[
G(X1)

]− G(1)∞ (0)Xt

}
.

For any random variable Y , let ‖Y‖r = E1/r [Y r ]. The following theorem estab-
lishes a reduction principle for Tn(G;p) that can be viewed as a counterpart to the
Gaussian case (see the proof of Theorem 4.4). We state the result assuming that
the slowly varying function La in (B1) is constant. The statement can be modified
appropriately to incorporate a general slowly varying function La(j).

Theorem 4.9 Let Xt (t ∈ N) be a linear process defined by (4.37) with coefficients
satisfying assumption (B1) with La(j) ≡ 1. Assume that E[|ε|4+γ ] < ∞ for some
γ > 0 and

max
r=1,2,...,p+1

sup
y

∣∣G(r)∞ (y)
∣∣< ∞, (4.61)

where G∞ is defined in (4.56).

• If (p + 1)(1 − 2d) > 1, then ‖Tn(G;p)‖2
2 = O(n).

• If (p + 1)(1 − 2d) < 1, then

∥∥Tn(G;p)
∥∥2

2 = O
(
n2−(p+1)(1−2d)

)
. (4.62)

The proof of this result is postponed to the end of this section. At this moment, let
us discuss its consequences and technical assumptions. Assumption (4.61) is in the
spirit of Ho and Hsing (1997). Another assumption was considered in Wu (2003).
Similarly to definition (4.56), one can argue that

G
(r)
K (y) := d

dyr
E
[
G(X0,K + y)

]= E
[
G(r)(X0,K + y)

]
(K ≥ 0),

G(r)∞ (y) = E
[
G(r)(X + y)

]
.

For example,

E[G(X + y + δ)] − G(X + y)

δ
− E

[
G(1)(X + y)

]

=
∫ {

G(x + y + δ) − G(x + y)

δ
− G(1)(x + y)

}
pX(x)dx

≤ δ sup
u

∣∣G(2)(u)
∣∣
∫

pX(x)dx.

Hence, for instance, if G has uniformly bounded second-order derivatives, then the
limit as δ → 0 exists. However, such a strong assumption is not needed in fact, and
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a condition like (4.61) suffices (see Ho and Hsing 1996, Lemma 6.2, Wu 2003). We
may thus write G

(r)
0 (y) = E[G(r)(a0ε0 + y)] and

G
(r)
1 (y) = E

[
G(r)(a0ε0 + a1ε−1 + y)

]= E
{
E
[
G(r)(a0ε0 + a1ε−1 + y)|ε−1

]}

= E
[
G

(r)
0 (a1ε−1 + y)

]
.

Therefore, it is intuitively clear that properties of G
(r)
0 are transferred to G

(r)
1 and by

induction to any of G
(r)
K , K ≥ 1.

Example 4.8 Consider G(u) = 1{u ≤ x0} for a fixed x0. Then G∞(y) = E[1{X +
y ≤ x0}] = P(X ≤ x0 − y), and

G(1)∞ (0) = d

dy
P (X ≤ x0 − y)|y=0 = −pX(x0 − y)|y=0 = −pX(x0),

where pX is the density of X.

What is the consequence of the theorem above? Take p = 1. We obtain
‖Tn(G;1)‖2

2 = O(max{n,n4d}). Recall now Theorem 4.6 that describes conver-
gence of partial sums

∑n
t=1 Xt . We conclude that the limiting behaviour of

n−( 1
2 +d)L

−1/2
1 (n)

n∑

t=1

{
G(Xt) − E

(
G(X1)

)}

is the same as that of

n−( 1
2 +d)L

−1/2
1 (n)G(1)∞ (0)

n∑

t=1

Xt,

where L1(n) = (d(2d + 1))−1Lγ (n), and Lγ (n) given in (4.39). If the power rank
is greater than one, then one has to apply a higher-order expansion (p ≥ 2). The
limiting behaviour of the partial sum follows from the corresponding limit theorem
for Un,p . The latter was considered in (4.51) and (4.52).

Corollary 4.3 Let Xt =∑∞
j=0 aj εt−j (t ∈ Z) be a linear process defined by (4.37)

with coefficients satisfying assumption (B1), i.e. aj ∼ La(j)jd−1, d ∈ (0,1/2). As-
sume that G has the power rank m. If m(1 − 2d) < 1, then, under the conditions of
Theorem 4.9,

n−(1−m( 1
2 −d))L

−1/2
m (n)

n∑

t=1

{
G(Xt) − E

(
G(X1)

)} d→ G(m)∞ (0)Zm,H (1),

where

Lm(n) = m!CmLm
γ (n),
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Cm = 2

((2d − 1)m + 1)((2d − 1)m + 2)
,

and Lγ is given by (4.39):

Lγ (k) = L2
a(k)σ 2

ε

∫ ∞

0
vd−1(v + 1)d−1 dv

= L2
a(k)σ 2

ε B(1 − 2d, d).

Let us apply Corollary 4.3 to X2
t , where Xt is a linear process such that

E(X2
1) = 1. The example shows that in a sense, the power rank method is distri-

bution free. In contrast, limiting results for Appell polynomials are not directly ap-
plicable to X2

t − 1, unless Xt are Gaussian.

Example 4.9 Consider a linear process Xt = ∑∞
j=0 aj εt−j (t ∈ Z) such that∑∞

k=0 a2
k = 1 and E[ε2

1] = 1. Let G(x) = x2. Then recall from Example 4.6 that

n∑

t=1

(
X2

t − 1
)=

n∑

t=1

∞∑

j=0

a2
j

(
ε2
t−j − 1

)+
n∑

t=1

∞∑

k,l=0; k 
=l

akalεt−kεt−l .

The first term can be represented as
∑n

t=1 Yt , where Yt (t ∈ Z) is the linear process
Yt =∑∞

j=0 ckξt−j , ξt−j = ε2
t−j − 1, with summable coefficients cj = a2

j . Using
Theorem 4.5, we have

n−1/2
n∑

t=1

∞∑

j=0

a2
j

(
ε2
t−j − 1

) d→ N
(
0, v2),

where v2 = σ 2
Y + 2

∑∞
k=1 γY (k). The second term can be recognized as Un,2, see

(4.51), (4.52) and (4.53). Therefore,

n−2dL
−1/2
2 (n)Un,2

d→ Z2,H (1)

if d ∈ (1/4,1/2), where Z2,H (u) is the Hermite–Rosenblatt process with H = d +
1/2. On the other hand,

n−1/2Un,2
d→ σSN(0,1)

if d < 1/4. Furthermore, the terms in (4.63) are uncorrelated. Therefore, if d > 1/4,
then

n−2dL
−1/2
2 (n)

n∑

t=1

(
X2

t − 1
) d→ Z2,H (1).

Otherwise, if d < 1/4,

n−1/2
n∑

j=1

(
X2

t − 1
) d→ N

(
0, v + σ 2

S

)
. (4.63)
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Example 4.10 (ARFIMA) Assume that Xt (t ∈ N) is a FARIMA(0, d,0) process as
in Examples 4.4 and 4.5. Then

γX(k) ∼ cγ k2d−1, cγ = σ 2
ε

π
Γ (1 − 2d) sin(πd).

Hence, for d ∈ (1/4,1/2),

n−2dL
−1/2
2 (n)

n∑

t=1

(
X2

t − 1
) d→ Z2,H (1),

where

L2(n) = 2C2c
2
γ , C2 = 1

(2(2d − 1) + 1)(2d + 1)
.

Of course, this is comparable to the Gaussian case, see Example 4.1.

4.2.5.5 Technical Details for Theorem 4.9

We write the proof for p = 1 only, leaving out some technical details. They can
be found in Ho and Hsing (1996, 1997) and Wu (2003). Using the notation Vt =
(εt , εt−1, . . . , ), we may write Tn(G;1) =∑n

t=1 U(Vt ), where U(·) is a suitable
function. Let PK be the conditional expectation operator

PKY = E[Y |VK ] − E[Y |VK−1].

Noting that PKTn(G;1) = 0 if K > n, we can write down the orthogonal decompo-
sition

Tn(G;1) =
n∑

K=−∞
PKTn(G;1).

Furthermore,

PKTn(G;1) =
n∑

t=1

{
E
(
U(Vt )|FK

)− E
(
U(Vt )|FK−1

)}

=
n∑

t=max{K,1}

{
E
(
U(Vt )|FK

)− E
(
U(Vt )|FK−1

)}

=
n∑

t=max{K,1}
PKU(Vt ),
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since the terms corresponding to t ≤ K − 1 vanish. Therefore,

∥∥Tn(G;1)
∥∥2

2 =
n∑

K=−∞

∥∥PKTn(G;1)
∥∥2

2 =
n∑

K=−∞

∥∥∥∥∥

n∑

t=max{K,1}
PKU(Vt )

∥∥∥∥∥

2

2

.

Now, for any stationary sequence Yt (t ∈ N), we have ‖∑n
t=1 Yt‖2 ≤∑n

t=1 ‖Yt‖2.
Therefore, if we define

ψ2
t−K = ∥∥PKU(Vt )

∥∥2
2 = ∥∥P−(t−K)U(V0)

∥∥2
2

and use Lemma 4.17 below, we obtain

∥∥Tn(G;1)
∥∥2

2 ≤
n∑

K=−∞

(
n∑

t=max{K,1}

∥∥P−(t−K)U(V0)
∥∥

2

)2

(4.64)

≤
n∑

K=−∞

(
n∑

t=max{K,1}
(t − K)2(d−1)+1/2

)2

. (4.65)

A rough bound for this expression can be established as follows:

n∑

K=−∞

(
n∑

t=max{K,1}
(t − K)2(d−1)+1/2

)2

≈
∫ n

−∞

(∫ n

max{s,0}
(v − s)2(d−1)+1/2 dv

)2

ds

=
∫ 0

−∞

(∫ n

0
(v − s)2(d−1)+1/2 dv

)2

ds +
∫ n

0

(∫ n

s

(v − s)2(d−1)+1/2 dv

)2

ds.

Let us evaluate the first term only:

∫ 0

−∞

(∫ n

0
(v − s)2(d−1)+1/2 dv

)2

ds

= C

∫ 0

−∞
(
(n − s)2(d−1)+3/2 − (−s)2(d−1)+3/2)2 ds

=
∫ ∞

0

(
(n + s)2(d−1)+3/2 − s2(d−1)+3/2)2 ds = O

(
n4(d−1)+3+1)= O

(
n4d
)
.

This is statement (4.62) of Theorem 4.9 when p = 1. We note that the integral above
is well defined. For example, as s → ∞, the integrand behaves like {s2(d−1)+1/2}2,
which is integrable since d < 1/2. A detailed computation can be found in Lemma 5
in Wu (2003).

To finish the proof of Theorem 4.9, we have to prove the following lemma.
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Lemma 4.17 Assume that the conditions of Theorem 4.9 are satisfied. Then

∥∥P−KU(V0)
∥∥2

2 = O
(
K4(d−1)+1), K ≥ 0.

Proof We have

P−KU(V0) = E
[
G(X0)|F−K

]− E
[
G(X0)|F−(K+1)

]

− G(1)∞ (0)
{
E[X0|F−K ] − E[X0|F−(K+1)]

}
.

Now we use the decomposition X0 = X0,K−1 + X̃0,K−1 and note that X0,K−1 is
independent of F−K , whereas X̃0,K−1 is measurable w.r.t. this sigma field. Thus,
recalling that E(ε1) = 0, the second term in P−KU(V0) yields

E[X0|F−K ] − E[X0|F−(K+1)] = X̃0,K−1 − X̃0,K = aKε−K.

The first term in P−KU(V0) is

GK−1(X̃0,K−1) − GK(X̃0,K).

Applying (4.57) and (4.58) with (ξA, ξB,F) = (X̃0,K−1,X0,K−1,F0−K) and
(ξA, ξB,F) = (X̃0,K ,X0,K,F0−(K+1)), our goal is to evaluate the bound

∥∥P−KU(V0)
∥∥2

2 = ∥∥GK−1(X̃0,K−1) − GK(X̃0,K) − G(1)∞ (0)aKε0−K

∥∥2
2.

In the first step, we will replace GK−1 by GK . Note first that for any y ∈ R,

GK(y) = E
[
G(X0,K + y)

]= E
[
G(X0,K−1 + aKε−K + y)

]

= E
{
E
[
G(X0,K−1 + aKε−K + y)|ε−K

]}= E
[
GK−1(y + aKε−K)

]
.

(4.66)

Taking into account that E(ε−K) = 0 and applying a Taylor expansion, we therefore
obtain

GK−1(y) − GK(y) = E
[
GK−1(y) − GK−1(y + aKε−K)

]

= E
[
GK−1(y) − GK−1(y + aKεj−K) + G

(1)
K−1(y)aKε−K

]

≤ a2
KE
(
ε2−K

)
sup
y

∣∣G(2)
K−1(y)

∣∣.

Therefore,

∥∥P−KU(V0)
∥∥2

2 ≤ C
{∥∥GK(X̃0,K−1) − GK(X̃0,K) + G(1)∞ (0)aKε−K

∥∥2
2 + a4

K

}

≤ C
{∥∥GK(X̃0,K−1) − GK(X̃0,K) + G

(1)
K (X̃0,K)aKε−K

∥∥2
2 + a4

K

}

+ C
∥∥G(1)∞ (0)aKε−K − G

(1)
K (X̃0,K)aKε−K

∥∥2
2 =: I1 + I2.
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The first term I1 is treated again using a Taylor approximation: it is bounded by
a4
KE2(ε2

1) supy |G(2)
K (y)|. As for the second term, since X̃0,K and ε−K are indepen-

dent, we have

I2 = a2
KE
[
ε2]∥∥G(1)∞ (0) − G

(1)
K (X̃0,K)

∥∥2
2.

Thus, in analogy to (4.66), by conditioning on X̃0,K ,

G(1)∞ (y) = E
[
G(1)(X + y)

]= E
[
G

(1)
K (X̃0,K + y)

]
. (4.67)

Furthermore, for any two random variables ηA and ηB , we have E[(ηA −
E[ηB ])2] ≤ E[(ηA −ηB)2]. Therefore, using (4.67) with Ỹ0,K , an independent copy
of X̃0,K , we obtain

I2 ≤ a2
KE
(
ε2−K

)∥∥G(1)
K (Ỹ0,K) − G

(1)
K (X̃0,K)

∥∥2
2

≤ 2a2
KE
(
ε2−K

)∥∥G(1)
K (X̃0,K) − G

(1)
K (0)

∥∥2
2 ≤ Ca2

KE
(
X̃2

0,K

)
sup
y

∣∣G(2)
K (y)

∣∣.

Hence,

I2 ≤ Ca2
K

∞∑

j=K+1

a2
j ∼ Ca2

K

∞∑

j=K+1

j2(d−1) ∼ CK4(d−1)+1.

This finishes the proof of the lemma.
Note that we had to assume that, for p = 1,

max
r=1,2

sup
y

∣∣G(r)
K (y)

∣∣< ∞.

This explains the conditions of Theorem 4.9. �

4.2.6 Stochastic Volatility Models and Their Modifications

In this section we consider limit theorems for partial sums of stochastic volatility
models. Let Xt = σtξt (t ∈N), where

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

and σ(·) is a positive function. It is assumed that (ξt , εt ) (t ∈ Z) is a sequence of i.i.d.
random vectors and E(ε1) = 0. The linear process ζt is assumed to have long mem-
ory with autocovariance function γζ (k) ∼ Lγ (k)k2d−1, d ∈ (0,1/2). However, we
do not assume at the moment that E(ξ1) = 0. If the sequences ξt and εt are mutually
independent, then the model is called LMSV (Long-Memory Stochastic Volatility),
but for the purpose of this section, we do not need to make this assumption.
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Let Gj be the sigma field generated by ξl, εl , l ≤ j . We consider partial sums

Sn(u) =
[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]} (
u ∈ [0,1]),

where G is a measurable function such that E[G2(X1)] < ∞.
The asymptotic behaviour of partial sums is described in the following theorem.

For simplicity, we formulate it in a Gaussian setting; however, it can be extended to
linear processes, using the results of Sect. 4.2.5 instead of Theorem 4.4.

Theorem 4.10 Consider the stochastic volatility model described above with v2 =
var(G(X1)) < ∞ (but possibly E(ξ1) 
= 0). Assume in addition that εt (t ∈ Z) are
standard normal.

• If E[G(X1)|G0] = 0, then

n−1/2Sn(u) ⇒ vB(u), (4.68)

where B(u) (u ∈ [0,1]) is a standard Brownian motion.
• If E[G(X1)|G0] 
= 0, then

n−(1−m( 1
2 −d))L

−1/2
m (n)

[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}⇒ J (m)

m! Zm,H (u), (4.69)

where ⇒ denotes weak convergence in D[0,1], Zm,H (u) (u ∈ [0,1]) is the
Hermite–Rosenblatt process, m is the Hermite rank of

G̃(y) =
∫

G
(
sσ (y)

)
dFξ (s)

with Fξ denoting the distribution of ξ , Lm(n) = m!CmLm
γ (n) (cf. (4.39), (4.21),

(4.22)) and J (m) = E[G̃(ζ1)Hm(ζ1)].

Proof Note that σt is measurable w.r.t. Gt−1, whereas ξt is independent of Gt−1.
Thus,

[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}

=
[nu]∑

t=1

{
G(Xt) − E

[
G(Xt)|Gt−1

]}

+
[nu]∑

t=1

{
E
[
G(Xt)|Gt−1

]− E
[
G(Xt)

]}=: Mn(u) + Rn(u).
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Note that the first part is a martingale. For this part, it suffices to verify the conditions
of the martingale central limit theorem; see Lemma 4.2. Set Xt,n = n−1/2G(Xt).
The Lindeberg condition is clearly satisfied since

E
[
X̃2

t,n1
{|X̃t,n| > δ

}]≤ 4E
[
X2

t,n1
{|Xt,n| > δ

}]→ 0

on account of E[G2(X1)] < ∞, where X̃t,n = Xt,n − E[Xt,n|Gt−1]. Furthermore,
E[G2(Xt )|Gt−1] is a measurable function of the random variable ζt and hence of
the i.i.d. sequence εt−1, εt−2, . . . . Therefore, the sequence E[G2(Xt )|Gt−1] (t ≥ 1)
is ergodic, and n−1∑n

t=1 E[G2(Xt )|Gt−1] converges in probability to E[G2(X1)].
Therefore, we conclude (4.68) for the martingale part Mn(u).

On the other hand, the second part Rn(u) can be written as

Rn(t) =
[nu]∑

t=1

{
G̃(ζt ) − E

[
G̃(ζt )

]}
,

and (4.69) can be concluded using Theorem 4.4. �

Several comments have to be made here. We note that the proof of (4.68)
does not involve a particular structure of the model. Consider for example the
standard stochastic volatility model where E(ξ1) = 0. If we take G(x) = x, then
n−1/2∑[nu]

t=1 Xt converges to a Brownian motion without the assumption of Gaus-
sianity on εt . Furthermore, it is worth mentioning that this approach works (in the
case (4.68) only) for partial sums of GARCH, ARCH(∞) or LARCH(∞) models;
for the latter, see Beran (2006).

Example 4.11 Assume that G(y) = y2. Then G̃(y) = E[ξ2
1 ]σ 2(y). Therefore, m is

the Hermite rank of σ 2(y). In particular, if σ(y) = exp(y), then m = 1. We conclude

n−(d+1/2)L
−1/2
1 (n)

[nu]∑

t=1

(
X2

t − E
(
X2

1

))⇒ J (1)BH (u),

where J (1) = E(ζ1 exp(2ζ1))E(ξ2
1 ). This is analogous to Surgailis and Viano

(2002); note however that the authors considered general linear processes.

If E(ξ1) 
= 0 and G(x) = x, then (4.68) is no longer valid; rather (4.69) holds
with m = 1.

Example 4.12 (Long-Memory Stochastic Duration, LMSD) For the purpose of this
example, we assume that random variables ξt (t ∈ N) are strictly positive and hence
non-centred. Furthermore, it is assumed that the sequences ξt and σt are indepen-
dent. Then Xt = ξtσt inherits the dependence structure from σt , i.e.

cov(X0,Xk) = E(X0Xk) − E(X0)E(Xk) = E2[ξ1]cov(σ0, σk).
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Fig. 4.3 Partial sums for a centred and a non-centred stochastic volatility model

Assume that G(x) = x and σ(x) = exp(x). Then G̃(y) = E(ξ1) exp(y) and m = 1.
Application of Theorem 4.10 yields

n−(d+1/2)L
−1/2
1 (n)

[nu]∑

t=1

(
Xt − E(X1)

)⇒ J (1)BH (u)

weakly in D[0,1], where BH (·) is a fractional Brownian motion with H = d + 1/2,
and J (1) = E[ζ1 exp(ζ1)]E[ξ1].

Example 4.13 We illustrate the centering effect with a simulation example. First,
we generate n = 1000 i.i.d. standard normal random variables ξt . Then we simulate
independently n = 1000 observations ζt from a Gaussian FARIMA(0, d,0) process
with d = 0.4 and compute σt = exp(ζt ). Then, we construct two stochastic volatility
models: a centred one, Xt = ξtσt and a non-centred one, X̃t = (ξt + 1)σt . Finally,
we plot the partial sum sequences Sk =∑k

t=1 Xt and S̃k =∑k
t=1(X̃t − E(X̃1)),

k = 1, . . . , n. The corresponding partial sum processes are plotted in Fig. 4.3. The
smoother path in the second, non-centred, case indicates an influence of long mem-
ory (cf. Fig. 4.1).

4.2.7 ARCH(∞) Models

Recall from Definition 2.1 that the ARCH(∞) model has the form Xt = σtξt , where
ξt (t ∈ Z) are i.i.d. zero mean random variables with variance σ 2

ξ . Also,
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σ 2
t = b0 +

∞∑

j=1

bjX
2
t−j .

Furthermore, if σ 2
ξ

∑∞
j=1 bj < 1, then Xt (t ∈ Z) is stationary, and E(X2

1) < ∞. The
sequence Xt (t ∈ Z) is a martingale. Using the martingale central limit theorem (see
Lemma 4.2), we conclude the following result. It can also be stated in a functional
form (as convergence to a Brownian motion).

Corollary 4.4 Consider an ARCH(∞) model as in Definition 2.1. Assume that
σ 2

ξ

∑∞
j=1 bj < 1. Then

n−1/2
n∑

t=1

Xt
d→ N

(
0, σ 2

X

)
,

where

σ 2
X = σ 2

ξ b0

1 − σ 2
ξ

∑∞
j=1 bj

.

Next, we are interested in the asymptotic behaviour of

Sn =
n∑

t=1

(
X2

t − E
(
X2

1

))
.

To deal with this, we will use the general Definition 2.2 of ARCH(∞) models and
set Yt = X2

t = vt ζt = σ 2
t ξ2

t . In contrast to Xt (t ∈ Z), the squared sequence is not
a martingale. However, we recall from Theorem 2.3 that, under the existence con-
dition μ

1/2
ζ

∑∞
j=1 bj < 1 (which guarantees E(Y 2) < ∞), we have the summability

of the covariances,
∑∞

k=∞ |γY (k)| < ∞. Thus, we may expect a central limit for
partial sum Sn with the rate n−1/2. Indeed, we will argue that the ARCH(∞) model
Yt = vt ζt , vt = b0 +∑∞

j=1 bjYt−j , can be written using the Wold decomposition
with respect to a martingale difference.

To see this, assume that E(ζ1) = E(ξ2
1 ) = 1 and let ψ(z) = 1−∑∞

j=1 bj z
j . Since∑∞

j=1 bj < 1, we conclude that ψ(·) is analytic on {z : |z| < 1} and has no zeros in

{z : |z| ≤ 1}. Hence, it is invertible, and ψ−1(z) =∑∞
j=0 b̃j z

j with
∑∞

j=0 |b̃j | < ∞.
Now, vt = b0 + (1 − ψ(B))Yt , which leads to

ψ(B)Yt = Yt − vt + b0 = vt (ζt − 1) + b0.

On the other hand,

E(Y1) = E(v1)E(ζ1) = E(v1)

= b0

1 −∑∞
j=1 bj

,
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so that

E(Y1)ψ(B) = E(Y1)ψ(1) = b0.

Hence, ψ(B)(Yj − E(Y1)) = vt (ζt − 1) and

Yt − E(Y1) =
∞∑

j=0

b̃j vt (ζt − 1).

We note that vt (ζt − 1) (t ∈ Z) is a martingale difference sequence. Therefore,
the centred Yt has a Wold decomposition with summable coefficients

∑∞
j=0 b̃j ,

where the innovations vt (ζt − 1) are uncorrelated and martingale differences. Con-
sequently, we could in principle apply the same method as in the proof of Theo-
rem 4.5, provided that it can be generalized to possibly dependent innovations that
are martingale differences. Since this is possible, we can conclude the following
result.

Theorem 4.11 Consider an ARCH(∞) process as in Definition 2.2. Assume that√
E[ξ2

1 ]∑∞
j=1 bj < 1. Then

n−1/2
n∑

t=1

(
Yt − E(Y1)

) d→ N
(
0, σ 2

Y

)
,

where σ 2
Y =∑∞

k=−∞ γY (k).

4.2.8 LARCH Models

Recall that a LARCH(∞) process is defined as

Xt = σtξt ,

σt = b0 +
∞∑

j=1

bjXt−j ,

where b0 
= 0, and ξt (t ∈ Z) are i.i.d. zero mean random variables with σ 2
ξ =

E(ξ2
1 ) = 1. As in the case of ARCH(∞) processes, the sequence Xt is a martingale

difference. Therefore, the statement of Corollary 4.4 still holds with σ 2
X = E[σ 2

1 ] =
b2

0/(1 − ‖b‖2
2) (cf. (2.51)).

The situation is different when we consider X2
t . We can use the decomposition

(cf. (2.56))

n∑

t=1

(
X2

t − E
(
X2

1

))=
n∑

t=1

(
σ 2

t − E
(
σ 2

1

))+
n∑

t=1

(
ξ2
t − 1

)
σ 2

t . (4.70)
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The second term is a martingale and therefore of the order OP (
√

n). Therefore,
in the case of a long-memory LARCH(∞) process, the asymptotic behaviour of∑

t (X
2
t − E(X2

t )) is the same as that of
∑

t (σ
2
t − E(σ 2

t )). On the other hand,
(2.57) of Theorem 2.7 suggests that

∑
t (σ

2
t − E(σ 2

1 )) behaves (up to a constant)
like

∑
t (σt − E(σ1)). This will be justified below. We then obtain the following

result.

Theorem 4.12 Consider a LARCH(∞) process. Let μp = E[|ξ1|p] < ∞. Assume

that 11μ
1/2
4 b2 < 1, where b =∑∞

j=1 b2
j , and that

bj ∼ cbj
d−1 (j → ∞), (4.71)

where cb > 0, d ∈ (0,1/2). Then

n−(d+1/2)

[nu]∑

t=1

(
X2

t − E
(
X2

1

))⇒ 2b−1
0 E

(
σ 2

1

)
c1

(
1

d(2d + 1)

)1/2

BH (u),

where ⇒ denotes weak convergence in D[0,1], BH (u) is a fractional Brownian
motion with the Hurst parameter H = d + 1/2, and

c1 =
(

b2
0

1 − ‖b‖2

)1/2√
B(d,1 − 2d)cb.

Remark 4.1 According to Theorem 2.7, the condition 11μ
1/2
4 b2 < 1 implies that the

fourth moment of Xt is finite.

Proof
Step 1: First, we look at

∑[nu]
t=1 (σt − E(σ1)). It can be written as

n∑

t=1

(
σt − E(σ1)

)=
n∑

t=1

∞∑

l=1

blσt−lξt−l =
n∑

t=1

t−1∑

l=−∞
bt−lσlξl .

We note that σtξt (t ∈ Z) are uncorrelated and martingale differences. Therefore,
we have the partial sum of a process

∑
bt−lσlξl that is a weighted linear sum

with innovations being martingale differences. This is similar, though not identical,
to the sum studied in Sect. 4.2.5 (the difference is that the innovations are only
uncorrelated, not independent, i.e. we do not have a linear process). To identify
asymptotic constants, rewrite the sum as

∑n
t=1
∑∞

l=1 blξt−lσt−l . Then for t < t ′,

cov

( ∞∑

l=1

blξt−lσt−l ,

∞∑

l=1

blξt ′−lσt ′−l

)
= var(ξ1σ1)

∞∑

l=1

blbl+t ′−t .

If (4.71) holds, then, as |j ′ − j | → ∞, the covariance behaves like

var(ξ1σ1)c
2
b

∫ ∞

0
vd−1(1 + v)d−1 dv

∣∣j ′ − j
∣∣2d−1

= var(ξ1σ1)c
2
bB(d,1 − 2d)

∣∣j ′ − j
∣∣2d−1

.



264 4 Limit Theorems

Using known results for linear processes (see Lemma 4.9), we obtain, as n → ∞,

var

(
n∑

t=1

σt

)
∼ var(ξ1σ1)

1

d(2d + 1)
c2
bB(d,1 − 2d)n2d+1

(note that these results are applicable as long as the innovations are uncorrelated).
Now,

var(ξ0σ0) = b2
0

1 − ‖b‖2
2

.

Theorem 4.6 can be generalized to the case where innovations are martingale dif-
ferences. Setting

c1 =
(

b2
0

1 − ‖b‖2

)1/2(
B(d,1 − 2d)

)1/2
cb,

one then can apply the generalized version of Theorem 4.6 to obtain

1

nd+1/2

[nu]∑

t=1

(
σt − E(σ1)

)⇒ c1

(
1

d(2d + 1)

)1/2

BH (u). (4.72)

Step 2: To deal with
∑[nu]

t=1 (σ 2
t − E(σ 2

1 )), we recall that (cf. (2.57))

cov
(
σ 2

t , σ 2
t+k

)∼
(

2E(σ 2
1 )

b0

)2

cov(σt , σt+k) (k → ∞).

The implication is that the asymptotic behaviour of the partial sum is the same as
that of

2b−1
0 E

[
σ 2

1

] [nu]∑

t=1

(
σt − E(σ1)

)

(though more detailed arguments are required to obtain a similar linear representa-
tion as for σt ). Hence,

n−(d+1/2)

[nu]∑

t=1

(
σ 2

t − E
(
σ 2

1

))⇒ 2b−1
0 E

(
σ 2

1

)
c1

(
1

d(2d + 1)

)1/2

BH (u).

Using this and decomposition (4.70), we obtain the result. �

4.2.9 Summary of Limit Theorems for Partial Sums

We summarize the main results for partial sums under long memory in Table 4.1. For
simplicity, the slowly varying functions are assumed to be constant in this summary.
Also, only X2

t is considered as a representative of nonlinear transformations.
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Table 4.1 Limits for partial sums with finite moments

Partial sums—finite moments

Sn(u) =∑[nu]
t=1 Xt Tn(u) =∑[nu]

t=1 (X2
t − E(X2

1))

Linear
processes

n−(1/2+d)Sn(u) ⇒ cBH (u)

(Theorems 4.2, 4.6)
n−1/2Tn(u) ⇒ cB(u) (d ∈ (0,1/4))
n−2dTn(u) ⇒ cZ2,H (u) (d ∈ (1/4,1/2))
(Theorem 4.3, Corollary 4.3, Examples 4.1, 4.9)

Stochastic
volatility
Xt = ξt σt ,
E[ξt ] = 0

n−1/2Sn(u) ⇒ cB(u)

(Theorem 4.10)
n−(1/2+d)Tn(u) ⇒ cBH (u)

(Theorem 4.10)

LARCH n−1/2Sn(u) ⇒ cB(u) n−(1/2+d)Tn(u) ⇒ cBH (u)

(Theorem 4.12)

4.3 Limit Theorems for Sums with Infinite Moments

4.3.1 Introduction

In this section we present limit theorems for partial sums of long-memory processes
with infinite moments. Although the theory is quite well understood for weakly de-
pendent random variables (Davis and Resnick 1985, Davis and Hsing 1995, Denker
and Jakubowski 1989, Dabrowski and Jakubowski 1994, Bartkiewicz et al. 2011),
the case of long memory is less well developed yet, except in the linear case. Re-
sults for linear processes with long memory were proven already several decades
ago in Astrauskas (1983) and Kasahara and Maejima (1988). Subordinated lin-
ear processes were studied in Hsing (1999), Koul and Surgailis (2001), Surgailis
(2002, 2004), Vaičiulis (2003). Surprisingly, the martingale decomposition method,
used for finite-variance random variables in Theorem 4.9, works also here. Subor-
dinated Gaussian processes were considered for instance in Davis (1983) and Sly
and Heyde (2008). Limiting results for infinite-variance stochastic volatility mod-
els with long memory are almost non-existing; see McElroy and Politis (2007),
Surgailis (2008), Kulik and Soulier (2012). In particular, both subordinated Gaus-
sian processes and stochastic volatility models can be treated using a point process
methodology. A complete list of the meanwhile quite extended literature would be
too long to be included here. However, some important results and more references
can be found for instance in Astrauskas et al. (1991), Benassi et al. (2002), Heath
et al. (1998), Houdré and Kawai (2006), Kokoszka and Taqqu (1995a, 1995b, 1996,
1997, 1999), Koul and Surgailis (2001), Samorodnitsky (2004), Samorodnitsky and
Taqqu (1994), Surgailis (2004), Zhou and Wu (2010).

First, we will summarize (with some details) results on regularly varying distri-
butions, stable laws and point processes, referring the reader for details to standard
textbooks such as Bingham et al. (1989), Feller (1971), Kallenberg (1997), Resnick
(2007), Samorodnitsky and Taqqu (1994), Embrechts et al. (1997).
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4.3.2 General Tools: Regular Variation, Stable Laws and Point
Processes

4.3.2.1 Regular Variation

Let Xt (t ∈N) be an i.i.d. sequence whose marginal distribution has regularly vary-
ing tails:

P(X1 > x) ∼ 1 + β

2
x−αLX(x), P (X1 < −x) ∼ 1 − β

2
x−αLX(x) (x → ∞),

(4.73)
where LX(·) is slowly varying at infinity, and β ∈ [−1,1]. Condition (4.73) is the
balanced tail condition. It is equivalent to P(|X1| > x) ∼ x−αLX(x) and

lim
x→∞

P(X1 > x)

P (|X1| > x)
= 1 + β

2
, lim

x→∞
P(X1 < −x)

P (|X1| > x)
= 1 − β

2
.

A typical example is a random variable with Cauchy density pX(x) = π(1 + x2)−1.
This random variable is symmetric, and P(X1 > x) ∼ (πx)−1, x > 0. Therefore,
the Cauchy distribution is regularly varying with index α = 1. Another example is a
(two-sided) Pareto distribution where

P
(|X1| > x

)= x−α (x > 1).

We note that if α ∈ (0,2), then random variable X has an infinite second moment.
The case α = 2 requires special attention.

Example 4.14 Assume that LX(x) ≡ 1 and that for x > x0 > 0, we have F̄|X|(x) :=
P(|X| > x) = x−α with α = 2. Then

∫ ∞

x0

xF̄|X|(x) dx =
∫ ∞

x0

xx−α dx =
∫ ∞

x0

x−1 dx = +∞.

On the other hand, if LX(x) = (logx)−2, then

∫ ∞

x0

xx−α 1

(logx)2
dx =

∫ ∞

x0

1

x(logx)2
dx =

∫ ∞

logx0

1

u2
du < +∞.

Therefore, we have infinite and finite variance, respectively, in the first and the sec-
ond case. This means that for α = 2, the slowly varying function plays an important
role.

The following result is the appropriately modified Karamata theorem. It provides
extremely useful estimates for truncated moments (see e.g. Resnick 2007, pp. 25,
36).
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Lemma 4.18 Assume that X is a random variable such that (4.73) holds. Let
F̄ (x) = P(X > x).

• If α < η, then

E
[
Xη1

{|X| ≤ x
}]∼ α

η − α
xηF̄ (x).

Finally note that

cn = inf
{
x : P (|X| > x

)≤ n−1} (4.74)

will be the appropriate normalization sequence used to establish convergence of par-
tial sums and point process convergence. In particular, this sequence can be chosen
as cn = n1/αL(n), where L is a slowly varying at infinity. If LX(x) ≡ A (i.e. L is
constant), then cn = A1/αn1/α .

4.3.2.2 Stable Random Variables

Stable random variables can be considered as a special case of (4.73). There are
several equivalent definitions of stable random variables.

