
Chapter 10
Resampling

10.1 General Introduction

Resampling or bootstrap methods refer to techniques where statistical inference is
based on a simulated distribution of a statistic Tn obtained by resampling from an
observed sample X1, . . . ,Xn. Inference of this type is always conditional on the
sample. In the most general version, no model assumptions are used except for
global conditions such as stationarity, existence of some moments, etc. In the most
restricted version, a parametric model is specified and resampling is used only as
a simple way of obtaining an approximate distribution of Tn. Note that different
terms such as ‘bootstrap’, ‘resampling’, ‘subsampling’, etc. are used in the litera-
ture for different variations of the same general idea. Since there does not seem to
be a unified terminology, we use ‘resampling’ and ‘bootstrap’ as synonyms.

The original bootstrap (Efron 1979) was developed for i.i.d. data. Under the
i.i.d. assumption, only the marginal distribution is unknown. Suppose, for in-
stance, that we are interested in inference about the location parameter μ, given
the observed data Yn = (Y1, . . . , Yn) where Yj = μ + Xj ∈ R and Xj are i.i.d.
with distribution FX . If we estimate μ by the sample mean Tn = ȳ, then we can
write Tn as a functional Tn(Fn) = ∫

udFn(u) of the empirical distribution func-
tion Fn(x) = n−1 ∑

1{Yj ≤ x}. If the distribution function FY (x) = FX(x − μ)

of Y were known, then, in principle, the distribution of Tn could be calcu-
lated exactly by evaluating the n-dimensional integral FTn(x) = P(Tn ≤ x) =∫
A

dFY (y1) dFY (y2) · · · dFY (yn) where A = {y ∈ R
n : y1 + · · · + yn ≤ nx}. Usu-

ally, FY is unknown and is therefore replaced by an estimate F̂Y . One then has to
evaluate F̂Tn(x) = P̂ (Tn ≤ x) = ∫

A
dF̂Y (y1) dF̂Y (y2) · · · dF̂Y (yn). In most cases,

the numerical evaluation of high dimensional integrals is difficult. The easiest al-
ternative is Monte Carlo approximation which means that we approximate F̂Tn by
a simulated distribution, say F̂ ∗

Tn
, based on a sufficiently large sample of i.i.d. val-

ues T ∗
n,1, . . . , T

∗
n,N with T ∗

n,j ∼ F̂Tn . This can be done without actually computing

F̂Tn directly (after all that is what we wanted to avoid), namely by resampling. In-
dependent samples Y ∗

n,j = {Y ∗
1,j , . . . , Y

∗
n,j } (j = 1,2, . . . ,N ) are simulated and the
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sample means T ∗
n,j = n−1 ∑n

i=1 Y ∗
i,j = Tn(F

∗
n,j ) (with F ∗

n,j denoting the empirical
distribution function of Y ∗

1,j , . . . , Y
∗
n,j ) are computed. For each j , the values Y ∗

i,j

(i = 1,2, . . . , n) are obtained by simulating n independent realizations of a random
variable Y ∗ ∼ F̂Y . If F̂Y is equal to the empirical distribution function Fn, then this
is the same as drawing Y ∗

i,j (i = 1,2, . . . , n) randomly with replacement (and equal

probability n−1) from the original set of observations {Y1, . . . , Yn}.
Resampling procedures can thus be considered as a simulation device to obtain

an approximate distribution function of a statistic Tn. It should be noted here that the
sample mean is a relatively simple statistic because it can be expressed explicitly as a
function of Y1, . . . , Yn. Many estimators in statistics are defined by equations that do
not lead to an explicit expression for Tn and FTn . For example, most non-Gaussian
maximum likelihood estimators, M-estimators or minimum contrast estimators are
defined as solutions of nonlinear equations for which no explicit solution exists.
This makes resampling procedures even more useful because explicit expressions
are not required.

The obvious question is how accurate a bootstrap approximation F̂ ∗
Tn

of FTn is
and, in fact, whether it works at all. Usually, if Tn is an appropriately standard-
ized statistic, then it converges in distribution to a certain nondegenerate random
variable Z ∼ FZ . For instance, in the i.i.d. example above, we may redefine Tn as
Tn = √

n(ȳn − μ)/σ which converges to a standard normal variable, provided that
σ 2 = var(Xj ) is finite. The asymptotic distribution FZ is a natural competitor of the
bootstrap approximation F̂ ∗

Tn
. Since FZ is exactly correct asymptotically, the first

requirement is that the same is true for F̂ ∗
Tn

. This is also called ‘validity’ of the boot-

strap procedure. Thus, one needs to prove that F̂ ∗
Tn

converges to FZ as n tends to
infinity. Once validity is shown, the next question is why we should prefer to use
F̂ ∗

Tn
instead of the asymptotic distribution FZ . There are at least two possible rea-

sons: (i) FZ may be complicated or unknown, (ii) F̂ ∗
Tn

may be more accurate than
the asymptotic distribution FZ .

The first reason is certainly relevant in the context of long-range dependence. For
instance, under Gaussian subordination with Hermite rank two or higher, asymptotic
distributions of normalized sums are marginals of non-Gaussian Hermite processes.
These distributions are rather complicated and, in practice, we actually do not even
know which one applies because the Hermite rank is an unknown quantity (in fact,
we do not even know whether Gaussian subordination applies). Also, even in the
case of a Gaussian limit (i.e. Hermite rank one), the exponent of n in the standard-
ization is unknown and the normalizing constant (or even a slowly varying function)
may be complicated. Resampling procedures based on self-normalized statistics that
avoid explicit estimation of this exponent (and the constant or slowly varying func-
tion) provide a simple alternative to more explicit model based approaches. Other
examples where FZ may be complicated are encountered in the context of stable
laws (see below).

To justify the second reason for using F̂ ∗
Tn

, namely improved accuracy, more

refined asymptotic results are required since convergence of F̂ ∗
Tn

to FZ (which is
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a basic prerequisite for considering F̂ ∗
Tn

at all) does not automatically imply that,

compared to FZ , F̂ ∗
Tn

is closer to the true finite sample distribution FTn . Suppose that

FTn(x) = FZ(x) + an(x) + o(an) (with an = o(1)) and FTn(x) = F̂ ∗
Tn

(x) + bn(x) +
op(bn). (Note that in contrast to an(x), bn(x) is random because F̂ ∗

Tn
(x) is calculated

conditionally on the observed sample.) For validity it is sufficient to show that b̃n =
supx |bn(x)| = op(1). To prove that F̂ ∗

Tn
is more accurate than FZ , one needs to

make a second order comparison. Such comparisons are usually based on Edgeworth
expansions (see, e.g. Hall 1992). In many situations, it is indeed possible to show
that b̃n = op(an) which means that the bootstrap error is of a smaller order than
the one of the asymptotic approximation. The implications of such an improvement
are often clearly visible. For instance, if FX in the i.i.d. example above is highly
skewed, then the distribution of Tn = √

n(ȳn −μ)/σ can be highly skewed too, even
for relatively large sample sizes. In such a case, an approximation by the standard
normal distribution FZ is inappropriate whereas a bootstrap distribution tends to
mimic the asymmetry of FTn rather well.

