
Chapter 1
Enhancement of the Faraday and Other
Magneto-Optical Effects in Magnetophotonic
Crystals

A.P. Vinogradov, A.V. Dorofeenko, A.M. Merzlikin, Y.M. Strelniker,
A.A. Lisyansky, A.B. Granovsky, and D.J. Bergman

Abstract It is shown that for existent natural materials the Faraday rotation is far
below the theoretical limit [Steel et al. in J. Lightwave Technol. 18:1297, 2000]. Un-
der this condition the value of the Faraday rotation is primarily determined by the
Q-factor, while the low group velocity value, multipass traveling and energy con-
centration in magneto-optical material play a secondary role. A comparative anal-
ysis of the efficiency of different schemes employing defect modes, Tamm surface
states, the Borrmann effect and plasmon resonance is presented.

1.1 Introduction

Magneto-optical (MO) effects have been known since 1846 when Faraday discov-
ered a rotation of the polarization of a linearly polarized electromagnetic wave trav-
eling through a slab of a gyrotropic substance placed in a static magnetic field.
It is also known that Faraday and other MO effects can be essentially enhanced
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in the presence of a resonance. One such resonance, which is currently under in-
tensive study, is the surface plasmon resonance [1]. It is commonly believed that
this or similar resonances are responsible for the Extraordinary Light Transmis-
sion (ELT) through a metal film, perforated by a periodic array of sub-wavelength
holes [2, 3], as well for other new phenomena recently found in photonic crys-
tals with bandgaps [4–6]. Application of a static magnetic field to such systems
induces strong optical and transport anisotropy, leads to appearance of additional
off-diagonal tensor components in the effective permittivity tensor ε̂ and changes
the surface plasmon frequency [7–13]. Therefore, the application of a static mag-
netic field to conducting systems with dielectric islands or to dielectric systems with
metallic islands, as well the introduction of gyrotropic inclusions into photonic crys-
tals [4, 14–17] should lead to the appearance of strong MO effects [18–23] and to
possibilities for manipulation of light propagation [7–13, 24–33].

Enhancements of the Faraday and Kerr effects was demonstrated in one-
dimensional MO quasicrystals [34], in systems with a random distribution of MO
layers [35], in magnetophotonic crystals (MPC’s) [6], in MPC’s with one or two de-
fects [36–40], and in a system of two adjoined PC’s including MO layers and having
an optical Tamm state [4, 5, 16]. At the present time, microscopic mechanisms of
MO phenomena are well studied [41]. They are caused by the spin-orbit interaction
at inter- and intraband optical transitions. Although, MO phenomena are weak, like
all relativistic effects, they can be substantially enhanced by using MPCs. Below we
discuss the physical phenomena underlying such an enhancement.

While the very fact of enhancement of MO effects in multilayer structures has
been known for a long time [42, 43], the mechanism which leads to this enhance-
ment is still under discussion. In some papers [36, 44, 45], the origin of the enhance-
ment is attributed to the fact that the light localized near a defect has an increased
optical path length, which results in the increase of the Faraday rotation, similar
to the classical Faraday experiment. The authors of Refs. [46, 47] consider the low
group velocity, which increases the time of interaction of light with matter, as the
cause of the enhancement.

Considerable understanding was achieved in Ref. [36], where the role of the
phase change in the vicinity of a resonance was shown, the decrease of the trans-
mission with the growth of the Faraday rotation was explained and a two-defect
scheme, providing high transmission at large Faraday rotation, was suggested.

In the present chapter, we theoretically predict the phase shift of π , provided
naturally by the resonance, causes a giant increase of the Faraday angle from the
small bulk value, determined by the MO constant, to a large value close to π/2. If
the splitting of the resonance for the right and left circular polarizations is small,
the Faraday effect is shown to be proportional to the Q-factor of the resonance and
to the field confinement factor. If the splitting is not small, the signal amplitude in-
evitably decreases with the increase of the Faraday angle. To avoid this shortcoming,
a structure using resonances of different orders is suggested, in principle providing
the maximum Faraday rotation of π/2 at the transmission equal to unity.
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1.2 Voigt Configuration

MO effects in metamaterial and magnetophotonic crystals should be calculated us-
ing proper formulas written in general form without making any assumptions and
simplifications which could be correct for natural materials but not valid for artifi-
cial metamaterials. As was shown in Refs. [7–12], an application of a static magnetic
field to metamaterials (see Fig. 1.1) can lead to magneto-induced anisotropy and to
the appearance of additional off-diagonal terms in the electric permittivity and mag-
netic permeability tensors. Here we only briefly outline their derivation, referring
the reader to Refs. [48–56] for more details.