Definition 4.2 A random variable X is stable if for any n ≥ 2, there exist constants
cn > 0 and dn ∈R such that

X1 + · · · + Xn
d= cnX + dn,

where X1,X2, . . . are independent copies of X. Necessarily, cn = n1/α , where α ∈
(0,2]. If dn = 0, then X is called strictly stable.

Equivalently, stable random variables are characterized in terms of domains of
attraction:

Definition 4.3 A random variable X is stable if there exists an i.i.d. sequence Yt

(t ∈N) and constants cn > 0, dn ∈R such that

Y1 + · · · + Yn

cn

+ dn
d→ X.

The characteristic function of a stable random variable X is given by

E
[
eiθX

]=
{

exp(−ηα|θ |α(1 − iβsign(θ) tan πα
2 ) + iμθ) if α 
= 1,

exp(−η|θ |(1 + iβ 2
π

sign(θ) ln(θ)) + iμθ) if α = 1.

Here, 0 < α ≤ 2, η > 0 is the scale parameter, −1 ≤ β ≤ 1 is a skewness, and μ ∈R

a shift parameter. We write X ∼ Sα(η,β,μ). In particular, X is symmetric α-stable
(written as X ∼ SαS) if X ∼ Sα(η,0,0). If β = 1, then the random variable X is
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called totally skewed to the right. If α ∈ (1,2], then −∞ < μ = E(X) < ∞. In what
follows, we will omit the case α = 1 from our discussion.

If α ∈ (0,2), then stable random variables are heavy tailed in the sense of (4.73).
Indeed, if X ∼ Sα(η,β,μ), then

lim
x→∞xαP (X > x) = Cα

1 + β

2
ηα, lim

x→∞xαP (X < −x) = Cα

1 − β

2
ηα,

(4.75)
where

Cα =
(∫ ∞

0
x−α sinx

)−1

= 1 − α

Γ (2 − α) cos(πα/2)
(α 
= 1).

Therefore, (4.73) holds with LX(x) ≡ Cαηα . If η = 1, then the scaling constant cn

defined in (4.74) is cn = C
1/α
α n1/α .

In what follows, we will use several properties of stable random variables. They

can be obtained by considering the characteristic function. If Xj
d= Sα(ηj ,βj ,μj )

(j = 1,2) are independent, then

X1 + X2
d= Sα

((
ηα

1 + ηα
2

)1/α
,
β1η

α
1 + β2η

α
2

ηα
1 + ηα

2
,μ1 + μ2

)
(4.76)

and

cX1
d= Sα

(|c|η1, sign(c)β1, cμ1
)
. (4.77)

Due to the scaling property, it is sufficient to consider Sα(1, β,μ) random variables.

4.3.2.3 Stable Convergence

Stable random variables play a crucial in the asymptotic theory for heavy-tailed ran-
dom variables (with α ∈ (0,2); see Gnedenko and Kolmogorov 1968, Feller 1971).
Assume that Xt (t ∈N) is an i.i.d. sequence of Sα(1, β,μ) random variables. Using
(4.76) and (4.77), we have

n−1/α
n∑

t=1

Xt
d= Sα

(
1, β,

nμ

n1/α

)
.

Thus, if α ∈ (0,1), then n/n1/α → 0 and

n−1/α
n∑

t=1

Xt
d→ Sα(1, β,0). (4.78)

If α ∈ (1,2), a centering is required:

n−1/α

n∑

t=1

(Xt − μn)
d= Sα

(
1, β,

n(μ − μn)

n1/α

)
.
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Thus, we may choose μn = μ (recall from Definition 4.3 that for α ∈ (1,2), we have
μ = E(X)) to obtain

n−1/α
n∑

t=1

(Xt − μ)
d→ Sα(1, β,0). (4.79)

However, we may also choose μn = E[X1{|X| < n1/α}]. Then from the Karamata
theorem, as n → ∞,

n(μ − μn)

n1/α
= nE[X · 1{|X| ≥ n1/α}]

n1/α
→ Cα

α

α − 1
.

Consequently,

n−1/α

n∑

t=1

(
Xt − E

[
X · 1

{|X| < n1/α
}]) d→ Sα

(
1, β,Cα

α

α − 1

)
.

Of course, we can restate these results using cn = C
1/α
α n1/α instead of n1/α . The

convergence results can be proven formally using the characteristic functions.
More generally, a classical result by Skorokhod (1957) states that if the i.i.d.

random variables Xt (t ∈N) fulfill (4.73) with LX(x) ≡ A, then

n−1/αSn(u) := n−1/α

[nu]∑

t=1

(Xt − μ) ⇒ A1/αC−1/α
α Zα(u), (4.80)

where Zα(·) is an α-stable Lévy motion with Zα(u)
d= u1/αSα(1, β,0), ⇒ denotes

weak convergence in D[0,1] w.r.t. J1 topology, and μ = E(X) if α ∈ (1,2) and
μ = 0 if α ∈ (0,1). We say then that random variables Xt (t ∈ N) are in the domain
of attraction of the α-stable law. Of course, if the random variables Xt are stable
Sα(1, β,0) and u = 1, then (4.80) reduces to (4.79) since then A = Cα .

4.3.2.4 Point Processes

Point processes are a useful tool to study limit theorems for partial sums, sample
covariances and some other functionals such as extremes. Here, we summarize (with
some details) results on convergence of point processes. For a detailed exposition,
the reader is referred to Resnick (2007) or Embrechts et al. (1997).

Let Xt (t ∈ N) be a stationary sequence, and cn a sequence of constants. Define
the point process as

Nn =
n∑

t=1

δ
(t/n,c−1

n Xt )
.
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Fig. 4.4 Counting process:
X(1) ≤ X(2) ≤ X(3) are the
smallest observations in the
sample X1, . . . ,Xn

Here, δ is a Dirac measure, which means that δx(A) = 1 if x ∈ A and 0 oth-
erwise. A point process Nn can be viewed as a random element defined on
[0,1] × (−∞,∞), with values in N. In other words, this is a random element with
values in Mp(E), the set of all Radon point measures on E =R

2. In particular, if we
choose a set U = [0,1] × (0, u), then Nn(U) = Ñn(u) =∑n

t=1 1{0 < c−1
n Xt < u}

counts points c−1
n Xt that lie between 0 and u. The process Ñn(u) (u ∈ R+) is called

a counting process and is depicted on Fig. 4.4.
There are several ways to establish convergence of point processes. The first one

is referred to as Kallenberg’s theorem (see Theorem 14.17 in Kallenberg 1997, or
Theorem 5.2.2 in Embrechts et al. 1997).

Proposition 4.2 Let Nn, n ∈ N, and N be point processes on R
d such that N has

no multiple points. Assume that

lim
n→∞E

[
Nn(U)

] = E
[
N(U)

]
, (4.81)

lim
n→∞P

(
Nn(U) = 0

) = P
(
N(U) = 0

)
(4.82)

for U = ⋃K
i=1(ki, li ) × (si , ti), K ≥ 1, 0 ≤ ki < li ≤ 1, and arbitrary relatively

compact open intervals (si , ti) of (−∞,0) ∪ (0,∞). Then Nn converges weakly to
N in Mp(Rd).

We illustrate this theorem by proving convergence of point processes based on
i.i.d. sequences. The proof will be easily adapted to models with (long-range) de-
pendence, such as stochastic volatility or subordinated Gaussian sequences. Define
the measure λ on (−∞,∞) \ {0} by

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
dx,

(4.83)
where β ∈ [−1,1]. We say that ds × dλ(x) is an intensity measure of a Poisson
process N on [0,1] × (−∞,∞) if for any A ⊂ [0,1], B ⊂ (−∞,∞), we have

E
[
N(A × B)

]=
∫

B

∫

A

dλ(x)ds.

In particular, we note that E[N([0,1] × (−∞,∞))] < ∞.
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Theorem 4.13 Let Xt (t ∈ N) be a sequence of i.i.d. random variables such that
(4.73) holds. Let

P
(|X1| > cn

)∼ n−1.

Then Nn converges weakly in Mp([0,1] × R) to a Poisson process N on [0,1] ×
((−∞,∞) \ {0}) with intensity measure ds × dλ(x).

Before we prove this result, let us state some of its consequences. First, the result
can be restated as

n∑

t=1

δ
c−1
n Xt

⇒
∞∑

l=0

δjl
,

where ⇒ denotes weak convergence in Mp(R), and jl are points of a Poisson pro-
cess with intensity measure dλ(x). If α ∈ (0,1), then the continuous mapping theo-
rem yields that

c−1
n

n∑

j=1

Xt
d→

∞∑

l=0

jl.

If we assume for a moment that Xt (t ∈ N) fulfill (4.73) with LX ≡ A, then the
scaling constants defined in (4.74) become cn = n1/αA1/α , and so

n−1/α
n∑

t=1

Xt
d→ A1/α

∞∑

l=0

jl.

For the α-stable random variables Xt , we have A = Cα . Comparing this expression
with (4.78) and using the scaling property (4.77), we conclude that

∑∞
l=0 jl is a

series representation of Sα(C
−1/α
α ,β,0). However, this consideration is not valid

for the case where α ∈ (1,2).
Analogously,

n∑

t=1

δ
c−2
n X2

t
⇒

∞∑

l=0

δj2
l
,

and for α ∈ (0,2),

c−2
n

n∑

t=1

X2
t

d→
∞∑

l=0

j2
l = Sα/2

(
C

−2/α

α/2 ,1,0
)
,

or

n−2/α
n∑

t=1

X2
t

d→ A2/αSα/2
(
C

−2/α

α/2 ,1,0
)
.

We note that for X2
t , the skewness parameter is β = 1. Then the stable random vari-

able is called totally skewed to the right. This means that the heavy-tailed property
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(4.75) of the limiting stable distribution is related to the heavy-tailed behaviour of

P
(
X2 > x

)= P(X >
√

x) + P(X < −√
x) ∼ Ax−α,

which is valid for positive values of x only. In contrast, when considering Xt , the
heavy-tailed behaviour of the limiting random variable Sα(C

−1/α
α ,β,0) is attributed

to the heavy-tailed behaviour of P(X > x) (x > 0) and P(X < x) (x < 0).

Proof of Theorem 4.13 We verify (4.81). It is enough to consider U =⋃K
i=1(ki, li)×

(si , ti) for K = 1. We have

E
[
Nn(U)

]=
n∑

t=1

E[δ
(t/n,c−1

n Xt )
]

= (l1 − k1)P
(
c−1
n Xt ∈ (s1, t1)

)

→ (k1 − l1)λ
(
(s1, t1)

)
,

where we recall that λ((si , ti)) = ∫ ti
si

dλ(x), and the measure λ(·) is given by (4.83).
To prove (4.82), write

P
(
Nn(U) = 0

)= P

(
K∑

i=1

n∑

nki<t<nli

1
{
c−1
n Xt ∈ (si , ti )

}= 0

)

=
K∏

i=1

n∏

nki<t<nli

P
(
c−1
n Xt /∈ (si , ti)

)
.

Let

Qn =
K∏

i=1

∏

nki<t<nli

e−n−1λ((si ,ti ))

and note that

Qn = exp

(
−

K∑

i=1

n−1
∑

nki<t<nli

λ
(
(si , ti )

)
)

→ exp

(
−

K∑

i=1

(li − ki)λ
(
(si , ti)

)
)

= P
(
N(U) = 0

)

as n → ∞. Recall the two elementary inequalities

∣∣∣∣∣

K∏

i=1

(si − ti )

∣∣∣∣∣≤
K∑

i=1

|si − ti | and
∣∣1 − e−x − x

∣∣≤ x1+ε

for any ε > 0. Then we obtain
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∣∣P
(
Nn(U) = 0

)− Qn

∣∣

=
∣∣∣∣∣

K∏

i=1

∏

nki<t<nli

(
1 − P

(
c−1
n X ∈ (si , ti)

))−
K∏

i=1

∏

nki<t<nli

e−n−1λ((si ,ti ))

∣∣∣∣∣

≤
K∑

i=1

(li − ki)n
∣∣(1 − P

(
c−1
n X ∈ (si , ti)

))− e−n−1λ((su,tu))
∣∣

≤
K∑

i=1

(li − ki)
∣∣nP
(
c−1
n X ∈ (si , ti )

)− λ
(
(si , ti)

)∣∣

+
K∑

i=1

n(li − ki)

∣∣∣∣1 − e−n−1λ((si ,ti )) − λ((si, ti ))

n

∣∣∣∣

= o(1) + Cn−ε = o(1)

for some ε > 0. �

Another result, due to Davis and Resnick (1988, Proposition 2.1), is useful when
studying processes that can be approximated by sequences with finite memory. Their
result is stated in fact in a much more general setting, which is omitted here.

We say that a sequence νn of measures converges vaguely to ν (νn
v→ ν) if for

all continuous functions g : E → R
d with compact support (written as g ∈ C+(E)),

we have
∫

g(x)νn(dx) →
∫

g(x)ν(dx).

We refer to Appendix A for additional precise notions related to vague convergence.

Proposition 4.3 Assume that Xt (t ∈ N) is a stationary K-dependent sequence with
values in R

d and cn → ∞ is a sequence of constants such that for the marginal
distribution, we have

nP
(
c−1
n X ∈ ·) v→ λ(·).

Furthermore, assume that for any g ∈ C+(Rd),

lim
k→∞ lim sup

n→∞
n

[n/k]∑

t=2

E
[
g
(
c−1
n X1

)
g
(
c−1
n Xt

)]= 0.

Then

Nn =
n∑

t=1

δ
(t/n,c−1

n Xt )
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converges weakly in Mp([0,1] × R) to a Poisson process N on [0,1] × (−∞,∞)

with intensity measure ds × dλ(x).

This result is applicable to sequences Xt with regularly varying tails as in (4.73).
In fact (see Theorem 3.6 in Resnick 2007), the vague convergence of nP (c−1

n X ∈ ·)
is equivalent to regular variation of the distribution of X.

4.3.3 Sums of Linear and Subordinated Linear Processes

In this section we discuss limit theorems for partial sums of linear processes

Xt =
∞∑

j=0

aj εt−j ,

where aj ∼ caj
d−1, d ∈ (0,1/2), and εt (t ∈ Z) are i.i.d. random variables such that

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α. (4.84)

In both, the coefficients aj and the tail P(ε1 > x), we assume for simplicity that
possible slowly varying functions are constant. If α ∈ (1,2), we assume also that
E(ε1) = 0.

The infinite series above converges if
∑∞

j=0 |aj |δ < ∞ for some δ < α (see e.g.
Avram and Taqqu 1992). In our case this is possible if an only if α(d − 1) < −1
and hence d < 1 − 1/α. Thus, if α ∈ (0,1), then the existence condition implies
that

∑∞
j=0 |aj | < ∞. Consequently, for α ∈ (0,1), long memory (in the sense of

non-summability of the coefficients) is excluded.
Linear processes are the easiest models to describe the interplay between depen-

dence and heavy tails. The asymptotic theory for partial sums is well developed and
includes approaches such as convergence of stochastic integrals (Astrauskas 1983,
Kasahara and Maejima 1986, 1988) or K-dependent approximations, together with
the point process methodology (Davis and Resnick 1985, Davis and Hsing 1995).
Interesting results on functional convergence are given in Avram and Taqqu (1992),
among others.

4.3.3.1 Tail Behaviour

First, we analyse the tail behaviour of linear processes. We note that if εt (t ∈ Z) are
Sα(1,0,0), so that (4.84) holds with β = 0 and A = Cα , then

X1
d=
( ∞∑

j=0

|aj |α
)1/α

Sα(1,0,0) =: D1/α
α Sα(1,0,0)

d= D1/α
α ε1,
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which follows directly from properties (4.76) and (4.77). Therefore, we may con-
clude that, as x → ∞,

P
(|X1| > x

)∼ P
(
D1/α

α |ε1| > x
)∼ DαCαx−α ∼ DαP

(|ε1| > x
)
.

This property is valid in fact under the general assumption (4.84).

Lemma 4.19 Assume that Xt (t ∈ N) is a linear process, εt (t ∈ Z) are i.i.d. random
variables such that (4.84) holds, and E(ε1) = 0 if α ∈ (1,2).

• If for some δ < α,
∞∑

j=0

|aj | +
∞∑

j=0

|aj |δ < ∞, (4.85)

then

lim
x→∞

P(|X1| > x)

P (|ε1| > x)
=

∞∑

j=0

|aj |α. (4.86)

• If aj ∼ caj
d−1, d ∈ (0,1 − 1/α), and εt (t ∈ Z) are symmetric with α ∈ (1,2),

then (4.86) holds.

Note that in the second part of the theorem, the coefficients aj are not absolutely
summable, however

∑ |aj |α is finite. This turns out to be sufficient. The first part
was proven in Cline (1983); see also Davis and Resnick (1985). The second part was
proven (under special assumptions with symmetry of the innovations) in Kokoszka
and Taqqu (1996).

4.3.3.2 Point Process Convergence

In what follows we show that, under the conditions of Lemma 4.19, a point process
based on Xt (t ∈ N) converges. Its behaviour is the same under short memory (4.85)
and under long memory.

Theorem 4.14 Under the assumptions of Lemma 4.19, we have

n∑

t=1

δ
c−1
n (Xt ,...,Xt−K)

⇒
∞∑

l=1

∞∑

r=0

δjl(ar ,ar−1,...,ar−K)

in Mp(RK+1), where cn is such that P(|ε1| > cn) ∼ n−1, i.e. cn ∼ A1/αn1/α .

Proof We give the proof for K = 0 only. For details, we refer to Davis and Resnick
(1985, Theorem 2.4). We note that the authors prove the results under condi-
tion (4.85). However, a crucial part of the proof relies on (4.86) only, which due to
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Lemma 4.19 is valid under more general conditions on aj . We restate Theorem 4.13
in terms of i.i.d. random variables εt (t ∈ Z),

n∑

t=1

δ
c−1
n εt

⇒
∞∑

l=1

δjl

where cn ∼ A1/αn1/α . Moreover (see Theorem 2.2. in Davis and Resnick 1985), this
convergence can be extended to

n∑

t=1

δ
c−1
n (εt ,...,εt−K)

⇒
∞∑

l=1

K∑

r=0

δjler , (4.87)

where er is a unit vector in R
K+1 with the r th coordinate equal to one. In other

words, the limiting process has the following structure. It is a Poisson process with
values in {0, . . . ,K}×R such that it is a univariate Poisson process on the horizontal
line {0} ×R and its points are repeated on the other horizontal lines. Since the map-
ping (zt , . . . , zt−K) →∑K

r=0 bkzt−k from Mp(RK+1) to Mp(R\{0}) is continuous,
(4.87) implies

n∑

t=1

δ
c−1
n Xt,K

⇒
∞∑

l=1

K∑

r=0

δjlar ,

where Xt,K =∑K
r=0 arεt−k . Letting K → ∞, we obtain

∞∑

l=1

K∑

r=0

δjlar

p→
∞∑

l=1

∞∑

r=0

δjlar .

Therefore, to apply Proposition 4.1, we need to verify that the sequence Xt can be
approximated by the K-dependent sequence Xt,K , in the sense that for each γ > 0,

lim
K→∞ lim sup

n→∞
P
(
c−1
n sup

1≤t≤n

|Xt − Xt,K | > γ
)

= 0.

The latter probability is bounded by nP (c−1
n |X0 − X0,K | > γ ). Since P(|ε1| >

cn) ∼ n−1, applying (4.86), we have, as n → ∞,

nP
(
c−1
n |X0 − X0,K | > γ

)∼ P(|X0 − X0,K | > cnγ )

P (|ε1| > cn)
= γ −α

∞∑

r=K+1

|ar |α.

The last expression converges to zero as K → ∞. �
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4.3.3.3 Convergence of Partial Sums

Recall our comments following Theorem 4.13. If the innovations εt have tail index
α ∈ (0,1), then we may conclude directly from Theorem 4.14 that

c−1
n

n∑

t=1

Xt
d→
( ∞∑

j=0

aj

) ∞∑

l=1

jl
d=
( ∞∑

j=0

aj

)
Sα

(
C−1/α

α ,β,0
)
,

where jl are points of a Poisson process, and
∑∞

l=1 jl is a series representation of

Sα(C
−1/α
α ,β,0). Equivalently,

n−1/α
n∑

t=1

Xt
d→ A1/α

( ∞∑

j=0

aj

)
Sα

(
C−1/α

α ,β,0
) d= A1/αC−1/α

α

( ∞∑

j=0

aj

)
Sα(1, β,0).

The situation is more complicated for α ∈ (1,2). Convergence of partial sums
does not follow directly from point process convergence (however, as in Davis and
Resnick 1985, an implication of point process convergence may serve as an interme-
diate tool—this will be illustrated for stochastic volatility models in the following
section). In particular, for a long-memory sequence, the scaling for partial sums∑n

t=1 Xt of linear processes may differ from cn.

Theorem 4.15 Assume that Xt (t ∈ Z) is a linear process such that aj ∼ caj
d−1,

d ∈ (0,1/2) and εt (t ∈ Z) are i.i.d random variables such that (4.84) holds with
α ∈ (1,2) and E(ε1) = 0.

• If for some δ < α,

∞∑

j=0

|aj | +
∞∑

j=0

|aj |δ < ∞, (4.88)

then

n−1/αSn(u) = n−1/α

[nu]∑

t=1

Xt
f.d.→ A1/αC−1/α

α

( ∞∑

j=0

aj

)
Zα(u),

where Zα(·) is an α-stable Lévy motion (with independent increments) such that

Zα(1)
d= Sα(1, β,0), and

f.d.→ denotes finite-dimensional convergence.
• If 0 < d < 1 − 1/α, then

n−H Sn(u) = n−H

[nu]∑

t=1

Xt ⇒ A1/αC−1/α
α

ca

d
Z̃H,α(u),

where H = d+α−1, Z̃H,α(·) is a Linear Fractional stable motion, and ⇒ denotes
weak convergence in D[0,1] w.r.t. the Skorokhod J1-topology.
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Before we present a proof, we make several comments.

Remark 4.2 If condition (4.88) holds, then the scaling factor and the limiting pro-
cess are (up to a constant) the same as for i.i.d. random variables; see (4.80). The
limiting Lévy process has independent increments and discontinuous sample paths.
Thus, in this case the particular structure of the coefficients aj is not really impor-
tant. On the other hand, if d ∈ (0,1 − 1/α), then the scaling factor involves the
memory parameter d . This is one reason why such a process is said to have long-
range dependence. Also, the limiting process has dependent increments but contin-
uous sample paths. We illustrate this in Example 4.15. Note also that the theorem
can be stated more generally by allowing slowly varying functions in both aj and
the tail of ε1.

Remark 4.3 It should be pointed out that in the long-memory case (d ∈ (0,1−1/α))
we have weak convergence w.r.t. the standard J1-topology and the limiting pro-
cess has continuous paths. In contrast, in the case of summable coefficients we
have finite-dimensional convergence only, and this cannot be extended to J1-
convergence. This can be seen as follows. Assume for a moment that Xt = b0εt +
b1εt−1 (t ∈N). The limiting behaviour of Sn =∑n

t=1 Xt is determined by large val-
ues of Xt (t ∈N). Now, there is a small chance that both εt and εt+1 are large since
P(εt > x, εt+1 > x) = o(P (ε1 > x)) as x → ∞. Therefore, we have one large value
of a particular εt∗ , say which implies Xt∗ ≈ b0εt∗ and Xt∗+1 ≈ b1εt∗ . This produces
two “clustered” large jumps in the limiting process, which contradicts a heuristic
explanation of J1-topology in the Appendix A. However, it is possible to have weak
convergence w.r.t. different topologies. We refer to Avram and Taqqu (1992).

Proof In the case of weak dependence (i.e. where (4.88) holds), the proof mimics
the one for normal convergence (see Theorem 4.5). Let Xt,K =∑K

j=0 aj εt−j . Note
that (4.80) can be restated for u = 1 as

n−1/α

(
n∑

t=1

εt , . . . ,

n∑

t=1

εt−m

)
d→ A1/αC−1/α

α

(
Zα(1), . . . ,Zα(1)

)
.

The continuous mapping theorem implies

n−1/α
n∑

t=1

Xt,K
d→ A1/αC−1/α

α

(
K∑

j=0

aj

)
Zα(1).

Furthermore, (
∑K

j=0 aj )Zα(1)
p→ (
∑∞

j=0 aj )Zα(1). We finish the proof by verify-
ing

lim sup
K→∞

lim
n→∞P

(
n−1/α

∣∣Sn(1) − Sn,K(1)
∣∣> γ

)= 0

for each γ > 0. This requires precise calculations on the tail behaviour of Xt . In
particular, (4.86) plays a crucial role. We refer to Davis and Resnick (1985) for
details. The result then follows from Proposition 4.1.
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As for the long-memory case, we assume for simplicity that εt (t ∈ Z) are
Sα(1, β,0). We may write

Sn =
n∑

t=1

Xt =
n∑

l=−∞
εl

n−l∑

j=1−l

aj =:
n∑

l=−∞
ãl,nεl

with ãl,n =∑n−l
j=1−l aj . If aj ∼ caj

d−1, then

ãl,n ∼ ca

d

{
(n − l)d − (1 − l)d

}
.

Therefore, since Sn is a sum of independent stable random variables, on account of
(4.76), we expect that

n∑

l=−∞
ãl,nεl

d= Sα(ηn,β,0)

with the scale parameter such that

ηα
n =

n∑

l=−∞
ãα
l,n =

(
ca

d

)α n∑

l=−∞

{
(n − l)d − (1 − l)d

}α

∼
(

ca

d

)α 1

ndα+1

∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv.

Here, note that the integral above is defined only if 0 < d < 1 − 1/α. Therefore,
with bn = (cα/d)nH (recall that now Cα = A since we consider stable innovations),
the distribution of b−1

n Sn(1) agrees asymptotically with the distribution of a stable
random variable with the scale

η =
(∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv

)1/α

and skewness β . Now, if we have a stable integral
∫

g(x)dM(x), then it is a sta-
ble random variable with the scale (

∫ |g(x)|α dx)1/α . Thus, for each u, the Linear
Fractional Stable Motion Z̃H,α(·) (see Sect. 3.7.2 for additional details)

∫ u

−∞
{
(u − v)

H−1/α
+ − (−v)

H−1/α
+

}
dZα(v)

is a stable random variable with the scale

u1/α

(∫ 1

−∞
{
(u − v)

H−1/α
+ − (−v)

H−1/α
+

}α
dv

)1/α

.

Consequently, the result follows for u = 1. In this argument we replaced the coeffi-
cients ãl,n by the asymptotically equivalent expressions. This approximation can be
made more precise by computing the characteristic function. �
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Fig. 4.5 Paths of a partial sum sequence Sk =∑k
t=1 Xt with Xt i.i.d. N(0,1) (left) and Xt gener-

ated by a FARIMA(0,0.4,0) process

Example 4.15 We illustrate Theorem 4.15 by a simulation study. First, as in Exam-
ple 4.2, we generate n = 1000 i.i.d. standard normal random variables Xt and plot
the partial sum sequence Sk =∑k

t=1 Xt , k = 1, . . . , n. This procedure is repeated
for Gaussian FARIMA(0, d,0) process with d = 0.4. The path of the fractional
Brownian motion is much smoother than of the Brownian motion. This is due to the
influence of long memory. The corresponding partial sum processes are plotted in
Fig. 4.5. For comparison, we simulate i.i.d. random variables from a t-distribution
with 3/2 degrees of freedom (hence, with a finite mean and infinite variance) and
a FARIMA(0,0.4,0) process where the innovations have a t-distribution with 3/2
degrees of freedom. The partial sum processes are depicted on Fig. 4.6. In the i.i.d.
case, the process has clearly discontinuous sample paths, whereas this effect does
not seem to be present in the long-memory case.

4.3.3.4 Subordinated Case

Consider the partial sum

Sn,G(u) =
[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]} (
u ∈ [0,1]),
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Fig. 4.6 Paths of a Lévy stable motion and a fractional stable motion with Hurst parameter
H = d + 1/α, d = 0.4, α = 3/2

where G is a measurable function. Subordinated linear processes with infinite sec-
ond moments were studied in Hsing (1999), Koul and Surgailis (2001), Surgailis
(2002, 2004), Vaičiulis (2003). Surprisingly, the martingale decomposition method,
used in Theorem 4.9 for variables with finite variance, works also here.

We start with the simple case of polynomials. Let us focus on a quadratic function
G(x) = x2. If α ∈ (0,2), then we can repeat the argument following point process
convergence in Theorem 4.14. First (see the discussion following Theorem 4.13),
we can also write

n∑

t=1

δ
c−2
n X2

t
⇒

∞∑

j=0

∞∑

l=0

δj2
l a2

j
.

This is valid as long as the conditions of Lemma 4.19 hold. Now, if α ∈ (0,2), the
random variables X2

t (t ∈ N) have infinite means. Therefore, for α ∈ (0,2),

c−2
n

n∑

t=1

X2
t

d→
( ∞∑

j=0

a2
j

) ∞∑

l=0

j2
l =

( ∞∑

j=0

a2
j

)
Sα/2

(
C

−2/α

α/2 ,1,0
)
,
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or equivalently,

n−2/α
n∑

t=1

X2
t

d→
( ∞∑

j=0

a2
j

)
A2/αC

−2/α

α/2 Sα/2(1,1,0).

The case α ∈ (0,1) was proven in Davis and Resnick (1985, Theorem 4.2), whereas
the case α ∈ (1,2) is addressed in Kokoszka and Taqqu (1996, Theorem 2.1). In
other words, long memory does not influence the limiting behaviour.

Now, the situation changes when 2 < α < 4. The partial sum

Sn,G(u) =
[nu]∑

t=1

(
X2

t − E
(
X2

1

))

can be decomposed as (cf. Example 4.9)

Sn,G,1(u) + Sn,G,2(u) :=
[nu]∑

t=1

∞∑

j=0

a2
j

(
ε2
t−j − E

(
ε2

1

))+
[nu]∑

t=1

∞∑

j,k=0; j 
=k

aj alεt−j εt−k.

The first part Sn,G,1(u) is a partial sum process based on the linear process with
summable coefficients a2

j . Therefore, on account of the first part of Theorem 4.15,

n−2/αSn,G,1(u)
f.d.→ A2/αC

−2/α

α/2

( ∞∑

j=0

a2
j

)
Zα/2(u),

where Zα/2(·) is a Lévy process such that Zα/2(1)
d= Sα/2(1,1,0), i.e. Zα/2(1) is an

α/2-stable random variable that is completely skewed to the right.
Convergence of the second term follows exactly as in Example 4.9. First, since

2 < α < 4, the random variables εt have a finite variance where under the assump-
tion aj ∼ caj

d−1 we have γX(k) = cov(Xt ,Xt+k) ∼ Lγ (k)k2d−1 with

Lγ (k) = c2
aσ

2
ε

∫ ∞

0
vd−1(v + 1)d−1 dv,

see Lemma 4.13. If 1/4 < d < 1/2, then

n−2dL
−1/2
2 (n)Sn,G,2(u) ⇒ Z2,H (u),

where H = d + 1/2, Z2,H (u) is the Hermite–Rosenblatt process, and

L2(n) = m!CmLm
γ (n).

Otherwise, if 0 < d < 1/4, then n−1/2Sn,G,2(u) = OP (1). Therefore, we have a
dichotomous behaviour depending on a relation between the “memory parameter” d

and tails. Such consideration can be carried out for instance for Appell polynomials
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(see Vaičiulis 2003). Before we state our theorem, we recall for convenience the
heavy-tail condition (4.84):

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α. (4.89)

Theorem 4.16 Assume that Xt (t ∈ Z) is a linear process such that aj ∼ caj
d−1,

d ∈ (0,1/2) and εt (t ∈ Z) are i.i.d. random variables such that (4.89) holds with
α ∈ (2,4). Also, assume that E(ε1) = 0.

• If 0 < d < 1/α, then

n−2/α

[nu]∑

t=1

(
X2

t − E
(
X2

1

)) f.d.→ A2/αC
−2/α

α/2

( ∞∑

j=0

a2
j

)
Zα/2(u),

where Zα/2(·) is an α/2-stable Lévy motion such that Zα/2(1)
d= Sα/2(1,1,0).

• If 1/α < d < 1/2, then

n−2dL
−1/2
2 (n)

[nu]∑

t=1

(
X2

t − E
(
X2

1

))⇒ Z2,H (u),

where ⇒ denotes weak convergence in D[0,1], Z2,H (·) is the Hermite–
Rosenblatt process, and H = d + 1/2.

The next theorem follows from Theorem 4.15 and a reduction principle along
the lines of Theorem 4.9. We assume that the innovations in the linear process are
symmetric.

Theorem 4.17 Assume that Xt (t ∈ Z) is a linear process such that aj ∼ caj
d−1,

d ∈ (−∞,1/2), εt (t ∈ Z) are i.i.d. symmetric random variables such that (4.89)
holds with α ∈ (1,2) and β = 0, i.e.

P(ε1 > x) ∼ A

2
x−α, P (ε1 < −x) ∼ A

2
x−α.

Furthermore, assume that the distribution Fε of ε1 fulfills

∣∣F (2)
ε (x)

∣∣≤ C
(
1 + |x|)−α

,
∣∣F (2)

ε (x) − F (2)
ε (y)

∣∣≤ C|x − y|(1 + |x|)−α
,

where |x − y| < 1, x ∈ R.

• If 0 < d < 1 − 1/α and G is bounded, then

n−H

[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}⇒ A1/αC−1/α
α

ca

d
G(1)∞ (0)Z̃H,α(u), (4.90)
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where ⇒ denotes weak convergence in D[0,1], and Z̃H,α(·) is a linear fractional
stable motion with H = d + α−1 such that Z̃H,α(1) is a symmetric α-stable ran-
dom variable with scale

η =
(∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv

)1/α

and G∞(x) = E[G(X + x)].
• If 1 − 2/α < d < 0 and A = 1 in (4.89) and G is bounded, then

n−1/α(1−d)

[nu]∑

t=1

{
G(Xt)−E

[
G(X1)

]}⇒ c+
GZ̃+

α(1−d)(u)+ c−
GZ̃−

α(1−d)(u), (4.91)

where Z̃+
α(1−d)(·), Z̃−

α(1−d)(·) are independent copies of an α(1 − d)-stable Lévy

motion such that Zα(1−d)(1)
d= Sα(1−d)(1,1,0) and

c±
G = C

−1/α(1−d)

α(1−d)

c
1/(1−d)
a

1 − d

∫ ∞

0

[
G∞(±v) − G∞(0)

]
v−1−1/(1−d) dv,

where G∞(x) = E[G(X1 + x)].
• If −∞ < d < 1 − 2/α and G is bounded, then

n−1/2
[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}⇒ σSB(u), (4.92)

where B(·) is a standard Brownian motion, and σS is a finite positive constant.

This theorem was proven in Koul and Surgailis (2001), Surgailis (2002) and Hs-
ing (1999). Remarkably, in (4.90) and (4.91), we may obtain a stable limit arising
from a summation of bounded random variables. The convergence in (4.90) can be
thought of as a long-memory-type behaviour since the scaling involves the memory
parameter d and the limiting process has dependent increments. The convergence
in (4.91) is a sort of an intermediate case: the scaling involves d , but the limiting pro-
cess has independent increments. Finally, (4.92) represents a standard behaviour: as
in the i.i.d. case, the limiting process is a Brownian motion since var(G(X1)) is fi-
nite.

Below, we give an outline of the proof of (4.90). As for (4.91), the limiting pro-
cess has independent increments, but the scaling factor involves the memory param-
eter d . The reason for this is that the process Sn,G(u) can be approximated by a sum∑n

t=1 ηG(εt ) of i.i.d. random variables, where

ηG(εt ) =
∞∑

j=0

{
G∞(aj εt ) − E

[
G∞(aj ε1)

]}
,

and the variables ηG have a tail decaying like |x|−α(1−d).
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In (4.90) it may happen that the quantity G
(1)∞ (0) vanishes. It is an open question,

whether it is possible to obtain a nondegenerate limit in this case with 1 < α < 2.
Let us recall that in the case of linear processes with finite moments the solution to
this problem is given for example in Theorem 4.4. In the case of infinite moments,
this question was studied in Surgailis (2004) under the assumption 2 < α < 4. It
may happen that the limit is an α(1 − d)-Lévy stable motion, Hermite–Rosenblatt
process or Brownian motion.

