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Preface

The advances in experimental and applied photonics are connected with the rising
potential of modern fabrication techniques, allowing the creation of tiny artificial
structures with characteristic lengths (periodicity) comparable to or even smaller
than the wavelength of light. Theoretical developments in this field have advanced
apace and consisted to a considerable degree of the translation or mapping of wave
phenomena from the quantum theory of solids into electrodynamics. This mapping
has led to the appearance of theories of photonic crystals, light diffusion, backscat-
tering and Anderson localization of light. Among the representatives of photonic
crystals is their remarkable extension to magneto-optic systems, the subject of the
current volume, magnetophotonic crystals. Pioneering studies on magnetophotonic
crystals were motivated by fundamental and practical interests to enhance or take
advantage of the magneto-optical response in existing magneto-optical materials
and the possibility of controlling the flow of light by external magnetic fields.

When the constitutive elements of periodic media are magnetic, the resultant
magnetophotonic crystals demonstrate unique optical and magneto-optical proper-
ties. For such magnetic, nonreciprocal media, there exists an additional degree of
freedom to operate the photonic band structure, diffraction patterns, and the state
of polarization of light—all these characteristics can be controlled by external mag-
netic fields. We believe that this volume will be a timely contribution to the devel-
opment of this field by delivering results of many efforts devoted to experimental
and theoretical studies of the magnetophotonic crystals and their applications.

We thank all the authors for their valuable contribution to this book.

Mitsuteru Inoue
Miguel Levy

Alexander Baryshev

Aichi, Japan
Houghton, MI, USA
Aichi, Japan
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Chapter 1
Enhancement of the Faraday and Other
Magneto-Optical Effects in Magnetophotonic
Crystals

A.P. Vinogradov, A.V. Dorofeenko, A.M. Merzlikin, Y.M. Strelniker,
A.A. Lisyansky, A.B. Granovsky, and D.J. Bergman

Abstract It is shown that for existent natural materials the Faraday rotation is far
below the theoretical limit [Steel et al. in J. Lightwave Technol. 18:1297, 2000]. Un-
der this condition the value of the Faraday rotation is primarily determined by the
Q-factor, while the low group velocity value, multipass traveling and energy con-
centration in magneto-optical material play a secondary role. A comparative anal-
ysis of the efficiency of different schemes employing defect modes, Tamm surface
states, the Borrmann effect and plasmon resonance is presented.

1.1 Introduction

Magneto-optical (MO) effects have been known since 1846 when Faraday discov-
ered a rotation of the polarization of a linearly polarized electromagnetic wave trav-
eling through a slab of a gyrotropic substance placed in a static magnetic field.
It is also known that Faraday and other MO effects can be essentially enhanced
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2 A.P. Vinogradov et al.

in the presence of a resonance. One such resonance, which is currently under in-
tensive study, is the surface plasmon resonance [1]. It is commonly believed that
this or similar resonances are responsible for the Extraordinary Light Transmis-
sion (ELT) through a metal film, perforated by a periodic array of sub-wavelength
holes [2, 3], as well for other new phenomena recently found in photonic crys-
tals with bandgaps [4–6]. Application of a static magnetic field to such systems
induces strong optical and transport anisotropy, leads to appearance of additional
off-diagonal tensor components in the effective permittivity tensor ε̂ and changes
the surface plasmon frequency [7–13]. Therefore, the application of a static mag-
netic field to conducting systems with dielectric islands or to dielectric systems with
metallic islands, as well the introduction of gyrotropic inclusions into photonic crys-
tals [4, 14–17] should lead to the appearance of strong MO effects [18–23] and to
possibilities for manipulation of light propagation [7–13, 24–33].

Enhancements of the Faraday and Kerr effects was demonstrated in one-
dimensional MO quasicrystals [34], in systems with a random distribution of MO
layers [35], in magnetophotonic crystals (MPC’s) [6], in MPC’s with one or two de-
fects [36–40], and in a system of two adjoined PC’s including MO layers and having
an optical Tamm state [4, 5, 16]. At the present time, microscopic mechanisms of
MO phenomena are well studied [41]. They are caused by the spin-orbit interaction
at inter- and intraband optical transitions. Although, MO phenomena are weak, like
all relativistic effects, they can be substantially enhanced by using MPCs. Below we
discuss the physical phenomena underlying such an enhancement.

While the very fact of enhancement of MO effects in multilayer structures has
been known for a long time [42, 43], the mechanism which leads to this enhance-
ment is still under discussion. In some papers [36, 44, 45], the origin of the enhance-
ment is attributed to the fact that the light localized near a defect has an increased
optical path length, which results in the increase of the Faraday rotation, similar
to the classical Faraday experiment. The authors of Refs. [46, 47] consider the low
group velocity, which increases the time of interaction of light with matter, as the
cause of the enhancement.

Considerable understanding was achieved in Ref. [36], where the role of the
phase change in the vicinity of a resonance was shown, the decrease of the trans-
mission with the growth of the Faraday rotation was explained and a two-defect
scheme, providing high transmission at large Faraday rotation, was suggested.

In the present chapter, we theoretically predict the phase shift of π , provided
naturally by the resonance, causes a giant increase of the Faraday angle from the
small bulk value, determined by the MO constant, to a large value close to π/2. If
the splitting of the resonance for the right and left circular polarizations is small,
the Faraday effect is shown to be proportional to the Q-factor of the resonance and
to the field confinement factor. If the splitting is not small, the signal amplitude in-
evitably decreases with the increase of the Faraday angle. To avoid this shortcoming,
a structure using resonances of different orders is suggested, in principle providing
the maximum Faraday rotation of π/2 at the transmission equal to unity.
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1.2 Voigt Configuration

MO effects in metamaterial and magnetophotonic crystals should be calculated us-
ing proper formulas written in general form without making any assumptions and
simplifications which could be correct for natural materials but not valid for artifi-
cial metamaterials. As was shown in Refs. [7–12], an application of a static magnetic
field to metamaterials (see Fig. 1.1) can lead to magneto-induced anisotropy and to
the appearance of additional off-diagonal terms in the electric permittivity and mag-
netic permeability tensors. Here we only briefly outline their derivation, referring
the reader to Refs. [48–56] for more details.

We are looking for a solution to Maxwell’s equations in the form of a monochro-
matic plane wave with the frequency ω propagating along the y-axis, with electric
and magnetic fields E =E0 exp(−iωt + ik · r) and H =H0 exp(−iωt + ik · r), re-
spectively. Here E0 and H0 are constant amplitudes and k ≡ (0, k,0) is the wavevec-
tor in the y-direction. Substituting this into Maxwell’s equations we obtain

k2E0 − k(E0 · k)=
(
c

ω

)2

ε̂E0, (1.1)

where ε̂ is the electric permittivity tensor of the considered metamaterial and k is a
complex wavevector.

For the vector directions shown in Fig. 1.1, (1.1) takes the form
[(

c

ω

)2

k2 − εxx + εxyεyx

εyy

]
Ex −

(
εxz − εxyεyz

εyy

)
Ez = 0,

−
(
εzx − εzyεyx

εyy

)
Ex +

[(
c

ω

)2

k2 − εzz + εzyεyz

εyy

]
Ez = 0.

(1.2)

These equations have a solution only if their determinant vanishes. This gives the
following values for the wavevectors k±:

N2± ≡
(
c

ω

)2

k2±

= 1

2

(
εxx + εzz − εzyεyz

εyy
− εxyεyx

εyy

)

±
[

1

4

(
εxx + εzz − εzyεyz

εyy
− εxyεyx

εyy

)2

−
(
εxx − εxyεyx

εyy

)(
εzz − εzyεyz

εyy

)

+
(
εxz − εxyεyx

εyy

)(
εzx − εzyεyx

εyy

)]1/2

. (1.3)

Thus, there are four solutions to (1.1): two of them represent forward propagating
waves with k± =

√
N2±ω/c while the other two represent backward propagating

waves with k± = −
√
N2±ω/c. Therefore, a plane-polarized wave normally incident
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Fig. 1.1 (a) Schematic drawing of a metal film with a periodic array of holes. The coordinate axes
x, y, and z are always directed along the principal axes of the simple square lattice, and the applied
static magnetic field B always lies in the film plane. The incident light beam is normal to the film
surface, i.e., the ac electric field E is parallel to the film plane, while the wavevector is normal
to the film plane (i.e., k ‖ y). Note that the ac magnetic field H of the light wave (H⊥E) is not
important in our considerations and we omit it everywhere. Inset shows an a × a unit cell of the
periodic composite film with a cylindrical hole of radius R at its center. (b) The same as in (a) but
both B and the incident field E are rotated together in the film plane. Here we show the case of
the transverse polarization E ‖ x′⊥B ‖ z′, denoted in the text as ⊥. The longitudinal polarization
E ‖ B ‖ z′ is denoted in the text as ‖. After Ref. [10]

at the sample surface evolves into a refracted wave and a reflected wave. If εzy =
εyz = 0, we have

N2± ≡
(
c

ω

)2

k2± = εxx + εyy

2
±
√
(
εxx − εyy

2
)2 ± εxyεyx. (1.4)

The refracted beam becomes elliptically polarized with the major axis rotated by the
(Faraday) angle [48–56] ϑF :

ϑF ≡ 1

2

(
ωl

c

)
Re(N+ −N−). (1.5)

The expression for the ellipticity (the ratio of minor to major axis) eF can be found
in Refs. [48–56]. The reflected beam is also elliptically polarized with elliptic-
ity eK and the major axis rotated by an angle ϑK , similar to the refracted wave
(see Refs. [48–56]).

When εxx = εyy and εyx = −εxy , (1.1) and (1.4) are simplified to the form of
right-handed and left-handed elliptically polarized waves k2E0± = (ω/c)2ε±E0±,
and N2± = εxx ± iεxy , respectively. Here E0± = E0x ± iE0y , and ε± = εxx ± iεxy .
Equation (1.5) then takes the form ϑF = νBl, where B is the external applied mag-
netic field (in Tesla) in the direction of propagation, l is the length of the path (in
meters) over which the light and the magnetic field interact, ν is the Verdet constant
of the material.

In addition to the longitudinal or Faraday configuration, in which the wave prop-
agates through the sample along the applied magnetic field B, there is also the so-
called Voigt configuration, in which B is perpendicular to the direction of the wave
propagation, k ‖ y and B ‖ z. The latter case is convenient for demonstrating how
important additional off-diagonal terms of the permittivity tensor can be in the case
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Fig. 1.2 Real (solid lines) and imaginary (dashed lines) parts of the diagonal components εxx , εzz,
and εyy [in the fixed non-rotating (a)–(c) and rotating (d)–(f) coordinate systems] of the macro-
scopic permittivity tensor ε̂ of the metamaterial, made of a simple-square array (with the lattice
constant a) of cylindrical circular holes (of radius R = 0.3a) in the metallic film. (a)–(c) εxx ,
εzz,and εyy , plotted vs. the rotation angle φ of Fig. 1.1(b), but where these components are taken
along the fixed coordinates x, y, z of Figs. 1.1(a) and (b). (d)–(f) Similar to panels (a)–(c), but now
the components of ε̂ are taken along the rotating coordinates x′, y, z′ of Fig. 1.1(b). (g)–(i) polar
plots of (d)–(f). The permittivity tensor is taken in the quasi-static approximation ε̂ = ε̂0 +i4πσ̂/ω,
where σ̂ is the conductivity tensor of the metal taken in the Drude form with the plasma frequency
ωp and the electron relaxation time τ is such that ωpτ = 20. The light frequency is ω = 0.4ωp

of metamaterials and why the formulas for MO effects should be expressed in a
general form.

If B has an arbitrary direction with respect to the lattice axes of the metamaterial,
all components of the permittivity tensor can be nonzero [7–12]. When both B and E
are rotated in the film plane, the angular profiles of ε̂ and the optical transmission
coefficients T⊥ and T‖ are anisotropic (see Ref. [10]). The angular profiles of the
diagonal components εxx , εyy , εzz, and the off-diagonal tensor components εxy , εxz,
εyx , εyz, εzx , and εzy in non-rotating and rotating coordinate systems are shown in
Figs. 1.2 and 1.3. The general expressions for the Faraday rotation and Voigt effect
are cumbersome [57]. However, when B ‖ z is directed along the main lattice axes,
some of the permittivity tensor components vanish (εxz = εyz = εzx = εzy = 0) and
general formulas simplify. Equation (1.3) then takes the form

N2⊥ ≡
(
ω

c

)2

k2⊥ = εxx − εxyεyx

εyy
, for E⊥B,

N2‖ ≡
(
ω

c

)2

k2‖ = εzz, for E ‖ B.
(1.6)

The Voigt effect, which is also known as the Cotton–Mouton effect, is magnetic
birefringence. It is caused by the difference between the transverse, n⊥, and longi-



6 A.P. Vinogradov et al.

Fig. 1.3 The left part is similar to Fig. 1.2, with the off-diagonal components, εxz, εxy ≡ εH , and
εzx , taken in fixed non-rotating (a)–(c) and rotating (d)–(f) coordinate systems. The component
εxy ≡ εH of the permittivity tensor is the Hall component. In the polar plots (g)–(i), the absolute
values of the above quantities are shown. The right part is similar to the left part, but for the
off-diagonal components, εzy , and εyz

tudinal, n‖, components of N⊥,‖ = n⊥,‖ + iκ⊥,‖, where κ is the absorption index.
The Voigt phase shift δ is given by

δ = ωl

c
(n‖ − n⊥), (1.7)

where l is the length of the path.
Assuming that ωl/c ∼ 1 and using (1.7) and values of the permittivity tensor ε̂

components shown in Figs. 1.2 and 1.3, we can estimate and compare the values of δ
in the (001)- and (011)-directions when εxz = εyz = εzx = εzy = 0. For arbitrary di-
rections, (1.7) would have a much more complicated form. For the values of ε̂ shown
in Figs. 1.2 and 1.3, δ ∼ −0.03 in the (001)-direction, while in the (011)-direction,
δ ∼ 0.02. Thus, it is possible to observe the magneto-induced angular anisotropy
of δ in periodic metamaterials. The angular anisotropy of other MO effects can be
considered similarly.

1.3 Longitudinal Configuration: Enhancement
of Magneto-Optical Effects in Gyrotropic Photonic
Metamaterials

In order to be consistent with our previous publications [4, 58–61], for the further
consideration we denote diagonal and off-diagonal components of the permittivity
tensor as ε and g, respectively. For the longitudinal configuration, when the wave
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Fig. 1.4 The transmission (solid lines), the angle of rotation of the polarization plane ϑ by a slab
(dashed lines), and the bulk angle of rotation ϑbulk (dotted lines) as a function of frequency k0
normalized by the thickness of layer d for the parameters (a) ε = 2, g = 0.01 and (b) ε = 100,
g = 0.07. The external medium is vacuum

travels along the direction of the static magnetic field, (1.5) and (1.6) for the angle
of rotation due to smallness of g may be expressed as (see for review [41, 62] and
references therein)

ϑbulk = 1

2

ω

c
d(

√
ε + g − √

ε − g)≈ 1

2

ω

c
d
√
ε
g

ε
= g

2ε
kMOdMO, (1.8)

where dMO is the light path, kMO = k0
√
ε, and k0 = ω/c is the free space wavenum-

ber.
Let us continue with the consideration of the Faraday effect observed in a single

homogeneous layer. This example clearly shows the difference between Faraday
effects in bulk and bounded systems.

If the magnetized slab has permittivity of the order of unity, the reflected wave is
weak, and the Faraday effect is close to its bulk value (see Fig. 1.4(a)). In the case
of high permittivity, multiple reflections inside the slab cause sharp Fabry–Pérot
resonances in the transmission at the frequencies ωn/c = πn/d

√
ε (where n is an

integer). The reflections also modify the Faraday rotation, which is enhanced in the
vicinity of resonances and suppressed far from them (see Fig. 1.4(b)).

When the slab is magnetized, the waves with left and right circular polarizations
have slightly different wavenumbers. As a result, the transmission maxima are ob-
served at different frequencies

ω±
r

c
= πn

d
√
ε ± g

, (1.9)

where “+” and “−” indicate right and left polarizations, respectively. A splitting
of the circular polarizations similar to (1.9) appears in the case of normal incidence
for any multilayered structure, containing MO layers and producing a resonance (see
the next section). The enhancement of the Faraday effect is due to general properties
of the resonance; therefore, below a general case is considered.

The frequency dependences of phase φ(k0) and transmittance T (k0) near a MO-
split resonance for the right and left polarizations are shown in Fig. 1.5 by the dashed
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Fig. 1.5 The amplitude and the argument of the transmission coefficient for the case of nonzero
magnetization. (a) ε = 100, g = 5, and (b) ε = 100, g = 10. The value of g is taken large enough
to make the splitting visible

and solid lines, respectively. Disregarding the deformation of curves, one can ex-
press these dependences for the left and right circular polarizations as

ϕ+(ω)= ϕ(ω+ 0.5ωr) and ϕ−(ω)= ϕ(ω− 0.5ωr),∣∣T +(ω)
∣∣2 = ∣∣T (ω+ 0.5ωr)

∣∣2 and
∣∣T −(ω)

∣∣2 = ∣∣T (ω− 0.5ωr)
∣∣2, (1.10)

where ϕ(ω), |T (ω)|2 are the dependences at zero magnetization, ωr = ω+
r − ω−

r .
The angle of the Faraday rotation is equal to [41]

ϑ = 0.5
(
ϕ+(ω)− ϕ−(ω)

)
. (1.11)

It is obvious from Fig. 1.5 that the enhancement is due to the fast growth of
the phase, which changes by π on the scale of the resonant line width. Note that
instead of the small bulk value (1.8) one can obtain the Faraday angle of the order
of π/2, which follows from the fact that the phase changes by π in the vicinity of
any resonance and from the formula (1.11).

The transmitted wave is linearly polarized at the frequency ω∗, defined by the
condition ∣∣T +(ω∗)∣∣2 = ∣∣T −(ω∗)∣∣2 (1.12)

(we imply that the incident wave is linearly polarized). Taking into account a single
resonance only, the value of ω∗ is evaluated as

ω∗ = 0.5
(
ω−
r +ω+

r

)= ωr, (1.13)

i.e., ω∗ is equal to the resonant frequency of non-magnetized system.
It is essential that the enhancement of the Faraday rotation is observed when

the condition (1.13) is fulfilled, or, at least, the frequency lies between the split
resonance frequencies. Suppose that the Q-factors of “+” and “−” resonances sig-
nificantly differ (Fig. 1.6). There exist two points satisfying the condition (1.12).
The number of paths the light makes traveling through the system is the same but
the Faraday rotation is different. Comparison of Figs. 1.5 and 1.6 shows that it is
important that ω+

r < ω∗ <ω−
r .
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Fig. 1.6 Two resonances for
different Q-factors

The smaller the MO splitting the higher transmittance (1.12) and smaller the
Faraday rotation (Figs. 1.5(a) and (b)). It can be shown (see [36] and Appendix A)
that

T = T0 cos2 ϑ (1.14)

where T0 is a transmittance at zero magnetization. When ϑ increases, the rotation
angle saturates at the value of π/2. At the same time, the amplitude of the transmit-
ted wave tends to zero.

Usually, the splitting ωr is much smaller than the resonance width. Then the
Faraday rotation angle, according to (1.10) and (1.11), can be estimated as

ϑ(ωr)= 1

2

[
ϕ
(
ω−
r +ωr/2

)− ϕ
(
ω+
r −ωr/2

)]≈ 1

2

dϕ(ω)

dω

∣∣∣∣
ω=ωr

ωr

= dϕ(ω)

dω

∣∣∣∣
ω=ωr

∂ωr

∂ε
g. (1.15)

According to (1.15), ϑ(ωr) is determined by three factors. The first one, dϕ(ω)/
dω|ω=ωr , is equal to the inverse width of the resonance 1/Γ (see Appendix B). The
second factor, ∂ωr/∂ε, is the sensitivity of the resonance position to the value of the
dielectric constant of the MO layers. Note that this parameter is not related to MO
properties of the slab. If the structure is a uniform MO slab of the width d , one has

ωr = πn

d
√
ε

and
∂ωr

∂ε
= −ωr

1

2ε
,

from which we obtain

ϑ ≈ − 1

Γ
ωr

g

2ε
= −Q

g

ε
(1.16)

where ωr/2Γ =Q is the Q-factor of the resonance. In the general case of arbitrary
multilayer structure, (1.16) can be rewritten as

ϑ ≈ 1

Γ
ωr

g

ε

∂ lnωr
∂ ln ε

=Q
g

ε
2
∂ lnωr
∂ ln ε

, (1.17)

where the derivative corresponds to the shift of the resonance frequency with the
change of the permittivity of the MO layers. One can show that

−1

2
≤ ∂ lnωr

∂ ln ε
≤ 0.
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For closed resonators (with infinite Q-factor) the shift of the resonance frequency
with the change of permittivity is determined by the expression [63]:

∂ lnωr
∂ ln ε

≈ −1

2

∫
MO ε|E|2 dz∫
res ε|E|2 dz (1.18)

where the integrals in the numerator and the denominator are calculated over the
MO layers (their permittivity changes) and over the whole resonance structure, re-
spectively. The latter expression can approximately be applied to a high-Q cav-
ity, such as a finite PC with defect. According to (1.18), the value of −2 ∂ lnωr

∂ ln ε
is approximately equal to the fraction of the energy of the electric field local-
ized in the MO layers. The numerical calculations for the optical Tamm state give
∂ lnωr
∂ ln ε = −0.1786, which is close to the value given by (1.18)

−1

2

∫
MO ε|E|2 dz∫
res ε|E|2 dz = −0.1793.

Thus, we obtain a simple expression for the resonantly enhanced Faraday rota-
tion:

ϑ ≈ −QW
g

ε
, (1.19)

where

W =
∫

MO ε|E|2 dz∫
res ε|E|2 dz

is the confinement factor [64] and Q is the quality factor of the resonance. It follows
from (1.19) that the rotation angle depends not only on the relative concentration of
the electric field in MO layers, but also on the total quality factor of the resonance
structure. In particular, some decrease in | ∂ lnωr

∂ ln ε | can be justified by significant in-
crease in Q. This is the case when multilayered structures are used instead of a
single homogeneous MO layer.

1.4 Employing Magnetophotonic Crystals to Enhance
the Faraday Effect

Enhancement of the Faraday effect requires a high Q-factor. In the case of a sin-
gle homogeneous MO layer, in order to achieve a high Q-factor, it is necessary to
have an exceedingly large permittivity value. Therefore, more complicated struc-
tures should be used, e.g., photonic crystals with defects [35, 65], coupled photonic
crystals with optical Tamm states [5, 6, 16], random systems [44], etc.

The simplest structure is a MO layer (defect) placed inside of a bounded PC
sample. The working frequency is placed inside the PC’s bandgap. If considering
two pieces of PC sandwiching the MO-defect as dielectric mirrors, the structure
looks like a common Fabry–Pérot resonator, where the resonant frequency is equal
to the frequency of the defect mode [66] localized at the defect.
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Fig. 1.7 Permittivity (top figures) and field distribution (bottom figures) in a cavity with (a) ho-
mogeneous (low-permittivity) mirrors and (b) layered mirrors (a PC with bandgap)

The benefits of employing a MPC instead of metallic mirrors originate from pos-
sibility of increasing the Q-factor by the redistribution of the light energy from
materials with losses into low loss materials [6]. Due to the complicated structure
of the Bloch wave, an exponential decay in the bandgap happens only on average.
Locally, the field may achieve high values (Fig. 1.7). Thus, a significant part of the
energy may be concentrated in low-loss dielectric mirrors instead of lossy defect.
This leads to increase of the Q-factor.

Instead of the defect mode one can use the surface Tamm state appearing in
between two PCs. In this case, there is no cavity, and the field is located inside the
PC-mirrors, incorporating MO layers.

The Faraday rotation can be enhanced by employing the Borrmann effect [64].
This effect is related to the fact that for a frequency of band edge, the Bloch wave is
a standing wave whose maxima lie either in the higher- or in the lower-permittivity
layers [67]. In such a way, the energy of the electric field can be concentrated in the
MO layers, thereby increasing the confinement factor W .

Using a single resonance, one can obtain any value of the Faraday rotation angle
up to 90◦. However, it is accompanied by inevitable decrease in the signal amplitude
(see (1.14) and [36]). Using two resonances [36], one can have the 90◦ Faraday
rotation at T = 1, overcoming the limit, expressed by (1.14). So, let us now consider
the case when the splitting of the resonance kr is equal to the distance between
neighboring resonances. This can be achieved either by using a structure with two
defects [36, 37], or by choosing a defect-free MPC with sufficiently large number
of layers. In this case, the resonances of different orders, T +

n (k0) and T −
n−1(k0),

overlap, as shown in Fig. 1.8(a). Since each resonance causes a change of the phase
by π , the phase difference between two polarizations is also π (see Fig. 1.8(b) and 7
at k0L = 11.58). Thus, the angle of the Faraday rotation is equal to π/2, whereas
the coincidence of resonances for both polarizations leads to transmission equal to
unity (Fig. 1.9).

For a practical realization of this situation with existing MO materials, differ-
ent resonances must be close to each other. This can be achieved by increasing the
number of layers in a PC and using a wavenumber that is close to a bandedge. The
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Fig. 1.8 The transmission coefficient (a) and the phase shift (b) in the case when resonances of dif-
ferent order coincide. Solid and dashed lines correspond to the right and left polarizations, respec-
tively. The elementary cell of the PC consists of two layers with parameters ε1 = 1, d1 = 0.1 μm,
ε2 = 2, g = 0.01, and d2 = 0.1 μm. The total number of layers is 58

Fig. 1.9 The transmission
(solid line) and the angle of
rotation of the polarization
plane (dashed line) for a
sample with parameters
described in Fig. 1.8

density of the resonances is proportional to the density of states (inversely propor-
tional to the group velocity) that has a maximum at the bandedge. An increase in
the number of layers allows one to make the density of states arbitrarily large. This
makes the transmission resonances dense enough.

To conclude it is worth mentioning some systems, employing plasmon resonance
for enhancement of the Faraday effect. In these systems, the property of surface
plasmon to have given (TM) polarization is used [68, 69]. The obliquely incident
TE-polarized wave in the frustrated total internal reflection geometry (Fig. 1.10(a))
does not excite a surface plasmon at the metal/dielectric interface, if the magnetiza-
tion is zero. However, in the presence of magnetization, there arises an interaction
between the TE and TM polarizations, and the generation of TM-polarized surface
plasmon enhances the cross-polarization. Thus, the scheme in Fig. 1.10(a) trans-
forms a TE-polarized wave into TM-polarized wave producing an effective rotation
of the polarization plane by π/2. At the same time, the intensity of the transmitted
wave is low. The effectiveness of the plasmonic scheme can be compared to the one
of the usual schemes, discussed above, by calculating the cross-polarization inten-
sity in the usual schemes. It is easy to see from (1.12) that in the usual scheme the
cross-polarization intensity, which is proportional to the square of ϑ , grows with
the quality factor as Q2. In the plasmonic scheme, it depends on Q logarithmically,
which in fact reduces the enhancement to nothing. The reason for such dependence
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Fig. 1.10 Plasmonic enhancement of the Faraday rotation. (a) The original scheme [68], providing
the logarithmic in Q-factor enhancement of the cross-polarization intensity. (b) Modified scheme
providing the linear in Q-factor enhancement of the cross-polarization intensity (the Bloch wave
envelope is shown)

is the weak interaction between the incident wave and the one having the perpen-
dicular polarization. This interaction is proportional to the overlap of the TE- and
TM-polarized fields in the MO layer (Fig. 1.10(a)).

The overlap can be increased, if the surface wave at the PC/MPC interface
(Fig. 1.10(b)) is used instead of the surface plasmon at the interface of the homoge-
neous medium. In this case, the wave of TM polarization should reach the PC/MPC
interface without decay, and only in the MPC it should become evanescent due to
the bandgap. MO layers create the cross-(TE) polarization, which decays in both the
PC and MPC due to the bandgap. The conditions for existence of the TE-polarized
surface wave at the PC/MPC interface should be satisfied, which results in the cross-
polarization enhancement. It turns out that all these conditions are easily satisfied
if: (1) the angle of incidence ensures the Brewster condition for the layers of the
PC; (2) all the layers are quarter-wavelength ones at the given angle. The over-
lap of the fields in the MO layers (Fig. 1.10(b)) is now increased, leading to the
cross-polarization intensity being proportional to the Q-factor. However, even this
scheme is not as good as the usual one, working at normal incidence. The reason
is that the resonance in the usual schemes amplifies not only the cross-polarization,
but also the incident one. Since the cross-polarization is created by the incident
wave, it undergoes quadratic in Q amplification. The schemes amplifying only the
cross-polarization cannot give more than a linear dependence.

1.5 Conclusions

In this chapter, we develop a general approach for considering structures used for the
Faraday effect enhancement. These structures can be considered as open resonators
in which bulk MO properties remove the degeneracy with respect to the polarization
and split the resonance frequencies. At the frequency in-between the frequencies of
the split resonance, a large rotation of the polarization plane can be observed. This
rotation is due to the rapid change of the phase of the transmitted wave by a value



14 A.P. Vinogradov et al.

of π when the frequency of the incident wave crosses the resonance. Indeed, at
these frequencies, the phase of the red shifted wave gains a value of the order of π ,
while the phase of the blue shifted wave hardly changes. When the splitting is much
smaller than the resonance width, the Faraday rotation is shown to be a product of
the resonance Q-factor, confinement factor and the MO factor.

Appendix A: Relationship Between the Transmission Coefficient
and the Faraday Rotation Angle

We assume that the distance between a given resonance and other ones is much
larger than the resonance width. In principle, if the resonance has a large Q-factor,
a small magnetization is sufficient for obtaining the required value of splitting of
resonances. But, irrespective of the Q-factor, one obtains the same dependence of
the transmission coefficient |T |2 on the Faraday rotation angle ϑ (Fig. 1.11). This
is due to the fact that the frequency range in the vicinity of the resonance, at which
the amplitude, |T |2, and the phase, argT , change significantly, is the same for both
these quantities. More precisely, for T (k0) = α

k0−k̃0
with a real frequency, k0, and

complex values of residue, α, and the pole position, k̃0 = kr − iΓ , one can obtain the
expression |T |2 = T 2

0 cos2 ϑ (T 2
0 is the resonant transmission), which is independent

of the Q-factor. Indeed, designating a deviation of the frequency from the resonant
one as δk0 = k0 − kr , one has T (δk0)= α

δk0+iΓ
and

∣∣T (δk0)
∣∣2 = |α|2

δk2
0 + Γ 2

. (1.20)

Presuming that the presence of the magnetization shifts the peak without changing
its form, one obtains ϑ = (argT (δk0)− argT (−δk0))/2, from which it follows that

tanϑ = −δk0

Γ
. (1.21)

Eliminating δk0 from expressions (1.20) and (1.21), one obtains |T |2 = |α|2
Γ 2 cos2 ϑ .

After denoting the transmission at the resonance as T 2
0 = |α|2

Γ 2 , the required result
arises:

|T |2 = T 2
0 cos2 ϑ. (1.22)

The comparison between the one-resonance model system meeting condition
(1.22) and results obtained from calculations of the Tamm state (Fig. 1.11) shows
that a difference appears when the frequency moves away from the resonance, to the
region in which the resonances next to the Tamm state become visible.

From this analysis one can conclude that for any lossless system with separated
resonances, a large rotation angle is possible only for a small transmission, and their
mutual dependence is the same for any Q-factor. A large Q-factor is needed only
for obtaining the desirable value of splitting of peaks which is equal to 2δk0.
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Fig. 1.11 Universal dependence of the transmission coefficient on the Faraday rotation angle for
a single pole (solid line) and the same dependence for the optical Tamm state resonance (dashed
line). The deviation is caused by resonances neighboring to the Tamm state

Appendix B: Rate of the Phase Change at the Resonance
Frequency

In this appendix we show that at the resonance, the absolute value of the quantity
dϕ/dω|ω=ωr in (1.15), is equal to the inverse width of the resonance. Near the res-
onance, the transfer function can be approximated as

T (ω)= α

ω−ωr − iΓ
,

where ωr and Γ are the frequency and the half-width of the resonance, respectively.
By differentiating the relation T (ω)= |T (ω)| exp(iϕ(ω)), one obtains

∂ϕ

∂ω
= i

|T |
∂|T |
∂ω

− i

T

∂T

∂ω
.

Calculating derivatives

∂|T |
∂ω

= ∂

∂k

|α|√
(ω−ωr)2 + Γ 2

= −|T | ω−ωr

(ω−ωr)2 + Γ 2

and
∂T

∂ω
= − T

ω−ωr − iΓ
,

we find
∂ϕ

∂ω
= − Γ

(ω−ωr)2 + Γ 2
.