We are looking for a solution to Maxwell’s equations in the form of a monochro-
matic plane wave with the frequency ω propagating along the y-axis, with electric
and magnetic fields E = E0 exp(−iωt + ik · r) and H = H0 exp(−iωt + ik · r), re-
spectively. Here E0 and H0 are constant amplitudes and k ≡ (0, k,0) is the wavevec-
tor in the y-direction. Substituting this into Maxwell’s equations we obtain

k2E0 − k(E0 · k) =
(

c

ω

)2

ε̂E0, (1.1)

where ε̂ is the electric permittivity tensor of the considered metamaterial and k is a
complex wavevector.

For the vector directions shown in Fig. 1.1, (1.1) takes the form
[(

c

ω

)2

k2 − εxx + εxyεyx

εyy

]
Ex −

(
εxz − εxyεyz

εyy

)
Ez = 0,

−
(

εzx − εzyεyx

εyy

)
Ex +

[(
c

ω

)2

k2 − εzz + εzyεyz

εyy

]
Ez = 0.

(1.2)

These equations have a solution only if their determinant vanishes. This gives the
following values for the wavevectors k±:

N2± ≡
(

c

ω

)2

k2±

= 1

2

(
εxx + εzz − εzyεyz

εyy

− εxyεyx

εyy

)

±
[

1

4

(
εxx + εzz − εzyεyz

εyy

− εxyεyx

εyy

)2

−
(

εxx − εxyεyx

εyy

)(
εzz − εzyεyz

εyy

)

+
(

εxz − εxyεyx

εyy

)(
εzx − εzyεyx

εyy

)]1/2

. (1.3)

Thus, there are four solutions to (1.1): two of them represent forward propagating
waves with k± =

√
N2±ω/c while the other two represent backward propagating

waves with k± = −
√

N2±ω/c. Therefore, a plane-polarized wave normally incident
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Fig. 1.1 (a) Schematic drawing of a metal film with a periodic array of holes. The coordinate axes
x, y, and z are always directed along the principal axes of the simple square lattice, and the applied
static magnetic field B always lies in the film plane. The incident light beam is normal to the film
surface, i.e., the ac electric field E is parallel to the film plane, while the wavevector is normal
to the film plane (i.e., k ‖ y). Note that the ac magnetic field H of the light wave (H⊥E) is not
important in our considerations and we omit it everywhere. Inset shows an a × a unit cell of the
periodic composite film with a cylindrical hole of radius R at its center. (b) The same as in (a) but
both B and the incident field E are rotated together in the film plane. Here we show the case of
the transverse polarization E ‖ x′⊥B ‖ z′, denoted in the text as ⊥. The longitudinal polarization
E ‖ B ‖ z′ is denoted in the text as ‖. After Ref. [10]

at the sample surface evolves into a refracted wave and a reflected wave. If εzy =
εyz = 0, we have

N2± ≡
(

c

ω

)2

k2± = εxx + εyy

2
±

√
(
εxx − εyy

2
)2 ± εxyεyx. (1.4)

The refracted beam becomes elliptically polarized with the major axis rotated by the
(Faraday) angle [48–56] ϑF :

ϑF ≡ 1

2

(
ωl

c

)
Re(N+ − N−). (1.5)

The expression for the ellipticity (the ratio of minor to major axis) eF can be found
in Refs. [48–56]. The reflected beam is also elliptically polarized with elliptic-
ity eK and the major axis rotated by an angle ϑK , similar to the refracted wave
(see Refs. [48–56]).