Proof of Theorem 4.17 Recall the notation from the proof of Theorem 4.9. We de-
note by Vt the sigma field generated by (εt , εt−1, . . .) and set

Tn(G;1) =
n∑

t=1

(
G(Xt) − E

[
G(X1)

]− G(1)∞ (0)Xt

)

and PKY = E(Y |VK) − E(Y |VK−1). We can repeat the computation there, using
the r th norm with r < α instead of r = 2:

∥∥Tn(G;1)
∥∥r

r
≤ 2

n∑

K=−∞

∥∥∥∥∥

n∑

t=max{K,1}
PKU(Vt )

∥∥∥∥∥

r

r

≤
n∑

K=−∞

(
n∑

t=max{K,1}

∥∥P−(t−K)U(V0)
∥∥

r

)r

.

The first inequality follows from a result for martingale differences Yt (t ∈ N),
namely

∥∥∥∥∥

n∑

t=1

Yt

∥∥∥∥∥

r

r

≤ 2
n∑

t=1

‖Yj‖r
r

for any 1 ≤ r ≤ 2. The second one is the norm inequality used in the proof of Theo-
rem 4.9. Now, instead of Lemma 4.17, we use

∥∥P−(t−K)U(V0)
∥∥

r
≤ (t − K)−(1−d)(1+γ ),

where (1+γ )r < α. Computations leading to this expression are quite involved; we
refer the reader to Koul and Surgailis (2001). Then one obtains

∥∥Tn(G;1)
∥∥r

r
≤ C

n∑

K=−∞

(
n∑

t=K∨1

(t − K)−(1−d)(1+γ )

)r

≤ Cnr+1n−(1−d)(1+γ )r

by similar calculations as those leading to (4.64), (4.65). Choosing γ sufficiently
close to 0, we conclude that

∥∥Tn(G;1)
∥∥r

r
= o
(
nr(d+1/α)

)
.
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In particular, ‖Tn(G;1)‖r
r = o(vr

n), where

vn = C−1/α
α A1/α ca

d
nH

with H = d + 1
α

. Therefore, on account of Theorem 4.15, the limiting behaviour of

v−1
n

n∑

t=1

{
G(Xt) − E

[
G(X1)

]}

is the same as that of v−1
n G

(1)∞ (0)
∑n

t=1 Xt . �

4.3.4 Stochastic Volatility Models

In this section we consider Long-Memory Stochastic Volatility (LMSV) sequences
with infinite moments. Let Xt = σtξt (t ∈N), where

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

σ (·) is a positive function,
∑∞

j=1 a2
j < ∞, and εt (t ∈ Z) are i.i.d. random variables.

It is further assumed that ξt (t ∈ Z) is a sequence of i.i.d. random variables such that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α. (4.93)

Also, we assume that the sequences εt (t ∈ Z) and ξt (t ∈ Z) are mutually indepen-
dent. At the moment we do not assume anything about the mean of ξt .

Limiting results for infinite-variance volatility models with long memory are al-
most non-existing; see Kulik and Soulier (2012) or Surgailis (2008); the latter in a
quadratic LARCH case. In particular, we will show below that stochastic volatility
models can be treated using a point process methodology.

4.3.4.1 Tail Behaviour

The first question we have to answer is the following. If ξ is like in (4.93), what is the
consequence on the tail of X? The next lemma shows that if the random variables ε

and σ are independent, then σε is still regularly varying. The result is often referred
to as Breiman’s lemma (Breiman 1965), and a proof can be found for example in
Resnick (2007, Proposition 7.5).
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Lemma 4.20 Assume that (4.93) holds. If σ1 is a positive random variable inde-
pendent of ξ1 and such that for some δ > 0,

E
(
σα+δ

1

)
< ∞, (4.94)

then the distribution of σξ is regularly varying, and

lim
x→∞

P(σ1ξ1 > x)

P (|ξ1| > x)
= 1 + β

2
E
(
σα

1

)
, lim

x→∞
P(σ1ξ1 < −x)

P (|ξ1| > x)
= 1 − β

2
E
(
σα

1

)
.

(4.95)

Lemma 4.20 implies for the LMSV model and arbitrary p > 0 that

P
(|X1|p > x

)= P
(
X1 > x1/p

)+ P
(
X1 < −x1/p

)∼ A E
(
σα

1

)
x−α/p. (4.96)

Thus, if we consider the LMSV model, we may take ξt as in (4.93), σ(x) = ex and
ζt (t ∈ N) to be e.g. long-memory Gaussian. Then the random variables Xt (t ∈ N)
have heavy tails and long memory.

4.3.4.2 Point Process Convergence

Point process convergence results play a crucial role when proving asymptotic re-
sults for partial sums based on infinite-variance sequences. Here, we assume that
the reader is familiar with material presented in Sect. 4.3.2.4.

We start with a simple generalization of Theorem 4.13 to the LMSV model.
Recall the intensity measure

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
dx,

where β ∈ [−1,1], and consider the point processes

Nn =
n∑

t=1

δ
(t/n,c−1

n Xt )
,

where cn is chosen to fulfill P(|ξ1| > cn) ∼ n−1, i.e.

cn = A1/αn1/α.

The next result shows that the point process based on the LMSV sequence Xt be-
haves as if the random variables were independent. It will be clear from the proof
that the same applies to |Xt |r where r is any power. Furthermore, we do not really
need the particular structure σt = σ(ζt ), where ζt (t ∈ Z) is a linear process. Only
the ergodicity of σt (t ∈N) is needed.
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Theorem 4.18 Consider the LMSV model Xt = σtξt (t ∈ N) such that (4.93) and
Breiman’s condition (4.94) hold. Then Nn converges weakly in Mp([0,1] ×R) to a
Poisson process N with intensity measure E(σα

1 )ds × dλ(x).

Proof (Personal communication with P. Soulier) The proof is basically the same
as in the i.i.d. case, see Theorem 4.13. We also use the same notation as in Theo-
rem 4.13. Let U =⋃K

i=1(ki, li) × (si , ti ). Then

P
(
Nn(U) = 0

)= P

(
K∑

i=1

n∑

nki<t<nli

1
{
c−1
n Xt ∈ (si , ti )

}= 0

)

= E

[
K∏

i=1

n∏

nki<t<nli

P
(
c−1
n Xt /∈ (si , ti)|Fσ

)
]

=: mE[Pn],

where Fσ is the sigma field generated by the entire sequence σt . Let θt ((si , ti )) be
the limit of nP (c−1

n Xt ∈ (si , ti )|Fσ ) and write

Qn =
K∏

i=1

∏

nki<t<nli

exp
{−n−1θt

(
(si , ti )

)}
.

Note that θt is a random variable since it depends on the sequence σt (t ∈N). There-
fore, the only difference between the LMSV setting and the i.i.d. one is that Qn

here is a random variable and λ((si, ti)) is replaced by θt ((si , ti)). Nevertheless, Qn

converges in probability to

exp

{
−E
(
σα

1

) K∑

i=1

(li − ki)λ
(
(si , ti)

)
}

= P
(
N(U) = 0

)
.

It remains to prove that |Pn − Qn| converges in probability to 0 and apply the
bounded convergence theorem. To prove that |Pn − Qn| →P 0, we proceed as in
Theorem 4.13:

E|Pn − Qn|

≤
K∑

i=1

(li − ki)E
[∣∣nP

(
c−1
n X1 ∈ (si , ti)|Fσ

)− θ1
(
(si , ti)

)∣∣]

+
K∑

i=1

n(li − ki)E

[∣∣∣∣1 − e−n−1θ1((si ,ti )) − θ1((si , ti))

n

∣∣∣∣

]
.

For the second term, we have

nE

[∣∣∣∣1 − e−n−1θ1((si ,ti )) − θ1((si , ti))

n

∣∣∣∣

]
≤ Cn−δE

[
σα+δ

1

]
.
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Furthermore, let us recall the so-called Potter’s bound (see Theorem 1.5.6. in Bing-
ham et al. 1989), namely: for v > 0,

nP
(
c−1
n vξ1 ∈ (si , ti)

)≤ C
(
max{v,1})α+δ

,

where δ > 0. For the first term, we apply Potter’s bound to get

nP
(
c−1
n X1 ∈ (si , ti)|Fσ

)= nP
(
c−1
n ξ1σ1 ∈ (si , ti)|Fσ

)≤ (max{σ1,1})α+δ
,

and the same bound holds for θ1(si , ti). We then can apply bounded convergence to
get

lim
n→∞E

[∣∣nP
(
c−1
n X1 ∈ (si , ti)

)− θ1
(
(si , ti )

)∣∣]= 0. �

4.3.4.3 Convergence of Partial Sums

Having established point process convergence, we proceed with its consequences
for partial sums. Assume that ξ1 fulfills (4.93) and E(ξ1) = 0 or ξ1 is symmetric if
α ∈ (0,1). Define

Sn(u) =
[nu]∑

t=1

Xt

and

Sn,p(u) =
[nu]∑

t=1

(|Xt |p − E
[|X1|p

])
,

assuming that E[|X1|p] < ∞ but E[|X1|2p] = ∞. Due to Lemma 4.20, this is
achieved when p < α < 2p. In the next theorem we show that depending on an in-
terplay between long memory and tails, partial sums based on the LMSV sequence
may converge either to a Lévy process (weakly dependent behaviour) or to a Her-
mite process (long-memory behaviour).

Theorem 4.19 Consider the LMSV model Xt = σtξt (t ∈ N) and assume that the
conditions of Theorem 4.18 hold. In addition, we assume that α > 1, E(ξ1) = 0 and
ζt (t ∈N) is a Gaussian linear process with coefficients aj satisfying (B1), i.e. aj =
La(j)jd−1, d ∈ (0,1/2), and covariance function γζ (k) ∼ Lγ (k)k2d−1. Let m ≥ 1
be the Hermite rank of the function σp(·) and assume further that E(σ 2α+2ε

1 ) < ∞.

• If 1 < α < 2, then

n−1/αSn(u) ⇒ A1/αC−1/α
α

(
E
[
σα

1

])1/α
Zα(u), (4.97)

where Zα(·) is an α-stable Lévy process such that Zα(1)
d= Sα(1, β,0), and ⇒

denotes weak convergence in D[0,1].
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• If p < α < 2p and 1 − m(1/2 − d) < p/α, then

n−p/αSn,p(u) ⇒ Ap/αC
−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u), (4.98)

where Zα(·) is an α/p-stable Lévy process such that Zα(1)
d= Sα/p(1,1,0), and

⇒ denotes weak convergence in D[0,1].
• If p < α < 2p and 1 − m(1/2 − d) > p/α, then

n−(1−m( 1
2 −d))L

−1/2
m (n)Sn,p(u) ⇒ J (m)E[|ξ1|p]

m! Zm,H (u), (4.99)

where Zm,H (·) is a Hermite process of order m, H = d + 1
2 ,

Lm(n) = m!CmLγ (n),

J (m) is the Hermite coefficient of σp(·), and ⇒ denotes weak convergence in
D[0,1].

When α ∈ (1,2), the partial sum Sn(u) is a martingale because E(Xt) =
E(ξt )E(σt ) = 0. Hence, only the stable Lévy limit arises, and (4.97) holds. This
can be concluded from a general theory by Surgailis (2008). If Sn,p(·) is consid-
ered, then we observe a dichotomous behaviour. Assume for simplicity that m = 1.
If long memory is strong enough, then it influences the limiting behaviour. Inter-
estingly, the infinite variance sequence |Xt |p yields a limiting process with finite
variance. Furthermore, results are readily extendable to the case where ζt is a gen-
eral linear process. Instead of Theorem 4.4, one has to use corresponding results for
subordinated linear processes; see Theorem 4.6. Furthermore, in contrast to The-
orem 4.15 for linear processes with infinite variance, we note that we have weak
convergence w.r.t. J1-topology in all three cases.

Example 4.16 (Cf. Example 4.11) Assume that Xt = ξt exp(ζt ), where ζt is a stan-
dard normal sequence with covariance γζ (k) ∼ Lγ k2d−1, d ∈ (0,1/2). If α ∈ (2,4)

and d + 1/2 < 2/α, then n−2/αSn,2(u) converges to a Lévy process. Otherwise, if
α ∈ (2,4) and d + 1/2 > 2/α, then

n−(1/2+d)L1(n)−1/2(n)Sn,2(u) ⇒ J (1)E
(
ξ2

1

)
BH (u),

where L1(n) = (d(2d + 1))−1Lγ (n) and J (1) = E[ζ1 exp(2ζ1)].

In the spirit of Example 4.12, if α ∈ (1,2) and E(ξt ) 
= 0, then long memory
appears already in

∑[nu]
t=1 Xt .

Example 4.17 (LMSD with Infinite Variance) As in Example 4.12, we assume that
the random variables ξt (t ∈ N) are strictly positive. Suppose that we have heavy
tails

P(ξ1 > x) ∼ Ax−α (x → ∞)
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with α ∈ (1,2). Furthermore, it is assumed that the sequences ξt and ζt are inde-
pendent and the covariance of ζt is of the asymptotic form γζ (k) ∼ Lγ (k)k2d−1,
d ∈ (0,1/2). Let G(x) = x and σ(x) = exp(x), so that the Hermite rank m = 1.
Then we have a dichotomous behaviour for Sn(u) :=∑[nu]

t=1 (Xt − E(X1)). Specifi-
cally, (4.98) and (4.99) hold with p = 1:

• If 1/2 + d < 1/α, then

n−1/αSn(u) ⇒ A1/αC−1/α
α

(
E
[
σα

1

])1/α
Zα(u), (4.100)

where Zα(·) is an α-stable Lévy process such that Zα(1)
d= Sα(1,1,0).

• If 1/2 + d > 1/α, then

n−(1/2+d)L
−1/2
1 (n)Sn(u) ⇒ J (1)E[ξ1]BH (u), (4.101)

where BH (·) is a fractional Brownian motion, H = d + 1
2 , L1(n) = C1Lγ (n) and

J (1) = E[ζ1 exp(ζ1)].

Proof of Theorem 4.19 Let Ft be a sigma field generated by ξj , εj (j ≤ t). We start
by studying Sn,p(·). Write

[nu]∑

t=1

(|Xt |p − E
[|Xt |p

])=
[nu]∑

t=1

(|Xt |p − E
[|Xt |p|Ft−1

])

+
[nu]∑

t=1

(
E
[|Xt |p|Ft−1

]− E
[|X1|p

])=: Mn(u) + Rn(u).

Note that E[|Xt |p|Ft−1] = E(|ξ1|p)σp(ζt ) is a function of ζt and does not depend
on ξt . Therefore, for the long-memory part Rn(u), we have

n−(1−m( 1
2 −d))L

−1/2
1 (n)Rn(u) ⇒ J (m)E[|ξ1|p]

m! Zm,H (u) (4.102)

if m(1/2 − d) < 1, where Zm,H (·) is a Hermite–Rosenblatt process, and L1 is a
slowly varying function defined in Theorem 4.4. If m(1/2 − d) > 1, then

n−1/2Rn(u) ⇒ vE
[|ξ1|p

]
B(u), (4.103)

where B(·) is a standard Brownian motion, and v is a constant.
We will show that under the assumptions we have,

c
−p
n Mn(u) ⇒ C

−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u), (4.104)

or equivalently,

n−1/αMn(u) ⇒ Ap/αC
−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u).
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From (4.102), (4.103) and (4.104) we conclude the proof of the theorem. First we
prove (4.104). The proof is very similar to the proof of convergence of the partial
sum of an i.i.d. sequence in the domain of attraction of a stable law to a Lévy stable
process. The difference consists of some additional technicalities (see e.g. the proof
of Theorem 71 in Resnick 2007 for additional details).

Step 1: For 0 < ε < 1, decompose Mn(u) further as

Mn(u) =
[nu]∑

t=1

(|Xt |p1
{|Xt | < εcn

}− E
[|Xt |p1

{|Xt | < εcn

}|Ft−1
])

+
[nu]∑

t=1

(|Xt |p1
{|Xt | > εcn

}− E
[|Xt |p1

{|Xt | > εcn

}|Ft−1
])

=: M(ε)
n (u) + M̃(ε)

n (u).

The term M̃
(ε)
n (·) is treated using point process convergence. It excludes small

jumps Xt defined by c−1
n |Xt | < ε. The reason for this is that the summation func-

tional is not continuous on the entire real line; one has to exclude small jumps. For
any ε > 0, the summation functional is an almost surely (with respect to the dis-
tribution of the Poisson point process, see e.g. p. 215 in Resnick 2007) continuous
mapping from the set of Radon measures on [0,1] × [ε,∞) to D([0,1],R). From
Theorem 4.18 we then conclude

c
−p
n

[nu]∑

t=1

|Xt |p1
{|Xt | > εcn

}⇒
∑

k:tk≤u

|jk|p1
{|jk| > ε

}
(4.105)

in ([0,1],R), where we recall that (tk, jk) are points of the limiting Poisson pro-
cess. Taking expectations in (4.105), we obtain

lim
n→∞[nu]c−p

n E
[|X1|p1

{|X1| > εcn

}]= u

∫

|x|>ε

|x|p dλ(x)

uniformly with respect to u ∈ [0,1], since this is a sequence of increasing functions
with a continuous limit. Furthermore, we claim that

c
−p
n

∣∣∣∣∣

[nu]∑

t=1

(
E
[|X1|p1

{|X1| > εcn

}]− E
[|Xt |p1

{|Xt | > εcn

}∣∣Ft−1
])
∣∣∣∣∣

p→ 0

uniformly in u ∈ [0,1]. The variance of the last expression is in fact bounded by

c
−2p
n [nu]2γ m

ζ

([nu])var
(
E
[|X1|p1

{|X1| > εcn

}∣∣F0
])

≤ c
−2p
n [nu]2γ m

ζ

([nu])E[E2[|X1|p1
{|X1| > εcn

}∣∣F0
]]

,
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where γζ (k) is the covariance function of the Gaussian sequence ζt (t ∈ Z), and m

is the Hermite rank of σp(·). Recall Potter’s bound (see Theorem 1.5.6. in Bingham
et al. 1989): for v > 0,

nP
(
c−1
n vξ1 ∈ (si , ti)

)≤ C
(
max{v,1})α+δ

,

where δ > 0. Now, if p < α < 2p, then we combine Karamata’s theorem with
Potter’s bound to obtain

E
[
σp(x)|ξ1|p1

{∣∣σ(x)ξ1
∣∣> εcn

}]≤ Cn−1c
p
n

F̄ξ (εcn/σ (x))

F̄ξ (cn)

≤ Cn−1c
p
n σα+ε(x).

Since by assumption E[σ 2α+2ε
1 ] < ∞ for some ε > 0, we have for each t ,

var

(
c
−p
n

[nu]∑

j=1

{
E
[|X0|p1

{|X0| > εcn

}]− E
[|Xt |p1

{|Xt | > εcn

}∣∣Fj−1
]}
)

≤ Cn−2[nu]2γζ

([nu])≤ Cn2−2H+εu2H−ε, (4.106)

where the last bound is obtained for some ε > 0 by Potter’s bound. This proves the
convergence of finite-dimensional distributions to 0 and tightness in D([0,1]). We
now argue that the bounds obtained above imply

c
−p
n M̃(ε)

n (u) ⇒ C
−p/α
α/p

(
E
[
σα

1

])p/α
Z

(ε)
α/p(u)

and also Z
(ε)
α/p(u) ⇒ Zα/p(u) as ε → 0. Therefore, it is suffices to show the neg-

ligibility of c
−p
n M

(ε)
n , i.e. that small jumps are negligible. By Doob’s martingale

inequality we obtain

E

[(
sup

u∈[0,1]
c
−p
n

[nu]∑

t=1

{|Xt |p1
{|Xt | < εcn

}− E
[|Xt |p1

{|Xt | < εcn

}∣∣Ft−1
]}
)2]

≤ Cnc
−2p
n E

[(|X1|p1
{|X1| < εcn

}− E
[|X1|p1

{|X1| < εcn

}∣∣F0
])2]

≤ 4Cnc
−2p
n E

[(|X1|2p1
{|X1| < εcn

})]
.

Recall that α < 2p. By Karamata’s theorem (Lemma 4.18),

E
[|X1|2p1

{|X1| < εcn

}]∼ 2α

2p − α
(εcn)

2pF̄X(εcn) ∼ 2α

2p − α
ε2p−αc

2p
n n−1.

Applying this and letting ε → 0, we conclude that c
−p
n M

(ε)
n is uniformly negligible

in L2 and therefore also in probability. Thus,

c
−p
n Mn(u) ⇒ C

−p/α
α/p

(
E
[
σα

1

])p/α
Zα/p(u).

This finishes the proof of (4.98) and (4.99).
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As for the sum Sn, the long-memory part Rn vanishes since E(X1) =
E(ξ1)E(σ1) = 0. Thus, in this case also only the stable limit arises. �

The reader is referred to Kulik and Soulier (2012) for more discussion, a detailed
proof and extensions to stochastic volatility with leverage.

4.3.5 Subordinated Gaussian Processes with Infinite Variance

Previously (see Theorem 4.16 or Theorem 4.19, Eq. (4.99)) we have seen that it is
possible to obtain limiting distributions with finite variance although we start with
innovations with infinite second moments. In this section we illustrate that this type
of behaviour can also be achieved in the context of Gaussian subordination with
infinite variance. This rather peculiar result depends on specific circumstances to be
explained below.

Let Xt (t ∈ Z) be a stationary centred Gaussian process with covariance γX(K) ∼
Lγ (k)k2d−1, d ∈ (0,1/2). Assume that G is a function such that, as x → ∞,

P
(
G(X1) > x

)∼ A
1 + β

2
x−α, P

(
G(X1) < −x

)∼ A
1 − β

2
x−α, (4.107)

where β ∈ [−1,1]. If α ∈ (0,2), then G(Xt) have infinite (or non-existing) vari-
ance. Furthermore, if α ∈ (0,1), then E(|G(X1)|) = +∞. A typical example is
G(x) = |x|−1/α . After the transformation |x|−1/α the mass from zero is “sent”
to infinity (since for a standard normal density, φ(0) 
= 0). Another example is
G(x) = b exp(cx2) for some constants b ∈R and c > 0.

In this section we shall assume that α ∈ (1,2). Again we consider

Sn,G(u) =
[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}
.

With a similar trick as in the proof of Theorem 4.19, i.e. the decomposition
into a martingale and a long-memory part, Sn,G will be studied using techniques
available for weakly dependent processes with infinite variance (see Mn(·) in the
proof of Theorem 4.19) and finite-variance subordinated Gaussian processes (see
Sect. 4.2.3). This method was used in Sly and Heyde (2008) for α ∈ (1,2). The
result for α ∈ (0,1) was proven in Davis (1983).

4.3.5.1 Point Process Convergence

Assume that α ∈ (1,2), so that var(G(Xt )) < ∞. As in case of the LMSV model,
we start with the convergence of point processes

Nn =
n∑

t=1

δ
(t/n,c−1

n G(Xt ))
,
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where in the present context

cn = inf
{
x : P (∣∣G(X1)

∣∣> x
)≤ n−1}.

Recall that

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
.

We state the following result without proof. In principle, as in the LMSV case, it
says that the random variables G(Xt) behave as if they were independent.

Theorem 4.20 Consider a Gaussian sequence Xt (t ∈ N) and a real-valued func-
tion G such that (4.107) holds. Then Nn converges weakly in Mp([0,1] × R) to a
Poisson process N with intensity measure ds × dλ(x).

4.3.5.2 Hypercontraction Principle for Gaussian Random Variables

We shall explain how it is possible to obtain a finite-variance random variable
from infinite-variance variables G(Xt). Recall that for a function G such that
E[G2(X1)] < ∞, we have the following expansion:

G(x) = E
[
G(X1)

]+
∞∑

l=m

J (l)

l! Hl(x),

where m is the Hermite rank of G, and J (l) = E[G(X1)Hl(X1)]. This expansion is
also valid for a function G with E[|G(X1)|1+θ ] < ∞, where θ ∈ (0,1). Indeed, the
Hermite coefficients J (l) are still well defined. Applying the Hölder inequality, we
obtain with r = (1 + θ)/θ ,

∣∣J (l)
∣∣≤ E

1
1+θ
[∣∣G(X1)

∣∣1+θ ]
E

1
r
[∣∣Hl(X1)

∣∣r]= ‖G‖1+θ‖Hl‖r < ∞, (4.108)

where ‖G‖r
r = ∫ Gr(u)φ(u)du. Now, let X = a1X1 + θX2, where a2

1 + θ2 = 1, and
X1, X2 are independent standard normal random variables. Let F be the sigma field
generated by X2. We will argue below that although E[G2(X)] = +∞, we have

var
(
E
[
G(X1)|F

])
< ∞.

We start with the following result.

Lemma 4.21 Assume that E[|G(X1)|1+θ ] < ∞, where θ ∈ (0,1). Then

∞∑

l=m

J 2(l)

l! θ2l < ∞.
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Proof From Lemma 3.1 in Taqqu (1977) we have the following bound:

‖Hl‖r ≤ (r − 1)l/2
√

l!.
Applying (4.108) (recall that r = (1 + θ)/θ ), we obtain

J 2(l)θ2l

l! ≤ θ2l

l! ‖G‖2
1+θ (r − 1)l l! = θ2l‖G‖2

1+θ θ
−l = ‖G‖2

1+θ θ
l . �

The consequence of this simple lemma is quite remarkable. Applying formula
(3.16) and recalling that X2 is F -measurable and Hermite polynomials Hl (l ≥ 1)
are centred, we obtain

E
[
Hl(X)|F]= E

[
Hl(a1X1 + θX2)|F

]=
l∑

j=0

(
l

j

)
a

j

1θ l−jE
[
Hj(X1)Hl−j (X2)|F

]

=
l∑

j=0

(
l

j

)
a

j

1θ l−jHl−j (X2)E
[
Hj(X1)|F

]= θ lHl(X2).

We recall that E[H 2
l (X2)] = l!. From Lemma 4.21 we have

∞∑

l=m

(
J (l)

l!
)2

θ2l l! < ∞.

This expression is however equal to

var

( ∞∑

l=m

J (l)

l! θ lHl(X2)

)
= var

( ∞∑

l=m

J (l)

l! E
[
Hl(X)|F]

)
.

Thus,
∑∞

l=m E[Hl(X)|F]J (l)/ l! is a well-defined Hermite expansion of a function

g̃(X2) := E
[
G(X)|F]= E

[
g̃(X2)

]+
∞∑

l=m

J (l)

l! θ lHl(X2)

with finite variance. Note also that, since X2 is F -measurable,

E
[
g̃(X2)Hl(X2)

]= E
{
E
[
G(X)|F]Hl(X2)

}= E
[
G(X)Hl(X2)

]
.

4.3.5.3 Partial Sums Convergence

Theorem 4.21 Assume that Xt (t ∈ Z) is a stationary standard normal sequence
with covariance γX(K) ∼ Lγ (k)k2d−1, d ∈ (0,1/2). Let G be a function with Her-
mite rank m such that (4.107) holds with 1 < α < 2.
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• If 1 < α < 2 and 1 − m(1/2 − d) < 1/α, then

n−1/α

[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]} f.d.→ A1/αC−1/α
α Zα(u), (4.109)

where Zα(·) is an α-stable Lévy process such that Zα(1)
d= Sα(1, β,0).

• If m is the Hermite rank of G and 1 − m( 1
2 − d) > 1/α, then

n−(1−m( 1
2 −d))L

−1/2
m (n)

[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}⇒ Zm,H (u)
(
u ∈ [0,1]),

where H = d + 1
2 , Lm(n) = m!CmLm

γ (n), Zm,H (u) is the Hermite–Rosenblatt
process, and ⇒ denotes weak convergence in D[0,1].

Proof We present just a short heuristic derivation. The Gaussian sequence can be
written as a linear process Xt =∑∞

j=0 aj εt−j , where εt (t ∈ Z) are i.i.d. standard

normal, and
∑∞

j=0 a2
j = 1. Let Ft = σ(εt , εt−1, . . .). Then

[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}

=
[nu]∑

t=1

{
G(Xt) − E

[
G(Xt)|Ft−l

]}+
[nu]∑

t=1

{
E
[
G(Xt)|Ft−l

]− E
[
G(X1)

]}

=: Mn(u) + Rn(u),

where l is such that θ :=
√∑∞

j=l a
2
j < α − 1. The first part Mn(·) is a martingale.

Therefore, its limiting properties are studied in the very same way as Mn(·) in the
proof of Theorem 4.19. As for the second part, write

Xt :=
l−1∑

j=0

aj εt−j + θX̃t,l ,

where X̃t,l := θ−1∑∞
j=l aj εt−j . The random variables X̃t,l (t ∈ N) are standard

normal. Applying Lemma 4.21, the function

g(X̃t,l) := E
[
G(Xt)|Ft−l

]− E
[
G(X1)

]

has finite variance. Therefore, the convergence of the second part Rn(u) follows
from Theorem 4.4. �
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4.3.6 Quadratic LARCH Models

We recall (cf. (2.58)) that the quadratic LARCH(∞) (or LARCH+) process is the
unique solution of

Xt = b0ηt + ξt

∞∑

j=1

bjXt−j , (4.110)

where (ηt , ξt ) (t ∈ Z) is a sequence of i.i.d. random vectors. We assume that bj ∼
cbj

d−1 (d ∈ (0,1/2)) and that the random variables ηt are heavy tailed in the sense
that

P
(|η1| > x

)∼ Ax−α

for some α ∈ (2,4). In other words, E(η2
1) < ∞, but E(η4

1) = ∞. Furthermore,
we assume that E(ξ4

1 + ξ2
1 η2

1) < ∞. Surgailis (2008) considers convergence of
the sum of the squares and proves that under appropriate technical assumptions
we have a dichotomous behaviour as in case of the stochastic volatility model (cf.
Theorem 4.19) or the subordinated Gaussian sequence with heavy tails (cf. Theo-
rem 4.21): if d + 1

2 < 2/α, then

n−2/α

[nu]∑

t=1

(
X2

t − E
(
X2

1

))

converges in a finite-dimensional sense to a Lévy process. Otherwise, if d + 1
2 >

2/α, then

n−(d+ 1
2 )

[nu]∑

t=1

(
X2

t − E
(
X2

1

))

converges to a fractional Brownian motion.
Also, if α ∈ (1,2), then n−1/α

∑n
t=1 Xt converges to a stable limit. As in the case

of LMSV processes (see Sect. 4.3.4), this can be concluded from a general theory
by Surgailis (2008).

4.3.7 Summary of Limit Theorems for Partial Sums

We summarize the main limit theorems. We consider centred linear process Xt =∑∞
j=0 aj εt−j such that, as x → ∞,

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α
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Table 4.2 Limits for partial sums with infinite moments

Partial sums—infinite moments

Sn(u) =∑[nu]
t=1 Xt Tn(u) =∑[nu]

t=1 (X2
t −E(X2

1))

Linear processes n−1/αSn(1)
d→ cZ̃α(1)

if
∑ |aj | < ∞

n−(d+1/α)Sn(u) ⇒ cZ̃H,α(u)

if 0 < d < 1 − 1/α

(Theorem 4.15)

n−2/αTn(1)
d→ cZ̃α/2(1)

if d ∈ (0,1/α)

n−2dTn(u) ⇒ cZ2,H (u)

if d ∈ (1/α,1/2)

(Theorem 4.16)

Stochastic volatility n−1/αSn(u) ⇒ cZ̃α(u)

(Theorem 4.19)
n−2/αTn(u) ⇒ cZ̃α/2(u)

if d ∈ (0,2/α − 1/2)

n−(1/2+d)Tn(u) ⇒ cBH (u)

if d ∈ (2/α − 1/2,1/2)

(Theorem 4.19)

with α ∈ (1,2) and appropriate regularity conditions (that assure the existence of
the process) hold. When the sum of the squares X2

t is considered, then we assume
instead that α is in the range α ∈ (2,4).

Another class of processes considered above are stochastic volatility models with
infinite second moments. As a representative, we look at Xt = ξt exp(

∑∞
j=1 aj εt−j ),

where the sequences ξt and εt are mutually independent. We assume that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α

with α ∈ (1,2) and E[ξ1] = 0. Again, if the sum of X2
t is considered, then this

tail behaviour is assumed to hold for α ∈ (2,4). Furthermore, the random variables
εt are assumed to be standard normal. We use the notation B(·) for a Brownian
motion on [0,1], BH (·) denotes a fractional Brownian motion on [0,1], Z2,H (·)
is the Hermite–Rosenblatt process on [0,1], and Z̃H,α is a linear fractional stable
motion with Hurst parameter H = d + 1/α. Furthermore, c is a generic constant.
We summarize the results for partial sums in Table 4.2. For simplicity, the slowly
varying functions are assumed to be constant.

4.4 Limit Theorems for Sample Covariances

In a preliminary analysis of a time series, sample autocovariances play a crucial
role. Moreover, limit theorems for quadratic forms can often be deduced from those
for sample covariances. In this section we therefore study the limiting behaviour of
sample covariances and, more generally, of multivariate functions applied to long-
memory sequences. Surprisingly, this theory is not well developed beyond Gaussian
(Rosenblatt 1979; Ho and Sun 1987, 1990; Arcones 1994) and linear processes with
finite (Hosking 1996; Horváth and Kokoszka 2008) and infinite moments (Kokoszka
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and Taqqu 1996; Horváth and Kokoszka 2008). Some recent results were devel-
oped for stochastic volatility models (Davis and Mikosch 2001; McElroy and Politis
2007; Kulik and Soulier 2012).

4.4.1 Gaussian Sequences

In what follows, all vectors are considered as column vectors. Consider a stationary
centred sequence of Gaussian vectors

Xt = (X(1)
t , . . . ,X

(q)
t

)T
(t ∈ Z)

with the marginal covariance matrix Σ and autocovariance function γi,j (k) =
E[X(i)

0 X
(j)
k ] (i, j = 1, . . . , q), and assume either

∞∑

k=−∞

∣∣γi,j (k)
∣∣< ∞ (4.111)

or the existence of a parameter d ∈ (0,1/2) and a slowly varying function Lγ such
that

γi,j (k) ∼ ai,j k
2d−1Lγ (k) (i, j = 1,2, . . . , q), (4.112)

where the constants ai,j are not all equal to zero. We will then use the same notation
γ (k) = k2d−1Lγ (k) as in the univariate case.

Example 4.18 Let q = 2 and assume that X̃
(1)
t (t ∈N) and X̃

(2)
t (t ∈ N) are mutually

independent long-memory standard Gaussian sequences with the same covariances
γX(k) = γ

X̃
(k) = γ (k). Then (4.112) holds with a1,1 = a2,2 = 1 and a1,2 = a2,1

= 0.

Example 4.19 Let Xt (t ∈ N) be a stationary standard Gaussian sequence with co-
variance γX(k) = cγ k2d−1. Fix s > 0, and let

(
X

(1)
t ,X

(2)
t

)T = (Xt ,Xt+s)
T (t ∈N).

Then

γ1,1(k) = γ2,2(k) = E[X0Xk] = γX(k),

so that a1,1 = a2,2 = 1. Furthermore,

γ1,2(k) = E[X0Xs+k] = γX(k + s) ∼ γX(k)

as k → ∞, so that a1,2 = 1. Similarly, a2,1 = 1.
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Example 4.20 Assume that X̃
(1)
t and X̃

(2)
t (t ∈ N) are as in Example 4.18. Fix s > 0,

and let
(
X

(1)
t ,X

(2)
t

)T = (X̃(1)
t , ρX̃

(2)
t +

√
1 − ρ2X̃

(2)
t

)T
,

where ρ = γX(s). Note that for a fixed t , the vectors (X
(1)
t ,X

(2)
t )T in Example 4.19

and here have the same covariance matrix. Now, a1,1 = a2,2 = 1, whereas

γ1,2(k) = ργX(k),

so that a1,2 = ρ. Similarly, a2,1 = ρ.

After explaining basic structures of dependent Gaussian vectors, we turn our
attention to limit theorems. It turns out that limit theorems for multivariate Gaussian
vectors can be reduced to the case where the vectors have the identity covariance
matrix Iq . Therefore, we start with the case of independent components.

4.4.1.1 Independent Components

Consider the collection {X̃(l)
t , l ∈ N, t ∈ N} of long-memory Gaussian sequences.

For any l 
= k, the sequences X
(l)
t and X

(k)
t (t ∈) are assumed to be independent.