It immediately follows that at the resonance

dϕ(ω)

dω
= − 1

Γ
.
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Chapter 2
Multifaceted Tunability of One-Dimensional
Helicoidal Magnetophotonic Crystals

Fei Wang and Akhlesh Lakhtakia

Abstract The photonic bandgaps (PBGs) of a 1D photonic crystal can be tailored
in a variety of ways, depending on the types of mechanism incorporated in the de-
sign of that photonic crystal. These mechanisms can be structural, that is, frozen
into the photonic crystal during fabrication, or dynamic, that is, they can be varied
post-fabrication by manipulating, say, a low-frequency magnetic field. Interleaving
magnetophotonic garnet layers with layers of a structurally chiral material (SCM)
leads to a 1D helicoidal magnetophotonic crystal (HMPC), the interaction of whose
overall period and the helicoidal period of the SCM layers leads to intra-Brillouin-
zone PBGs which depend on the structural handedness of the SCM layers and whose
gapwidths are tunable in a multifaceted fashion. Even as the overall period grows
very large, one PBG remains unaffected as it is due to the helicoidal period. The
gapwidths can be magnetically tuned by an externally impressed dc magnetic field.

2.1 Introduction

Structurally periodic materials appear in nature [1, 2] and can also be synthesized—
as photonic crystals [3], cholesteric liquid crystals [4], and sculptured thin films [5].
The most optically notable attribute of structurally periodic materials is the presence
of photonic bandgaps (PBGs) in Brillouin diagrams [3]. The PBGs underpin the use
of structurally periodic materials for optical filtering [6–8], optical sensing [9, 10],
lasing [11, 12], and waveguiding [13, 14]. Furthermore, these applications can be
dramatically enhanced by introducing defects into the structurally periodic mate-
rials for exciting defect modes either within a PBG or at the band edges [15–18],
enabling nanophotonic devices such as multi-channel nanofilters [19, 20] and ultra-
low-threshold nanolasers [21, 22].
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Parametric control of optical properties of structurally periodic materials is
highly desirable—for instance, to realize dynamically tunable PBGs. Focusing on
unit cells with two constituent layers of dissimilar materials, we note that PBGs
are structurally tunable, as demonstrated decades ago with the Šolc folded filters
(ŠFFs) [23], wherein the optic axes of the two constituent materials are misaligned
by a certain angle. Hence, ŠFFs are 1D photonic crystals which exhibit PBGs within
the Brillouin zones, the bandgap widths depending on the magnitude of the mis-
alignment angle [24]. Tunability via electrically controlled crystalline misalignment
also occurs when ferroelectric (smectic) liquid crystalline layers are used [25, 26].
Another example of dynamic tunability has been recently provided by 1D magne-
tophotonic crystals (MPCs), wherein at least one of the two constituent materials is
made of a ferrimagnetic garnet that displays optical gyrotropy under the influence
of an externally impressed magnetic field [27–30]. In the 1D MPCs, the PBGs occur
also inside the Brillouin zones and are magnetically tunable [31, 32]. Other factors
such as misalignment between the optic axes of two consecutive layers in the unit
cell of a 1D MPC can either aid or impede magnetic tunability [34].

The incorporation of helicoidal periodicity in a photonic crystal is yet another
mechanism to produce and affect tunable PBGs. Significantly, helicoidal periodic-
ity is additional to the overall periodicity which comes from a repetition of unit
cells; such 1D photonic crystals can be considered to doubly periodic. Incorpora-
tion of the helicoidal morphology in photonic crystals is practically feasible and
straightforward, e.g., in a 1D helicoidal photonic crystal (HPC) [17, 33] containing
a structurally chiral material (SCM) [4, 5] in the unit cell. Because the helicoidal
morphology of an SCM amounts to a continuous rotation of the optic axes and it is
easily adjustable especially in nonrigid materials, an HPC will affect the tunability
of PBGs by its helicoidal periodicity through an effect similar to (i.e., conceivably as
a continuous version of) but yet notably different from the crystalline misalignment
manifested in ŠFFs. Also, as the helicoidal and the overall periodicities interact [33],
the optical response characteristics of an SCM—exemplified by the circular Bragg
phenomenon [5] and the saturated defect-mode resonance [15, 34]—affect the PBGs
of HPCs.

Multiple structural periodicities are desirable for 1D MPCs to operate in multiple
frequency bands, each band being magnetically tunable. One way to accomplish
that is to interleave homogeneous layers of a ferrimagnetic garnet with SCM layers.
Having thus proposed this 1D helicoidal MPC (HMPC) with two periodicities, our
main task in this chapter is to examine how the two periodicities interact with optical
gyrotropy of the ferrimagnetic garnet to generate tunable PBGs that are distinct from
those displayed by traditional 1D photonic crystals.

2.2 Theory

2.2.1 Constitutive Description of a 1D HMPC

Let us consider a 1D photonic crystal made of two alternating dielectric materials
with the overall period Λ= t (a) + t (b) along the thickness direction, i.e., the z axis,
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where t (a) and t (b) are the thicknesses of the layers of dissimilar materials in the
unit cell. The two materials are labeled as a and b, with the former denoting a
magnetophotonic garnet layer and the latter a nonmagnetophotonic SCM layer. We
fix their relative permittivity 3 × 3 matrices as

ε(a) = ε
g

+ Diag
[
ε(a) +Δ(a), ε(a) −Δ(a), ε(a)zz

]
(2.1)

and

ε(b) = S

(
ξ + h

πz

Ω

)
· Diag

[
ε(b) +Δ(b), ε(b) −Δ(b), ε(b)zz

] · S−1
(
ξ + h

πz

Ω

)
. (2.2)

The diagonal matrices (with components ε(a,b) ± Δ(a,b) and ε
(a,b)
zz ) are unaffected

by any externally applied low-frequency magnetic field, but the gyrotropy matrix

ε
g

= iεg

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ (2.3)

contains a nonzero scalar εg when an external low-frequency magnetic field is ap-
plied parallel to the z axis. Finally, the 3 × 3 matrix

S(ζ )=
⎡
⎣cos ζ − sin ζ 0

sin ζ cos ζ 0
0 0 1

⎤
⎦ , (2.4)

with ζ = ξ + hπz/Ω , is used to delineate two structural mechanisms. First, ξ is the
misalignment angle that is introduced across the interface between layers a and b;
second, the helicoidal periodicity of the SCM layer is expressed through Ω and
h = ±1 which, respectively, denote the helicoidal period and the structural hand-
edness. While (2.2) describes a relatively general form for the SCM layer, a special
case (h= 0 and ξ /∈ {0,π}) representing the crystalline misalignment alone (as in an
ŠFF) can be meaningfully incorporated into the constituent layers of MPCs. Com-
binations are thus possible, e.g.,

(i) the 1D bicrystalline magnetophotonic crystal (BMPC) [32] for which h= 0 but
both optical gyrotropy and crystalline misalignment are present, and

(ii) the 1D HMPC that combines optical gyrotropy and helicoidal periodicity [33]
but does not have crystalline misalignment (ξ = 0).

Figure 2.1 shows the schematic evolution from a 1D PC to a 1D HMPC with
structural and material mechanisms described thus far. For simplicity, we let both
materials in the unit cell be nondispersive, nondissipative, and nonmagnetic. The
two materials can be dielectrically similar (ε(a) = ε(b) and Δ(a) = Δ(b)) or not,
and we note that both ε

(a)
zz and ε

(b)
zz do not affect propagation along the z axis. Let

us also characterize the optical gyrotropy through the magnetophotonic angle α =
tan−1[εg/Δ(a)], and denote angular frequency by ω, the speed of light by c, the
intrinsic impedance of free space by η0, and the free-space wavenumber by k0. We
also assume that the SCM layer is sufficiently thick so as to exhibit a fully developed
circular Bragg phenomenon [5, Chap. 9].
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Fig. 2.1 Schematics of 1D photonic crystals evolving from nonmagnetophotonic to magnetopho-
tonic materials described in (2.1)–(2.4). (a) an ŠFF, (b) a 1D MPC, (c) a 1D BMPC, and (d) a 1D
HMPC, the unit cells of which, respectively, contain (a) two misaligned nonmagnetophotonic ho-
mogeneous material layers, (b) a magnetophotonic garnet layer and an aligned nonmagnetopho-
tonic layer, (c) a magnetophotonic garnet layer and a misaligned nonmagnetophotonic layer, and
(d) a magnetophotonic garnet layer and a SCM layer. Light propagation occurs along the z axis

2.2.2 Axial Wave Propagation

Wave propagation along the z axis can be formulated using standard techniques
based on the Floquet–Bloch theorem for Bloch states and the emergence of PBGs
in the Brillouin diagrams. In the context of axial wave propagation, the electric field
phasors in the two constituent layers of the unit cell of the 1D HMPC only contain
components in the xy plane and can be described using the column 4-vector

F(z)=

⎡
⎢⎢⎢⎢⎣

Ex(z)

Ey(z)

−η0Hy(z)

η0Hx(z)

⎤
⎥⎥⎥⎥⎦ . (2.5)

In the magnetophotonic layers,

[
Ex(z)

Ey(z)

]
=

4∑
j=1

anj exp
[
iσj k0(z− nΛ)

]
p
j
, z ∈ [nΛ,nΛ+ t (a)

]
, (2.6)

where the eigenmodes indexed by j ∈ [1,4] involve the column 2-vectors

p
1
= p

2
=
[

sin(α/2)

−icos(α/2)

]
, p

3
= p

4
=
[

sin(α/2)

icos(α/2)

]
(2.7)
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representing the eigenpolarization states; k0σj are the eigenmodal wavenumbers
with

σ1 = −σ2 =
√
ε(a) +

√
Δ(a)2 + ε2

g, σ3 = −σ4 =
√
ε(a) −

√
Δ(a)2 + ε2

g;
(2.8)

and anj are the eigenmodal amplitudes for the magnetophotonic layer in the nth unit
cell, i.e., z ∈ [nΛ,nΛ+ t (a)]. The boundary values of F(z) on the magnetophotonic
sides of the interfaces z= nΛ+ t (a) and z= (n+ 1)Λ are given by

F
[
nΛ+ t (a)

]=D · P (a) ·A(n) (2.9)

and

F
[
(n+ 1)Λ

]=D · P (a) ·A(n+1), (2.10)

where the 4 × 4 matrices

D =

⎡
⎢⎢⎣

sin(α/2) sin(α/2) sin(α/2) sin(α/2)
−icos(α/2) −icos(α/2) icos(α/2) icos(α/2)
σ1sin(α/2) σ2sin(α/2) σ3sin(α/2) σ4sin(α/2)

−iσ1cos(α/2) −iσ2cos(α/2) iσ3cos(α/2) iσ4cos(α/2)

⎤
⎥⎥⎦ , (2.11)

and

P (a) = exp
{
iσj k0t

(a) Diag[σ1, σ2, σ3, σ4]
}
, (2.12)

and the column 4-vectors

A(n) =

⎡
⎢⎢⎣
an1

an2

an3

an4

⎤
⎥⎥⎦ . (2.13)

In each SCM layer, the propagating wave can be decomposed into forward-
propagating and backward-propagating components. Each of those components has
left-handed and right-handed components. Therefore, in any SCM layer we can
write

F(z)= Y · f (z), (2.14)

where the 4 × 4 matrix

Y =
[

U U

U ·Z −U ·Z

]
, (2.15)

involves the 2 × 2 matrices

U = 1√
2

[
1 1
i −i

]
(2.16)



24 F. Wang and A. Lakhtakia

and

Z =
[

n(b) −Δn(b)

−Δn(b) n(b)

]
(2.17)

with n(b) = √
ε(b) and Δn(b) = Δ(b)/2n(b). A matrizant W(z) can be prescribed

such that

f (z)=W
(
z− z′) · f (z′) (2.18)

for both z and z′ inside the same SCM layer. Exact calculation of W(z) is possi-
ble [35]; however, coupled-mode theory [34] provides an approximate closed-form
expression of the matrizant as follows:

W(z)=

⎡
⎢⎢⎣
P−(z) 0 0 Q−(z)

0 P+(z) Q+(z) 0
0 Q∗+(z) P ∗+(z) 0

Q∗−(z) 0 0 P ∗−(z)

⎤
⎥⎥⎦ , (2.19)

where

P±(z) = e±ihπz/Ω

[
cosh(Δ∓z)+ i(k0n

(b) ∓ hπ/Ω)

Δ∓
sinh(Δ∓z)

]
, (2.20)

Q±(z) = e±ihπz/Ω

[
ikΔ

Δ∓
sinh(Δ∓z)

]
, (2.21)

Δ± =
√
k2
Δ − (k0n(b) ± hπ/Ω)2, kΔ = k0Δn

(b), and the asterisk denotes the trans-
pose. Equation (2.19) holds only if dissipation in the SCM layer is small enough to
be ignored, but the formulation for a dissipative SCM layer can be done similarly
yielding modifications to (2.19)–(2.21) [36].

The tangential components of the electromagnetic field must be continuous
across all interfaces of the two constituent layers. Enforcing these boundary con-
ditions as well as the periodicity condition A(n+1) = exp(iKΛ)A(n), by virtue of
the Floquet–Bloch theorem with K as the Bloch wavenumber, we obtain an eigen-
value problem that governs the emergence of Bloch states in the Brillouin diagram;
thus,

D−1 · Y ·W(b) · Y−1 ·D · P (a) ·An = exp(iKΛ)A(n), (2.22)

where W(b)≡W(t(b)). Solution of (1.16) yields the relationship between K and the
angular frequency ω. As propagating Bloch states are indicated by real-values K ,
and evanescent Bloch states by complex-valued K , PBGs can be identified in Bril-
louin diagrams.
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2.3 Numerical Results and Discussions

2.3.1 1D BMPC

Let us begin by setting h= 0. The crystalline misalignment between the two consti-
tutive layers in the 1D BMPC in Fig. 2.1(b), represents a vestigial form of the con-
tinuous rotation of the relative permittivity matrix of SCM layers in the 1D HMPC
in Fig. 2.1(c). The 1D BMPC thus provides a starting point to look at the magne-
tophotonic features that could be common in both types of structured MPC (i.e.,
BMPC and HMPC).

Interest lies in identifying the effects of (a) crystalline misalignment and (b) op-
tical gyrotropy in the Brillouin diagram of the 1D BMPC. The intra-Brillouin-zone
PBGs for the two factors separately turn out to be drastically different from each
other [32]. Figure 2.2 presents the fifth branch in the Brillouin diagram for a 1D
BMPC with a dielectrically similar configuration (ε(a) = ε(b) and Δ(a) = Δ(b)),
for six different sets {ξ,α}. In conformity with Refs. [28, 31, 38, 39], the aligned
1D BMPC (i.e., ξ = 0) exhibits magnetically tunable intra-Brillouin-zone PBGs
in Fig. 2.2(a), wherein the gapwidths ω increase with the optical gyrotropy εg
of the magnetophotonic layer in the unit cell. The Brillouin diagram for complete
misalignment (i.e., ξ = π/2) in Fig. 2.2(b) is very different. The gapwidths (i) are
significant larger than for ξ = 0 and (ii) are not significantly affected by the optical
gyrotropy of the magnetophotonic layer. For both ξ = 0 and ξ = π/2 in Fig. 2.2, the
PBGs shift away from the boundaries of Brillouin zones as α is increased, but are
closer to the boundaries for the larger value of ξ .

Coupling of the influences of the crystalline misalignment and the optical gy-
rotropy on the PBGs of the dielectrically similar BMPCs can be identified in
Fig. 2.3. This figure indicates a strong dependence of the gapwidth on ξ when α

is relatively small, but this dependence significantly weakens as α increases. Simi-
larly, the gapwidth is closely tied to the value of α for small values of ξ , but loses
its α-dependences when ξ is close to π/2. Therefore, the individual effects of crys-
talline misalignment and optical gyrotropy can be offset simply by choosing signifi-
cantly large values of α and ξ , respectively. In particular, a high degree of crystalline
misalignment (ξ ≈ π/2) in a dielectrically similar configuration should stabilize the
gapwidth with respect to the externally applied low-frequency magnetic field. We
conclude that crystalline misalignment trumps optical gyrotropy.

The gapwidths of PBGs have very different characteristics for 1D BMPCs with
dielectrically dissimilar configurations. As an example, setting ε̄(a) = ε̄(b) but vary-
ing the ratio γ = Δ(b)/Δ(a), we found that if γ is substantially either larger or
smaller than unity, the magnetic tunability of gapwidths is significantly affected.
This becomes evident from Fig. 2.4 wherein the gapwidth in the fifth branch has
been plotted against α for both dielectrically similar (γ = 1) and dielectrically dis-
similar BMPCs (γ = 0.2 or 10). The gapwidth for α in the neighborhood of π/2
is greatly enhanced for γ � 1 but reduced for γ � 1. Thus, the effect of the exter-
nally applied low-frequency magnetic field on the gapwidth can be either enhanced
or reduced by an appropriate selection of the materials of the two constituent layers
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Fig. 2.2 The fifth branch in the Brillouin diagram for a 1D BMPC with (a) ξ = 0 and (b) ξ = π/2.
The two constituent layers in the unit cell are dielectrically similar: ε̄(a) = ε̄(b) = 6.6 and
Δ(a) = Δ(b) = 0.05, which are typical of the constitutive properties of bismuth iron garnet in
the infrared regime [37]. Dotted lines are for the limiting case α = 0 (no optical gyrotropy), solid
lines for α = π/12, and dashed lines for α = 5π/18. Similar features can be observed for other
branches in the Brillouin diagram. The Bloch states for α = 0 in (b) are degenerate, despite both
layers in the unit cell being anisotropic

Fig. 2.3 Calculated
ξ -dependence of the
gapwidth ω in the fifth
branch in the Brillouin
diagram, for different values
of α. The 1D BMPC has the
same constitutive properties
as in Fig. 2.2

of the unit cell. Furthermore, whereas the enhancement with γ � 1 appears to be
huge and nonlinear with respect to α, the reduction with γ � 1 is moderate and
quasilinear.

Figure 2.4 also shows that dielectric dissimilarity can trump crystalline misalign-
ment. The gapwidths for ξ ∈ {0,π/2} are quite comparable for γ �= 1. As a conse-
quence, although crystalline misalignment plays a significant role for dielectrically
similar BMPCs by trumping optical gyrotropy, it tends to lose its importance for
magnetic control of the PBGs displayed by dielectrically dissimilar BMPCs.
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Fig. 2.4 Calculated
α-dependence of the
gapwidth ω in the fifth
branch in the Brillouin
diagram for different values
of γ =Δ(b)/Δ(a) and ξ .
These calculations were made
for a 1D BMPC with
dielectrically dissimilar
configuration:
ε̄(a) = ε̄(b) = 6.6 and
Δ(a) =Δ(b)/γ = 0.05

Fig. 2.5 Brillouin diagrams
for 1D HMPC with (a) α = 0
and (b) α = π/6. Both
constituent layers of the unit
cell are dielectrically similar
(ε̄(a) = ε̄(b) = 6.6 and
Δ(a) =Δ(b) = 0.05) and their
thicknesses are equal
(t (a) = t (b) = 60Ω). The
dotted lines in (a) are for the
HMPC of either handedness,
the solid and dashed lines
in (b) are for the left-handed
(h= −1) and right-handed
(h= +1) HMPC,
respectively.
Intra-Brillouin-zone PBGs in
the diagrams are labeled by 0
and ±1

2.3.2 1D HMPC

Let us now move on to h = ±1 so that the second constituent layer of the unit cell
is a nonmagnetophotonic SCM layer. Figure 2.5 shows the Brillouin diagrams for
a 1D HMPC made of dielectrically similar materials (ε̄(a) = ε̄(b) and Δ(a) =Δ(b)),
when the externally applied low-frequency magnetic field is either absent (α = 0)
or present (α = π/6). Several PBGs are present inside the Brillouin zone, near the
zone boundaries KΛ = 0 and π . The band profiles around these intra-Brillouin-
zone PBGs are dependent on the structural handedness for α > 0 but not for α = 0;
however, the gapwidths are independent of handedness, regardless of α.
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The PBGs have been classified elsewhere [33] into groups A and B when they are
in close proximity of the zone boundaries KΛ= 0 and π , respectively; furthermore,
PBGs in group A are labeled {0,±2,±4, . . .}, while those in group B are labeled
{±1,±3,±5, . . .}. In Fig. 2.5, group A is represented only by the PBG labeled 0,
whereas group B is fully populated, as can be seen by extending the horizontal axis
beyond the limits shown in the figure.

PBGs not labeled 0 reflect the interaction of the overall period Λ with the elec-
tromagnetic field. These PBGs are found when Ω is finite (HMPCs) and even in
the limit Ω → ∞ (non-helicoidal MPCs). But the PBG labeled 0 is located at
ω = (π/n(b))(c/Ω), which is the center frequency of the Bragg regime of the SCM
layer [16, 17], and therefore exists only for HMPCs (finite Ω).

In an isolated SCM layer with a sufficient number N(b) = t (b)/Ω of periods,
a PBG is known to occur when a central phase defect is introduced in the form
of either a twist defect [15, 32], or a spacer layer [36, 40, 41], or some combina-
tion thereof [16, 41]. A resonance, which is localized spatially at the defect site and
spectrally at the center of the Bragg regime, can be excited by either left- or right-
circularly polarized light, depending on the thickness of the isolated SCM layer.
When the handedness of the incident circularly polarized light is the same as the
structural handedness of the isolated SCM layer, the resonance develops and van-
ishes as N(b) is increased from a small value. When the two handednesses differ, the
resonance develops and saturates as N(b) is increased from a large value [15, 32],
because the localized energy density increases drastically with N(b) until attaining a
saturation level—this phenomenon is manifested in the Brillouin diagram as a PBG
that blocks arbitrarily polarized light from propagating through the isolated SCM
layer containing a central phase defect.

As PBGs exist in isolated SCM layers with central phase defects, and as the PBG
labeled 0 does not exist when t (a) = 0 in the 1D HMPC, we conclude that this PBG
is solely due to each magnetophotonic garnet layer acting as a phase defect inserted
between two identical SCM layers with sufficiently large numbers of periods. Nu-
merical studies [33] have shown that this PBG is weakly affected by N(b).

The PBGs labeled ±1 in Fig. 2.5(b) exhibit notable dependences on the ratio
Λ/Ω . For a fixed helicoidal period, the center frequencies and the gapwidths of
these two PBGs from group B appear to vary inversely as the overall period Λ. This
tendency—which is generally observed for PBGs in single-period, non-helicoidal
PCs [42]—affirms that the PBGs of group B are intimately connected to the overall
periodicity of the 1D HMPC. But, because it is retained even in the limit Λ → ∞,
the helicoidal periodicity also affects these PBGs significantly. For fixed Ω , as Λ
increases, (i) their center frequencies approach the center frequency of the PBG
labeled 0, and (ii) their gapwidths remain finite [33]. If h= 0, the center frequencies
and gapwidths of all PBGs go to zero as Λ→ ∞.

The interplay between the two different structural periodicities—i.e., the heli-
coidal periodicity and the overall periodicity—can be further appreciated with the
1D HMPC. Figure 2.6 shows that the gapwidths of the PBGs of a 1D HMPC are
strongly dependent on the spatial variation of the properties in the unit cell, as ex-
pressed by the angle χ = tan−1(t(b)/t(a)) ∈ (0,π/2). The gapwidth of every PBG
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Fig. 2.6 Dependence of the
gapwidth ω on
χ = tan−1(t(b)/t(a)) for the
1D HMPC. The constitutive
properties of materials of the
two constituent layers of the
unit cell are the same as for
Fig. 2.5, except that α = π/9,
Λ/Ω = 50, and
N(b) = t (b)/Ω ∈ {1,2, . . . ,
49}. The PBG labels for all
curves are identified in the
inset

Fig. 2.7 Dependence of the
gapwidth ω on χ for a 1D
MPC with α = π/9. Solid,
dashed, and dotted lines are
for the PBGs in the first,
second, and third branches,
respectively, in the Brillouin
diagram. See Fig. 2.2 for
other parameters

displays an oscillatory pattern with respect to χ : it varies from low to high and back
to low in one cycling period on the χ axis. The oscillation of gapwidth with χ has
to be an intrinsic feature of PBGs in any 1D PC because of the overall periodicity,
which conclusion emerges on noting that the gapwidths of PBGs of all three non-
helicoidal 1D PCs shown in Figs. 2.1(a)–(c) oscillate with χ in a similar manner.

However, there are distinctions in the oscillatory χ -dependences of gapwidths
between the 1D HMPC and the non-helicoidal 1D PCs, which are attributable to
the influence of helicoidal periodicity on the PBGs. The main distinction is that the
gapwidth of a higher-frequency PBG of a non-helicoidal 1D PC will cycle through
more periods than that of a lower-frequency PBG in the range χ ∈ (0,π/2), see
Fig. 2.7 for the example of a 1D MPC; while the number of cycling periods of
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Fig. 2.8 Dependences of the
gapwidths ω of PBGs of
different labels, identified in
the inset, on α. All
parameters are the same as
for Fig. 2.5 except Λ= 20Ω

the gapwidth of a 1D HMPC over χ ∈ (0,π/2) increases as the PBG distances,
in either of the frequency directions, away from the PBG centered in the Bragg
regime of the SCM layer of the unit cell. Because the PBG at the center of Bragg
regime, labeled 0, occurs mainly due to the helicoidal periodicity while all the other
PBGs, labeled n ∈ {±1,±2, . . .}, are mainly a result of overall periodicity [33],
the interplay between the two periodicities in a 1D HMPC can be seen vividly as
follows: the PBGs labeled 0 and ±1 for the 1D HMPC exhibit identically a single
cycling period of gapwidth over χ ∈ (0,π/2), while the gapwidths of any two PBGs
of a non-helicoidal 1D PC will have different numbers of cycling periods across the
χ axis.

The PBGs of the 1D HMPC in both groups A and B depend on α, as illustrated in
Fig. 2.8. The gapwidths of the higher-frequency PBGs (with labels ∈ {0,1,3,5, . . .})
decline linearly with increase of sinα, but the gapwidths of the lower-frequency
PBGs (with labels ∈ {−1,−3,−5, . . .}) first decrease to zero and then increase as
sinα increases. For each of the lower-frequency PBGs, we can designate a value αc
of α when the PBG vanishes and so does the gapwidth. The farther that a negatively
labeled PBG is from the PBG labeled 0 on the ω axis, the lower is the value of the
former’s αc.

The magnetic tunablity of gapwidths of HMPCs differs from that of non-
helicoidal MPCs in a significant manner. The gapwidths in non-helicoidal MPCs in-
crease with α [31, 34]. In contrast, the gapwidths in Fig. 2.8 for HMPCs decrease as
α increases for the higher-frequency PBGs, and similarly for α < αc for the lower-
frequency PBGs. The role of the helicoidal periodicity diminishes in the lower-
frequency regime, because the SCM layer of the HMPC tends to become effectively
homogeneous as (ω/c)Ω → 0. In other words, the optical role of helicoidal peri-
odicity can be trumped by a sufficiently large α > αc) magnetically induced optical
gyrotropy at sufficiently low frequencies.

Both groups A and B of PBGs are also exhibited by a 1D HMPC made of di-
electrically dissimilar materials [33]. As shown in Fig. 2.9, the amplitudes of the
Δ(a) and Δ(b) affect the center frequencies and the gapwidths of PBGs. Increases in
these parameters tend to amplify the gapwidths, as may be seen by comparing the
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Fig. 2.9 Brillouin diagrams
for 1D HMPC made of
dielectrically dissimilar
materials such as
(a) Δ(b) = 0.5Δ(a) and
(b) Δ(b) = 5Δ(a). Other
parameters are as same as for
Fig. 2.5 with Δ(a) = 0.05
fixed. The solid lines are for
the left-handed HMPC, and
the dashed lines are for the
right-handed HMPC

gapwidths in Fig. 2.9(a) for lower Δ(b) with those in Fig. 2.9(b) for higher Δ(b). Fur-
thermore, the density of PBGs on the ω-axis increases as well, for which Fig. 2.9(b)
contains evidence. Finally, the effect of structural handedness gets amplified, as may
be seen by comparing the two parts in Fig. 2.9.

2.3.3 Multifaceted Tunability of PBGs

Figure 2.10 shows the dependence of the gapwidth of an intra-Brillouin-zone PBG
of an ŠFF on ξ and similar dependences on α of the remaining three 1D PCs illus-
trated in Fig. 2.1. The gapwidth increases with either ξ or α for the non-helicoidal
1D PCs; therefore, crystalline misalignment and optical gyrotropy, in essence, func-
tion similarly to tune PBGs. However, whereas crystal misalignment is to be chosen
before making the PC, optical gyrotropy can be dynamically altered after fabrication
by the application of an external low-frequency magnetic field. Magnetic tunability
of PBGs is also evinced by a PC which can be tuned by a combination of mecha-
nisms. Among them is the 1D BMPC in which the gap widths of PBGs vary with
α in general, but can also become unaffected by the amplitude of optical gyrotropy
when the misalignment angle ξ = π/2, as shown in Fig. 2.10. A 1D HMPC demon-
strates bimodal magnetic tunability of PBGs: first the bandgap width decreases to
almost the vanishing point and then increases, as the magnetophotonic angle α in-
creases.
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Fig. 2.10 Dependence of gapwidth ω on the angle ζ for 1D PCs illustrated in Fig. 2.1; ζ = ξ

for the ŠFF, but ζ = α for the other PCs. Other parameters are as follows: (i) ŠFF: α = 0, h = 0;
(ii) MPC: ξ = 0, h = 0; (iii) BMPC: ξ ∈ {π/4, π/2}, h = 0; and (iv) HMPC: ξ = 0, h = ±1,
Λ/Ω = 24. The two base layers have equal thickness and are made of dielectrically similar ma-
terials (ε̄(a) = ε̄(b) = 6.6 and Δ(a) = Δ(b) = 0.05). The PBGs for 1D non-helicoidal (h = 0) PCs
occur at the fifth branch in the Brillouin diagram, while the PBG for the 1D HMPC (h= ±1) is in
the third lower-frequency PBG labeled −3 [43]

Thus, in PCs with either one or two tunability mechanisms, we find that (i) dif-
ferent types of tuning trend are possible and (ii) the tunability with more than one
physical mechanism is multifaceted.

2.4 Concluding Remarks

In conclusion, we have delineated the characteristic features and the multifaceted
tunability of intra-Brillouin-zone PBGs that are displayed by the 1D HMPC be-
cause the effects of its overall period Λ are significantly modified by the helicoidal
period 2Ω of the SCM layer contained in its unit cell. One of the PBGs (labeled 0)
can be attributed entirely to a saturated wave resonance that occurs because each
magnetophotonic garnet layer acts as a phase defect inserted between two identical
SCM layers with sufficiently large numbers of periods [40]. The helicoidal period
is responsible for other qualitative differences with respect to non-helicoidal 1D
MPCs. For example, the center frequencies of all PBGs approach a non-diminishing
value even as Λ → ∞, and the gapwidths of the PBGs can be magnetically tuned
down and up by turning up the magnitude of the externally impressed dc magnetic
field. These magnetically controllable PBGs are also affected by the structural left-
handedness or right-handedness of the HMPC.

One-dimensional HMPCs can be conceived to display even more remarkable
magnetophotonic features. For instance, all three tunability mechanisms—i.e., crys-
talline misalignment, optical gyrotropy, and helicoidal periodicity—can be simulta-
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neously hosted in the 1D HMPC so that the tunability of PBGs is multifaceted. The
crystalline misalignment may be introduced by twisting all the magnetophotonic
garnet layers by a certain angle about the z axis [34], which would introduce new
features same as the 1D BMPC has exhibited. Another possibility is to use ferro-
electric crystals for the magnetophotonic layers, which would introduce additional
control by an externally impressed dc electric field. Yet another possibility is that
the magnetophotonic layers also have a helicoidal morphology; then, the additional
helicoidal periodicity would introduce new features.
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Chapter 3
Electromagnetic Unidirectionality in Magnetic
Photonic Crystals

Alex Figotin and Ilya Vitebskiy

Abstract Magnetization, either spontaneous or field-induced, is always associated
with nonreciprocal circular birefringence which breaks the reciprocity principle and
qualitatively changes electrodynamics of medium. In magnetic photonic crystals
and other periodic structures involving magnetic components, broken reciprocity
can result in electromagnetic unidirectionality, when the traveling waves can only
propagate in one the two opposite directions. The unidirectional wave propagation
can only occur if both time reversal and space inversion symmetries of the periodic
structure are broken. During the last decade there have been numerous publications
devoted to this kind of phenomenon. Our goal is to present some of those ideas.