When εxx = εyy and εyx = −εxy , (1.1) and (1.4) are simplified to the form of
right-handed and left-handed elliptically polarized waves k2E0± = (ω/c)2ε±E0±,
and N2± = εxx ± iεxy , respectively. Here E0± = E0x ± iE0y , and ε± = εxx ± iεxy .
Equation (1.5) then takes the form ϑF = νBl, where B is the external applied mag-
netic field (in Tesla) in the direction of propagation, l is the length of the path (in
meters) over which the light and the magnetic field interact, ν is the Verdet constant
of the material.

In addition to the longitudinal or Faraday configuration, in which the wave prop-
agates through the sample along the applied magnetic field B, there is also the so-
called Voigt configuration, in which B is perpendicular to the direction of the wave
propagation, k ‖ y and B ‖ z. The latter case is convenient for demonstrating how
important additional off-diagonal terms of the permittivity tensor can be in the case
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Fig. 1.2 Real (solid lines) and imaginary (dashed lines) parts of the diagonal components εxx , εzz,
and εyy [in the fixed non-rotating (a)–(c) and rotating (d)–(f) coordinate systems] of the macro-
scopic permittivity tensor ε̂ of the metamaterial, made of a simple-square array (with the lattice
constant a) of cylindrical circular holes (of radius R = 0.3a) in the metallic film. (a)–(c) εxx ,
εzz,and εyy , plotted vs. the rotation angle φ of Fig. 1.1(b), but where these components are taken
along the fixed coordinates x, y, z of Figs. 1.1(a) and (b). (d)–(f) Similar to panels (a)–(c), but now
the components of ε̂ are taken along the rotating coordinates x′, y, z′ of Fig. 1.1(b). (g)–(i) polar
plots of (d)–(f). The permittivity tensor is taken in the quasi-static approximation ε̂ = ε̂0 +i4πσ̂/ω,
where σ̂ is the conductivity tensor of the metal taken in the Drude form with the plasma frequency
ωp and the electron relaxation time τ is such that ωpτ = 20. The light frequency is ω = 0.4ωp

of metamaterials and why the formulas for MO effects should be expressed in a
general form.

If B has an arbitrary direction with respect to the lattice axes of the metamaterial,
all components of the permittivity tensor can be nonzero [7–12]. When both B and E
are rotated in the film plane, the angular profiles of ε̂ and the optical transmission
coefficients T⊥ and T‖ are anisotropic (see Ref. [10]). The angular profiles of the
diagonal components εxx , εyy , εzz, and the off-diagonal tensor components εxy , εxz,
εyx , εyz, εzx , and εzy in non-rotating and rotating coordinate systems are shown in
Figs. 1.2 and 1.3. The general expressions for the Faraday rotation and Voigt effect
are cumbersome [57]. However, when B ‖ z is directed along the main lattice axes,
some of the permittivity tensor components vanish (εxz = εyz = εzx = εzy = 0) and
general formulas simplify. Equation (1.3) then takes the form

N2⊥ ≡
(

ω

c

)2

k2⊥ = εxx − εxyεyx

εyy

, for E⊥B,

N2‖ ≡
(

ω

c

)2

k2‖ = εzz, for E ‖ B.

(1.6)

The Voigt effect, which is also known as the Cotton–Mouton effect, is magnetic
birefringence. It is caused by the difference between the transverse, n⊥, and longi-
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Fig. 1.3 The left part is similar to Fig. 1.2, with the off-diagonal components, εxz, εxy ≡ εH , and
εzx , taken in fixed non-rotating (a)–(c) and rotating (d)–(f) coordinate systems. The component
εxy ≡ εH of the permittivity tensor is the Hall component. In the polar plots (g)–(i), the absolute
values of the above quantities are shown. The right part is similar to the left part, but for the
off-diagonal components, εzy , and εyz

tudinal, n‖, components of N⊥,‖ = n⊥,‖ + iκ⊥,‖, where κ is the absorption index.
The Voigt phase shift δ is given by