Recall the following notation from Sect. 4.2.3 (see also Sect. 4.1.3) the following
notation. Assume for a moment that Xt =∑∞

j=0 aj εt−j is the Gaussian process,
where εt (t ∈ Z) are i.i.d. standard normal random variables. Consider the fol-
lowing random measures: Mε(·) is a Gaussian random measure with independent
increments, associated with the sequence εt , that is E[|dMε(λ)|2] = σ 2

ε /(2π)dλ,
dM0(λ) = √

2πdMε(λ),

dMX(λ) =
( ∞∑

j=0

aj e
−ijλ

)
dMε(λ) = A

(
e−iλ

)
dMε(λ) = a(λ)dM0(λ)

is the spectral random measure associated with a sequence Xt (t ∈ N). Recall further
that n1/2M0(n

−1A) is another Gaussian random measure with the same distribution
as M0(A). Then

L
1/2
f ((nλ)−1)

L
1/2
f (n−1)

|λ|−dn1/2 dM0
(
n−1λ

)

converges vaguely to WX(dλ) := |λ|−d dM0(λ).
As in Sect. 4.2.3, we can represent the Gaussian sequences X̃

(l)
t (t ∈ N) as (cf.

(4.28))

X̃
(l)
t =

∫ π

−π

eitλ dM
X̃(l) (λ) (t ≥ 1),
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where

dM
X̃(l) (λ) = a(l)(λ) dM

(l)
0 (λ),

and M
(l)
0 (·) (l ≥ 1) are independent Gaussian random measures. Furthermore,

|a(l)(λ)|2 = f
X̃(l) (λ), where f(l) = f

X̃(l) is the spectral density associated with the

sequence X̃
(l)
t (t ∈N). Also, n1/2M

(l)
0 (n−1A)

d= M0(A), and

L
1/2
f(l)

((nλ)−1)

Lf(l)
(n−1)

|λ|−dn1/2 dM
(l)
0

(
n−1λ

)
(4.113)

converges vaguely to a measure dW
X̃(l) (λ) = |λ|−d dM

(l)
0 (λ).

As in the alternate proof of Theorem 4.2 (see also the proof of Theorem 4.3), we
may write

n−1∑

t=0

X̃
(1)
t X̃

(2)
t =

∫ π

−π

∫ π

−π

ein(λ1+λ2) − 1

ei(λ1+λ2) − 1
a(1)(λ1)a

(2)(λ2) dM
(1)
0 (λ1) dM

(2)
0 (λ2)

=
∫ nπ

−nπ

∫ nπ

−nπ

Dn

(
(λ1 + λ2)/n

)

×
2∏

l=1

a(l)

(
λl

n

)
n1/2 dM

(1)
0

(
n−1λ1

)
n1/2 dM

(2)
0

(
n−1λ2

)

with

Dn(λ) = eiλn − 1

n(eiλ − 1)
1
{|λ| < πn

}
.

The functions above converge to

D(λ) = eiλ − 1

iλ
.

Thus, if

a(l)(λ) = al,lL
1/2
f

(
λ−1)|λ|−d (l = 1,2),

then we may conclude that for d ∈ (1/4,1/2),

n−2dL−1
f

(
n−1)

n−1∑

t=0

X̃
(1)
t X̃

(2)
t

d→ a1,1a2,2

∫

R2
D(λ1 + λ2)

2∏

l=1

1

|λl |d dM
(1)
0 (λ1) dM

(2)
0 (λ2).
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This convergence can be extended to nonlinear functionals. The following theorem
is adapted from Arcones (1994). For simplicity, we assume that all al,l in (4.112)
are one. (Recall from Example 4.18 that the terms ai,l , i 
= l, vanish.)

Theorem 4.22 Let X̃t = (X̃
(1)
t , . . . , X̃

(q)
t )T (t ∈ N), be a stationary sequence of

centred Gaussian vectors with the marginal covariance matrix Iq , such that (4.112)
holds. Let G : Rq → R be a function with the Hermite rank m = m̃(G). If m(1 −
2d) > 1, then

n−(1−m(1/2−d))L
m/2
f

(
n−1)

n∑

t=1

{
G(X̃t ) − E

[
G(X̃1)

]}

d→
q∑

r1,...,rm=1

c̃r1,...,rmZ̃(r1,...,rm),H (1),

where

Z̃(r1,...,rm),H (1) =
∫

Rm

D(λ1 + · · · + λm)

m∏

l=1

1

|λl |rl dM
(r1)
0 (λ1) · · ·dM

(rm)
0 (λm),

∫
Rm is the m-fold multiple Wiener–Ito integral, and

c̃r1,...,rm = 1

m!E
[
G(X̃1)

q∏

l=1

Hk(r1,...,rm)

(
X̃

(l)
1

)
]
,

where k(r1, . . . , rm) is the number of components among r1, . . . , rm that are equal
to l.

Again, as in (4.33), the limiting random variable Z̃(r1,...,rm),H (1) can be expressed
as

∫

Rm

eiu(λ1+···+λm) − 1

i(λ1 + · · · + λm)
dW

X̃(r1) (λ1) · · ·dW
X̃(rm)(λm), (4.114)

where dW
X̃(r) (λ) = |λ|−d dM

(r)
0 (λ).

Example 4.21 Consider G(y1, y2) = H2(y2)H2(y2). Then (see Example 3.8) its
Hermite rank with respect to a vector X̃1 = (X̃

(1)
1 , X̃

(2)
1 )T of independent standard

normal random variables is m(G) = 4. Then

c1,1,2,2 = 1

4!E
[
G(X̃1)H2

(
X̃

(1)
1

)
H2
(
X̃

(2)
1

)]= 1

4! J̃
(
G,(2,2)

)= 4

4! .
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Also, this computation is invariant under permutation of indices (1,1,2,2). All
other coefficients cr1,r2,r3,r4 vanish. Note that k(1,1,2,2) = 2 for l = 1,2. Thus,

n−(1−4(1/2−d))L
4/2
f

(
n−1)

n∑

t=1

H2
(
X̃

(1)
t

)
H2
(
X̃

(2)
t

)

converges in distribution to

6 × 4

4!
∫

R4

eiu(λ1+···+λ4) − 1

i(λ1 + · · · + λ4)
dW

X̃(1) (λ1) dW
X̃(1) (λ2) dW

X̃(2) (λ3) dW
X̃(2) (λ4).

This can be also seen by expanding

n∑

t=1

H2
(
X̃

(1)
t

)
H2
(
X̃

(2)
t

)

and using a representation for Hm(Xt), see the proof of Theorem 4.3. The conver-
gence is valid for d ∈ (1/4,1/2).

Example 4.22 Let G(y) = Hm(y). Then one can see that Zm,H (1) in Theorem 4.22
is exactly the Hermite–Rosenblatt random variable.

4.4.1.2 From Independent to Dependent Components

In general, let Xt = (X
(1)
t , . . . ,X

(q)
t )T (t ∈ N) be a long-memory Gaussian se-

quence with cross-autocovariance function γi,j (k) = E(X
(i)
0 X

(j)
k ) as in (4.112) and

marginal covariance matrix Σ . Then the statement of Theorem 4.22 remains valid
if we replace m = m̃(G) by m = m(G,X1), where m(G,X1) is the Hermite rank of
G with respect to the Gaussian vector X1; the spectral measures W

X̃(rl ) are replaced
by the so-called joint spectral measure

(
dWX(1) (λ1), . . . , dWX(q)(λq)

)
,

and

cr1,...,rm = 1

m!E
[
G(X1)

q∏

l=1

Hk(r1,...,rm)

(
X

(l)
1

)
]
.

We do not provide details here; the reader is referred to Arcones (1994). However,
we will consider the special case of the covariance matrix Σ since this leads to study
of sample covariances.

Example 4.23 Recall Example 3.13. We consider the function

G(Xt ,Xt+s) = epXt epXt+s .
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Then the Hermite rank is one. Thus, we have to evaluate cr1 , r1 = 1,2. We compute

c1 = E
[
G(Xt ,Xt+s)Xt

]= p
(
1 + γX(s)

)
ep2(1+γX(s)).

Also, c2 = E[G(Xt ,Xt+s)Xt+s] = c1. Thus,

n−(d+1/2)L
−1/2
f

(
n−1)

n∑

t=1

epXt epXt+s
d→ 2c1

∫
D(λ)dWX(λ),

where WX is the spectral random measure associated with Xt (t ∈N), see (4.34).

4.4.1.3 From Independent to Dependent Components: Sample Covariances

We go back to the original problem of sample covariances. Our vectors Xt =
(X

(1)
1 ,X

(2)
t )T are as in Example 4.19:

(
X

(1)
t ,X

(2)
t

)T = (Xt ,Xt+s)
T (t ∈N).

We write

Xt =
∫ π

−π

eijλa(λ)dM0(λ) =
∫ π

−π

eijλ dMX(λ),

Xt+s =
∫ π

−π

eitλeisλa(λ)dM0(λ) =
∫ π

−π

eitλeisλ dMX(λ).

Recall now the proof of Theorems 4.2 and 4.3. Like in the proof of Theorem 4.3

n−1∑

t=0

(
XtXt+s − E(XtXt+s)

)

=
∫ π

−π

∫ π

−π

ein(λ1+λ2) − 1

ei(λ1+λ2) − 1

2∏

r=1

a(λr)e
isλ2 dM0(λ1) dM0(λ2)

=
∫ nπ

−nπ

∫ nπ

−nπ

Dn

(
(λ1 + λ2)/n

)
eisλ2/n

×
2∏

r=1

a

(
λr

n

)
n1/2 dM0

(
n−1λ1

)
n1/2 dM0

(
n−1λ2

)
. (4.115)

Note that, as n → ∞, eisλ2/n → 1. Therefore, omitting technical details, the limiting
behaviour of

n−2dL−1
f

(
n−1)

n−1∑

t=0

(
XtXt+s − E(XtXt+s)

)



306 4 Limit Theorems

or, equivalently, of

n−2dL
−1/2
2

(
n−1)

n−1∑

t=0

(
XtXt+s − E(XtXt+s)

)

is the same as that of n−2dL
−1/2
2 (n−1)

∑n−1
t=0 (X2

t −E(X2
1)), i.e. it does not involve s.

Hence, using Theorem 4.3 with m = 2, one can argue that for d ∈ (1/4,1/2),

n1−2dL
−1/2
2

(
n−1)(γ̂n(1) − γX(1), . . . , γ̂n(K) − γX(K)

)

d→ (
Z2,H (1), . . . ,Z2,H (1)

)
, (4.116)

where

γ̂n(s) = 1

n

n−s∑

t=0

XtXt+s (s = 1, . . . ,K)

is the sample covariance at lag s and H = d +1/2. Thus, the limiting random vector
has totally dependent components.

We extend this to arbitrary Hermite polynomials. Recall Example 3.15. One can
derive the equation (see Lemma 3.4 in Fox and Taqqu 1985)

Hm(Xt)Hm(Xt+s) = m!γ m
X (s) +

m∑

r=1

(m − r)!
(

m

r

)2

γ m−r
X (s)Kr(t, t + s), (4.117)

where

Kr(j, l) =
∫ π

−π

· · ·
∫ π

−π

eij (λ1+···+λr )+il(λr+1+···+λ2r )
2r∏

l=1

a(λl) dM0(λ1) · · ·dM0(λ2r ).

For m = 1, the formula reduces to the formula for XtXt+s , used in deriving (4.115).
For m = 2, the formula yields

2γ 2
X(s) + 4γX(s)

∫ ∫
eijλ1+isλ2

2∏

r=1

a(λr) dM0(λ1) dM0(λ2)

+
∫

· · ·
∫

eij (λ1+λ2)+i(j+s)(λ3+λ4)
4∏

r=1

a(λr) dM0(λ1) · · ·dM0(λ4).

The important feature of decomposition (4.117) is that under the condition d ∈
(1/4,1/2) only the term with r = 1 will contribute. In other words, the limiting
behaviour of

γ̂n(s;Hm) := 1

n

n−s∑

t=1

Hm(Xt)Hm(Xt+s)
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is up to a constant the same for each m ≥ 1. Noting that (m − 1)!(m1
)2 = m!m and

using (4.117), we have for d ∈ (1/4,1/2),

n1−2dL−1
2

(
n−1)(γ̂n(1;Hm) − m!γ m

X (1), . . . , γ̂n(K;Hm) − m!γ m
X (K)

)

d→ m!m(γ m−1
X (1), . . . , γ m−1

X (K)
)
Z2,H (1), (4.118)

where H = d + 1/2.

4.4.2 Linear Processes with Finite Moments

In this section we consider second-order stationary linear processes Xt =∑∞
j=0 aj εt−j (t ∈ N), where εt (t ∈ Z) are i.i.d. random variables such that

E(ε1) = 0, E(ε2
1) = σ 2

ε = 1 and E(ε4
1) = η < ∞.

Let

γ̂n(s) = 1

n

n−s∑

t=0

XtXt+s .

It converges in probability to the population covariance

γX(s) = E(X0Xs) = σ 2
ε

∞∑

j=0

ajaj+s .

Classical results for weakly dependent sequences under E(ε4
1) < ∞ were obtained

in Anderson (1971, p. 478); see also Brockwell and Davis (1991, Proposition 7.3.3).
For long-memory linear processes, they were obtained in Hosking (1996) and
Horváth and Kokoszka (2008).

Theorem 4.23 Let Xt = ∑∞
j=0 aj εt−j (t ∈ N) be a linear process such that

E(ε1) = 0, E(ε2
1) = σ 2

ε = 1 and E(ε4
1) = η < ∞. Furthermore, assume that∑∞

j=0 a2
j = 1.

(a) If aj ∼ La(j)jd−1, d ∈ (0,1/4) or
∑∞

j=0 |aj | < ∞, then

n1/2(γ̂n(s) − γX(s)
) d→ N

(
0, ν2),

where the variance is

ν2 = (η − 3)γ 2
X(s) +

∞∑

k=−∞

(
γ 2
X(k) + γ 2

X(k + s)
)
.
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(b) If aj ∼ La(j)jd−1 and d ∈ (1/4,1/2), then

n1−2dL
−1/2
2 (n)

(
γ̂n(s) − γX(s)

) d→ Z2,H (1),

where Z2,H (u) is a Hermite–Rosenblatt process, L2(n) = 2C2L
2
γ (n),

C2 = [(2(2d − 1) + 1
)
(2d + 1)

]−1
,

and Lγ (n) is given in (4.39).

This theorem can be formulated in a multivariate setup. In the first case the lim-
iting distribution is multivariate normal (with dependent components):

n1/2(γ̂n(0) − γX(0), . . . , γ̂n(q) − γX(q)
) d→ (G0, . . . ,Gq), (4.119)

where (G0, . . . ,Gq) is a zero-mean Gaussian vector with covariance

E[GsGt ] = (η−3)γX(s)γX(t)+
∞∑

k=−∞

(
γX(k)γX(k + s − t)+γX(k + s)γX(k + t)

)
.

(4.120)
In the second case, d ∈ (1/4,1/2), the limit has the form (Z2,H (1), . . . ,Z2,H (1)).

Proof For part (a), we use the standard truncation argument as illustrated in the
proof of Theorem 4.5. Let

Xt,K =
K∑

j=0

aj εt−j ,

γ̂ (K)
n (s) = 1

n

n−s∑

t=0

Xt,KXt+s,K, γ
(K)
X (s) = E[X0,KXs,K ] = σ 2

ε

K∑

j=0

ajaj+s .

First, since the sequence Xt,KXt+s,K is (K + s)-dependent, its convergence is
described by

n1/2(γ̂ (K)
n (s) − γ

(K)
X (s)

) d→ N
(
0, ν2

K

)
,

where

ν2
K = (η − 3)

(
γ

(K)
X (s)

)2 +
∞∑

k=−∞

[(
γ

(K)
X (k)

)2 + (γ (K)
X (k + s)

)2]
.

Since ν2
K → ν2 as K → ∞, we also have N(0, ν2

K)
d→ N(0, ν2). It suffices to verify

that for all δ > 0,

lim
K→∞ lim sup

n→∞
P
(∣∣n1/2(γ̂ (K)

n (s) − γ
(K)
X (s)

)− n1/2(γ̂n(s) − γX(s)
)∣∣> δ

)= 0.
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By Markov’s inequality, to do this, it suffices to verify that

lim
K→∞ lim

n→∞n · var
(
γ̂ (K)
n (s) − γ̂n(s)

)= 0.

In the case of Theorem 4.5 this was handled by introducing the random variable
X̄t,K = Xt − Xt,K . In our situation here this is not straightforward since

∞∑

j,j ′=0

ajaj+s −
K∑

j,j ′=0

ajaj+s 
=
∞∑

j,j ′=K+1

ajaj+s .

We have to verify that

lim
n→∞n · var

(
γ̂n(s)

)= ν2,

lim
K→∞ lim

n→∞n · var
[
γ̂ (K)
n (s)

]= ν2, lim
K→∞ lim

n→∞n · cov
(
γ̂ (K)
n (s), γ̂n(s)

)= ν2.

We prove the first part only. The expression is

n−1∑

k=−(n−1)

(
1 − |k|

n

)[
(η − 3)σ 2

ε

∑

j=0

ajaj+saj+kaj+k+s + γ 2
X(k) + γ 2

X(k + s)

]
.

Then the relation follows by the dominated convergence theorem. For this,
one needs, in particular,

∑
k γ 2

X(k) < ∞, which is achieved if d ∈ (0,1/4) or∑∞
j=0 |aj | < ∞.
As for part (b), we use the following decomposition:

1

n

n∑

t=1

(
XtXt+s − E(XtXt+s)

)

= 1

n

n∑

t=1

∞∑

j=0

ajaj+s

(
ε2
t−j − σ 2

ε

)+ 1

n

n∑

t=1

∞∑

j=0

∞∑

l=0; l 
=j+s

aj alεt−j εt−l

=: Mn + Rn.

We may write the first part as Mn = n−1∑n
t=1 Yt , where Yt (t ∈ N) is the linear

process Yt =∑∞
j=0 cj (εt−j −σ 2

ε ) with summable coefficients cj = ajaj+s . Indeed,
by the Cauchy–Schwarz inequality,

∑
|cj | ≤

(∑
a2
j

)1/2(∑
a2
j+s

)1/2
< ∞.

Thus, n1/2Mn converges to a normal distribution on account of Theorem 4.5.
As for the second part, we may recognize that it has almost the same form as the

therm Un,2 in (4.51), so that its limiting distribution is of Hermite–Rosenblatt type.
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If d ∈ (1/4,1/2), then

n1−2dL
−1/2
2 (n)Rn

d→ Z2,H (1).

Thus, the second part dominates if d ∈ (1/4,1/2).
Note that formally the limit in part (b) may depend on s. However, this is not the

case; a precise computation is given in Horváth and Kokoszka (2008). �

4.4.3 Linear Processes with Infinite Moments

Here we consider the same linear processes as in Sect. 4.4.2, however, instead of
assuming E[ε4

1] < ∞, we impose the regularly varying condition:

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) = A

1 + β

2
x−α, (4.121)

where A > 0, β ∈ [−1,1] and α ∈ (1,4). In particular, E[|ε1|] < ∞, E[ε4
1] = +∞.

There is a vast literature on sample covariances for weakly dependent linear pro-
cesses with regularly varying innovations. Kanter and Steiger (1974) considered
AR(p) models, Davis and Resnick (1985, 1986) considered processes with infinite
variance and with finite variance, but infinite fourth moment, respectively. In the
latter papers, the authors used point process techniques, as described in the section
on partial sums with infinite moments; see Sect. 4.3. This technique was success-
fully applied to bilinear processes with infinite moments (Davis and Resnick 1996;
Basrak et al. 1999) and to GARCH models (Davis and Mikosch 1998; Basrak et al.
2002)

As for long-memory linear processes, Kokoszka and Taqqu (1996) general-
ized the results by Davis and Resnick (1985) for α ∈ (1,2), whereas Horváth and
Kokoszka (2008) generalized Davis and Resnick (1986) for α ∈ (2,4). (Recall that
there is no long memory if α ∈ (0,1)).

Recall that the sample covariance is defined as

γ̂n(s) = 1

n

n−s∑

t=1

XtXt+s (s = 1, . . . , q).

The first result deals with α ∈ (1,2). There is no influence of long memory.

Theorem 4.24 Assume that Xt (t ∈ N) is a linear process and εt (t ∈ Z) are i.i.d.
random variables such that (4.121) holds with α ∈ (1,2) and E(ε1) = 0. If α ∈
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(1,2), then

n1−2/α
(
γ̂n(0), . . . , γ̂n(q)

)

d→ A2/αC
−2/α

α/2

( ∞∑

j=0

ajaj+0, . . . ,

∞∑

j=0

ajaj+q

)
Sα/2(1,1,0), (4.122)

where Sα(1,1,0) is a stable random variable.

Proof The proof is given in Davis and Resnick in the weakly dependent case (4.88);
however it applies to the long-memory situation as long as the conditions of Theo-
rem 4.24 are fulfilled. The reason for this is that under the condition

∑
j a2

j < ∞,
the quantity

∑
j aj aj+s is also finite. We give a sketch of the proof for γ̂n(q) only.

Recall from Theorem 4.14 that

n∑

t=1

δ
c−1
n (Xt ,...,Xt−K)

⇒
∞∑

l=1

∞∑

r=0

δjl(ar ,ar−1,...,ar−K),

where jl are points of the limiting Poisson process, cn is such that P(|ε1| > cn) ∼
n−1, i.e. cn ∼ A1/αn1/α . The continuous mapping theorem yields

c−2
n

n∑

t=1

XtXt+q1
{|Xt | > cnγ or |Xt+h| > cnγ

}

d→
∞∑

l=0

∞∑

t=0

ajaj+qj2
l 1
{|jl | > min

{
a−1
j , a−1

j+q

}
γ
}
.

As γ → 0, the latter random variable converges to
( ∞∑

j=0

ajaj+q

) ∞∑

l=0

j2
l

d=
( ∞∑

j=0

ajaj+q

)
Sα/2

(
C

−2/α

α/2 ,1,1
)
.

It remains to show that

lim
γ→0

lim sup
n→∞

P

(
c−2
n

∣∣∣∣∣

n∑

t=1

XtXt+q1
{|Xt | < cnγ, |Xt+q | < cnγ

}
∣∣∣∣∣> γ

)
= 0.

This probability is bounded by

n

c2
nγ

E
[∣∣X2

1

∣∣1
{|X1| < γcn

}]
.

We conclude the proof by applying Karamata’s theorem (Lemma 4.18) together
with the tail estimates in Lemma 4.19. �

The situation is different for α ∈ (2,4). We have a dichotomous behaviour, de-
pending on the interplay between tails and memory.
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Theorem 4.25 Assume that Xt (t ∈ N) is a linear process such that aj ∼ caj
d−1,

d ∈ (0,1/2) (so that γX(k) ∼ Lγ (k)k2d−1, see (4.39)) and εt (t ∈ Z) are i.i.d. ran-
dom variables such that (4.121) holds with α ∈ (2,4) and E(ε1) = 0.

• If α ∈ (2,4) and 0 < d < 1/α, then (4.122) holds.
• If α ∈ (2,4) and 1/α < d < 1/2, then

n1−2dL
−1/2
2 (n)

(
γ̂n(s) − γX(s)

) d→ Z2,H (1),

where Z2,H (u) is a Hermite–Rosenblatt process, and L2(n) = 2!C2L
2
γ (n).

Proof Consider the decomposition Mn + Rn from the proof of Theorem 4.23:

1

n

n∑

t=1

(
XtXt+s − E(XtXt+s)

)

= 1

n

n∑

t=1

∞∑

j=0

ajaj+s

(
ε2
t−j − σ 2

ε

)+ 1

n

n∑

t=1

∞∑

j=0

∞∑

l=0; l 
=j+s

aj alεt−j εt−l

=: Mn + Rn.

Since the random variables εt have a finite variance, we again have

n1−2dL
−1/2
2 (n)Rn

d→ Z2,H (1)

if d ∈ (1/4,1/2) and n−1/2Rn = OP (1) if d ∈ (0,1/4). The first part, Mn, is the
partial sum of a linear process with summable coefficients and infinite variance, and
hence we can conclude the stable limit for Mn. �

4.4.4 Stochastic Volatility Models

Some recent results were developed for stochastic volatility models (McElroy and
Politis 2007, Kulik and Soulier 2012). In the latter paper, the authors show differ-
ences between LMSV and models with a leverage.

Consider a stochastic volatility model Xt = σtξt (t ∈ N) such that the sequences
σt (t ∈ N) and ξt (t ∈N) are independent. Assume that E(ξ1) = 0. We are interested
in sample covariances of Xt and X2

t . For the first one, we note that

γ̂n(s) = 1

n

n−s∑

t=1

ξt ξt+sσtσt+s

is a martingale w.r.t. sigma field generated by (σj , ξj ), j ≤ t . Therefore, if we as-
sume additionally E[ξ2

1 ] < ∞, then

√
nγ̂n(s)

d→ N
(
0, v2),
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where v2 = E[σ 2
0 σ 2

s ]E2[ξ2
1 ]. The more interesting situation happens in the second

case of squares. Assume that E[ξ4
1 ] < ∞. Then

1

n

n∑

t=1

(
ξ2
t ξ2

t+sσ
2
t σ 2

t+s − E
[
ξ2
t ξ2

t+s

]
E
[
σ 2

j σ 2
t+s

])

= 1

n

n∑

t=1

σ 2
t σ 2

t+s

(
ξ2
t ξ2

t+s − E
[
ξ2
t ξ2

t+s

])+ E2[ξ2
1

]1

n

n∑

t=1

(
σ 2

t σ 2
t+s − E

[
σ 2

t σ 2
t+s

])

=: Mn + Rn.

Again, the first part is a martingale, and therefore it is OP (n−1/2). The second part
is a possible long-memory contribution of the bivariate sequence σtσt+s (t ∈ N).
For example, if we consider σt = exp(pζt ), where ζt (t ∈ N) is the long-memory
Gaussian process as in Example 4.23, then for d ∈ (1/4,1/2) (refer to Example 4.23
for the precise notation),

n−(d+1/2)L
−1/2
f (n)Rn

d→ 2E2[ξ2
1

]
c1

∫
D(λ)dWζ (λ),

where Wζ is the spectral random measure associated with ζt (t ∈ N). Therefore,
since the second part Rn dominates, the limiting distribution for

n1−(d+1/2)L
−1/2
2

(
n−1)γ̂n(s)

is the same as for Rn. If on the other hand d ∈ (0,1/4), then both terms Mn and Rn

are of the same order.
This consideration can be extended to random variables ξt such that (4.121) holds

with α ∈ (2,4). Then, we have again a dichotomous behaviour: the limit can be ei-
ther a stable random variable or a Hermite–Rosenblatt random variable. The situ-
ation becomes complicated though when one considers models with leverage. We
refer to Davis and Mikosch (2001) and Kulik and Soulier (2012).

4.4.5 Summary of Limit Theorems for Sample Covariances

We consider a centred linear process Xt =∑∞
j=0 aj εt−j such that either E(ε4

1) < ∞
or

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α

with α ∈ (1,4) and appropriate regularity conditions (that assure existence of the
process). In the table, Z2,H (·) is a Hermite–Rosenblatt process on [0,1], and S̃α/2
is an α/2-stable random variable. Furthermore, c is a generic constant. The main
results are summarized in Table 4.3.
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Table 4.3 Limits for sample covariances

Sample covariances

Finite moments Infinite moments

Linear processes n1/2(γ̂n(s) − γX(s))
d→ cN(0,1)

if d ∈ (0,1/4)

n1−2d (γ̂n(s)− γX(s))
d→ cZ2,H (1)

if d ∈ (1/4,1/2)

(Theorem 4.23)

α ∈ (1,2)

n1−2/α(γ̂n(s) − γX(s))
d→ cS̃α/2

α ∈ (2,4)

n1−2/α(γ̂n(s) − γX(s))
d→ cS̃α/2

if d ∈ (0,1/α)

n1−2d (γ̂n(s)− γX(s))
d→ cZ2,H (1)

if d ∈ (1/α,1/2)

(Theorems 4.25, 4.24)

4.5 Limit Theorems for Quadratic Forms

In this section we consider quadratic forms,

Qn(u) :=
[nu]∑

t,s=1

bt−s

{
G(Xt ,Xs) − E

[
G(Xt ,Xs)

]}
, Qn := Qn(1), (4.123)

where bk (k ∈ Z) is a sequence of constants, and G : R2 → R. We are interested in
asymptotic properties of Qn(u).

In the Gaussian case, such studies were conducted in Rosenblatt (1979), Fox
and Taqqu (1985, 1987), Avram (1988), Terrin and Taqqu (1990), Beran and Ter-
rin (1994), among others. For linear processes, classical limit theorems for weakly
dependent sequences are given in Brillinger (1969) and Hannan (1970) (and refer-
ences therein); also see Klüppelberg and Mikosch (1996). They follow directly from
limit theorems for sample covariances, proven in Theorem 4.23. For long memory
such studies were initiated by Giraitis and Surgailis (1990). The authors concluded
a weakly dependent behaviour, using approximation of a quadratic form by another
quadratic form with weakly dependent variables. Other results along these lines
were proven for instance in Horváth and Shao (1999) and Bhansali et al. (1997). The
case of the multivariate Appell polynomials is studied in Terrin and Taqqu (1991),
Giraitis and Taqqu (1997, 1998, 1999a, 2001), Giraitis et al. (1998). Kokoszka and
Taqqu (1997) discuss quadratic forms for infinite-variance processes. We also refer
to Giraitis and Taqqu (1999b) for an overview.

There are two principal applications of quadratic forms. First, we can derive the
limiting behaviour of the periodogram and the Whittle estimator (see Sect. 5.5 for
results and references), or we can use quadratic forms to test for possible changes
in the long-memory parameter (see e.g. Beran and Terrin 1996, Horváth and Shao
1999).
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4.5.1 Gaussian Sequences

In this section we shall assume that Xt (t ∈ Z) is a centred Gaussian sequence with
autocovariance function γX(k) = Lγ (k)k2d−1. First, we exploit the relation between
sample covariances and quadratic forms. Using results obtained in Sect. 4.4, we
obtain a long-memory behaviour I (i.e. of “type I”) of Qn(u) for d ∈ (1/4,1/2)

directly from limit theorems for sample covariances. The result was proven in Fox
and Taqqu (1985) and is presented in Theorem 4.26. For d ∈ (0,1/4), we obtain
convergence with rate n−1/2, as proven in Fox and Taqqu (1985) as well. The result
is presented in Theorem 4.27 and is referred to as weakly dependent behaviour I.

These results are very similar to those for partial sums
∑[nu]

t=1 (X2
t − 1). These

sums were studied in Sect. 4.2.3, and we recall the dichotomous behaviour: con-
vergence to the Hermite–Rosenblatt process or Brownian motion for d ∈ (1/4,1/2)

and d ∈ (0,1/4) respectively.
In Theorem 4.26 the limiting process will be degenerated if

∑
l bl = 0, as it

happens for Fourier coefficients. Another type of weakly dependent behaviour is
obtained if in addition to

∑
l bl = 0 the coefficients also decay to zero fast enough.

Then, the coefficients bl compensate for long memory, and Qn(·) converges at rate
n1/2 for all d ∈ (0,1/2) (weakly dependent behaviour II). Such results were proven
in Fox and Taqqu (1985, Theorem 3; 1987), Avram (1988), Beran and Terrin (1994)
(also Beran 1986). The authors use the method of cumulants; see the proof of Theo-
rem 4.28. On the other hand, if the coefficients bl do not compensate for long mem-
ory, then Terrin and Taqqu (1990) prove that the limiting process is neither Gaus-
sian nor Hermite–Rosenblatt (long-memory behaviour II). The authors use multiple
Wiener–Itô integrals; see the proof of Theorem 4.29.

4.5.1.1 Long Memory Behaviour I

Recall that the sample covariances for the sequence Xt (t ∈ Z) are defined by

γ̂n(s) = 1

n

n−|s|∑

t=1

XtXt+|s|.

Reorganizing indices, we may write

Qn(1) =
n∑

t,s=1

bt−s

(
XtXs − E(XtXs)

)= n
∑

|l|≤n−1

bl

(
γ̂n(l) − γX(l)

)
.

Recall that for d ∈ (1/4,1/2) (see (4.116)),

n1−2dL
−1/2
2 (n)

(
γ̂n(1) − γX(1), . . . , γ̂n(K) − γX(K)

) d→ (
Z2,H (1), . . . ,Z2,H (1)

)
.

(4.124)
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This, together with the continuous mapping theorem, implies that for any fixed in-
teger K > 0,

n−2dL
−1/2
2 (n)Qn,K(1) := n−2dL

−1/2
2 (n)n

∑

|l|≤K

bl

(
γ̂n(l) − γX(l)

)

d→
(

K∑

l=−K

bl

)
Z2,H (1).

Clearly, (
∑K

l=−K bl)Z2,H (1)
p→ (
∑∞

l=−∞ bl)Z2,H (1). Furthermore,

lim
K→∞ lim sup

n→∞
P
(
n−2dL

−1/2
2 (n)

∣∣Qn,K(1) − Qn(1)
∣∣> δ

)= 0

for each δ > 0. The reader is referred to Fox and Taqqu (1985, Theorem 1) for
details on the latter approximation and tightness. This leads to the following result,
which is formulated more generally in a functional form.

Theorem 4.26 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k2d−1, d ∈ (1/4,1/2). If

∑∞
l=−∞ |bl | <

∞, then

n−2dL
−1/2
2 (n)Qn(u) = n−2dL

−1/2
2 (n)

[nu]∑

t,s=1

bt−s

(
XtXs − E(XtXs)

)

⇒
( ∞∑

l=−∞
bl

)
Z2,H (u),

where L2(n) = 2!C2L
2
γ (n) (cf. (4.22)), H = d + 1

2 , ⇒ denotes weak convergence,
and Z2,H (·) is the Hermite–Rosenblatt process.

This result has been proven in fact in a more general setting Fox and Taqqu
(1985). Consider

Qn(u;Hm) :=
[nu]∑

t,s=1

bt−s

{
Hm(Xt)Hm(Xs) − E

[
Hm(Xt)Hm(Xs)

]}
.

The same methodology as above works, given that we use (4.118) instead of (4.124):

n1−2dL
−1/2
2 (n)

(
γ̂n(1;Hm) − m!γ m

X (1), . . . , γ̂n(K;Hm) − m!γ m
X (K)

)

d→ m!m(γ m−1
X (1), . . . , γ m−1

X (K)
)
Z2,H (1).
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We conclude for d ∈ (1/4,1/2) and under the condition
∑∞

l=−∞ |bl | < ∞,

n−2dL
−1/2
A2

(n)Qn(1;Hm)
d→ m!m

( ∞∑

l=−∞
blγ

m−1
X (l)

)
Z2,H (1).

4.5.1.2 Weakly Dependent Behaviour I

Theorem 4.26 above requires d ∈ (1/4,1/2). What about d ∈ (0,1/4)? As in the
case of partial sums

∑[nu]
t=1 (X2

t − 1), one obtains a weakly dependent behaviour, i.e.
a central limit theorem with scaling n−1/2 Fox and Taqqu (1985).

Theorem 4.27 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k2d−1, d ∈ (0,1/4). Then

n−1/2Qn(u) = n−1/2
[nu]∑

t,s=1

bt−s

(
XtXs − E(XtXs)

)⇒ σ0B(u),

where B(·) is a standard Brownian motion, and σ0 > 0.

The constant σ0 is given in a complicated form, and we refer to Fox and Taqqu
(1985) for a precise formula.

4.5.1.3 Weakly Dependent Behaviour II

In Theorem 4.26 it may happen that
∑∞

l=−∞ bl = 0 and hence the limit will be de-
generated. This can happen when bl are Fourier coefficients of a real-valued func-
tion g. Specifically, let

bl =
∫ π

−π

eilλg(λ)dλ =: 2πĝl, g(λ) ∼ cg|λ|−γ as |λ| → 0. (4.125)

To assure the existence of Fourier coefficients, we assume that γ < 1. Then, bl ∼
cbl

γ−1, cb = 2cgΓ (1 − γ ) sin(π
γ
2 ). The following result was proven in Fox and

Taqqu (1987); see also Theorem 3 in Fox and Taqqu (1985) and Avram (1988).

Theorem 4.28 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k2d−1, d ∈ (0,1/2). If

2d + γ < 1/2, (4.126)

then

n−1/2Qn(1)
d→ σQZ, (4.127)
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where

σ 2
Q := 16π3

∫ π

−π

(
f (λ)g(λ)

)2
dλ,

f = fX is the spectral density of Xt (t ∈ Z), and Z is a standard normal random
variable.

Let us comment on condition (4.126). First, it assures that σ 2
Q is finite. Second,

it means that the coefficients bl decay appropriately fast, to compensate for long
memory in Xt (t ∈ Z).