3.1 Introduction

In this chapter we consider nonreciprocal effects in electromagnetic wave propa-
gation in magnetic photonic crystals and other periodic structures involving mag-
netically polarized materials. The magnetic polarization can be spontaneous, as in
ferrites or ferromagnets, or it can be induced by external magnetic field. In either
case, any magnetically polarized medium has broken time reversal symmetry and
does not support the Lorentz reciprocity [1]. This qualitatively changes electromag-
netic properties of the medium. In a uniform substance, magnetic field or spon-
taneous magnetization can cause nonreciprocal circular birefringence resulting in
magnetic Faraday rotation. In case of a non-uniform periodic structure, we can also
have a strong asymmetry in forward and backward wave propagation. Specifically,
if both time reversal and space inversion symmetries of the periodic structure are
broken, light can propagate in one direction much faster or much slower than in
the opposite direction. This phenomenon is essentially nonreciprocal and unique to
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magnetic photonic crystals and some other nonreciprocal periodic structures. A fas-
cinating consequence of spectral asymmetry is the phenomenon of electromagnetic
unidirectionality [2–9]. In one scenario, a unidirectional structure, being perfectly
transmissive for electromagnetic waves propagating in a certain direction, freezes
the radiation of the same frequency propagating in the opposite direction [2, 3]. The
frozen mode has nearly zero group velocity and greatly enhanced amplitude. In an-
other scenario, a backward propagating mode might not exist at all [4–9]. The elec-
tromagnetic unidirectionality and the frozen mode regime are fundamentally new
wave phenomena, nonexistent in uniform materials, both artificial and naturally oc-
curring.

In this chapter, our focus is exclusively on electromagnetic unidirectionality.
Since its discovery, there have been numerous publications devoted to different
physical realizations of this phenomenon. Our goal is to present some of those ideas
emphasizing the fundamental physical aspects of the phenomenon, as well as its
practical importance.

Electromagnetic unidirectionality always implies strong asymmetry between for-
ward and backward wave propagation. The very possibility of such an asymmetry
can be established from symmetry considerations alone, which is the subject of the
next section. Whether or not such an asymmetry results in electromagnetic unidi-
rectionality depends on specific physical characteristics of the periodic structure. In
the following sections, we analyze some important examples.

3.2 Bloch Waves in Periodic Structures with Broken Reciprocity

In spatially periodic structures, such as photonic crystals, the electromagnetic eigen-
modes can be represented in the Bloch form

Ψk(r + a)= Ψk(z) exp(ia · k), (3.1)

where k is the Bloch wave vector and a is a lattice translation. The relation between
the wave vector, k, and the frequency, ω, is referred to as the Bloch dispersion rela-
tion. Real k correspond to propagating Bloch modes. In most cases, the dispersion
relation is symmetric with respect to the wave vector

ω(k)= ω(−k). (3.2)

Usually, the relation (3.2) can be viewed as a direct consequence of time reversal
symmetry, R, and/or space inversion symmetry, I , of the periodic structure. Indeed,
since either operation reverses the direction of the Bloch wave vector

Ik = −k; Rk = −k, (3.3)

we have

if R ∈G and/or I ∈G, then ω(k)= ω(−k) for any k, (3.4)
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where G is the space-time symmetry group of the periodic array. All nonmag-
netic media always support time reversal symmetry. In addition, most of the ho-
mogeneous and periodic heterogeneous structures are centrosymmetric. As a con-
sequence, the overwhelming majority of uniform materials and periodic structures
display perfectly symmetric dispersion relation. If both, time reversal and space in-
version symmetries are broken, still there might be some other symmetry operation
that ensures the spectral symmetry (3.2).

Let G be the point symmetry group of the periodic structure, and g ∈ G be a
symmetry operation that changes the sign of the Bloch wave vector k. Obviously,
the relation

gk = −k, g ∈G (3.5)

provides a sufficient condition for spectral symmetry (3.2). Therefore, a necessary
condition for spectral asymmetry

ω(k) �= ω(−k) (3.6)

is

gk �= −k, for any g ∈G. (3.7)

In other words, spectral asymmetry (3.6) is only possible if the point symmetry
group G of the periodic structure does not include any operations changing k to −k.

Let us make a few remarks on the use of the above symmetry criteria.
To find which of the symmetry criteria (3.2) or (3.6) is satisfied, one can use,

instead of the Bloch wave vector k, any other time-odd vector parallel to k. Exam-
ples of such time-odd vectors include the group velocity, vg(k), and the energy flux,
S(k), of the propagating Bloch mode. One can use vg and/or S instead of k in (3.2)
and (3.6) even if vg or S are not parallel to k—the result will always be the same.

In 2D and 3D periodic structures it is possible that the condition (3.5) for spectral
symmetry is satisfied for some, but not all directions of the Bloch wave number k.
For instance, in the case of a 3D periodic structure, the condition (3.5) is satisfied for
all directions of wave propagation only if this structure supports time reversal and/or
space inversion symmetries. Otherwise, the criterion (3.5) can only be satisfied for
some, but not all directions of wave propagation. For more examples see [2].

A bounded photonic structure with 3D periodicity can have a flat surface support-
ing surface waves. The surface symmetry is usually lower than that of the unbounded
3D periodic structure. In particular, a surface never supports space inversion sym-
metry. As a result, surface waves propagating along flat boundary of a magnetic
photonic crystal can display asymmetric dispersion relation (3.6), while inside the
photonic structure the Bloch dispersion relation can be perfectly symmetric. Exam-
ples of the kind were considered in [11, 12], as well as in [4–8]. Similar situation
can develop with all kinds of 1D and 2D defect states, interfaces, and boundaries in
2D and 3D periodic magnetic structures.

Finally, note that the symmetry considerations based on the criteria (3.5) and
(3.7) apply not only to electromagnetic waves, but also to any other Bloch ex-
citation in periodic media, such as electrons in metals and semiconductors [10],
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magnons, polaritons, etc. Also, the relations (3.5) and (3.7) have much farther
reaching consequences than just the symmetry of the Bloch dispersion relations.
For instance, the relation (3.5) also implies that for any linear or nonlinear wave,
ψ(r − vt), propagating along the specified direction, v, there exists a recip-
rocal, backward wave, ψ(r + vt), propagating with equal and opposite veloc-
ity.

Naturally occurring substances displaying electromagnetic spectral asymme-
try (3.6) have been known for decades (see, for example, [13–15], and references
therein). They constitute a special class of crystalline materials known as magne-
toelectrics [1]. The electrodynamics of magnetoelectric media can be described by
standard time-harmonic Maxwell equations

∇ ×E = i
ω

c
μH, ∇ ×H = −i

ω

c
εE, (3.8)

with bianisotropic constitutive relations

D = εE + ξH, B = μH + ζE. (3.9)

Here ε and μ are electric permittivity and magnetic permeability tensors; ξ and ζ

are tensors of linear magnetoelectric effect. The tensors ζ = ξT are odd with respect
to time reversal R and space inversion I , implying that linear magnetoelectric effect
is ruled out in all nonmagnetic and/or centrosymmetric structures

if R ∈G and/or I ∈G, then ξ = ζ = 0. (3.10)

Comparison of symmetry relations (3.4) and (3.10) shows that necessary conditions
for linear magnetoelectric effect are similar to those of spectral asymmetry. A prob-
lem with single-phase magnetoelectric crystals is that the degree of electromagnetic
spectral asymmetry there is usually negligible (10−4 or less). The situation is fur-
ther aggravated by complicated and often unpredictable domain structure of natural
magnetoelectric materials. As a consequence, the remarkable properties of magne-
toelectrics featuring electromagnetic spectral asymmetry (3.6) are yet to find any
practical use.

The above problems can be avoided in magnetic photonic crystals and other pe-
riodic structures involving magnetic components. Space inversion, I , can always be
removed from the point symmetry group, G, of the periodic array by a proper choice
of structural geometry, even if each individual constituent is a centrosymmetric ma-
terial. When it comes to time reversal, R, it can only be eliminate by incorporating
a material with spontaneous magnetic order (such as a ferromagnet or a ferrite) or
by applying a dc magnetic field. In this way, the space-time symmetry group, G,
of the periodic structure can always be made compatible with spectral asymmetry.
Although such a structure might not display any static magnetoelectric effect, dy-
namically it will behave as an artificial magnetoelectric medium with exceptionally
strong electromagnetic spectral asymmetry, unachievable in any single-phase bian-
isotropic material, natural or artificial.
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3.3 Symmetry of Maxwell Equations in Magneto-Photonic
Structures

At this point, all constitutive components of the periodic structure are presumed
lossless. We assume also that each of the constitutive components is a uniform non-
conducting material satisfying conventional constitutive relations

D = ε(ω)E, B = μ(ω)H, (3.11)

with Hermitian material tensors

ε†(ω)= ε(ω), μ†(ω)= μ(ω). (3.12)

The dagger, †, denotes Hermitian conjugate. The property (3.12) of Hermiticity im-
plies losslessness. The tensors ε(ω) and μ(ω) are different in different components
of the periodic array. The absence of magnetoelectric terms in the constitutive re-
lations (3.11) implies that each uniform component, if it fills the entire space, has
perfectly symmetric electromagnetic dispersion relation (3.2), which is the case with
all nonmagnetic and an overwhelming majority of magnetic materials. At the same
time we expect that a spatially periodic array of such components can support asym-
metric dispersion relation (3.6). In other words, in a magnetic periodic structure, the
property (3.6) of spectral asymmetry can be achieved by proper space arrangement
of the constitutive components, rather than by using magnetoelectric (bianisotropic)
materials.

From symmetry standpoint, a photonic crystal, being spatially periodic, can
be viewed as an artificial macroscopic crystal. Therefore, every photonic crys-
tal, or any other spatially periodic array, can be assigned certain magnetic sym-
metry group, GM , which along with rotations, reflections, and translations might
also include time reversal operation, R, combined with certain space transfor-
mations [1]. Knowing the magnetic symmetry group, GM , of the periodic ar-
ray, one can apply the criterion (3.7) to find whether or not one can expect
asymmetric dispersion relation for a particular direction of the Bloch wave vec-
tor k. The spectral asymmetry can only occur if the symmetry group GM is on
the list of those compatible with linear magnetoelectric effect [1]. It does not
mean, though, that the periodic structure will display any static magnetoelectric
effect.

Finding the magnetic symmetry group, GM , of a periodic array is a straightfor-
ward task. Indeed, knowing the geometry of the periodic array and the magnetic
symmetry, GM(i), of each uniform constitutive component, one can immediately
obtain the exact magnetic symmetry, GM , of the periodic structure. By definition,
the periodic array is invariant under operations from GM . Therefore, if we substitute
G in (3.7) with the magnetic symmetry group, GM , we will get a rigorous necessary
condition for spectral asymmetry.

At this point it is worth noting that the symmetry of the Maxwell equations (3.8)
with the constitutive relations (3.11) can be higher than GM . Indeed, each consti-
tutive component, i, of the periodic structure is only represented by the respective
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material tensors εi(ω) and μi(ω) in (3.11). The space-time symmetry, G(i), of the
material tensors εi(ω) and μi(ω) can be higher than the magnetic symmetry GM(i)

of the material itself. For instance, both εi(ω) and μi(ω), being second rank ten-
sors, are always centrosymmetric, regardless of whether or not the material itself
supports space inversion. In other words, the space-time symmetry of the material
relations (3.11) in some of the constitutive components of the photonic crystal can
be higher than the exact magnetic symmetry GM(i) of the respective materials.
As a result, the symmetry group G of the Maxwell equations with the material rela-
tions (3.11) can be higher than the magnetic symmetry GM of the periodic structure.
If indeed the symmetry group G of Maxwell equations is higher than the magnetic
symmetry group GM , one can expect the situation where a particular effect, such as
spectral asymmetry, is prohibited by G but allowed by GM ⊂G. In such a case, this
particular effect can occur, but if it does, it is associated exclusively with physical
processes unaccounted for by the Maxwell equations (3.8) with the conventional
constitutive relations (3.11). All such interactions and effects are presumed negligi-
ble. They might include:

• electrostriction and/or magnetostriction at low frequencies, as described in [14,
28, 29],

• space dispersion, such as a reciprocal optical activity in chiral constitutive com-
ponents,

• linear magnetoelectric effect in some of the constitutive components,
• surface effects at the photonic structure boundaries and at the interfaces between

different constitutive components.

Hereinafter, we will focus exclusively on those space-time effects which are ac-
counted for by the Maxwell equations (3.8) with the conventional constitutive re-
lations (3.11). Thus, our symmetry consideration will be based on the space-time
symmetry group, G, derived from the constitutive relations (3.11), rather than its
subgroup, GM . Note that in many cases, the two symmetries are simply identi-
cal (G ≡ GM ). But even if GM ⊂ G, the use of the space-time symmetry, G,
usually remains an excellent approximation, especially at IR and optical frequen-
cies.

Unlike the time reversal symmetry, R, the space inversion, I , is always supported
by both material tensors ε(ω) and μ(ω) in any uniform material, regardless of the
presence or absence of magnetic and/or electric polarization. To remove space in-
version from space-time symmetry group G of the periodic array and, thereby, to
allow for spectral asymmetry, one should choose a proper spatial arrangement of the
constitutive components. To put it differently, the geometry of the photonic structure
must be complex enough not to support space inversion. Note that space inversion
is not an issue when it comes to surface waves or, more generally, any Bloch waves
propagating along the interface of two different media or two different periodic ar-
rays. Indeed, in the latter cases, the interface does not support space inversion, even
if the media on both sides of the interface do.
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3.3.1 Material Tensors of Magnetically Polarized Materials

Let us see how the presence of magnetization and/or dc magnetic field affects the
constitutive relations (3.11) and results in violation of the reciprocity principle.
More on this can be found in [1]. Consider the skew-symmetric parts of the ma-
terial tensors ε(ω) and μ(ω)

εm = 1

2

(
ε − εT

)
, μm = 1

2

(
μ−μT

)
. (3.13)

In magnetic medium

εm �= 0, and/or μm �= 0. (3.14)

This is what distinguishes magnetically polarized medium from any other substance.
In the absence of magnetic field and/or spontaneous magnetization, the permittivity
and permeability tensors are symmetric at any frequency

ε = εT , μ= μT . (3.15)

The relations (3.15) remain valid even in the presence of losses and/or gain.
The absorption and/or gain are determined by anti-Hermitian parts of the material

tensors ε(ω) and μ(ω)

εa = 1

2

(
ε − ε†), μa = 1

2

(
μ−μ†). (3.16)

Without loss and gain, both εa(ω) and μa(ω) in (3.16) are zeros, and the material
tensors ε(ω) and μ(ω) are Hermitian.

Note that the absorption and/or gain also break time reversal symmetry of the
Maxwell equations (3.8) with constitutive relations (3.11). At the same time, nei-
ther absorption nor gain can affect Lorentz reciprocity. Therefore, if the periodic
structure does not involve magnetic components (3.13), it cannot display spectral
asymmetry (3.6), or any form of electromagnetic unidirectionality.

A properly balanced periodic array of loss and gain components can support reg-
ular, propagating Bloch modes with constant amplitude (see, for example, [30, 31],
and references therein). The respective Bloch dispersion relations, though, will al-
ways be perfectly symmetric, as long as there are no magnetic components in the
periodic structure.

Let us sum up this section. In a uniform, magnetically polarized substance, the
imaginary skew-symmetric parts (3.13) of the material tensors ε(ω) and μ(ω) are
responsible for violation of Lorentz reciprocity [1]. If such a magnetic material is in-
corporated in a periodic composite structure, this can also cause the effect of spectral
asymmetry (3.6), provided that the space-time symmetry, G, of the periodic array
is low enough to satisfy the criterion (3.7). The criterion (3.7) is just a necessary
condition for spectral asymmetry (3.6). Even if this condition is met, the effect of
spectral asymmetry could be negligible or even ruled out by physical reasons differ-
ent from those imposed by the space-time symmetry G. To find whether a photonic
structure satisfying the criterion (3.7) displays spectral asymmetry, one has to go
beyond the symmetry consideration and solve the Maxwell equations (3.8) in the
non-uniform structure.
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3.4 Electromagnetic Unidirectionality and the Frozen Mode
Regime

In this and the following sections we consider several specific examples of periodic
structures supporting strong spectral asymmetry and electromagnetic unidirection-
ality. Importantly, the existence of strong spectral asymmetry does not guarantee
that a particular periodic structure can also display the phenomenon of electromag-
netic unidirectionality, even in principle. In other words, the possibility of electro-
magnetic unidirectionality cannot be derived from symmetry consideration alone.
Further in this section, we will focus on nonreciprocal periodic layered structures,
also known as 1D magnetic photonic crystals, or periodic stacks. Periodic magnetic
stacks are practically important (see, for example, [18–27] and references therein),
relatively easy to analyze, and they display all important features associated with
the phenomenon of electromagnetic unidirectionality, including the frozen mode
regime [3, 17].

3.4.1 Periodic Layered Structures

Let us start with periodic stacks with just two different layers in a unit cell, as shown
in the example in Fig. 3.1.

The space-time symmetry G of such a periodic array always supports space in-
version with the center of inversion located in the middle of each uniform layer.
Therefore, a periodic stack composed of two alternating layers will never display
spectral asymmetry (3.6), regardless of the materials of the layers. Let us reiterate
that referring to the space-time symmetry group G rather than to the true mag-
netic symmetry group GM of the photonic crystal, we disregard those presumably
insignificant effects which cannot be accounted for within the framework of time-
harmonic Maxwell equation (3.8) with conventional constitutive relations (3.11). In
most cases, though, the symmetry groups G and GM are simply identical.

The simplest layered structure capable of supporting asymmetric Bloch disper-
sion relation is shown in Fig. 3.2. A unit cell of this periodic array has three layers—
the minimum number of layers in a unit cell to remove inversion, I , from the space-
time symmetry group G.

The magnetic F -layers have the magnetization M parallel to the z direction nor-
mal to the layers. The magnetization can be spontaneous, or field-induced. The re-
spective material tensors are

ε(F )=
⎡
⎣ εF iα 0

−iα εF 0
0 0 ε̄F

⎤
⎦ , μ(F )=

⎡
⎣ μF iβ 0

−iβ μF 0
0 0 μ̄F

⎤
⎦ . (3.17)

The real parameters α and β are responsible for nonreciprocal circular birefringence
(magnetic Faraday rotation). Both α and β are odd functions of frequency and van-
ish in the static limit of ω = 0. If the direction of magnetization is reversed, both α
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Fig. 3.1 Periodic stack with
two layers A and B in a unit
cell L. This stack always
supports symmetric
dispersion relation
ω(k)= ω(−k), regardless of
the material of the layers and
the direction of the Bloch
wave vector k

Fig. 3.2 Simplest periodic
layered structure supporting
asymmetric dispersion
relation (3.6). A unit cell L
includes three layers: a
magnetic layer F with
magnetization shown by the
arrows, and two anisotropic
dielectric layers A1 and A2
with different orientations ϕ1
and ϕ2 of the respective
anisotropy axes in the x–y
plane

and β in (3.17) also change sign, and so does the sense of Faraday rotation [1, 16].
In non-conducting magnetic materials, at microwave frequencies, the dominant con-
tribution to circular birefringence usually comes from the parameter β , which can
become particularly large in the vicinity of magnetic resonance. Some conducting
materials placed in a very strong dc magnetic field can also display an α-related cir-
cular birefringence at microwave and THz frequencies. The latter effect, though, is
accompanied by strong absorption, unless the mean-free-path of the charge carriers
is much larger the respective Larmor (cyclotron) radius. At IR and optical frequen-
cies, the dominant nonreciprocal contribution comes from α.

The birefringent A-layers are presumed nonmagnetic, although this is not a re-
quirement. The respective permittivity and permeability tensors are

ε(A)=
⎡
⎣εA + δA cos 2ϕA δA sin 2ϕA 0

δA sin 2ϕA εA − δA cos 2ϕA 0
0 0 ε̄A

⎤
⎦ , (3.18a)

μ(A)=
⎡
⎣μA +ΔA cos 2ϕA ΔA sin 2ϕA 0

ΔA sin 2ϕA μA −ΔA cos 2ϕA 0
0 0 μ̄A

⎤
⎦ . (3.18b)
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Table 3.1 Point symmetry group G of the periodic layered structure in Fig. 3.2 for different values
of misalignment angle ϕ = ϕ1 − ϕ2 between the adjacent A-layers

Misalignment angle ϕ Magnetic symmetry Dispersion relation symmetry

ϕ = 0 m′m′m ω(k)= ω(−k) for all k

ϕ = π/2 4̄m′m′ ω(k)= ω(−k) for k ‖ z
ϕ �= 0,π/2 2′2′2 ω(k) �= ω(−k) for k ‖ z

The term “nonmagnetic” implies that both material tensors (3.18a), (3.18b) are sym-
metric, in line with the relations (3.15). In the absence of absorption/gain, ε(A) and
μ(A) are also real. Note that from symmetry standpoint, whether or not the mag-
netic permeability μ(A) differs from unity has nothing to do with “magnetism”, as
long as the skew-symmetric part of μ(A) is zero. The parameters δ and Δ in (3.18a),
(3.18b) describe the in-plane anisotropy (linear birefringence), while the angle ϕA

defines the orientation of the principal axes of the tensors ε(ω) and μ(ω) in the x–y
plane. For simplicity, we presume that all A-layers are made of the same anisotropic
dielectric material and have the same thickness. The only parameter that is different
in the adjacent A-layers is the orientation ϕA.

A primitive cell in Fig. 3.2 comprises one F -layer and two A-layers with dif-
ferent orientations ϕ1 and ϕ2. The most critical parameter of this periodic structure
is the misalignment angle ϕ = ϕ1 − ϕ2 between the adjacent A-layers. This angle
determines the space-time symmetry group G of the stack, along with the symmetry
of its electromagnetic dispersion relation. The results are summarized in Table 3.1.
The periodic layered structure in Fig. 3.2 is the simplest and the most symmetric pe-
riodic stack supporting spectral asymmetry (3.6) of the Bloch dispersion relation. In
this case, spectral asymmetry is only possible if the misalignment angle ϕ = ϕ1 −ϕ2

is not a multiple of π/2. More examples can be found in [2].
In order for the spectral asymmetry to be strong, the following physical condi-

tions should be satisfied:

(1) At least one of the two gyrotropic parameters α and β of the magnetic material
is large enough. Ideally, the ratio α/εF or β/μF should be larger than 0.2, but
not too large.

(2) The in-plane linear birefringence in the A-layers is strong enough, but not too
strong to suppress the nonreciprocal effects. Ideally, the ratio δA/εA or ΔA/μA

should be somewhere between 0.2 and 5.

A numerical example of electromagnetic dispersion relations of nonreciprocal
periodic array in Fig. 3.2 is shown in Fig. 3.3. In accordance with Table 3.1, the
spectral asymmetry (3.6) for k||z develops only if the misalignment angle ϕ is not a
multiple of π/2.
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Fig. 3.3 Example of electromagnetic dispersion relations ω(k) of nonreciprocal periodic stack
in Fig. 3.2. Only the two lowest frequency bands are shown. Three graphs correspond to three
different values of the misalignment angle ϕ between adjacent A-layers. In the cases ϕ = 0 (no
misalignment) and ϕ = π/2, the respective dispersion relation is symmetric with respect to the
sign of the Bloch wave vector k ‖ z

3.4.2 Electromagnetic Unidirectionality

Strong spectral asymmetry has various physical consequences, one of which can be
the effect of unidirectional wave propagation [2, 3]. Suppose that at k = k0 one of
the asymmetric spectral branches, ω(k), develops a stationary inflection point

at k = k0 and ω = ω0 = ω(k0): ∂ω

∂k
= 0; ∂2ω

∂k2
= 0; ∂3ω

∂k3
> 0, (3.19)

as shown in Fig. 3.4(a). At frequency ω = ω0, there are two propagating Bloch
waves: one with k = k0 and the other with k = k1. Obviously, only one of the two
waves can transfer electromagnetic energy—the one with k = k1 and the group
velocity vg(k1) < 0. The Bloch eigenmode with k = k0 has zero group velocity,
vg(k0) = 0, and does not transfer energy. This latter eigenmode is referred to as
the frozen mode, it is associated with stationary inflection point (3.19) of the Bloch
dispersion relation. As one can see in Fig. 3.4(a), none of the two propagating eigen-
modes with ω = ω0 has positive group velocity and, therefore, none of the Bloch
eigenmodes can transfer energy from left to right at this particular frequency! Thus,
a periodic structure with the dispersion relation similar to that in Fig. 3.4(a), displays
the property of unidirectional wave propagation at ω = ω0.

Electromagnetic unidirectionality can be viewed as an extreme manifestation
of spectral asymmetry (3.6). If spectral asymmetry happens to be weak, it does
not formally rule out the phenomenon of electromagnetic unidirectionality, but it
would obscure the effect. Indeed, weak Faraday rotation in the F layers and/or weak
anisotropy in the A layers will result in a small value of the third derivative ∂3ω/∂k3

in (3.19). This, in turn, pushes the stationary inflection point ω0 in Fig. 3.4(a) too
close to the photonic band edge ωb , as illustrated in Fig. 3.5. In the close proxim-
ity of the photonic band edge, both forward and backward waves become almost
equally slow, which obscure the asymmetry in forward and backward wave propa-
gation. Besides, in the vicinity of the photonic band edge ωb, the periodic structure
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Fig. 3.4 (a) A fragment of asymmetric dispersion relation ω(k) of the periodic stack shown in
Fig. 3.2. At k = k0 and ω = ω0 this spectral branch develops a stationary inflection point associ-
ated with electromagnetic unidirectionality and the frozen mode. The frequency ωb designates the
photonic band edge. (b) Frequency dependence of the transmittance, τ , of semi-infinite photonic
slab with the dispersion relation in (a). The incident light propagates from left to right. At the fre-
quency, ω0, of stationary inflection point, the transmittance is close to unity, which implies that the
incident wave is almost completely converted into the frozen mode with zero group velocity and
drastically enhanced amplitude

becomes reflective, which implies that the incident light cannot be transmitted in the
photonic crystal and converted into the slow frozen mode [17].

In cases of 2D and 3D photonic crystals, the spectral asymmetry (3.6) and elec-
tromagnetic unidirectionality do not require the presence of birefringent dielectric
components in a unit cell of the periodic structure. The same is true for all kinds of
periodic waveguides, photonic interfaces, and surface waves. Of course, the pres-
ence of magnetic materials with nonreciprocal constitutive relations (3.14) is still
required.

3.4.3 Scattering Problem for Bounded Unidirectional Media.
The Frozen Mode Regime

Consider a plane electromagnetic wave incident on a lossless, semi-infinite, unidi-
rectional photonic structure with the electromagnetic dispersion relation shown in
Fig. 3.4(a). The semi-infinite periodic structure occupies the right half-space, z > 0.
The incident wave propagates in the positive direction along the z axis normal to
the layers and hits the photonic crystal boundary at z = 0. At the slab boundary, a
portion of the incident wave is reflected back to space and the rest of the incident
radiation enters the semi-infinite photonic structure. Let SI and SR be the energy
flux of the incident and reflected waves (at z < 0), and ST be the energy flux of the
wave transmitted inside the semi-infinite periodic structure (at z > 0). Due to energy
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Fig. 3.5 Dispersion relation
of the periodic stack in
Fig. 3.2 for four different
values of nonreciprocal
circular birefringence, g. For
any given g, the stack
configuration is adjusted so
that the dispersion curve ω(k)
has a stationary inflection
point 0, associated with the
frozen mode regime. In the
nonmagnetic limit (a), the
stationary inflection point 0
merges with the frequency
band edge (b) and they form a
degenerate band edge (d)

conservation, SI + SR = ST . The transmittance τ and reflectance ρ of semi-infinite
medium are defined as

τ = ST

SI
, ρ = −SR

SI
. (3.20)

In the absence of losses and gain, the energy conservation implies that SI , SR , and
ST are independent of z, and also ρ = 1 − τ .

Let vg be the group velocity (along the z direction) of the transmitted Bloch mode
inside the semi-infinite structure

At z > 0: vg = ∂ω

∂k
. (3.21)

The energy flux, ST , of the transmitted Bloch wave can be expressed in terms of its
energy density, WT , and its group velocity, vg

At z > 0: ST =WT vg. (3.22)

According to (3.19) and Fig. 3.4(a), as ω → ω0, the wave number of the transmitted
wave approaches k0 and its group velocity, vg , vanishes

vg = ∂ω

∂k
∝ |ω−ω0|2/3 → 0, as ω → ω0.

Remarkably, in spite of the vanishing group velocity, the transmittance τ and the
energy flux ST remain finite even at ω = ω0, as shown in Fig. 3.4(b). This implies
that the energy density WT inside the unidirectional slab (at z > 0) increases dra-
matically to offset the vanishing group velocity in (3.22)

WT ∝WI |ω−ω0|−2/3, as ω → ω0,
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where WI is the incident light intensity. As a consequence, the incident wave with
frequency close to ω0 gets trapped inside the slab in the form of coherent frozen
mode with drastically enhanced amplitude and vanishing group velocity [3, 17]. In
reality, the frozen mode amplitude will be limited by such factors as absorption,
nonlinear effects, imperfection of the periodic array, deviation of the incident radi-
ation from a perfect plane monochromatic wave, finiteness of the photonic crystal
dimensions, etc. Still, with all these limitations in place, the frozen mode regime is a
very powerful effect and can be attractive for a variety of practical applications. De-
tailed analysis of this remarkable phenomenon can be found in [17] and references
therein.

Consider now the case of a backward wave incidence on a semi-infinite unidirec-
tional structure. Assume that similar unidirectional photonic crystal, with the same
as before dispersion relation shown in Fig. 3.4(a), now occupies the left half-space,
z < 0. The backward incident wave, coming from z = +∞, propagates in the neg-
ative direction along the z axis and hits the photonic crystal boundary at z = 0. As
ω → ω0, the wave number k of the transmitted Bloch mode at z < 0 approaches k1,
as shown in Fig. 3.4(a). The group velocity of the transmitted Bloch mode remains
negative and large in magnitude

At z < 0: vg = ∂ω

∂k
< 0, as ω → ω0.

There will be no frozen mode regime in this case.
As expected, the scattering properties of a unidirectional semi-infinite medium

are highly asymmetric. The frozen mode regime develops only for one of the two
opposite directions of incident wave propagation.

Consider now forward and backward transmittance of a finite plane-parallel pho-
tonic slab with the dispersion relation shown in Fig. 3.4(a), in the vicinity of the
stationary inflection point frequency, ω0. The transmittance of a finite slab is usu-
ally defined as

t = SP

SI
,

where SP is the energy flux of the wave exiting the slab from the opposite side.
At first sight, the transmittance in the direction of zero group velocity (the forward
transmittance, tF ) should be significantly different from the backward transmittance,
tB . A rigorous analysis, though, shows that the forward transmittance, tF , averaged
over the incident light polarization, is exactly equal to that of the backward trans-
mittance, tB :

〈tF 〉 = 〈tB〉, (3.23)

where the angle brackets 〈· · ·〉 denote averaging over incident light polarization.
Importantly, the unidirectional photonic slab displays a pseudo-resonance behavior,
regardless of which of the two opposite directions the incident radiation is coming
from. In the vicinity of a stationary inflection point frequency, ω0, the energy density
in the middle of the plane-parallel photonic slab reaches

WT ∝WIN
2, (3.24)
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where N is the number of layers in the periodic stack. As opposed to the case of a
common Fabry–Perrot resonance, the field intensity in (3.24) remains high within
a relatively broad frequency range including the frozen mode frequency, ω0, and it
is not particularly sensitive to the shape of the photonic structure. For more details,
see [17] and references therein.

The equality (3.23) is only valid in the absence of absorption and/or gain. Even
a modest absorption, can result in a significant difference between the forward and
the backward transmission. Such a behavior is reminiscent of a nonreciprocal linear
isolator. If a nonreciprocal photonic crystal includes both lossy and gain component,
a wave propagating in one direction can experience amplification, while the wave
propagating in the opposite direction can be suppressed. The physical reasons for
such a behavior are discussed in [18].

