
Chapter 1
Definition of Long Memory

1.1 Historic Overview

A long time before suitable stochastic processes were available, deviations from in-
dependence that were noticeable far beyond the usual time horizon were observed,
often even in situations where independence would have seemed a natural assump-
tion. For instance, the Canadian–American astronomer and mathematician Simon
Newcomb (Newcomb 1895) noticed that in astronomy errors typically affect whole
groups of consecutive observations and therefore drastically increase the “probable
error” of estimated astronomical constants so that the usual σ/

√
n-rule no longer

applies. Although there may be a number of possible causes for Newcomb’s quali-
tative finding, stationary long-memory processes provide a plausible “explanation”.
Similar conclusions were drawn before by Peirce (1873) (see also the discussion of
Peirce’s data by Wilson and Hilferty (1929) and later in the book by Mosteller and
Tukey (1977) in a section entitled “How σ/

√
n can mislead”). Newcomb’s com-

ments were confirmed a few years later by Pearson (1902), who carried out experi-
ments simulating astronomical observations. Using an elaborate experimental setup,
he demonstrated not only that observers had their own personal bias, but also each
individual measurement series showed persisting serial correlations. For a discus-
sion of Pearson’s experiments, also see Jeffreys (1939, 1948, 1961), who uses the
term “internal correlation”. Student (1927) observes the “phenomenon which will
be familiar to those who have had astronomical experience, namely that analyses
made alongside one another tend to have similar errors; not only so but such errors,
which I may call semi-constant, tend to persist throughout the day, and some of them
throughout the week or the month. . . . Why this is so is often quite obscure, though
a statistical examination may enable the head of the laboratory to clear up large
sources of error of this kind: it is not likely that he will eliminate all such errors. . . .
The chemist who wishes to impress his clients will therefore arrange to do repetition
analyses as nearly as possible at the same time, but if he wishes to diminish his real
error, he will separate them by as wide an interval of time as possible.” Since, ac-
cording to Student, it is difficult to remove the error even by careful statistical exam-
ination, simple trends are probably not what he had in mind. Instead, a second-order
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2 1 Definition of Long Memory

property such as slowly decaying autocorrelations may come close to his notion
of “semi-constant errors”. For spatial data, the Australian agronomer Smith (1938)
found in so-called uniformity trials an empirical law for wheat yield variation across
space that contradicts the assumption of independence or summable correlations
since the standard deviation of the sample mean converges to zero at a slower rate
than the square root of the plot size. These findings were later taken up by Whittle
(1956, 1962), who proposed space-time models based on stochastic partial differen-
tial equations exhibiting hyperbolically decaying spatial correlations and thereby a
possible explanation of Fairfield Smith’s empirical law. In hydrology, Hurst (1951)
discovered an empirical law while studying the long-term storage capacity of reser-
voirs for the Nile (also see Hurst et al. 1965). Built on his empirical findings, Hurst
recommended to increase the height of the planned Aswan High Dam far beyond
conventional forecasts. Feller (1951) showed that Hurst’s findings are incompati-
ble with the assumption of weak dependence or finite moments. Later Mandelbrot
coined the terms “Noah effect” for long-tailed distributions and Joseph- or Hurst-
effect for “long-range dependence”. The latter refers to Genesis 41, 29–30, where
the “seven years of great abundance” and “seven years of famine” may be inter-
preted as an account of strong serial correlations. The approach of Mandelbrot and
his coworkers lead to a new branch of mathematics that replaced conventional geo-
metric objects by “fractals” and “self-similarity” (e.g. Mandelbrot 1965, 1967, 1969,
1971, 1977, 1983; Mandelbrot and van Ness 1968; Mandelbrot and Wallis 1968a,
1968b, 1969a, 1969b, 1969c) and popularized the topic in many scientific fields,
including statistics. In economics, the phenomenon of long memory was discov-
ered by Granger (1966). Simultaneously with Hosking (1981), Granger and Joyeux
(1980) introduced fractional ARIMA models that greatly improved the applicability
of long-range dependence in statistical practice. In geology, Matheron developed
the field of geostatistics using, in particular, processes and statistical techniques for
modelling spatial long memory (see e.g. Matheron 1962, 1973; Solo 1992). From
the mathematical point of view, the basic concepts of fractals, self-similarity and
long-range dependence existed long before the topic became fashionable; however,
their practical significance had not been fully recognized until Mandelbrot’s pio-
neering work. For instance, the Hausdorff dimension, which plays a key role in
the definition of fractals, was introduced by Hausdorff (1918) and studied in de-
tail by Abram Samoilovitch Besicovitch (e.g. Besicovitch 1929; Besicovitch and
Ursell 1937). In the 17th century, Leibnitz (1646–1716) considered recursive self-
similarity, and about one hundred years later, Karl Weierstrass described a function
that is continuous but nowhere differentiable. The first fractal is attributed to the
Czech mathematician Bernard Bolzano (1781–1848). Other early fractals include
the Cantor set (Cantor 1883; but also see Smith 1875; du Bois-Reymond 1880 and
Volterra 1881), the Koch snowflake (von Koch 1904), Wacław Sierpiński’s triangle
(Sierpinksi 1915) and the Lévy curve (Lévy 1938). (As a precaution, it should per-
haps be mentioned at this place that, although fractal behaviour is often connected
with long-range dependence, it is by no means identical and can, in some situa-
tions, even be completely separated from the dependence structure; see Chap. 3,
Sect. 3.6.) Mathematical models for long-memory type behaviour in physics have
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been known for some time in the context of turbulence (see e.g. Kolmogorov 1940,
1941). Power-law correlations have been known to be connected with critical phe-
nomena, for instance in particle systems such as the Ising model (Ising 1924) and
the renormalization group (see e.g. Cassandro and Jona-Lasinio 1978, also see the
review paper by Domb 1985 and references therein). The study of critical phenom-
ena in physics goes even much further back in history (Berche et al. 2009), to Baron
Charles Cagniard de la Tour (1777–1859), who called a critical point in the phase
transition “l’état particulier”. With respect to unusual limit theorems for dependent
observations, Rosenblatt (1961) seems to be among the first ones to derive a noncen-
tral limit theorem where the limiting process is non-Gaussian due to nonsummable
correlations and nonlinearity. This seminal paper led to further developments in the
1970s and 1980s (see e.g. Davydov 1970a, 1970b; Taqqu 1975, 1979; Dobrushin
and Major 1979). The literature on statistical methods for long-memory processes
until the early 1990s is summarized in Beran (1994a).

1.2 Data Examples

In this section we discuss some data examples with typical long-memory behaviour.
On the way, a few heuristic methods for detecting and assessing the strength of
long-range dependence will be introduced (see Sect. 5.4 ).

Classical areas where long-range dependence occurs frequently are dendrochro-
nology and hydrology. We will therefore start with examples from these fields.
Yearly tree ring measurements usually stretch over hundreds of years, and long
memory often occurs in a rather ‘pure’ form, in the sense that a hyperbolic behaviour
of the autocorrelations and the spectral density holds for almost all lags and fre-
quencies respectively. Therefore, tree ring series are often used as prime examples
of strong dependence and self-similarity. Consider for instance Fig. 1.1 (the data
source is Hyndman, Time Series Data Library, http://robjhyndman.com/TSDL). The
following typical features can be observed:

(a) Spurious trends and cycles, and self-similarity: The observed series exhibit lo-
cal trends and periodicities that appear to be spurious, however, because they
disappear again and are of varying length and frequency. Furthermore, these
features and the overall visual impression of the time series remain the same
when considering aggregated data, with disjoint adjacent blocks of observations
being averaged (see Fig. 1.2). This is an indication of stochastic ‘self-similarity’,
which is the property that rescaling time changes the (joint) probability distri-
bution by a scaling factor only.

(b) Slow hyperbolic decay: The sample autocorrelations

ρ̂(k) = 1

n

n−|k|∑

i=1

(xi − x̄)(xi+|k| − x̄)

http://robjhyndman.com/TSDL
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Fig. 1.1 Two typical tree ring series

Fig. 1.2 (a) Tree ring series, Example 1; (b)–(f) aggregated series x̄t = m−1(x(t−1)m+1 +
· · · + xtm) (t = 1,2, . . . ,400) with blocks lengths equal to 2, 4, 6, 8 and 10 respectively
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Fig. 1.3 Tree ring example 1: (a) observed yearly series; (b) empirical autocorrelations ρ̂(k);
(c) log ρ̂(k) vs. logk; (d) log s2

m vs. logm; (e) logR/S vs. log k; (f) log I (λ) vs. logλ

(with x̄ = n−1 ∑
xi ) decay slowly with increasing lag k. More specifically, the

decay of ρ̂(k) appears to be hyperbolic with a rate k−α (for some 0 < α < 1),
implying nonsummability. This phenomenon is called long memory, strong
memory, long-range dependence, or long-range correlations. This is illustrated
in Fig. 1.3(c), where log ρ̂(k) is plotted against logk. The points are scattered
around a straight line of the form log ρ̂(k) ≈ const + βρ log k with βρ ≈ −0.5.
Similarly, the variance of the sample mean appears to decay to zero at a slower
rate than n−1. This can be seen empirically in Fig. 1.3(d) with log s2

m plotted
against logm, where s2

m is the sample variance of means based on disjoint blocks
of m observations, i.e.

s2
m = 1

nm − 1

nm∑

i=1

(x̄(i−1)m,m − x̄)2,

where

x̄t,m = 1

m

m∑

j=1

xt+j
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Fig. 1.4 Tree ring example 2: (a) observed yearly series; (b) empirical autocorrelations ρ̂(k);
(c) log ρ̂(k) vs. logk; (d) log s2

m vs. logm; (e) logR/S vs. log k; (f) log I (λ) vs. logλ

and nm = [n/m]. The fitted slope in Fig. 1.3(d) is close to βs2 = −0.4, suggest-
ing s2

m being proportional to m−0.4, which is much slower than the usual rate
of m−1. A further statistic that is sometimes used to detect long-range depen-
dence is the so-called R/S-statistic displayed in Fig. 1.3(f). The R/S-statistic is
defined by

R/S(t,m) = R(t,m)

S(t,m)
,

where

R(t,m) = max
1≤i≤m

(
yt+i − yt − i

m
(yt+m − yt )

)

− min
1≤i≤m

(
yt+i − yt − i

m
(yt+m − yt )

)
,

yu =
u∑

i=1

xi,
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Fig. 1.5 (a) Monthly average discharge of the river Maas (upper series: original; lower series;
deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

and

S(t,m) =
√√√√ 1

m

t+m∑

i=t+1

(xi − x̄t,m)2.