The validity and accuracy of resampling techniques is fairly well understood in
the i.i.d. case (see, e.g. Hall 1992; Politis et al. 1999; Lahiri 2003, and references
therein). Once the assumption of independence is abandoned, further complications
arise because the marginal distribution is not the only unknown quantity. In full
generality, a statistic Tn is a functional of the complete joint n-dimensional distri-
bution FYn

(y1, . . . , yn) = P(Y1 ≤ y1, . . . , Yn ≤ yn). The question how to resample
from an observed series Yn = (Y1, . . . , Yn) is therefore much more difficult. First
of all, we have one observation only (namely Yn itself) from the n-dimensional
distribution FYn

so that no consistent estimate of FYn
is available, unless certain as-

sumptions are imposed. This is, of course, a general problem of statistical inference
for stochastic processes, and led, already in the early days of time series analysis, to
the introduction of properties such as stationarity and ergodicity. Most of the resam-
pling theory for stochastic processes is concerned with the question under what kind
of general conditions bootstrap works, which modifications are required to ensure
validity and how to improve the second-order error. The original approach of draw-
ing individual observations Y ∗

i,j (i = 1,2, . . . , n) independently with replacement
from {Y1, . . . , Yn} does not provide valid results in general because the dependence
structure is removed completely by the resampling scheme.

There are two main ideas how to solve this problem. The first approach is to
resample whole blocks Br = (Yr , . . . , Yr+l−1) of adjacent observations instead of
individual values. By letting the block length l tend to infinity such that at the same
time l/n → 0, an infinite time horizon is captured ultimately within each block
while at the same time the number of blocks (and thus the number of items to re-
sample from) also tends to infinity. Methods of this type are also called block or
blockwise bootstrap or subsampling. The problem is, of course, that in general FTn

depends on the complete n-dimensional distribution FYn
whereas the subsampling

procedure essentially relies on estimating the lower-dimensional probability func-
tion FYl

. Although l tends to infinity, we also have l = o(n). It is therefore not clear
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a priori whether information about the dependence structure beyond lag l is asymp-
totically negligible when characterizing the distribution of Tn(FYn

), and in how far
it matters that FYl

actually has to be estimated as well. As it turns out, the main
dividing line is between short and long memory. The validity and second-order ac-
curacy of relatively simple versions of blockwise subsampling can be established
under short-memory assumptions (Carlstein 1986; Künsch 1989; Politis and Ro-
mano 1993). This is not the case in general for long-memory processes although
some modifications of blockwise resampling work under certain specific assump-
tions (see below).

A second approach to adapting bootstrap to dependent data consists of remov-
ing all or some of the dependence before applying resampling. Resampling meth-
ods based on this principle are subsumed under the name ‘sieve bootstrap’. For
instance, under the assumption that a causal linear process Yt = ∑

aj εt−j (with
εt i.i.d.) is observed, one may use a sequence of autoregressive filters Φn(B) =
1 − ϕ1,nB − · · · − ϕpn,nB

pn with pn → ∞ and ϕj,n estimated by minimizing the
least squares criterium

∑
(Yt −Φn(B)Yt )

2. Resampling is then applied to the resid-
ual process et,n = Φn(B)Yt . Under suitable short-memory conditions, it can be
shown that with pn → ∞ it is possible to approximate the actual i.i.d. residuals εt

with sufficient accuracy (for early literature on autoregressive fitting with pn → ∞,
see, e.g. Parzen 1974; Berk 1974; Hannan and Deistler 1988; also see Shibata 1980
for the connection to optimal prediction and Akaike’s information criterion). Note
that, if the order pn is kept fixed, then we are relying on the stronger assumption
that Yt is generated by a finite-order autoregressive process. This is a special case of
a ‘parametric bootstrap’. Validity and second-order accuracy of the sieve bootstrap
have been established under short-memory conditions (see, e.g. Bühlmann 1997,
2002, and references therein). In general, sieve methods rely on more restrictive as-
sumptions than blockwise bootstrap because the choice of the preprocessing device
has to be appropriate. On the other hand, if the assumptions are correct, then the
sieve bootstrap tends to provide more accurate approximations (see, e.g. Choi and
Hall 2000).

While both approaches (blockwise and sieve) are quite well understood under
short-memory conditions, the situation is more difficult in the presence of long
memory. Generally, the validity of standard blockwise methods no longer holds,
unless specific modifications are applied (see, e.g. Lahiri 1993, 2003; Hall et al.
1998; Nordman et al. 2006). The easiest situation is encountered for the parametric
bootstrap where not only validity but also improved second-order accuracy has been
established for certain classes of estimators under long-memory conditions (see, e.g.
Andrews et al. 2006; Andrews and Lieberman 2005). Similar results are available
for the sieve bootstrap based on autoregressive fitting as above with pn → ∞ such

that n
1
2 −d(logn)

1
2 −dpn → 0 (Poskitt 2007a, 2007b). Note that the results in Poskitt

(2007a, 2007b) are also interesting from the point of view of parameter estimation
for a long-memory process because it is shown that the fitted AR-coefficients ϕj,n

converge to the coefficients aj in the Wold representation with a simultaneous bound
on the estimation error |ϕj,n −aj | (j = 1,2, . . . , pn). This is achieved without using
fractional differencing or direct estimation of the fractional differencing parameter
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d (in contrast to comparable AR-fitting methods such as Bhansali et al. 2006; see
Sect. 5.9.3).

In the following sections, a few selected resampling methods will be discussed
in more detail in the context of long-range dependence. For further literature on
resampling methods and Edgeworth expansions for long-memory processes, see,
e.g. Lahiri (2003), and references given in Lieberman et al. (2001, 2003), Giraitis
and Robinson (2003), Faÿ et al. (2004), Lieberman and Phillips (2004), Andrews
and Lieberman (2005), Nordman and Lahiri (2005), Andrews et al. (2006), McElroy
and Politis (2007), Poskitt (2007a, 2007b), Jach et al. (2012), Kim and Nordman
(2011).

10.2 Some Basics on Bootstrap for i.i.d. Data

Let Yn = {Y1, . . . , Yn} be a sample from the distribution F . Note that at this moment
we do not assume any particular dependence structure of the original sequence Yj

(j ∈ N), except that the marginal distribution is the same. The simplest bootstrap
procedure starts with drawing a sample Y ∗

1 , . . . , Y ∗
n with replacement from Yn. Con-

ditionally on Yn, the random variables Y ∗
1 , . . . , Y ∗

n are i.i.d., no matter what the
original model is. Moreover,

P∗
(
Y ∗

1 = Yj

) := P
(
Y ∗

1 = Yj |Yn

) = 1/n, j = 1, . . . , n,

which means that the common (random) distribution function of Y ∗
j (j = 1,2, . . . , n)

is equal to the empirical distribution function

Fn(x) = 1

n

n∑

j=1

1{Yj ≤ x}.

To keep things simple, we consider estimation of the expected value μ = E(Y1)

by the sample mean Ȳn. Denote by Ȳ ∗
n = n−1 ∑n

j=1 Y ∗
j the bootstrap sample mean.