3.4.4 Nonreciprocal Waveguides

A necessary condition (3.7) for spectral asymmetry can be achieved not only in
magnetic photonic crystals, but also in other nonreciprocal periodic structures, such
as waveguides, periodic arrays of coupled resonators, etc. The non-uniform periodic
structure provides strong spatial dispersion, while the magnetic component breaks
the reciprocity. In some cases, the spectral asymmetry can result in electromagnetic
unidirectionality in exactly the same way as in the case of magnetic layered struc-
tures. Namely, unidirectional wave propagation occurs at frequency ω0 of stationary
inflection point of the Bloch dispersion relations. But in the case of nonreciprocal
waveguides and interfaces, there might be another, qualitatively different realization
of electromagnetic unidirectionality, nonexistent in unbounded photonic crystals.
An interesting example of the kind is provided by recently discovered edge waveg-
uides formed at the interface between two photonic crystals, of which at least one
is nonreciprocal (magnetic). As was first demonstrated in [4, 5] and later in [6, 7],
in such a configuration, the one way light propagation can occur within a narrow
but finite frequency range. This kind of electromagnetic unidirectionality is not re-
lated to a stationary inflection point of the Bloch dispersion relation, and there is no
frozen mode regime in this case. Instead, this kind of unidirectionality is related to
the fact that at certain frequency range, backward traveling modes do not exist at all.
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Chapter 4
Magneto-Optics of Plasmonic Crystals

V.I. Belotelov, A.N. Kalish, and A.K. Zvezdin

Abstract Plasmonics has been attracting considerable interest as it allows localiza-
tion of light at nanoscale dimensions. A breakthrough in integrated nanophotonics
can be obtained by fabricating plasmonic functional materials. Such systems may
show a rich variety of novel phenomena and also have huge application potential.
In particular magnetooptical materials are appealing as they may provide ultrafast
control of laser light and surface plasmons via an external magnetic field. Here we
give a review of the state of the art in the area of magnetoplasmonics and consider
a new metal–dielectric heterostructure: plasmonic crystal formed by a periodically
perforated with slit or hole arrays noble metal film on top of a ferromagnetic dielec-
tric film. It provides a significant enhancement of magneto-optical effects as proved
by the observation of increase of the intensity and polarization rotation effects near
Ebbesen’s extraordinary transmission peaks by several orders of magnitude. Sur-
face plasmon polaritons as well as waveguide modes play a decisive role in this
enhancement. The plasmonic crystal can be operated in transmission, so that it may
be implemented in devices for telecommunication, plasmonic circuitry, magnetic
field sensing and all-optical magnetic data storage.

Abbreviations
SPP surface plasmon polariton
TE transverse electric
TM transverse magnetic
TMOKE transverse magneto-optical Kerr effect
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4.1 Introduction

4.1.1 Magneto-Optics and Plasmonics

The magnetic field influence on light was discovered by M. Faraday in the mid-
dle of the 19th century [1]. Nowadays, magneto-optical effects are considered for
nanophotonics applications requiring manipulation of light at gigahertz frequen-
cies [2–4]. The magneto-optical effects allow manipulation with light polarization
and intensity via medium magnetization. The magnetization can be controlled in
turn by either external magnetic field which is the most straightforward approach
or by the intense laser pulse of proper polarization [5–7]. The latter possibility
could allow to pass to even shorter operation times lying at subpicosecond time
scale.

A prospective example of the magneto-optical effects is the transverse magneto-
optical Kerr effect (TMOKE) providing an intensity change of light reflected from
a ferromagnetic metal if an applied external magnetic field is reversed [8]. The
TMOKE allows one to investigate magnetic material properties and can be utilized
in magneto-optical data storage [3, 9]. The relative change of the reflected light in-
tensity in the TMOKE is on the order of 10−3, limiting its applicability [3, 10]. The
TMOKE’s counterpart in transmission may also occur, for which a necessary con-
dition is a difference between the opposite magnetic-film boundaries. However, it is
difficult to observe because of the small transmission through ferromagnetic metals
in addition to its small magnitude [11].

The other very important and well-known magneto-optical effect is the Faraday
effect. In a magnetized medium the refractive indices for right- and left- handed
circular polarized light propagating along the magnetization are different. This ef-
fect manifests itself in rotation of polarization plane as light propagates through a
transparent magnetized medium along its magnetization. The Faraday effect is usu-
ally observed in transmitted light, though it is also present in reflection when light
propagates back and forth in a magnetic film. In visible range specific Faraday rota-
tion could be as large as several degrees per micron for rare-earth iron garnet films
having high level of substitution with bismuth [3, 12, 13].

Apart from the two aforementioned effects the family of the magneto-optical
effects also includes two other polarization rotation effects: the longitudinal and the
polar Kerr effects observed in reflection configuration and the effect of magnetic
circular dichroism observed in Faraday configuration. All of these effects are odd in
magnetization.

There are also magneto-optical effects that are even in magnetization. One of
them is the Cotton–Mouton or Voigt effect. This effect results from the difference of
refractive indices of two components of light radiation, which are linearly polarized
parallel and perpendicular to magnetization, when the light propagates in a trans-
versely magnetized medium (the wavevector is perpendicular to the magnetization).
A linearly polarized light that has its polarization plane oriented at an angle to the
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magnetization direction becomes elliptically polarized after propagation through the
medium.

The other even magneto-optical effect is called orientational effect. It was ex-
perimentally discovered for Ni films and was determined by a relative change δ of
reflected light intensity when film’s magnetization changes its orientation with re-
spect to the plane of light incidence. Typical values of this effect for Ni are of about
10−3 [14].

It is this smallness which has been preventing an invasion of magneto-optics
into applied nanophotonics so far. Therefore, it is essential to seek for strategies to
enhance magneto-optical effects, for which there are several ways. While the po-
tential of methods relying purely on material synthesis is almost exhausted, nanos-
tructuring is very prospective for tailoring the optical properties of materials [15].
This approach reflects a new paradigm of modern optics in which optical prop-
erties are mainly determined by geometrical resonances rather than by electronic
ones. An example of a fruitful magneto-optical implementation of this approach is
a magnetophotonic crystal providing a considerable enhancement of the Faraday
effect [16–18].

The other rather interesting approach to boost magneto-optical effects involves
surface plasmon polaritons (SPP)—coupled oscillations of the electromagnetic field
and the electron plasma in a metal which are localized and propagate along a
metal/dielectric interface [19]. Nowadays, the field of plasmonics represents an ex-
citing new area for the application of surface plasmons in which surface-plasmon-
based circuits merge the fields of photonics and electronics at the nanoscale [20].
Indeed, SPPs can serve as a basis for constructing nanoscale photonic circuits that
will be able to carry optical signals and electric currents [21]. Surface plasmons can
also serve as a basis for the design, fabrication and characterization of subwave-
length waveguide components [22]. In the framework of plasmonics, modulators
and switches have also been investigated [23], as well as the use of SPPs as medi-
ators in the transfer of energy from donor to acceptors molecules on opposite sides
of metal films [24].

In the last years many significant discoveries were made in plasmonics. It was
demonstrated that the strong electromagnetic field energy concentration arises at
SPPs excitation. It leads to harsh increase of light-matter interaction efficiency and
enhancement of optical effects like nonlinear effects and Raman scattering. Nev-
ertheless, the potential of plasmonics has not yet been fully discovered and there
are many directions for investigations in this area. In particular, introducing func-
tional materials in plasmonics is very prosperous as they change their properties by
external forces.

One possibility is to use magneto-optical functional materials. The marriage of
plasmonics and magneto-optics looks mutually beneficial [25]. On the one hand,
magnetic field is a nice tool to control SPPs, and on the other hand SPPs can be
utilized to enhance magneto-optical effects. In this chapter we consider plasmonic
structures containing magneto-optical materials and discuss current state of the art
in this area.
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Fig. 4.1 The surface
plasmon polariton (shown as
the decaying electromagnetic
field with maximum at z= 0)
propagating along the
metal–dielectric interface

4.1.2 Surface Plasmon Polaritons in Smooth and Perforated
Metal–Dielectric Structures

The existence of self-sustained collective excitations of electron plasma and an elec-
tromagnetic field localized at the metal/dielectric interfaces was predicted by Ritchie
in 50-s of the previous century [26]. Experimental proof of Ritchie’s work followed
shortly afterwards by a series of electron energy-loss experiments after which the
term surface plasmon was coined to name the quanta of these collective oscilla-
tions [27]. Since then, there has been significant progress in investigations of SPPs,
which played a key role in many problems of condensed matter and surface physics.

Frequency of collective plasma oscillations—plasma frequency—in a free elec-
tron gas is ωp = (ne2/m)1/2 (in SI units), where n is an equilibrium density, e and
m are electron charge and mass, respectively. In the presence of a planar interface
between a plasma medium and a nonconducting medium a surface plasmon mode
appears. Its frequency is lower than that of the bulk plasma: ωs = ωp/

√
1 + ε2,

where ε2 is the permittivity of the nonconducting medium. If phase speed of the
surface plasmon is compared with the speed of light c it can be coupled with an
electromagnetic field thus originating the surface plasmon polariton mode. An SPP
is a TM polarized wave having the following components of the electromagnetic
field:

Hy =A exp(iβx + γ1z− iωt),

Ex = −A
iγ1

ωε0ε1
exp(iβx + γ1z− iωt),

Ez = −A
β

ωε0ε1
exp(iβx + γ1z− iωt)

(4.1)

for z < 0 (see Fig. 4.1) and

Hy =A exp(iβx − γ2z− iωt),

Ex =A
iγ2

ωε0ε2
exp(iβx − γ2z− iωt),

Ez = −A
β

ωε0ε2
exp(iβx − γ2z− iωt)

(4.2)
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for z > 0. Here A is the SPP amplitude, γ1 and γ2 define decay rate of the electro-
magnetic field in both media, and β is the absolute value of the SPP wavevector.
Boundary conditions at z= 0 lead to

γ1

ε1
+ γ2

ε2
= 0. (4.3)

This relation imposes two conditions on the real parts of the adjacent media per-
mittivities ε′

1 and ε′
2: ε′

1 < 0, ε′
2 > 0, and |ε′

1| > ε′
2. Fulfillment of these conditions

is necessary for the SPP wave localization at the interface. They are all satisfied,
for example, for the case of a dielectric and a metal below plasma frequency. The
permittivity of a noble metal can be described by the Drude model:

ε1 = εib(ω)− ω2
p

ω2 + iνω
, (4.4)

where εib(ω) is the part of the metal permittivity describing contribution of the in-
terband electron transitions, ν is the free electron scattering rate, and ω is an an-
gular frequency of light. Consequently, metal can sustain SPPs for the frequencies
ω < ωp/

√
Re(εib). Here we neglected optical losses and frequency dependence of

εib.
The electromagnetic field decays in each of the two adjacent media at a rate of

γi = k0

√
−ε2

i

ε1 + ε2
, (4.5)

with i = 1,2, k0 = ω/c. It allows defining the attenuation length of the SPP in
normal to the interface direction lzi = 1/γi .

The dispersion of the SPP mode is given by

β = k0

√
ε1ε2

ε1 + ε2
. (4.6)

Since both media can be absorptive the propagation constant β has both real and
imaginary parts: β = β ′ + iβ ′′. The latter determines the SPP propagation length
along the interface lx :

lx = 1/β ′′ = 2

k0

(ε′
1)

2

ε′′
1

(
ε′

1 + ε2

ε′
1ε2

)3/2

. (4.7)

Here we assumed that optical losses in the dielectric are much smaller than that in
the metal, so that ε′′

1 � ε′′
2 is satisfied for imaginary parts of the metal and dielectric

permittivities ε′′
1 and ε′′

2 , respectively.
A thin metal film can also support SPPs. In the case of a thin metal film of

thickness hm in the symmetric surrounding of a dielectric, the interaction of the
electromagnetic field on both interfaces leads to two equations:

tanhγ1hm = −γ2ε1

γ1ε2
, (4.8a)

tanhγ1hm = −γ1ε2

γ2ε1
. (4.8b)
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Fig. 4.2 SPP excitation configurations. (a) Kretschmann configuration. (b) Otto configuration.
(c) Diffraction on a grating

It can be shown that (4.8a) corresponds to modes of odd vector parity (Ex(z) is odd,
Ez(z) and Hy(z) are even functions of z), while (4.8b) corresponds to modes of
even vector parity (Ex(z) is even, Ez(z) and Hy(z) are odd functions of z) [19].

Odd modes have the prominent feature that upon decreasing metal film thick-
ness, the electromagnetic energy distribution shifts away from the metal film and
the mode tends to become a plane wave in a bulk dielectric surrounding. This im-
plies a drop in β ′′ and a significant increase of the SPP propagation length lx [28].
That is why odd parity mode is usually called a long-range SPP. The even modes
behave oppositely—their confinement to the metal film for thinner films increases
and propagation length lx becomes smaller.

For the case of non-symmetrical dielectric environment of the metal film a dis-
persion relation of the SPP is given by

exp(−4γ1hm)= γ1/ε1 + γ2/ε2

γ1/ε1 − γ2/ε2

γ1/ε1 + γ3/ε3

γ1/ε1 − γ3/ε3
, (4.9)

where ε3 is the dielectric permittivity of the second adjacent dielectric. A metal film
in asymmetric environment also sustains two modes—a high index mode which is
mostly concentrated in the high refractive index dielectric and a low index mode
mostly concentrated in the low refractive index dielectric.

It is important to know that a wavevector of a free electromagnetic wave inside
the dielectric given by k0

√
ε2 is less than the SPP wavevector at the metal/dielectric

interface by a factor of
√
ε1/(ε1 + ε2) > 1. It prevents direct coupling of light to

the SPP mode. That is why to excite SPPs some special experimental arrangements
have been designed. The photon and SPP wavevectors can be matched by using
either photon tunneling in the total internal reflection geometry (Kretschmann and
Otto configurations) or diffraction effects (Fig. 4.2).

In the Kretschmann configuration (Fig. 4.2(a)), a metal film is illuminated
through a dielectric prism at an angle of incidence θ greater than the critical angle
for the total internal reflection [29]. If a dielectric constant of prism εpr > ε2 then the
momentum conservation law can be satisfied along the interface: β = k0

√
εpr sin θ .

At this angle of incidence the resonant light tunneling through the metal film occurs,
and the light is coupled to the SPP at the lower interface and a sharp minimum is
observed in reflection spectrum from the prism–metal interface indicating that the
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light is efficiently coupled to SPPs. At this a significant electromagnetic energy con-
centration near the metal/dielectric interface is observed. The field intensity at the
interface can exceed the one in the incident light by more than two orders of mag-
nitude. The Kretschmann method is applicable for the case of not very thick metals
(hm < 80 nm). For thicker films the tunneling efficiency is too low.

Otto configuration allows SPP excitation at the upper interface of the metal
(Fig. 4.2(b)). Here, the prism where the total internal reflection occurs is placed
close to the metal surface, so that the photon tunneling occurs through the air gap
between the prism and the surface [30].

Another way to provide the wavevector conservation for the SPP excitation is
to use diffraction effects. It can be realized if either a metal or a dielectric is pe-
riodically perforated by a slit or hole array. Such gratings provide diffracted light
with different in-plane wavevector components. If some of them coincides with the
SPP wavevector then the light will be coupled to SPPs (Fig. 4.2(c)). In this case the
momentum conservation law is written by

k0
√
ε3 sin θe(in) = βeSPP + u1Gx + u2Gy, (4.10)

where ε3 is the dielectric constant of the medium above the metal/dielectric struc-
ture, θ is an angle of incidence, Gx and Gy are two reciprocal lattice vectors,
|Gx | = 2π/dx , |Gy | = 2π/dy ; dx and dy are periods of the grating in x- and
y-directions; e(in), eSPP are two in-plane unit vectors along the plane of light inci-
dence and along the SPP propagation direction, respectively, u1 and u2 are integers.
In the grating configuration SPPs can be excited on the both metal film interfaces.

Strictly speaking, the absolute value of the wavevector β of the grating SPP
in (4.10) deviates from the one determined by (4.6), (4.8a) (4.8b), and (4.9). In
the case of a metal grating with narrow slits/holes on a smooth dielectric this devi-
ation is usually rather small and formulas for smooth interfaces are well applicable.
The SPP dispersion in the structure of a smooth metal and perforated dielectric can
be also approximately calculated via (4.6), (4.8a) (4.8b), or (4.9) but substituting a
permittivity of the perforated dielectric with the one calculated from Lichtenecker
equation: |ε(eff)

2 | = (1 − f )|ε2| + f |ε(f )2 |, where f is the fraction coefficient, ε(f )2 is

the dielectric function of the substance filling the slits/holes (usually, ε(f )2 = 1) [31].
Usually, f is close in value to the fraction of the slit/hole volume with respect to the
unit cell volume.

However, the periodicity of the slits/holes does not allow to describe SPP disper-
sion fully by the effective medium approach. This becomes mostly pronounced at
k = u(π/d) with an integer u, where the dispersion curve splits into two branches:
low and high frequency and a band gap appears. This phenomenon is a general
feature of any periodic structure with a period comparable with the wavelength of
the wave propagating through it. Such periodic structures dealing with photons are
called photonic crystals. That is why periodic metal-dielectric structures considered
here can be referred to as plasmonic crystals. Plasmonic crystals allow tailoring dis-
persion of SPP in a desired way and concentration electromagnetic energy in a small
volume near the metal/dielectric interface. The latter was shown recently to have a
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great potential for ultrafast nanophotonics since it allows switching permittivity of
gold by a short laser pulse at a time scale of several hundreds of femtoseconds [32].

The SPP dispersion in metal gratings with wide slits/holes cannot be described
by smooth interface SPP model. The metal part of such structure should be con-
sidered rather like a periodic array of metal wires. In this case localized plasmonic
resonances in each individual metal wire are excited [33]. Frequencies of these res-
onances depend strongly on the metal wire size and shape. If a grating of metal
wires is deposited on the thin dielectric film then localized plasmonic modes couple
with optical waveguide modes, resulting in the formation of a waveguide-plasmon
polariton [34].

Localized surface plasmons play significant role in optical properties of metal
nanoparticles. Usually, their frequencies can be determined in the non-retarded
(electrostatic) approximation by solving Laplace’s equation with suitable bound-
ary conditions. The electrostatic approximation, which neglects the effects of re-
tardation, is valid if the characteristic size of a system is small compared to the
wavelength corresponding to the localized plasmon frequency. In this approxima-
tion frequency of the localized plasmon excited in a metal sphere is given by

ωl = ωp

(
l

ε(l + 1)+ l

)1/2

, (4.11)

where ε is a dielectric constant of a surrounding medium, and l is a number of
multipole expansion (l = 1 for dipole excitation) [33].

4.1.3 Magneto-Optical Effects in Bulk Media

4.1.3.1 Description of Magneto-Optical Effects in Classical Electrodynamics

Particular properties of a medium in the macroscopic theory of the magneto-optical
phenomena are defined by the form of ε̂- and μ̂-tensors. It is enough to consider just
the ε̂-tensor, because the properties that we describe below are similar for ε̂- and
μ̂- tensors. Besides, for visible and near infrared light μ̂-tensor is approximately
equal to the unit tensor. In the magnetically ordered state ε̂-tensor depends on the
order parameter. In ferromagnets the order parameter is magnetization M, in an-
tiferromagnets it is the sublattice magnetization, and so on. We shall confine our
discussion to ferromagnets.

Let us consider the simplest case of an optically isotropic ferromagnet. The pres-
ence of magnetization reduces the symmetry to the single-axis one. ε̂-tensor can be
represented as a sum of symmetric and antisymmetric tensors, which is given by [3]:

ε̂ =
⎛
⎝ε0 0 0

0 ε0 0
0 0 ε0

⎞
⎠+ ig(M)

⎛
⎝ 0 −mz my

mz 0 −mx

−my mx 0

⎞
⎠

+ b(M)

⎛
⎝m2

y +m2
z −mxmy −mxmz

−mxmy m2
x +m2

z −mymz

−mxmz −mymz m2
x +m2

y

⎞
⎠ , (4.12)
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where m = M/M , ε0 is the dielectric permittivity of the medium at M = 0, g =
gm is the gyration vector. In an isotropic medium normally g = aM. If there is
absorption, then

ε0 = ε′
0 + iε′′

0 , g = g′ + ig′′, b = b′ + ib′′ (4.13)

are complex functions of the frequency. The second terms in (4.12) and (4.13) de-
fine the gyrotropic effects: magnetic gyrotropic birefringence and magnetic circular
dichroism. The last terms define optical magnetic anisotropy: magnetic linear bire-
fringence and magnetic linear dichroism. The constants g and b become zero when
M approaches zero.

Usually for the characterization of magneto-optical effects the magneto-optical
(Voigt) parameter Q is used. It is defined as

Q=Q′ + iQ′′ = g/(ε0 + b). (4.14)

Normally, |Q| � 1. If μ̂-tensor can no longer be considered as a unit tensor then
both Q and QM need to taken into account and the magneto-optical medium is
called bi-gyrotropic.

In crystals the dependence of ε̂-tensor on M is more complicated, namely

εik = ε0
ik − ieiklgl + δiklmMlMm, (4.15)

where gl = alqMq , eikl is the antisymmetric 3D-order pseudotensor (the Levi-Civita
tensor). The polar tensors ε0

ik , alq , δiklm are defined by the crystallographic symme-
try.

4.1.3.2 Magneto-Optical Effects of Light Polarization Rotation

The magneto-optical Faraday effect manifests itself in a rotation of polarization
plane of a linearly polarized light at an angle Φ when the light propagates along
the medium magnetization M. In the electromagnetic theory the Faraday effect
can be explained as follows. When the medium magnetization has non-zero projec-
tion on the wave vector k0 of the incident radiation, two independent fundamental
Maxwell’s equations solutions are circular polarized waves with different refrac-
tive indices n+ and n−, respectively. At the output of the magnetic medium these
waves gain phase shift and when added give linearly polarized wave with rotated
polarization plane. That is why the Faraday effect is also called magnetic circular
birefringence [35].

The angle of the light polarization plane rotation is given by

Φ =Φsph= −k0g
′h

2n0
, (4.16)

where Φsp is the specific Faraday rotation (rotation of polarization plane of the
wave per unit length of the sample, typical values of Φsp are 0.1–3◦/μm), n0 =
1
2 (n+ + n−), h is sample’s thickness.
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If a medium is absorptive, the absorption coefficients of the right-and left- handed
circular polarized light are different. This phenomenon is called magnetic circular
dichroism. After transmission through a medium that exhibits such properties, the
light changes its polarization from linear to elliptical. The elliptical polarization is
characterized by the orientation angle Φ , which is analogous to the Faraday angle,
and ellipticity Ψ . Ellipticity is calculated by

Ψ = −k0g
′′h

2n0
. (4.17)

Along with the magneto-optical effects that are observed in transmission, there is
a number of effects that manifest themselves when light is reflected from a surface
of a magnetized material. These are magneto-optical Kerr effects. There are three
types of the Kerr effect, which are differentiated depending on a mutual orientation
of the magnetization, with respect to both the wave propagation direction and the
normal to the surface [36].

The complex polar Kerr effect consists of both the rotation of polarization plane
and the appearance of the ellipticity if a linearly polarized light reflects from a sam-
ple surface and the sample is magnetized normally to this surface. If light falls from
a vacuum perpendicularly to the sample surface, the expression for the complex
polar Kerr effect takes the following form:

Φ̃K =ΦK + iΨK = inQ

n2 − 1
, (4.18)

where ΦK is the Kerr rotation angle and ΨK is the ellipticity. The longitudinal Kerr
effect also means both the rotation of polarization plane and the appearance of the
ellipticity when a linearly polarized light reflects from a sample surface provided
that the magnetization vector belongs to both the sample plane and the light inci-
dence plane.

4.1.3.3 Odd Magneto-Optical Intensity Effect

Like the above-mentioned effects, the transverse magneto-optical Kerr effect
(TMOKE) is linear in magnetization. The TMOKE may be observed only in ab-
sorbing materials if the magnetization lies in the sample plane but is perpendicular
to the light incidence plane. For the p-polarization of the incident light (light polar-
ization is in the incident plane) it is measured by the relative change in the reflected
light intensity when the medium is remagnetized

δp = I (M)− I (−M)

I (0)
= 2 Imρ

p

12, (4.19)

where I (M) and I (0) are the intensities of the reflected light in the magnetized and
non-magnetized states, respectively,

ρ
p

12 = r
p

12Q sin θ

(ε − sin2 θ)1/2
, (4.20)
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r
p

12 is the conventional Fresnel coefficient for reflection:

r
p

12 = (ε cos θ −
√
ε − sin2 θ

)
/
(
ε cos θ +

√
ε − sin2 θ

)
,

and θ is the angle of incidence [3]. For the s-polarization (light polarization is
perpendicular to the incidence plane) the TMOKE can be observed only in bi-
gyrotropic media.

4.1.3.4 Second-Order in Magnetization Magneto-Optical Effects

If light propagates perpendicular to the medium magnetization then the Cotton-
Mouton or Voigt effect arise [37]. This effect results from the difference of refractive
indices of two components of the electromagnetic wave, which are linearly polar-
ized parallel and perpendicular to the magnetization. That is why the Voigt effect
is also called the effect of linear magnetic birefringence. A linearly polarized light
having its polarization plane oriented at an angle to the magnetization direction be-
comes elliptically polarized after propagation through the medium.

The refractive index for the light component perpendicular to the magnetization
is given by

n⊥ =
√
ε + b− g2/ε, (4.21)

while for the polarization along the magnetization it remains the same as the one for
the non-magnetized medium n‖ = √

ε. The Voigt effect is often revealed in experi-
ment as a relative phase shift of the two polarization components per unit length of
a sample:

BV = (ω/c)
∣∣Re(n‖ − n⊥)

∣∣. (4.22)

The Voigt effect is quadratic in magnetization, i.e. it is the second-order effect in the
contrary to the Faraday effect which is linear in magnetization.

The linear magnetic birefringence also leads to the changes in light reflection and
transmission coefficients when the medium magnetization is rotated in the plane
of the magnetic film. Indeed, if for one orientation of magnetization it coincides
with the incident light polarization then the reflection and transmission are the same
as ones for the non-magnetized medium. In-plane magnetization rotation by 90◦
makes it perpendicular to the light polarization thus changing refractive index of the
medium (see (4.21)) and the reflection and transmission coefficients. A second-order
in magnetization magneto-optical effect can be defined by

δ = I‖ − I⊥
I‖

, (4.23)

where I‖(⊥) is the reflected or transmitted intensity for the cases of the magnetization
parallel (perpendicular) to the light polarization. It should be noted that I‖ = I0,
where I0 is the reflection or transmission for a non-magnetized medium.

The even magneto-optical reflection and transmission effects were experimen-
tally observed in monocrystalline and polycrystalline Fe, Ni, Co films [38–41]. For
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the crystals the permittivity tensors usually has complicated form (4.15) and the
even magneto-optical intensity effect becomes also very sensitive to the position
of the magnetization and the plane of light incidence with respect to the crystallo-
graphic axes and its phenomenological description is rather cumbersome [42]. To
emphasize on this feature a term orientational magneto-optical effect (OME) was in-
troduced [40]. It was comprehensively experimentally studied for Ni films [14, 44].

The typical values of the orientational effect for Fe, Ni, and permalloy in the
visible and near infrared spectral band are of the order of δOME ∼ (0.1–1)× 10−3.

4.2 The Transverse Magneto-Optical Kerr Effect in Plasmonic
Structures

4.2.1 State of the Art

Early papers on the interplay between SPPs and magneto-optics addressed SPPs
propagating along the smooth surface of a ferromagnetic film [45–47] or along a
smooth semiconductor surface in an external magnetic field [48, 49]. In that case,
the magnetic field modifies the SPP wave vector but leaves its transverse magnetic
polarization (TM) unchanged.

The SPP assisted increase of the TMOKE was reported. At the same time, it was
shown in [50] that the most efficient enhancer of the TMOKE is the high-quality
long range SPP. In other papers bimetallic systems of noble and ferromagnetic met-
als were considered. The SPPs propagate a long distance along the noble metal
and air interface and they enhance the TMOKE taking place at the ferromagnetic
surface [51–53]. Such an interesting concept of magneto-optical and plasmonic in-
terfaces spaced by several tens of nanometers leads to further enhancement of the
TMOKE by several times. It was also demonstrated that similar structures increase
sensitivity of gas sensors [54].

One more approach is to substitute the ferromagnetic metal by a low absorptive
noble one and to make the dielectric layer magnetized. It allows the long range SPPs
to propagate exactly at the magnetized surface without any spacing which makes the
TMOKE even larger [55]. It seems to be the optimal case for the smooth films. How-
ever, the specially tailored nanostructuring of plasmonic systems can allow more
pronounced enhancement.

Nanostructured plasmonic systems were also investigated recently [56–64]. They
mostly utilize periodicity to excite propagating plasmonic modes and to observe
influence of SPPs on the TMOKE. That is why such a kind of structures can be
attributed to the class of plasmonic crystals. There are several designs of a plasmonic
crystal with magnetic media (Fig. 4.3).

A resonant increase of the TMOKE was reported for one-dimensional Co, Fe
and Ni gratings [56, 62] (Fig. 4.3(a)). Though the propagation length of SPPs on
ferromagnetic metals lx (see (4.7)) is rather small and does not exceed several mi-
crons, it still counts several periods of the structure and the periodicity plays an
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Fig. 4.3 Different types of plasmonic crystal with magnetic constituents. (a) 1D nickel grating:
(left) schematics and (right) AFM image [56]. (b) Trilayer Au/Co/Au grating on a polycarbonate
grating [57]. (c) Gold nanodiscs on the Au/Co/Au trilayer [58]. (d) 2D nanocorrugated magnetic
film of cobalt on the top of PMMA colloidal crystal: (left) SEM image and (right) microphotog-
raphy of the particles cross section made by focused Ga ion beam, the Co coverage is visible as a
bright layer [59]. (e) 2D plasmonic crystal of cobalt: (left) schematic of the structure and (right)
SEM image [60]. (f) 2D plasmonic crystal from self-assembled polymeric monolayers replicated
on nickel on a gold substrate: (left) schematics and (right) AFM image [61]

important role in the SPP excitation and their interplay with magneto-optics. Sev-
eral times increase of the TMOKE at the plasmonic resonances of the grating with
respect to the smooth ferromagnets was reported [56]. Noble metal structures in a
high external magnetic field also provide enhancement of the TMOKE [63]. Their
magneto-optical properties are due to Lorentz force acting on free electrons in a
magnetic field. The concept of hybrid noble-metal/ferromagnetic-metal multilayers
was also applied to the plasmonic crystals [57, 64] (Fig. 4.3(b)). Since the overall
optical losses for such systems are lower than those for pure ferromagnetic metals
the effect of resonant increase of the TMOKE due to propagating SPPs in these
structures is more pronounced.

As we will see further, the SPP mediated increase of the TMOKE is due to the
shift of a SPP resonance in a transverse magnetic field. This shift happens only for
propagating SPPs. Resonance frequency of the localized SPPs is hardly influenced
by the magnetic field, and, consequently, no pronounced changes in the TMOKE
at localized plasmonic resonances are observed. Nevertheless, the interaction of lo-
calized and propagating surface plasmon modes modify SPP dispersion and thus
modify the TMOKE signal [65] (Fig. 4.3(c)). In addition to that, localized SPPs
can also influence the second harmonic TMOKE which is experimentally shown
in [66, 67].
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The case of the transverse magnetization with respect to the SPP propagation
direction is also interesting due to the fact that it enables the phenomenon of nonre-
ciprocal optical transmission, in which the transmission coefficients of light through
a plasmonic crystal from the gold side and from the substrate side are significantly
different. In the case of perfectly conducting metal the plasmonic crystal at some op-
tical frequencies can be almost perfectly transparent in one direction and can reflect
almost all radiation coming from the other side [68]. This effect is also described in
terms of the magnetization induced shift of plasmonic resonances.

The main disadvantage of most of the aforementioned approaches is that the op-
tical losses associated with the presence of a ferromagnetic metal are still relatively
high. This limits exploiting fully the potential gain of the combined concepts of
nanostructuring and plasmonics in magneto-optics. If the ferromagnetic metals were
avoided as in cases of pure semiconductors or noble metal systems, huge external
magnetic fields exceeding several Tesla would be necessary to make the TMOKE at
least comparable with the effect in ferromagnets. That is why it seems that the plas-
monic crystals containing ferromagnetic dielectrics and noble metals can provide
even better results.

4.2.2 Theory

4.2.2.1 Magnetoplasmons at a Smooth Metal–Dielectric Interface

For analyzing the TMOKE in plasmonic systems combining ferromagnetic di-
electrics with noble metals we start from the case of a smooth interface between
these media.

Using a linear approximation for the dependence of the permittivity tensor de-
scribing the ferromagnetic medium on the gyration (the magneto-optical parameter)
this tensor is given by (4.12) with mx = mz = 0, my = 1 (the coordinate system is
shown in Fig. 4.1, and the dielectric is magnetized along y-direction). The metallic
layer is characterized by the dielectric function ε1 (see e.g. (4.4)).