This definition originates from hydrology (see e.g. Hurst 1951), where R cor-
responds to the optimal capacity of a reservoir when outflow is linear, with xi

denoting the inflow at time i. Figure 1.3(f) shows R/S(t,m) versus m, plotted
in log-log-coordinates. Again, we see a linear relationship between logR/S (as
a function of m) and logm, with a slope close to βR/S = 0.8. In contrast, un-
der independence or short-range dependence, one expects a slope of 0.5 (see
Sect. 5.4.1). Finally, Fig. 1.3(f) displays the logarithm of the periodogram I (λ)

(as an empirical analogue of the spectral density f ) versus the log-frequency.
Again an essentially linear relationship can be observed. The negative slope is
around βf = −0.5, suggesting the spectral density having a pole at the origin
of the order λ−0.5. Similar results are obtained for Example 2 in Figs. 1.4(a)
through (f). The slopes for the log-log plots of ρ̂(k), s2

m, R/S and I (λ) are this
time βρ ≈ −1, βs2 ≈ −0.7, βR/S ≈ 0.7 and βf ≈ −0.4 respectively.
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Fig. 1.6 (a) Monthly average discharge of the river Wisła at Tczew (upper series: original; lower
series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

Next, we consider river flow data. Figures 1.5(a), 1.6(a), 1.7(a) and 1.8(a) show
the average monthly river discharge (in m3/ sec) for four rivers from different parts
of the world: (1) Maas at the Lith station (The Netherlands); (2) Wisła at Tczew
(Poland); (3) Tejo at V.V. de Rodao (Portugal) and (4) White River at Mouth Near
Ouray, Utah (USA). The data are from the River Discharge Database of The Center
of Sustainability and Global Environment, Gaylord Nelsen Institute for Environ-
mental Studies, University of Wisconsin-Madison. Since these are monthly data,
there is a strong seasonal component. To obtain an idea about the dependence struc-
ture for large lags, a seasonal effect is first removed by subtracting the correspond-
ing monthly means (i.e. average January temperature, average February temperature
etc.). The original and the deseasonalized data are shown in the upper and lower
part of each time series picture respectively. For each of the deseasonalized series,
the points in the log-log-periodogram (all figures (b)) are scattered nicely around a
straight line for all frequencies.

The data examples shown so far may be somewhat misleading because one may
get the impression that discovering long memory can be done easily by fitting a
straight line to the observed points in an appropriate log-log-plot. Unfortunately,
the situation is more complicated, even if one considers river flows only. For in-
stance, Figs. 1.9, 1.10 and 1.11 show log-log-plots for the Danube at four different
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Fig. 1.7 (a) Monthly average discharge of the river Tejo at V.V. de Rodao (upper series: original;
lower series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

stations: (1) Bratislava (Slovakia); (2) Nagymaros (Hungary); (3) Drobeta-Turnu
Severin (Romania); (4) Ceatal Izmail (Romania). Consider first the measurements
in Bratislava. The points in the log-log-plots no longer follow a straight line all the
way. It is therefore not clear how to estimate the ‘ultimate’ slopes (i.e. the asymp-
totic slopes as m,k → ∞ and λ → 0 respectively). Fitting a straight line to all points
obviously leads to a bad fit in the region of interest (i.e. for k and m large, and λ

small). This is one of the fundamental problems when dealing with long-memory
(and, as we will see later, also so-called antipersistent) series: the definition of ‘long
memory’ is an asymptotic one and therefore often difficult to detect and quantify
for finite samples. A substantial part of the statistical literature on long-memory
processes is concerned with this question (this will be discussed in particular in
Chap. 5). In contrast to the straight lines in Figs. 1.9(b) and (c), the fitted spectral
density in Fig. 1.9(d) is based on a more sophisticated method that combines max-
imum likelihood estimation (MLE) with the Bayesian Information Criterion (BIC)
for fractional ARIMA models. This and related data adaptive methods that allow
for deviations from the straight line pattern will be discussed in Chap. 5 (Sects. 5.5
to 5.10) and Chap. 7 (Sects. 7.4.5 and 7.4.6).

Analogous observations can be made for the other Danube series. To save space,
only the log-log-periodogram plots are shown (Figs. 1.10, 1.11). Note that the MLE
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Fig. 1.8 (a) Monthly average discharge of White River, Utah (upper series: original; lower series;
deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

estimates of βf (−0.25, −0.31, −0.25, −0.29) are all very similar. It seems that
a value around −0.25 to −0.3 is typical for the Danube in these regions. On the
other hand, the slope changes as one moves upstream. For instance, at Hofkirchen
in Germany (lower panel in Sect. 1.11), long memory appears to be much stronger
with βf ≈ −0.75, and a straight line fits all the way.

An even more complex river flow series are monthly measurements of the Nile
river at Dongola in Sudan, displayed in Fig. 1.12. Seasonality is very strong here,
and subtracting seasonal means does not remove all of it (see Figs. 1.12(a), (b)).
A possible reason is that the seasonal effect may change over time; it may be non-
linear, or it may be stochastic. The MLE fit combined with the BIC captures the
remaining seasonality quite well. This model assumes seasonality (remaining after
previous subtraction of the deterministic one) to be stochastic.

The data examples considered so far could be modelled by stationary processes.
Often stationarity is not a realistic assumption, or it is at least uncertain. This makes
identification of stochastic long memory even more difficult, because typical long-
memory features may be confounded with nonstationary components. Identifying
and assessing possible long-memory components is however essential for correct
inference about the non-stationary components. A typical example is the assess-
ment of global warming. Figure 1.13(a) shows yearly average temperatures in cen-
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Fig. 1.9 Monthly average discharge of the Danube at Bratislava (upper series: original; lower
series; deseasonalized) and various log-log-plots for the deseasonalized series

tral England for the years 1659 to 2010 (Manley 1953, 1974; Parker et al. 1992;
Parker and Horton 2005). The data were downloaded using the Climate Explorer of
the Royal Netherlands Meteorological Institute. The main question here is whether
there is evidence for a systematic increase. The simplest way of answering this ques-
tion is to fit a straight line and test whether the slope, say β1, is positive. The depen-
dence structure of the regression residuals has an influence on testing whether β1 is
significantly larger than zero. As will be shown later, if the observations are given by
yt = β0 + β1t + et with et being stationary with long-range dependence such that
ρ(k) ∼ c|k|2d−1 (as |k| → ∞) for some d ∈ (0, 1

2 ), then the variance of the least
squares estimator of β1 increases by a constant times the factor n2d compared to the
case of uncorrelated or weakly dependent residuals (see Sect. 7.1). This means that
correct confidence intervals are wider by a factor proportional to nd . The difference
can be quite substantial. For example, the estimate of d for the Central England se-
ries is about 0.2. For the given data size, we thus have a factor of nd = 7040.2 ≈ 3.7.
It is therefore much more difficult to obtain a significant result for β1 than under
independence. Complicating the matter further, one may argue that the trend, if any,
may not be linear so that testing for β1 leads to wrong conclusions. Furthermore,
the observed series may even be nonstationary in the sense of random walk (or unit
roots). As will be discussed in Chap. 7 (Sects. 7.4.5 and 7.4.6), there is a method (so-
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Fig. 1.10 (a) Monthly average discharge of the Danube at Nagymaros (upper series: origi-
nal; lower series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a);
(c) monthly average discharge of the Danube at Drobeta-Turnu (upper series: original; lower se-
ries; deseasonalized); (d) log-log-periodogram of the deseasonalized series in (c)
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Fig. 1.11 (a) Monthly average discharge of the Danube at Ceatal Izmail (upper series: origi-
nal; lower series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a);
(c) monthly average discharge of the Danube at Hofkirchen (upper series: original; lower series;
deseasonalized); (d) log-log-periodogram of the deseasonalized series in (c)
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Fig. 1.12 (a) Monthly average discharge of the Nile river at Dongola (upper series: original; lower
series; deseasonalized); (b) log-log-periodogram of the deseasonalized series in (a)

called SEMIFAR models) that incorporates these possibilities using nonparametric
trend estimation, integer differencing and estimation of the dependence parameters.
Clearly, the more general a method is, the more difficult it becomes to obtain sig-
nificant results. Nevertheless, the conclusion based on SEMIFAR models is that the
trend is increasing and significantly different from a constant.