Proof We present a modified version of the proof in Avram (1988). Let Σ =
[γX(j − l)]nj,l=1 and B = [bj−l]n−1

j,l=0. Then,

Qn(1) = (X1, . . . ,Xn)B(X1, . . . ,Xn)
T

has the pth cumulant equal to (see Grenander and Szegö 1958, p. 218)

cump

(
Qn(1)

)= 2p−1(p − 1)!Trace(ΣB)p.

Note that

γX(j − l) =
∫ π

−π

ei(j−l)λfX(λ)dλ =: 2πf̂j−l ,

where f̂j−l is the Fourier coefficient of the spectral density f = fX . Furthermore,
B = 2π [ĝj−l]n−1

j,l=0. Recall that the trace of a matrix is the sum of its diagonal ele-
ments. We have

1

n
Trace(Σ) = 2π

n
(f̂0 + · · · + f̂0) = 2πf̂0 =

∫ π

−π

fX(λ)dλ.

Of course, fX is integrable given d < 1/2. Analogously, recall that the trace can
be written as a Hadamard product: Trace(ΣB) =∑j,l γX(j − l)Bj,l . Since f̂l ĝl is
summable, we then obtain

1

n
Trace(ΣB) = 4π2 1

n

n∑

j,l=1

f̂j−l ĝj−l = 4π2 1

n

n−1∑

l=−(n−1)

(
n − |l|)f̂l ĝl

≈ 4π2
n−1∑

l=−(n−1)

f̂l ĝl → 4π2
∞∑

l=−∞
f̂l ĝl

as n → ∞. By the Parseval identity and since g is real,

lim
n→∞

1

n
Trace(ΣB) = 4π2 1

2π

∫ π

−π

fX(λ)ḡ(λ) dλ = 2π

∫ π

−π

fX(λ)g(λ)dλ.
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On the other hand, if λ1, . . . , λn are the eigenvalues of ΣB , then we can write alter-
natively

lim
n→∞

1

n
Trace(ΣB) = lim

n→∞
1

n

n∑

j=1

λj → 4π2

2π

∫ π

−π

fX(λ)g(λ)dλ.

The matrix (ΣB)p has eigenvalues λ
p
j , j = 1, . . . , n. One can then argue analo-

gously that

lim
n→∞

1

n
Trace(ΣB)p = lim

n→∞
1

n

n∑

j=1

λ
p
j = (4π2)p

2π

∫ π

−π

(fX(λ)g(λ))p dλ.

Thus,

cump

(
n−1/2Qn(1)

)= n−p/2cump

(
Qn(1)

)= 2p−1

np/2−1

(p − 1)!
n

Trace(ΣB)p.

Consequently, limn→∞ cump(n−1/2Qn(1)) = 0 if p > 2, and

lim
n→∞ cum2

(
n−1/2Qn(1)

)= 16π3
∫ π

−π

(
fX(λ)g(λ)

)2
dλ,

which provides the limiting variance. Application of the method of cumulants (see
Theorem 4.1) then yields the result. �

4.5.1.4 Long-Memory Behaviour II

In contrast to Theorem 4.28, if the coefficients bl do not compensate for long mem-
ory (i.e., when (4.126) fails to hold), then we have the following result, due to Terrin
and Taqqu (1990). Recall that g(λ) ∼ cg|λ|−γ as λ → 0 (see (4.125)) and that M0(·)
is a random measure that appears in the spectral representation of the linear Gaus-
sian sequence; see Sect. 4.1.3.

Theorem 4.29 Assume that Xt (t ∈ Z) is a stationary sequence of standard normal
random variables such that γX(k) ∼ Lγ (k)k2d−1, d ∈ (0,1/2). If

1/2 < 2d + γ < 1, (4.128)

then

n−(2d+γ )L−1
f

(
n−1)Qn(u) ⇒ cgZ(u), (4.129)

where

Z(u) =
∫ ∫

ψu(λ1, λ2)
1

λ1

1

λ2
dM0(λ1) dM0(λ2),
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and

ψu(λ1, λ2) =
∫

R

eiu(λ1−λ) − 1

i(λ1 + λ)

eiu(λ2+λ) − 1

i(λ2 − λ)
|λ|−γ dλ.

The limiting process is self-similar with H = 2d + γ ∈ ( 1
2 ,2), but neither Gaus-

sian nor Hermite–Rosenblatt.
We note that for γ = 0, we have bl = 1 for l = 0 and 0 otherwise. In this case the

result of Theorem 4.29 reduces to the asymptotic behaviour of
∑[nu]

t=1 (X2
t − 1), see

Theorem 4.3.

Proof The proof is sketched here. It follows the same idea as in the case of par-
tial sums

∑n
t=1 Hm(Xt). Recall that the multiple Wiener–Itô integral “removes” the

diagonal (see Appendix A). We write

XtXs − E(XtXs) =
∫

[−π,π]2\{λ1=λ2}
eitλ1eisλ2a(λ1)a(λ2) dM0(λ1) dM0(λ2),

where |a(λ)|2 = fX(λ).
Thus,

Qn(1) =
n−1∑

t,s=0

∫ π

−π

ei(t−s)λg(λ)dλ

∫ π

−π

∫ π

−π

eitλ1eisλ2a(λ1)a(λ2) dM0(λ1) dM0(λ2)

=
∫ π

−π

∫ π

−π

a(λ1)a(λ2)

×
(∫ π

−π

ein(λ1+λ) − 1

ei(λ1+λ)

ein(λ2−λ) − 1

ei(λ2−λ)
g(λ)dλ

)
dM0(λ1) dM0(λ2)

= cgn
γ

∫ nπ

−nπ

∫ nπ

−nπ

a

(
λ1

n

)
a

(
λ2

n

)

× ψ1(λ1, λ2;n)n1/2 dM0
(
n−1λ1

)
n1/2 dM0

(
n−1λ2

)
,

where

ψ1(λ1, λ2;n) =
(∫ nπ

−nπ

Dn

(
λ1 + λ

n

)
Dn

(
λ2 − λ

n

)
g(λ)dλ

)
,

Dn(λ) = eiλn − 1

n(eiλ − 1)
1{|λ| ≤ πn}.

Thus, Qn(1) equals in distribution to

∫ nπ

−nπ

∫ nπ

−nπ

a

(
λ1

n

)
a

(
λ2

n

)
ψ1(λ1, λ2;n)dM0(λ1) dM0(λ2).
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Clearly, limn→∞ ψ1(λ1, λ2;n) = ψ1(λ1, λ2), and as in the alternative proof of
Theorem 4.2, one can argue that the convergence is uniform. Therefore, the same
method as in Theorem 4.2 applies, and the result (4.129) follows for u = 1. A proof
of functional convergence is omitted here. �

4.5.2 Linear Processes

As in the case of partial sums, the results on quadratic forms for Gaussian LRD
sequences have a counterpart for general linear sequences

Xt =
∞∑

j=0

aj εt−j (t ∈ Z), (4.130)

where
∑∞

j=0 a2
j = 1, εt (t ∈ Z) are i.i.d. zero mean random variables with var(ε1) =

σ 2
ε = 1. We will assume that either

∑∞
j=0 |aj | < ∞ or aj ∼ La(j)jd−1 with d ∈

(0,1/2).
Results for quadratic forms

Qn(u) =
[nu]∑

t,s=1

bt−s

(
XtXs − E(XtXs)

)

based on weakly dependent linear processes are classical (see Brillinger 1969; Han-
nan 1970; also see Klüppelberg and Mikosch 1996) and follow directly from limit
theorems for sample covariances, as proven before in Theorem 4.23.

For long memory, such studies had been initiated by Giraitis and Surgailis (1990).
The authors concluded a weakly dependent behaviour, similar to that of Theo-
rem 4.28, using an approximation of the quadratic form by another quadratic form
with weakly dependent variables. Other results along this line can be found in
Horváth and Shao (1999) and Bhansali et al. (1997).

When one replaces Qn(u) by

Qn(u;Pm1,m2) =
[nu]∑

t,s=1

bt−s

{
Pm1,m2(XtXs) − E

[
Pm1,m2(Xt ,Xs)

]}
,

where Pm1,m2 is a multivariate Appell polynomial, then limit theorems are very
complicated; see Terrin and Taqqu (1991), Giraitis and Taqqu (1997, 1998, 1999a,
2001). We refer to Giraitis and Taqqu (1999b) for an overview.
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4.5.2.1 Weakly Dependent Processes

Assume that
∑∞

j=0 |aj | < ∞. Recall Theorem 4.23 and the multivariate conver-
gence (4.120):

n1/2(γ̂n(0) − γX(0), . . . , γ̂n(K) − γX(K)
) d→ (G0, . . . ,GK),

where (G0, . . . ,GK) is a Gaussian vector. We apply a similar method as in the
proof of Theorem 4.26. There we concluded long-memory behaviour of quadratic
forms from long-memory behaviour of sample covariances. Here, we will conclude
short-memory behaviour of quadratic forms from short memory-behaviour of sam-
ple covariances.

We have

Qn(1) =
n∑

t,s=1

bt−s

(
XtXs − E(XtXs)

)= n
∑

|l|≤n−1

bl

(
γ̂n(l) − γX(l)

)
.

The continuous mapping theorem implies

n−1/2Qn,K(1) := n−1/2n
∑

|l|≤K

bl

(
γ̂n(l) − γX(l)

) d→ b0G0 + 2
K∑

l=1

blGl.

To apply Proposition 4.1, we need to show that

lim
K→∞ lim sup

n→∞
P

(√
n

∣∣∣∣∣

n−1∑

l=K+1

bl

(
γ̂n(l) − γX(l)

)
∣∣∣∣∣> δ

)
= 0.

This is straightforward since the correlations between γ̂n(l) (l ≥ 1) are absolutely
summable. Therefore, we may apply Chebyshev inequality in a suitable way to fin-
ish the proof. �

4.5.2.2 Long-Memory Sequences

The following result is a counterpart to Theorem 4.28.

Theorem 4.30 Assume that Xt (t ∈ N) is a linear process with long-range depen-
dence defined in (4.130), with spectral density fX(λ) ∼ cf |λ|−2d . Assume that the
coefficients bl are given by (4.125), i.e. bl ∼ cbl

γ−1. Let κ4 be the fourth cumulant
of ε1. If

2d + γ < 1/2, (4.131)

then

n−1/2Qn(1) = n−1/2
n∑

t,s=1

bt−s

(
XtXs − E(XtXs)

) d→ σQZ, (4.132)
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where Z is standard normal, and

σ 2
Q := 16π3

∫ π

−π

(
fX(λ)g(λ)

)2
dλ + κ4

(
2π

∫ π

−π

fX(λ)g(λ)dλ

)2

.

Of course, if the innovations εt are normal, then κ4 = 0, and the result reduces to
Theorem 4.28.

Proof To prove this theorem, Giraitis and Surgailis (1990) do not use the method
of cumulants. Instead, they approximate Qn = Qn(1) by a weakly dependent se-
quence. A similar approach is also used in Bhansali et al. (1997), and we present a
sketch of the method there.

Write Qn,X =∑n
t,s=1 bt−sXtXs and Qn,ε =∑n

t,s=1 vt−sεt εs , where

vl = 2π

∫ π

−π

g(λ)fX(λ)eilλ dλ.

Since Qn,ε is a quadratic form of independent random variables, it is much easier to
derive its asymptotic distribution, namely (see Bhansali et al. 1997, Theorem 4.1):

1√
var(Qn,ε)

(
Qn,ε − E(Qn,ε)

) d→ N(0,1),

where

var(Qn,ε) = v2
0n · σ 2

ε + 2
n∑

j,l=1; j 
=l

v2
j−l

and σ 2
ε = var(εt ). Under our assumptions,

g(λ)fX(λ) ∼ cg|λ|−γ cf |λ|−2d

as λ → 0. Therefore, the coefficients vl satisfy

vl ∼ cvl
2d+γ−1, cv = 2cf cgΓ

(
1 − (2d + γ )

)
sin

(
π

2d + γ

2

)
.

Furthermore, Qn,X − Qn,ε = oP (1). Evaluation of this is quite challenging, and the
reader is referred to Giraitis and Surgailis (1990). Once this is verified, the conver-
gence of Qn,X follows from the convergence of Qn,ε − E(Qn,ε). �

The limiting behaviour of quadratic forms becomes more involved if one con-
siders nonlinear functionals. Recall the definition of bivariate Appell polynomials.
Redefine Qn as

Qn(u) = Qn(u;Pm1,m2) =
[nu]∑

t,s=1

bt−s

{
Pm1,m2(Xt ,Xs) − E

[
Pm1,m2(Xt ,Xs)

]}
.
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Table 4.4 Panorama of limits for quadratic forms of Gaussian sequences

Quadratic forms—Gaussian sequences (notation: g(λ) = 1
2π

∑
ble

−ilλ)

g(0) =∑l bl 
= 0∑ |bl | < ∞
d ∈ (0,1/2)

n−1/2Qn(u) ⇒ cB(u)

Theorem 4.27

d ∈ (1/4,1/2)

n−2dQn(u) ⇒ c Z2,H (u)

Theorem 4.26

g(λ) ∼ cg |λ|−γ

(λ → 0)

d ∈ (0,1/2) and 2d + γ < 1/2

n−1/2Qn(1)
d→ c B(1)

Theorem 4.28

g(λ) ∼ cg |λ|−γ

(λ → 0)

d ∈ (0,1/2) and 1/2 < 2d + γ < 1
n−(2d+γ )Qn(u) ⇒ cZ(u)

Theorem 4.29

Let B = [bj−l]nj,l=1 and Σ(m) = [γ m
X (j − l)]nj,l=1. Also, let h∗m be the m-fold con-

volution of a function h. Giraitis and Taqqu (1997) showed that if

lim
n→∞

Trace(Σ(m1)BΣ(m2)B)

n
=
∫ π

−π

f
∗m1
X (λ)f

∗m2
X (λ)g2(λ) dλ < ∞, (4.133)

then n−1/2Qn converges in distribution to a normal random variable; however the
formula for the limiting variance is quite complicated. Condition (4.133) holds if

max
(
1 − m1(1 − 2d),0

)/
2 + max

(
1 − m2(1 − 2d),0

)/
2 + γ < 1/2. (4.134)

In particular, if m1 = m2 = 1, then this is equivalent to 2d + γ < 1/2, so that we
recover (4.131). On the other hand, if m1 = 1, m2 = 2, then the condition reads:
3d − 1 + γ < 1/2 if d ∈ (1/4,1/2); d + γ < 3/2 if d ∈ (0,1/4).

If (4.134) does not hold, then there is a variety of different possible limits, as
presented in Giraitis and Taqqu (1999b). The proofs involve the familiar method
based on the multiple Wiener–Itô integrals.

4.5.3 Summary of Limit Theorems for Quadratic Forms

We summarize the main results for quadratic forms of Gaussian sequences in Ta-
ble 4.4. We assume that Xt (t ∈ Z) is a centred Gaussian sequence with covari-
ance γX(k) ∼ cγ k2d−1, d ∈ (0,1/2), so that a slowly varying function can be omit-
ted. In what follows, B(·) is a Brownian motion on [0,1], Z2,H (·) is a Hermite–
Rosenblatt process on [0,1], and Z(·) is the self-similar process with Hurst param-
eter H = 2d + γ , as in Theorem 4.29. Furthermore, c is a generic constant.
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4.6 Limit Theorems for Fourier Transforms and the
Periodogram

In this section we present some basic properties of the Discrete Fourier Transform
(DFT) and the periodogram. We analyse their second-order properties showing a re-
markable difference between weakly dependent and long-memory linear processes.
In particular, the DFT and the periodogram computed at Fourier frequencies are
asymptotically independent under short memory but asymptotically dependent un-
der long memory. To achieve asymptotic independence in the latter case, one has to
consider the DFT at appropriately high frequencies. The asymptotic dependence of
the DFT and the periodogram ordinates implies a different limiting behaviour of the
DFT under short and long memory respectively.

4.6.1 Periodogram and Discrete Fourier Transform (DFT)

For an observed second-order stationary time series X1, . . . ,Xn, let x̄ = x̄n =
n−1∑n

t=1 Xt and define by

γ̂X(k) = 1

n

n−|k|∑

t=1

(Xt − x̄)(Xt+|k| − x̄)
(|k| ≤ n − 1

)
,

γ̂X(k) = 0
(|k| ≥ n

)
,

the sample autocovariances. Also, define the (centred) periodogram by

I centred
n,X (λ) = 1

2π

∞∑

k=−∞
γ̂X(k)e−ikλ = 1

2π

n−1∑

k=−(n−1)

γ̂X(k)e−ikλ

= 1

2πn

∣∣∣∣∣

n∑

t=1

(Xt − x̄)e−ikλ

∣∣∣∣∣

2

.

If E[X1] = μ = 0, then I centred
n,X (λ) can be approximated by

In,X(λ) = 1

2πn

∣∣∣∣∣

n∑

t=1

Xte
−itλ

∣∣∣∣∣

2

.

For Fourier frequencies λj = 2πj/n (j = 1, . . . ,Nn; Nn = [(n−1)/2]), we have the
exact identity I centred

n,X (λj ) = In,X(λj ) since
∑n

t=1 e−itλj = 0. Therefore, in most ap-
plications the non-centred periodogram In,X is used. The non-centred periodogram
can be written in terms of the discrete Fourier transform (DFT). Let

dn,X(λ) = 1√
2πn

n∑

t=1

Xte
itλ.

Then clearly In,X(λ) = |dn,X(λ)|2.
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4.6.2 Second-Order Properties of the Fourier Transform and the
Periodogram

4.6.2.1 Mean and Covariance of the DFT and the Periodogram

We are interested in a general expression for the expected value and covariance of
the DFT and the periodogram ordinates In,X(λj ), where λj are Fourier frequencies.

Lemma 4.22 Assume that Xt (t ∈ Z) is a second-order stationary sequence with
mean 0, covariance function γX and spectral density fX . Then E[dn,X(λj )] = 0,

E

(
In,X(λj )

fX(λj )

)
= 1

fX(λj )

∫ π

−π

Kn(λj − λ)fX(λ)dλ

and

E
[
dn,X(λj ) dn,X(λj )

]=
∫ π

−π

Kn(λ − λj )fX(λ)dλ, (4.135)

where

Kn(λ) = 1

2πn

(
sin(nλ/2)

sin(λ/2)

)2

is the Féjer kernel.

Proof The formula is classical (see Priestley 1981 p. 419), but we give a proof for
completeness. We have

E
[
In,X(λj )

]= 1

2πn

n∑

t=1

n∑

s=1

e−i(t−s)λj E(XtXs)

= 1

2πn

n−1∑

k=−(n−1)

(
n − |k|)e−ikλj γX(k)

= 1

2πn

∫ π

−π

(
n−1∑

k=−(n−1)

(
n − |k|)e−ik(λ−λj )

)
fX(λ)dλ.

Furthermore,

n∑

t=1

n∑

s=1

e−i(t−s)u =
n−1∑

k=−(n−1)

(
n − |k|)eiku

= 1

2πn

(
sin(nu/2)

sin(u/2)

)2

= Kn(u).
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Similarly, (4.135) follows from

E
[
dn,X(λj )dn,X(λj )

]= 1

2πn

n∑

t,s=1

e−i(t−s)λj γX(t − s)

= 1

2πn

n∑

t,s=1

e−i(t−s)λj

∫ π

−π

ei(t−s)λfX(λ)dλ

=
∫ π

−π

Kn(λ − λj )fX(λ)dλ. �

Note that the Féjer kernel is also defined by

Kn(λ) = 1

2πn

n∑

t,s=1

e−i(t−s)λ = 1

2πn

∣∣Dn(λ)
∣∣2,

where

Dn(λ) =
n∑

t=1

eitλ = ei(n+1)λ − eiλ

eiλ − 1

is (a version of) the Dirichlet kernel.

4.6.2.2 Weakly Dependent Sequences

Assume that Xt (t ∈ Z) is a second-order stationary weakly dependent time series
with mean 0. Then (see e.g. Brockwell and Davis 1991) the following holds:

• The periodogram is an asymptotically unbiased estimator of the spectral density:

E
[
In,X(λj ) − fX(λj )

]= O
(
n−1) (4.136)

uniformly in j = 1, . . . , [n/2].
• The periodogram ordinates at Fourier frequencies are asymptotically uncorrelated

with correlations converging to zero uniformly:
∣∣cov

(
In,X(λj ), In,X(λl)

)∣∣≤ C1n
−1 (4.137)

with some finite constant C1.
•

(
In,X(λj1)

fX(λj1)
, . . . ,

In,X(λjk
)

fX(λjk
)

)
→
d

(Z1, . . . ,Zk), (4.138)

where Z1, . . . ,Zk are i.i.d. standard exponential random variables, and λj1,

. . . , λjk
are distinct Fourier frequencies.
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On the other hand, it will be shown in a subsequent section that these properties
are no longer valid for linear time series with long memory.

Of course, the main tool to establish (4.137) and (4.138) is Lemma 4.22. Note
that (cf. Gradshteyn and Rhyzhik 1965, p. 414)

∫ π

−π
Kn(λj − λ)dλ = 1. Thus, if

Xt = εt is a centred i.i.d. sequence, then fε(λ) = σ 2
ε /(2π), and hence,

E

(
In,ε(λj )

fε(λj )

)
= 1

(
j = 1, . . . , [n/2]), (4.139)

independently of the chosen Fourier frequency λj . This justifies (4.137) for an i.i.d.
sequence. It should be mentioned, though, that this equality is valid at Fourier fre-
quencies only. Furthermore, if εt (t ∈ Z) are i.i.d. with mean zero and variance σ 2

ε ,
then we have, for distinct Fourier frequencies λk , λl (k 
= l),

E
[
dn,ε(λk) dn,ε(λl)

]= σ 2
ε

2π

n∑

t=1

eit (λk−λl) = 0. (4.140)

If in addition the random variables εt are standard Gaussian, then the discrete
Fourier transform at different Fourier frequencies is also jointly Gaussian and
hence independent. Consequently, the periodogram ordinates In,ε(λj ) = |dn,ε(λj )|2
computed at distinct Fourier frequencies are independent. Moreover, 2πIn,ε(λj )

(j = 1, . . . ,Nn; Nn = [(n − 1)/2]) have a standard exponential distribution. In par-
ticular,

E
[
2πIn,ε(λj )

]= 1, var
(
2πIn,ε(λj )

)= 1. (4.141)

If the random variables εt are not Gaussian, then dn,ε(λk), dn,ε(λl) are uncorrelated
(i.e. (4.140) still holds), but they are no longer independent. For the periodogram,
we have

cov
(
In,ε(λk), In,ε(λl)

)= κ4

4π2n
, (4.142)

where κ4 is the fourth cumulant. Note that in the Gaussian case κ4 = 0. Nevertheless,
the periodogram ordinates are asymptotically independent and have the standard
exponential distribution. This way one obtains (4.138).

4.6.2.3 Linear Long-Memory Sequences

Properties (4.136), (4.137) and (4.138) are not valid in the case of linear process
with long memory. The behaviour of the periodogram at frequencies converging to
zero can be formulated as follows (Künsch 1986; Hurvich and Beltrao 1993, 1994a,
1994b; Robinson 1995a):
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Theorem 4.31 Let Xt =∑∞
j=0 aj εt−j be a second-order stationary linear process

and assume that fX(λ) ∼ cf |λ|−2d as |λ| → 0 with d ∈ (0,1/2). Define

μ(j ;d) = |2πj |2d 2

π

∫ ∞

−∞
sin2(λ/2)

(2πj − λ)2
|λ|−2d dλ.

Then for any fixed positive integer j ,

lim
n→∞E

[
In,X(λj )

fX(λj )

]
= μ(j ;d).

Proof We use Lemma 4.22. Using the assumption fX(λ) ∼ cf |λ|−2d , we have

E

(
In,X(λj )

fX(λj )

)
= 1

n

∫ nπ

−nπ

Kn

(
2πj

n
− λ

n

)
fX(λ/n)

fX(2πj/n)
dλ

≈
(

2πj

n

)2d 1

n

∫ nπ

−nπ

Kn

(
2πj − λ

n

)∣∣∣∣
λ

n

∣∣∣∣
−2d

dλ

= 1

n

∫ nπ

−nπ

Kn

(
2πj − λ

n

)∣∣∣∣
2πj

λ

∣∣∣∣
2d

dλ. (4.143)

It is easy to see that, as n → ∞, the functions

gn(λ) := 1

n
Kn

(
2πj − λ

n

)∣∣∣∣
2πj

λ

∣∣∣∣
2d

= 1

2πn2

sin2(
2πj−λ

2 )

sin2(
2πj−λ

2n
)

∣∣∣∣
2πj

λ

∣∣∣∣
2d

converge pointwise to
∣∣∣∣
2πj

λ

∣∣∣∣
2d 2

π

sin2(λ/2)

(2πj − λ)2
.

Thus,

lim
n→∞E

(
In,X(λj )

fX(λj )

)
= |2πj |2d 2

π

∫ ∞

−∞
sin2(λ/2)

(2πj − λ)2
|λ|−2d dλ,

given that we can exchange limit with integration (which follows from Lebesgue
dominated convergence) and that integration over (−∞,−nπ) ∪ (nπ,∞) is negli-
gible. �

Detailed calculations can be found in Hurvich and Beltrao (1993). The authors
considered a more general spectral density fX(λ) = |λ|−2df∗(λ) with a smooth
function f∗. In fact, this computation is valid for d ∈ (−0.5,1.5); however, if
d > 0.5, fX is not a spectral density since the model is not stationary (Hurvich
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and Ray 1995). What is important here is that the normalized periodogram at
Fourier frequencies depends on both j and d , as opposed to the i.i.d. case described
in (4.139).

Furthermore, using the same argument as for the mean, Hurvich and Beltrao
(1993) argue that for any two integers l 
= k,

lim
n→∞E

[
dn,X(λk) dn,X(λl)√

fX(λk)fX(λl)

]
=: γw(l, k;d),

where

γw(l, k;d) = (−1)l+k+1|2πk|d |2πl|d 2

π

∫ ∞

−∞
sin2(λ/2)

(2πk − λ)(2πl + λ)
|λ|−2d dλ.

Furthermore, if the random variables Xt are Gaussian, then

lim
n→∞ cov

(
In,X(λj )

fX(λj )
,
In,X(λk)

f (λk)

)
= γ 2

w(j, k;d) + γ 2
w(j,−k;d) (j 
= k),

lim
n→∞ var

(
In,X(λj )

fX(λj )

)
= 2γ 2

w(j, j ;d).

Thus, unlike the i.i.d. case, the DFTs and the normalized periodogram ordinates are
not asymptotically independent.

4.6.2.4 Refined Covariance Bounds for Long-Memory Sequences

One can obtain the following asymptotic independence of the DFT and periodogram
ordinates if the Fourier frequencies λj are not too close to zero.

Recall that fX(λ) ∼ cf |λ|−2d and let

d0
n,X(λ) = dn,X(λ)√

cf λ−2d

and γX(k) = cov(Xt ,Xt+k). Then the following holds.

Theorem 4.32 Let Xt =∑∞
j=0 aj εt−j be a second-order stationary linear process

with

fX(λ) = ∣∣1 − exp(−iλ)
∣∣−2d

f∗(λ) ≈ |λ|−2df∗(λ) ≈ cf |λ|−2d (4.144)

and such that

fX(λ) = cf |λ|−2d + O
(
λρ−2d

)
(4.145)
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for some 0 < ρ ≤ 2 and − 1
2 < d < 1

2 . Let jn, kn be positive integer-valued sequences
such that jn/n → 0 and jn > kn. Then,

var
(
d0
n,X(λjn)

)= E
[
d0
n,X(λjn) d0

n,X(λjn)
]

= 1 + O

(
log jn

jn

)
+ O

((
jn

n

)ρ)
(4.146)

and

cov
(
d0
n,X(λjn), d

0
n,X(λkn)

)= O

(
log jn

kn

)
. (4.147)

Before we proceed with the proof, we comment on assumption (4.145). This is a
smoothness condition for f∗. For example, if ρ = 2, then f∗ is twice differentiable
in the neighbourhood of the origin. This type of condition is crucial in studying for
example semiparametric estimators of d .

Proof The essential arguments can be seen by considering (4.146). Condition
(4.145) implies

fX(λj ) − cf λ−2d
j = fX(λj )

[
1 −

(
fX(λj )

cf λ−2d
j

)−1]

= fX(λj )

[
1 − 1

1 + O(λ
ρ
j )

]

= cf λ−2d
j

[
1 + O

(
λ

ρ
j

)]= O
(
λ

ρ−2d
j

)
,

so that

fX(λj )

cf λ−2d
j

= 1 + O

((
j

n

)ρ)
.

In a second step, one shows

E
[
dn,X(λj ) dn,X(λj )

]= fX(λj ) + O

(
λ−2d

j

log j

j

)
, (4.148)

so that

E

[
dn,X(λj ) dn,X(λj )

fX(λj )

]
= 1 + O

(
log j

j

)
.

To show (4.148), we use the general formula for the covariance of DFT; see (4.135).
Since Kn is 2π -periodic with

∫ π

−π
Kn(u)du = 1, we obtain

E
[
dn,X(λj ) dn,X(λj )

]−fX(λj ) =
∫ π

−π

[
fX(λ)−fX(λj )

]
Kn(λ−λj ) dλ. (4.149)
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Now, for n large enough, λj is smaller than δ/2, so that

fX(λj ) ≤ cδλ
−2d
j ,

∣∣f ′
X(λj )

∣∣≤ cδλ
−2d−1
j

for a suitable finite constant cδ . Noting that Kn(u) = O(n−1) for δ/2 < u ≤ π , we
obtain
∫

|λ|≥δ

∣∣fX(λ) − fX(λj )
∣∣Kn(λ − λj ) dλ ≤ O

(
n−1) ·

[∫ π

−π

fX(λ)dλ + 2πcδλ
−2d
j

]

= O
(
n−1)+ O

(
n−1λ−2d

j

)
.

For 0 < d < 1
2 , this is of order O((j/n)1−2d · j−1) = o(j−1 log j). Similarly, for

− 1
2 < d < 1

2 , the overall order is O(n−1) = O((j/n)j−1) = o(j−1 log j). There-
fore, the only relevant range of integration in (4.143) is −δ ≤ λ ≤ δ. There are
two asymptotic poles that are approached asymptotically on the right-hand side of
(4.149): a pole in fX for λj → 0 and an asymptotic singularity in Kn(λ − λj ) for
λ = λj . The largest order is obtained for the integral over Δn = [ 1

2λj ,2λj ]. There,
we have

∫

λ∈Δn

∣∣fX(λ) − fX(λj )
∣∣Kn(λ − λj ) dλ

≤ max
λj /2≤λ≤2λj

∣∣f ′
X(λ)

∣∣
∫ 2λj

λj /2
|λ − λj |K(λ − λj ) dλ

︸ ︷︷ ︸
J (λj )

= O
(
λ−1−2d

j

) · J (λj ).

Since |Dn(u)| ≤ 2|u|−1 (0 < |u| < π ), we have
∫ cλj

−cλj

∣∣Dn(λ)
∣∣dλ = O(log j)

for any fixed c > 0. Moreover, limλ→λj
|λ − λj |K(λ − λj ) = 0, and we obtain

|λ − λj |K(λ − λj ) ≤ (2πn)−1|λ − λj | · 2|λ − λj |−1 · ∣∣Dn(λ − λj )
∣∣

= π−1n−1
∣∣Dn(λ − λj )

∣∣,

and thus,

J (λj ) = O
(
n−1 log j

)
.

Putting the orders together, we have
∫

λ∈Δn

∣∣fX(λ) − fX(λj )
∣∣Kn(λ − λj ) dλ = O

(
λ−1−2d

j · n−1 log j
)

= O

(
λ−2d

j · log j

j

)
,

as required in (4.148). �
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4.6.3 Limiting Distribution

4.6.3.1 Fourier Transform and Periodogram for Long-Memory Sequences

Now, we will describe the limiting distribution for the DFT and the periodogram
ordinates. Let us write dn,X(λj ) = A(λj ) + iB(λj ), where

A(λ) = 1√
2πn

n∑

t=1

Xt cos(tλ), B(λ) = 1√
2πn

n∑

t=1

Xt sin(tλ).

Then In,X(λj ) = A2(λj ) + B2(λj ). Assume for simplicity that Xt is a Gaussian
process. It follows from (4.147) that for each fixed K ,

(
dn,X(λj )√

fX(λj )
, j = 1, . . . ,K

)

converges to a multivariate Gaussian distribution with dependent components and
covariance matrix [γw(l, k;d)]k,l=1,...,K . Furthermore, for each fixed j , the cosine
and the sine parts A(λj ) and B(λj ) are uncorrelated with different variances. There-
fore,

In,X(λj )

fX(λj )
= A2(λj )

fX(λj )
+ B2(λj )

fX(λj )
→
d

aχ2
1 (1) + bχ2

1 (2), (4.150)

where a, b are constants, and χ2
1 (j), j = 1,2, are independent χ2 random vari-

ables with one degree of freedom. Thus, in contrast to the i.i.d. case, the normalized
periodogram ordinates have a different asymptotic distribution at each frequency.
Moreover, the limiting distribution has dependent components.

4.6.3.2 Sum of Periodogram Ordinates

Let φ be a deterministic, real-valued function and consider the partial sum

Sn,X(φ) =
Nn∑

j=1

φ
(
In,X(λj )

)
,

where Nn = [(n − 1)/2]. If Xt = εt are i.i.d., then (cf. (4.141))

var

(
Nn∑

j=1

2πIn,ε(λj )

)
≈ n(1 + κ4/2).

Also,

n−1/2
Nn∑

j=1

2πIn,ε(λj ) →
d

N(0,1 + κ4/2).
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These asymptotic results are obvious when εt are Gaussian since the periodogram
ordinates are independent. If φ = log and εt are Gaussian, then

var
(
log
(
2πIn,ε(λj )

))= var
(
log
(
In,ε(λj )/fε(λj )

))= var
(
log(Z)

)
,

where Z is standard exponential. We compute

var(logZ) =
∫ ∞

0
e−x(logx)2 dx −

[∫ ∞

0
e−x(logx)dx

]2

=
(

π2

6
+ η2

)
− (−η)2 = π2

6
. (4.151)

Therefore, in the Gaussian i.i.d. case,

n−1/2
Nn∑

j=1

log
(
2πIn,ε(λj )

)→
d

N
(
0,π2/6

)
.

In the long-memory case, the periodogram ordinates are asymptotically dependent,
so that these convergence results are not valid. However, for a proper choice of
asymptotically negligible constants cn,k , it is possible to obtain asymptotic nor-
mality of

∑
cn,kφ(In,X(λk)) regardless whether Xt is weakly or strongly depen-

dent. We will illustrate this in the context of semiparametric estimation of the long-
memory parameter d .

4.7 Limit Theorems for Wavelets

4.7.1 Introduction

In this section we discuss limit theorems for the discrete wavelet transform of long-
memory stochastic processes. We refer to Sect. 3.5 for basic definitions of wavelets.
At this point we recall that for a scaling function φ and a wavelet function ψ , dilated
and translated functions are defined as

φj,k(x) = 2j/2φ
(
2j x − k

)
, ψj,k(x) = 2j/2ψ

(
2j x − k

)
.

However, it is not necessary that the wavelet functions are constructed using the
multiresolution analysis, nor that they are orthogonal.

4.7.2 Discrete Wavelet Transform of Stochastic Processes

Assume first that Y(u) (u ∈R) is a continuous-time stochastic process. Define

dY
j,k =

∫

R

Y(u)ψj,k(u) du, aY
j,k =

∫

R

Y(u)φj,k(u) du (j, k ∈ Z).
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In other words, dY
j,k and aY

j,k are (random) wavelet coefficients of the continuous-
time process Y(u) (u ∈ R). If the continuous-time process has mean zero, then
clearly E(dj,k) = 0 for each j, k. For simplicity, we write in the following aj,k ,
dj,k instead of aY

j,k , dY
j,k .

Assume further that Y(u) (u ∈ R) has stationary increments. For each fixed res-
olution level j , the process dj,k (k ∈ Z) is stationary. Indeed, we may verify, for
instance, that the marginal distributions are invariant under translation: the random
coefficient

dj,k+l =
∫

Y(u)ψj,k+l (u) du =
∫

Y(u + l)ψj,k(u) du

=
∫ (

Y(u + l) − Y(l)
)
ψj,k(u) du

is equal in distribution to

∫ (
Y(u) − Y(0)

)
ψj,k(u) du =

∫
Y(u)ψj,k(u) du = dj,k.