The necessary condition for the TMOKE occurrence is [k × N] �= 0, where k is
the wave vector and N is the vector normal to the metal-dielectric interface. More-
over, the cross product [M × N] is also very important. It is non-zero near the sur-
face of the magnetized film. The magnetic field breaks the symmetry with respect
to time reversal, while the interface (and the N vector normal to it) breaks the space
inversion. Interestingly, space–time symmetry breaking is characteristic of media
with a toroidal moment τ which has transformation properties similar to those of
[M × N] [69]. Consequently, the problem of the SPP propagation along the inter-
face of a transversely magnetized medium is similar to that of electromagnetic wave
propagation in a bulk medium with a toroidal moment parallel to this direction. In
electrodynamics, a toroidal moment is known to give rise to optical nonreciproc-
ity as manifested by a difference between the wave vectors for waves propagating
forward and backward with respect to the toroidal moment [70].
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It follows from Maxwell’s equations that, in contrast to all other possible mag-
netization directions, the transverse magnetization does not change the polarization
state of the SPP but only changes its wavenumber κ . As a result, a TM polarized
wave whose magnetic field Hy(x, z)=Hy exp(iκx − γi |z|) is directed in the plane
(in a coordinate system with the z-axis perpendicular to the plane and the x-axis
directed along the SPP propagation) propagates along the smooth metal/gyrotropic
dielectric interface. An explicit expression for the wavenumber of the SPP that prop-
agates along the metal/gyrotropic medium interface is the following [71]:

κ = κ0(1 + αg), (4.24)

where κ0 = k0(ε1ε2/(ε1 + ε2))
1/2 and α = (−ε1ε2)

−1/2(1 − ε2
2/ε

2
1)

−1. It follows
from (4.24) that, in the first approximation, the wavenumber of the surface wave
depends linearly on the film gyration g.

The nonreciprocity effect is a prominent inherent feature of the SPP-assisted
TMOKE, as can clearly be seen for a smooth metal/dielectric interface. Far from
the plasmonic resonance, one usually observes a monotonic, featureless reflection
spectrum, and the TMOKE signal is quite small, even for metal ferromagnets. In
contrast, at the SPP resonance, a pronounced dip appears in the reflection spec-
trum. Because the SPP wave vector differs for opposite magnetizations according
to (4.24), the reflection dip shifts with magnetic field to smaller or higher frequen-
cies and the TMOKE signal becomes enhanced by about an order of magnitude.
In fact, in the frequency range of SPP generation, the TMOKE parameter δ is ap-
proximately equal to the product given by the frequency derivative of the reflection
spectrum and the magnetic field induced frequency shift. Thus, the TMOKE en-
hancement through SPPs occurs even for a smooth interface. However, there are
drawbacks to this approach. First, to excite SPPs at the interface between a metal
and a magnetic film (in the Kretschmann geometry), the refractive index of the prism
must be larger than the refractive index of the magnetic film, which is rather difficult
to achieve. Second, sputtering of the opaque metal layer onto the dielectric reduces
the transmission to almost zero, preventing operation in transmission. This is why it
might be worth considering a hybrid approach that involves a perforated metal.

4.2.2.2 Magnetoplasmons in Plasmonic Crystals

Let us now turn to a plasmonic crystal in which the metallic layer is perforated by an
array of parallel slits and the dielectric layer is magnetized along the slits (Fig. 4.4).
At first we assume that the magnetic film is thick enough so we can neglect the influ-
ence of the non-magnetic substrate. In this case, the dielectric constant in the region
of the metal and the gyrotropic dielectric is a periodic function of the coordinate x
and a step function of the coordinate z:

ε(x, z)= (ε1(x)− ε2
)
θH (z)+ ε2, (4.25)

while the structure gyration remains a step function g(z)= gθH (−z), where θH (z)
is the Heaviside function (the metal/dielectric interface coincides with the z = 0
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Fig. 4.4 Magnetoplasmonic
crystal consisting of a metal
grating on top of a planar
ferromagnetic dielectric
grown on a non-magnetic
substrate. The
magnetization M in the
ferromagnetic layer is parallel
to the slits, and the incident
light is p-polarized; k is the
wave vector of the incident
wave [72]

plane). The incident light is p-polarized. The plane of incidence is perpendicular
to M.

The excitation condition for SPPs is given by (4.10). For the one-dimensional
plasmonic crystals (4.10) takes the form:

κ = k0 sin θ + 2πm/d, (4.26)

where d is the grating period and θ is the incidence angle.
Let us assume that the metal is thicker than the skin layer and the interaction

between the SPPs at the two metal surfaces is negligible. From Maxwell’s equations,
we derive a differential equation for the complex amplitude of the magnetic field H
and write it in an operator form [73]:

(L̂+ V̂ )H = ω2/c2H, (4.27)

where the operator V̂ represents the linear (in g) magneto-optical contribution.
Since the dielectric constant is periodic along the x-axis, the magnetic field com-
ponent Hy can be represented as a Bloch wave. Equation (4.27) can be transformed
to an eigenvalue problem for the normalized Bloch envelope uκ(x, z) with the quasi-
wavenumber κ [73]: (

L̂′ + V̂ ′)uκ = ω2/c2uκ . (4.28)

In the first order of the perturbation theory in g, it follows from (4.28) that
the SPP excitation frequency in the magnetic case is shifted from that in the non-
magnetic one:

ωn(κ, g)= ω0n(κ)+Ω(g). (4.29)

The shift value Ω(g) is linear in g and comes to zero if κ = 0. Moreover, Ω(g) is
determined not only by the gyration and dielectric constants of the plasmonic crystal
components but also by the field distribution at the interface, i.e., it depends on the
grating parameters [73].

If the thickness of the metal is larger than the values of the skin layer and the
width of the slits is much smaller than the SPP’s wavelength then for ω(κ,g) (4.24)



4 Magneto-Optics of Plasmonic Crystals 67

keeps applicable. At this the magnetic field assisted SPP’s frequency shift is given
by

Ω(g)

ω0n(κ)
= −κ0α

mG
g. (4.30)

4.2.2.3 Scattering Matrix Analysis

When the problem of light incidence on periodic structures is analyzed, it is con-
venient to use the scattering matrix method [74–76]. This method is efficient in
searching for the system’s eigenmodes that have a great effect on its optical proper-
ties.

When light is incident on a periodic structure, it is diffracted by the latter and the
generated electromagnetic field can be represented as a superposition of incident,
reflected, and transmitted plane waves with longitudinal wavenumbers k(m)x that dif-
fer from the wavenumber of the incident wave k

(i)
x by the reciprocal lattice vector

mG. Generally, the complex amplitudes of the reflected and transmitted waves can
be combined into a column Ascat, while the amplitudes of the waves incident on
the structure on both sides in all diffraction orders can be combined into a column
Ain. The complex amplitudes of the incident and scattered waves are related via the
scattering matrix S:

SAin = Ascat. (4.31)

The scattering matrix (S-matrix) is an adequate physical tool for describing the
electromagnetic properties of materials that are significantly inhomogeneous on the
subwavelength scale, for which the standard optical approaches suggesting wave
front homogeneity in the lateral direction are inapplicable [74–76]. The possibility
of finding the structure eigenmodes is among the advantages of the method. The
dimension of the S-matrix is determined by the dimension of the columns of ampli-
tudes. The scattering matrix is calculated numerically.

The technique for calculating the scattering matrix of the problem is described,
for example, in [75, 77]. The scattering matrix for multilayered structures is con-
structed recurrently. N layers homogeneous along the z-axis (in accordance with the
designations of Fig. 4.4) and N + 1 interfaces corresponding to them are selected in
the structure. The complex amplitudes of the eigenmodes on different sides of each
layer or interface are related via the transfer matrix Ti and the full transfer matrix
for the entire structure is T =∏2N+1

i=1 Ti . The form of the matrix Ti is determined
by finding the eigenmodes for each layer and by taking into account the boundary
conditions at the interface. A virtual interface for which the transfer matrix T0 and
the scattering matrix S0 are unit ones is also selected in the external medium near
the surface of the extreme layer. Denote the scattering matrix for the part of the
structure contained between the virtual interface and the ith layer or interface by Si .
For these matrices, there are recurrence relations that relate the components of Si
with those of Si−1 and Ti . The sought-for scattering matrix for the entire structure
is S = S2N+1.



68 V.I. Belotelov et al.

Since the eigenmodes can propagate through the structure without any external
interaction, a nontrivial solution of the homogeneous problem with a zero column
of incident wave amplitudes Ain,S−1Ascat = 0, corresponds to them. The existence
of a nontrivial solution requires that

det(S−1)= 0. (4.32)

The scattering matrix is a function of the frequency and quasi-wavenumber. Gen-
erally, the solution of (4.32) is a pair of complex numbers κ and ω. However, the
eigenmodes are excited by a wave with real κ and ω. Therefore, at least one of
the two numbers should be assumed to be real depending on the specific prob-
lem [78, 79]. Here we consider the case where a plane wave is incident on an infi-
nite periodic structure. The problem has a translation symmetry in the grating plane.
Consequently, the intensity of the eigenmodes excited in it are also a periodic func-
tion and there is no damping of the waves that propagate in the lateral direction.
This necessitates assuming κ to be real and ω to be complex. In fact, the problem is
reduced to searching for a local minimum from the frequency det(S−1) for κ from
the first Brillouin zone.

We assume that the quasi-wavenumber is fixed and find the solution of (4.32)
from the frequency. The solutions of (4.32) are generally complex: ω̃p = ωp + iγp .
The zeroes of the determinant det(S−1) are the poles of the determinant det(S).
Assuming that the determinant of the scattering matrix is a meromorphic function
of the complex frequency, we represent it as a series expansion:

det(S)=
∑
p

Dp

ω− ω̃p
+D0, (4.33)

where p is an integer, p ≥ 1, D0 is an analytic function of the frequency. In ac-
cordance with the Kramers formulas, the complex amplitude of the mth diffraction
order Am can be represented by the ratio of the auxiliary determinant det(S−1

m ) in
which the mth column is replaced by the column Ain and the determinant of the
inverse scattering matrix:

Am = det
(
S−1
m

)
/det

(
S−1). (4.34)

Consequently, since det(S) = 1/det(S−1), we find that near each pth pole of the
determinant of the scattering matrix the complex amplitudes of the diffraction orders
have a resonance feature and the complex amplitude of the mth diffraction order
near the pole has the form

Am = apm

ω− ω̃p
+ bpm. (4.35)

4.2.2.4 Fano Resonances in Transmission and Reflection Spectra

The energy transmission, Tm, and reflection, Rm, coefficients in the mth propagating
diffraction order are proportional to the sum of the squares of the amplitudes of two
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mth-order waves that propagate in the substrate or in the medium above the grating
and that are polarized mutually orthogonally (e.g., TE and TM polarizations). Thus,
the intensity Im of the transmitted or reflected radiation in the mth diffraction or-
der depends on the squares of the amplitudes of the corresponding elements in the
column Ascat : Im = f (|Am|2). Therefore, the features of the reflection and trans-
mission spectra are determined by the behavior of |Am|2. Calculating the intensity
Im using (4.35), we obtain

Im ∼ |Am|2 = (ω−ωz)
2 + γ 2

z

(ω−ωp)2 + γ 2
p

|bpm|2, (4.36)

where

ωz = ωp
[
1 − Re(qpm)

]
, γz = γp

[
1 − ωp

γp
Im(qpm)

]
, qpm = apm

ωpbpm
.

Consequently, the frequency dependences of R and T have a characteristic asym-
metric profile with a maximum and a minimum following each other (or conversely,
depending on the sign of Re(qpm)), which is commonly called the Fano reso-
nance [80–82]. A Fano resonance is widely known in many areas of physics as a
result of interference of a resonant scattering and a nonresonant background that
leads to an asymmetric line-shape.

The parameter qpm is called the Fano parameter. It shows the ratio of the ef-
ficiencies of the resonant and nonresonant processes. In the problem of light–
grating interaction, the resonant process is the excitation of eigenmodes in the
system, such as quasi-waveguide waves, plasmon polaritons, slit modes, etc. At
the same time, the nonresonant contribution to the intensity in the mth diffrac-
tion order is related to the radiation scattered by the diffraction grating without
any excitation of eigenmodes. The amplitude of the wave in the mth diffraction
order is the sum of two components: the resonant one arising from the excitation
of eigenmodes and the nonresonant one. If the nonresonant process is negligible
(|q| → ∞), then the frequency dependence acquires the standard symmetric shape
of a Lorentz curve. The width of the resonance curve depends on the dissipation
parameter γp .

4.2.2.5 The TMOKE in Plasmonic Crystals

For the plasmonic crystals considered here (Fig. 4.4), the eigenmodes are the SPPs
and the modes inside the slits [71]. Therefore, in our case, the S-matrix poles cor-
respond to the excitation frequencies ω̃p of surface waves and slit modes. As was
shown above, the SPP excitation frequency in a transversely magnetized plasmonic
crystal depends on gyration (i.e. on magnetization) (see (4.29)). Consequently, the
Fano resonance curves are shifted in frequency relative to their positions for the
non-magnetic case by Ω(g): |Am(g,ω)|2 = |Am(0,ω − Ω(g))|2 (Fig. 4.5(a)). At
low gyration values, the change in the resonance shape may be neglected. As a re-
sult, a change in the transmission and reflection coefficients which is characteristic
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Fig. 4.5 (a) Fano resonance
shift induced by the gyration
vector in the transverse
geometry, (b) Fano
resonances, and (c) the
magneto-optical effect δ for
various Fano parameters q:
q = 0.3 (solid line), 0.7
(dashed line), and 3.0
(dash–dotted line);
γp/ωp = 0.1 [73]

of the TMOKE arises when the magnetization sign is reversed. Since Ω(g) � ω,
the frequency dependence of I , in fact, expresses the derivative of the function
|Am(0,ω)|2.

Compared to the case of homogeneous nonplasmonic films, the Kerr effect is en-
hanced [71]. It depends not only on the magneto-optical properties of the medium
but also on the shape of the resonance curve: for sharper resonance peaks, the
Kerr effect increases significantly. Since the width of the resonance peak is de-
termined by dissipation, one might expect I and δ characterizing the effect to
depend on γp . If the nonresonant processes in the system are weak, i.e. |q| � 1,
then the expressions for the maximum values of I and δ follow from (4.35)
and (4.36):

(I)max ∼ (|Am|2)max ∼ Ω(g)

γ 3
p

|apm|2; (δ)max =
√

3Ω(g)

γp
. (4.37)

Both quantities decrease with increasing dissipation coefficient γp .
In the case of a significant nonresonant contribution (i.e., at low values of q),

the absolute change in intensity I remains as before, while the optical transmis-
sion and reflection spectra change their shape. As a result, the relative change in
the intensity of light δ increases, in particular, because the denominator in (4.19)
decreases. This is illustrated by Fig. 4.5.

Our qualitative analysis of the problem reveals that the plasmon reflection
and transmission resonances in a transverse magnetic field are shifted in fre-
quency depending on the magnitude and direction of the field virtually without
changing their shape, which leads to an enhancement of the transverse Kerr ef-
fect [73].
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Fig. 4.6 (a) Spectra of the reflection coefficient (dashed line) and its relative change δR (solid
line). (b) Spectra of the transmission coefficient (dashed line) and its relative change δT (solid
line). The angle of light incidence is 20◦. The plane of incidence is perpendicular to the slits,
the light is p-polarized. The arrows mark the wavelengths of the Rayleigh–Wood anomalies. The
structure parameters are d = 430 nm, r = 40 nm, and h= 100 nm (see Fig. 4.4) [73]

4.2.2.6 RCWA Analysis

For the electromagnetic modeling of reflection and transmission spectra and elec-
tromagnetic field distribution we use the rigorous coupled waves analysis (RCWA)
technique [83] extended to the case of gyrotropic materials [84]. Since the het-
erostructure is periodic, the electromagnetic field components in each layer can be
represented as a superposition of Bloch waves. Maxwell’s equations are written in
a truncated Fourier space. The electromagnetic boundary conditions are then ap-
plied at the interfaces between the substrate region, the individual grating slabs, and
finally the upper surface of the structure. The sequential application of electromag-
netic boundary conditions reduces the computing effort for the reflected and the
transmitted diffracted field amplitudes to the solution of a linear system of differ-
ential equations. To improve convergence of the method we employed the correct
rules of Fourier factorization presented in [84].

The following parameters are assumed: ε1 is equal to the permittivity of gold
taken from [85], and the values of ε2 and g correspond to the bismuth substi-
tuted yttrium iron garnet film (e.g., ε2 = 5.06 and g = 0.01 at the wavelength
λ= 1100 nm) [3].

The transmission and reflection coefficients and their relative changes δ are plot-
ted against the wavelength λ of the incident light in Fig. 4.6 [73]. The vertical lines
mark the points on the wavelength scale that represent a particular wave mode calcu-
lated numerically from the solution of (4.32). The reflection minimum (transmission
maximum) at λ = 580 nm corresponds to the SPP at the metal/air interface, while
the reflection minima (transmission maxima) at λ = 685, 875, and 1128 nm cor-
respond to the SPPs at the metal/magnetic interface. These features in the spectra
are commonly called Wood’s anomalies. In addition, a small reflection minimum
is observed at λ = 678 nm near the main dip. It is related to the excitation of a
Fabry–Pérot mode (cavity mode) characterized by localization of electromagnetic
field energy inside the slits. In fact, in the wavelength range from 670 to 700 nm,
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Fig. 4.7 Distribution of the square of the magnitude of the magnetic field component Hy (in
relative units) at λ = 680 (a) and 875 (b) nm. The metallic grating is marked by the dashed line.
The structure parameters are the same as those in Fig. 4.6 [73]

two types of modes are excited simultaneously in the structure: localized and sur-
face plasmon polaritons. This is illustrated by Fig. 4.7, which presents the distri-
bution of the square of the magnitude of the magnetic field component along the
grating slits Hy . At λ = 680 nm, the electromagnetic field is concentrated both in
the slit and at the interface with the dielectric. At the same time, at λ= 875 nm cor-
responding only to the SPP, the field is concentrated solely at the metal–dielectric
interface.

The magneto-optical intensity effect is greatest at wavelengths near Wood’s
anomalies (the excitation of SPPs) at the interface with the magnetic substrate, due
to strongest interaction with magnetic medium. In this case, δ reaches 70 %, sug-
gesting a giant Kerr effect. Note that δ ∼ 0.1 % for a homogeneous magnetic film
without metal coating. An additional peculiarity of the observation of the Kerr effect
in this case is that it is easily observed in transmitted light, which is usually greatly
complicated for homogeneous films due to the very low intensity of the transmitted
radiation. In this case, δ is more than 20 % at 40 % transmission.

As for the other modes the interaction of electromagnetic field with the magnetic
medium is much weaker, not all of the features in the transmission and reflection
spectra are accompanied by an equally large enhancement of the intensity effect.
Thus, for example, there is no enhancement of the intensity effect near the reflection
minimum (transmission maximum) at a wavelength of 580 nm: the surface wave is
localized at the metal–air interface, while the enhancement of the effect near the
next reflection dip (at the wavelength of 677 nm) corresponding to the excitation of
a slit mode is smaller.

Apart from several dips and peaks, the reflection spectra also exhibit features
that are called Rayleigh–Wood anomalies [86] (marked by the arrows in Fig. 4.6).
In this case, no enhancement of the intensity effect is observed. This is because the
anomalies arise when one of the propagating diffraction orders disappears/appears
and are determined by the grating period, i.e., they do not depend on the substrate
gyration.
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Fig. 4.8 (a)–(b) Dispersion of the reflection R (a) and the TMOKE δR (b) versus wavelength and
incidence angle. White dashed lines indicate conditions for the curves (c)–(e). (c)–(e) Reflection
spectra for the structure magnetized in two opposite directions +M (solid line) and −M (dashed
line) for incidence angles of θ = 20◦ (c), θ = 28◦ (d), θ = 30◦ (e). The geometrical parameters
are: h= 130 nm, d = 900 nm, r = 35 nm. The radiation is p-polarized [71]

4.2.2.7 The Dispersion Diagram and Brillouin Zone Edge Effects

As the TMOKE is correlated with the Wood anomalies its dispersion should follow
the SPPs dispersion. Contour plots of the reflection and the TMOKE versus wave-
length and incidence angle are shown in Fig. 4.8. The dispersion curves of the SPPs
on the metal—dielectric surface are shown with white dotted lines and coincide
well with the reflection minima. Rayleigh anomalies are also seen as two reflection
maxima lines starting at λ= 900 nm.

The SPPs at the surface with the periodic relief get form of the Bloch waves. Dif-
ferent SPPs bands are seen in Fig. 4.8(a). The points of their intersection correspond
to the standing SPPs at the edges of the first Brillouin zone. They are excited when
k
(i)
x = (2m + 1)G/2. As a rule, standing SPPs originate band gaps, but at the dia-

gram the gaps are not resolved because of the broadening of the reflection minima
caused by SPP damping through the dissipation and scattering at the slits.

Intuitive reasoning hints that there should be some magneto-optical peculiarities
at these regions of the dispersion diagram. At first glance, Fig. 4.8(b) demonstrates
no pronounced features of the TMOKE there. It keeps following the SPPs curves
even at the Brillouin zone edges. However, closer look does reveal one interest-
ing peculiarity. Fig. 4.8(c)–(e) presents reflection spectra for different incidence an-
gles measured for two opposite transverse magnetizations +M and −M (solid and
dashed lines). The described above magnetization induced shift of the reflection
minima takes place for incidence angles of 20◦ and 28◦, the values of the minima
being almost the same. However, for incidence angle of 30◦ no shift arises but,
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on the contrary, the values of the reflection dips are no more equal. The origin of
such different influence of the magnetization on the plasmonic crystal optical re-
sponse lies in different nature of the SPPs involved. Indeed, in both former cases
the light excites SPPs of wave numbers lying inside the Brillouin zone, while in
the latter case it engenders SPPs of wave numbers corresponding to the Brillouin
zone edge, i.e. κ = (2m+ 1)G/2. The “edge” SPPs are standing waves originating
from the interference of two SPPs traveling in opposite directions. As the energy
gap is smaller than the reflection minima bandwidths standing SPPs of two different
orders of different sign are excited simultaneously. It leads to the cancellation of
the magnetization shift effect but makes intensities of the reflection minima mag-
netization dependent. So, the enhanced TMOKE in the plasmonic structures can be
caused either by the magnetization induced spectral shift of the reflection minima
when the light excites the SPP of one order inside the first Brillouin zone or by the
magnetization induced difference in the values of the reflection dips while standing
SPPs of two different orders are excited simultaneously.

4.2.2.8 Effects of Waveguide Modes

If the magnetic film becomes thinner we should take into account the presence of
the interface between the film and the substrate. In this case the eigenmodes that
contribute to optical and magneto-optical response are not only the SPPs propagat-
ing along the two metal surfaces and cavity modes in the metal grating slits but also
waveguide modes of the magnetic film [87].

Considering the magnetic layer placed between the metal without perforation
and a substrate the following equations for eigenmodes dispersion relations can be
obtained from Maxwell’s equations with the corresponding boundary conditions:
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for the waveguide modes, where hm is the magnetic layer height, γi = (κ2 −
εik

2
0)

1/2, kz2 = (ε2k
2
0 −κ2)1/2, index s refers to the substrate. It follows from (4.38a),

(4.38b) that the propagation constant κ of either type of eigenmode is dependent on
magnetization.

If the magnetic layer is rather thin the SPPs dispersion law is close to one for
the interface between the metal and the substrate: κ = k0[ε1εs(ε1 + εs)

−1]1/2, so
it is almost magnetization independent. With the increase of hm the influence of
magnetization on the SPP dispersion gets more pronounced according to (4.38a)
and also the optical spectra acquire additional features related to the excitation of
the waveguide modes that are also magnetic dependent as seen from (4.38b). If hm
exceeds the value [−(ε1 +ε2)]1/2(k0ε2)

−1, which is about 100 nanometers, the SPPs
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dispersion becomes independent of the layer height and the dispersion law (4.38a)
takes the form (4.24).

As the eigenmode’s propagation constant κ is now dependent on magnetization
the resonance wavelengths are shifted with respect to the non-magnetic case which
leads to emergence of the TMOKE as described above.

For the case of the plasmonic crystal depicted in Fig. 4.4 the eigenmodes are
leaky and they also contribute to the transmitted wave in the far field. That is why
it is more correct to call the waveguide waves the quasi-waveguide ones. The dis-
persion laws for the quasi-waveguide modes and the SPPs are influenced by pe-
riodicity and the slits in the metal grating. However, if the slits are rather narrow
being compared to the eigenmode wavelength the empty lattice approximation can
be applied, according to which κ can be estimated from (4.38a), (4.38b) and (4.26).
Near the center and the edges of the Brillouin zone (κ = mG/2) this approxima-
tion is not applicable as the wave propagation is strongly influenced by periodic-
ity. The excitation of the quasi-waveguide modes and the SPPs at metal/magnetic
interface is accompanied by resonant enhancement of the TMOKE as described
above.

The results of the numerical simulations showing the transmission and the
TMOKE dependence on the magnetic layer thickness are presented in Fig. 4.9.

The principal features on the TMOKE spectrum (Fig. 4.9(b)) are series of res-
onances that are dependent on the magnetic layer height and they are accompa-
nied by transmission dips. These are the contributions of the magnetic layer quasi-
waveguide modes excited by ±second diffraction orders. Their excitation conditions
estimated from (4.38b) and (4.26) are shown in Fig. 4.9(c) and there is rather nice
correspondence with the transmission and TMOKE resonances. The difference can
be explained by the only approximate applicability of the empty lattice approxima-
tion.

According to (4.38b) and (4.26) each quasi-waveguide mode in the plasmonic
crystal is characterized by two integers m and n, the former denoting the diffraction
order via which the mode is excited and the latter coming from solution of (4.38b)
for fixed m. Within the spectral range shown in Fig. 4.9 the quasi-waveguide modes
only with m = ±2 are excited. It should be noted that opposite signs of m corre-
spond to opposite directions of modes propagation and hence according to the dis-
cussion above the signs of the TMOKE are opposite for m= 2 and m= −2, which
is clearly seen in Fig. 4.9(b). For the case of normal incidence the difference in dis-
persion between modes with the same values of n but opposite values of m vanishes
and so does the TMOKE since this situation corresponds to the quasi-momentum
κ = 0 from the first Brillouin zone.

As we have already discussed the other features in transmission spectrum
(Fig. 4.9(a)) do not demonstrate strong magneto-optical response. One of them is
an increase in transmission at wavelengths of about 680 nm that is independent of
the magnetic layer thickness. It is Fabry-Pérot resonance inside the slits of metallic
grating. The transmission dips at wavelengths about 610 and 650 nm are related to
the SPPs excitation at the metal/air interface and therefore they do not contribute
much to the TMOKE.
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Fig. 4.9 (a) Contour plots for calculated transmission (a) and the TMOKE (b) versus incident
light wavelength and height of the magnetic dielectric layer hm. (c) The dispersion curves for the
waveguide modes of the magnetic layer calculated from (4.38b) and (4.26) for m= ±2. The geo-
metrical parameters are: h= 150 nm, d = 595 nm, r = 110 nm. The substrate is silica (εs = 2.1).
The incidence angle is 2◦, the radiation is p-polarized [87]

As it is seen from Fig. 4.9(a) the transmission dips related to the waveguide
modes are not very prominent and are suppressed by other features caused by SPPs
and cavity modes. As the magneto-optical response on the waveguide modes is the
strongest the TMOKE becomes a powerful and efficient tool for their detection.

It should be noted that for rather large values of magnetic layer thickness the ex-
citation of modes is less effective. Moreover, if the structure is illuminated with light
with small coherence length the modes are not excited at all, so in our experiments
they were not observed.

4.2.3 Experimental

4.2.3.1 Sample and Experimental Setup

Preliminary numerical modeling allowed us to design the sample, i.e. determine
the gold grating period, gold thickness, and slit width, and to adjust the main SPP
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resonances to the wavelength range of 650–850 nm [72], which is most suitable
for magneto-optical experiments on bismuth iron garnets since the magneto-optical
figure of merit given by the ratio of the specific Faraday rotation to the absorption
is highest around 750 nm. In what follows we concentrate on the observation of the
giant TMOKE in the magnetoplasmonic crystal in transmission.

The magnetic part of the magnetoplasmonic structure is a 2.5 μm thick
bismuth-substituted rare-earth iron garnet film of composition Bi0.4(YGdSmCa)2.6
(FeGeSi)5O12, grown by liquid phase epitaxy with a Bi2O3 : PbO : B2O3 melt on
a gadolinium gallium garnet Gd3Ga5O12 substrate with orientation (111). The film
possesses uniaxial magnetic anisotropy in the direction perpendicular to the film
plane. The specific Faraday rotation is 0.46◦/μm at wavelength 633 nm. The mag-
netoplasmonic sample of structure shown in Fig. 4.4 was fabricated by the thermal
deposition of the gold layer on the bismuth-substituted rare-earth iron garnet film
and subsequent electron beam lithography combined with the reactive ion etching in
Ar plasma. The sample was characterized by AFM and SEM imaging. The grating
parameters obtained are gold layer height h is 120 nm, period d is 595 nm and the
air groove width r is 110 nm.

For magneto-optical measurements we used a tungsten halogen lamp as a source
of white light with stability better than 0.1 %. The light was focused on the sample
into a spot with diameter of about 300 μm. The zero-order transmission signal was
spectrally dispersed with a single monochromator (linear dispersion 6.28 nm/mm)
and detected with a charge coupled device camera. The overall spectral resolution
was below 0.3 nm. During measurement the sample was kept at room temperature.

4.2.3.2 The Giant Enhancement of the TMOKE

Results of the experimentally measured zero-order transmission for the configu-
ration shown in Fig. 4.4 are presented in Fig. 4.10(b) [72]. Comparison with the
calculated band structure (Fig. 4.10(a)) allows us to attribute the pronounced Fano
resonance (1) in Fig. 4.10(b) to the Wood anomaly of the second band SPP at the
air/gold interface, while the Fano resonances (2) and (3) are related to the second
and third band SPP at the gold/magnetic-film interface. Finally, the prominent trans-
mission peak (4) is attributed to the collective Fabry-Pérot cavity mode inside the
slits.

The experimentally measured TMOKE parameter δ is defined in accordance
to (4.19) with the transmission coefficient standing for I (Figs. 4.10(c), (d)). To
ensure that the sample magnetization is oriented almost completely in the plane,
a relatively large external magnetic field of 2000 Oe was applied. Outside of the
resonances the absolute value of δ is very small. Actually in this case, δ cannot be
measured experimentally, which means that it is below 10−3. On this background,
pronounced positive (brighter) and negative (darker) peaks are observed at which δ

reaches up to 1.5 × 10−2 demonstrating a TMOKE increase by at least one order of
magnitude. Electromagnetic modeling for the nonresonant case gives δ = 8 × 10−4

implying an enhancement factor of about 20. Compared to the uncovered bare iron
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Fig. 4.10 (a) Dispersion diagram for SPPs at the gold/air interface (thick solid line) and at the
gold/iron-garnet interface (thin solid lines), calculated in the empty lattice approximation within
the first Brillouin zone (see (4.26) and (4.24)). The dashed lines indicate the dispersion curves for
free space photons for θ = 5◦, 10◦ and 15◦. (b)–(d) False-color plots showing experimentally mea-
sured transmission (b), the calculated TMOKE parameter δT (c), and the experimentally measured
TMOKE parameter δT (d) as a function of photon energy (vertical axis) and the angle of inci-
dence (horizontal axis). The geometrical parameters are: h = 120 nm, d = 595 nm, r = 110 nm.
M is parallel to the slits and the incident light is p-polarized (as in Fig. 4.4). The in-plane mag-
netic field strength is 2000 Oe. The features labeled (1)–(4) are related to the SPPs or Fabry–Pérot
eigenmodes [72]

garnet film, the enhancement factor is much larger, by about 103. From these results
we can claim that a giant TMOKE has been observed in transmission. It should be
noted that here we use a magnetic film with a relatively small concentration of bis-
muth. For iron garnets with a composition Bi3Fe5O12 the specific Faraday rotation
is about 6◦ at λ= 630 nm, 13 times larger than for our sample [3]. Since the δ-value
is proportional to the gyration (and to the specific Faraday rotation), δ should be
also 13 times larger than the one observed in our experiments, i.e. δ may exceed 0.2
by choosing right concentration of bismuth.