Another series with a clear trend function is displayed in Fig. 1.14. The measure-
ments are monthly averaged length-of-day anomalies (Royal Netherlands Meteoro-
logical Institute). Overall, one can see that there is a slight decline together with a
cyclic movement. The fitted line was obtained by kernel smoothing. As will be seen
in Chap. 7, the crucial ingredient in kernel smoothing is the bandwidth. A good
choice of the bandwidth depends on the dependence structure of the residuals. For
the data here, the residuals have clear long memory. In fact, the estimated long-
memory parameter is very close to the boundary of nonstationarity so that the possi-
bility of a spectral density proportional to λ−1 (as λ → 0) cannot be excluded. Pro-
cesses with this property are also called 1/f -noise (which, in our notation, should
actually be called 1/λ-noise because f stands for frequency).

In the previous examples, the trend function is obviously smooth. Quite different
time series are displayed in Figs. 1.15(a) and (d). The data were downloaded from
the Physionet databank funded by the National Institute of Health (Goldberger et al.
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Fig. 1.13 (a) Yearly mean Central England temperatures together with a fitted least squares line
and a nonparametric trend estimate; (b) histogram of residuals after subtraction of the nonparamet-
ric trend function; (c) acf of residuals; (d) log-log-periodogram of residuals

2000). The upper series in Fig. 1.15(a) shows consecutive stride intervals (stride-to-
stride measures of footfall contact times) of a healthy individual, whereas the upper
series in Fig. 1.15(d) was obtained for a patient suffering from Parkinson’s disease.
The complete data set consists of patients with Parkinson’s disease (N = 15), Hunt-
ington’s disease (N = 20) and amyotrophic lateral sclerosis (N = 13), as well as a
control group (N = 16) (Hausdorff et al. 1997, 2000). Both series in Figs. 1.15(a)
and (d) contain a spiky, somewhat periodic but also irregular, component. A natural
approach to analysing such data is to decompose them into a ‘spiky’ component and
the rest. Here, kernel smoothing is not appropriate because it tends to blur sharp
peaks. Instead, wavelet thresholding (see e.g. Donoho and Johnstone 1995) sepa-
rates local significant spikes from noise more effectively. The series plotted below
the original ones are the trend functions fitted by standard minimax thresholding
using Haar wavelets, the series at the bottom and, enlarged, in Figs. 1.15(b) and (e)
are the corresponding residuals. The log-log-periodogram plots for the residual se-
ries and fitted fractional ARIMA spectral densities in Figs. 1.15(c) and (f) indicate
long memory. A comparison of Figs. 1.15(c) and (f) shows that the slope βf is
less steep for the Parkinson patient. Indeed, using different techniques, Hausdorff
et al. (1997, 2000) found evidence for βf being closer to zero for patients suffer-
ing form Parkinson’s disease (and other conditions such as Huntington’s disease or
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Fig. 1.14 (a) Monthly averaged length-of-day anomalies (in seconds); (b) residuals after subtrac-
tion of the nonparametric trend function; (c) acf of residuals; (d) log-log-periodogram of residuals

Amytrophic Lateral Sclerosis). Applying the approach described here to all avail-
able data confirms these findings. Boxplots of estimated values of βf (Fig. 1.16)
show a tendency for βf to be closer to zero for the Parkinson patients. It should be
noted, however, that the results may depend on the way tuning constants in wavelets
thresholding were chosen. In view of the presence of long memory in the residuals,
a detailed study of wavelet-based trend estimation under long-range dependence is
needed. This will be discussed in more detail in Chap. 7 (Sect. 7.5).

A different kind of nonstationarity is typical for financial time series. Fig-
ure 1.17(a) shows daily values of the DAX index between 3 January 2000 and
12 September 2011. The series is nonstationary, but the first difference looks sta-
tionary (Fig. 1.17(b)), and the increments are uncorrelated (Fig. 1.17(c)). In this
sense, the data resemble a random walk. However, there is an essential differ-
ence. Consider, as a measure of instantaneous volatility, the transformed series

Yt = | logXt − logXt−1| 1
4 (see Ding and Granger 1996; Beran and Ocker 1999).

Figure 1.17(d) shows that there is a trend in the volatility series Yt . Moreover, even
after removing the trend, the series exhibits very slowly decaying correlations and a
clearly negative slope in the log-log-periodogram plot (Figs. 1.17(e) and (f)). This
is very much in contrast to usual random walk.

A completely different application where a trend and long memory are present is
displayed in Figs. 1.18(a) through (d). These data were provided to us by Giovanni
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Fig. 1.15 Consecutive stride intervals for (a) a healthy individual and (d) a patient with Parkin-
son’s disease. The original data are plotted on top, the trend functions fitted by minimax wavelet
thresholding are given in the middle, and the series at the bottom correspond to the residuals.
The residuals are also plotted separately in (b) and (e), the corresponding log-log-periodograms in
Figs. (c) and (f) respectively

et al. (Department of Biology, University of Konstanz) and are part of a long-term
project on olfactory coding in insects (see, Joerges et al. 1997; Galán et al. 2006;
Galizia and Menzel 2001). The original observations consisted of optical measure-
ments of calcium concentration in the antennal lobe of a honey bee. It is known that
stimuli (odors) lead to characteristic activity patterns across spherical functional
units, the so-called glomeruli, which collect the converging axonal input from a uni-
form family of receptor cells. It is therefore expected that, compared to a steady
state, the between-glomeruli-variability of calcium concentration is higher during a
response to an odor. This is illustrated in Fig. 1.18(a). For each time point t (with
time rescaled to the interval [0,1]), an empirical entropy measure Xt was calculated
based on the observed distribution of calcium concentration across the glomeruli.
The odor was administered at the 30th of n = 100 time points. The same procedure
was carried out under two different conditions, namely without and with adding a
neurotransmitter. The research hypothesis is that adding the neurotransmitter en-
hances the reaction, in the sense that the initial relative increase of the entropy curve
is faster. Because of the known intervention point t0 and the specific shape of a typ-
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Fig. 1.16 Boxplots of slopes in the log-log-periodogram plot for the control group (left) and for a
group of patients suffering from Parkinson’s disease (right)

ical response curve, a good fit can be obtained by a linear spline function with one
fixed knot η0 at t0 and two subsequent free knots η1, η2 > t0. The quantity to com-
pare (between the measurements “without” and “with” neurotransmitter) is the slope
β belonging to the truncated variable (t −η0)+. The distribution of the least squares
estimate of β depends on the dependence structure of the residual process. For the
bee considered in Fig. 1.18, the residuals exhibit clear long memory in the first case
(no neurotransmitter), whereas long memory is not significant in the second case.
For the collection of bees considered in this experiment, long memory, short mem-
ory and antipersistence could be observed. How to calculate confidence intervals for
β and other parameters in this model will be discussed in Chap. 7 (Sect. 7.3).

An example of spatial long memory is shown in Fig. 1.19. The data in (a) corre-
spond to differences between the maximal and minimal total column ozone amounts
within the period from 1 to 7 January 2006, measured on a grid with a resolution
of 0.25 degrees in latitude and longitude. The measurements were obtained by the
Ozone Monitoring Instrument (OMI) on the Aura 28 spacecraft (Collection 3 OMI
data; for details on the physical theory used in assessing ozone amounts, see e.g.
Vasilkov et al. 2008; Ahmad et al. 2004; data source: NASA’s Ozone Processing
Team, http://toms.gsfc.nasa.gov). Figures 1.19(c) and (d) display values of the pe-
riodograms in log-log-coordinates when looking in the horizontal (East–West) and
vertical direction (North–South) of the grid respectively. Both plots indicate long-
range dependence. The solid lines were obtained by fitting a fractional ARIMA
lattice process (see Chap. 9, Sects. 9.2 and 9.3). This is a simple model that al-
lows for different long-range, short-range and antipersistent dependence structures
in the horizontal and vertical direction. A formal test confirms indeed that long-

http://toms.gsfc.nasa.gov
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Fig. 1.17 Daily values of the DAX index between 3 January 2000 and 12 September 2011:
(a) logarithm of original series; (b) differenced series (log-returns); (c) acf of the series in (b);

(d) Yt = | logXt − logXt−1| 1
4 together with a fitted nonparametric trend function; (e) acf of Yt

after detrending; (f) log-log-periodogram of Yt after detrending

range dependence in the North–South direction is stronger than along East–West
transects.