The same applies to the scaling coefficients aj,k = ∫ Y(u)φj,k(u) du. A more rigor-
ous proof of stationarity can be found in e.g. Houdré (1994). See also Masry (1993)
and Cambanis and Houdré (1995) for the DWT of stochastic processes.

If moreover, the process Y(u) is H -self-similar, then for each j , k,

dj,k
d= 2−j (H+1/2)d0,k.

Indeed, heuristically,

dj,k =
∫

Y(u)ψj,k(u) = 2j/2
∫

Y(u)ψ
(
2j u − k

)
du

= 2−j/2
∫

Y
(
2−ju

)
ψ(u − k) du

d= 2−j/22−jH

∫
Y(u)ψj,k(u)

= 2−j (H+1/2)d0,k.

Hence, if the continuous-time process Y(u) (u ∈ R) is self-similar with stationary
increments (H -SSSI), then

E
[
d2
j,k+l

]= 2−j (2H+1)E
[
d2

0,k

]= 2−j (2H+1)E
[
d2

0,0

]
.

This applies, in particular, to fractional Brownian motion. As we will see later, these
formulas can be used to define a wavelet-based estimator of the self-similarity pa-
rameter H .
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4.7.3 Second-Order Properties of Wavelet Coefficients

Now, we turn our attention to stationary processes X(u) (u ∈ R). For example,
X(u) = Y(u) − Y(u − 1) (u ∈ R) can be defined as increments of the H -SSSI pro-
cess considered above. Define analogously wavelet and scaling coefficients:

dj,k = dX
j,k =

∫

R

X(u)ψj,k(u) du,

aj,k = aX
j,k =

∫

R

X(u)φj,k(u) du (j, k ∈ Z).

Then dj,k and aj,k (k ∈ Z) form stationary sequences. We verify for instance that
the marginal distributions are shift-invariant: for l ∈ Z, we have

dj,k+l =
∫ ∞

−∞
X(u)ψj,k+l (u) du = 2j/2

∫ ∞

−∞
X(u)ψ

(
2j u − (k + l)

)
du

= 2j/2
∫ ∞

−∞
X
(
v + 2−j l

)
ψ
(
2j v − k

)
dv

d= 2j/2
∫ ∞

−∞
X(v)ψ

(
2j v − k

)
dv

= dj,k.

Hence, we can analyse the covariance structure of the stationary sequence dj,k

(k ∈ Z). Assume that the process X(u) (u ∈ R) is centred, has the covariance func-
tion γX(s) (s ∈R) and the spectral density

fX(λ) =
∫ ∞

−∞
γX(s)e−iλs ds.

Assume further that

fX(λ) = λ−2df∗(λ), λ → 0,

where limλ→0 f∗(λ) = cf ∈ (0,∞) and d ∈ [0,1/2). For example, X(u) could be
fractional Gaussian noise, i.e. increments of fractional Brownian motion with Hurst
parameter H = d + 1

2 .
One of the most intriguing properties of DWT is the decorrelation (whitening)

property. Specifically, if the wavelet ψ has M vanishing moments, then we will
argue below that

cov(dj,0, dj,k) = O
(
k−2M+2d−1) (k → ∞).

That is, the stationary sequence dj,k (k ∈ Z) is weakly dependent (i.e. has summable
covariances) if M ≥ 1. For example, the whitening property applies to fractional
Gaussian noise X(u) = BH (u)−BH (u− 1), where BH (u) is a fractional Brownian
motion with Hurst parameter H ∈ (1/2,1). This phenomenon is discussed for in-
stance in Flandrin (1992), Tewfik and Kim (1992), Abry et al. (1998) or Mielniczuk
and Wojdyłło (2007a).
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To justify the whitening property, recall that

ψ̂(λ) =
∫ ∞

−∞
ψ(x)e−iλx dx

is the Fourier transform of ψ . Hence,

ψ̂j,k(λ) =
∫ ∞

−∞
e−iλxψj,k(x) dx = 2j/2

∫ ∞

−∞
e−iλxψ

(
2j x − k

)
dx

= 2−j/2e−i2−j λk

∫ ∞

−∞
e−iλ2−j xψ(x)dx = 2−j/2e−i2−j λkψ̂

(
2−j λ

)
.

We can then evaluate covariance structure of the wavelet coefficients of the process
X(·) as

cov(dj,k, dj ′,k′)

=
∫ ∫

γX(v − u)ψj,k(v)ψj ′,k′(u) dudv

=
∫ ∞

−∞
fX(λ)ψ̂j,k(λ)ψ̂j ′,k′(λ) dλ

= 2−j/22−j ′/2
∫ ∞

−∞
fX(λ)ψ̂

(
2−j λ

)
ψ̂
(
2−j ′

λ
)
e−i2−j λkei2j ′

λk′
dλ. (4.152)

This formula is crucial to evaluate the variance and covariance structure of the
wavelet coefficients for stochastic processes with long memory. A change of vari-
ables ω = 2−(j+j ′)/2λ,

λ = 2(j+j ′)/2ω,

and the form f (λ) = λ−2df∗(λ) of the spectral density yield

cov(dj,k, dj ′,k′)

=
∫ ∞

−∞
fX

(
2(j+j ′)/2ω

)
ψ̂
(
2(j ′−j)/2ω

)
ψ̂
(
2(j−j ′)/2ω

)
e−i2(j−j ′)/2ωkei2(j ′−j)/2ωk′

dω

= 2−(j+j ′)d
∫ ∞

−∞
ω−2df∗

(
2(j+j ′)/2ω

)
ψ̂
(
2(j ′−j)/2ω

)
ψ̂
(
2(j−j ′)/2ω

)
e−irω dω,

where

r = ∣∣2(j−j ′)/2k − 2(j ′−j)/2ωk′∣∣.

When j, j ′ → −∞ (i.e. we are considering coarse resolution levels or “low fre-
quencies”), then 2(j+j ′)/2ω → 0, so that

f∗
(
2(j+j ′)/2ω

)∼ f∗(0) = cf .
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This motivates the following definition:

Ψj,j ′
(
k, k′) :=

∫ ∞

−∞
ω−2dψ̂

(
2(j ′−j)/2ω

)
ψ̂
(
2(j−j ′)/2ω

)
e−irω dω. (4.153)

We note that if j 
= j ′, k 
= k′ and d = 0, then, due to orthogonality, the covariances
vanish if the wavelet family ψj,k is constructed using the MRA. As we will see
below, in the case of long memory, orthogonality of wavelets is not crucial at all.
The most important property is the number M of vanishing moments of the wavelet
function ψ .

To see this, let d > 0 and consider j = j ′ and k′ = 0. Then

cov(dj,0, dj,k) = 2−2jd

∫
ω−2df∗

(
2jω
)∣∣ψ̂(ω)

∣∣2e−ikω dω.

Again, as j → −∞, we approximate this integral as

cov(dj,0, dj,k) = 2−2jdf∗(0)

∫
ω−2d

∣∣ψ̂(ω)
∣∣2e−ikω dω.

Next, recall now from Sect. 3.5 that if the wavelet function ψ has M vanishing
moments, then

∣∣ψ̂(λ)
∣∣= ∣∣ψ̂(M)(0)

∣∣|λ|M + o
(|λ|M) (λ → 0).

Thus, if k is large enough, then we have to analyse the following integral in a neigh-
bourhood (−ε/k, ε/k) of the origin:

2−2jdcf

{
ψ̂(M)(0)

}2
∫ ε/k

ε/k

ω−2dω2Me−ikω dω.

The change of variables λ = kω yields the approximation

2−2jdcf

{
ψ̂(M)(0)

}2
k−2M+2d−1

∫ ε

−ε

λ2M−2de−iλ dλ.

The integral is finite as long as 2M − 2d > −1. Of course, in these computations
several simplifications and informal approximations are used. Nevertheless, we have
obtained heuristically the following decorrelation property.

Lemma 4.23 Assume that X(u) (u ∈ R) is a stationary centred process such that
its spectral density is given by fX(λ) = |λ|−2df∗(λ), λ ∈ R, d ∈ (0,1/2) and
limλ→0 f∗(λ) = cf ∈ (0,∞). Then for each j ∈ Z,

cov(dj,0, dj,k) = O
(
k−2M+2d−1) (k → ∞).

The same result carried over to series Xt (t ∈ Z) in discrete time, when trans-
formed into their continuous-time versions as discussed in the introduction to
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wavelets. In particular, the restrictions d < 1
2 and M ≥ 1 imply that we always have

cov(dj,0, dj,k) = o(k−2). This means that

∞∑

k=−∞

∣∣cov(dj,0, dj,k)
∣∣< ∞

and the wavelet coefficients dj,k (k ∈ Z) are weakly dependent. Moreover, if the
process X(u) (u ∈ R) is Gaussian, then the wavelet coefficients are Gaussian as
well. Also, in the Gaussian case we have

cov
(
d2
j,0, d

2
j,k

)= 2cov2(dj,0, dj,k),

so that these autocovariances converge as well.
As indicated above, a very useful property is also (4.153) because for large

enough scales, i.e. for j , j ′ → −∞,

cov(dj,k, dj ′,k′) ≈ 2−(j+j ′)df∗(0)Ψj,j ′
(
k, k′).

Thus, the weak dependence extends to the wavelet coefficients at different resolution
levels j 
= j ′.

To evaluate the variance of dj,k , set j = j ′, k = k′ in (4.152). Then

σ 2
j := var(dj,k) = 2−j

∫
fX(λ)

∣∣ψ̂
(
2−j λ

)∣∣2dλ

= 2−2jd

∫
|λ|−2df∗

(
2j λ
)∣∣ψ̂(λ)

∣∣2 dλ.

Again, we approximate f∗(2j λ) ≈ f∗(0) = cf (for j → −∞) and hence

var(dj,k) ≈ 2−2jdcf

∫
|λ|−2d

∣∣ψ̂(λ)
∣∣2 dλ =: 2−2jdcf Ψ (2d), (4.154)

where

Ψ (γ ) =
∫

λ−γ
∣∣ψ̂(λ)

∣∣2 dλ.

This heuristic approximation has been derived in Abry et al. (1998). More precise
bounds have been obtained in Lemma 1 in Bardet et al. (2000) or Theorem 1 in
Moulines et al. (2007a). A bound that requires a semiparametric assumption on the
spectral density similar to the one used for the DFT is for instance:

Lemma 4.24 Assume that for some d ∈ (0,1/2),

fX(λ) = λ−2d
(
f∗(0) + O

(|λ|ρ)).
Under appropriate regularity conditions, we have, as j → −∞,

∣∣var(dj,k) − 2−2jdcf Ψ (2d)
∣∣≤ 2−2jd2jρΨ (2d − ρ).
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Proof In the proof, we omit several details, referring to the papers mentioned above.
We note that

∣∣var(dj,k) − 2−2jdcf Ψ (2d)
∣∣≤ 2−2jd

∫
|λ|−2d

∣∣{f∗
(
2j λ
)− f∗(0)

}∣∣∣∣ψ̂(λ)
∣∣2 dλ.

Under the assumption

f∗(λ) = |λ|−2d
(
f∗(0) + O

(|λ|ρ)),
the bound is

2−2jd

∫
|λ|−2d

{
2j λ
}ρ∣∣ψ̂(λ)

∣∣2 dλ = 2−2jd2jρΨ (2d − ρ). �

4.8 Limit Theorems for Empirical and Quantile Processes

4.8.1 Linear Processes with Finite Moments

The empirical distribution function plays an essential role in statistical inference.
Many statistics that are concerned with inference for the marginal distribution of a
process can be written as functionals of the (marginal) empirical distribution func-
tion Fn(x). Therefore, in principle, their distribution follows “automatically”, once
the empirical distribution function is characterized asymptotically. Sometimes, the
functionals are quite involved however so that the derivation requires some addi-
tional work. Relatively simple functionals occur for instance in goodness-of-fit tests,
and even more directly in quantile estimation. For obvious reasons, limiting results
for quantile processes follow directly from those for the empirical distribution func-
tion.

Recall that for a stationary process Xt (t ∈ Z) with marginal distribution func-
tion FX(x) = P(X ≤ x), a simple nonparametric estimator of FX is the (marginal)
empirical distribution function

Fn,X(x) = 1

n

n∑

t=1

1{Xt ≤ x} (x ∈ R). (4.155)

Under very general assumptions (for example ergodicity of the sequence), Fn,X is a
uniformly consistent estimator of FX , which means that, as n → ∞,

sup
x∈R

∣∣Fn,X(x) − FX(x)
∣∣→

p
0. (4.156)

Furthermore, if Xt (t ∈ Z) are i.i.d., then the classical Donsker invariance principle
states

√
nEn,X(x) := √

n
[
Fn,X(x) − FX(x)

]⇒ B̃
(
FX(x)

)
, (4.157)
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where ⇒ denotes weak convergence in D[0,∞), and B̃(u) (u ∈ [0,1]) is a Brow-
nian bridge, i.e. B̃(u) = B(u) − uB(u) where B(u) is standard Brownian motion.
In other words, the appropriately normalized empirical processes En,X(x) converge
weakly to the time-changed Brownian bridge. An analogous result, with the same
normalizing rate but a different limiting process, holds for weakly dependent pro-
cesses under very general conditions. The situation is quite different, however, under
long memory. This can be seen as follows. The indicator function is a very specific
transformation of X, i.e. we consider

G(X;x) = 1{X ≤ x} − FX(x).

Let pX = F ′
X be the density of X. With the function y → G(y;x) we can associate

the Appell coefficients aapp,j (j ≥ 1):

aapp,j = (−1)j
∫

G(y;x)p
(j)
X (y) dy

= (−1)j
[∫ x

−∞
p

(j)
X (y) dy − FX(x)

∫ ∞

−∞
p

(j)
X (y) dy

]

= (−1)j
∫ x

−∞
p

(j)
X (y) dy = (−1)jp

(j−1)
X (x).

Furthermore, recall also (see Definition 4.1) that G∞(y) = E[G(X + y)]. Applying
this to G(y;x) = 1{y ≤ x}, we obtain G∞(y) = P(X ≤ x − y), and hence,

G(1)∞ (0) = −pX(x − y)|y=0 = −pX(x).

Therefore, the theory for partial sums of subordinated long-memory processes (con-
sidered e.g. in Sects. 4.2, 4.3) will imply the limiting behaviour for the empirical
distribution Fn,X(x) function when x is fixed.

The asymptotic behaviour of the empirical process based on long-memory linear
processes with finite variance was studied in Dehling and Taqqu (1989b), Giraitis
and Surgailis (1999), Ho and Hsing (1996), Giraitis et al. (1997), Wu (2003) and
Csörgő et al. (2006), Csörgő and Kulik (2008a, 2008b). Here, we state the result un-
der the assumptions that are needed to apply the martingale expansion technique of
Ho and Hsing (1996) and Wu (2003), as considered in Theorem 4.9. When dealing
with linear processes, this technique seems to be superior to the Appell expansion.

Theorem 4.33 Let Xt (t ∈ Z) be a linear process Xt = ∑∞
j=0 aj εt−j with co-

efficients satisfying assumption (B1), i.e. aj ∼ La(j)jd−1, d ∈ (0,1/2) (so that
γX(k) ∼ Lγ (k)k2d−1). Also, assume that E(|ε1|4+γ ) < ∞ for some γ > 0 and that
pε , the density of the innovations, is such that

sup
x∈R

∣∣p(r)
ε (x)

∣∣+
∫ ∣∣p(r)

ε (x)
∣∣2 dx < ∞ (r = 0,1,2). (4.158)
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Then we have the uniform reduction principle

n
1
2 −dL

− 1
2

1 (n) sup
x∈R

∣∣Fn,X(x) − FX(x) + pX(x)x̄
∣∣→p 0. (4.159)

Consequently,

n
1
2 −dL

− 1
2

1 (n)
[
Fn,X(x) − FX(x)

]⇒ pX(x)Z, (4.160)

where L1(n) = (d(2d + 1))−1Lγ (n), ⇒ denotes weak convergence in D(−∞,∞),
and Z is a standard normal random variable.

Remark 4.4 Condition (4.158) implies that the same holds for the density pX . In
particular, the conditions on p

(1)
X (x) and p

(2)
X (x) are required to control a remainder

term in the second-order expansion leading to (4.159). Note also that the assump-
tions of the theorem can be modified to E(|ε1|2+γ ) < ∞ and

∣∣E
[
exp(isε1)

]∣∣≤ C
(
1 + |s|)δ (4.161)

for some δ > 0, 0 < C < ∞. Condition (4.161) means in principle that pX is in-
finitely often differentiable. These assumptions were used in Giraitis and Surgailis
(1999). The authors were also able to deal with double-sided linear processes, how-
ever, at the cost of additional moment assumptions.

Remark 4.5 Under the conditions of Theorem 4.33, the finite-dimensional conver-
gence in (4.160) follows directly from Theorem 4.9 and Corollary 4.3. Tightness is
usually not proven directly, but rather follows from the reduction principle (4.159).
For the latter, we refer to Dehling and Taqqu (1989b) or Csörgö, Szyszkowicz and
Wang in the Gaussian case and to Ho and Hsing (1996) and Wu (2003) in the linear
case.

Proof We repeat the martingale approximation argument presented before The-
orem 4.9, adapting it to the indicator function G(y;x) = 1{y ≤ x}. Recall that
FK = σ(εj , j ≤ K) is the σ -algebra generated by εj (j ≤ K). We start with an
orthogonal expansion of the indicator function,

1{Xt ≤ x} − FX(x) =
L2

X(Ω)

∞∑

j=0

ζt (j),

where

ζt (j) = P(Xt ≤ x|Ft−j ) − P(Xt ≤ x|Ft−j−1).

Note that ζt (0) = 1{Xt ≤ x} − P(Xt ≤ x|Ft−1). As before, the nice feature of this
expansion is that, for fixed t , ζt (j) (j = 0,1,2, . . .) is a martingale difference, so
that we indeed obtain orthogonality in the sense that for j 
= j∗,

〈
ζt (j), ζt

(
j∗)〉= cov

(
ζt (j), ζt

(
j∗))= 0.
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In more concrete terms, we have

P(Xi ≤ x|Ft−j ) = P

(
j−1∑

s=0

asεt−s ≤ x −
∞∑

s=j

asεt−s

)
= Fj (uj ),

where, given Ft−j , the argument

uj = x −
∞∑

s=j

asεt−s

is fixed (of course, uj depends on t as well, but this dependence is omitted). Simi-
larly,

Fj+1(uj+1) = P(Xt ≤ x|Ft−j−1) = P

(
j∑

s=0

asεt−s ≤ x −
∞∑

s=j+1

asεt−s

)
.

Note that uj+1 = uj − aj εt−j and

ζt (j) = Fj (uj ) − Fj+1(uj+1).

A heuristic argument leads to the idea how one may obtain a linearization. We will
use the notation pj (u) = F ′

j (u) for the probability density function of
∑j−1

s=0 asεt−s

and Fε(y) = P(ε ≤ y). For Fj+1(uj+1), we can write

Fj+1(uj+1) =
∫

pj (y)Fε

(
qj (x, y)

)
dy

with

qj (x, y) = uj+1(x) − y

aj

.

For the sake of argument, assume that aj > 0 for j large enough. Since aj → 0
(as j → ∞), we have qj → ∞ and Fε(qj (x, y)) → 1 if y < uj+1(x). On the other
hand, qj → −∞ and Fε(qj (x, y)) → 0, if y > uj+1. Therefore, as j → ∞,

Fj+1(uj+1) ≈
∫ uj+1

−∞
pj (y) dy = Fj (uj+1).

Furthermore, using uj = uj+1 − aj εt−j with aj εt−j → 0 in probability as j → ∞,
we obtain in first approximation

Fj (uj ) ≈ Fj (uj+1) − pj (uj+1)aj εt−j ,

so that
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ζt (j) = Fj (uj ) − Fj+1(uj+1)

≈ [Fj (uj+1) − pj (uj+1)aj εt−j

]− Fj (uj+1)

= −pj (uj+1)aj εt−j .

Finally, as j → ∞, Fj converges to FX (and pj to fX) and uj+1 to x, so that we
may hope to obtain the following approximation:

Fn,X(x) − FX(x) = 1

n

n∑

t=1

[
1{Xt ≤ x} − FX(x)

]

≈ 1

n

n∑

t=1

( ∞∑

j=0

−pj (uj+1)aj εt−j

)

≈ −pX(x)
1

n

n∑

t=1

( ∞∑

j=0

aj εt−j

)
= −pX(x)x̄.

A precise computation establishes the rate in (4.159). �

Taking into account higher-order terms in the Taylor expansions above, a com-
plete orthogonal decomposition can be obtained:

Fn,X(x) − FX(x) = 1

n

n∑

t=1

∞∑

r=1

(−1)kF
(r)
X (x)Vt,r (4.162)

with

Vt,r =
∞∑

0≤j1<j2<···<jr

r∏

s=1

ajs εt−js ,

already defined in (4.51).
Theorem 4.33 is remarkable not only because of the slower rate of convergence

under long memory, but also because the asymptotic process pX(x)Z (in x) is de-
generate. The entire sample path is determined by one normal variable Z and a
deterministic function pX(x). In other words, all sample paths have the shape of
pX(x)! This is in sharp contrast to the case of weak memory where the asymptotic
process is proportional to a Brownian bridge (see (4.157) above).

The convergence (4.160) can be extended further. In addition to (4.158), assume
that the condition holds with r = 3. Then the following holds:

• If d ∈ (1/4,1/2), then

n1−2dL
−1/2
2 (n)

[
Fn,X(x) − FX(x) + pX(x)x̄

]⇒ p
(1)
X (x)Z2,H (1), (4.163)

where Z2,H (1) is the Hermite–Rosenblatt random variable, and H = d + 1/2.
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• If d ∈ (0,1/4), then
√

n
[
Fn,X(x) − FX(x) + pX(x)x̄

]⇒ Z(x), (4.164)

where Z(·) is a Gaussian process.

Essentially, these convergence results are very similar to the case of nonlinear
functionals. The asymptotic behaviour of

Fn,X (x) − FX(x) + pX(x)x̄

is determined by 1
2p

(1)
X (x)n−1Un,2, where

Un,2 = 2!
n∑

t=1

∞∑

0=j1<j2

aj1aj2εt−j1εt−j2

is defined in (4.51).
Furthermore, Theorem 4.33 can be extended to subordinated processes Yj =

G̃(Xt ). As expected from Theorem 4.4 (Gaussian case) or Theorem 4.8 (the lin-
ear case), the rate of convergence and the asymptotic distribution depends on the
Appell (or, equivalently, the power) rank of

G(X;x) = 1
{
G̃(X) ≤ x

}− FY (x).

The limiting process is a Hermite–Rosenblatt random variable multiplied by a de-
terministic function.

4.8.2 Applications and Extensions

4.8.2.1 Quantile Processes and Trimmed Sums

Weak convergence (4.160) for empirical processes based on LRD linear sequences
has immediate implications for sample quantiles. For y ∈ (0,1), define the quantile
function

QX(y) = F−1
X (y) = inf

{
x : FX(x) ≥ y

}
.

We will assume that FX and QX are differentiable, so that

QX(y) = inf
{
x : FX(x) = y

}
.

In an analogous manner, the empirical quantile function is defined as Qn,X(y) =
F−1

n,X(y) with Fn,X defined in (4.155). By definition, Qn,X is left-continuous. Noting
that for x = QX(y),

Q′
X(y) = 1

pX(x)
,
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(4.160) implies

L
− 1

2
1 (n)n

1
2 −d
[
Qn,X(y) − QX(y)

]⇒ Z, (4.165)

where Z is a standard normal random variable, and the convergence is in D[a, b]
equipped with the sup-norm for 0 < a < b < 1. It is remarkable that the limiting
variable does not depend on y (this is of course due to the degenerate structure of
the limiting process in (4.160)). A detailed evaluation and further extensions can be
found in Ho and Hsing (1996), Wu (2005), Csörgő et al. (2006), Youndjé and Vieu
(2006), Csörgő and Kulik (2008a, 2008b) or Coeurjolly (2008a, 2008b).

The result for the quantile function can be extended to trimmed sums

Tn,h := 1

n − 2[nh]
n−[nh]∑

t=[nh]+1

Xt :n, (4.166)

where h ∈ (0,1/2), and X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the order statistics. Then

L
− 1

2
1 (n)n

1
2 −dTn,h →d Z.

See Ho and Hsing (1996), Wu (2003) or Kulik and Ould Haye (2008).
Note, however, that the weak convergence (4.165) cannot be extended to (0,1).

Similarly, the result (4.166) does not hold for sums of extremes
∑[nh]

t=1 Xt :n or∑n
t=n−[nh] Xt :n. There, the limiting behaviour depends on an interplay between the

dependence parameter d and the heaviness of tails of the random variables Xt . We
refer to Kulik (2008a) for details. Similar issues will be discussed in Sect. 4.8.5 in
connection with tail empirical processes.

4.8.2.2 Goodness-of-Fit Test

An immediate consequence for statistical inference is for instance an unusual be-
haviour of the Kolmogorov–Smirnov statistic, namely

L
− 1

2
1 (n)n

1
2 −dTKS,n := L

− 1
2

1 (n)n
1
2 −d sup

x∈R

∣∣Fn,X(x) − FX(x)
∣∣→

d
|Z| sup

x∈R
pX(x),

(4.167)
given that supx∈R pX(x) < ∞. Therefore, we may approximate p-values by

P(TKS,n > u) ≈ 2Φ̄

(
u

supx∈R pX(x)
L

1
2
1 (n)nd− 1

2

)
, (4.168)

where u ≥ 0, Φ is the cumulative standard normal distribution, and Φ̄ = 1 − Φ .
Note in particular that for a given density, the value supx∈R pX(x) is known. Of
course, in general one has to estimate the dependence parameter d .

In contrast, for weakly dependent processes, the supremum of the transformed
Brownian bridge B̃ ◦ F over the interval [0,1] is required.
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4.8.3 Empirical Processes with Estimated Parameters

Consider the assumptions of Theorem 4.33. As mentioned previously, a direct
statistical application of the limiting behaviour of the empirical process is the
Kolmogorov–Smirnov statistic, as established in (4.167). As explained in (4.168),
this result can be used, in principle, to test whether the marginal distribution FX

of an observed series X1, . . . ,Xn is equal to a specific distribution F 0. Usually,
however, one needs to test whether FX belongs to a certain type of distributions,
instead of one fixed F 0. For instance, we would like to test whether FX is in a para-
metric family {FX(·, θ), θ ∈ R}, without specifying the parameter θ a priori. The
nuisance parameter θ has to be estimated from the observed series. Thus, instead of
TKS(θ) = TKS,n(θ), one considers

TKS(θ̂) = sup
x∈R

∣∣Fn,X(x) − FX(x; θ̂ )
∣∣,

where θ̂ is a suitable estimate of θ . If the observations are i.i.d., then the rate of con-
vergence for both, the original Kolmogorov–Smirnov statistics TKS = TKS(θ) and
TKS(θ̂), is the same, though the variances of the limiting distributions are different.

To show what may happen in the long-memory case, let us consider a sequence
Yt = Xt + μ (t ∈ N). Clearly, FY (x) = FX(x;μ) = FX(x − μ). The empirical pro-
cesses

En,X(x) = Fn,X(x) − FX(x) = 1

n

n∑

t=1

1{Xt ≤ x} − FX(x)

and

En,Y (x;μ) := Fn,Y (x) − FY (x) = 1

n

n∑

t=1

1{Yt ≤ x} − FY (x)

are related by
En,Y (x;μ) = En,X(x − μ). (4.169)

On account of (4.160), L
− 1

2
1 (n)n

1
2 −dEn,Y (x) converges weakly to pX(x − μ)Z.

Now, consider instead

En,Y (x; μ̂) = Fn,Y (x) − FX(x; μ̂).

We will use the estimate μ̂ = ȳ, so that μ̂ − μ = x̄. We then write

En,Y (x; μ̂) = Fn,Y (x) − FY (x) + FY (x) − FX(x; μ̂)

= En,X(x − μ) + FX(x;μ) − FX(x; μ̂).

Now, we apply Taylor’s expansion to obtain

FX(x;μ) − FX(x; μ̂) = pX(x − μ)(μ̂ − μ) − 1

2
p

(1)
X (x − μ)(μ̂ − μ)2 + Rn

= pX(x − μ)x̄ − 1

2
p

(1)
X (x − μ)x̄2 + Rn,
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where Rn is of a smaller order than x̄2. Furthermore, the reduction principle (4.159)
implies

n
1
2 −dL

− 1
2

1 (n) sup
x∈R

∣∣En,X(x − μ) + pX(x − μ)x̄
∣∣→p 0.

Thus,

n
1
2 −dL

− 1
2

1 (n)En,Y (x; μ̂)

= oP (1) − 1

2
n

1
2 −dL

− 1
2

1 (n)
(
p

(1)
X (x − μ)x̄2 + Rn

)= oP (1),

where the bound oP (1) is uniform in x given that supx∈R |p(2)
X (x)| < ∞. In other

words, the empirical processes En,Y (· ;μ) and En,Y (· ; μ̂) have different rates of
convergence. Surprisingly, plugging in the parameter estimate improves the rate of
convergence of the empirical process and therefore of goodness-of-fit tests such as
the Kolmogorov–Smirnov or Anderson–Darling tests (Beran and Ghosh 1991; Ho
2002; Kulik 2009). The precise convergence rates are described in the following
theorem.

Theorem 4.34 Assume that the conditions of Theorem 4.33 are fulfilled. Addition-
ally, assume that (4.158) holds with r = 3.

• If d ∈ (1/4,1/2) then

n1−2dL
−1/2
1 (n)En,Y (x; μ̂) ⇒ p

(1)
X (x − μ)

(
Z2 − 1

2
Z2

1

)
, (4.170)

where Z1 and Z2 are uncorrelated random variables, Z1 ∼ N(0,1), and Z2 =
Z2,H (1) is the Hermite–Rosenblatt variable.

• If d ∈ (0,1/4) then
√

nEn,Y (x; μ̂) ⇒ Z(x − μ), (4.171)

where Z(·) is a Gaussian process.

Remark 4.6 The limiting Gaussian process has a rather complicated covariance
structure. Nevertheless, the result (4.171) suggests that for d ∈ (0,1/4), we can
apply standard resampling techniques available for weakly dependent data, see
Chap. 10.

To shed some light on the results of Theorem 4.34, consider the case d ∈
(1/4,1/2). The expression for the limiting process follows essentially from the ap-
proximation

En,Y (x; μ̂) ≈ {En,X(x − μ) + pX(x − μ)x̄
}+ 1

2
p

(1)
X (x − μ)x̄2.
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Now, the result follows from (4.163) and the limiting behaviour of the sample mean.
Furthermore, the limiting behaviour may change if different estimators of the

mean μ are considered or if one considers a location-scale family Y = μ + σX (see
Beran and Ghosh 1991; Ho 2002; Kulik 2009).

4.8.4 Linear Processes with Infinite Moments

As noticed above, finite-dimensional convergence of the appropriately scaled empir-
ical process En,X = Fn,X −FX(x) follows from the result for partial sums of subor-
dinated linear processes, by considering the function y → G(y;x) = 1{y ≤ x}. We
will apply the same idea to linear processes Xt =∑∞

j=0 aj εt−j with i.i.d. symmetric
infinite variance innovations, i.e.

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α (4.172)

with β = 0. The general result mimics Theorem 4.17. We established there that for
0 < d < 1 − 1/α, we have

n−H

[nu]∑

t=1

{
G(Xt) − E

[
G(X1)

]}⇒ A1/αC−1/α
α

ca

d
G(1)∞ (0)Z̃H,α(u),

where Z̃H,α(·) is a linear fractional stable motion with H = d + α−1 and G∞(y) =
E[G(X + y)]. Setting u = 1 and evaluating G∞(y) = P(X ≤ x − y), G

(1)∞ (0) =
−pX(x), we may conclude that for a fixed x ∈ R,

n−H
n∑

t=1

(
1{Xt ≤ x} − P(X1 ≤ x)

) d→ A1/αC−1/α
α

ca

d
pX(x)Z̃H,α(1).

This can be extended to convergence of the process En,X(x) (x ∈ R), see Koul and
Surgailis (2001).

Theorem 4.35 Assume that Xt (t ∈ Z) is a linear process with aj ∼ caj
d−1,

0 < d < 1 − 1/α,

and εt (t ∈ Z) are i.i.d. symmetric random variables such that (4.89) holds with
α ∈ (1,2) and β = 0:

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α.

Furthermore, assume that the distribution Fε of ε1 is such that

∣∣F (2)
ε (x)

∣∣≤ C
(
1 + |x|)−α

,
∣∣F (2)

ε (x) − F (2)
ε (y)

∣∣≤ C|x − y|(1 + |x|)−α
,
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where |x − y| < 1, x ∈ R. Then

n1−H En,X(x) ⇒ A1/αC−1/α
α

ca

d
pX(x)Z̃H,α(1), (4.173)

where Z̃H,α(1) is a symmetric α-stable random variable with scale η given by

η =
(∫ 1

−∞
{
(1 − v)d+ − (−v)d+

}α
dv

)1/α

.

4.8.5 Tail Empirical Processes

Let Xt (t ∈ Z) be a stationary sequence with marginal distribution FX . More
specifically, we shall assume that Xt is a stochastic volatility model considered in
Sect. 4.3.4. Recall that the model is Xt = ξtσt (t ∈ Z), where

σt = σ(ζt ), ζt =
∞∑

j=1

aj εt−j ,

and σ(·) is a positive function. It is assumed that ξt (t ∈ Z) is a sequence of i.i.d.
random variables such that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α. (4.174)

Also, we assume that the sequences ξt (t ∈ Z) and εt (t ∈ Z) are mutually indepen-
dent. In particular (cf. Lemma 4.20), we have

P
(|X1| > x

)∼ E
(
σα(ζ1)

)
P
(|ξ1| > x

)
,

provided that

E
[
σα+δ(ζ1)

]
< ∞ (4.175)

for some δ > 0. In Theorem 4.19 we saw that the limiting behaviour of partial sums
depends on an interplay between the long-memory parameter d and the tail index α.
Therefore, it is important to have reliable estimates of both parameters, d and α.
With the help of the tail empirical process it is possible to prove asymptotic normal-
ity of the so-called Hill estimator of α.

We note first that the tail behaviour of X implies that, as n → ∞,

Tn(x) := P
(
X1 > (1 + x)un|X1 > un

)= F̄X((1 + x)un)

F̄X(un)
→ T (x) := (1 + x)−α



4.8 Limit Theorems for Empirical and Quantile Processes 351

for any sequence of constants un → ∞. The tail empirical distribution functions
T̃n(s) and the tail empirical processes en(s) are defined by

T̃n(s) = 1

nF̄X(un)

n∑

t=1

1
{
Xt > un(1 + s)

}

and

en(s) = T̃n(s) − Tn(s)
(
s ∈ [0,∞)

)
. (4.176)

We note that for large values of un, only extreme observations are included in the
sum. Hence the name “tail empirical”.

Drees (1998, 2000) and Rootzén (2009) show that for weakly dependent ob-
servations Xt , scaled processes wn en converge weakly in D[0,∞) to a Gaussian
process w = B ◦ T , where B is a standard Brownian motion, and w2

n = nF̄X(un).
The situation changes in the long-memory case. The limiting behaviour depends on
an interplay between the memory parameter d and the behaviour of un. If un grows
sufficiently fast (that means that very few extremes are included in the tail empirical
distribution), then long memory does not influence the limit: wn en ⇒ w with, as
before, wn =

√
nF̄X(un) and w = B ◦ T . However, if un grows at an appropriately

slow rate, then long memory starts to play a role: wn en converge weakly to a de-
generate limiting process w(s) = CT (s)Zm,H (1) (where C is a constant), and the

scaling factor is different, namely wn = nm( 1
2 −d)L(n), where L is a slowly varying

function. The corresponding result is stated in Theorem 4.36.
In order to state the result, let us define the function Gn on (−∞,∞) × [0,∞)

by

Gn(x, s) = P(σ(x)ξ1 > (1 + s)un)

P (ξ1 > un)
. (4.177)

This function converges pointwise to T (s)G(x) = T (s)σα(x). Furthermore, the
Hermite coefficients Jn(m, s) of the function x → Gn(x, s) converge (as n → ∞)
to J (m)T (s), uniformly with respect to s ≥ 0, where J (m) is the m-th Hermite
coefficient of G. This implies that for large n, the Hermite rank mn(s) of Gn(·, s)
is not greater than the Hermite rank m of G. To avoid further complications, we
impose the assumption infs≥0 mn(s) = m for sufficiently large n.