δ = ωl

c
(n‖ − n⊥), (1.7)

where l is the length of the path.
Assuming that ωl/c ∼ 1 and using (1.7) and values of the permittivity tensor ε̂

components shown in Figs. 1.2 and 1.3, we can estimate and compare the values of δ

in the (001)- and (011)-directions when εxz = εyz = εzx = εzy = 0. For arbitrary di-
rections, (1.7) would have a much more complicated form. For the values of ε̂ shown
in Figs. 1.2 and 1.3, δ ∼ −0.03 in the (001)-direction, while in the (011)-direction,
δ ∼ 0.02. Thus, it is possible to observe the magneto-induced angular anisotropy
of δ in periodic metamaterials. The angular anisotropy of other MO effects can be
considered similarly.

1.3 Longitudinal Configuration: Enhancement
of Magneto-Optical Effects in Gyrotropic Photonic
Metamaterials

In order to be consistent with our previous publications [4, 58–61], for the further
consideration we denote diagonal and off-diagonal components of the permittivity
tensor as ε and g, respectively. For the longitudinal configuration, when the wave
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Fig. 1.4 The transmission (solid lines), the angle of rotation of the polarization plane ϑ by a slab
(dashed lines), and the bulk angle of rotation ϑbulk (dotted lines) as a function of frequency k0
normalized by the thickness of layer d for the parameters (a) ε = 2, g = 0.01 and (b) ε = 100,
g = 0.07. The external medium is vacuum

travels along the direction of the static magnetic field, (1.5) and (1.6) for the angle
of rotation due to smallness of g may be expressed as (see for review [41, 62] and
references therein)

ϑbulk = 1

2

ω

c
d(

√
ε + g − √

ε − g) ≈ 1

2

ω

c
d
√

ε
g

ε
= g

2ε
kMOdMO, (1.8)

where dMO is the light path, kMO = k0
√

ε, and k0 = ω/c is the free space wavenum-
ber.

Let us continue with the consideration of the Faraday effect observed in a single
homogeneous layer. This example clearly shows the difference between Faraday
effects in bulk and bounded systems.

If the magnetized slab has permittivity of the order of unity, the reflected wave is
weak, and the Faraday effect is close to its bulk value (see Fig. 1.4(a)). In the case
of high permittivity, multiple reflections inside the slab cause sharp Fabry–Pérot
resonances in the transmission at the frequencies ωn/c = πn/d

√
ε (where n is an

integer). The reflections also modify the Faraday rotation, which is enhanced in the
vicinity of resonances and suppressed far from them (see Fig. 1.4(b)).

When the slab is magnetized, the waves with left and right circular polarizations
have slightly different wavenumbers. As a result, the transmission maxima are ob-
served at different frequencies

ω±
r

c
= πn

d
√

ε ± g
, (1.9)

where “+” and “−” indicate right and left polarizations, respectively. A splitting
of the circular polarizations similar to (1.9) appears in the case of normal incidence
for any multilayered structure, containing MO layers and producing a resonance (see
the next section). The enhancement of the Faraday effect is due to general properties
of the resonance; therefore, below a general case is considered.

The frequency dependences of phase φ(k0) and transmittance T (k0) near a MO-
split resonance for the right and left polarizations are shown in Fig. 1.5 by the dashed
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Fig. 1.5 The amplitude and the argument of the transmission coefficient for the case of nonzero
magnetization. (a) ε = 100, g = 5, and (b) ε = 100, g = 10. The value of g is taken large enough
to make the splitting visible

and solid lines, respectively. Disregarding the deformation of curves, one can ex-
press these dependences for the left and right circular polarizations as

ϕ+(ω) = ϕ(ω + 0.5
ωr) and ϕ−(ω) = ϕ(ω − 0.5
ωr),∣∣T +(ω)
∣∣2 = ∣∣T (ω + 0.5
ωr)

∣∣2
and

∣∣T −(ω)
∣∣2 = ∣∣T (ω − 0.5
ωr)

∣∣2
,

(1.10)

where ϕ(ω), |T (ω)|2 are the dependences at zero magnetization, 
ωr = ω+
r − ω−

r .
The angle of the Faraday rotation is equal to [41]

ϑ = 0.5
(
ϕ+(ω) − ϕ−(ω)

)
. (1.11)

It is obvious from Fig. 1.5 that the enhancement is due to the fast growth of
the phase, which changes by π on the scale of the resonant line width. Note that
instead of the small bulk value (1.8) one can obtain the Faraday angle of the order
of π/2, which follows from the fact that the phase changes by π in the vicinity of
any resonance and from the formula (1.11).