1.3 Definition of Different Types of Memory

1.3.1 Second-Order Definitions for Stationary Processes

Consider a second-order stationary process Xt (t ∈ Z) with autocovariance func-
tion γX(k) (k ∈ Z) and spectral density fX(λ) = (2π)−1 ∑∞

k=−∞ γX(k) exp(−ikλ)

(λ ∈ [−π,π]). A heuristic definition of linear long-range dependence, short-range
dependence and antipersistence is given as follows: Xt has (a) long memory, (b)
short memory or (c) antipersistence if, as |λ| → 0, fX(λ) (a) diverges to infin-
ity, (b) converges to a finite constant, or (c) converges to zero respectively. Since
2πfX(λ) = ∑

γX(k), this is essentially (in a sense specified more precisely below)
equivalent to (a)

∑
γX(k) = ∞, (b) 0 <

∑
γX(k) < ∞ and (c)

∑
γX(k) = 0.
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Fig. 1.18 Empirical entropy of calcium concentrations in the antennal lobe of a honey bee exposed
to hexanol: (a) original series without neurotransmitter and linear splines fit; (b) log-log-peri-
odogram of residuals; (c) original series with neurotransmitter and linear splines fit; (d) log-log-pe-
riodogram of residuals

In the following more formal definitions will be given. First, the notion of slowly
varying functions is needed (Karamata 1930a, 1930b, 1933; Bajšanski and Kara-
mata 1968/1969; Zygmund 1968; also see e.g. Seneta 1976; Bingham et al. 1989;
Sedletskii 2000). Here and throughout the book, the notation an ∼ bn (n → ∞)

for two real- or complex-valued sequences an, bn will mean that the ratio an/bn

converges to one. Similarly for functions, g(x) ∼ h(x) (x → x0) will mean that
g(x)/h(x) converges to one as x tends to x0.

First, we need to define so-called slowly varying functions. There are two slightly
different standard definitions by Karamata and Zygmund respectively.

Definition 1.1 A function L : (c,∞) → R (c ≥ 0) is called slowly varying at infin-
ity in Karamata’s sense if it is positive (and measurable) for x large enough and, for
any u > 0,

L(ux) ∼ L(x) (x → ∞).

The function is called slowly varying at infinity in Zygmund’s sense if for x large
enough, it is positive and for any δ > 0, there exists a finite number x0(δ) > 0 such
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Fig. 1.19 Daily total column ozone amounts from the Ozone Monitoring Instrument (OMI) on the
Aura 28 spacecraft: (a) maximum minus minimum of observed ozone levels measured between
1–7 January 2006, plotted on a grid with a resolution of 0.25 degrees in latitude and longitude;
(b) residuals after fitting a FARIMA lattice model; (c) and (d) log-log-periodogram of the data in
(a) in the horizontal and vertical directions respectively

that for x > x0(δ), both functions p1(x) = xδL(x) and p2(x) = x−δL(x) are mono-
tone.

Similarly, L is called slowly varying at the origin if L̃(x) = L(x−1) is slowly
varying at infinity.

A standard formal definition of different types of linear dependence structures is
given as follows.

Definition 1.2 Let Xt be a second-order stationary process with autocovariance
function γX(k) (k ∈ Z) and spectral density

fX(λ) = (2π)−1
∞∑

k=−∞
γX(k) exp(−ikλ)

(
λ ∈ [−π,π]).

Then Xt is said to exhibit (linear) (a) long-range dependence, (b) intermediate de-
pendence, (c) short-range dependence, or (d) antipersistence if

fX(λ) = Lf (λ)|λ|−2d ,
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where Lf (λ) ≥ 0 is a symmetric function that is slowly varying at zero, and
(a) d ∈ (0, 1

2 ), (b) d = 0 and limλ→0 Lf (λ) = ∞, (c) d = 0 and limλ→0 Lf (λ) =
cf ∈ (0,∞), and (d) d ∈ (− 1

2 ,0) respectively.

Note that the terminology “short-range dependence” (with d = 0) is reserved for
the case where Lf (λ) converges to a finite constant cf . The reason is that if Lf (λ)

diverges to infinity, then the autocovariances are not summable although d = 0. This
case resembles long-range dependence, though with a slower rate of divergence. For
a discussion of models with “intermediate” dependence, see for instance Granger
and Ding (1996). In principle, any of the usual notions of “slowly varying” may be
used in the definition of Lf . The most common ones are the definitions by Karamata
and Zygmund given above. The two theorems below show that Karamata’s defini-
tion is more general. First, we need the definition of regularly varying functions and
two auxiliary results.

Definition 1.3 A measurable function g : R+ →R is called regularly varying (at in-
finity) with exponent α if g(x) 
= 0 for large x and, for any u > 0,

lim
x→∞

g(ux)

g(x)
= uα.

The class of such functions is denoted by Re(α).
Similarly, a function g is called regularly varying at the origin with exponent α

if g̃(x) = g(x−1) ∈ Re(−α). We will denote this class by Re0(α).

Slowly varying functions are regularly varying functions with α = 0. For regu-
larly varying functions, integration leads to the following asymptotic behaviour.

Lemma 1.1 Let g ∈ Re(α) with α > −1 and integrable on (0, a) for any a > 0.
Then

∫ x

0 g(t) dt ∈ Re(α + 1), and

∫ x

0
g(t) dt ∼ xg(x)

α + 1
(x → ∞).

Note that this result is just a generalization of the integration of a power x−α ,
where we have the exact equality

∫ x

0 t−α dt = x1−α/(α + 1). Lemma 1.1 is not only
useful for proving the theorem below, but also because asymptotic calculations of
variances of sample means can usually be reduced to approximations of integrals by
Riemann sums. An analogous result holds for α < −1:

Lemma 1.2 Let g ∈ Re(α) with α < −1 and integrable on (a, b) for any 0 < a ≤
b < ∞. Then

∫ ∞
x

g(t) dt ∈ Re(α + 1), and

∫ ∞

x

g(t) dt ∼ −xg(x)

α + 1
(x → ∞).
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Now it can be shown that slowly varying functions in Karamata’s sense can be
characterized as follows.

Theorem 1.1 L is slowly varying at infinity in Karamata’s sense if and only if

L(x) = c(x) exp

{∫ x

1

η(t)

t
dt

}
(x ≥ 1),

where c(·) and η(·) are measurable functions such that

lim
x→∞ c(x) = c ∈ (0,∞),

lim
x→∞η(x) = 0

and η(·) is locally integrable.

Proof First, we show that the representation above yields a slowly varying function.
Let s > 0, s ∈ [a, b], and write

ψs(x) := L(sx)

L(x)
= c(sx)

c(x)
exp

(∫ sx

x

η(t)

t
dt

)
.

Since c(x) → c and η(t) → 0, we have for sufficiently large x, and arbitrary ε > 0,

(1 − ε) exp
(−ε max

(| loga|, | logb|)) ≤ ψs(x)

≤ (1 + ε) exp
(
ε max

(| loga|, | logb|)).
Letting ε → 0, we obtain the slowly varying property.

Assume now that L is slowly varying. Define

η̃(s) := sL(s)∫ s

0 L(t) dt
.

Then with U(s) = ∫ s

0 L(t) dt ,

∫ x

1

η̃(s)

s
ds =

∫ x

1

L(s)

U(s)
ds =

∫
u−1 du = log

(
cU(x)

)
,

where the last integration is over (c = ∫ 1
0 L(t) dt,U(x) = ∫ x

0 L(t) dt). Thus,

U(x) = c exp

(∫ x

1

η̃(t)

t
dt

)
,

and consequently, taking derivatives on both sides of the latter expression, we have

L(x) = c
η̃(x)

x
exp

(∫ x

1

η̃(t)

t
dt

)
= cη̃(x) exp

(∫ x

1

η̃(t) − 1

t
dt

)
.
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Thus, L has the required representation. It remains to show that η(x) = η̃(x) −
1 → 0 and η̃(x) → 1. This follows directly from Karamata’s theorem (Lemma 1.1)
and the definition of η̃(x). �

On the other hand, for Zygmund’s definition one can show the following:

Theorem 1.2 L is slowly varying in Zygmund’s sense if and only if there is an
x0 ∈ [1,∞) such that

L(x) = c exp

{∫ x

1

η(t)

t
dt

}
(x ≥ x0),

where c is a finite positive constant, and η(·) is a measurable function such that
limx→∞ η(x) = 0.

In terms of regularly varying functions the definition of long-range dependence
and antipersistence can be rephrased as follows: long memory and antipersistence
means that f ∈ Re0(−2d) with d ∈ (0, 1

2 ) and d ∈ (− 1
2 ,0) respectively. Since

slowly varying functions are dominated by power functions, f (λ) = Lf (λ)|λ|−2d

implies that for d > 0, the spectral density has a hyperbolic pole at the origin,
whereas it converges to zero for d < 0. In contrast, under short-range dependence,
f (λ) converges to a positive finite constant. Alternative terms for long-range de-
pendence are persistence, long memory or strong dependence. Instead of “(linear)
long-range dependence”, one also uses the terminology “slowly decaying correla-
tions”, “long-range correlations” or “strong correlations”. This is justified by the
following equivalence between the behaviour of the spectral density at the origin
and the asymptotic decay of the autocovariance function (see e.g. Zygmund 1968;
Lighthill 1962; Beran 1994a; Samorodnitsky 2006):

Theorem 1.3 Let γ (k) (k ∈ Z) and f (λ) (λ ∈ [−π,π]) be the autocovariance func-
tion and spectral density respectively of a second-order stationary process. Then the
following holds:

(i) If

γ (k) = Lγ (k)|k|2d−1,

where Lγ (k) is slowly varying at infinity in Zygmund’s sense, and either d ∈
(0, 1

2 ), or d ∈ (− 1
2 ,0) and

∑
k∈Z γ (k) = 0, then

f (λ) ∼ Lf (λ)|λ|−2d (λ → 0)

with

Lf (λ) = Lγ

(
λ−1)π−1Γ (2d) sin

(
π

2
− πd

)
. (1.1)
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(ii) If

f (λ) = Lf (λ)|λ|−2d (0 < λ < π),

where d ∈ (− 1
2 ,0) ∪ (0, 1

2 ), and Lf (λ) is slowly varying at the origin in Zyg-
mund’s sense and of bounded variation on (a,π) for any a > 0, then