Also, let E∗ be the expectation w.r.t. P∗. We have the following moment properties:

E∗
(
Y ∗

i

) =
∫

x dFn(x) = 1

n

n∑

j=1

Yi = Ȳn,

E∗
(
Ȳ ∗

n

) = E
(
Ȳ ∗

n |Yn

) = 1

n

n∑

j=1

E(Yj |Yn) = Ȳn,

E
(
Ȳ ∗

n

) = E
[
E

(
Ȳ ∗

n |Yn

)] = E(Ȳn) = E(Y),

var∗
(
Y ∗

i

) =
∫

x2 dFn(x) −
(∫

x dFn(x)

)2

= 1

n

n∑

j=1

Y 2
j −

(
1

n

n∑

j=1

Yj

)2

=: s2,
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and recalling that Y ∗
j are conditionally independent,

var∗
(
Ȳ ∗

n

) = 1

n
var∗

(
Y ∗

1

) = s2

n
. (10.1)

Let us now focus on the case where Y1, . . . , Yn are i.i.d. observations with a finite
variance. The standardized sample mean is asymptotically standard normal, i.e.

Tn = Ȳn − μ
√

var(Ȳn)
= √

n
Ȳn − μ√
var(Y1)

d→ N(0,1). (10.2)

In the bootstrap approach, the initial population one sampled from is replaced by
Yn. Thus, the bootstrap version of Tn is obtained by replacing Ȳn by the boot-
strap sample mean Ȳ ∗

n , the population mean μ by the bootstrap population mean
E∗(Y ∗

1 ) = Ȳn, and the population variance var(Y1) by the bootstrap population vari-
ance var∗(Y ∗

1 ) = s2. The bootstrap version of Tn is therefore given by

T ∗
n = Ȳ ∗

n − E∗(Y ∗
1 )

√
var∗(Ȳ ∗

n )

= √
n

Ȳ ∗
n − E∗(Y ∗

1 )
√

var∗(Y ∗
1 )

= √
n
Ȳ ∗

n − Ȳn

s
. (10.3)

Since Ȳn converges in probability to μ and the denominator converges in probability
to

√
var(Y ), T ∗

n has the same behaviour as Tn asymptotically. More specifically, the
following lemma justifies validity of the bootstrap for i.i.d. data with a finite variance
(see, e.g. Lahiri 2003, Theorem 2.1).

Lemma 10.1 Assume that Y1, . . . , Yn are i.i.d. with var(Yi) < ∞. Then

sup
x

∣
∣P∗

(
T ∗

n ≤ x
) − Φ(x)

∣
∣ = op(1),

where Φ(x) is the standard normal distribution.

10.3 Self-normalization

Consider Yj = μ+Xj (j ∈N) with Xj a stationary zero-mean sequence and assume
that after suitable standardization the sample mean converges to a nondegenerate
random variable Z, or in other words,

Tn :=
∑n

j=1 Yj − nμ

vn

= n

vn

(Ȳn − μ)
d→ Z ∼ FZ (10.4)

where FZ is a nondegenerate distribution. Usually, the choice of vn is v2
n =

var(
∑n

j=1 Yj ), provided that this quantity exists. In the i.i.d. case with finite vari-

ance, we have v2
n = n · var(X1) and Z standard normal. Usually, vn has to be es-

timated. In some situations, vn is not even computable or requires an additional
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estimation step. For example, if the random variables Xj are i.i.d. with a regularly
varying distribution with index −α (α ∈ (0,2)), then vn = n1/αL(n) where L(n)

is a slowly varying function, and Z is a stable random variable. Thus, in principle,
we would need to estimate α (and even the slowly varying function L) before com-
puting Tn. Often, it is possible to replace vn by a data-based normalizer Vn without
explicit estimation of model specific quantities, such as α or L. For example, for
i.i.d. data (both with finite and infinite variance), we can replace vn by the square
root of V 2

n = n−1 ∑n
j=1(Yj − Ȳn)

2. Given a data-based normalizer Vn we then con-
sider the ‘self-normalized’ statistic

Un :=
∑n

j=1 Yj − nμ

Vn

= n

Vn

(Ȳn − μ). (10.5)

The choice of the normalizer Vn has to be modified for dependent sequences to
guarantee that Vn/vn converges to one in probability.

Denote by Z0 the limit of Un. If Z in (10.4) is normal, then Z0 is also a standard
normal variable. In general, however, the distributions of Z and Z0 can be quite
complicated, and may even differ. For example, if the data are i.i.d. with infinite
variance, then Z is a stable random variable, but Z0 is different. To see this, assume
that Xj (j ∈ N) are i.i.d. and regularly varying with index −α. Consider

Wn := n

Vn

(Ȳn − μ) (10.6)

where

V 2
n =

n∑

j=1

(Yj − Ȳn)
2.

We note that the random variables Y 2
j (j ∈ N) are regularly varying with index

−α/2 and thus have an infinite mean. In particular, n−2/α
∑n

j=1(Yj − Ȳn)
2, and

hence n−1/αVn converges to a stable random variable. This implies that

Wn = n−1/α
∑n

j=1(Yj − μ)

n−1/αVn

converges to a ratio R of two dependent stable random variables. In principle, we
may use this information to construct confidence intervals for μ of the form

[
Ȳn − z1− 1

2 p0
n−1Vn, Ȳn − z 1

2 p0
n−1Vn

]
,

where zp denotes the (100p)th percentile of R. However, these percentiles may not
be easily computable. Resampling methods are useful to overcome this problem.
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10.4 The Moving Block Bootstrap (MBB)

Lemma 10.1 provides validity of the bootstrap procedure in the case of i.i.d. data
with existing second moments. Now we turn our attention to the case of dependent
data. Assume that Yj = μ + Xj (j ∈ N) is a stationary sequence of random vari-
ables with short memory and σ 2 := var(Y ) < ∞. Then convergence (10.2) has to
be replaced by

√
n
Ȳn − μ

σ0

d→ N(0,1), (10.7)

with

σ 2
0 = var(Y ) + 2

∞∑

k=1

cov(Y0, Yk). (10.8)

However, as mentioned above, sampling with replacement from Yn produces con-
ditionally independent random variables. Therefore, if we use T ∗

n defined in (10.3),
then the result in Lemma 10.1 still applies. This contradicts (10.7) so that the boot-
strap procedure is no longer valid (except in the special case of uncorrelated ob-
servations). The asymptotic variance of bootstrap replicates is wrong by the factor
(σ0/σ)2. The reason is that the bootstrap procedure cannot recreate var(Ȳn). More
exactly, recall that var∗(Ȳ ∗

n ) = s2/n (10.1). The expected value of the conditional
variance is then equal to

E
[
var∗

(
Ȳ ∗

n

)] = 1

n

{

E
(
Y 2)− 1

n2

n∑

j,j ′=1

E(YjYj ′)

}

= 1

n

{
var(Y )−var(X̄n)

}
. (10.9)

Since var(X̄n) → 0 (except for degenerate cases that are not of interest here), the
expected variance is approximately equal to

E
[
var∗

(
Ȳ ∗

n

)] ∼ 1

n
var(Y ) = σ 2

n
.