The transmitted wave is linearly polarized at the frequency ω∗, defined by the
condition ∣∣T +(

ω∗)∣∣2 = ∣∣T −(
ω∗)∣∣2 (1.12)

(we imply that the incident wave is linearly polarized). Taking into account a single
resonance only, the value of ω∗ is evaluated as

ω∗ = 0.5
(
ω−

r + ω+
r

) = ωr, (1.13)

i.e., ω∗ is equal to the resonant frequency of non-magnetized system.
It is essential that the enhancement of the Faraday rotation is observed when

the condition (1.13) is fulfilled, or, at least, the frequency lies between the split
resonance frequencies. Suppose that the Q-factors of “+” and “−” resonances sig-
nificantly differ (Fig. 1.6). There exist two points satisfying the condition (1.12).
The number of paths the light makes traveling through the system is the same but
the Faraday rotation is different. Comparison of Figs. 1.5 and 1.6 shows that it is
important that ω+

r < ω∗ < ω−
r .
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Fig. 1.6 Two resonances for
different Q-factors

The smaller the MO splitting the higher transmittance (1.12) and smaller the
Faraday rotation (Figs. 1.5(a) and (b)). It can be shown (see [36] and Appendix A)
that

T = T0 cos2 ϑ (1.14)

where T0 is a transmittance at zero magnetization. When ϑ increases, the rotation
angle saturates at the value of π/2. At the same time, the amplitude of the transmit-
ted wave tends to zero.

Usually, the splitting 
ωr is much smaller than the resonance width. Then the
Faraday rotation angle, according to (1.10) and (1.11), can be estimated as

ϑ(ωr) = 1

2

[
ϕ
(
ω−

r + 
ωr/2
) − ϕ

(
ω+

r − 
ωr/2
)] ≈ 1

2

dϕ(ω)

dω

∣∣∣∣
ω=ωr


ωr

= dϕ(ω)

dω

∣∣∣∣
ω=ωr

∂ωr

∂ε
g. (1.15)

According to (1.15), ϑ(ωr) is determined by three factors. The first one, dϕ(ω)/

dω|ω=ωr , is equal to the inverse width of the resonance 1/Γ (see Appendix B). The
second factor, ∂ωr/∂ε, is the sensitivity of the resonance position to the value of the
dielectric constant of the MO layers. Note that this parameter is not related to MO
properties of the slab. If the structure is a uniform MO slab of the width d , one has

ωr = πn

d
√

ε
and

∂ωr

∂ε
= −ωr

1

2ε
,

from which we obtain

ϑ ≈ − 1

Γ
ωr

g

2ε
= −Q

g

ε
(1.16)

where ωr/2Γ = Q is the Q-factor of the resonance. In the general case of arbitrary
multilayer structure, (1.16) can be rewritten as

ϑ ≈ 1

Γ
ωr

g

ε

∂ lnωr

∂ ln ε
= Q

g

ε
2
∂ lnωr

∂ ln ε
, (1.17)

where the derivative corresponds to the shift of the resonance frequency with the
change of the permittivity of the MO layers. One can show that

−1

2
≤ ∂ lnωr

∂ ln ε
≤ 0.
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For closed resonators (with infinite Q-factor) the shift of the resonance frequency
with the change of permittivity is determined by the expression [63]:

∂ lnωr

∂ ln ε
≈ −1

2

∫
MO ε|E|2 dz∫
res ε|E|2 dz

(1.18)

where the integrals in the numerator and the denominator are calculated over the
MO layers (their permittivity changes) and over the whole resonance structure, re-
spectively. The latter expression can approximately be applied to a high-Q cav-
ity, such as a finite PC with defect. According to (1.18), the value of −2 ∂ lnωr

∂ ln ε
is approximately equal to the fraction of the energy of the electric field local-
ized in the MO layers. The numerical calculations for the optical Tamm state give
∂ lnωr

∂ ln ε
= −0.1786, which is close to the value given by (1.18)

−1

2

∫
MO ε|E|2 dz∫
res ε|E|2 dz

= −0.1793.