γ (k) ∼ Lγ (k)|k|2d−1 (k → ∞),

where

Lγ (k) = 2Lf

(
k−1)Γ (1 − 2d) sinπd. (1.2)

Note that in the case of antipersistence the autocovariances are absolutely sum-
mable but |γ (k)| still converges at a hyperbolic rate that can be rather slow, com-
pared for instance with an exponential decay. Also note that d = 0 is not included
in the theorem because the condition γ (k) = Lγ (k)|k|−1 would imply that γ (k) is
not summable. In principle (possibly under additional regularity conditions), this
would correspond to intermediate dependence with f (λ) diverging at the origin like
a slowly varying function (see Definition 1.2). To obtain short-range dependence in
the sense of Definition 1.2, the summability of γ (k) is a minimal requirement. For
instance, an exponential decay defined by |γ (k)| ≤ cak (with 0 < c < ∞,0 < a < 1)
together with

∑
k∈Z γ (k) = cf > 0 implies f (λ) ∼ cf as λ → 0. A general state-

ment including all four types of dependence structures can be made however with
respect to the sum of the autocovariances:

Corollary 1.1 If

f (λ) = Lf (λ)|λ|−2d (0 < λ < π),

where d ∈ (− 1
2 , 1

2 ), and Lf (λ) = L(λ−1) is slowly varying at the origin in Zyg-
mund’s sense and of bounded variation on (a,π) for any a > 0, then the following
holds. For − 1

2 < d < 0,

∞∑

k=−∞
γ (k) = 2πf (0) = 0,

whereas for 0 < d < 1
2 ,

∞∑

k=−∞
γ (k) = 2π lim

λ→0
f (λ) = ∞.

Moreover, for d = 0, we have

0 <

∞∑

k=−∞
γ (k) = 2πf (0) = 2πcf < ∞
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if 0 < limλ→0 Lf (λ) = cf < ∞ and

∞∑

k=−∞
γ (k) = 2π lim

λ→0
f (λ) = ∞

if limλ→0 Lf (λ) = ∞.

From these results one can see that characterizing linear dependence by the spec-
tral density is more elegant than via the autocovariance function because the equa-
tion f (λ) = Lf (λ)|λ|−2d is applicable in all four cases (long-range, short-range,
intermediate dependence and antipersistence).

Example 1.1 Let Xt be second-order stationary with Wold decomposition

Xt =
∞∑

j=0

aj εt−j ,

where εt are uncorrelated zero mean random variables, σ 2
ε = var(εt ) < ∞, and

aj = (−1)j
(−d

j

)
= (−1)j

Γ (1 − d)

Γ (j + 1)Γ (1 − d − j)

with −1/2 < d < 1/2. Then aj are the coefficients in the power series representa-
tion

A(z) = (1 − z)−d =
∞∑

j=0

aj z
j .

Therefore, the spectral density of Xt is given by

fX(λ) = σ 2
ε

2π

∣∣A
(
e−iλ

)∣∣2 = σ 2
ε

2π

∣∣1 − e−iλ
∣∣−2d = σ 2

ε

2π

∣∣2(1 − cosλ)
∣∣−d

∼ σ 2
ε

2π
|λ|−2d (λ → 0).

Thus, we obtain short-range dependence for d = 0 (and in fact uncorrelated obser-
vations), antipersistence for − 1

2 < d < 0 and long-range dependence for 0 < d < 1
2 .

If the innovations εt are independent, then Xt is called a fractional ARIMA(0, d , 0)
process (Granger and Joyeux 1980; Hosking 1981; see Chap. 2, Sect. 2.1.1.4).

Example 1.2 Let Xt be second-order stationary with spectral density

fX(λ) = log

∣∣∣∣
π

λ

∣∣∣∣ = Lf (λ).
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This is a case with intermediate dependence. The autocovariance function is given
by

var(Xt ) = γX(0) = 2

(
π logπ −

∫ π

0
logλdλ

)
= 2π,

and for k > 0,

γX(k) = 2
∫ π

0
coskλ · (logπ − logλ)dλ = −2

∫ π

0
coskλ · logλdλ

= 2

k

∫ π

0

sin kλ

λ
dλ = 2

k
Si(πk),

where Si(·) is the sine integral function. For k → ∞, we obtain the Dirichlet integral

lim
k→∞ Si(πk) =

∫ ∞

0

sinλ

λ
dλ = π

2
,

so that

γX(k) ∼ πk−1 (k → ∞),

ρX(k) ∼ 1

2
k−1 (k → ∞),

and

n−1∑

k=−(n−1)

γX(k) ∼ 2π logn (n → ∞).

The behaviour of the spectral density at the origin also leads to a simple universal
formula for the variance of the sample mean x̄ = n−1 ∑n

t=1 Xt :

Corollary 1.2 Suppose that f (λ) ∼ Lf (λ)|λ|−2d (λ → 0) for some d ∈ (− 1
2 , 1

2 ),
where Lf (λ) = L(λ−1) is slowly varying at zero in Zygmund’s sense and of bounded
variation on (a,π) for any a > 0. Furthermore, assume that in the case of d = 0 the
slowly varying function Lf is continuous at the origin. Then

var(x̄) ∼ ν(d)f
(
n−1)n−1 (n → ∞)

with

ν(d) = 2Γ (1 − 2d) sin(πd)

d(2d + 1)
(d 
= 0)

and

ν(0) = lim
d→0

ν(d) = 2π.
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Proof We have

var(x̄) = n−1
n−1∑

k=−(n−1)

(
1 − |k|

n

)
γ (k)

= n−1
n−1∑

k=−(n−1)

γ (k) − n−1
n−1∑

k=−(n−1)

|k|
n

γ (k)

with

γ (k) ∼ Lγ (k)|k|2d−1.

For 0 < d < 1
2 , this implies

var(x̄) ∼ 2Lγ (n)n−1

[
n−1∑

k=1

k2d−1 − n−1
n−1∑

k=1

k2d

]

= 2Lγ (n)n2d−1

[
n−1∑

k=1

(
k

n

)2d−1

n−1 −
n−1∑

k=1

(
k

n

)2d

n−1

]

∼ 2Lγ (n)n2d−1
[∫ 1

0
x2d−1 dx −

∫ 1

0
x2d dx

]

= 2Lγ (n)n2d−1
[

1

2d
− 1

2d + 1

]
= Lγ (n)n2d−1

d(2d + 1)
.

Using Theorem 1.3, we can write this as

Lγ (n)n2d−1

d(2d + 1)
= 2Γ (1 − 2d) sin(πd)

d(2d + 1)
Lf

(
n−1)n2d−1 = ν(d)Lf

(
n−1)n2d−1.

Thus,

var(x̄) ∼ ν(d)Lf

(
n−1)n2d−1 ∼ ν(d)f

(
n−1)n−1.

For d = 0 and 0 < Lf (0) = cf < ∞, we have

0 <

∞∑

k=−∞
γ (k) = 2πf (0) < ∞,

so that |k|γ (k) is Cesaro summable with limit zero. Hence,

lim
n→∞n−1

n−1∑

k=−(n−1)

|k|
n

γ (k) = 0
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and

var(x̄) ∼ n−1
n−1∑

k=−(n−1)

γ (k) ∼ 2πf (0)n−1.

Thus, we may write

var(x̄) ∼ ν(0)Lf (0)n−1 ∼ ν(0)f
(
n−1)n−1,

where

ν(0) = lim
d→0

ν(d) = lim
d→0

2 sin(πd)

d
= 2π.

Finally, for − 1
2 < d < 0, we have

∑
k∈Z γ (k) = 0, so that

var(x̄) = n−1
n−1∑

k=−(n−1)

γ (k) − n−1
n−1∑

k=−(n−1)

|k|
n

γ (k)

= −2n−1
∞∑

k=n

γ (k) − n−1
n−1∑

k=−(n−1)

|k|
n

γ (k)

∼ 2Lγ (n)n−1

[
−

∞∑

k=n

k2d−1 − n−1
n−1∑

k=1

k2d

]

= 2Lγ (n)n2d−1

[
−

∞∑

k=n

(
k

n

)2d−1

n−1 −
n−1∑

k=1

(
k

n

)2d

n−1

]

∼ 2Lγ (n)n2d−1
[
−

∫ ∞

1
x2d−1 dx −

∫ 1

0
x2d dx

]

= 2Lγ (n)n2d−1
[

1

2d
− 1

2d + 1

]
= ν(d)Lf

(
n−1)n2d−1

∼ ν(d)f
(
n−1)n−1. �

Corollary 1.2 illustrates that knowledge about the value of d is essential for sta-
tistical inference. If short memory is assumed but the actual value of d is larger
than zero, then confidence intervals for μ = E(Xt) will be too narrow by an in-
creasing factor of nd , and the asymptotic level of tests based on this assumption will
be zero. This effect is not negligible even for small sample sizes. Table 1.1 shows
simulated rejection probabilities (based on 1000 simulations) for the t -test at the
nominal 5 %-level of significance. The numbers are based on 1000 simulations of a
fractional ARIMA(0, d , 0) process with d = 0.1, 0.2, 0.3 and 0.4 respectively (see
Chap. 2, Sect. 2.1.1.4, for the definition of FARIMA models).