This is in contrast to

var(Ȳn) ∼ σ 2
0

n
.

To obtain a valid bootstrap procedure, a suitable modification is required. One
of the possible solutions is the so-called Moving Block Bootstrap (MBB) (Carl-
stein 1986; Künsch 1989). To preserve most of the dependence structure, we sam-
ple (with replacement) blocks B∗

1 , . . . ,B∗
k from the set of all available blocks

Br = (Yr , . . . , Yr+l−1) (r = 1, . . . ,Nb; Nb = n − l + 1) instead of sampling single
observations. A bootstrapped sample Y ∗

1 , . . . , Y ∗
n is generated by pasting k = [n/l]

sampled blocks B∗
1 , . . . ,B∗

k next to each other. Note that, by definition, B∗
r =

(Y ∗
(r−1)l+1, . . . , Y

∗
rl) (r = 1, . . . , k). For example, if k = 2 and blocks, say, B1 and
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B3 are selected, then the bootstrap sample is

(
Y ∗

1 , . . . , Y ∗
l , Y ∗

l+1, . . . , Y
∗
2l

) = (Y1, . . . , Yl, Y3, . . . , Yl+2).

Also note that the actual length of the bootstrapped series is ñ = kl = [n/l]l (where
[n/l] denotes the largest integer not exceeding n/l), but the difference between ñ

and n is negligible asymptotically. We will therefore write n = kl for simplicity.
Denote by

ζr = ζr,l =
∑

j∈Br

Yj =
r+l−1∑

j=r

Yj

(r = 1,2, . . . ,Nb) the block sums and by

ζ ∗
r = ζ ∗

r,l =
∑

j∈B∗
r

Y ∗
j =

rl∑

j=(r−1)l+1

Y ∗
j

the corresponding bootstrapped quantities (the index l will be dropped unless it
needs to be emphasized). The bootstrap mean is given by

Ȳ ∗
n = n−1

n∑

j=1

Y ∗
j = 1

k

k∑

r=1

1

l
ζ ∗
r,l = 1

k

k∑

r=1

(
1

l

rl∑

j=(r−1)l+1

Y ∗
j

)

.

When drawing block B∗
r , each of the blocks Bs (s = 1, . . . ,Nb) has the same prob-

ability of being chosen. Thus, for any r ∈ {1, . . . , k},

P∗
(
B∗

r = Bs

) = 1

Nb

(s = 1, . . . ,Nb) (10.10)

so that

E∗
(
Ȳ ∗

n

) = E∗
[

1

k

k∑

r=1

(
1

l

∑

Y ∗
j ∈B∗

r

Y ∗
j

)]

= 1

Nb

Nb∑

r=1

(
1

l

∑

Yj ∈Br

Yj

)

= 1

Nbl

Nb∑

r=1

r+l−1∑

j=r

Yj

= 1

Nb

Nb∑

r=1

1

l
ζr,l .

Note that, if l/n → 0 fast enough, then E∗(Ȳ ∗
n ) may be approximated by the sample

mean Ȳn because all variables Yj occur in the sum l times except for l observations
on the left and right border, respectively.
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Now, recalling that the blocks are conditionally independent, the conditional vari-
ance of the bootstrap mean is

var∗
(
Ȳ ∗

n

) = var∗

(
1

k

k∑

r=1

1

l
ζ ∗
r

)

= k

(kl)2
var∗

(
ζ ∗
r

) = k

(kl)2
var∗

(
l∑

j=1

Y ∗
j

)

= k

n2

{
1

Nb

Nb∑

r=1

(
r+l−1∑

j=r

Yj

)2

−
(

1

Nb

Nb∑

r=1

r+l−1∑

j=r

Yj

)2}

.

For the unconditional expected value of the variance, we may assume, without loss
of generality, that μ = 0. Then the second term does not contribute asymptotically,
and we obtain

E
[
var∗

(
Ȳ ∗

n

)] ∼ k

n2
E

[(
l∑

j=1

Yj

)2]

= 1

nl
var

(
l∑

j=1

Yj

)

.

If the stationary sequence Yj has short memory and n, l → ∞ such that l/n → 0,
this leads to

E
[
var∗

(
Ȳ ∗

n

)] ∼ 1

nl
σ 2

0 l = σ 2
0

n
,

where σ0 is given in (10.8). Therefore, the bootstrap variance of the bootstrap mean
is asymptotically the same as var(Ȳn) and the MBB bootstrap statistic

T ∗
n = Ȳ ∗

n − E∗(Y ∗
1 )

√
var∗(Ȳ ∗

n )

has the same asymptotic distribution as Tn = (Ȳn − μ)/σ0.
However, if the random variables Xj (j ∈ N) are Gaussian with autocovariance

function γX(k) ∼ Lγ k2d−1 (0 < d < 1
2 ), then

var(Ȳn) ∼ n−2v2
n

and

Tn = n(Ȳn − μ)

vn

d→ N(0,1)
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where v2
n = n2d+1LS with LS = C1Lγ (Sect. 4.2.2). On the other hand,

E
[
var∗

(
Ȳ ∗

n

)] ∼ k

n2
E

(
l∑

j=1

Yj

)2

= 1

nl
var

(
l∑

j=1

Yj

)

∼ C
1

nl
l2d+1 = C

l2d

n
.

Thus

E[var∗(Ȳ ∗
n )]

var(Ȳn)
∼ const

(
l

n

)2d

→ 0

and

Ȳ ∗
n − E∗(Ȳ ∗

n )
√

var(Ȳn)
= Ȳ ∗

n − E∗(Ȳ ∗
n )

√
var∗(Ȳ ∗

n )

√
var∗(Ȳ ∗

n )

var(Ȳn)
= T ∗

n

√
var∗(Ȳ ∗

n )

var(Ȳn)
→ 0.

This means that the MBB bootstrap heavily underestimates the variability of the
sample mean Ȳn such that the asymptotic coverage probabilities of bootstrap con-
fidence intervals for μ are zero. The reason is that too much of the long-memory
property is lost by pasting together independent blocks. In the short-memory case,
the rate of

∑n
t=1 Yt is Op(

√
n) which is the same as for i.i.d. data, and therefore

also the same as for
∑k

r=1 ζ ∗
r = Op(

√
kl) with kl = n. The error in the standardiza-

tion is only a multiplicative constant that can be made arbitrarily small by letting l

tend to infinity. This is no longer the case under long memory because independent

sampling of blocks changes the rate of the original sum
∑n

t=1 Yt = Op(nd · n
1
2 )

to the smaller rate of the bootstrapped sum given by
∑k

r=1 ζ ∗
r = Op(k

1
2 ld+ 1

2 ) =
Op(ld · n 1

2 ).
A simple remedy to make the MBB bootstrap work in the long-memory con-

text is suggested in Lahiri (1993). Instead of using the sample mean directly, we
consider a statistic that takes into account independence introduced by blockwise
resampling. This can be done by adjusting the standardization accordingly. As be-
fore k = [n/l] blocks B∗

1 , . . . ,B∗
k are sampled independently with replacement, but

we now consider the correctly standardized statistic

T̃ ∗
n = k− 1

2

k∑

r=1

ζ ∗
r − l · E∗(Y ∗

1 )

vl

= k− 1
2

k∑

r=1

l−d− 1
2
ζ ∗
r − l · E∗(Y ∗

1 )
√

C1Lγ

,
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or

T̃ ∗
n = k− 1

2

k∑

r=1

l−d− 1
2
ζ ∗
r − l · Ȳn√

C1Lγ

.