Thus, we obtain a simple expression for the resonantly enhanced Faraday rota-
tion:

ϑ ≈ −QW
g

ε
, (1.19)

where

W =
∫

MO ε|E|2 dz∫
res ε|E|2 dz

is the confinement factor [64] and Q is the quality factor of the resonance. It follows
from (1.19) that the rotation angle depends not only on the relative concentration of
the electric field in MO layers, but also on the total quality factor of the resonance
structure. In particular, some decrease in | ∂ lnωr

∂ ln ε
| can be justified by significant in-

crease in Q. This is the case when multilayered structures are used instead of a
single homogeneous MO layer.

1.4 Employing Magnetophotonic Crystals to Enhance
the Faraday Effect

Enhancement of the Faraday effect requires a high Q-factor. In the case of a sin-
gle homogeneous MO layer, in order to achieve a high Q-factor, it is necessary to
have an exceedingly large permittivity value. Therefore, more complicated struc-
tures should be used, e.g., photonic crystals with defects [35, 65], coupled photonic
crystals with optical Tamm states [5, 6, 16], random systems [44], etc.

The simplest structure is a MO layer (defect) placed inside of a bounded PC
sample. The working frequency is placed inside the PC’s bandgap. If considering
two pieces of PC sandwiching the MO-defect as dielectric mirrors, the structure
looks like a common Fabry–Pérot resonator, where the resonant frequency is equal
to the frequency of the defect mode [66] localized at the defect.
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Fig. 1.7 Permittivity (top figures) and field distribution (bottom figures) in a cavity with (a) ho-
mogeneous (low-permittivity) mirrors and (b) layered mirrors (a PC with bandgap)

The benefits of employing a MPC instead of metallic mirrors originate from pos-
sibility of increasing the Q-factor by the redistribution of the light energy from
materials with losses into low loss materials [6]. Due to the complicated structure
of the Bloch wave, an exponential decay in the bandgap happens only on average.
Locally, the field may achieve high values (Fig. 1.7). Thus, a significant part of the
energy may be concentrated in low-loss dielectric mirrors instead of lossy defect.
This leads to increase of the Q-factor.

Instead of the defect mode one can use the surface Tamm state appearing in
between two PCs. In this case, there is no cavity, and the field is located inside the
PC-mirrors, incorporating MO layers.

The Faraday rotation can be enhanced by employing the Borrmann effect [64].
This effect is related to the fact that for a frequency of band edge, the Bloch wave is
a standing wave whose maxima lie either in the higher- or in the lower-permittivity
layers [67]. In such a way, the energy of the electric field can be concentrated in the
MO layers, thereby increasing the confinement factor W .

Using a single resonance, one can obtain any value of the Faraday rotation angle
up to 90◦. However, it is accompanied by inevitable decrease in the signal amplitude
(see (1.14) and [36]). Using two resonances [36], one can have the 90◦ Faraday
rotation at T = 1, overcoming the limit, expressed by (1.14). So, let us now consider
the case when the splitting of the resonance 
kr is equal to the distance between
neighboring resonances. This can be achieved either by using a structure with two
defects [36, 37], or by choosing a defect-free MPC with sufficiently large number
of layers. In this case, the resonances of different orders, T +

n (k0) and T −
n−1(k0),

overlap, as shown in Fig. 1.8(a). Since each resonance causes a change of the phase
by π , the phase difference between two polarizations is also π (see Fig. 1.8(b) and 7
at k0L = 11.58). Thus, the angle of the Faraday rotation is equal to π/2, whereas
the coincidence of resonances for both polarizations leads to transmission equal to
unity (Fig. 1.9).