The second-order definitions of long-range dependence considered here can be
extended to random fields with a multivariate index t . A complication that needs
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Table 1.1 Simulated rejection probabilities (under the null hypothesis) for the t -test at the nominal
5 %-level of significance. The results are based on 1000 simulations of a fractional ARIMA(0, d ,
0) process with d = 0.1, 0.2, 0.3 and 0.4 respectively

n d = 0.1 0.2 0.3 0.4

10 0.10 0.21 0.33 0.53

50 0.16 0.38 0.55 0.72

100 0.20 0.42 0.62 0.78

to be addressed for two- or higher-dimensional indices is however that dependence
may not be isotropic (see e.g. Boissy et al. 2005; Lavancier 2006, 2007; Beran et al.
2009). This will be discussed in Chap. 9. A further important extension includes
multivariate spectra with power law behaviour at the origin that may differ for the
different components of the process (see e.g. Robinson 2008).

1.3.2 Volatility Dependence

The characterization of nonlinear long memory is more complicated in general since
there are many ways in which nonlinearity can occur. In econometric applications,
the main focus is on dependence in volatility in the sense that Xt are uncorrelated
but the squares X2

t are correlated. The definitions of long memory given above can
then be carried over directly by simply considering X2

t instead of Xt . A more diffi-
cult, and partially still open, issue is how to define concrete statistically convenient
models that are stationary with existing fourth moments and long-range correlations
in X2

t (see e.g. Robinson 1991; Bollerslev and Mikkelsen 1996; Baillie et al. 1996a;
Ding and Granger 1996; Beran and Ocker 2001; Giraitis et al. 2000a, 2004, 2006;
Giraitis and Surgailis 2002). This is discussed in detail in Sect. 2.1.3. A very sim-
ple model that is well defined and obviously exhibits long-range dependence can be
formulated as follows.

Proposition 1.1 Let εt (t ∈ Z) be i.i.d. random variables with E(εt ) = 0 and
var(εt ) = 1. Define

Xt = σtεt

with σt = √
vt , vt ≥ 0 independent of εs (s ∈ Z) and such that

γv(k) = cov(vt , vt+k) ∼ c · |k|2d−1

for some 0 < d < 1
2 . Then for k 
= 0,

γX(k) = 0,

whereas

γX2(k) = cov
(
X2

t ,X
2
t+k

) = γv(k) ∼ c · |k|2d−1 (k → ∞).



1.3 Definition of Different Types of Memory 31

Proof Since E(Xt) = E(σt )E(εt ) = 0, we have for k 
= 0,

γX(k) = E(XtXt+k) = E(σtσt+k)E(εtεt+k) = 0.

Moreover, for k 
= 0,

γX2(k) = E
(
σ 2

t σ 2
t+k

)
E

(
ε2
t ε

2
t+k

) − E
(
σ 2

t ε2
t

)
E

(
σ 2

t+kε
2
t+k

)

= E(vtvt+k) − E(vt )E(vt+k)

= γv(k) ∼ c · |k|2d−1 (k → ∞). �

The main problem with this model is that σt and εt are not directly observable.
One would however like to be able to separate the components σt and εt even though
only their product Xs (s ≤ t ) is observed. This is convenient, for instance, when
setting up maximum likelihood equations for estimating parameters that specify the
model (see e.g. Giraitis and Robinson 2001). One therefore often prefers to assume
a recursive relation between vt and past values of Xt . The difficulty that arises then
is to prove the existence of a stationary solution and to see what type of volatility
dependence is actually achieved. For instance, in the so-called ARCH(∞) model
(Robinson 1991; Giraitis et al. 2000a) one assumes

σ 2
t = vt = b0 +

∞∑

j=1

bjX
2
t−j

with bj ≥ 0 and
∑

bj < ∞. As it turns out, however, long-range dependence—
defined in the second-order sense as above—cannot be obtained. This and alterna-
tive volatility models with long-range dependence will be discussed in Sect. 2.1.3.

1.3.3 Second-Order Definitions for Nonstationary Processes

For nonstationary processes, Heyde and Yang (1997) consider the variance

Vm = var
(
X

(m)
t

)
(1.3)

of the aggregated process

X
(m)
t = Xtm−m+1 + · · · + Xtm (1.4)

and the limit

V = lim
m→∞D−1

m Vm, (1.5)

where

Dm =
tm∑

i=tm−m+1

E
(
X2

i

)
. (1.6)
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The process X
(m)
t (t ∈ Z) is then said to exhibit long memory if V = ∞. This defi-

nition is applicable both to second-order stationary processes and to processes that
need to be differenced first. Note that the block mean variance m−2Vm is also called
Allan variance (Allan 1966; Percival 1983; Percival and Guttorp 1994).

1.3.4 Continuous-Time Processes

The definition of long memory and antipersistence based on autocovariances can be
directly extended to continuous-time processes.

Definition 1.4 Let X(t) (t ∈ R) be a stationary process with autocovariance func-
tion γX(u) = cov(X(t),X(t +u)) and spectral density fX(λ) (λ ∈R). Then X(t) is
said to have long memory if there is a d ∈ (0, 1

2 ) such that

γX(u) = Lγ (u)u2d−1

as u → ∞, or

fX(λ) = Lf (λ)|λ|−2d

as λ → 0, where Lγ and Lf are slowly varying at infinity and zero respec-
tively. Similarly, X(t) is said to be antipersistent if these formulas hold for some
d ∈ (− 1

2 ,0) and, in case of the formulation via γX , the additional condition

∫ ∞

−∞
γX(u)du = 0

holds.

Note that, as in discrete time, the definition of long-range dependence given here
implies

∫
γX(u)du = ∞. A more general definition is possible by using the condi-

tions
∫

γX(u)du = ∞ and
∫

γX(u)du = 0 only. However, the first condition would
then also include the possibility of intermediate dependence.

Finally note that an alternative definition can also be given in terms of the vari-
ance of the integrated process Y(t) = ∫ t

0 X(s)ds. This is analogous to a nonlinear
growth of the variance of partial sums for discrete time processes.

Definition 1.5 Let Y(t) = ∫ t

0 X(s)ds and assume that var(Y (t)) < ∞ for all t ≥ 0.
Then Y (and X) is said to have long-range dependence if

var
(
Y(t)

) = L(t)t2d+1

for some 0 < d < 1
2 , where L is slowly varying at infinity. Moreover, Y (and X) is

said to be antipersistent if

var
(
Y(t)

) = L(t)t2H = L(t)t2d+1
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for some − 1
2 < d < 0, where L is slowly varying at infinity.

This definition means that the growth of the variance of Y(t) is faster than linear
under long-range dependence and slower than linear for antipersistent processes.
The connection between the two definitions is given by

var
(
Y(t)

) =
∫ t

0

(∫ t

0
γX(s − r) dr

)
ds = 2

∫ t

0
(t − u)γX(u)du.

If γX(u) = cov(X(t),X(t +u)) ∼ Lγ (u)|u|2d−1, where d ∈ (0, 1
2 ) and Lγ is slowly

varying at infinity (i.e. X(t) has long memory in the sense of Definition 1.4), then
application of Lemma 1.1 leads to

var
(
Y(t)

) ∼ 1

d(2d + 1)
Lγ (t)t2d+1.

Thus, X(t) has also long memory in the sense of Definition 1.5. The analogous
connection holds for antipersistence, taking into account the additional condition∫

γX(u)du = 0.
For nonnegative processes, the expected value often grows at a linear rate. Typi-

cal examples are counting processes or renewal processes with positive rewards (see
Sects. 2.2.4 and 4.9). Long-range dependence and antipersistence can therefore also
be expressed by comparing the growth of the variance with the growth of the mean.

Definition 1.6 Let Y(t) = ∫ t

0 X(s)ds ≥ 0 and assume that var(Y (t)) < ∞ for all
t ≥ 0. Then Y (and X) is said to have long-range dependence if

lim
t→∞

var(Y (t))

E[Y(t)] = +∞.

Similarly, Y (and X) is said to be antipersistent if

lim
t→∞

var(Y (t))

E[Y(t)] = 0.

1.3.5 Self-similar Processes: Beyond Second-Order Definitions

Another classical way of studying long memory and antipersistence is based on the
relationship between dependence and self-similarity.

Definition 1.7 A stochastic process Y(u) (u ∈ R) is called self-similar with self-
similarity parameter 0 < H < 1 (or H -self-similar) if for all c > 0, we have

(
Y(cu),u ∈R

) d= (
cH Y (u),u ∈R

)
,

where
d= denotes equality in distribution.
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Self-similar processes are a very natural mathematical object to look at because
they are the only possible weak limits of appropriately normalized and centered par-
tial sums Sn(u) = ∑[nu]

t=1 Xt (u ∈ [0,1]) based on stationary and ergodic sequences
Xt (t ∈ Z) (Lamperti 1962, 1972). If a process Y(u) (u ∈ R) is H -self-similar with
stationary increments (so-called H -SSSI), then the discrete-time increment process
Xt = Y(t) − Y(t − 1) (t ∈ Z) is stationary. Note also that Y(0) =d cH Y (0) for any
arbitrarily large c > 0, so that necessarily Y(0) = 0 almost surely.

To see how the self-similarity parameter H is related to long memory, we first
consider a case where the second-order definition of long memory is applicable. If
second moments exist, then the SSSI-property implies, for u ≥ v > 0,

γY (u,u) = var
(
Y(u)

) = u2H γY (1,1) = u2H σ 2

and

var
(
Y(u) − Y(v)

) = var
(
Y(u − v)

) = σ 2(u − v)2H .