Since T̃ ∗
n is equal to k− 1

2 times a sum of k independent equally distributed stan-
dardized variables, the central limit theorem holds and one can even show uniform
convergence (Lahiri 1993)

sup
x∈R

∣
∣P∗

(
T̃ ∗

n ≤ x
) − Φ(x)

∣
∣ = op(1).

This result has to be interpreted with care, however, because we are dealing with
the case of long memory. For instance, consider the Gaussian subordination model
Yj = μ + G(Xj ) where Xj is a stationary Gaussian process with E(Xj ) = 0,
var(Xj ) = 1, E[G(Xj )] = 0 and autocovariance function γX(k) ∼ Lγ (k)|k|2dX−1

(as k → ∞) for some 0 < dX < 1
2 . If G has Hermite rank one, then the standardized

sample mean converges to a standard normal variable and the standardization is the
same as in T̃ ∗

n . In this sense, validity of the modified MBB procedure is established.
However, if G has a Hermite rank m higher than one and dX > 1

2 (1−m−1), then the
asymptotic limit of the standardized sample mean is non-Gaussian. This means that
the modified MBB is no longer valid. The question then arises why the modified
MBB should be used at all. The reason is obviously not a complicated asymptotic
distribution since validity holds only in the case where the asymptotic distribution is
normal. As discussed previously, another possible motivation for using resampling
is a better approximation of finite sample distributions. In how far the conditional
distribution of T̃ ∗

n does indeed provide a better approximation of the distribution
of Tn has not yet been fully explored in the long-memory context. However, the
idea of a modified MBB can be extended to other problems where the definition of
a bootstrap based statistic with known asymptotic distribution is useful in its own
right. For instance, Beran and Shumeyko (2012b) develop an MBB based test of the
null hypothesis that a nonparametric trend function is continuous (see Sect. 10.7.2
below).

10.5 The Sampling Window Bootstrap (SWB)

As we saw above, the modified MBB is not valid under Gaussian subordination
unless the Hermite rank of G is one. The reason is that independent sampling of
blocks automatically entails the central limit theorem, independently of the Hermite
rank. A natural idea to solve this problem is to avoid independent resampling. In
the so-called sampling window (SW) approach, independent sampling of blocks is
replaced by including all available blocks with equal weight in an empirical distri-
bution function.

To be specific, we consider as before estimation of μ for the process Yj =
μ + G(Xj ) where G has Hermite rank m, and Xj (j ∈ N) is a stationary Gaussian
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sequence with E(Xj ) = 0, var(Xj ) = 1 and autocovariances γX(k) ∼ Lγ (k)k2dX−1

with Lγ (k) = cγ > 0, 1
2 (1 − m−1) < d < 1

2 . From Theorem 4.4 we have

n−(1−m( 1
2 −d))L

−1/2
S

(
n∑

j=1

Yj − nμ

)
d→ J (m)

m! Zm,H (1), (10.11)

where LS = J 2(m)/m!Cmcm
γ , vn = n1−m( 1

2 −d)L
1/2
S and Z = Zm,H (1). As be-

fore, the replicates T ∗
n,1, . . . , T

∗
n,Nb

are based on standardized sums over blocks
Br = (Yr , . . . , Yr+l−1) (r = 1,2, . . . ,Nb) of length l. However, instead of resam-
pling blocks independently and pasting them together, we use all Nb (partially over-
lapping) blocks to obtain the empirical distribution function

F ∗
Tn

(x) = 1

Nb

Nb∑

r=1

1
{
T ∗

n,r ≤ x
} = 1

Nb

Nb∑

r=1

1

{
Sn,l,r − lȲn

vl

≤ x

}

with

T ∗
n,r := T ∗

n,l,r :=
∑r+l−1

j=r Yj − lȲn

vl

= Sn,l,r − lȲn

vl

(r = 1,2, . . . ,Nb).

By assigning equal weights to all available blocks and avoiding any kind of random
reshuffling of the sequence, the complete dependence structure can essentially be
preserved. Why this is so can be seen in more detail as follows. Recall that, as
n → ∞, FTn(x) = P(Tn ≤ x) → FZ(x) := P(Zm,H (1) ≤ x) for all x ∈ R and note
that E[F ∗

Tn
(x)] = P(T ∗

n,l,1 ≤ x). We will prove (Hall et al. 1998):

Theorem 10.1 Let Xj be as defined above, and l, n → ∞ such that l/n → 0. Then

sup
x∈R

∣
∣F ∗

Tn
(x) − FTn(x)

∣
∣ p→ 0. (10.12)

Proof In the first step, we will replace Ȳn by μ in the definition of F ∗
Tn

(x). To justify

this, we note that with T̃n,l,r = (Sn,l,r − lμ)/vl we have

T̃n,l,r − T ∗
n,l,r = l

vl

(Ȳn − μ) = lvn

nvl

Tn.

On account of (10.11), Tn converges in distribution to the finite random variable
Z = Zm,H (1). Furthermore,

lvn

nvl

→ 0

since it was assumed that l, n → ∞ and l/n → 0.
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The next useful fact is that both FTn(x) and FTl
(x) converge to FZ(x) as n, l →

∞. It is therefore sufficient to prove

sup
x∈R

∣
∣F̃Tn(x) − FTl

(x)
∣
∣ p→ 0,

where

F̃Tn(x) = 1

Nb

Nb∑

r=1

1{T̃n,l,r ≤ x} = 1

Nb

Nb∑

r=1

1
{
(Sn,l,r − lμ)/vl ≤ x

}
.

We note that E[F̃Tn(x)] = P(Tl ≤ x) = FTl
(x). Therefore,

E
[(

F̃Tn(x) − FTl
(x)

)2] = var
(
F̃Tn(x)

) = 1

Nb

var
(
1{T̃n,l,1 ≤ x})

+ 2

Nb

l∑

r=2

cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x})

+ 2

Nb

Nb∑

r=l+1

cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x})

≤ 1

Nb

+ 2l

Nb

+ 2

Nb

Nb∑

r=l+1

cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x}).

Now, let us consider the case m = 1 only, so that v2
l is proportional to l2dX+1. Then

the random variables T̃n,l,r , r = l + 1, . . . ,Nb , are centred Gaussian and w.l.o.g. we
can assume that they have unit variance (formally, var(T̃n,l,r ) ∼ 1 as l → ∞). Note
that for a standardized bivariate normal vector Z = (Z1,Z2) we have

∣
∣cov(Z1,Z2)

∣
∣ = ∣

∣corr(Z1,Z2)
∣
∣ ≥ ∣

∣cov
(
1{Z1 ≤ x},1{Z2 ≤ x})∣∣.