Theorem 4.36 Consider the stochastic volatility model Xt = ξtσt (t ∈ Z) and as-
sume that (4.174) and (4.175) hold. Additionally, we assume that ζj (t ∈ Z) is a
Gaussian linear process with coefficients aj satisfying (B1), i.e. aj = La(j)jd−1,
d ∈ (0,1/2) (so that γX(k) ∼ Lγ (k)k2d−1). Let m ≥ 1 be the Hermite rank of the
function σα(·), and set H = d + 1/2. Assume that E[σ 2α+δ(X1)] < ∞.

(i) If nF̄X(un) → ∞ and n1−m(1−2d)Lm(n)F̄X(un) → 0 as n → ∞, then√
nF̄X(un) en converges weakly in D[0,∞) to the Gaussian process B ◦ T ,

where B is a standard Brownian motion.
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(ii) If nF̄X(un) → ∞ and n1−m(1−2d)Lm(n)F̄X(un) → ∞ as n → ∞, then

nm( 1
2 −d)L

−1/2
m (n)en(s) ⇒ J (m)T (s)

E[σα(ζ1)]Zm,H (1),

where ⇒ denotes weak convergence in D[0,∞), Zm,H (·) is a Hermite–
Rosenblatt process, and Lm(n) = m!CmLm

γ (n).

The practical application of these limit theorems for en(·) is not quite straight-
forward. First of all, F̄X(un) is unknown. The second problem is that we would
like to center the tail empirical distribution function by T (s), not Tn(s). The second
question can be addressed by introducing the assumption

lim
n→∞wn‖Tn − T ‖∞ = 0, (4.178)

where

‖Tn − T ‖∞ = sup
t≥1

∣∣∣∣
P(X1 > unt)

P (X1 > un)
− t−α

∣∣∣∣,

and the scaling wn is either
√

nF̄X(un) or nm( 1
2 −d)L

−1/2
m (n) in cases (i) and (ii)

respectively. In other words, we impose a condition that makes the bias Tn − T

negligible. This is related to the so-called second-order regular variation (see Drees
1998; Kulik and Soulier 2011), but we omit details here. As an example, assume for
instance that

P(ξ1 > x) = cx−α
(
1 + O

(
x−β

))
(x → ∞)

for some constant c > 0. Then the second-order regular variation refers to the
second-order term x−β in the expansion for the tail of ξ1.

Now, suppose that the second-order assumption holds. Let X1:n ≤ · · · ≤ Xn:n be
the order statistics of X1, . . . ,Xn, define kn = nF̄X(un) and replace un by Xn−k:n
in the definition of the tail empirical distribution function. Implicitly, k = kn will
become a user chosen number of extreme statistics such that kn → ∞ and kn = o(n).
Thus, we define

T̂n(s) = 1

k

n∑

t=1

1
{
Xt > Xn−k:n · (1 + s)

}

and the practically computable processes

ê∗
n(s) = T̂n(s) − T (s)

(
s ∈ [0,∞)

)
.

It follows from Rootzén (2009) and Kulik and Soulier (2011) that

wn ê∗
n(s) ⇒ w∗(s) = w(s) − T (s)w(1).

In particular, if wn =
√

nF̄X(un) = √
kn and w(s) = B(T (s)), then w∗(s) =

B̃(T (s)), where B̃ is a Brownian bridge. However, if wn = nm( 1
2 −d)L(n) and
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w(s) = CT (s)Zm,H (1), then w∗(s) = 0. This is a similar effect as for the stan-
dard empirical process with estimated parameters considered in Sect. 4.34. More
surprisingly, we have the following result for the process ê∗

n(s).

Theorem 4.37 Assume that the conditions of Theorem 4.36 are fulfilled. Assume
additionally that (4.178) holds. Then

√
k ê∗

n(s) converges weakly in D[0,∞) to the
Gaussian process B̃(T (s)), where B̃ is a standard Brownian bridge, regardless of
the behaviour of n1−m(1−2d)Lm(n)F̄X(un).

4.8.5.1 Application to Tail Index Estimation

One of the most important problems when dealing with heavy tails is to estimate the
tail index α. The best known (though in many ways not always reliable) method is
Hill’s estimator. Using the notation γ = α−1, the Hill estimator of γ is defined by

γ̂n = 1

k

k∑

j=1

log

(
Xn−j+1:n
Xn−k:n

)
.

Noting that

∫ ∞

0

T̂n(s)

1 + s
ds = 1

k

n∑

t=1

∫ ∞

0

1{s < Xt/Xn−k:n − 1}
1 + s

ds

= 1

k

n∑

t=1

log

(
1 + max

{
Xt

Xn−k:n
− 1,0

})
,

the estimator can also be written as

γ̂n =
∫ ∞

0

T̂n(s)

1 + s
ds.

Since γ = ∫∞
0 (1 + s)−1T (s) ds, we have

γ̂n − γ =
∫ ∞

0

ê∗
n(s)

1 + s
ds.

Thus we can apply Theorem 4.37 to obtain the asymptotic distribution of the Hill
estimator. Heuristically,

√
kn(γ̂n − γ ) →d

∫ ∞

0

B̃(T (s))

1 + s
ds.

This integral is a normal random variable with variance γ 2 (for details, see Kulik
and Soulier 2011). In summary, we have the following result.
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Corollary 4.5 Under the assumptions of Theorem 4.37,
√

k(γ̂n − γ ) converges in
distribution to a centred Gaussian distribution with variance γ 2.

This result can be used to construct confidence intervals for γ . It is known that
this result gives the best possible rate of convergence for the Hill estimator for i.i.d.
data (see Drees 1998). The surprising result is that it is possible to achieve the same
i.i.d. rates regardless of the dependence parameter d .

4.8.5.2 Proof of Theorem 4.36

Proof We follow a similar idea as in the proof of Theorem 4.19. Let E be the σ -field
generated by the Gaussian process ζt (t ∈ Z). Write

en(s) = 1

nF̄X(un)

n∑

t=1

{
1
{
Xt > (1 + s)un

}− P
(
Xt > (1 + s)un|E

)}

+ 1

nF̄X(un)

n∑

t=1

{
P
(
Xt > (1 + s)un|E

)− F̄X(un)
}

=: Mn(s) + Rn(s). (4.179)

The difference between (4.179) and the decomposition used in the proof of Theo-
rem 4.19 is that here the first part is the sum of conditionally independent random
variables, instead of being a martingale. The second part is a function of the Gaus-
sian sequence ζt (t ∈ N) and does not depend on the sequence ξt (t ∈N).

For the first part, it can be shown that, using the conditional independence,

logE
[
exp
(
it

√
nF̄X(un)Mn(0)

)∣∣E
]→P −t2/2.

The bounded convergence theorem implies

√
nF̄X(un)Mn(0) →d T (0)Z,

where Z is standard normal. Using the Cramer–Wald device, it is extended to

√
nF̄X(un)

(
Mn(s1),Mn(sl) − Rn(sl−1), l = 2, . . . ,K

)

→d

(
N
(
0, T (s1)

)
,N
(
0, T (sl) − T (sl−1)

)
, l = 2, . . . ,K

)
, (4.180)

where the normal random variables are independent. Computations are somewhat
involved, but the idea is relatively easy. Since the random variables are conditionally
independent, the characteristic function can be evaluated.
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Recall that

Gn(x, s) = P(σ(x)ξ1 > (1 + s)un)

P (ξ1 > un)

converges pointwise to T (s)G(x) = T (s)σα(x). Let us now write

n∑

t=1

(
Gn(ζt , s) − E

[
Gn(ζt , s)

])

=
n∑

t=1

∞∑

q=m

T (s)J (q)

q! Hq(ζt ) +
n∑

t=1

∞∑

q=m

Jn(q, s) − T (s)J (q)

q! Hq(ζt )

=: T (s)R∗
n + R̃n(s)

with R∗
n =∑n

t=1 G(ζt ). Convergence of T (s)R∗
n is concluded in the very same way

as in (4.102) and (4.103). For m(1/2 − d) < 1 and m(1/2 − d) > 1, we have, re-
spectively,

n−(1−m( 1
2 −d))L

−1/2
m (n)R∗

n ⇒ J (m)

m! Zm,H (1)

and

n−1/2R∗
n ⇒ vZ,

where v is a constant. The second part, R̃n(s) is of a smaller order than R∗
n , uni-

formly in s ≥ 0. Since

Rn(s) = P(ξ1 > un)

nF̄X(un)

n∑

t=1

(
Gn(ζt , s) − E

[
Gn(ζt , s)

])
, (4.181)

and P(ξt > un)/F̄X(un) → 1/E[σα(ζ1)], we conclude that for m(1/2 − d) < 1,

nm( 1
2 −d)L

−1/2
m (n)Rn(s) →d

J (m)T (s)

E[σα(ζ1)]Zm,H (1). (4.182)

This convergence is easily extended to multivariate convergence. If m(1/2−d) > 1,
then Rn(s) is uniformly negligible w.r.t. the conditionally independent part Mn(s).
Therefore, (4.182) and (4.180) yield the finite-dimensional convergence. For details
and proof of tightness, we refer to Kulik and Soulier (2011). �

4.8.5.3 Further Extensions

The results given above are extendable to stochastic volatility models with lever-
age. Instead of decomposing en(s) into a conditionally i.i.d. part Mn(s) and a long-
memory part Rn(s), we may apply the martingale decomposition as in the proof of
Theorem 4.19. For details, see Luo (2011).
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4.9 Limit Theorems for Counting Processes and Traffic Models

In this section we review limit theorems for counting processes and traffic models,
such as renewal reward, ON–OFF, shot-noise and infinite source Poisson processes,
considered in Sect. 2.2.4.

4.9.1 Counting Processes

Let Xj (j ≥ 1) be a stationary sequence of strictly positive random variables with
distribution F and finite mean. Let τ0 have the distribution F (0) and define

τj = τ0 +
j∑

k=1

Xk (j ≥ 1)

and

Sn(t) =
[nt]∑

j=1

Xj .

Note that the notation Xj and Sn(t) is different from what was used previously

(which was S(u) =∑[nu]
t=1 Xt ). The reason is that here the natural time parameter is

in the upper limit [nt] of the sum.
Now, let N(t) be the associated counting process. Since

N(t) = max{k ≥ 0 : τk−1 ≤ t} = min{k ≥ 0 : τk > t},
one can view N(t) as the generalized inverse of the partial sums process Sn(t).
Consequently, if the limiting process for partial sums is Gaussian, Lemma 4.7 will
imply the weak convergence of N(t) from that of Sn(t). In other words, we apply
Lemma 4.7 to

• yn(t) = Sn(t)/(nμ),
• y−1

n (t) = Nn(t)/n, where Nn(t) = N(nμt).

If c−1
n (Sn(t)/(nμ) − t) converges to a process S(t) with some constants cn, then

c−1
n (N(nμt)/n− t) converges to −S(t). The same procedure applies to any station-

ary counting process associated with a stationary sequence Xj (j ∈ N) with finite
mean.

Example 4.24 Recall Theorem 4.5. There, Xj (j ∈ N) is a linear process Xj =∑∞
k=0 akεj−k with summable coefficients ak and i.i.d. centred innovations εj

(j ∈ Z). We can reformulate Theorem 4.5 to accommodate μ = E(X1) 
= 0. We
have

n−1/2
[nt]∑

j=1

(Xj − μ) ⇒ vB(t)
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in D[0,1], where v2 = σ 2
X +2

∑∞
k=1 γX(k), and B(t) (t ∈ [0,1]) is a standard Brow-

nian motion. Equivalently,

Sn(t)/(nμ) − t

n−1/2
⇒ vμ−1B(t),

so that S(t) = vμ−1B(t) and cn = n−1/2. Application of Lemma 4.7 yields

n−1/2(N(nμt) − nt
)⇒ vμ−1B(t).

However, we cannot extend this to the situation of Theorem 4.6. The long-range
dependent linear process must have zero mean and hence cannot be strictly positive.

Example 4.25 Recall Example 4.12. The model considered there is Xj = ξjσ (ζj ),
where ξj (j ≥ 1) are strictly positive random variables with mean E(ξ1), and ζj is a
centred Gaussian sequence with covariance γζ (k) ∼ Lγ (k)k2d−1, d ∈ (0,1/2). We
established in Example 4.12 that for G(x) = x and σ(x) = exp(x), we have

n−(d+1/2)L
−1/2
1 (n)

[nt]∑

j=1

(
Xj − E(X1)

)⇒ J (1)BH (t)

weakly in D[0,1], where BH (·) is fractional Brownian motion with H = d + 1/2
and J (1) = E(ζ1 exp(ζ1))E(ξ1). Hence, for the inverse processes, we obtain

n−H L
−1/2
1 (n)

(
N(nμt) − nt

)⇒ J (1)μ−1BH (t).

Thus, long memory in the interpoint distances generates long-memory-type be-
haviour in the functional central limit theorem for the counting process.

Let now Xj (t ∈ N) be an i.i.d. sequence of strictly positive random variables
such that

P(X1 > x) ∼ Ax−α (A > 0, α > 1).

In Sect. 4.3 we saw that the appropriately centred and normalized Sn(t) converges
to an α-stable Lévy process with independent increments (cf. (4.80)):

c−1
n

[nt]∑

j=1

(Xj − μ) ⇒ C−1/α
α Zα(t),

where cn = inf{s : P(X > x) ≤ n−1}, cn ∼ A1/αn1/α , and Zα(t) is an α-stable Lévy

motion such that Zα(1)
d= Sα(1,1,0). The limiting process has discontinuous sam-

ple paths, and hence Lemma 4.7 is not applicable. However (see Theorem 7.3.2 in
Whitt 2002), one can generalize Vervaat’s result to cover the case of limiting pro-
cesses with discontinuous sample paths. One has to mention though that although
Sn(t) may converge in the standard Skorokhod topology, the same does not apply
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Table 4.5 Limits for
counting processes—tails vs.
dependence

Counting processes

Weak dependence Strong dependence

Interarrival times
with finite variance

Brownian motion
(Example 4.24)

fBm
(Example 4.25)

Interarrival times
with infinite variance

Lévy process
(Example 4.26)

fBm or Lévy process
(Example 4.27)

to the counting process. One has to consider a weaker M1 topology (see comments
on p. 235 as well as Sects. 13.6 and 13.7 in Whitt 2002). Here, we just illustrate
finite-dimensional convergence.

Example 4.26 In the situation described above,

c−1
n

(
N(nμt) − nt

) fidi→ −C−1/α
α μ−1Zα(t). (4.183)

Thus, a heavy-tailed distribution of interarrival times Xj generates Long-Range
count Dependence (LRcD) in the counting process (see Example 2.5). On the other
hand, the limiting process has independent increments. Furthermore, in Example 2.5
we found out that var(N(t)) is proportional to t2H (as t → ∞) with H = (3−α)/2.
On the other hand, n−H (N(nμt)−nt) converges to 0 in probability. Hence, N(·) is
an example of a second-order stationary process where its standard deviation does
not yield an appropriate scaling.

Example 4.27 Recall Example 4.17. If d + 1/2 < 1/α, then by Whitt’s approach

n−1/α
(
N(nμt) − nt

) fidi→ −A1/αC−1/α
α

{
E
(
σα

1

)}1/α
μ−1Zα(t). (4.184)

If however d + 1/2 > 1/α, we can use Vervaat’s Lemma 4.7 to conclude

n−(d+1/2)L
−1/2
1 (n)

(
N(nμt) − nt

)⇒ J (1)E(ξ1)μ
−1BH (t). (4.185)

We summarize our findings in Table 4.5. It should be noted that in the case of
strong dependence the results are just for the case in Examples 4.25, 4.27, not for
all long-memory models.

4.9.2 Superposition of Counting Processes

Let N(m)(t) (t ≥ 0, m = 1, . . . ,M) be independent copies of a stationary renewal
process N(t) associated with a renewal sequence Xj (j ∈ N). We assume that, as
x → ∞,

F̄ (x) = P(X1 > x) ∼ x−αL(x) (1 < α < 2),
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and that P(X̃0 > x) = μ−1
∫∞
x

F̄ (u) du, where μ = E[X1] = λ−1. Application of
Lemma 4.6 yields

lim
M→∞

1

M1/2

M∑

m=1

(
N(m)(t) − λt

)⇒ G(t), (4.186)

where G(·) is a Gaussian process with stationary increments and the same covari-
ance structure as N(t). In particular (see Example 2.5),

var
(
G(t)

)= var
(
N(t)

)∼ 2λ

(α − 1)(2 − α)(3 − α)
t3−αL(t) =: σ 2

0 t3−αL(t).

Indeed, to apply Lemma 4.6, we verify that for t > s,

var
(
N(t) − N(s)

)= var
(
N(t − s)

)∼ C(t − s)2H

and 2H > 1. Also, the second condition of Lemma 4.6 is easily verified.
We recognize that the limiting process has up to a constant the same variance

as a fractional Brownian motion with the Hurst index H = (3 − α)/2. Now, let us
consider the time scaled process N(m)(T t). For a fixed T > 0, application of (4.186)
yields

lim
M→∞

1

M1/2

M∑

m=1

(
N(m)(T t) − λT t

)⇒ G(T t) = σ0BH (T t)

and var(G(T t)) ∼ σ 2
0 T 2H t2H L(T t) ∼ σ 2

0 T 2H t2H L(T ) as T → ∞. Thus, applying
H -self-similarity of fractional Brownian motion, we have

lim
T →∞

1

T H
lim

M→∞
1

M1/2

M∑

m=1

(
N(m)(T t) − λT t

)⇒ σ0BH (t).

On the other hand, (4.183) yields

lim
T →∞a−1

T

(
N(m)(T t) − λT t

) fidi→ −μ−1C−1/α
α Z(m)

α (λt) (m = 1, . . . ,M),

where Z(m)(·) (m = 1, . . . ,M) are independent Lévy processes, and aT ∼ T 1/α�(T ).
Consequently, since the sum of independent Lévy processes yields a Lévy process,
we obtain

lim
M→∞

1

M1/α
lim

T →∞a−1
T

M∑

m=1

(
N(m)(T t) − λT t

) fidi→ −λ1+1/αC−1/α
α Zα(t),

where Zα(·) is an α-stable Lévy process. The limiting constants were obtained by

replacing t with λt and using Zα(λt)
d= λ1/αZα(t).
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Table 4.6 Limits for superposition of counting processes—tails vs. dependence

Superposition of counting processes

Weak dependence Strong dependence

Interarrival times with
finite variance

limM→∞ limT →∞ = Bm
limT →∞ limM→∞ = Bm

limM→∞ limT →∞ = fBm
limT →∞ limM→∞ = fBm

Interarrival times with
infinite variance

limM→∞ limT →∞ = Lévy
limT →∞ limM→∞ = fBm

We observe that different limiting schemes yield different limiting processes.
This feature will be also present in different traffic models.

In contrast, if the renewal sequence has a finite variance and short memory, then
application of Example 4.24 yields that both procedures limM→∞ limT →∞ and
limT →∞ limM→∞ produce the same limit, namely a Brownian motion. Likewise,
in the case of strong dependence and a finite variance (as in Example 4.25), both
procedures yield a fractional Brownian motion.

We summarize these observations in Table 4.6. We do not fill in the case of strong
dependence and heavy tails (situation of Example 4.27). It is clear that there are four
possible limits. If the counting process converges to fBm, then the limit for super-
positions must be fBm as well. If the counting process converges to a Lévy process,
then the superposition converges to either fBm or a Lévy process, depending on the
order of taking these limits.

4.9.3 Traffic Models

Let W(u) be a traffic model. It can be either a renewal reward, or ON–OFF, or infi-
nite source Poisson or error duration process. In Sect. 2.2.4 we noted that the models
have long memory in terms of non-integrable covariances or nonlinear growth of the
variance of the integrated process. A very interesting feature is that long memory in
a traffic process implies that the integrated process

W ∗(t) =
∫ t

0

{
W(v) − E

[
W(v)

]}
dv

converges in the sense of finite-dimensional distributions to an α-stable Lévy mo-
tion. The scaling factor has to be chosen as T −1/αL(T ), where L is a slowly varying
function. In particular, this is another example of a second-order long-memory pro-
cess where the variance grows at rate T 2H , but T −H W ∗(T t) converges to zero in
probability as T → ∞ (see e.g. Example 4.26). Furthermore, as in the case of count-
ing processes, the convergence cannot hold in the D[0,1] space equipped with the
J1-topology.With respect to J1 the continuous process W ∗(T t) must converge to a
continuous limit, which is not the case here.
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In the context of computer networks, these phenomena describe long memory
of an individual source. However, they do not explain long memory at the level of
teletraffic, which usually consists of a large number of sources. Assume now that
we have M independent copies W(m)(·) (m = 1, . . . ,M) of the traffic process W(t).
Define

W ∗
T ,M(t) =

∫ T t

0

M∑

m=1

{
W(m)(v) − E

[
W(v)

]}
dv =

M∑

m=1

W(m)∗(T t),

where W(m)∗(u), m = 1, . . . ,M , are i.i.d. copies of the cumulated process W(m)(t).
The process W ∗

T ,M(t) can be interpreted as (centred) total workload of M work-
stations at time t or as cumulative packet counts in the network by time t . We are
interested in the limiting behaviour of the properly normalized cumulative process
W ∗

T ,M(t).
We will consider two limiting scenarios. First, we will analyse what happens if

we let first M → ∞ and then T → ∞. In this setup, we will proceed as follows.

Step 1: Use Lemma 4.6 to establish that with some sequence aM ,

lim
M→∞a−1

M

M∑

m=1

{
W(m)(t) − E

[
W(m)(t)

]}

converges to a process, say, G(t). If the process is Gaussian, then its covariance
structure is the same as that of W(u).

Step 2: If the process G(t) is Gaussian, then the integral G∗(T t) = ∫ T t

0 G(u)du is
Gaussian as well. We have

var
(
G∗(T t)

)=
∫ T t

0

(∫ v

0
cov
(
W(0),W(s)

)
ds

)
dv.

From the form of the covariance function we will conclude either a Brownian
motion or a fractional Brownian motion as limit.

Step 3: The sum of independent (fractional) Brownian motions yields (fractional)
Brownian motion. We will conclude that

lim
t→∞a−1

T lim
M→∞a−1

M

∫ T t

0

M∑

m=1

(
W(m)(v) − E

[
W(m)(v)

])
dv

converges to a (fractional) Brownian motion, where aT is proportional to T 1/2 or
T H (H > 1/2), respectively.

As for the case T → ∞ and then M → ∞, we will proceed as follows.

Step 1: For each m = 1, . . . ,M , approximate

lim
T →∞ c−1

T

∫ T t

0

{
W(m)(v) − E

[
W(m)(v)

]}
dv ≈ c−1

T

N(T t)∑

j=1

Uj (T → ∞),
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where N(·) is an appropriate counting process, and Uj (j ∈ N) is an appropriate
i.i.d. sequence. Note that both N and Uj depend on m. If the random variables Uj

have a finite variance, then for each m, the limiting process is a Brownian motion,
and cT = T 1/2. If the random variables Uj are regularly varying with index α, then
we obtain a Lévy process as a limit and cT = T 1/α .

Step 2: The sum of independent Brownian motions (Lévy processes) is a Brownian
motion (Lévy process). We conclude the convergence for

lim
M→∞d−1

M lim
T →∞ c−1

T

∫ T t

0

M∑

m=1

(
W(m)(v) − E

[
W(m)(v)

])
dv

with some sequence dM .

One has to mention though that the proofs are sketched, without verifying some
technical details.

4.9.4 Renewal Reward Processes

Recall from Example 2.12 the renewal reward process

W(t) = Y01{0 < t < τ0} +
∞∑

j=1

Yj 1{τj−1 ≤ t < τj },

Xj = τj − τj−1. We assume for simplicity that Yj (j ∈ N) is a centred i.i.d.
sequence, independent of the renewal sequence τ0,Xj (j ≥ 1), and also that
E[X1] = μ = λ−1 is finite. We are interested in the limiting behaviour of the cu-
mulative process W ∗

T ,M(t) defined above. For the purpose of the limiting regime
limM→∞ limT →∞, we represent the cumulative process as follows:

∫ T t

0
W(u)du = min{T t, τ0}Y0 +

∞∑

j=0

Yj+1
(
min{T t, τj+1} − τj

)
+. (4.187)

Indeed, if T t < τ0, then
∫ T t

0 W(u)du = Y0T t ; if τ0 < T t < τ1, then
∫ T t

0 W(u)du =
Y0T t + Y1(T t − τ0) etc.

An alternative representation will yield an approximation of the cumulative re-
ward by a sum of i.i.d. random variables. For T t > τ0, we may write

∫ T t

0
W(u)du = Y0τ0 +

N(T t)∑

j=1

YjXj − U, (4.188)

where N(t) is the renewal process associated with τj . The first two terms represent
the renewal intervals that are at least partially included in [0, T t]. For example, if
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τ0 < T t < τ1, then N(T t) = 1, and the sum includes Y0τ0 + Y1X1. However, not
the entire renewal interval X1 is included in [0, T t]. We have to subtract a portion
(τ1 − T t)Y1, and this is “hidden” in the variable U .

In most cases considered below, only
∑N(T t)

j=1 YjXj contributes to the limiting

behaviour of
∫ T t

0 W(u)du.
We start with a standard limiting behaviour. Specifically, we assume first that

var(X) = σ 2
X < ∞ and var(Y ) = σ 2

Y < ∞. In particular, there is no LRcD in
the counting process N(t) and hence in the cumulative renewal reward process∫ t

0 W(u)du.

Theorem 4.38 Assume that

• Interarrival times have a finite variance: var(X1) = σ 2
X < ∞;

• Rewards have a finite variance: var(Y1) = σ 2
Y < ∞.

Then,

lim
T →∞ lim

M→∞
W ∗

T ,M(t)

T 1/2M1/2
= lim

M→∞ lim
T →∞

W ∗
T ,M(t)

T 1/2M1/2
d= σreward,1B(t),

where (B(t), t ∈R) is a standard Brownian motion,

σ 2
reward,1 = E[X2

1]E[Y 2
1 ]

E[X1] ,

and the convergence is to be understood as a finite-dimensional one.

Proof First, we consider the limit taken in the order limM→∞ first, and then
limT →∞.

Step 1: Since W(m) (m = 1, . . . ,M) are independent identically distributed pro-
cesses with finite variance, application of Lemma 4.6 implies that for each T ,

lim
M→∞

1

M1/2

M∑

m=1

W(m)(T t) ⇒ G(T t)

in D[0,∞), where G(t) (t ≥ 0) is a centred stationary Gaussian process with co-
variance function cov(W(0),W(u)).

Step 2: The cumulative process G∗(·t) = ∫ ·t
0 G(t) du is still a Gaussian process

with variance var(G∗(T t)) = var(
∫ T t

0 W(u)du) = T tE[X2
1]E[Y 2

1 ]/μ (see Exam-
ples 2.5 and 2.12).

Step 3: The form of the covariance function yields that the process T −1/2G∗(T t)

(t ≥ 0) is a Brownian motion.

Now, we consider the reverse order of taking the limits.

Step 1: We use an approximation induced by representation (4.188).

1

T 1/2

N(T t)∑

j=1

YjXj =
(

N(T t)

T

)1/2 1√
N(T t)

N(T t)∑

j=1

YjXj .
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Recall that for a stationary renewal process, N(T t)/T → EE[N(t)] = λt = μ−1t .
Thus, as T → ∞,

1

T 1/2

N(T t)∑

j=1

YjXj ≈ t1/2

μ1/2

1

(T t)1/2

T t∑

j=1

YjXj ⇒ 1

μ1/2

√
var(Y1X1)B(t).

Since X1 and Y1 are independent and E[Y1] = 0, we obtain var(Y1X1) =
E[Y 2

1 ]E[X2
1].

Step 2: Hence, for each fixed m = 1, . . . ,M ,

T −1/2
∫ T t

0
W(m)(u)du ⇒ σreward,1B

(m)(t),

where B(m)(t) are independent standard Brownian motions. Hence, the superposi-
tion converges to a Brownian motion.

�

Next, we analyse what happens if the finite variance assumption on the rewards
still holds, but the renewal process has intervals with an infinite variance. Recall that
then the corresponding counting process N(t) has the LRcD property (see Exam-
ples 2.5 and 2.12) since its variance grows faster than linear. Also (see Examples 2.5
and 2.12), the variance of the cumulative process

∫ T t

0 W(u)du grows faster than lin-
ear.

Theorem 4.39 Assume that

• Interarrival times are regularly varying: P(X1 > x) ∼ CXx−α (α ∈ (1,2)) as
x → ∞;

• Rewards have a finite variance var(Y1) = σ 2
Y < ∞, and they are symmetric.

Then,

lim
T →∞ lim

M→∞
W ∗

T ,M(t)

T H M1/2
d= σreward,2BH (t), (4.189)

where (BH (t), t ∈ R) is a standard fractional Brownian motion with Hurst index
H = (3 − α)/2, and

σ 2
reward,2 = CX

2E[Y 2
1 ]

E[X1](α − 1)(2 − α)(3 − α)
.

On the other hand,

lim
M→∞ lim

T →∞
W ∗

T ,M(t)

T 1/αM1/α

d= Creward,1Zα(t), (4.190)

where Zα(t)
d= t1/αSα(1,0,0) is a symmetric Lévy process, and

Creward,1 = μ−1/αE1/α
[|Y1|α

]
C

1/α
X C−1

α .
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Sketch of Proof First, we proceed with limT →∞ limM→∞.

Step 1: As in the case of Theorem 4.38, Lemma 4.6 implies that for each T ,

lim
M→∞

1

M1/2

M∑

m=1

W(m)(T t) ⇒ G(T t)

in D[0,∞), where G(t) (t ∈ R) is a centred stationary Gaussian process with
covariance function cov(W(0),W(t)).

Step 2: The cumulative process G∗(T t) is Gaussian with variance σreward,2(T t)2H ,
H = (3 − α)/2 (see Example 2.12).

Step 3: The form of the variance yields that the scaled process T −H G∗(T t) is a
fractional Brownian motion.

Next, we deal with the reversed order of limits.

Step 1: We have

1

T 1/α

N(T t)∑

j=1

YjXj =
(

N(T t)

T

)1/α 1

(N(T t))1/α

N(T t)∑

j=1

YjXj ≈ 1

μ1/α

1

T 1/α

T t∑

j=1

YjXj .

By applying Breiman lemma we note that

P(Y1X1 > x) ∼ E
[
Yα+
]
P(X1 > x) ∼ E

[
Yα+
]
CXx−α

and

P(Y1X1 < −x) ∼ E
[
Yα−
]
P(X1 > x) ∼ E

[
Yα−
]
CXx−α.

Thus, application of (4.80) yields

1

T 1/α

N(T t)∑

j=1

YjXj ⇒ μ−1/αE1/α
[|Y1|α

]
C

1/α
X C−1

α Zα(t).

Step 2: The result follows by taking dM = M1/α . �

Finally, we analyse the case where both interarrival times and rewards are heavy
tailed. We separate both limiting regimes in two theorems below.

Theorem 4.40 Assume that

• Interarrival times are regularly varying: P(X1 > x) ∼ CXx−α (α ∈ (1,2)) as
x → ∞;

• Rewards are regularly varying: P(Y1 > x) ∼ CY x−β (β ∈ (1,2)) as x → ∞; and
they are symmetric.

We have the following limits as limM→∞ limT →∞:

• If α < β < 2, then (4.190) still holds.
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• If β < α < 2, then

lim
M→∞ lim

T →∞
W ∗

T ,M(t)

T 1/βM1/β

d= Creward,2Zβ(t), (4.191)

where Zβ(t)
d= t1/βSβ(1,0,0) is a symmetric Lévy process, and

Creward,2 = μ−1/βE1/β
[
X

β

1

]
C

1/β
Y C−1

β .

Proof The proof is very similar to that of Theorem 4.39. Recall that the limiting be-
haviour of

∫ T t

0 W(u)du is determined by
∑N(T t)

j=1 YjXj . If α < β , we may proceed
exactly in the same way as in Theorem 4.39. Otherwise, if β < α, then

1

T 1/β

N(T t)∑

j=1

YjXj =
(

N(T u)

T

)1/β 1

(N(T t))1/β

N(T t)∑

j=1

YjXj ≈ 1

μ1/β

1

T 1/β

T t∑

j=1

YjXj .

By applying Breiman lemma we have

P(Y1X1 > x) ∼ E
[
X

β

1

]
P(Y1 > x) ∼ E

[
X

β

1

]
CY x−β

and

P(Y1X1 < −x) ∼ E
[
X

β

1

]
P(Y1 < −x) ∼ E

[
X

β

1

]
CY x−β.

Thus, application of (4.80) yields

1

T 1/β

N(T t)∑

j=1

YjXj ⇒ μ−1/βE1/β
[
X

β

1

]
C

1/β
Y C−1

β Zβ(t).
�

We note also in passing that the case β < α above does not require that X1 is
regularly varying. Therefore, (4.191) holds also when β < 2 and var(X1) < ∞.

We consider now the case of the other limit.

Theorem 4.41 Assume that

• Interarrival times consist of positive integers and are regularly varying: P(X1
> x) ∼ CXx−(α+1) (α ∈ (1,2)) as x → ∞;

• Rewards are regularly varying and symmetric: P(Y1 > x) ∼ CY βx−β (β ∈ (1,2))
as x → ∞;

We have the following limits as limT →∞ limM→∞:

• If β < α < 2, then (4.191) holds.
• If α < β < 2, then

lim
T →∞ lim

M→∞T −(β−α+1)/βM−1/βW ∗
T ,M(t)

d= C
1/β
X C

1/β
Y Z∗

β(t), (4.192)
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where Z∗
β(t) is symmetric β-stable process with characteristic function

E

[
exp

(
i

h∑

l=1

θlZ
∗
β(tl)

)]
= exp

(−σβ(θ, t)
)
,

where t = (t1, . . . , th)
T , θ = (θ1, . . . , θ

T
h ),

σβ(θ, t) = C−1
β

(
I (θ, t) + J (θ, t)

)
,

I (θ, t) = μ−1
∫ ∞

0

∣∣∣∣∣

h∑

l=1

θl(tj ∧ x)

∣∣∣∣∣

β

x−α dx,

J (θ, t) = μ−1α

∫ ∞

0

∫ ∞

0

∣∣∣∣∣

h∑

l=1

θl(tj ∧ u − x)

∣∣∣∣∣

β

(u − x)−α−1+ dx.

We observe that if β < α, the order of taking limits does not matter. However,
if α < β , we obtain the new process Z∗

β(t). This process has stationary increments
and is self-similar with self-similarity parameter H = (β − α + 1)/β . For details
on this process, we refer to Levy and Taqqu (2000). Furthermore, note that the con-
vergence to Z∗

β(t) requires the additional technical assumption that the interarrival
times assume positive integers only.

Sketch of Proof We note that the technique of the proofs of Theorems 4.38 or 4.39
does not work. We cannot apply Lemma 4.6 because the process does not have a fi-
nite variance. Instead, we present a simplified version of the proofs of Theorems 2.2
and 2.3 in Levy and Taqqu (2000).

We use representation (4.187). Assume for a moment that Yk (k ≥ 0) are sym-

metric β-stable, Y1
d= Sβ(η,0,0), η > 0. Thus, its characteristic function is given

by

ϕY (θ) = E exp(iθY1) = exp
(−ηβ |θ |β).

We compute the characteristic function of R(T u) = ∫ T u

0 W(u)du. Set τ−1 = 0.
Then, by conditioning on the entire sequence τj and using the fact that the random
variables Yj (j ≥ 0) are i.i.d.,

E

[
exp

(
i

h∑

l=1

θlR(tl)

)]

= E

[
exp

(
i

h∑

l=1

θl

(
Y0
(
min{tl , τ0}

)+
∞∑

j=0

Yj+1
(
min{tl , τj+1} − τj

)
))]
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= exp

(
−ηβE

(
h∑

l=1

|θl |
(

min{tl , τ0} +
∞∑

j=0

(
min{tl , τj+1} − τj

)
))β)

=: exp
(−σβ(θ, t;η)

)
.

Since W ∗
T ,M(t) is the sum of independent copies of the process R(T u), we have

E

[
exp

(
i

h∑

l=1

θlM
−1/βW ∗

1,M(tl)

)]
= exp

(−σβ(θ, t)
)
.

An additional limiting argument applied to random variables Yj that are regularly
varying as in the theorem yields

lim
M→∞M−1/βW ∗

T ,M(t)
d= Z∗

β,T (t),

where Z∗
β,T (t) (t ∈ [0,1]) is a symmetric β-stable process with characteristic ex-

ponent σβ(θ, T t;CY /Cβ). This process is neither self-similar, nor has it stationary
increments.