Since var(Y (u) − Y(v)) = γY (u,u) + γY (v, v) − 2γY (u, v), this means that the au-
tocovariance function is equal to

γY (u, v) = σ 2

2

[|u|2H + |v|2H − |u − v|2H
]

(u, v ∈ R).

By similar arguments, the autocovariance function of the increment process Xt

(t ∈ Z) is given by

γX(k) = cov(Xt ,Xt+k) = σ 2

2

[|k − 1|2H + |k + 1|2H − 2|k|2H
]

(k ∈ N). (1.7)

By Taylor expansion in x = k−1 around x = 0 it follows that, as k tends to infinity,

γX(k) ∼ σ 2H(2H − 1)k2H−2.

In the notation of Definition 1.2 we therefore have Lγ (k) = σ 2H(2H − 1),

H = d + 1

2
,

and Xt (t ∈ Z) has long memory if 1
2 < H < 1. Also note that for the variance of

Sn = ∑n
t=1 Xt , self-similarity implies

var(Sn) = var
(
Y(n) − Y(0)

) = n2H σ 2,

so that, for H > 1
2 , the variance grows at a rate that is faster than linear. For H = 1

2 ,
all values of γX(k) are zero except for k = 0, so that Xt (t ∈ Z) is an uncorrelated
sequence. For 0 < H < 1

2 , γX(k) is summable, so that, in contrast to the case with
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H > 1
2 , the sum over all covariances can be split into three terms,

∞∑

k=−∞

[|k − 1|2H + |k + 1|2H − 2|k|2H
]

=
∞∑

k=−∞
|k − 1|2H +

∞∑

k=−∞
|k + 1|2H − 2

∞∑

k=−∞
|k|2H

=
∞∑

k=−∞
|k|2H +

∞∑

k=−∞
|k|2H − 2

∞∑

k=−∞
|k|2H = 0.

In other words, 0 < H < 1
2 implies antipersistence. The simplest SSSI process with

finite second moments is a Gaussian process, the so-called fractional Brownian mo-
tion (fBm), usually denoted by BH . Note that BH is the only Gaussian SSSI-process
because apart from the variance σ 2, the first two moments are fully specified by the
SSSI-property. The corresponding increment sequence Xt (t ∈R or Z) is called
fractional Gaussian noise (FGN).

To see how to extend the relationship between the self-similarity parameter H

and long-range dependence beyond Gaussian processes, we first look at an explicit
time-domain representation of fractional Gaussian motion. The definition and ex-
istence of fBm follow directly from the definition of its covariance function. The
difference between standard Brownian motion (with H = 1

2 ) and fractional Brow-
nian motion with H 
= 1

2 can be expressed by a moving average representation of
BH (u) on the real line, which is a weighted integral of standard Brownian motion.
For H 
= 1

2 , we have

BH (u) =
∫ ∞

−∞
Qu,1(x;H)dB(x), (1.8)

where

Qu,1(x;H) = c1
[
(u − x)

H− 1
2+ − (−x)

H− 1
2+
] + c2

[
(u − x)

H− 1
2− − (−x)

H− 1
2−
]
,

and c1, c2 are deterministic constants. This representation is not unique since it de-
pends on the choice of c1 and c2. A causal representation of fBm is obtained if we
choose c2 = 0 and

c1 =
√

Γ (2H + 1) sin(πH)

Γ (H + 1
2 )

=
{∫ ∞

0

[
(1 + s)H− 1

2 − sH− 1
2
]2

ds + 1

2H

}− 1
2

.

One can verify that the kernel Qu,1(·,H) has the following property: for all
0 ≤ v < u, x ∈ R,

Qu,1(x;H) − Qv,1(x;H) = Qu−v,1(x − v;H), (1.9)

Qcu,1(cx;H) = cH−1/2Qu,1(x;H). (1.10)
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The first property reflects stationarity of increments. The second property leads to
self-similarity with self-similarity parameter H . It should be mentioned at this point
that representation (1.8) is not valid for an fBm on [0,1].

As we have seen above, if the second moments are assumed to exist, then the def-
inition of self-similarity fully determines the autocorrelation structure. This leads
to a direct definition of Gaussian self-similar processes. The existence and con-
struction of non-Gaussian self-similar processes is less straightforward because the
autocorrelation structure is not enough. One way of obtaining a large class of non-
Gaussian self-similar processes is to extend the integral representation (1.8) to mul-
tiple Wiener–Itô integrals (see e.g. Major 1981). This can be done as follows. For
q ≥ 1 and 0 < H < 1, we define the processes

ZH,q(u) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
Qu,q(x1, . . . , xq;H)dB(x1) · · ·dB(xq) (1.11)

where the kernel Qu,q is given by

Qu,q(x1, . . . , xq) =
∫ u

0

(
q∏

i=1

(s − xi)
−( 1

2 + 1−H
q

)

+

)
ds.

All kernels have the two properties guaranteeing stationarity of increments and self-
similarity. The self-similarity property is of the form

Qcu,q(cx1, . . . , cxq;H) = cH− q
2 Qu,q(x1, . . . , xq;H).

The exponent −q/2 instead of −1/2 is due to the fact that dB occurs q times in
the product. More explicitly, we can see that the scaling property of Qu,q implies
self-similarity with parameter H as follows:

ZH,q(cu) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
Qct,q(x1, . . . , xq;H)dB(x1) · · ·dB(xq)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
Qct,q

(
c
x1

c
, . . . , c

xq

c
;H

)
dB

(
c
x1

c

)
· · ·dB

(
c
xq

c

)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
cH− q

2 Qu,q(y1, . . . , yk;H)c
q
2 dB(y1) · · ·dB(yq)

= cH

∫ ∞

−∞
· · ·

∫ ∞

−∞
Qu,q(y1, . . . , yq;H)dB(y1) · · ·dB(yk) = cH ZH,q(u).

For q > 1, the process ZH,q(u) (u ∈ R) is no longer Gaussian and is called Hermite
process on R. Sometimes one also uses the terminology Hermite–Rosenblatt pro-
cess, though “Rosenblatt process” originally refers to the case with q = 2 only (see
Taqqu 1975).

Equation (1.11) also leads to a natural extension to self-similar processes with
long memory and nonexisting second moments. This can be done by replacing
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Brownian motion by a process whose second moments do not exist. Note that
Brownian motion is just a special example of the much larger class of Lévy pro-
cesses. These are defined by the property that they have stationary independent
increments and vanish at zero almost surely. The nonexistence of second mo-
ments can be achieved by assuming that the Lévy process is a symmetric α-stable
(SαS) process Zα(·) for some 0 < α < 2. This means that every linear combination
Y = ∑m

j=1 ciZα(ui) has a symmetric α-stable distribution with characteristic func-
tion ϕ(ω) = E[exp(iωY )] = exp(−a|ω|α). In particular, SαS Lévy processes are
self-similar with self-similarity parameter HLévy = 1/α. Hence, we note that unlike
in the Gaussian case of fBm, here self-similarity does not have anything to do with
long memory. Furthermore, symmetric α-stable Lévy processes arise as limits of
appropriately standardized partial sums S[nu] = ∑[nu]

i=1 Xt , where Xt are i.i.d. and
have symmetric heavy tails with tail index α in the sense that

lim
x→−∞|x|αP (X < −x) = lim

x→+∞xαP (X > x) = C1 (1.12)

for some 0 < α < 2 and a suitable constant C1 (see e.g. Embrechts et al. 1997; Em-
brechts and Maejima 2002, and Sect. 4.3). In particular, the process S[nu] has to be
standardized by d−1(n), where d(n) = nHLévy = n1/α . Therefore, for sequences Xt

with tail index α < 2, the self-similarity parameter H = HLévy = 1/α is the analogue
to H = 1

2 in the case of finite second moments. If, on the other hand, a nondegen-
erate limit of d−1(n)S[nu] is obtained for standardizations d(n) proportional to nH

with H > 1/α, then the memory (in the sequence Xt ) is so strong that partial sums
diverge faster than for Lévy processes. This is analogous to H > 1

2 in the case of
finite second moments. Therefore, long memory is associated with the condition
H > 1/α. (Note that for α = 2, we are back to finite second moments, so that we
obtain the previous condition H > 1

2 .) In analogy to the case of finite second mo-
ments we may also define the fractional parameter d = H − 1/α. Long memory is
then associated with d > 0. Note also that, since the self-similarity parameter is by
definition in the interval (0,1), long memory cannot be achieved for α < 1.

As we will see in Sect. 4.3, in general the limit of d−1(n)S[nu] is a Linear Frac-
tional stable motion defined by

Z̃H,α(u) =
∫ ∞

−∞
Qu,1(x;H,α)dZα(x) (1.13)

with

Qu,1(x;H,α) = c1
[
(u−x)

H−1/α
+ − (−x)

H−1/α
+

]+c2
[
(u−x)

H−1/α
− − (−x)

H−1/α
−

]

(1.14)
and H > 1/α. This definition is obviously analogous to (1.8) for fractional Brown-
ian motion. Moreover, the definition is valid for H ∈ (0,1), H 
= 1/α.
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1.3.6 Other Approaches

1.3.6.1 Different Dependence Measures

For processes with infinite second moments, long-range dependence has to be mea-
sured by other means than autocorrelations, the spectral density or the variance of
cumulative sums. For instance, the variance Vm defined in (1.3) can be replaced by

V̂m = X
(m)
t∑tm

i=tm−m+1 X2
i

(1.15)

(also see Hall 1997). An alternative dependence measure is for example the so-
called codifference (Samorodnitsky and Taqqu 1994). Suppose that Xt (t ∈ Z) have
a symmetric distribution. Then the codifference is defined by

τX(k) = log
E[ei(Xt+k−Xt )]

E[eiXt+k ]E[e−iXt ] . (1.16)

Note that τX can also be defined in continuous time. For Gaussian processes, τX(k)

coincides with the autocovariance function γX(k).