Moreover, the separation between blocks B1 and Br is r − l. Therefore,

2

Nb

Nb∑

r=l+1

Cov
(
1{T̃n,l,1 ≤ x},1{T̃n,l,r ≤ x})

≤ 2

Nb

Nb∑

r=l+1

l∑

j=1

r+l−1∑

j ′=r

γX(j ′ − j)

≤ 2l2

Nbv
2
l

Nb∑

r=l+1

γX(r − l) ∼ C
2l2

Nbv
2
l

N2d
b ∼ C

l1−2d

N1−2d
b

= C

(
l

n − l + 1

)1−2d

→ 0

as l, n → ∞ such that l/n → 0.



10.5 The Sampling Window Bootstrap (SWB) 785

The arguments for m > 1 are analogous, but covariances between Hermite poly-
nomials of higher order have to be considered. �

We conclude that the empirical distribution F ∗
Tn

(x) is a consistent estimator of
the limiting distribution FZ(x) so that the SW bootstrap is a valid procedure under
Gaussian subordination with arbitrary Hermite rank. This is in contrast to the MBB
bootstrap which is valid for Hermite rank one only. Since the SW approach pre-
serves non-Gaussianity, one may also hope that it will provide better finite sample
approximations even in the case of a Gaussian limit. Some examples in the next
section illustrate this conjecture.

Remark 10.1 This theorem is adapted from Hall et al. (1998); see also Lahiri (2003,
Theorem 10.4). We note that the authors consider a general form of γX(k) with a
possible slowly varying function. It requires slightly modified assumptions on the
length l of the blocks. Furthermore, Theorem 2.4 in Hall et al. (1998) implies that it
is enough to prove (10.12) for a fixed x.

Remark 10.2 The proof above also works for weakly dependent random variables
(informally, when d = 0), and under Gaussian subordination with 0 < dX < 1

2 (1 −
m−1).

So far, we assumed that the standardization sequence vn is known. In practice,

this is, of course, not the case because vn = n(1−m( 1
2 −dX))L

1/2
S depends on the long-

memory parameter dX and the constant Lγ (n) ≡ cγ . There are at least two pos-
sible solutions to this problem. The first one is to estimate the parameters dX and
cγ directly by fitting a parametric or semiparametric model (see Sects. 5.5, 5.6,

5.7, 5.8 and 5.9). The standardization vn is then replaced by v̂n = nd̂X+ 1
2 L̂

1/2
S .

Note, however, that in general the true Hermite rank m is not known. Neverthe-
less, if m is larger than one, then the exponent of n can also be estimated by the
same methods. The difference is that we are then not estimating dX but rather
d̃ = (1 − m( 1

2 − dX)) − 1
2 . The other solution is to replace vn by a direct fully

nonparametric estimate Vn. Thus, we consider the statistics

Un :=
∑n

j=1 Yj − nμ

Vn

= n(Ȳn − μ)

Vn

,

and, with the blocks defined as before,

U∗
n,r := U∗

n,l,r :=
∑r+l−1

j=r Yj − lȲn

Vl

= Sn,l,r − lȲn

Vl

(r = 1, . . . ,Nb).

Note that, compared to the previous parametric or semiparametric estimation of
vn, direct estimators of vn are more general, but at the same also less efficient, if the
model assumptions needed for estimating d and Lγ by parametric or semiparametric
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methods hold. A possible, though somewhat arbitrary, choice is, for instance,

V 2
l = V 2

n,l = E4
n,l,m1

E2
n,l,m2

where

E2
n,l,mi

= 1

l − mi + 1

l−mi+1∑

j=1

(Sn,mi,j − miȲn)
2

and

Sn,mi,j = 1

mi

j+mi−1∑

h=j

Yh.

The crucial part of this construction is that

V 2
n

var(
∑n

j=1 Yj )
= E4

n,n,m1

v2
nE

2
n,n,m2

p→ 1

as n → ∞. Therefore, the limiting distribution of Un = nV −1
n (Ȳn − μ) is the same

as that of Tn = nv−1
n (Ȳn − μ), namely FZ(x) = P(Zm,H (1) ≤ x). We state the

following result without proof (see Hall et al. 1998 or Lahiri 2003, Theorem 10.5).

Theorem 10.2 Assume that Xj (j ∈N) is a stationary sequence of standard normal
random variables, such that γX(k) ∼ Lγ k2d−1, d ∈ (0,1/2). Let

F ∗
Un

(x) = 1

N

N∑

r=1

1
{
U∗

n,l,r ≤ x
}

and FUn(x) = P(Un ≤ x). If l, n → ∞ such that l/n → 0, then, as n → ∞,

V 2
n /var

(
n∑

j=1

Yj

)

= V 2
n /vn

p→ 1

and

sup
x∈R

∣
∣F ∗

Un
(x) − FUn(x)

∣
∣ p→ 0. (10.13)

Combining Theorems 10.1 and 10.2 implies that the empirical distribution
function F ∗

Un
(x) approximates FUn(x) which in turn approximates FZ(x) =

limn→∞ P(Tn ≤ x). Thus, validity of the SW bootstrap based on Un is also es-
tablished.
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Fig. 10.1 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(x) = x + 0.005(x3 − x).
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 177, and by an analogous
SW bootstrap

10.6 Some Practical Issues

The main practical problem with the bootstrap procedures above is that it is not
clear how to choose the tuning parameters for an observed data set with a finite
number of observations and unknown data generating process. For both bootstrap
procedures, the block length is to be chosen such that l tends to infinity at a slower
rate than n. Even if we restrict attention to block lengths proportional to n1−ε for
some 0 < ε < 1, one needs to specify ε and the proportionality constant. For the
block bootstrap, there is an additional tuning parameter k.

As a general rule, the block length should be neither too small nor too large,
compared to n. If l is very small, then the computed statistics fail to capture the
asymptotic effect of long-range dependence. On the other hand, if l is too large, then
the number of blocks to choose from is small so that there is not enough variability
among the (highly dependent) block statistics, and the results may heavily depend
on spurious features of the observed series. The latter problem is more likely to
occur for the SW bootstrap because there the whole shape of the sample path plays
a role. This is illustrated in Figs. 10.1, 10.2 and 10.3. The figures are based on
a simulated series of the process Yt = G(Xt) where Xt is a FARIMA(0,0.4,0)
process with variance one and G(x) = x +0.005(x3 −x). Since the Hermite rank of
G is one, both bootstrap procedures are valid. Given the dominant linear part and the
relatively large sample size of n = 1000, one would expect a good approximation by
any reasonable bootstrap method. In Fig. 10.1, l is chosen to be equal to n1−ε with
ε = 1

4 so that l = 177. While the block bootstrap and even the asymptotic standard
normal approximation are close to the simulated histogram, the SW bootstrap yields
a completely wrong bimodal distribution. The reason for the bimodal shape can be
seen in Figs. 10.2(a)–(d). Due to strong long memory (with d = 0.4), the simulated
sample path stays below zero for a relatively long time in the beginning and towards
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Fig. 10.2 Same simulated series as for the histogram in Fig. 10.1 (a), together with values of T ∗
n,r

for blocks moving from left to right (b), and boxplots of Xt and T ∗
n,r for three different regions ((c)

and (d))

Fig. 10.3 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(x) = x + 0.005(x3 − x).
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 5, and by an analogous
SW bootstrap
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Fig. 10.4 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(Xt ) = H2(Xt ) = X2

t − 1.
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 5, and by an analogous
SW bootstrap

the end whereas it is above zero most of the time in the middle period. As a result,
conditionally on the observed sample path, block sums and hence the values of
T ∗

n,r exhibit a bimodal distribution (Figs. 10.1 and 10.2(b), (d)). In contrast, for
the block bootstrap the long wave in the observed series does not influence the
result because blocks are resampled randomly. The dependence of the SW bootstrap
on spurious features can be alleviated by choosing a smaller block length. This
illustrated Fig. 10.3 where ε = 3

4 and hence l = 5 was used.
Figure 10.4 shows an example where only the SW bootstrap is a valid resampling

procedure. The simulated series is Yt = G(Xt) with G(Xt) = H2(Xt ) = X2
t − 1.