For a practical realization of this situation with existing MO materials, differ-
ent resonances must be close to each other. This can be achieved by increasing the
number of layers in a PC and using a wavenumber that is close to a bandedge. The
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Fig. 1.8 The transmission coefficient (a) and the phase shift (b) in the case when resonances of dif-
ferent order coincide. Solid and dashed lines correspond to the right and left polarizations, respec-
tively. The elementary cell of the PC consists of two layers with parameters ε1 = 1, d1 = 0.1 μm,
ε2 = 2, g = 0.01, and d2 = 0.1 μm. The total number of layers is 58

Fig. 1.9 The transmission
(solid line) and the angle of
rotation of the polarization
plane (dashed line) for a
sample with parameters
described in Fig. 1.8

density of the resonances is proportional to the density of states (inversely propor-
tional to the group velocity) that has a maximum at the bandedge. An increase in
the number of layers allows one to make the density of states arbitrarily large. This
makes the transmission resonances dense enough.

To conclude it is worth mentioning some systems, employing plasmon resonance
for enhancement of the Faraday effect. In these systems, the property of surface
plasmon to have given (TM) polarization is used [68, 69]. The obliquely incident
TE-polarized wave in the frustrated total internal reflection geometry (Fig. 1.10(a))
does not excite a surface plasmon at the metal/dielectric interface, if the magnetiza-
tion is zero. However, in the presence of magnetization, there arises an interaction
between the TE and TM polarizations, and the generation of TM-polarized surface
plasmon enhances the cross-polarization. Thus, the scheme in Fig. 1.10(a) trans-
forms a TE-polarized wave into TM-polarized wave producing an effective rotation
of the polarization plane by π/2. At the same time, the intensity of the transmitted
wave is low. The effectiveness of the plasmonic scheme can be compared to the one
of the usual schemes, discussed above, by calculating the cross-polarization inten-
sity in the usual schemes. It is easy to see from (1.12) that in the usual scheme the
cross-polarization intensity, which is proportional to the square of ϑ , grows with
the quality factor as Q2. In the plasmonic scheme, it depends on Q logarithmically,
which in fact reduces the enhancement to nothing. The reason for such dependence
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Fig. 1.10 Plasmonic enhancement of the Faraday rotation. (a) The original scheme [68], providing
the logarithmic in Q-factor enhancement of the cross-polarization intensity. (b) Modified scheme
providing the linear in Q-factor enhancement of the cross-polarization intensity (the Bloch wave
envelope is shown)

is the weak interaction between the incident wave and the one having the perpen-
dicular polarization. This interaction is proportional to the overlap of the TE- and
TM-polarized fields in the MO layer (Fig. 1.10(a)).

The overlap can be increased, if the surface wave at the PC/MPC interface
(Fig. 1.10(b)) is used instead of the surface plasmon at the interface of the homoge-
neous medium. In this case, the wave of TM polarization should reach the PC/MPC
interface without decay, and only in the MPC it should become evanescent due to
the bandgap. MO layers create the cross-(TE) polarization, which decays in both the
PC and MPC due to the bandgap. The conditions for existence of the TE-polarized
surface wave at the PC/MPC interface should be satisfied, which results in the cross-
polarization enhancement. It turns out that all these conditions are easily satisfied
if: (1) the angle of incidence ensures the Brewster condition for the layers of the
PC; (2) all the layers are quarter-wavelength ones at the given angle. The over-
lap of the fields in the MO layers (Fig. 1.10(b)) is now increased, leading to the
cross-polarization intensity being proportional to the Q-factor. However, even this
scheme is not as good as the usual one, working at normal incidence. The reason
is that the resonance in the usual schemes amplifies not only the cross-polarization,
but also the incident one. Since the cross-polarization is created by the incident
wave, it undergoes quadratic in Q amplification. The schemes amplifying only the
cross-polarization cannot give more than a linear dependence.