1.3.6.2 Extended Memory

Granger (1995) and Granger and Ding (1996) consider a different property charac-
terizing long-term effects of observations from the remote past.

Definition 1.8 Let Xt be a stochastic process defined for t ∈ Z or t ∈ N and such
that E(X2

t ) < ∞ for all t . Consider the prediction

X̂t+k = E[Xt+k | Xs, s ≤ t].
Then Xt is said to have extended memory if there is no constant c ∈ R such that
X̂t+k →p c as k → ∞.

Example 1.3 Consider a random walk process defined by Xt = ∑t
s=1 εs (t ≥ 1)

where εt are i.i.d. N(0, σ 2
ε ) distributed with σ 2

ε > 0. Then

X̂t+k = Xt

for all k ≥ 1, so that X̂t+k does not converge to a constant but is instead N(0, tσ 2
ε )-

distributed for all k. Thus, random walk has extended memory. Similarly, for Yt =
exp(Xt ) = exp(

∑t
s=1 εs), we have

Ŷt+k = YtE

[
exp

(
k∑

j=1

εt+j

)]
= Yt exp

(
1

2
σ 2

ε k

)
.
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Again, Yt does not converge to a constant, but instead P(Ŷt+k → ∞) = 1. This
illustrates that extended memory also captures nonlinear dependence. The reason is
that the conditional expected value and not just the best linear forecast is considered.
More generally, any strictly monotone transformation G(Xt) has extended memory
(see e.g. Granger and Ding 1996 and references therein). In contrast, for |ϕ| < 1,
the equation Xt = ϕXt−1 + εt (t ∈ Z) has a unique stationary causal solution Xt =∑∞

j=0 ϕjεt−j , and

X̂t+k = ϕkXt →
p

0.

More generally, for a purely stochastic invertible linear second-order stationary pro-
cess with Wold representation Xt = ∑∞

j=0 aj εt−j and i.i.d. εt , we have

X̂t+k = E[Xt+k | Xs, s ≤ t] =
∞∑

j=0

aj+kεt−j ,

so that

var(X̂t+k) = E
(
X̂2

t+k

) =
∞∑

j=k

a2
j →

k→∞ 0.

Since X̂t+k converges to zero in the L2-norm and in probability, the process Xt does
not have extended memory.

1.3.6.3 Long Memory as Phase Transition

The approach in this section was initiated by G. Samorodnitsky, see Samorodnitsky
(2004, 2006). Let {Pθ , θ ∈ Θ} be a family of probability measures that describe the
finite-dimensional distributions of a stationary stochastic process X = (Xt ) (t ∈ Z

or t ∈ R). We assume that as θ varies over the parameter space Θ , the marginal dis-
tribution of Xt does not change. Consider a measurable functional φ = φ(X). Its be-
haviour may be different for different choices of θ . Now, assume that the parameter
space Θ can be decomposed into Θ1 ∪ Θ2 such that the behaviour of the functional
does not change too much as long as θ ∈ Θ1, but changes significantly when we
cross the boundary between Θ1 and Θ2. Furthermore, the behaviour changes as θ

varies across Θ2. This way, we can view the models with θ ∈ Θ1 as short-memory
models and those with θ ∈ Θ2 as long-memory models. One has to mention here
that this notion of LRD does not look at one particular parameter (in contrast to the
case of a finite variance where θ can be thought of as an exponent of a hyperbolic
decay of covariances). Instead, it is tied to each particular functional. It may happen
that a particular model is LRD for one functional but not for another. In other words,
if we have two functionals φ1 and φ2, the decomposition of the parameter space may
be completely different, i.e. Θ = Θ1(φ1)+Θ2(φ1) and Θ = Θ1(φ2)+Θ2(φ2) with
Θ1(φ1) 
= Θ1(φ2).
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Example 1.4 (Partial Sums) Denote by Lf (λ) a function that is slowly varying at the
origin in Zygmund’s sense. Let X = (Xt , t ∈ Z) be a stationary Gaussian sequence
with spectral density fX(λ) ∼ Lf (λ)λ−2d (as λ → 0) but fX(0) 
= 0, and assume
that d =: θ ∈ [−∞, 1

2 ). (Here d = −∞ is interpreted as the case of i.i.d. random
variables.) For the functional φ1(x) = ∑n

t=1 xt , the parameter space may be decom-
posed into (0, 1

2 ) ∪ {0} ∪ (−∞,0]. For the sub-space (0, 1
2 ), the rate of convergence

changes for different choices of θ . In other words, according to Samorodnitsky’s
definition, X is φ1-LRD for θ ∈ (0, 1

2 ) since then the partial sum has to be scaled by

L
−1/2
γ (n)n−d− 1

2 to obtain a nondegenerate limit. Otherwise, if θ ∈ [−∞,0], then
the scaling is n−1/2. If instead, we consider the functional φ2(x) = ∑n

t=1(x
2
t − 1),

then the parameter space is decomposed into ( 1
4 , 1

2 ) ∪ { 1
4 } ∪ [−∞, 1

4 ). The process
X is φ2-LRD for θ ∈ ( 1

4 , 1
2 ). We refer to Chap. 4 for a detailed discussion of limit

theorems for partial sums.

Example 1.5 (Maxima) Let X = (Xt , i ∈ Z) be as in Example 1.4, but we consider
the functional φ3(x) = maxn

t=1 xt . The limiting behaviour of maxima of Gaussian
sequences with nonsummable autocovariances or autocovariances that sum up to
zero is the same as under independence. Thus, according to Samorodnitsky’s defi-
nition, X is not max-LRD. We refer to Sect. 4.10 for limit theorems for maxima.

However, the main reason to consider the “phase transition” approach is to
quantify long-memory behaviour for stationary stable processes. In particular, if
Xt = ZH,α(t) − ZH,α(t − 1), where ZH,α(·) is a Linear Fractional Stable motion
(1.13), then, due to self-similarity, n−H

∑n
t=1 Xt equals in distribution ZH,α(1),

where H = d + 1/α. On the other hand, if Xt are i.i.d. symmetric α-stable, then
n−1/α

∑n
t=1 Xt equals in distribution an α-stable random variable. Hence, the phase

transition from short memory to long memory occurs at H = 1/α. A similar transi-
tion occurs in the case of ruin probabilities.

Example 1.6 (Ruin Probabilities) As in Mikosch and Samorodnitsky (2000), as-
sume again that Xt = ZH,α(t) − ZH,α(t − 1), where ZH,α(·) is a Linear Fractional
Stable motion. The authors consider the rate of decay of ruin probabilities

ψ(u) = P

(
n∑

t=1

Xt > cn + u for some n ∈N

)

as u tends to infinity. As it turns out, for H > 1/α, ψ(u) is proportional to u−(α−αH),
whereas for 0 < H ≤ 1/α, the decay is of the order u−(α−1). Thus, for H > 1/α,
the decay is slower, which means that the probability of ruin is considerably larger
than for H ≤ 1/α. Moreover, the decay depends on H for H > 1/α, whereas this is
not the case for H ≤ 1/α. It is therefore natural to say that Xt has long memory if
H > 1/α and short memory otherwise.

Example 1.7 (Long Strange Segments) Another possibility of distinguishing be-
tween short- and long-range dependent ergodic processes is to consider the rate at
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which so-called long strange segments grow with increasing sample size (Ghosh
and Samorodnitsky 2010; Mansfield et al. 2001; Rachev and Samorodnitsky 2001).
Suppose that Xt is a stationary process with μ = E(Xt) = 0 and the ergodic prop-
erty in probability holds (i.e. the sample mean converges to μ in probability). Given
a measurable set A, one defines

Rn(A) = sup{j − i : 0 ≤ i < j ≤ n, x̄i:j ∈ A},
where

x̄i:j = (j − i)−1
j∑

t=i+1

Xt

is the sample mean of observations Xi+1, . . . ,Xj . In other words, the random num-
ber Rn(A) ∈ N is the maximum length of a segment from the first n observations
whose average is in A. Why such segments are called “strange” can be explained
for sets A that do not include the expected value μ = 0. Since the sample mean
converges to zero, one should not expect too long runs that are bounded away from
zero. It turns out, however, that for long-memory processes, the maximal length of
such runs tends to be longer than under short memory, in the sense that Rn diverges
to infinity at a faster rate.

The phase transition approach leads also to much more general stationary stable
processes. It turns out that stationary stable processes can be decomposed into a
dissipative and a conservative flow. The conservative flow part is usually associated
with long memory. We refer to Samorodnitsky (2002, 2004, 2005, 2006), Racheva-
Iotova and Samorodnitsky (2003), Resnick and Samorodnitsky (2004) for further
details and examples.
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