Since the Hermite rank is two, the asymptotic distribution is given by the marginal
of the Hermite–Rosenblatt process. This distribution is skewed to the right. The
simulated histogram of Tn with n = 1000 is indeed highly skewed. In contrast, the
distribution obtained by the MBB is symmetric and very close to the standard nor-
mal density. The SW bootstrap provides a much better approximation with a skewed
shape. As before, however, the concrete choice of the block length is crucial. The
good approximation in Fig. 10.4 with l = 5 (ε = 1

4 ) is in sharp contrast to the disas-
trous result in Fig. 10.5 with l = 177 (ε = 3

4 ).
Generally, one may conclude that the SW method is quite flexible since it is able

to capture non-Gaussian limits. This is very useful even for large sample sizes be-
cause the distribution of Hermite processes is rather complicated except for Hermite
rank one. On the other hand, the flexibility of the SW method comes at a price. Since
almost the complete dependence structure of the observed series is preserved, results
may heavily depend on the particular sample path. This lack of ‘robustness’ can lead
to artefacts. A good choice of the block length l plays an important role. On the one
hand, l needs to be large enough to come as close as possible to the situation with
n observations. On the other hand, if l is too large, then some spurious properties
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Fig. 10.5 Histogram of a
simulated series Yt = G(Xt )

of length n = 1000, where Xt

is a FARIMA(0,0.4,0)
process with variance one and
G(Xt ) = H2(Xt ) = X2

t − 1.
Also plotted are distributions
obtained by blockwise
bootstrap with block length
l = 177, and by an analogous
SW bootstrap

of the observed sample path may have an undue influence on the result (see, e.g.
Fig. 10.1). Thus, as is so often in nonparametric statistics, a suitable balance has to
be achieved between two conflicting aims.

10.7 More Complex Models

10.7.1 Bootstrap for the Heavy-Tailed SV Model

10.7.1.1 The HTLM Model

We consider a stochastic volatility model Xt = ξtσt , where the random variables ξt

are i.i.d., strictly positive and regularly varying with index −α, α ∈ (1,2), that is,

P(ξ1 > x) ∼ Ax−α.

The sequence σt = exp(ζt ) is stationary and ergodic, and independent of the se-
quence ξt . Furthermore, ζt is a Gaussian long-memory process with parameter d .
Suppose that E[ξ1] �= 0. We saw in Example 4.17 that, if 1/2 + d < 1/α, then

n−1/αSn(u) ⇒ A1/αC−1/α
α

(
E

[
σα

1

])1/α
Z̃α(u), (10.14)

where Z̃α(·) is an α-stable Lévy process such that Z̃α(1)
d= Sα(1,1,0). On the other

hand, if 1/2 + d > 1/α, then

n−(1/2+d)L
−1/2
1 (n)Sn(u) ⇒ J (1)E[ξ1]BH (u) , (10.15)
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where BH (·) is a fractional Brownian motion, H = d + 1
2 , L1(n) = C1Lγ (n) and

J (1) = E(ζ1 exp(ζ1)). In Example 4.17, we called this model LMSD. A very sim-
ilar model was considered in McElroy and Politis (2007). There, Xt = ξtσt with
σt = σ(ζt ). The function σ(·) is supposed to have Hermite rank 1, and furthermore
E[σ1] = 0. For this model, we have the same dichotomy as in (10.14)–(10.15), only
the constants of the limiting distributions change. McElroy and Politis coined the
term “HTLM (Heavy Tailed with Long Memory)”.

10.7.1.2 Subsampling for the HTLM Model

We consider Yt = μ + Xt , where Xt (t ∈ N) is the HTLM model described above,
with E[ξ ] �= 0 (but E[Xt ] = 0 since the subordinated Gaussian sequence σt is cen-
tred). We noted above that the limiting distribution F is either stable or normal.
Furthermore, the scaling vn is the maximum of n1/α and nd+1/2L(n), where L(n)

is a slowly varying function.
Recall the self-normalized statistics Wn from (10.6). Since our data are depen-

dent, we have to change the self-normalizer. It can be constructed as

V 2
n =

n∑

j=1

(Yj − Ȳn)
2 + nLMn(ρ),

where

LMn(ρ) =
∣
∣
∣
∣
∣

[nρ ]∑

|k|=1

1

n − |k|
n−k∑

j=1

(
YjYj+k − Ȳ 2

n

)
∣
∣
∣
∣
∣

1/ρ

, ρ ∈ (0,1).

To get an idea about the behaviour of V 2
n , we note that Y 2

j (j ∈ N) are regu-
larly varying with index −α/2 and thus they have an infinite mean. This implies
that the behaviour of Y 2

j is free of long memory. In particular,
∑n

j=1 Y 2
j grows

at rate n2/α , n−2/α
∑n

j=1(Yj − Ȳn)
2 converges to a stable random variable and

n−(2d+1)L−2(n)
∑n

j=1(Yj − Ȳn)
2 converges in probability to 0. As for LMn(ρ),

we recognize (n−|h|)−1 ∑n−h
j=1(YjYj+k − Ȳ 2

n ) as the sample covariance at lag k as-
sociated with the sequence Yj (j ∈ N) which is the same as the sample covariance of
Xj (j ∈ N). We expect that they converge in probability to γX(k) = E2[ξ0]E[σ0σk].
If we assume that γX(k) ∼ Lγ k2d−1, d ∈ (0,1/2), then we expect LMn(ρ) to grow
at the rate

C

∣
∣
∣
∣
∣

[nρ ]∑

|k|=1

k2d−1

∣
∣
∣
∣
∣

1/ρ

≈ Cn2d,
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since the Hermite rank is one. Thus, with vn := max{n1/α, nd+1/2L(n)} we may
conclude that

Wn := n(Ȳn − μ)

Vn

= v−1
n

∑n
j=1(Yj − μ)

v−1
n Vn

converges to a non-degenerate random variable.
Now, using the blocks Br = (Yr , . . . , Yr+l−1), r = 1, . . . ,Nb, we construct repli-

cates of Wn as

W ∗
n,l,r = l

Ȳn,l,r − Ȳn

Vn,l,r

, r = 1, . . . ,Nb,

where

Ȳn,l,r = 1

l

r+l−1∑

j=r

Yj

and

LMn,l,r (ρ) =
∣
∣
∣
∣
∣

[lρ ]∑

|k|=1

1

l − |k|
r+l−1−|k|∑

j=r

(
YjYj+k − Ȳ 2

n,l,r

)
∣
∣
∣
∣
∣

1/ρ

.