4.2.3.3 The TMOKE as a Tool for Probing SPPs

The regions of the enhanced TMOKE clearly correspond to the regions of SPP exci-
tation at the gold/ferromagnet interface (compare Figs. 4.10(b) and (d)). No notable
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Fig. 4.11 Experimentally measured transmission (thick curves) and the TMOKE (thin curves) for
three different incidence angles: (a) θ = 0.8◦; (b) θ = 5◦; (c) θ = 15◦ [72]. The parameters are the
same as in Fig. 4.10

TMOKE increase is observed for other resonant regions, in agreement with the dis-
cussion above. This highlights the TMOKE’s sensitivity to the excitation of different
eigenmodes.

A close-up of the TMOKE spectral shape is shown in Fig. 4.11 [72]. For normal
incidence the TMOKE is zero because of the symmetry of the incident light with
respect to the structure (Fig. 4.11(a)). The magnetization induced shift of the SPP
resonance frequency vanishes and there is degeneracy of the SPPs traveling forward
and backward. When k is not normal to the surface, the symmetry is broken and
the degeneracy is lifted. SPP modes propagating in opposite directions are excited
at slightly different frequencies and the TMOKE appears. δ reaches almost 10−2

even if the incidence angle is as small as θ = 0.8◦ (Fig. 4.11(a)), in accordance
with the Fano resonance for SPPs on the gold/magnetic-dielectric interface in the
vicinity of the Γ point of the first Brillouin zone. Going from normal to slightly
oblique incidence, the transmission spectrum, however, does not change notably, in
contrast to the TMOKE spectrum. This demonstrates sensitivity of the TMOKE to
the SPP modes in the structure. No measurable TMOKE signal is observed around
the other features in the transmission spectrum, the peak at λ= 675 nm and the dip
at λ= 623 nm.

When the incidence angle becomes larger (e.g. θ = 5◦, Fig. 4.11(b)), the eigen-
frequencies of the two SPPs propagating in opposite directions differ significantly
which gives rise to two Fano resonances in transmission. The TMOKE accompa-
nies both resonances, but with opposite signs of δ, reflecting the fact that these
resonances are due to SPPs propagating in opposite directions with respect to the
cross product [M × N]. This observation unravels another prominent feature of the
TMOKE in magnetoplasmonic structures: through the sign of δ one can distinguish
between resonances caused by SPPs propagating in opposite directions.

It should be noted that similar measurements for negative angles of incidence
give the same value of δ but with opposite sign. This demonstrates that the ob-
served effect is odd in magnetization and not an experimental artifact. Above some
incidence angle (e.g. at θ = 15◦) the SPP resonance is barely detectable but the
TMOKE still indicates its frequency position (see peak (i) of δ in Fig. 4.11(c)). Thus
the TMOKE allows measurement of the energy spectrum of the SPP eigenmodes at
a metal/ferromagnetic interface [72].
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Fig. 4.12 The amplitudes of
the two peaks (i) and (ii) in
the TMOKE spectrum in
(Fig. 4.11(c)) as a function of
magnetic field [72]. The
parameters are the same as in
Fig. 4.10

The magnetic field dependence of δ is shown in Fig. 4.12 for the two main
TMOKE peaks (i) and (ii) at θ = 15◦. At small magnetic fields the value of δ grows
linearly with magnetic field, indicating that the in-plane component of the sample
magnetization also has a linear dependence on magnetic field. Saturation takes place
at the magnetic field strength of about 1600 Oe which is in nice agreement with the
predicted micromagnetic properties of the magnetic film, namely with the value of
the effective uniaxial magnetic anisotropy field. However, δ reaches relatively high
values even for smaller fields. For example it is 5 × 10−3 at 300 Oe field, which by
far exceeds the noise level and is easily measurable.

4.3 Even Magneto-Optical Intensity Effect in Plasmonic
Structures

4.3.1 Plasmonic Crystal Based on a Magnetic Waveguide

In this Section we consider similar plasmonic crystal as for the case of the TMOKE
with waveguide modes but having a dielectric layer magnetized perpendicular to
the slits and in-plane (Fig. 4.13, top left). Such state of magnetization can cause
some very interesting magneto-optical effects related to magnetization induced
change in intensity of reflected/transmitted light. Unlike the TMOKE, this effect
is magnetization-even and does not vanish at normal incidence [88]. In classical
magneto-optics such phenomenon is known as the orientational magneto-optical ef-
fect (see Sect. 4.1.3.4). The orientational effect for smooth ferromagnetic metals
was measured mainly at the reflection mode, since the transmission through metals
is negligibly small. On the contrary, the magnetoplasmonic crystal considered here
provides rather high transmission due to the effect of extraordinary optical transmis-
sion, making observation of the orientational effect easier. For the plasmonic crystal
the light intensity depends on the angle between the in-plane magnetization and the
direction of periodicity.

Optical properties of the considered system are strongly dependent on the guided
modes excited in the system when the electromagnetic wave impinges the perforated
metal. These are coupled SPPs and waveguide modes of the magnetized (gyrotropic)
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dielectric layer. Due to the presence of the slit arrays in the metallic layer the waveg-
uide modes scatter at the surface pattern and contribute into far-field intensity, i.e.
into the observed transmission, which is why it would be more correct to call them
quasi-waveguide [88].

4.3.2 Empty Lattice Approximation

For getting physical insight into the problem we start from study of a magnetized
in-plane waveguiding layer of thickness hm with a smooth semi-infinite metal on
top and a dielectric on bottom. The presence of the slits in the metal will be taken
into account later at the rigorous modeling. For the optical frequency range the
magnetic layer is described by the dielectric tensor (4.12) with mx = 1, my =mz =
0. Permittivity of the metal is characterized by the dielectric function ε1 and the
dielectric constant of the substrate is ε3.

At the demagnetized state g = 0 and the eigenmodes of the planar dielectric
waveguide are TE and TM polarized waves having the longitudinal wavenumber β
with the dispersion law determined by the transcendent equation:

γ2hm = arctan(α1/α2)+ arctan(α3/α2)+ πq, (4.39)

where γ1,3 = (β2 − ε1,3k
2
0)

1/2, γ2 = (ε2k
2
0 − β2)1/2, αi = γi/εi for the TM modes,

αi = γi for the TE modes, and q is an integer.
The presence of the periodical perforation of the metallic wall of the waveguide

is taken by

β = 2π

d
q1 + k‖, (4.40)

thus selecting all possible values of β . Here k‖ is the in-plane part of the incident
light wave vector and q1 is an integer. Equation (4.40) expresses the empty lattice
approximation for estimation of eigenmodes dispersion in periodic media that can
be applied for the frequencies far from bandgaps.

Magnetization directed along the x-axis leads to change in the waveguide modes
properties [89]. The electromagnetic fields of the waves in the waveguide and the
neighboring media can be represented in the form

E1,3(x, y, z, t)= E1,3 exp
(
i
(
βx + iγ1,3|z| −ωt

))
,

E2(x, y, z, t)= [K1e1 exp(iγ+z)+K2e2 exp(−iγ+z)+K3e3 exp(iγ−z)

+K4e4 exp(−iγ−z)
]

exp
(
i(βx −ωt)

)
,

(4.41)

where Ei is the electric field amplitude in the ith layer; e1, e2, e3, and e4 are the
unit vectors specifying the normal waves in the magnetic medium; and γ± are the
z-components of their propagation constants.

The solution of Maxwell’s equations reveals that in the linear in g approximation
the dispersion equation (4.39) is not affected by magnetization. Unlike the TMOKE
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the magnetization induced shift of the eigenfrequencies is quadratic in g, leading
to intensity magneto-optical effect that is even in g. But this effect is rather small,
and the main contribution to the orientational effect comes from the change in field
distribution.

In the linear in gyrotropy approximation Maxwell’s equations lead to the follow-
ing relations:

γ 2± = k2
0ε2 − β2 ∓ gk0β/

√
ε2,

e1,2x = ∓ γ+
β − gk0/
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(4.42)

Let us denote the y-components of electric and magnetic fields amplitudes by
CTE
i and CTM

i :

E1,3y(x, z, t)= CTE
1,3 exp

(
i
(
βx + iγ1,3|z| −ωt

))
,

H1,3y(x, z, t)= CTM
1,3 exp

(
i
(
βx + iγ1,3|z| −ωt

))
.

(4.43)

For the field components the following relations are valid: for the “TE-like” modes:

CTE
3 =A1C

TE
1 ,

CTM
1 = iQA2C

TE
1 ,

CTM
3 = iQA3C

TE
1 ,

(4.44a)

for the “TM-like” modes:

CTM
3 = B1C

TM
1 ,

CTE
1 = iQB2C

TM
1 ,

CTE
3 = iQB3C

TM
1 ,

(4.44b)

where Q is the magneto-optical parameter (see (4.14)), the coefficients Ai and Bi

do not depend on magnetization and all of them with the exception of A1 and B1 are
odd in β . The excitation conditions and efficiency of the two classes of modes are
different and depend on the incident light polarization and on the media surrounding
the waveguide.
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4.3.3 Physical Origin of the Effect

Thus the coupling between the TE and TM field components emerges in the mag-
netized layer. The manifestation of this effect in the optical transmission and reflec-
tion spectra can be expected. Let us now assume that the demagnetized plasmonic
crystal is illuminated by linearly polarized light with the electric field vector per-
pendicular to the slits and parallel to the plane of the modes propagation. Only
quasi-waveguide TM modes are excited in the dielectric layer at frequencies de-
termined by (4.39). At frequency equal to one of the TE mode’s eigenfrequencies
ωTE which can be found from (4.39) and (4.40) no waveguiding takes place and
reflection/transmission spectra generally have no peculiarities at around ωTE. How-
ever, if the plasmonic crystal is magnetized then a quasi-waveguide wave can be
excited at the frequency near ωTE as the “TE-like” mode has all components of
the electric and magnetic field including those of the incident linearly polarized
wave. This leads to the redistribution of transmitted, reflected and absorbed energy,
and the spectrum should acquire a resonant feature. The value of the transmission
change depends on g. Consequently, at around ωTE one should expect a kind of
the magneto-optical effect expressed as δ = (T0 − TM)/T0, where TM and T0 are
the transmission coefficients of light through the magnetized and not magnetized
structures, respectively.

On the other hand, the coupling between the TE and TM field components can
cause polarization rotation for the transmitted light. However, at the normal in-
cidence according to (4.40) the modes with opposite sign of β are excited with
the same efficiency. As was mentioned above, the coefficients A2, A3, B2 and B3

in (4.44a), (4.44b) are odd in β , and due to symmetry reasons the total contribu-
tion to the TE component is zero. So the Faraday rotation can be observed only for
oblique incidence.

The excitation of quasi-waveguide “TM-like” modes can also cause the magneto-
optical intensity effect, though usually it is much weaker.

4.3.4 RCWA Analysis

To approve this reasoning and to characterize the effect, quantitatively numerical
calculations based on RCWA algorithm have been performed [83, 84] (brief de-
scription is provided in Sect. 4.2.2.6). The following parameters are assumed: ε1 is
equal to the permittivity of gold taken from [85], the values of ε2 and g correspond
to the bismuth substituted yttrium iron garnet film (e.g., ε2 = 5.06 and g = 0.01 at
λ= 1100 nm) [3], and ε3 = 2.1 (silica substrate). The radiation is normally incident
and linearly polarized so that the electric field vector is perpendicular to the slits. It
is seen from Fig. 4.13 that the zero-order transmission for the magnetized system T1

has pronounced dips at λ= 1102, 1060 and 1200 nm, while the transmission for the
demagnetized system T0 does not have such features implying that the orientational
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Fig. 4.13 Top left: Schematic of the magnetoplasmonic crystal. Top right: spectrum of the magne-
to-optical effect δ = (T0 − TM)/T0. Bottom: spectra of the zero-order transmission T0 and TM of
the non-magnetized (dashed line) and magnetized (solid line) plasmonic crystal, respectively. The
metal layer thickness h is 362 nm, the magnetic layer thickness hm is 1935 nm, the grating period
d is 552 nm, the slits width r is 55 nm. The radiation is normally incident and linearly polarized
so that the electric field vector is perpendicular to the slits [88]

effect takes place [88]. The narrow spectral width of the observed peak indicates
that the effect has a resonance nature.

The maximum value of δ is attained at λ = 1200 nm, which coincides with the
position of the T0 peak. The value of δ reaches almost 100 % at the maximum
(Fig. 4.13 top right). At the same time, the orientational effect for the single uniform
magnetic layer is only 0.01 % even at oblique incidence at large angles. So the
enhancement of the effect due to the presence of the perforated metal grating is
about four orders of magnitude, which allows referring to it as a giant orientational
effect.

It should be noted that the effect under consideration is even with respect to the
magnetization. Indeed, the change in the sign of the gyration g does not change
the transmission: T (g) = T (−g). Consequently, the effect should be quadratic in
g at least for small gyrations g. The corresponding dependence shown in Fig. 4.14
confirms this inference.

It should be noted that peaks of the orientational effect are not always coincident
to the maxima of transmission T0. For example, the resonance of δ at 1102 nm is
evidently shifted from the transmission peak. Moreover, modeling of the spectra for
the structures with some other geometrical parameters demonstrates that these two
features of the transmission spectra are not directly related. However, it is possible
to make peaks of δ and of the transmission be coincident, which is the case of the
structure in Fig. 4.13 at the wavelength of 1200 nm. Here, the effect becomes more
pronounced and easier to be observed and applied.
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Fig. 4.14 Dependence of the magneto-optical effect magnitude on the gyration g. The metal layer
thickness h is 302 nm, the magnetic layer thickness hm is 883 nm, the grating period d is 886 nm,
the slits width r is 88 nm, and the dielectric constant of the substrate ε3 = 1. The wavelength λ is
1013 nm. The radiation is normally incident and linearly polarized so that the electric field vector
is perpendicular to the slits [89]

4.3.5 The Giant Orientational Effect. Rayleigh–Wood Anomalies

It follows from the aforementioned qualitative analysis that the optical properties
associated with the presence of the gyration in the structure should be expected upon
excitation of quasi-waveguide modes of the dielectric layer. In order to confirm this
hypothesis, we investigated the mutual dependences of the structure parameters (the
height and the width of metal steps, the period, the magnetic layer thickness, and the
permittivities of the materials in the structure) at which similar properties manifest
themselves.

Firstly, it should be noted that the wavelength at which the effect is observed does
not correlate with the maxima of the transmission. However, the effect is most pro-
nounced when the corresponding wavelengths coincide with each other. This case
is illustrated in Fig. 4.13. Moreover, it was revealed that the wavelength at which
the intensity of transmitted light changes does not depend on grating parameters,
such as the slit width and the metal film thickness. However, a change in the grating
period, the permittivity of the materials, and the thickness of the dielectric leads to a
shift in the minimum of the transmission. This suggests that the effect is due to the
waveguide modes.

Figure 4.15 proves it quantitatively [88]. The maxima of the orientational effect
are attained at the parameters favorable for the TE-like modes. The value of δ is
not constant along the modes dispersion curves and it becomes the largest near the
grating periods d supporting Rayleigh–Wood anomalies [90] on the metal-magnetic
dielectric interface (shown by dash-dotted vertical lines in Fig. 4.15). Actually, this
means that the effective angle of the mode propagation, which is calculated from
the formula

ϑprop = arcsin

(
λ

d
√
ε2
q1

)
, (4.45)
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Fig. 4.15 The
magneto-optical effect
T = |TM − T0| versus hm
and d at λ= 1200 nm. Solid
lines represent conditions for
the excitation of the
“TE-like” eigenmode
calculated by (4.39)
and (4.40). The other
parameters of the structure
are the same as for Fig. 4.13.
Point A indicated parameters
for the former structure [88]

Fig. 4.16 Dependence of the magneto-optical effect magnitude T =| TM − T0| on the angle of
incidence and the radiation wavelength. The values of T are plotted along the right vertical axis.
The plane of incidence of light is perpendicular to slits of the metal grating. The parameters are
the same as in Fig. 4.14. The dispersion curves for the second order “TE-like” waveguide modes
(dashed lines) are shown for comparison [89]

is close to 90◦ and, in the plane-wave approximation, the mode can be considered
as propagating almost parallel to the surface of the dielectric layer. This propagation
increases the effective optical path of the mode in the magnetic layer, which, in turn,
enhances the magneto-optical effect.

The vertical band in Fig. 4.15 for values of d from 829 nm to 1067 nm does not
provide any pronounced orientational effect. The reason for that is a violation of the
total internal reflection conditions for the modes of the first order in q1 (see (4.40))
for structures with d > 829 nm (at the fixed wavelength λ = 1200 nm). The band
ends at d = 1067 nm because of the excitation of the waveguide modes family of
the second order (q1 = 2 in (4.40)).

The dispersion of the magneto-optical effect T and the “TE-like” waveguide
modes is shown in Fig. 4.16. In the case of oblique incidence, apart from the change
in the intensity, there appears a rotation of plane of polarization of transmitted and
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reflected light. However, now we consider only the change in the intensity. As be-
fore, the magnitudes of the effect are largest in the vicinity of the excitation of the
waveguide modes.

In accordance with theoretical predictions, the numerical analysis confirms that
the excitation of quasi-waveguide “TM-like” modes does not produce the pro-
nounced intensity magneto-optical effect.

4.4 Polarization Rotation Magneto-Optical Effects in Plasmonic
Structures

4.4.1 State of the Art

If a structure is magnetized perpendicular to the sample’s plane or in-plane but along
the direction of the SPPs or waveguide mode propagation then the magneto-optical
effects of polarization rotation arise. These are the Faraday effect, and the polar and
longitudinal Kerr effects (see Sect. 4.1.3.2).

The SPPs and the waveguide modes of smooth semiconductors in the presence
of an external magnetic field in both configurations were considered in [91, 92]. It
was shown that the magnetic field does not introduce any linear in magnetization
terms in the modes dispersion but it induces electromagnetic field components.

The polarization rotation magneto-optical effects were studied in different types
of smooth multilayered metal/dielectric structures with either metallic or dielectric
component magnetized [93–96]. Probably, the first experimental demonstration of
the influence of the plasmonic modes on the Faraday effect was published in [97].
Without making reference to surface plasma waves, author of [97] reported an op-
tically enhanced Kerr rotation in thin iron films, magnetized in the longitudinal ori-
entation, near what has become identified as the plasmon angle.

In some papers [95, 96] the polar or longitudinal Kerr effect enhancement was
claimed but it was usually accompanied by decrease in the intensity of the signal.
The SPPs-assisted pronounced increase of the Faraday effect was reported in the Bi-
substituted iron garnet film covered with thin corrugated silver and gold layers [93].
It was assumed that the main contribution in the enhancement of the Faraday effect
in such systems is made by the polarization rotation of the SPPs excited on the
metal/dielectric interface.

Faraday and Kerr effects in periodic metal–dielectric structures were also con-
sidered recently [59–61, 98–103]. In particular, Diwekar et al. [98] experimentally
investigated the Kerr effect upon reflection of visible light from a perforated cobalt
film magnetized perpendicular to the surface. It was revealed that, in the vicinity of
the region of anomalous transmission of light, the Kerr effect is reduced by one order
of magnitude. There is a number of works dealing with the metal–dielectric struc-
tures characterized by a considerable enhancement of the Faraday effect [99–101].
In those works, a magnetic medium was placed either inside holes in the metal [99],
or the metal itself was ferromagnetic [100, 101].
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A 2D plasmonic crystal in a Co film was investigated recently in [60] (Fig. 4.3(e)).
The 2D hole array was found to influence not only on the magneto-optical Kerr sig-
nal but also on the magnetic properties of the structure. Thus, there is an increase of
the coercive field of the in-plane magnetization with increasing hole diameter and
an appearance of out-of-plane magnetization components.

The plasmonic crystals of perforated gold on top of the smooth thick ferromag-
netic layer similar to the ones considered in the previous sections were also inves-
tigated by measuring the cross-polarized transmission and polar Kerr rotation as a
function of external magnetic field [102]. Although the effects of plasmons on these
processes were observed, the enhancement of the magneto-optical effects via SPPs
was not clearly demonstrated.

Though most of the periodic structures were fabricated by means of electron
beam lithography and subsequent etching some other fabrication approaches were
also used. Thus, the authors of [59] fabricated a 2D plasmonic crystal by sputtering
Co or Ni on top of PMMA colloidal crystal (Fig. 4.3(d)). It was found that there are
some resonance peculiarities in the Kerr rotation spectra. They were attributed to
the SPPs resonances and to the resonances related to the multiple reflections from
the colloidal crystal substrate and from the nanostructured film. Torrado et al. [61]
also use self-assembling method (Fig. 4.3(f)). They prepared a plasmonic crystal
from a polymeric monolayers replicated on nickel. The SPP assisted increase of
the polar and transverse Kerr effects due to the excitation of Ni SPPs modes is
reported. However, the effect of disorder was shown to decrease the amount of that
enhancement. One more magnetoplasmonic periodic structure was fabricated by
depositing Co/Pt multilayers on arrays of polystyrene spheres [103].

A significant amount of research was paid recently to the Faraday and Kerr ef-
fects in the structures with localized SPP resonances [104–117]. In recent paper by
Bonanni et al. [105] nickel nanoferromagnets are studied. Strong and tunable corre-
lation between the localized plasmons and the longitudinal Kerr effect is shown. The
authors also demonstrated an existence of a phase shift in Kerr rotation produced by
the combination of the anisotropic polarizability and the magneto-optical properties
of the nickel nanoparticles.

Magneto-optical activity induced by strong magnetic fields in gold nanoparticles
was studied in [106, 107].

The effect of magnetization-induced second harmonic generation in chiral nickel
microstructures was investigated in [108].

The enhancement of the Kerr rotation due to localized SPPs was also found in
the systems of Ni nanowires [109], in Au/Co/Au nanosandwiches [110, 111] and in
ferrimagnetic garnet films incorporating Au particles [112–115]. Authors of [111]
pointed out that shape anisotropy of the ferromagnetic nanoparticles might be an
additional degree of freedom which allows further increase of the magneto-optical
effects.

An increase of the polar Kerr effect due to localized surface plasmons has also
been predicted for granular ferromagnetic composites [116].

In spite of a rather large number of papers devoted to the increase of the Faraday
and Kerr effect in plasmonic structures the physical nature of this increase has not
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Fig. 4.17 Magnetoplasmonic
crystal consisting of a metal
grating on top of a planar
ferromagnetic dielectric
grown on a non-magnetic
substrate. The magnetization
M in the ferromagnetic layer
is perpendicular to the plane,
and the incident light is
normally incident and linearly
polarized so that the electric
field vector is perpendicular
to the slits; k is the wave
vector of the incident wave

been discussed clearly so far. There seems to be several mechanisms of the enhance-
ment. One of them is related to the significant increase of the local electromagnetic
field in the vicinity of the metal structures at the plasmonic which modifies the spin–
orbit coupling controlling magneto-optical effects. Spin-dependent interface effects
were discussed to explain a large magnetic field-dependent modulation of particle
transparency observed in Co/Au core/shell microparticles [118].

The other mechanism takes into account that excitation of the SPP mode leads to
the changes in the polarization of the near-field of the structures and thus modifies
the response in the optical far field. Finally, excitation of plasmonic or waveguide
modes can bring increase of the polarization rotation due to the increase of the
effective propagation length of light through the magnetic part of the structure.

It should be noted that the increase of the Faraday and Kerr rotation was re-
ported recently for pure dielectric systems at the wavelengths of waveguide mode
resonances [119, 120].

4.4.2 Plasmonic and Waveguide Mechanisms of Faraday Rotation
Enhancement

In this section we consider the polarization rotation magneto-optical effects in the
plasmonic crystal similar to the ones considered above but having a dielectric layer
magnetized perpendicular to the sample’s plane (Fig. 4.17) [121].

At the nonresonant frequencies the Faraday rotation is close to that of a single
magnetic film and is defined by the film’s thickness. At the eigenmodes excitement
the resonant features of the magneto-optical response is expected. The eigenmodes
that are essential for magneto-optical behavior are the surface plasmon polariton at
the metal/dielectric interface and the waveguide modes of the dielectric layer.
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The analysis similar to that performed in Sect. 4.3 reveals that for the dielec-
tric layer magnetized along z-axis equations similar to (4.39), (4.41), (4.43), and
(4.44a), (4.44b) are valid. Thus, there are the two types of the waveguide modes,
namely “TE-like” and “TM-like” ones. Neglecting the perforation of the metallic
layer dispersion equation of them is the following:

γ2hm = arctan(α1/α2)+ arctan(α3/α2)+ πq, (4.46)

where indices 1, 2, 3 stand for the metal, the magnetic dielectric and the substrate,
respectively, γ1,3 = (β2 − ε1,3k

2
0)

1/2, γ2 = (ε2k
2
0 − β2)1/2, αi = γi/εi for the “TM-

like” modes, αi = γi for the “TE-like” modes, and q is an integer. The SPP can be
treated as a “TM-like” mode with the imaginary value of γ2. The electromagnetic
fields of the waves in the waveguide and the neighboring media have the form:

E1,3(x, y, z, t)= E1,3 exp
(
i
(
βx + iγ1,3|z| −ωt

))
,

E2(x, y, z, t)= [K1e1 exp(iγ+z)+K2e2 exp(−iγ+z)+K3e3 exp(iγ−z)

+K4e4 exp(−iγ−z)
]

exp
(
i(βx −ωt)

)
,

(4.47)

where Ei is the electric field amplitude in the ith layer; e1, e2, e3, and e4 are the
unit vectors specifying the normal waves in the magnetic medium; and γ± are the
z-components of their propagation constants. Let us denote the y-components of
electric and magnetic fields amplitudes by CTE

i and CTM
i :

E1,3y(x, z, t)= CTE
1,3 exp

(
i
(
βx + iγ1,3|z| −ωt

))
,

H1,3y(x, z, t)= CTM
1,3 exp

(
i
(
βx + iγ1,3|z| −ωt

))
.

(4.48)

For the field components the following relations are valid: for the “TE-like” modes:

CTE
3 = Ã1C

TE
1 ,

CTM
1 = iQÃ2C

TE
1 ,

CTM
3 = iQÃ3C

TE
1

(4.49a)

for the “TM-like” modes:

CTM
3 = B̃1C

TM
1 ,

CTE
1 = iQB̃2C

TM
1 ,

CTE
3 = iQB̃3C

TM
1 ,

(4.49b)

where Q is the magneto-optical parameter (see (4.14)), the coefficients Ãi and B̃i

do not depend on magnetization and they are different from the similar coefficients
in (4.44a), (4.44b). Since both “TM-like” and “TE-like” modes have all six non-
zero components the p-polarized incident wave originates the TE components in
the reflected and transmitted waves at the excitation of either mode. Unlike the lon-
gitudinal geometry, in the present case the coefficients Ãi and B̃i are even in β , so
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that at the normal incidence the Faraday effect does not vanish. The even intensity
effect described in Sect. 4.3 is also present but is less pronounced compared to the
longitudinal geometry due to the difference in coefficients Ai and Bi in (4.44a),
(4.44b) and Ãi and B̃i in (4.49a), (4.49b).

The Faraday rotation can be considered qualitatively as a result of conversion of
TE–TM field components. Two mechanisms for resonant behavior of the Faraday
effect are possible. Let the incident wave be p-polarized. Firstly, at the frequency
ωTM, favorable for the TM mode or the SPP excitation, it partly converts to the
TE mode. But since the excitation condition for the TE mode is not fulfilled, it
comes out of the structure contributing to the far field. The enhancement of the
Faraday effect is due to the fact that the effective path of the TM mode or the SPP
is larger than in nonresonant case. Secondly, at the frequency ωTE the TM wave
comes out of the structure partly converting to the TE mode. At this the TE mode
has large effective path that causes the enhancement of the Faraday effect. Thus the
mechanism for the Faraday rotation enhancement depends on the type of the excited
eigenmode.

4.4.3 RCWA Analysis

4.4.3.1 Plasmonic Structure Without Waveguide Modes

To approve this reasoning numerical simulations for various kinds of plasmonic
structure were performed by means of RCWA technique [83, 84] (brief description
is provided in Sect. 4.2.2.6). We start with the case of thick magnetic film (hm � λ),
so that waveguide modes are not efficiently excited [122]. The optical properties are
affected only by the SPPs that are quasi-TM polarized.

The magnetic layer and the substrate are assumed to have the same refractive
index, so there are no reflections on the interface between them and no guiding
effects in the magnetic part of the system are present (see Fig. 4.17). The thickness of
the magnetic layer is hm = 1 μm. The metallic grating is golden with the parameters
d = 800 nm, r = 100 nm, and h = 50 nm. The dielectric layer is assumed to be
Bi:YIG, with ε2 = 5.5 and g = 0.01. The dielectric permittivity of gold was taken
from [85].

Optical and magneto-optical responses of the grating are shown in Fig. 4.18.
Several sets of anomalies in the transmission and Faraday rotation spectra can be
seen. For the transmission these are maxima followed by minima, while for the
Faraday rotation these are resonance peaks.

Wavelengths for the transmission minima and the Faraday rotation peaks are pre-
sented in Table 4.1 in comparison with the calculated Rayleigh’s and SPPs wave-
length. The Rayleigh’s anomalies appear when the mth diffracted order (m > 0)
becomes tangent to the grating surface. Consequently, it takes place at

λR =
√
ε2d

m
(sin θ + 1), (4.50)
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Fig. 4.18 Transmission
(dashed line) and the Faraday
rotation spectra (solid line) of
the magnetic plasmonic
crystal without the guiding
layer (see for parameters in
the text). The light is
normally incident and
linearly polarized so that the
polarization is perpendicular
to the slits of the grating [122]

Table 4.1 The SPPs wavelengths λSP (first column) calculated via (4.51), wavelengths λ1 for
maxima of the Faraday rotation (second column), wavelengths λ2 for the transmission minima
(third column), and Rayleigh’s wavelengths λR (fourth column) calculated for the grating (see for
parameters in the text). In the brackets: v/m is a vacuum-metal interface, m/d is metal-dielectric
interface, numbers denote the orders of SPPs or Rayleigh’s anomalies

λSP (nm)—SPP
excitation

λ1 (nm) for Φmax λ2 (nm) for Tmin λR (nm)—Rayleigh
anomalies

738 (3, m/d) 736 782 –

814 (1, v/m) 811 839 806

1006 (3, m/d) 1007 1058 947

where θ is an angle of incidence. The SPPs wavelength can be estimated via the
empty lattice approximation:

λSP =
√
ε2d

m

(
sin θ + α(λSP)

)
, (4.51)

where α(λ)= √
ε1/(ε1 + ε2), ε1 and ε2 are the dielectric permittivities of the metal

and dielectric, respectively.
One can see from Table 4.1 that the Faraday angle maxima coincide almost ex-

actly to the SPPs wavelengths but not to the transmission minima which confirms
the qualitative model presented above.

It is instructive to note that the shape of the Faraday peak is Lorentzian like.
It emphasizes the role of resonant processes in the phenomenon of the magneto-
optical effects enhancement and explains almost perfect coincidence of the maxima
with the conditions for the SPPs excitation. The role of the propagating diffraction
orders here is negligible.

For most of the practical cases it is important to acquire large rotation of the po-
larization plane and high optical transmission. It follows from the previous discus-
sion that minima of the transmission are shifted from the SPPs wavelengths while
the wavelengths of the Faraday peaks almost coincide with them. The shift of the
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Fig. 4.19 Spectra of the optical transmission (dashed line), the Faraday rotation (solid line) and
the ellipticity (dotted line) of the plasmonic crystal of Au grating of thickness 65 nm and uniform
Bi:YIG film of thickness 535 nm; d = 750 nm, r = 75 nm (see Fig. 4.17). The permittivity of the
substrate is equal to 1 [123, 124]

minima depends on the relative strength of the nonresonant input and can vary in
its value. Consequently, it is possible to get Faraday rotation peak at not vanishing
transmission. However, the transmission is not sufficiently high. In this sense, the
bilayer metal-dielectric gratings are much more advantageous, as they allow mak-
ing the transmission and Faraday rotation peak coincident. The main parameter of
the bilayer systems is the thickness of the dielectric layer that allows reaching this
coincidence.

4.4.3.2 One-Dimensional Plasmonic Structure with Waveguiding Layer

Now let us turn to the case of the magnetic film thickness comparable to wavelength,
and at this the waveguide modes become essential [123, 124]. As shown in Fig. 4.19
the Faraday rotation demonstrates both negative and positive peaks. Furthermore,
the positive Faraday rotation peak at λ = 883 nm corresponds to more than four
times enhancement being compared to the single magnetic layer of the same thick-
ness placed in optically matched surrounding medium which has the Faraday angle
of −0.47 deg. In addition to that, the positive Faraday rotation peak coincides to
the resonance in transmission, allowing about 40 % of the incident energy flux to
be transmitted. At the same time, the negative Faraday maximum at λ = 818 nm
corresponds to almost negligible transmission. The peaks of the Faraday angle are
accompanied by the abrupt changes of the light ellipticity. However, the ellipticity
becomes zero at the resonance wavelength and the transmitted light remains linearly
polarized, but with substantial rotation of the polarization plane.