More technical details are required to establish

T −(β−α+1)/βσβ(θ, T t;CY /Cβ) → σβ(θ, T t).

This implies the finite-dimensional convergence of T −(β−α+1)/βZ∗
β,T (t) to Z∗

β(t). �

Several bibliographical notes are in place here. Theorem 4.38 was proven in
Taqqu and Levy (1986, Theorem 5). Theorem 4.39 was proven in Taqqu and Levy
(1986). Theorem 4.40 was proven in Levy and Taqqu (1987), whereas Theorem 4.41
can be found in Levy and Taqqu (2000) and Pipiras and Taqqu (2000b). In partic-
ular, in the latter paper, the authors showed that the limiting process Z∗

β(t) is not a
linear fractional stable motion. Also see Taqqu (2002) and Willinger et al. (2003)
for an overview.

A summary of the results discussed here is given in Table 4.7.

4.9.5 Superposition of ON–OFF Processes

Assume now that we have M independent copies W(m)(·) (m = 1, . . . ,M) of the
ON–OFF process W(t) defined in (2.77).

We shall assume that the ON and OFF periods in each model have the same distri-
butions: P(Xj,on(m) > x) = F̄on(x), P(Xj,off(m) > x) = F̄off(x), where Xj,on(m),
Xj,off(m) (t ∈ Z) are the consecutive ON and OFF periods, respectively, in the mth
ON–OFF process (m = 1, . . . ,M). Since W(m)(u) are stationary and have the same
distribution for each m, we obtain

E

[∫ T t

0

M∑

m=1

W(m)(u)du

]
= TME

[
W(0)

]
t = TM

μon

μon + μoff
t = TM

μon

μ
t.
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Table 4.7 Limits for superposition of cumulative renewal reward processes—tails of interarrival
times vs. tails of rewards. The tail parameters α ∈ (1,2), β ∈ (1,2)

Renewal reward processes

Rewards

E[Y 2
1 ] < ∞ RV−β , β ∈ (1,2)

Interarrival times
E[X2

1] < ∞
limM→∞ limT →∞ = Bm
limT →∞ limM→∞ = Bm

limM→∞ limT →∞ = Zβ

limT →∞ limM→∞ = Zβ

Interarrival times
RV−α , α ∈ (1,2)

limM→∞ limT →∞ = Zα

limT →∞ limM→∞ = fBm
α < β

limM→∞ limT →∞ = Zα

limT →∞ limM→∞ = Z∗
β

β < α

limM→∞ limT →∞ = Zβ

limT →∞ limM→∞ = Zβ

Recall from Lemma 2.7 that the ON–OFF process has long memory (in the sense
of Definition 1.4), or

∫ t

0 W(u)du has long memory (in the sense of Definition 1.5)
if the ON (or OFF) periods are heavy tailed. In this case we are interested in limit
theorems for the superposition of ON–OFF processes. Such studies were conducted
in Taqqu et al. (1997), Mikosch et al. (2002) or Dombry and Kaj (2011). Specifically,
the following two theorems were proven in Taqqu et al. (1997).

Theorem 4.42 Assume that ON and OFF periods satisfy (2.78) and (2.79), i.e.

F̄on(x) = Conx
−αon, α1 ∈ (1,2), (4.193)

F̄off(x) = Coffx
−αoff, α2 ∈ (1,2), (4.194)

with αon < αoff. Then,

lim
T →∞ lim

M→∞
W ∗

T ,M(t)

T H M1/2
d= C

1/2
on σon–offBH (t),

where (BH (t), t ∈ (0,1)) is a fractional Brownian motion with Hurst parameter
H = (3 − αon)/2, and

σ 2
on–off = μ2

on–off

(αon − 1)μ3
.

Sketch of Proof

Step 1: Since W(m)(·) (m = 1, . . . ,M) are independent identically distributed
bounded processes, application of Lemma 4.6 implies

lim
M→∞

1

M1/2

M∑

m=1

{
W(m)(t) − E

[
W(m)(t)

]}⇒ G(t),
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where G(t) (t ∈ [0,1]) is a centred stationary Gaussian process with the covariance
function cov(W(0),W(t)).

Step 2: Therefore,
∫ T t

0 G(t) du is still a Gaussian process with variance

var(
∫ T t

0 W(u)du). By Lemma 2.7, the variance grows at rate Conσ
2
on–off(T t)2H

as T → ∞, which is the same as for fractional Brownian motion. We conclude

lim
T →∞

1

T H

∫ T t

0
G(t) du ⇒ C

1/2
on σon–offBH (t).

Step 3: Let

U(T t) = lim
M→∞

W ∗
T ,M(t)

T H M1/2
.

The tightness is verified by noting that as T → ∞, for t1 < t2,

E
[(

U(T u1) − U(T u2)
)2]

= T −2H var

(∫ T (t2−t1)

0
W(u)du

)
∼ C1σ

2
on–off(t2 − t1)

2H

and 2H > 1. The tightness is verified by applying Lemma 4.5. �

However, similarly to the case of superposition of renewal processes, different
orders of taking limits yield completely different limiting processes.

Theorem 4.43 Assume that ON and OFF periods satisfy (4.193) and (4.194) with
αon < αoff and αon ∈ (1,2). Then

lim
M→∞ lim

T →∞(MT )−1/α

∫ T t

0

(
M∑

m=1

(
W(m)(u) − E

[
W(m)(u)

])
)

du
d= C0Zα(t),

(4.195)

where Zα(t)
d= t1/αSα(1,1,0) is a Lévy process, and C0 = (

μoff
μ1+1/α )C

1/α
on C

−1/α
α .

Sketch of Proof

Step 1: First, we show that for each m = 1, . . . ,M ,

lim
T →∞T −1/α

∫ T t

0

{
W(m)(u) − E

[
W(m)(u)

]}
du

d=
(

μoff

μ1+1/α

)
C

1/α
on C−1/α

α Z(m)
α (t),

(4.196)

where Z
(m)
α (t)

d= t1/αSα(1,1,0) are independent Lévy processes.
If T t ≤ τ0, then there are three scenarios possible: either, at 0, the process is ON,
then

∫ T t

0 W(u)du = min(T t,X0,on); or at 0, the process is OFF, and X0,off >

T t , then
∫ T t

0 W(u)du = 0; or at 0, the process is OFF, and X0,off < T t , then∫ T t

0 W(u)du = T t − X0,off ≤ τ0 − X0,off = X0,on (this last situation is shown on

Fig. 4.7). In either case,
∫ T t

0 W(u)du ≤ X0,on. Since X0,on is a random variable
with a finite mean, we conclude that X0,on/T 1/α → 0 in probability as T → ∞.
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Fig. 4.7 ON–OFF process:
The 0th interval starts with
OFF period. The marked area
shows

∫ T t

0 W(u)du

If T t > τ0, then

∫ T t

0
W(u)du = X0,on +

N(T t)∑

j=1

Xj,on − U,

where U ≤ XN(T t)+1,on. The first two terms represent the sum of all ON intervals
that are at least partially included in [0, T t]. For example, if τ0 < T t < τ1, then
N(T t) = 1 and

∑N(T t)
j=1 Xj,on = X1,on; thus, both X0,on and X1,on are counted as

fully included in [0, T t]. Now, assume that the renewal intervals Xt start with ON
periods. It may happen that either τ0 + X1,on = τ0 + XN(T t),on < T t , and then
U = 0, or τ0 + X1,on > T t , and in the latter case we have to subtract a portion
(τ0 + X1,on − T t) ≤ X2,on that is not included [0, T t]. A similar consideration is
valid if the renewal intervals Xt start with OFF periods.
We conclude that the only term that contributes to the limiting behaviour of∫ T t

0 W(u)du is the sum
∑N(T t)

j=1 Xj,on. In the same spirit,

T t = X0,on + X0,off +
N(T t)∑

j=1

Xj,on +
N(T t)∑

j=1

Xj,off − Y,

where Y ≤ XN(T t)+1,on. Thus, informally,

∫ T t

0
E
[
W(u)

]
du = μon

μon + μoff
T t ≈ μon

μon + μoff

(
N(T t)∑

j=1

Xj,on +
N(T t)∑

j=1

Xj,off

)
.

Consequently, the limiting behaviour of T −1/α
∫ T t

0 {W(u)−E[W(u)]}du is deter-
mined by

1

T 1/α

N(T t)∑

j=1

(
Jj − E[Jj ]

)
,

where after some simple algebra

Jj = Xj,on − μon

μon + μoff
(Xj,on + Xj,off)

= μoff

μon + μoff

(
Xj,on − E[Xj,on]

)− μon

μon + μoff

(
Xj,off − E[Xj,off]

)
.
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Table 4.8 Limits for
superposition of ON–OFF
processes

Superposition of ON–OFF processes

ON times with finite variance limM→∞ limT →∞ = Bm
limT →∞ limM→∞ = Bm

ON times with infinite variance limM→∞ limT →∞ = Lévy
limT →∞ limM→∞ = fBm

We thus have

1

T 1/α

N(T t)∑

j=1

(
Jj − E[Jj ]

)=
(

N(T t)

T

)1/α 1

(N(T t))1/α

N(T t)∑

j=1

(
Jj − E[Jj ]

)
.

Recall that for a stationary renewal process N(T t)/T → E[N(t)] = (μon +
μoff)

−1μ−1t as T → ∞. Therefore, the limiting behaviour of sum is the same
as that of

t1/α

μ1/α

1

(T t)1/α

T t∑

j=1

(
Jj − E[Jj ]

)
.

We note that, as x → ∞,

P(J1 > x) ∼
(

μoff

μ

)αon

Conx
−αon , P (J1 < −x) ∼

(
μon

μ

)αoff

Coffx
−αoff .

Since α = αon < αoff, application of (4.80) yields

T −1/α

T t∑

j=1

(
Jj − E[Jj ]

)⇒
(

μoff

μ

)
C

1/α
on C−1/α

α Zα(u),

where Zα(t)
d= t1/αSα(1,1,0) is a Lévy process. We conclude that (4.196) holds.

Step 2: Since the Lévy processes Z(m)(t) are independent, the result follows.
�

If the ON and OFF times have a finite variance, similar arguments lead to a Brow-
nian motion as a limit for both limiting regimes. We summarize our observations in
Table 4.8.

Similar results as for renewal reward and ON–OFF hold for the Infinite Poisson
source model, see Konstantopoulos and Lin (1998), Mikosch et al. (2002).

4.9.6 Simultaneous Limits and Further Extensions

What happens when T and M go to infinity simultaneously? The techniques de-
scribed above fail. Following Mikosch et al. (2002), one can consider the parameter
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M as an increasing function of T , i.e. M = M(T ). Alternatively, see Mikosch and
Samorodnitsky (2007), one can consider the intensity of the point process τj to de-
pend on a number of sources M . Consequently, following Mikosch and Samorod-
nitsky (2007), we consider the process

W ∗
λM,M(t) =

M∑

m=1

W(m)∗(λMt) =
M∑

m=1

∫ λMt

0
W(m)(u)du,

where the W(·), W(m)(·) (m ≥ 1) are independent copies of either a renewal reward,
an ON–OFF or an M/G/∞ process. We observe that an increase in the intensity can
be interpreted as an increase in time in our original cumulative process W ∗

T ,M(t).
Define also a scaling sequence

aM =
√

M var

(∫ λM

0
W(u)du

)
.

In the examples considered above (i.e. renewal reward, ON–OFF, M/G/∞) we
have

var

(∫ λM

0
W(u)du

)
∼ Cλ3−α

M L(λM).

For fixed t , convergence of a−1
M W ∗

λM,M(t) follows from a classical limit theorem for
i.i.d. arrays. Indeed, for some δ > 0, using Hölder’s inequality and stationarity of
W(u),

E
[∣∣W ∗

λM,M(t)
∣∣2+δ]≤ (λMt)1+δ

∫ λMt

0
E
[∣∣W(u) − E

[
W(u)

]∣∣2+δ]
du ≤ C(λMt)2+δ

as long as E[|W(0)|2+δ] < ∞. In particular, this is fulfilled for the ON–OFF model
and both, renewal reward and M/G/∞, as long as E[Y 2+δ

1 ] < ∞.
If this is the case, we conclude that

M−δ/2
E[|W ∗

λM,M(t)|2+δ]
(var(

∫ λM

0 W(u)du))1+δ/2
∼ M−δ/2 (λMt)2+δ

λ
(3−α)(1+δ/2)
M L1+δ/2(λM)

.

For each t , the last expression converges to 0 as long as

λM = o
(
M1/(α−1+δ)

)
(4.197)

for some δ > 0.
For each t , we conclude the convergence of a−1

M W ∗
λM,M(t) to a normal distribu-

tion. The tightness follows clearly from

var
(
a−1
M W ∗

λM,M(t − s)
)= a−2

M M var

(∫ λM(t−s)

0
W(u)du

)
≤ C(t − s)3−α.
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Therefore, under the fast growth condition (4.197), we conclude the convergence to
an fBm. Of course, if we set λM = T , then, as M → ∞, condition (4.197) is clearly
fulfilled, and we may recover the convergence in the limT →∞ limM→∞ scheme.

Condition (4.197) is called a fast growth condition. Indeed, it means that the
number M of sources grows faster than the intensity λM , which as mentioned above,
can be interpreted as time.

It should be mentioned that in the original paper, Mikosch et al. (2002), the fast
growth for an M/G/∞ process is defined as

lim
T →∞λT T 1−α = ∞. (4.198)

On the other hand, the slow growth is defined as

lim
T →∞λT T 1−α = 0. (4.199)

Similar conditions are imposed in the ON–OFF (Mikosch et al. 2002) or renewal
reward context (Taqqu 2002, Pipiras et al. 2004). Roughly speaking, fast growth
corresponds to convergence to an fBm, whereas slow growth is responsible for a
stable convergence.

Furthermore, similar results to those presented here can be obtained for very gen-
eral Poisson shot-noise and cluster processes; see Klüppelberg et al. (2003), Klüp-
pelberg and Kühn (2004), Faÿ et al. (2006), Rolls (2010).

However, the picture may change if we consider more complicated models. In
particular, we may obtain an fBm limit even in a slow growth regime (see Mikosch
and Samorodnitsky 2007, Fasen and Samorodnitsky 2009).

Furthermore, if the limit in (4.199) is a finite, nonnegative constant, then the
limiting process is a fractional Poisson process, see Dombry and Kaj (2011).

4.10 Limit Theorems for Extremes

In this section we study the limiting behaviour of partial maxima based on a station-
ary sequence Xt (t ∈ Z). We start by recalling some basic results for i.i.d. sequences
and illustrating Fréchet and Gumbel domains of attraction. Then, for long-memory
sequences, we separate our discussion into the Gumbel and the Fréchet case. A pri-
mary example for the first situation is a stationary Gaussian sequence. We argue that
there is no influence of dependence (in particular, of long memory) on the limiting
behaviour of maxima (Berman 1964, 1971; Leadbetter et al. 1978, 1983; Buch-
mann and Klüppelberg 2005, 2006). On the other hand, there is no available theory
for general linear processes with long memory in the Gumbel case. Furthermore,
Breidt and Davis (1998) argue that maxima of Gaussian-based stochastic volatility
models (with possible long memory) behave as if the random variables were inde-
pendent.

Next, we turn our attention to the Fréchet domain of attraction. There, the main
tool is point process convergence studied in Sect. 4.3. As we will see, the rate of con-
vergence of maxima of linear processes (weakly or strongly dependent) is the same
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as for i.i.d. sequences, however, dependence implies that the so-called extremal in-
dex is smaller than one (Davis and Resnick 1985). On the other hand, extremes of
heavy-tailed stochastic volatility models (with possible long memory) behave again
like independent random variables (Davis and Mikosch 2001; Kulik and Soulier
2012, 2013).

These considerations in the Gumbel and Fréchet case may suggest that long mem-
ory does not play any role in the limiting behaviour of maxima. However, the pic-
ture is much more complicated. This will be illustrated by looking at the extremal
behaviour of general stationary stable processes in Sect. 4.10.3. That theory was
developed in Samorodnitsky (2004, 2006) and Resnick and Samorodnitsky (2004).

We start our discussion with a sequence Xt (t ∈ Z) of i.i.d. random vari-
ables with common distribution function F . Define partial maxima by Mn =
max{X1, . . . ,Xn}. The classical Fisher–Tippett theorem identifies three possible
limits for Mn. We refer to Chap. 3 in Embrechts et al. (1997) for further details
and examples.

Theorem 4.44 Assume that Xt (t ∈ Z) is a sequence of i.i.d. random variables. If
there exist constants cn > 0 and dn ∈ R and a non-degenerate distribution function
Λ such that

c−1
n

(
max{X1, . . . ,Xn} − dn

) d→ Λ,

then Λ is one of the following distributions: Fréchet, Weibull or Gumbel, defined by
the cumulative distribution functions

ΛFrechet(x) = exp
(−x−α

)
(x > 0, α > 0),

ΛWeibull(x) = exp
(−(−x)−α

)
(x < 0, α > 0),

ΛGumbel(x) = exp
(− exp(−x)

)
(x > 0).

Example 4.28 Assume that Xt (t ∈N) are standard normal. Choose cn = (2 lnn)−1/2

and

dn = 1

21/2

{
2(logn)1/2 − log logn + log(4π)

2
√

logn

}
.

Then the limiting distribution is Gumbel.

Example 4.29 Assume that Xt (t ∈N) fulfill

P(X1 > x) ∼ A
1 + β

2
x−α, P (X1 < −x) ∼ A

1 − β

2
x−α. (4.200)

(The left-tail behaviour is not needed here, however, we include it for completeness.)
Let Aβ = A

1+β
2 . Then,

P
(
(Aβn)−1/α max{X1, . . . ,Xn} ≤ x

)= Fn
(
A

1/α
β xn1/α

)= (1 − F̄
(
A

1/α
β xn1/α

))n
,
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where F̄ (x) = 1 − F(x). Hence, for n large enough,

P
(
(Aβn)−1/α max{X1, . . . ,Xn} ≤ x

)=
(

1 − x−α

n

)n

→ exp
(−x−α

)

as n → ∞. In this case dn = 0, cn = (Aβn)1/α , and the limiting law is Fréchet.

These examples identify two main classes of distributions and their correspond-
ing extreme value behaviour: (a) the class of regularly varying distributions, that is
F̄ (x) = x−αL(x) as x → ∞, where L is a slowly varying function; then the limit
is Fréchet; and (b) a class of (informally speaking) light-tailed distributions with
unbounded support, like normal, log-normal or Gamma; then the limit is Gumbel.
The first class is called the domain of attraction of the Fréchet law, and the second
one the domain of attraction of the Gumbel law. The third type, Weibull, appears
when the distribution has a bounded support, with a regularly varying behaviour at
a boundary. This case will not be discussed here.

In the context of the examples above, a natural question is what happens if we
drop the i.i.d. assumption. We will discuss this problem separately for the Fréchet
and Gumbel domains of attraction respectively.

4.10.1 Gumbel Domain of Attraction

It turns out that maxima of a (possibly LRD) Gaussian sequence Xt (t ∈N) behaves
as if the random variables Xt (t ∈N) were independent.

Theorem 4.45 Let Xt (t ∈ N) be a stationary Gaussian process with covariance
function γ (k) such that Berman’s condition holds:

lim
k→∞ log(k)γ (k) = 0. (4.201)

Then

c−1
n

(
max(X1, . . . ,Xn) − dn

) d→ ΛGumbel,

where cn = (2 logn)−1/2, and

dn = 1

21/2

{
2(logn)1/2 − log logn + log(4π)

2
√

logn

}
,

cf. Example 4.28.

Proof The proof is only sketched here; some additional technical details can be
found in Berman (1964) or Leadbetter et al. (1978, 1983).
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We start with the following special version of the normal comparison lemma (see
Lemma 3.2 in Leadbetter et al. 1983). For each y,

∣∣∣∣∣P
(
max{X1, . . . ,Xn} ≤ y

)−
n∏

t=1

P(Xt ≤ y)

∣∣∣∣∣

≤ Cn

n∑

k=1

∣∣γX(k)
∣∣ exp

(−y2/(1 + ∣∣γX(k)
∣∣)).

Next, let us fix x and define un = cnx + dn. Then, since cn → 0 and dn → ∞,
un ∼ dn as n → ∞. Furthermore,

d2
n = 2 logn + 1

8

(log logn + log(4π))2

logn
− log logn ∼ 2 logn − log logn.

Hence,

exp
(−u2

n/2
)∼ exp

(−d2
n/2
)∼ n−1

√
logn ∼ un√

2n
.

We may write

n
∣∣γX(k)

∣∣ exp

(
− u2

n

(1 + |γX(k)|)
)

= n
∣∣γX(k)

∣∣ exp
(−u2

n

)
exp

(
− u2

n|γX(k)|
(1 + |γX(k)|)

)
.

Let β > 0 and k > nβ . Define vn = supk≥nβ |γX(k)|. Note that

vnu
2
n ∼ 2vn log(n)2

logn

lognβ
vn lognβ = 2

β
vn lognβ → 0

as γ (n) log(n) → 0. We note that this is exactly the place that Breiman’s condition
plays a role. Therefore,

n

n∑

k=nβ

∣∣γX(k)
∣∣ exp

(
− u2

n

(1 + |γX(k)|)
)

≤ n exp
(−u2

n

)
vn

n∑

k=nβ

exp

(
u2

n|γX(k)|
(1 + |γX(k)|)

)

≤ n2 exp
(−u2

n

)
vn exp

(
u2

nvn

)≤ Cvnu
2
n exp

(
u2

nvn

)→ 0.

On the other hand, there exists δ > 0 such that 1 + |γX(k)| < 2 − δ. Then
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n
∑

k≤nβ

∣∣γX(k)
∣∣ exp

(
− u2

n

1 + |γX(k)|
)

≤ n
∑

k≤nβ

∣∣γX(k)
∣∣ exp

(
− u2

n

2 − δ

)

∼ nn−2/(2−δ)(logn)1/(2−δ)
∑

k≤nβ

∣∣γX(k)
∣∣≤ Cn1+βn−2/(2−δ)(logn)1/(2−δ)

since we may assume without loss of generality that |γX(k)| ≤ 1. The bound con-
verges to 0 when β < δ/(2 + δ). This finishes the proof. �

In Theorem 4.45 we considered a discrete-time process Xt (t ∈ Z). The result
can be extended to general continuous-time Gaussian processes, in particular to frac-
tional Brownian motion BH (u); see Berman (1971). Furthermore, the result extends
to stochastic differential equations driven by fBm. To illustrate this, we consider a
continuous-time process Y(u) (u ∈ R) that solves

Y(v) − Y(u) =
∫ v

u

μ
(
Y(s)

)
ds +

∫ v

u

σ
(
Y(s)

)
dBH (s) (u < v), (4.202)

where μ(·) and σ(·) > 0 are deterministic functions. We recall from Sect. 2.2.5.2
that if μ(x) = μ < 0, σ(x) = σ , then the solution is a fractional Ornstein–
Uhlenbeck process

Y(u) = FOU(u) = σ

∫ u

−∞
exp
(
μ(u − v)

)
dBH (v).

The general Berman theory applies and

c−1
T

(
max

0≤u≤T
FOU(u) − dT

)
d→ ΛGumbel,

where

cT = σ(−μ)−H
√

Γ (H + 1/2)(2 logT )−1/2,

dT = (Γ (H + 1/2))1/2

21/2(−μ)H

{
2(logn)1/2 + 1 − H

2H

log logT

(logT )1/2
+ C0

(logT )1/2

}

with a constant C0. We note that the rate of convergence does not depend on
the Hurst parameter H . This convergence can be treated as the counterpart to the
discrete-time situation in Theorem 4.45.

More generally, Buchmann and Klüppelberg (2005, 2006) study processes of
the form Yψ(u) = ψ(FOU(u)), where FOU(u) is a fractional Ornstein–Uhlenbeck
process, and ψ is a function. Under general conditions established in those papers,
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Yψ(u) solves (4.202), and the inverse function ψ−1 of ψ fulfills

ψ−1(u) =
∫ u

ψ(0)

ds

σ (s)
.

Furthermore, the authors give general conditions that guarantee

(
c∗
T

)−1
(

max
0≤u≤T

Yψ(u) − ψ(dT )
)

d→ ΛGumbel, (4.203)

where c∗
T is possibly different than cT . The form of c∗

T depends on assumptions
on ψ . For example, if

lim
y→∞

ψ(y + x/y) − ψ(y)

ψ(y + 1/y) − ψ(y)
= x,

then

c∗
T = 21/2(−μ)2H

Γ (2H + 1)

{
ψ

(
dT + 1

dT

)
− ψ(dT )

}
.

In particular, we can choose ψ(x) = exp(xq), q ∈ (0,2). Then (4.203) holds with c∗
T

as above. We note further that this is not applicable when q = 2. Then the limiting
distribution is Gumbel. Indeed, note that when Z is standard normal, then eZ2

has a
regularly varying tail and hence cannot belong to the Gumbel domain of attraction.
We refer to Buchmann and Klüppelberg (2005, 2006) for further results.

A natural question arises. Can we generalize the theorem above to linear pro-
cesses Xt =∑∞

k=0 akεt−k , where εt (t ∈ Z) belong to the domain of attraction of
the Gumbel law? The answer is affirmative for weakly dependent sequences. Davis
and Resnick (1988, p. 61; see also Rootzén 1986) show that if

P
(
c−1
n

(
max{ε1, . . . , εn} − dn

)
< x
)→d Λ(x),

then for the partial maxima of the linear process, we have

P
(
c−1
n

(
max{X1, . . . ,Xn} − dn

)
< x
)→d Λθ(x)

with some θ ∈ (0,1). The parameter θ is called the extremal index and describes the
contribution of dependence to the limiting law (see Embrechts et al. 1997 for more
details). However, the authors assumed, in particular, that

∑∞
k=0 |ak| < ∞, so that

long memory is excluded. At the moment there do not seem to be any results for
linear processes in the case of long memory.

Breidt and Davis (1998) study stochastic volatility models

Xt = ξtσt = ξt exp(ηt/2),

where ξt (t ∈ N) is an i.i.d. standard normal sequence, independent of the stationary
zero-mean Gaussian sequences ηt . After log-transformation, the sequence

Yt := logX2
t = ηt + log ξ2

t
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is represented as the sum of a stationary Gaussian sequence and the log of a χ2
1 ran-

dom variables. The tail of Yt has a complicated form, nevertheless it belongs to the
domain of attraction of the Gumbel law. A modification of the normal comparison
lemma allows us to prove the following result.

Theorem 4.46 Let Xt (t ∈N) be a stochastic volatility model

Xt = ξt exp(ηt/2),

where ξt (t ∈N) is an i.i.d. standard normal sequence, independent of the stationary
zero-mean Gaussian sequence ηt . Assume that the covariance function of ηt satisfies
Berman’s condition (4.201), and let Yt = logX2

t . Then

c−1
n

(
max(Y1, . . . , Yn) − dn

) d→ ΛGumbel,

where cn = (2 logn)−1/2,

dn ∼ 2ψ1(logn)1/2 + ψ2 log
(
(2 logn)1/2)− ψ3(2 logn)−1/2(log logn + ψ4) + ψ5,

where ψ1,ψ2,ψ3,ψ4 are positive constants, and c5 ∈ R.

We observe no influence of possible long memory in volatility on the limiting
behaviour of maxima. As for Gaussian sequences considered in Theorem 4.45, the
only difference appears in the form of the centering constants dn.

4.10.2 Fréchet Domain of Attraction

Recall Example 4.29. If the random variables are i.i.d. such that (4.200) holds, then
the limiting distribution is Fréchet. This result can also be obtained using point
processes. We recall from Sect. 4.3, Theorem 4.13, that

Nn :=
n∑

t=1

δ
c̃−1
n Xt

⇒
∞∑

l=1

δjl
=: N,

where jl are points of a Poisson process with intensity measure

dλ(x) = α

[
1 + β

2
x−(α+1)1{0 < x < ∞} + 1 − β

2
(−x)−(α+1)1{−∞ < x < 0}

]
dx,

(4.204)
and c̃n is such that P(|X1| > c̃n) ∼ n−1, that is c̃n ∼ A1/αn1/α . We note that the
event {max{X1, . . . ,Xn} ≤ x} is equivalent to {no points of Nn in (x,∞)}. Hence,
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for x > 0,

P
(
c̃−1
n max{X1, . . . ,Xn} ≤ x

)= P
(
Nn(x,∞) = 0

)→ P
(
N(x,∞) = 0

)

= exp

(
−
∫ ∞

x

dλ(u)

)
= exp

(
−1 + β

2
x−α

)
.

Changing the scaling from c̃n to cn = (Aβn)1/α , we immediately conclude

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

)→ exp
(−x−α

)= ΛFrechet(x).

This approach to extremes via point processes can be generalized to dependent se-
quences, including series with long memory.

We start with linear processes. As in Sect. 4.3, we assume that Xt =∑∞
k=0 akεt−k ,

where the random variables εt are i.i.d. with a regularly varying distribution, that is

P(ε1 > x) ∼ A
1 + β

2
x−α, P (ε1 < −x) ∼ A

1 − β

2
x−α. (4.205)

If α ∈ (1,2), we assume also that E(ε1) = 0. Of course, since εt are i.i.d.,

P
(
c−1
n max{ε1, . . . , εn} ≤ x

)→ exp
(−x−α

)= ΛFrechet(x),

where cn = (Aβn)1/α .
We saw in Sect. 4.3 that

P(X1 > x) ∼ DαP(ε1 > x), P (X1 < −x) ∼ DαP(ε1 < −x),

where the constant Dα =∑∞
j=0 |aj |α is assumed to be finite. Hence, if X∗

t (t ∈ Z)
is an i.i.d. sequence with the same marginal distribution as Xt , then with the same
cn = (Aβn)1/α ,

P
(
c−1
n max

{
X∗

1, . . . ,X∗
n

}≤ x
)→ exp

(−Dαx−α
)
. (4.206)

We note that the constant Dα does not play the role of the extremal index (for the
definition see e.g. Embrechts et al. 1997) because the i.i.d. random variables X∗

t have
the tail P(X1 > x) ∼ DαP(ε1 > x). The limiting distribution above will serve as a
benchmark for comparison with dependent linear processes Xt that have the same
marginal distribution as X∗

t . To do this, we will assume without loss of generality
that Dα = 1.

In Theorem 4.14 we showed, in particular, the following convergence of point
processes:

n∑

t=1

δ
c̃−1
n Xt

⇒
∞∑

l=1

∞∑

r=0

δjlar ,

where c̃n ∼ A1/αn1/α . Let us also assume for simplicity that all coefficients aj are
nonnegative. When restricted to (0,∞), the limiting Poisson process has the inten-
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sity measure (cf. Davis and Resnick 1985)

α
1 + β

2
aα+x−(α+1)dx,

where a+ = maxj aj . The same argument as described above for the i.i.d. case leads
to the following result on sample extremes for heavy-tailed processes with possible
long memory. Limiting behaviour of extremes follows directly from Lemma 4.19
and Theorem 4.14, under the assumptions therein.

Theorem 4.47 Let Xt (t ∈ Z) be a linear process where the innovations εt (t ∈ Z)
are i.i.d. random variables such that (4.205) holds and E(ε1) = 0 if α ∈ (1,2).
Suppose that either for some δ < α,

∞∑

j=0

|aj | +
∞∑

j=0

|aj |δ < ∞,

or aj ∼ caj
d−1, d ∈ (0,1 − 1/α), and εt (t ∈ Z) are symmetric with α ∈ (1,2).

Moreover, assume that Dα = 1 and aj ≥ 0. Then with cn = (Aβn)1/α ,

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

)→ exp
(−a+x−α

)
.

This result should be compared with the expression (4.206) for X∗
1, . . . ,X∗

n (with
Dα = 1). The additional term θ := a+ ∈ (0,1] in the limiting distribution in Theo-
rem 4.47 is the extremal index and describes the effect of dependence on the limiting
behaviour of extremes. Since the coefficients aj are positive, extreme values of the
sequence Xt are generated by large positive values of the sequence εt . If some of
the coefficients are negative, large positive values of Xt are possibly due to large
negative values of the innovations, and hence the extremal index will change:

θ = a+ + a−
1 − β

1 + β
,

where a− = max{max(−aj ),0}. We refer to Davis and Resnick (1985) and Em-
brechts et al. (1997) for more details.

We continue our discussion with heavy-tailed stochastic volatility models, as
studied in Sect. 4.3.4. We assume that Xt = ξtσt , where ξt are i.i.d. such that

P(ξ1 > x) ∼ A
1 + β

2
x−α, P (ξ1 < −x) ∼ A

1 − β

2
x−α. (4.207)

We will assume also for simplicity that the sequences σt and ξt are independent
from each other. Then, P(X1 > x) ∼ AE(σα

1 )
1+β

2 x−α . Hence, if X∗
1, . . . ,X∗

n are
independent copies of X1, then with cn = (Aβn)1/α ,

P
(
c−1
n max

{
X∗

1, . . . ,X∗
n

}≤ x
)→ exp

(−E
(
σα

1

)
x−α

)
.
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Again, the constant E(σα
1 ) is related the to marginal behaviour of Xt , not to the

dependence structure. In Theorem 4.18 we concluded that the point process based
on X1, . . . ,Xn has the same limit as for the corresponding i.i.d. copies X∗

1, . . . ,X∗
n.

Directly from Theorem 4.18 we conclude that the limiting behaviour maxima asso-
ciated with heavy-tailed stochastic volatility models is the same as in the i.i.d. case.
There is no influence of any dependence in volatility.

Theorem 4.48 Consider the LMSV model Xt = ξtσt (t ∈ N) such that (4.207), the
Breiman condition (4.94) and E(σα+ε

1 ) < ∞ with some ε > 0 hold. Also, assume
that σt (t ∈N) is ergodic. Then

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

)→ exp
(−E

(
σα

1

)
x−α

)
.

4.10.3 Stationary Stable Processes

Samorodnitsky (2004, 2006) considers a general stationary symmetric α-stable
(SαS) process Xt that can be represented by Xt = ∫ gt (s) dM(s), where M is an
SαS random measure. As mentioned in Sect. 1.3.6.3, such processes can be de-
composed into a dissipative and a conservative part. As we will indicate below, the
dissipative part has no influence on the limiting behaviour of maxima, whereas the
conservative part does.

Rosiński (1995) argues that the class of ergodic SαS processes that are gen-
erated by the dissipative flow coincides with the class of moving averages Xt =∫

gt (s) dM(s) = ∫ g(t − s) dM(s). In particular, consider a Linear Fractional Sta-
ble Motion

ZH,α(u) =
∫ ∞

−∞
Qu,1(x;H,α)dZα(x), (4.208)

where Zα(·) is a symmetric α-stable (SαS) Lévy process,

Qu,1(x;H,α) = c1
[
(u−x)

H−1/α
+ −(−x)

H−1/α
+

]+c2
[
(u−x)

H−1/α
− −(−x)

H−1/α
−

]
,

(4.209)
and H > 1/α. Let Xt = ZH,α(t) − ZH,α(t − 1). Samorodnitsky (2004) proves that
in this case

P
(
n−1/α max{X1, . . . ,Xn} ≤ x

)→ exp
(−Cx−α

)
,

where C is a positive constant. Hence, the rate of growth of maxima is the same as in
the i.i.d. case. We observed this already in the case of moving averages considered
in Theorem 4.47.

In contrast, a simple (non-ergodic) example of an SαS process generated by the
conservative flow is given by Xt = Z1/βεt , (t ∈ N), where Z is a strictly positive
α/β-stable random variable, and εt is a sequence of i.i.d. symmetric Sβ(1,0,0)

random variables, independent of Z, and 0 < α < β < 2. Then, marginally, the
random variables Xt are α-stable.
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We recall that the β-stability and symmetry of random variables εt yield

P(ε1 > x) ∼ 1

2
Cβx−β,

cf. (4.75). Choosing cn = (Cβ/2)1/βn1/β , we have

P
(
c−1
n max{X1, . . . ,Xn} ≤ x

)= E
[
P
(
c−1
n max{ε1, . . . , εn} ≤ Z−1/βx|Z)]

→ E
[
exp
(−x−αZα/β

)]
.

Hence, even though the random variables Xt are α-stable, the scaling involves β ,
not α. In other words, maxima grow slower than in the i.i.d. case. This is a general
pattern for stable processes generated by a dissipative flow. We refer to Samorodnit-
sky (2004, 2006) and Resnick and Samorodnitsky (2004) for further details.
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