A (1 − θ)-confidence interval can be constructed as

[Ȳn − z1− θ
2
Vn, Ȳn − z θ

2
Vn],

where z θ
2

is the (1 − θ)-percentile of the empirical distribution function

F ∗
n (x) = 1

n − l + 1

n−l+1∑

r=1

1
{
W ∗

n,l,r ≤ x
}
.

For details, we refer to McElroy and Politis (2007) and Jach et al. (2012).

10.7.2 Testing for Jumps in a Trend Function

In some situations, the modified MBB approach can be useful for defining test statis-
tics whose distribution under the null hypothesis is asymptotically normal due to the
resampling device. For instance, consider a model with a nonparametric trend func-
tion given by

Yi = m(ti) + ei (10.16)

where m ∈ L2[0,1] and ei a Gaussian process with autocovariance function γ (k) ∼
Lγ |k|−α for some α = 2d − 1 ∈ (0,1). Beran and Shumeyko (2012b) derive an
MBB-based test for

H0 : m ∈ C[0,1]
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against the alternative H1 that m has at least one isolated jump. The idea is to use
the wavelet estimator

m̂(t) = m̂low(t) + m̂high(t)

given in Sect. 7.5. The low resolution component m̂low(t) is an optimal estimator of
m, if m is continuous whereas the high resolution part m̂high(t) captures departures
from continuity. A natural idea is therefore to test H0 against H1 by designing a
test statistic that compares two types of residuals, êi = Yi − m̂(t) = Yi − m̂low(t) −
m̂high(t) and êi,low = Yi − m̂(t) = Yi − m̂low(t). This can be done, for instance, as
follows. For a given block size l, define block sums

ζr = êr + · · · + êr+l−1 =
∑

êj ∈Br

êj

and

ζr,low = êr,low + · · · + êr+l−1,low =
∑

êj ∈Br

êj,low

(1 ≤ r ≤ Nb = n − l + 1). Then, k blocks B∗
1 , . . . ,B∗

k are sampled independently
with replacement and bootstrap samples ζ ∗

1 , . . . , ζ ∗
k and ζ ∗

1,low, . . . , ζ ∗
k,low are com-

puted. The corresponding bootstrap statistics are

T ∗
kl = k−1/2

k∑

r=1

ζ ∗
r

vl

, T ∗
kl,low = k−1/2

k∑

r=1

ζ ∗
r,low

vl

with vl = L
1/2
γ ld+ 1

2 . Extending the proofs in Lahiri (1993) and Beran and Shumeyko
(2012a), the following result can be derived (Beran and Shumeyko 2012b):

Theorem 10.3 Suppose that m ∈ L2[0,1], m′ exists except for a finite set
N ⊂[0,1] and is piecewise continuous outside of N . Moreover, let

l = O
(
nδ

)

where

1

2r + α
< δ <

2

2r + α

and define σ̃ 2 = 2σ 2(1 − α)−1(2 − α)−1 where σ 2 = var(et ). Then, under H0 : m ∈
C[0,1], we have

E∗
(
T ∗

kl,low

) = E∗
(
T ∗

kl

) + op

(
n0.5αδ−lnn

) = op(1),

Var∗
(
T ∗

kl,low

) = Var∗
(
T ∗

kl

) + op

(
nαδ−2 lnn

) = σ̃ 2 + op(1),

T ∗
kl,low = T ∗

kl + Op

(
n0.5αδ−lnn

)
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and

sup
x∈R

∣
∣
∣
∣P∗

(
T ∗

kl,low ≤ x
) − Φ

(
x

σ̃

)∣
∣
∣
∣ = op(1),

sup
x∈R

∣
∣
∣
∣P∗

(
T ∗

kl ≤ x
) − Φ

(
x

σ̃

)∣
∣
∣
∣ = op(1),

sup
x∈R

∣
∣P∗

(
T ∗

kl ≤ x
) − P∗

(
T ∗

kl,low ≤ x
)∣∣ = op(1).

Thus, under H0, the two statistics are asymptotically equivalent and converge
uniformly in distribution to the N(0, σ̃ 2) distribution. This is no longer the case
under H1:

Theorem 10.4 Suppose that the same assumptions as in the previous theorem hold
except that m has at least one isolated jump. Then the first two moments and the
distribution of T ∗

kl as well as E∗(T ∗
kl,low) are the same asymptotically as under H0.

However,

Var∗
(
T ∗

kl,low

) = σ̃ 2 + wn + op(1)

where

wn = C∗nβ

with

0 < β = αδ − α

2r + α
<

α

2r + α
.

Moreover,

sup
x∈R

∣
∣
∣
∣P∗

(
T ∗

kl,low ≤ x
) − Φ

(
x

√
σ̃ 2 + wn

)∣
∣
∣
∣ = op(1),

sup
x∈R

∣
∣
∣
∣P∗

(
T ∗

kl ≤ x
) − Φ

(
x

σ̃

)∣
∣
∣
∣ = op(1).

Note in particular that under H1 the ratio of the variances var(T ∗
kl,low)/var(T ∗

kl)

diverges to infinity. We may therefore test

H0 : var∗
(
T ∗

kl,low

) = var
(
T ∗

kl

)

against

H1 : var∗
(
T ∗

kl,low

)
> var

(
T ∗

kl

)
.

Repeating the bootstrap procedure described so far, say NT times, we calculate

Wlow = σ̃−2
NT∑

i=1

(
T

∗(i)
kl,low − T̄ ∗

kl,low

)2
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Fig. 10.6 (a) Simulated series Yi = m(ti ) + ei with ei generated by a FARIMA process and (b) a
trend function with a local jump. The wavelet estimate of m(ti) is shown in (c), a kernel estimate
in (d). The bootstrap based test (using the trend estimate in (c)) detects the jump at the 5 %-level
of significance

and reject H0, if Wlow is too large. Conditionally on the sample, the simulated statis-
tics T

∗(i)
kl,low (i = 1,2, . . . ,NT ) are independent. Moreover, under H0 they are asymp-

totically N(0, σ̃ 2)-distributed so that Wlow is approximately χ2
NT −1-distributed. Ap-

proximate critical values for Wlow are therefore given by corresponding quantiles
of the χ2

NT −1-distribution. To obtain more exact finite sample quantiles, one can
instead simulate the distribution of

W = σ̃−2
NT∑

i=1

(
T

∗(i)
kl − T̄ ∗

kl

)2

via resampling. This approach is adopted in Beran and Shumeyko (2012b).
Figure 10.6 shows a typical example where the wavelet decomposition and the

test based on Wlow enables us to detect a very local discontinuity in the trend func-
tion. In spite of the presence of local spurious trends caused by strong long memory
in the residuals, the local disturbance in the trend function (Fig. 10.6(b)) is cap-
tured by the high resolution component (Fig. 10.6(c)). This is in contrast to other
nonparametric regression methods such as kernel or local polynomial regression
(Fig. 10.6(d)).
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