1.5 Conclusions

In this chapter, we develop a general approach for considering structures used for the
Faraday effect enhancement. These structures can be considered as open resonators
in which bulk MO properties remove the degeneracy with respect to the polarization
and split the resonance frequencies. At the frequency in-between the frequencies of
the split resonance, a large rotation of the polarization plane can be observed. This
rotation is due to the rapid change of the phase of the transmitted wave by a value
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of π when the frequency of the incident wave crosses the resonance. Indeed, at
these frequencies, the phase of the red shifted wave gains a value of the order of π ,
while the phase of the blue shifted wave hardly changes. When the splitting is much
smaller than the resonance width, the Faraday rotation is shown to be a product of
the resonance Q-factor, confinement factor and the MO factor.

Appendix A: Relationship Between the Transmission Coefficient
and the Faraday Rotation Angle

We assume that the distance between a given resonance and other ones is much
larger than the resonance width. In principle, if the resonance has a large Q-factor,
a small magnetization is sufficient for obtaining the required value of splitting of
resonances. But, irrespective of the Q-factor, one obtains the same dependence of
the transmission coefficient |T |2 on the Faraday rotation angle ϑ (Fig. 1.11). This
is due to the fact that the frequency range in the vicinity of the resonance, at which
the amplitude, |T |2, and the phase, argT , change significantly, is the same for both
these quantities. More precisely, for T (k0) = α

k0−k̃0
with a real frequency, k0, and

complex values of residue, α, and the pole position, k̃0 = kr − iΓ , one can obtain the
expression |T |2 = T 2

0 cos2 ϑ (T 2
0 is the resonant transmission), which is independent

of the Q-factor. Indeed, designating a deviation of the frequency from the resonant
one as δk0 = k0 − kr , one has T (δk0) = α

δk0+iΓ
and

∣∣T (δk0)
∣∣2 = |α|2

δk2
0 + Γ 2

. (1.20)

Presuming that the presence of the magnetization shifts the peak without changing
its form, one obtains ϑ = (argT (δk0) − argT (−δk0))/2, from which it follows that

tanϑ = −δk0

Γ
. (1.21)

Eliminating δk0 from expressions (1.20) and (1.21), one obtains |T |2 = |α|2
Γ 2 cos2 ϑ .

After denoting the transmission at the resonance as T 2
0 = |α|2

Γ 2 , the required result
arises:

|T |2 = T 2
0 cos2 ϑ. (1.22)

The comparison between the one-resonance model system meeting condition
(1.22) and results obtained from calculations of the Tamm state (Fig. 1.11) shows
that a difference appears when the frequency moves away from the resonance, to the
region in which the resonances next to the Tamm state become visible.

From this analysis one can conclude that for any lossless system with separated
resonances, a large rotation angle is possible only for a small transmission, and their
mutual dependence is the same for any Q-factor. A large Q-factor is needed only
for obtaining the desirable value of splitting of peaks which is equal to 2δk0.
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Fig. 1.11 Universal dependence of the transmission coefficient on the Faraday rotation angle for
a single pole (solid line) and the same dependence for the optical Tamm state resonance (dashed
line). The deviation is caused by resonances neighboring to the Tamm state

Appendix B: Rate of the Phase Change at the Resonance
Frequency

In this appendix we show that at the resonance, the absolute value of the quantity
dϕ/dω|ω=ωr in (1.15), is equal to the inverse width of the resonance. Near the res-
onance, the transfer function can be approximated as

T (ω) = α

ω − ωr − iΓ
,

where ωr and Γ are the frequency and the half-width of the resonance, respectively.
By differentiating the relation T (ω) = |T (ω)| exp(iϕ(ω)), one obtains

∂ϕ

∂ω
= i

|T |
∂|T |
∂ω

− i

T

∂T

∂ω
.

Calculating derivatives

∂|T |
∂ω

= ∂

∂k

|α|√
(ω − ωr)2 + Γ 2

= −|T | ω − ωr

(ω − ωr)2 + Γ 2

and
∂T

∂ω
= − T

ω − ωr − iΓ
,

we find
∂ϕ

∂ω
= − Γ

(ω − ωr)2 + Γ 2
.

It immediately follows that at the resonance

dϕ(ω)

dω
= − 1

Γ
.
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