Using (4.46) within the empty lattice approximation one can obtain the result
that the following quasi-waveguide modes are excited: (i) TM mode at λ= 814 nm,
(ii) TE modes at λ = 844 nm and λ = 879 nm. The comparison of these values
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with the resonant features of the Faraday angle demonstrates that the negative and
positive peaks correspond to the TM and TE modes excitation, respectively. It agrees
well with the theoretical reasoning of the resonant behavior of the Faraday angle at
the eigenmodes excitation and consequent increase of effective interaction length
and moreover confirms the existence of the two mechanisms for its enhancement.

The effective interaction length is determined by the mode’s lifetime which is
inversely proportional to its resonance width ω. The latter depends on the optical
absorption in metal and in magnetic film, and on the mode’s leakage into the far
field as well. If the losses are negligibly small, then the relative resonance width is
about ω/ω = 5 × 10−4. At this the resonant value of the Faraday angle is 14◦ that
is 75 times higher than for the single film. For the real losses the resonance width
is ω/ω = 3 × 10−3 that is six times lower, and the Faraday angle is 1.9◦ that is
seven times lower. So one can conclude that Φ ∼ (ω)−1.

The Faraday rotation resonances corresponding to the TE modes are of prime
practical significance. Firstly, at these resonances the Faraday effect enhancement
by an order of magnitude or even higher can be achieved. Moreover, the Faraday
angle maxima can be adjusted to transmission maxima. It comes from the following
reasoning. Faraday angle peaks are caused by TE modes excitation so their spec-
tral position depends mostly on magnetic film thickness hm and the grating period.
The transmission peak depends not only on magnetic film properties but also on the
grating parameters such as the slit width and the grating thickness. Thus by tun-
ing various geometrical parameters the coincidence of a transmission peak and a
Faraday angle peak can be achieved.

It is very important to note that while the accordance between the negative Fara-
day rotation maxima and zeros of the transmission preserves for different geomet-
rical parameters of the metal/dielectric heterostructure, the accordance between the
positive Faraday angle peaks and transmission maxima is very sensitive to them,
especially to the thickness of the dielectric film hm. Thus for a little bit different
values of hm the positive peaks of the Faraday rotation and transmission maxima
shift differently and do not coincide any more. This observation points out on the
different nature of the negative and positive Faraday rotation resonances.

The dependence of the Faraday effect and transmission on the thickness hm at
λ= 883 nm are shown in Fig. 4.20. The values of hm favorable for the propagation
of TE or TM modes inside the dielectric slab are marked with solid and dashed lines,
respectively, indicating the existence of the relation between the Faraday angle reso-
nances and the waveguide modes. The transmission peaks marked by (1) are caused
by excitation of localized modes. As we have just discussed the Faraday angle peaks
correspond to the TE or TM modes resonances. At the same time, the transmission
maxima do not correlate with such resonances and are mainly determined by the
field distribution in the metal part of the plasmonic crystal. At hm = 537 nm the
Faraday angle maxima coincides with the transmission peak. Besides there are pe-
riodic oscillations of the Faraday angle and the transmission (with maxima marked
by (2)), which are caused by interference of the wave transmitting through the mag-
netic film without modes excitation.

The close relation between main features of the optical and magneto-optical
properties of the considered system and modes of the electromagnetic field in the
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Fig. 4.20 Optical
transmission (dashed line)
and the Faraday rotation
(solid line) versus the
thickness hm of the magnetic
layer. Geometrical parameters
of the Au-BiYIG film are the
same as in Fig. 4.19;
λ= 883 nm. Vertical dashed
and dotted lines depict the
position of the TE mode and
TM mode resonances in the
dielectric slab, respectively
(see for details the
text) [123, 124]

magnetic film is underscored by Fig. 4.21, where optical transmission and the Fara-
day angle versus the magnetic film thickness are shown for three different dielec-
tric constants of the substrate. For the wavelength λ = 840 nm and grating period
d = 750 nm two diffraction orders become propagating into the magnetic layer.
The modes associated with them can be denoted as TE1, TE2, TM1, and TM2. As
long as the dielectric constant of the substrate ε < 1.255, the condition of the to-
tal internal reflection is satisfied for both diffraction orders and all four modes are
quasi-waveguide. Resonance features in transmission and Faraday rotation related
to these modes are apparent. Thus, for the case of ε = 1.25 zeros of transmission
and negative peaks of the Faraday rotation correspond to the resonances of TM1 and
TM2 modes (Fig. 4.21(b)); positive peaks of the Faraday rotation coincide with res-
onances of TE1 and TE2 modes. For higher values of ε the total internal reflection
for the first diffraction order is no longer present and only TE2- and TM2-modes re-
main localized in the dielectric layer. That is why in the graph for ε = 1.6 there are
only one negative and only one positive Faraday effect resonances, corresponding
to TM2 and TE2 modes excitation, respectively (Fig. 4.21(c)).

One needs to pay attention to the optical transmission. As it is anticipated by
the preliminary discussion the transmission should strongly depend on the param-
eters of the metallic constituent of the heterostructure. This is fully proved by the
Fig. 4.22(a), where a pronounced shift of the extraordinary optical transmission res-
onance with the increase of the metal layer thickness is present. Such transmission
peak behavior emphasizes the role of the electromagnetic field distribution in the
metal and near the metal/dielectric interface. At the same time, the Faraday angle
is only weakly dependent on the metal thickness (Fig. 4.22(b)), since it is mostly
determined by the field distribution inside the dielectric layer.

The electromagnetic field distribution in the plasmonic crystal is shown in
Fig. 4.23, demonstrating the distribution of the absolute values of the electric field
components Ex and Ey for three different thicknesses of the dielectric layer, corre-
sponding to the extraordinary optical transmission peak (hm = 200 nm), and Fara-
day rotation positive (hm = 322 nm) and negative (hm = 471 nm) resonances (see
Fig. 4.20). Analysis of Fig. 4.23 confirms the assertions on the relation between
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Fig. 4.21 Optical transmission (solid line) and the Faraday rotation (dashed line) versus the thick-
ness hm of the magnetic layer are shown for three different values of the dielectric constant of the
substrate: (a) ε = 1, (b) ε = 1.25, (c) ε = 1.6. Thickness of Au grating is 70 nm, d = 750 nm,
r = 100 nm (see Fig. 4.17); λ = 840 nm. Solid and dotted lines in the upper part of the graphs
depict the position of the TE1- and TE2-modes, respectively. Solid and dotted lines in the bottom
part of the graph depict the position of the TM1- and TM2-modes, respectively (see for details in
the text) [124]

modes peculiarities and optical/magneto-optical features of the structure. Indeed, at
the optical transmission resonance (Figs. 4.23(a), (b)) most of the energy of the Ex

component is concentrated on the metal/dielectric interface hinting on the SPPs-like
wave. We should notice here that the Ex component is associated to the incident
polarization, as the incident wave is assumed to be polarized perpendicularly to the
slits. At the dielectric layer thickness corresponding to the negative resonance of the
Faraday effect the value of the Ex component is rather weak, while the Ey compo-
nent is increased, suggesting that at this case it is TE mode which is quasi-waveguide
(Figs. 4.23(c), (d)). On the contrary, when the dielectric film thickness has a value
supporting positive peak of the Faraday angle most of the field energy is in its Ex

component inside the dielectric layer (Figs. 4.23(e), (f)).
In [125, 126] it was emphasized that the Faraday rotation in the periodic systems

is strongly related with the group velocity Vg and gets its maximum values at the
vanishing of Vg . In the case of magnetic photonic crystals this dependence for the
specific Faraday angle can be written by

Φsp = 〈Q〉ω/2Vg, (4.52)
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Fig. 4.22 Optical transmission (a) and the Faraday rotation (b) versus the thickness hm of the mag-
netic layer for several different thicknesses of the metallic layer h: 40 nm (solid lines), 75 nm (dot-
ted lines), 100 nm (dashed lines), 150 nm (dash-dotted lines), and 200 nm (dash-dot-dotted lines).
Geometrical parameters of the Au-BiYIG film are the same as in Fig. 4.19; λ= 883 nm [123]

where 〈Q〉 is the matrix element of the Voigt parameter Q (see (4.14)) calculated in
the volume of the single lattice cell of the system. Equation (4.52) demonstrates the
strong correlation between the Faraday effect enhancement and the slow light effect.
In the case of plasmonic crystals the mechanism is similar. At normal incidence the
eigenmodes are excited at the Γ point of the Brillouin zone that corresponds to the
bandgap edges. At this the excited modes experience decrease of the group velocity
and the effective time of the interaction of a mode with the magnetic media and the
conversion to the opposite mode increases. So the Faraday effect is enhanced. This
reasoning is confirmed by Fig. 4.24 where the dispersion of the Faraday angle is
plotted. The Faraday angle at the oblique incidence is smaller since the slow light
effect does not take place.

It is not only the Faraday effect that acquires peculiarities in the plasmonic crys-
tal. Indeed, it can be seen from Fig. 4.25 that the Kerr rotation is also enhanced at
around λ = 880 nm. Note that the term Kerr effect here should be treated in the
generalized sense, i.e. it includes not only light polarization rotation and ellipticity
originated from the metal/ferromagnetic interface, but also magneto-optics of the
reflected waves propagating through the bulk of the system.

4.4.3.3 Fishnet-Like Structure

Magneto-optical effects can be enhanced even more significantly in the cascaded
metallic structures containing two perforated metal layers separated by a mag-
netic layer [124]. The advantages of the cascaded films for optical features of
metal/dielectric structures have already been shown in [127], and here we report
on their applicability in the magneto-optics area. The addition of the second metal-
lic grating onto the bottom surface of the magnetic layer changes the conditions
for the leaking modes in the dielectric slab allowing additional increase of the effi-
ciency of the magneto-optical interaction and further decrease of the group veloc-



98 V.I. Belotelov et al.

Fig. 4.23 Distribution of the electric field amplitudes |Ex | and |Ey | in the plasmonic crystal at
three different values of the dielectric layer thickness: (a)–(b) hm = 200 nm; (c)–(d) hm = 322 nm;
and (e)–(f) hm = 471 nm. The other parameters are the same as in Fig. 4.20 [123]

ity at the resonance point. In Fig. 4.26(a) the transmission and the Faraday rota-
tion spectra for one of the possible cascaded films design are shown. Both peaks
finely coincide providing 17 times enhancement of the Faraday effect and 43 % of
transmitted energy at wavelength λ = 884 nm. The dependences on the thickness
of the magnetic film (see Fig. 4.26(b)) reveal again that the negative Faraday an-
gle peaks happen at the negligible transmission, while positive Faraday angle max-
ima do not obviously correlate with any features of transmission spectra. As in the
case of the metal/dielectric bilayers, the position of the positive Faraday maxima
is determined by the TE mode resonances of the dielectric slab and can be ad-
justed by its thickness. The resonances of transmission are mainly dependent on
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Fig. 4.24 The Faraday angle
vs. the wavelength and the
incidence angle. The
parameters are the same as in
Fig. 4.19

Fig. 4.25 Spectra of the Kerr
rotation (solid line) and
ellipticity (dashed line) of the
bilayer system of Au grating
of thickness 75 nm and
uniform Bi:YIG film of
thickness 538 nm;
d = 750 nm, r = 75 nm (see
Fig. 4.17) [124]

Fig. 4.26 Optical transmission (solid line) and the Faraday rotation (dashed line) versus (a) wave-
length λ (hm = 832 nm) and (b) the magnetic layer thickness hm (λ = 884 nm) for the case of
cascaded metal/dielectric film (see for details in the text). The geometrical parameters of both
metallic gratings are the same: d = 832 nm, r = 301 nm, the thickness is 194 nm [124]

the parameters of the metallic gratings. Since there are two independent gratings
in the cascaded systems the control of the transmission peak position becomes eas-
ier.
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Fig. 4.27 The two-dimensional magnetic plasmonic crystal. Metallic plate (upper layer) is period-
ically perforated with the square hole arrays. Holes constitute a square lattice of period d . The size
of each hole is r . Dielectric layer (lower layer) of thickness hm is magnetized in polar geometry
(along OZ-axis). The light with the wavevector k is normally incident

Fig. 4.28 Spectra of the
optical transmission (solid
line on (a)), Faraday rotation
(dashed line on (a) and solid
line on (b)), and ellipticity
(dashed line on (b)), Kerr
rotation (solid line on (c)) and
ellipticity (dashed line on (c))
of the bilayer system of
perforated Au film of
thickness 68 nm and uniform
Bi:YIG film of thickness
118 nm; d = 750 nm,
r = 395 nm (see
Fig. 4.27) [128]

4.4.3.4 Two-Dimensional Plasmonic Crystal

Finally, we consider the similar effects in two-dimensional plasmonic crystals
shown in Fig. 4.27 [128, 129].

The results of the calculations of transmission and magneto-optical effects in
the considered system are shown in Fig. 4.28. The Faraday and Kerr effects are
described by the angles ΦF and ΦK , which stand for the Faraday and Kerr rotation
of light polarization, and angles ΨF and ΨK denoting Faraday and Kerr ellipticity
of light polarization, respectively.
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Fig. 4.29 Faraday rotation
(dashed line) and
transmission (solid line)
versus the thickness hm of the
magnetic layer. Geometrical
parameters of the Au-BiYIG
film are the same as in
Fig. 4.28; λ= 963 nm.
Dotted line represents the
Faraday rotation for the same
single magnetic layer placed
in optically matched
surrounding medium [128]

Transmission spectrum of the Au/Bi:YIG bilayer has several transmission reso-
nances, which are related to the light coupling with surface waves in the films. At
the same time, at the vicinity of some transmission peaks a pronounced enhance-
ment of the magneto-optical effects is found. Namely, at λmax = 963 nm where the
transmission reaches 35 percent the Faraday and Kerr rotations get positive values
of ΦF = 0.78◦ and ΦK = 0.63◦, respectively. This corresponds to their enhance-
ment by nine times in comparison with the case of the same single magnetic layer
surrounded by optically matched medium. Ellipticity of transmitted/reflected light
polarization gets increased as well, but their positive and negative extrema happen
at slightly different wavelengths and the ellipticity is almost zero at the resonance of
the magneto-optical rotation. Consequently, transmitted and reflected electromag-
netic waves at λmax = 963 nm are linearly polarized.

Optical and magneto-optical spectra presented in Fig. 4.28 correspond to the
magnetic film thickness hm = 118 nm. Under change of the thickness hm all spectra
substantially modify, which is demonstrated in Fig. 4.29 where the optical trans-
mission and the Faraday rotation at λ = 963 nm versus thickness hm are shown. It
is vivid that for the given wavelength the optimal value of hm is close to 118 nm.
Positive and negative resonances in the Faraday rotation also happen for some other
thicknesses but all of them correspond to smaller enhancement level. At some other
incident wavelength the shape of the thickness dependences would modify and the
optimization would take place for different hm. Similar to one-dimensional plas-
monic crystals, the resonances of the transmission and Faraday rotation do not fully
correlate and their matching appear only for narrow interval of the film thickness
values.

4.5 Conclusion

Here we have presented current situation in the area of plasmonics conjugated with
magneto-optics. Main stress was made on the structures having three important fea-
tures. Namely, they are (i) plasmonic, (ii) periodically nanostructured, and (iii) mag-
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netic. The main aim of this chapter was to identify how the first two features af-
fect the magneto-optical properties of the structure and in particular whether they
can be used to enhance the magneto-optical effects. This has been accomplished
exemplary by addressing several main magneto-optical effects such as the trans-
verse Kerr effect, the Faraday effect and the even magneto-optical transmission
effect. Thus, numerical calculations showed that the TMOKE for bare iron gar-
net film is very small δ ∼ 10−4, both for transmitted and reflected light. When the
film is covered by a smooth gold layer, the TMOKE is resonantly enhanced up
to δ ∼ 5 × 10−3 but it can be observed only in reflection while the transmission
almost vanishes. If the second feature—nanostructuring—comes into play extraor-
dinary optical transmission appears with a giant TMOKE δ reaching 1.5 × 10−2.
Similar resonant increase is also demonstrated for the other magneto-optical ef-
fects.

There are several physical mechanisms responsible for the enhancement of the
magneto-optical effects in plasmonic structures. In particular, they include (i) mag-
netization induced shift of plasmonic and waveguide mode frequencies in the mag-
netic transverse configuration, (ii) magnetization induced coupling of TM- and TE-
modes of the gyrotropic waveguide in polar or longitudinal configurations, and
(iii) influence of the local electromagnetic field in the vicinity of the metal struc-
tures at the plasmonic resonances on the spin-orbit coupling.

The appearance of the magneto-optical effects depends on the orientation of mag-
netization in the sample, which can be easily controlled by relatively small external
magnetic field on the order of 100 Oe. With these parameters magnetic plasmonic
crystals are very promising for applications in ultra high sensitivity devices and op-
tical data processing. Plasmonic crystals are also promising for optical control of
a medium magnetization. Enhancement of the inverse Faraday effect in plasmonic
crystal was already shown theoretically [130]. Recent progress in the femtosecond
control of the magnetization in conjunction with the concept of plasmonic crystal
opens a possibility for modulation of light intensity and polarization in the plas-
monic crystals at ultra fast terahertz rates.
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Chapter 5
Magnetorefractive Effect in Magnetoresistive
Materials

Alexander Granovsky, Yurii Sukhorukov, Elena Gan’shina,
and Andrey Telegin

Abstract In this chapter, we survey early and later experimental and theoretical re-
sults on the magnetorefractive effect in: (i) all-metal multilayers and granular alloys
with giant magnetoresistance, (ii) metal–insulator multilayers and nanocomposites
with tunnel magnetoresistance, (iii) bulk single- and polycrystals, thin films and
heterostructures of manganites with colossal magnetoresistance, focusing on recent
developments that have led to a better understanding of the magnetorefractive ef-
fect in the infrared and visible range of spectrum and to the recognition of unsolved
problems and possible routes for the magnetorefractive effect enhancement. The
possible applications of the magnetorefractive effect are also discussed.

Abbreviations
MRE magnetorefractive effect
MO magneto-optical
IR infrared
SOI spin–orbit interaction
MR magnetoresistance

5.1 Introduction

Discovered by Michael Faraday in 1845, the Faraday effect was the first experimen-
tal evidence that light interacts with magnetized media. Later, numerous magneto-
optical (MO) effects, odd- and even-parity in magnetization, linear and non-linear
relative to a light intensity were discovered and widely used in physics and tech-
nique [1]. Being observed in a wide spectral range, from microwaves to infrared,
ultraviolet and X-ray wavelengths, in metals, semiconductors, oxides, gases and
liquids MO phenomena provide a basis for magnetophotonics, which operates with

A. Granovsky (B) · E. Gan’shina
Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
e-mail: granov@magn.ru

Y. Sukhorukov · A. Telegin
Institute of Metal Physics, Russian Academy of Sciences, Yekaterinburg 620990, Russia

M. Inoue et al. (eds.), Magnetophotonics, Springer Series in Materials Science 178,
DOI 10.1007/978-3-642-35509-7_5, © Springer-Verlag Berlin Heidelberg 2013

107

mailto:granov@magn.ru
http://dx.doi.org/10.1007/978-3-642-35509-7_5


108 A. Granovsky et al.

charges, spins of electrons, and photons. By means of magnetophotonics the ultra-
fast manipulation of light characteristics is possible by an external magnetic field.
On the other hand, ultra-fast control and manipulation of magnetization is done
by light [2]. Photons do not interact directly with magnetic moments, they do this
through relativistic effects such as the spin–orbit interaction (SOI). This is why the
MO effects are very weak even for advanced MO materials. For example, the change
in intensity of reflected light under magnetization of ferromagnetic materials does
not exceed 0.1 % in the visible [1]. Numerous efforts during last years were devoted
to searching for novel MO materials [1], enhancing the Faraday and Kerr effects in
artificial structures, for example, in magnetophotonic crystals [3], and seeking new
MO effects that are not determined by a weak SOI. Recently, this activity has been
triggered by rapid progress in optoelectronics, optical communication, all-optical
computers, ultra-fast magnetic recording, holography, etc.

One of such promising phenomena is the magnetorefractive effect (MRE) [4–7],
which is a high-frequency response on magnetoresistance (MR) and manifests itself
in magnetic field-induced changes in the coefficients of infrared light reflection (R),
transmission (I ), and absorption (A) in magnetic materials having large magnetore-
sistance (MR). MRE parameters are called magnetoreflection, magnetotransmission
and magnetoabsorption of light, respectively:

R(H)

R
= R(H)−R(H = 0)

R(H = 0)
, (5.1)

I (H)

I
= I (H)− I (H = 0)

I (H = 0)
, (5.2)

A(H)

A
= A(H)−A(H = 0)

A(H = 0)
. (5.3)

It is assumed in (5.1)–(5.3) that the sample is completely demagnetized in the ex-
ternal magnetic field of H = 0, i.e. the average magnetization M is zero. If it is not
the case, one can to use values of R, I , A at H = Hc , where Hc is the coerciv-
ity. Another phenomenon related to the MRE is the change in the radiated intensity
(emissivity) in external magnetic fields [8].

Since the dc conductivity σ = σ(ω = 0) of magnetic materials exhibiting any
type of large MR (for example, anisotropic, giant, tunnel, or colossal MR) changes
significantly upon magnetization, the ac conductivity σ(ω) also depends on mag-
netic field. The diagonal part of effective permittivity εd , which by definition deter-
mines the complex refractive index ñ= n− ik, is written as

εd(ω,H,T )= ε′ − iε′′ = (n− ik)2 = εr(ω,H,T )− i
4πσ(ω,H,T )

ω
, (5.4)

and therefore also is a function of H . In this formula n is refractive index, k is index
of extinction, and εr(ω,H,T ) term is associated with displacement current and
interband optical transitions; ω is the light frequency, T stands for the temperature of
a material. The second term in (5.4) describes the MRE. Thus, the origin of MRE is
the high-frequency MR. As an example, Fig. 5.1 demonstrates the strict correlation
between magnetoreflection of infrared light for a nanocomposite Cox (Al2O3)1−x
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Fig. 5.1 Magnetic field
dependences of
magnetoreflection and
magnetoresistance for a
Co43Al22O35 nanocomposite
at the incident angle ϕ = 10◦
and frequency
ν = 1130 cm−1 at room
temperature

and its MR [9]. It should be underlined that, for this structure and the parameters of
experiment (see the caption to Fig. 5.1), the change in reflection due to the MRE is
at least two or three orders of magnitude larger than that for the transverse MO Kerr
effect.

The frequency, temperature, and field dependences of σ(ω,H,T ) and the MRE
parameters (5.1)–(5.3) depend on the type of MR and of materials under considera-
tion. In contrast to traditional MO phenomena the MRE is not attributed to the SOI
but is associated with MR, hence, the magnetoreflection and magnetotransmission
of light due to the MRE in high-magnetoresistive materials can reach values of 10–
20 % that are giant for magneto-optics. The MRE is nongyrotropic phenomenon i.t
it is an even-parity function of magnetization.

It is worth to discuss the definition of the MRE in more detail. The term “mag-
netorefractive effect” means that the indices n and k change in the presence of an
external magnetic field H . Generally, this term can be used for any mechanisms of
magnetoreflection, magnetotransmission, and magnetoabsorption in arbitrary mate-
rials, even in insulators [10] or paramagnetic and diamagnetic metals and semicon-
ductors without or with very small MR. For example, such effects in non-magnetic
semiconductors, which are sometimes referred to as magnetoplasma phenomena
(see [11, 12]), have been known for more than 50 years. However, they are relatively
weak even in a strong magnetic field and can be observed only in a narrow frequency
range [11] at low temperatures. The effects of magnetoreflection and magnetotrans-
mission may be caused by the following:

– influence of the Lorentz force on charge carriers’ transport [11, 12];
– changes in the concentration of charge carriers, in the electronic structure, in the

probability of interband optical transitions [13], due to the Fermi level shift or the
displacement of the mobility edge [14] by a strong magnetic field;

– magnetic field-induced phase transitions and phase separation [43];
– the change of the effective polaron mass [15], due to the dynamic Jahn–Teller

effect [16];
– a strong suppression of polarons [17] by a magnetic field, etc. (see discussion

below).
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All this eventually leads to changes in the permittivity. Initially, these effects
were not considered as manifestations of the MRE, because Jacquet and Valet [4]
introduced this term in 1995 only for magnetoreflection and magnetotransmission of
infrared radiation (IR) in metallic multilayers with giant MR. Later, the term MRE,
which characterizes the high-frequency response to MR, had been applied to any
systems with a significant value of MR, including those with giant, tunneling, and
colossal MR, not only in the IR spectral region but also in the microwave [18, 19]
and visible range [16]. Recently, this term has been used for all the mechanisms
providing magnetoreflection and magnetotransmission that are not determined by
the SOI [10, 13–17]. Although, strictly speaking, this is not consistent with the ini-
tial definition of Jacquet and Valet [4], we will also use the term MRE in a broad
sense to refer to different mechanisms of magnetoreflection and magnetotransmis-
sion rather than only to a high-frequency response to MR, every time, whenever
possible, specifying the cause of these effects.

In this chapter, firstly, we will briefly survey early experimental and theoreti-
cal results on the MRE in: (i) all-metal multilayers and granular alloys with giant
magnetoresistance, (ii) metal–insulator multilayers and nanocomposites with tunnel
magnetoresistance, (iii) manganites with colossal magnetoresistance, and magne-
tophotonic crystals. Secondly, we will focus on recent developments, which have
led to better understanding of the MRE and to the recognition of unsolved problems
and possible routes for the MRE enhancement.

5.2 MRE in All-Metal Multilayers and Granular Alloys with
Giant MR

5.2.1 Introductory Remarks

The permittivity tensor for a medium magnetized along the z axis has the form of

!
ε=
⎛
⎝εxx εxy 0
εyx εyy 0
0 0 εzz

⎞
⎠ . (5.5)

It follows from symmetry considerations that εxx = εyy and εxy = −εyx . The non-

diagonal components are linear, while the diagonal components of
!
ε are quadratic

in magnetization M , i.e.

εxx = εd
(
1 + bM2); b = ba + bMRE; εxy = aM. (5.6)

Here, ba characterizes the contribution due to induced anisotropy of the mag-
net [20, 21], which is on second order of the SOI, while bMRE describes the MRE
contribution. The non-diagonal elements of the permittivity tensor are responsible
for the MO Kerr and Faraday effects, which are linear in the SOI and magnetiza-
tion, and also may lead to the even-parity MO effect. Note that the so-called orien-
tation MO effect, which is also even-parity in magnetization [20, 21], is associated
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Fig. 5.2 Dependencies of the
magnetorefractive effect in
reflection mode
(magnetoreflection) and the
reflection coefficient on an
incident angle of s- and
p-polarized light for an
insulating nanocomposite
(below the percolation
threshold): ρ

ρ
= −3 %,

n= 2.5, k = 0.5

both with the contribution εdbaM
2 to the diagonal elements and with non-diagonal

terms εxy . Consequently, the results of MRE measurements always contain the con-
tribution from these even-parity MO effects along with the true MRE. As a rule, the
even-parity MO effects are discarded in the analysis of the MRE based on the fol-
lowing arguments. The contributions of induced anisotropy and non-diagonal terms
to magnetoreflection and magnetotransmission are approximately the square of the
MO factor Q [21], i.e. are quadratic in the SOI. The MO factor Q in the visible
spectral region for most materials does not exceed 0.01 and there are no grounds to
expect an increase in this factor in the IR spectral region. Consequently, the even-
parity MO effects may lead to a change in R upon magnetization by no more than
0.1 %. Thus, the influence of the even-parity MO effects on the MRE can be ne-
glected in all cases when the MRE exceeds 0.1 %. At first glance these arguments
look reasonable. Nevertheless, in spite of the induced anisotropy term is quadratic
in the SOI, the corresponding contribution to magnetoreflection may be compared
with linear MO effects because of different role of degenerate states near Fermi en-
ergy and different MO transitions in the even-parity MO effects, which are due to
the diagonal and non-diagonal terms in (5.5). A good example of such possibility
is given in Ref. [21]. It is not without precedent for effects related to the SOI. For
example, anisotropic MR is also quadratic in the SOI but may reach 4 % at room
temperature and 20 % at low temperatures. Thus, it should be taken into account that
even-parity MO effects can give a noticeable contribution to magnetoreflection and
magnetotransmission; especially in the case of materials with giant MO phenomena
in the visible spectral range.

If a function of
!
ε (ω,H,T ) is known, then, using the Fresnel formulas, it is not

difficult to calculate the MRE parameters (5.1)–(5.3) for an arbitrary angle and po-
larization of incident light in the cases of thick samples or thin films on substrates
[9, 22]. Without interference effects and backscattering from a substrate magne-
toreflection increases with an angle of incidence for p-polarized light [22], reaches
maximum at an angle close to the Brewster angle and then decreases (Fig. 5.2). In
contrast to the MO Kerr effect, the MRE exists at normal incidence and weakly
depends on polarization of light at small angles of incidence [22].

The MRE theory differs for “good” (high-conductivity) metallic systems (all-
metal multilayers and granular alloys with giant MR) and “poor” (low-conductivity)
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metals (multilayers and nanocomposites with tunnel MR or manganites with colos-
sal MR) because of different mechanisms of MR and frequency dependences of
conductivity σ(ω,H). For “good” metals, σ(ω) satisfies the Drude–Lorentz law,
which makes the theory quite simple.

5.2.2 Theory

The MRE theory for all-metal multilayers was developed by Jaquet and Valet [4]
(see also discussion in [23–25]). The theory is based on: (i) the phenomenologi-
cal theory of spin-dependent scattering in the bulk and interfaces of ferromagnetic
layers in the current perpendicular to plane (CPP) geometry of giant MR, (ii) the
Drude–Lorentz law for σ(ω,H), and (iii) the self-averaging limit [26] for averaging
all parameters of multilayers, including the relaxation time, conductivity and permit-
tivity. It is also assumed that only intraband scattering is responsible for the MRE,
which is consistent with the initial definition of this effect, and that the electronic
structure is the same for ferromagnetic and antiferromagnetic alignments of mag-
netic moments of ferromagnetic layers. The same approach was used by Granovsky
et al. [5] for the case of granular alloys but with the theory of Zhang–Levy [26] for
giant MR in granular alloys as the starting point.

These theories [4, 5] are very similar to each other, as was shown in Ref. [27], and
are oversimplified. However, they can give qualitative description of the experiment
in the IR range of spectrum in most cases. Since these models were discussed in
detail in several papers [25, 27–29], here we do not give details but only discuss
some useful relations and limitations of the theory.

If the MRE is due to only intraband optical transitions (εr = const(H)) and the
Drude–Lorentz law is valid (σ(ω) = σ(ω=0)

1+iωτ
, where τ is the relaxation time), then

magnetoreflection tends to zero at visible and at far infrared wavelengths; thus it
reaches a maximum value at an intermediate frequency [6, 27]. It follows imme-
diately from (5.4) that if the frequency of light is large, the second term in (5.4)
4πσ(ω,H,T )

ω
is small compared with the first one εr = const(H) and R(H)

R
→ 0; in

the Hagen–Rubens limit ωτ � 1 the energy of photons is on contrary too small to
provide optical intraband transitions, which also gives R(H)

R
→ 0. The correspond-

ing expression in the Hagen–Rubens limit (ωτ � 1) is as follows [5, 6, 27]:

R(H)

R
= −1

2
(1 −R)

ρ(H)

ρ
(ωτ � 1), (5.7)

ρ(H)

ρ
= ρ(H)− ρ(H = 0)

ρ(0)
, (5.8)

where ρ(H)
ρ

is MR. It follows from (5.7) that one should expect large values of
the MRE in materials with large MR but small reflection R, a strict correlation
between field dependences of MRE and MR, and opposite signs of these parame-
ters.
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Let us discuss the limitations of the theory. First, the self-averaging limit is valid
only when the mean-free path of electrons is much larger than all characteristic
lengths, namely, the thickness of layers or granular diameter. In that sense the self-
averaging limit is equivalent to the effective medium approximation. Obviously, it
does not work well in the case of multilayers and granular alloys with giant MR [30].
Second, the theory is phenomenological because it is based on a phenomenological
approach to the MR theory. Since this approach is not appropriate for quantitative
description of MR it is difficult to expect it for the MRE. Third, models contain
numerous parameters, and it is difficult to determine them independently. For ex-
ample, transport and electronic parameters of thin ferromagnetic and paramagnetic
layers may differ significantly from those for bulk materials and may depend on
their thickness. Fourth, the models do not use realistic electronic structures and do
not take into account interband optical transitions. It was shown in [13] that the last
point is very important in the near-IR range.

5.2.3 Experiment

The MRE in the reflection geometry was reproducibly observed in the near-IR
region in NiFe/Cu/Co/Cu multilayers and, for transmitted light [4], in trilayers
Fe/Cr/Fe [31] and spin-valve structures [32], in Co/Cu multilayers [25], and in Fe/Cr
multilayers ([29] and references therein). Magnetoreflection is as large as 5.4 % for
Co/Cu multilayers exhibiting 65 % MR at room temperature, and, for the multilayers
having about 1–4 % MR, it is less than 1 % [25]. The authors of Ref. [29] succeeded
in explaining magnetoreflection in Fe/Cr multilayers at λ > 9 μm even quantita-
tively and determined the important for spintronics parameter of spin asymmetry
of scattering, which was in good agreement with first-principle calculations [29]. It
was shown that in the long-wave limit the theory of Jaquet and Valet is quite ap-
propriate for explaining experimental data [29], but it does not work well at shorter
wavelengths. Both for Co/Cu and Fe/Cr multilayers the role of interband optical
transitions (the first term in (5.4)) becomes more and more important [13, 29] with
approaching the visible range.

Recently, magnetic, optical, MO properties, MR, magnetoreflection and mag-
netotransmission of a seven-layer Cr(28 Å)/Fe(36 Å)/Cr(13 Å)/Fe(18 Å)/
Cr(13 Å)/Fe(36 Å)/Cr(28 Å) structure have been studies over a wide field and tem-
perature range in the spectral region from 0.8 to 10 μm [33]. The authors measured
MRE and MR in the Voigt and Faraday geometry and the field dependences of the
magnetotransmission and MR were found to correlate. However, there is no linear
correlation between the temperature dependences neither of the magnetotransmis-
sion and MR nor between the magnitudes of these effects measured in the Voigt and
Faraday geometry. The calculations performed in terms of the MRE theory of Jaquet
and Valet [4] qualitatively described the obtained experimental data. The model cal-
culations demonstrate that, apart from the film thickness and related multiple light
reflections from substrate and possible interference effects, the effective relaxation
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time of charge carriers and the plasma frequency strongly affect both the magnitude
and the spectral dependence of the MRE. However, a quantitative explanation of
the obtained spectra requires a theory that does not use the self-averaging limit and
takes into account the realistic band structure, or at least two groups of carriers (s
and d electrons), even-parity MO effects, the effect of a magnetic field on interband
optical transitions, and the change in the band structure at the conditions when the
orientation of the magnetic moments in the layers changes.

The above conclusion is also true for granular metal–metal alloys with giant
MR. Besides, the theory does not take into account also neither a distribution in
size of grains and distance between them nor the presence of magnetic ions in
the matrix between grains. The MRE was experimentally measured for granular
Co–Ag alloys [27, 28, 34], and, in sufficiently strong magnetic fields, it was less
than 1 % [27, 28] because MR in granular alloys is not as large as in multilayers.
The correlation between the MRE and MR was clearly demonstrated. The detailed
analysis of the MRE in granular alloys in the framework of the theory of Granovsky
et al. [5] revealed the influence of different model parameters on the MRE behav-
ior [27, 28].

5.3 MRE in Nanostructures Exhibiting Tunnel MR

5.3.1 Theory

The theory of the MRE in metal–insulator multilayers with tunnel MR was devel-
oped in [35]. The authors used the same approach as was developed for metal–metal
multilayers [23, 24] but took into account the tunneling between ferromagnetic lay-
ers. This calculation predicts a quite small effect in magnetoreflection, when the
thickness of insulator layers is greater than 1 nm.

A different approach was suggested in Ref. [7] for the case of metal–insulator
nanocomposites with a metal volume fraction close to the percolation threshold.
The tunnel junction between adjacent granules, responsible for ac current in metal–
insulator nanocomposites can be thought of as a capacitor [36, 37]. Then the optical
conductivity of granular metal–insulator alloys with a composition close to the per-
colation threshold can be written as

σ(ω,H)= 1 + i
εint
4π ωρ(H)

ρ(H)
, (5.9)

where εint is the dielectric constant of the insulator between granules. For simplic-
ity in (5.9), a flat capacitor was considered, and the authors did not average (5.9)
over the grain size distribution and distances between them since only a few tunnel
junctions are responsible for a charge transport when approaching the percolation
threshold. Then it immediately follows from (5.4) and the Fresnel formulas for a
semi-infinite medium model (air and thick sample) at normal incidence that
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R

R
= −(1 −R)

ρ

ρ
k2
[

3n2 − k2 − 1

(n2 + k2)[(1 − n)2 + k2]
]
, (5.10)

I

I
= 1

2

ρ

ρ
Ik2 2n2 + n

n2 + k2
, (5.11)

where optical constants correspond to the demagnetized state.
Equation (5.9) is valid if the tunneling probability does not depend on frequencies

those are expected for infrared wavelengths [37]. In fact, the tunneling probability
does not depend on frequency ω if ωτ � 1, where τ is the tunneling time. Since τ is
about d/vF , where vF is the electron velocity at the Fermi level and d is the mean
distance between adjacent granules responsible for tunneling, one can estimate τ

as 10−15–10−16 s that is in an agreement with more strict considerations [37]. It
means that the tunneling probability is suppressed only at the ultra-violet wave-
lengths. Besides, one can neglect photon-assistant tunneling because of a low in-
tensity of light in the experiment. It should be noticed the following limitations of
this simple approach. First, (5.9) is based on the assumption that the same tunneling
junctions in nanocomposites are responsible for both dc and ac current. If ac cur-
rent flows through other junctions with larger distances between granules, one can
expect significant decrease of the MRE. Second, it was assumed in the model that
the capacitance between grains does not depend on relative orientations of granular
magnetic moments, so predicted in [38] (but not confirmed by experiments) possi-
ble effects of electron–electron interaction on magnetocapacitance were not taken
into account. Third, only single-barrier tunneling was considered, although reso-
nant double-barrier tunneling might be important as well. Finally, (5.9) is valid only
in the vicinity of the percolation threshold. To consider a wider range of composi-
tions, one should average the optical conductivity over granules’ size distribution
and distances between granules. In a strict sense, the developed theory of the MRE
in nanocomposites is valid only in the immediate vicinity of the percolation transi-
tion, since the high-frequency current is apparently redistributed between different
conduction channels as frequency varies. Thus, (5.9) can be viewed only as an initial
step for the qualitative interpretation of the MRE in nanocomposites.

According to (5.10) the MRE frequency dependence in nanocomposites differs
from that for metallic granular alloys; the MRE can be negative as well as positive
and it is large if reflectivity is small. Formally, (5.10) and (5.7) are similar but for
metallic systems reflectivity R is much larger, which makes the MRE in nanocom-
posites more pronounced in a wider spectral range even at equal MR. Using the
Fresnel formulas it is straightforward to generalize the above approach to an arbi-
trary incident angle and polarization. Besides, it is not difficult to apply the approach
to the three-layer model (air-sample-substrate) when the MRE can be enhanced due
to interference of light [7]. It should be underlined that, since nanocomposites are
partly transparent, light reflected from substrate and interference effects are more
significant for them than for metallic systems.

At last, there is another mechanism of the MRE in nanocomposites, which is
not due to spin-dependent tunneling at all. It is well known that light interacts with
optical phonon modes in case of non-metallic systems. Kravets et al. [10, 15] dis-
covered that this interaction in dielectrics depends on the magnetic field. The effect
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can be observed in strong magnetic fields at an incident angle close to the Brewster
angle in a certain frequency region in the infrared band. This effect was attributed
to the influence of the applied magnetic field on an effective mass of polaron [15].
As a rule, this effect is small, R

R
is less than 0.6 % at 12 kOe for Al2O3 and MgO,

which are typical dielectric components of magnetic nanocomposites. Apparently,
this effect is not described by (5.9) because it occurs due to the first term in (5.6).

5.3.2 Experiment

The experimental data on the MRE in nanocomposites [18–23] clearly indicate the
existence of spin-dependent tunneling at high frequencies, including that from the
near infrared range. The spin-dependent tunneling is of primary importance for all
high frequency applications of devices based on tunneling and for spintronics. A sig-
nificant (up to 1.5 %) magnetoreflection was found in metal–dielectric films, such as
Co–Al–O, CoFe–MgF, CoFeZr–SiOn, Fe-SiO2 and CoFe-Al2O3 [7, 9, 22, 39, 40].
The effect is observed only in compositions that are close to the percolation thresh-
old and that are characterized by a significant tunnel MR.

Recently, a detailed experimental study of the MRE in nanocomposites CoFe-
Al2O3 and multilayers CoFe/Al2O3 has been conducted [39]. The nanocompos-
ites samples were close to the percolation threshold, exhibited tunnel MR about
7 % and R

R
about 0.7 %. The MRE in multilayered structures of [CoFe(1.3 nm)/

Al2O3(3 nm)]10 with MR of 5.5 % had R
R

= 2.5 % in spite of the insulator spacer
was quite thick. This relatively large value of the MRE in metal–insulator multilay-
ers was attributed to the interference effects. Besides, two found peculiarities in the
MRE spectra at λ = 6.7 and 8.1 μm were explained by the magnetic field induced
changes in optical vibration modes.

Thus magnetoreflection and magnetotransmision in metal–insulator nanocom-
posites have at least two mechanisms: the first one is the high-frequency spin-
dependent tunneling between adjacent grains, which is intrinsic MRE; the second
one is the influence of the magnetic field on vibration modes in insulator spac-
ers between grains. The second mechanism was studied by precise measurements
in [40] for nanocomposites (CoFe)x (Al2O3)1−x and (CoFe)x (HfO2)1−x . IR reflec-
tion spectra were recorded within 2.5–25 μm region using a Fourier transform IR
reflection spectrometer with 4 cm−1 resolution and liquid-nitrogen-cooled HgCdTe
detector. The angle of s- or p-polarized light incident with respect to the film nor-
mal was equal to 65◦, close to the Brewster angle. This allowed analyzing possible
mechanisms. Surprisingly, magnetoreflection was quite small in comparison with
the above mentioned data, less than 0.5 %, in spite of a strong magnetic field of
12 kOe and of the same order of MR. The data clearly indicate that, besides the
intrinsic MRE, there is a contribution from the insulator component at certain fre-
quencies, corresponding to vibration modes. To explain the experimental data on
optical properties, the authors used the effective medium approximation for dielec-
tric permittivity of a two-component composite, a phenomenological Lorentz model
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for the dielectric permittivity of an insulator, and (5.7) for magnetoreflection in the
Hagen–Rubens limit for metallic systems, supposing that MR in this expression is
tunneling MR. The explanation is not consistent because (5.7) does not work for
metal–insulator composites and is valid only for giant MR metallic materials with
the Drude–Lorentz behavior of optical conductivity. Perhaps, the similarity between
(5.7) and (5.10) allowed obtaining qualitative explanation. Nevertheless, the origin
of the contribution from the insulator component is not quite clear. This contri-
bution is small (even at the Brewster angle) that makes difficult its investigation.
Several possible mechanisms can be considered as responsible of these peculiarities
at certain vibrating frequencies. It is quite reasonable to assume that the character-
istic vibrating frequencies and electron–phonon interaction depend on the applied
magnetic field but there is no corresponding theory. Besides, as it was mentioned
in Ref. [40], since numerous doped and undoped with transition metals insulators
exhibit room-temperature ferromagnetism, supposed to originate from percolating
magnetic polarons (see, for example [41]), it is also possible that such magnetic
polarons appear in nanocomposites in the vicinity of structural defects in the insula-
tor matrix. In this case an external magnetic field will influence magnetic polarons’
behavior that can lead to a corresponding contribution to magnetoreflection. How-
ever, such an interesting mechanism is questionable because the peculiarities at the
vibrating frequencies in nanocomposites [40] and bulk insulators [10] are very sim-
ilar.

To conclude this section, we would like to stress that the study of the MRE in
systems with tunnel junctions makes possible to shed light on spin-dependent tun-
neling in a wide frequency range, and a lot of problems in this field are far from
being well understood.

5.4 MRE in Manganites Exhibiting Colossal Magnetoresistance

5.4.1 Introductory Remarks

Manganites constitute a class of systems that is important for fundamental re-
searches due to reach physics underlying their unique features and due to a wide
diversity of their structural, magnetic, magnetotransport, MO and mechanical prop-
erties [43–45]. For MRE applications, it is necessary either to increase the amplitude
of the effect or to decrease the strength of control fields. In addition, it is important
to find materials or structures for which a significant MRE is observed also in the
visible spectral range. Since the MRE is primarily controlled by the MR value, the
interest in the MRE in manganites exhibiting colossal MR, which may be much
larger than giant or tunnel MR, is quite obvious. However, it is not the sole reason
because the inverse problem, namely, developing of a new type of MO spectroscopy,
based on the MRE spectra measurements, is also important for investigation of such
complicated materials as manganites.
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The effect of magnetotransmission in manganites with colossal MR was dis-
covered in 1997 in experiments with an La0.9Sr0.1MnO3 single crystal in mid-IR
wavelengths at low temperatures [46] and was later studied in experiments with
many other manganites (see [47–51] and references therein). An important advance
was that, in La0.67Sr0.33MnO3 films, the value of magnetotransmission above room
temperature and in a field of 8 kOe was as large as 6 % [47]. The correspond-
ing quantity for the composition of La0.8Ag0.1MnO3+δ was as large as 15 % [49],
the record value for room temperatures. Even stronger magnetotransmission effects
∼30 % were observed in the La0.9Sr0.1MnO3 single crystal at TC = 140 K when
the concentration of strontium was lower than the percolation threshold [46] and
about ∼50 % for La0.35Pr0.35Ca0.3MnO3/SrTiO3 thin film [52] at T = 170 K and
H = 8 kOe. Magnetoreflection in manganite films is also larger than in nanostruc-
tures with the giant and tunnel MR [53]. Recently, the MRE has been demonstrated
also for visible wavelengths [14, 16, 17].

Although it is natural to assume that these giant magnetotransmission and magne-
toreflection effects are manifestations of the high-frequency MR (or in other words,
of the intrinsic MRE) because they are observed in systems with colossal MR, this
assumption implies the strict correlation between the MRE parameters (see (5.1)–
(5.3)) and MR, whereas this correlation is often violated for temperature and con-
centration dependences of magnetotransmission and magnetoreflection in the stud-
ied samples. Currently, there is no quantitative and, in some cases, even qualitative
theoretical description of these effects. The absence of a consistent theory of the
high-frequency conductivity and MR of manganites hinders consistent description
of the MRE in such systems. In manganites, the mechanisms of conductivity and
MR are substantially more complicated than those in nanostructures with giant or
tunnel MR. MR in manganites is determined by at least two different main mecha-
nisms, namely, (i) an increase in the volume fraction of the ferromagnetic phase with
a simultaneous decrease in the volume fraction of the more resistive antiferromag-
netic phase during magnetization (this leads to colossal MR) and (ii) the tunnel MR,
which is observed in weakly doped manganites, in polycrystals, in systems with a
variant structure, and in heterostructures [46–49, 54–56]. Besides phase separation,
manganites are characterized by a strong electron–phonon and electron–electron in-
teraction, the Jahn–Teller effect and the influence of magnetic fields on electronic
structure. Therefore, magnetotransmission and magnetoreflection in manganites can
also be due to numerous mechanisms, as the high-frequency tunnel MR, the high-
frequency colossal MR, magnetic field induced shift of the Fermi energy or of the
fundamental optical absorption edge, a change of electronic structure and electron–
phonon interaction in a magnetic field, the Jahn–Teller effect etc. The theory of
the MRE in metal nanostructures with giant MR described above in Sect. 5.2.2
is not appropriate for manganites because they are “poor” (high-resistive) metals,
where the Drude–Lorentz law is invalid and the origin of colossal MR is not con-
nected with the spin-dependent scattering. The approach to the high-frequency spin-
dependent tunneling in nanocomposites described in Sect. 5.3.2 cannot also be ap-
plied to manganites directly because tunneling in manganites occurs in completely
different geometries and conditions. In manganites magnetic field influences on tun-
neling across weak-conducting grain boundaries in poly- and nanocrystals [42, 43],
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Fig. 5.3 Temperature
dependences of the absolute
values of
(a) magnetotransmission at
wavelength λ∼ 6.7 μm and
(b) magnetoresistance of
(La1−xPrx )0.7Ca0.3MnO3
(0 ≤ xPr ≤ 0.75) films grown
on a SrTiO3 substrate in an
out-of-plane magnetic field of
8 kOe

or across high-angle boundaries of structural domains in thin films with a variant
structure [48, 49], and through interfaces in multilayered structures and heterostruc-
tures [56, 61, 77]. In addition, tunneling is not responsible for the colossal MR. The
developing of the theory of high-frequency colossal MR based on a model of ac
current in percolating two-phase composite in the effective medium approximation
is only in the very beginning [57].

5.4.2 Magnetotransmission in the IR Range of Spectrum

Since the first observation of magnetotransmission in manganites in 1997 [46],
the origin of this effect has been a subject of intense research. It was shown that
magnetotransmission takes place in the IR range of the spectrum in single crys-
tals, single-crystalline and polycrystalline thin films and thin films heterostructures
(see [46, 51, 53–56] and references therein). It was established that magnetotrans-
mission at temperatures T > 100 K in a magnetic field up to 10 kOe is an optical
response on the colossal MR, i.e. it can be viewed as the intrinsic MRE. Magneto-
transmission is of the same sign as the colossal MR (which corresponds to the MRE
theory), alike MRE reaches a maximum in the narrow interval of T = ±20 K
around the Curie temperature TC , and weakly depends on a magnetic field orienta-
tion relative to a sample surface. The magnitude of magnetotransmission can be as
high as 50 % [52].

Both magnetotransmission magnitude and the temperature, at which magneto-
transmission exhibits maximum, strongly depend on isovalent and non-isovalent
substitution of rare earth metals ions as well as on a doping level [58, 59]. Figure 5.3
shows an example of magnetotransmission for the isovalent substitution La3+ by
Pr3+ ions in the case of (La1−xPrx )0.7Ca0.3MnO3 (0 ≤ xPr ≤ 0.75) thin films: both
the temperature position of the maximum in magnetotransmission (

I (ω,H)
I

)max

and the position of the MR maximum (
ρ
ρ
)max shift synchronously with increase
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Fig. 5.4 Temperature
dependences of the absolute
values of
magnetotransmission at a
wavelength of λ∼ 9 μm
(solid lines) and
magnetoresistance (open
symbols) of LaxMnO3
(0.83 ≤ xLa ≤ 0.90) films in
an out-of-plane magnetic field
of 8 kOe

Fig. 5.5 Temperature
dependences of the absolute
values of magnetoresistance
(a) and magnetotransmission
(b) at an out-of-plane
magnetic field of 8 kOe and a
wavelength of λ∼ 6 μm for
La0.8Ag0.1MnO3+δ films of
different thicknesses grown
on ZrO2(Y2O3) substrates:
(1)—500 nm, (2)—800 nm,
(3)—1 μm

of a doping level from xPr = 0 to the percolation threshold (xPr = 0.75), and an
amplitude of (I (ω,H)

I
)max does not change (Fig. 5.3(a)), while (

ρ
ρ
)max increases

(Fig. 5.3(b)).
A different behavior was observed for a non-isovalent substitution and in the

presence of vacancies in the rare earth metal sub-lattice. For example (Fig. 5.4), in
LaxMnO3 (0.83 ≤ xLa ≤ 1.10) thin films magnetotransmission and MR reach their
maximum values at different xLa [59]. Thus the strict correlation between magneto-
transmission and MR is violated in the temperature range of dominant contribution
of the colossal MR both at isovalent and non-isovalent substitutions.

By analogy with an observed optical response of manganites with the colos-
sal MR and of nanocomposites with the tunnel MR, one can also expect a low
temperature optical response on a tunnel contribution to MR in manganites with
a variant structure [48, 49]. But, surprisingly, it is not the case. Figure 5.5(a) clearly
shows two contributions to MR in thin films La0.8Ag0.1MnO3+δ /ZrO2(Y2O3) with
a variant structure: low temperature tunnel MR and colossal MR with a maximum
at TC . Magnetotransmission was not observed in the range of dominant tunnel MR
(Fig. 5.5(b)) but existed at TC [48]. Anyhow, further experiments are needed to an-
swer whether an optical response on tunnel MR in manganites exists or not. At



5 Magnetorefractive Effect in Magnetoresistive Materials 121

Fig. 5.6 Spectra of the absolute values of magnetotransmission of (1)—La0.83MnO3 film at
temperature T = 268 K, (2)—La0.82Na0.18MnO3+δ (303 K), (3)—La0.9Ag0.1MnO3+δ (305 K),
(4)—La0.7Ca0.3MnO3 (265 K) and (5)—(La0.5Pr0.5)0.7Ca0.3MnO3 (176 K) in an out-of-plane
magnetic field of 8 kOe

Fig. 5.7 Temperature
dependences of
magnetotransmission the
La0.7Ca0.3MnO3 single films
of different thickness at a
wavelength of λ∼ 6 μm in an
out-of-plane magnetic field of
8 kOe. Solid line is for a
structure of these adjoined
films

least, there is evidence in the case of charge and magnetic inhomogeneous crystals
La5/8−yPryCa3/8MnO3 that its optical conductivity depends on a magnetic field of
120 kOe at T = 4.2 K, whereas TC = 120 K [60].

Magnetotransmission spectra in non-stoichiometric and doped lanthanum man-
ganites show that the effect is quite large in a wide IR spectral range from 1.4 to
12 μm (Fig. 5.6). The spectra profile depends on a doping level, charge, and mag-
netic inhomogeneities, and on mechanical stresses [47–59].

Thus magnetotransmission in the IR spectral range is determined by the influence
of a magnetic field on interaction with light both localized and delocalized charge
carriers. Therefore the temperature and field dependences of magnetotransmission
are quite different at different wavelengths. The choice of a wavelength of 6 μm
for measurements of field and temperature dependences of magnetotransmission
was done because this wavelength is far from the fundamental absorption edge and
optical modes at 3 and 8–10 μm (Fig. 5.6).

Figure 5.7 demonstrates the effect of superposition in magnetotransmission from
two adjacent thin films. In this experiment, the La0.7Ca0.3MnO3 thin film with a
thickness of 50 nm and TC ∼ 220 K was placed directly on the top of another
La0.7Ca0.3MnO3 film with a thickness of 180 nm and TC ∼ 260 K. As a result mag-
netotransmission of two films is neither a weighted average of two contributions
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nor a simple sum of two contributions but a superposition of the separate contri-
butions (Fig. 5.7). The discovery of this effect triggered investigations of MRE in
heterostructures based on manganites with colossal MR. Such investigations were
aimed at development of novel multifunctional MO materials and showed results
promising for applications. For example, it became possible to enhance magneto-
transmission up to 40 % in the heterostructure ferrite/manganite due to an additional
sub-magnetization by the ferrite film [55] or to obtain a weak temperature depen-
dent magnetotransmission in heterostructures composed from Sm0.55Sr0.45MnO3
and Nd0.55Sr0.45MnO3 possessing different TC [61]. Since manganites are partly
transparent for a light, it is also possible to use them as components of magnetopho-
tonic crystals [62] and, as predicted in [6] and discussed in [14, 62], reach giant
responses in magnetotransmission and magnetoreflection.

5.4.3 Magnetoreflection and Magnetotransmission of Manganites
La0.7Ca0.3MnO3 in the IR and Visible Spectral Range

The experimental data on the MRE in manganites in the IR range are contradic-
tory, scarce, and exist either only for magnetoreflection (see [54, 60, 63–66]) or for
magnetotransmission (see [46–53, 55–59] and references therein) often in a limited
ranges of wavelengths, fields, and temperatures without comparison with the data
for bulk crystals or polycrystals of the same composition and analysis for films of
various thicknesses. Reflection from a substrate used for a fabrication of a film may
significantly change the MRE spectra profile–enhance or suppress the MRE sig-
nal at certain wavelengths; also it may change the sign of magnetoreflection [53].
A sample surface roughness and inhomogeneity of composition and an impurity
distribution across the skin-depth or along the surface may also affect magnetore-
flection.

Recently, magnetoreflection has been discovered in the visible range for thin
films of La2/3Ca1/3MnO3 and (Pr0.4La0.6)0.7Ca0.3MnO3 [16, 17]. Magnetoreflec-
tion for an incident angle of 45◦ and a magnetic field of 7 kOe reaches 2 % at tem-
peratures near TC . The effect was attributed to the influence of the magnetic field on
polarons [17]. But this mechanism is under debate in Ref. [14], where a competition
between mechanisms such as the contribution from even-parity MO effects and the
influence of magnetic field on the electronic structure is under discussion. The MRE
was investigated only in the reflection mode in Refs. [16, 17].

In this section, we will discuss last results of an extended research of the MRE in
La0.7Ca0.3MnO3 bulk crystals and thin films, both in the reflection and transmission
modes [53, 67], in a wide spectral range from IR to visible wavelengths [14]. We
will focus only on several important features; details on samples’ fabrication and
experimental setups can be found in Refs. [14, 53, 56].

Let us compare magnetoreflection and MR for two La0.7Ca0.3MnO3 single crys-
tals of the same composition, grown up in almost identical conditions, but possess-
ing a slightly different homogeneity. The lines with open symbols in Fig. 5.8 show
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Fig. 5.8 Distributions of La,
Ca and Mn ions along an
arbitrary line in the basal
plane of sample 1 (open
symbols) and sample 2 (solid
lines) for La0.7Ca0.3MnO3
crystals at a depth of 2 μm
measured at T = 295 K

Fig. 5.9 Temperature
dependences of (a)
magnetoreflection at
λ= 12.5 μm in a magnetic
field of 3.5 kOe and
(b) magnetoresistance for
sample 1 and sample 2 of
La0.7Ca0.3MnO3 crystals in
an out-of-plane magnetic field
of 15 kOe

the distributions of La, Ca and Mn ions along an arbitrary line in the basal plane of
sample 1 at a depth of 2 μm. It is seen that this sample is free of strong variations in
the composition of La0.7Ca0.3MnO3. The composition of sample 2 slightly fluctu-
ates along the surface; its quality is still high but a mosaic structure is presented [67].

Figure 5.9 shows that magnetoreflection and MR of these samples exhibit dif-
ferent features. For both samples R/R is opposite in sign to MR, that is, in an
agreement with the MRE theory (see (5.7) and (5.10)). For high-quality sample 1,
the bands of maximum values of R/R and MR and characteristic temperatures
(close to TC ) of maxima coincide with each other that are also in an agreement with
the MRE theory [6]. Besides, (5.7) gives a maximum value of R/R about 5 %
that is close to the experimental one (Fig. 5.9). At last, the frequency dependence
of R/R (Fig. 5.10) is characterized by a maximum around 12–15 μm, which is
also in an agreement with simple estimations for metallic systems (in accord with
Ref. [5], R/R reaches a maximum around ω ∼ τ−1, where τ ∼ 5 × 10−15 s is the
relaxation time). Thus these data clearly indicate that magnetoreflection for high-
quality sample 1 is a high-frequency response on the colossal MR, in other words,
due to the true or intrinsic MRE.

In contrast to sample 1, magnetoreflection of sample 2 has two bands (Fig. 5.9).
These bands originate from the presence of two main ferromagnetic phases with
different conductivities, MR and TC . It is worth mentioning that the MRE response
from these two phases is stronger than the MR response. It means that the MRE can
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Fig. 5.10 Spectral
dependences of
magnetoreflection for
sample 1 and sample 2 of
La0.7Ca0.3MnO3 crystals in a
magnetic field of 3 kOe at
T = 230 K

Fig. 5.11 Spectral
dependences of the
magnetoreflection for
La0.7Ca0.3MnO3 films with
thickness 150 nm (1) and
300 nm (2) and
La0.9Ag0.1MnO3+δ film with
thickness 450 nm (3) in a
magnetic field of 3 kOe at
temperatures corresponding
to the maxima of effects

be used as a method for effective contactless structural characterization of surface
layers.

There is no magnetoreflection associated with the low temperature tunnel MR
in both samples (Fig. 5.9). The same result was obtained for magnetotransmission
of La0.8Ag0.1MnO3+δ /ZrO2(Y2O3) films with variant structure [48]. As said in
Sect. 5.1, there is no a good explanation of such behavior. One can suppose that
this contribution to the MRE is suppressed by additional temperature dependences
of optical indices at low temperatures (see (5.10)) or that the second term in (5.4)
becomes too small in the case of tunneling in manganites (shunting effect of more
conductive paths). Coming now to the MRE in thin films, we should take into ac-
count both strain stresses inherent in films and the reflection from substrates. Both
factors can significantly change the MRE spectra and enhance magnetoreflection
or magnetotransmission. This is demonstrated in Fig. 5.11 for the case of weakly
stressed thick films La0.7Ca0.3MnO3 and La0.9Ag0.1MnO3 [14]. One can see that
the spectra are similar to those for bulk crystals but differ in detail; multiple pas-
sages of light through the film enhance R/R up to 20 %, to a giant value for
magneto-optics indeed.

The most dramatic changes may occur in strongly stressed thin films due to ap-
pearance of optical resonances. Such resonance-like behavior in the MRE spectra
was observed in La0.7Ca0.3MnO3 thin films (Fig. 5.12) in the vicinity of spectral
position of minimum reflectance at λ ∼ 14 μm, which is before the first phonon
line [53]. The analogous but less pronounced resonance was observed for the same
films in Ref. [54]. The origin of this optical resonance is not quite clear but it be-
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Fig. 5.12 Spectra of
magnetoreflection (a) in an
in-plane magnetic field of
3 kOe and
magnetotransmission (b) in
an out-of-plane magnetic field
of 8 kOe for the
La0.7Ca0.3MnO3 films of
different thickness measured
at temperatures of the
maximum response

Fig. 5.13 Schematic spectral
dependence of reflectance R
in the presence of the
magnetic field and the
corresponding change in
magnetoreflection R/R.
The spectral position of the
minimum R is not shifted (a),
is shifted towards smaller
wavelengths (b), and is
shifted towards larger
wavelengths (c) in the
magnetic field

comes apparent in strain stressed thin films, for example, in the film with a thickness
of 50 nm. The authors of Ref. [54] supposed that this resonance in R/R is due to
the deformation modes of MnO6 octahedrons. The specific features of this reso-
nance are as follows: (i) a deep minimum in reflectivity R spectra; (ii) enhancement
of magnetoreflection R/R; (iii) R/R changes its sign; (iv) absence of any sig-
nature of this resonance in magnetotransmission. These features can be explained
if the magnetic field shifts the spectral position of the resonance. The scheme in
Fig. 5.13 shows a possible behavior of R/R. The shift of the resonance frequency
might be due to an influence of the magnetic field on the deformation modes or
on the electron–phonon interaction. It is worth to notice that such resonance-type
features may be induced not only by the magnetic but also by electric field or by
applied stresses.

In the cases of weakly stressed films and single crystals the temperature and
field dependences of R(T ,H)/R and I (T ,H)/I in the IR spectral range from
the one side and those for ρ(T ,H)/ρ from the other side are alike [53], as it is
expected in the MRE theory. Especially it is true close to TC (Fig. 5.14). In the case
of strongly stressed thin films such correlation is not so good because of resonance-
type behavior in R(T ,H)/R. It is not of surprise because the MRE theory does
not take into account a resonance-type behavior of magnetoreflection.
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Fig. 5.14 Temperature dependences of (a) the magnetoreflection at in-plane H = 3 kOe (1), the
magnetotransmission at out of-plane field 8 kOe (2) for wavelengths at which effects are maximal
and (b) the magnetoresistance at out of-plane field 8 kOe. Field dependences of (c) the magnetore-
flection (1) and magnetotransmission (2), and (d) the magnetoresistance of the La0.7Ca0.3MnO3
film of the thickness 50 nm at T = 255 K in the same geometries

The MRE theory based on a high-frequency response on MR failed in the case of
magnetoreflection and magnetotransmission in the visible spectrum. In accordance
with the theory, R/R has to be positive and magnetotransmission has to be neg-
ative when MR is negative, but it is not the case at λ < 0.9 μm (Fig. 5.15) [14].
Magnetoreflection and magnetotransmission in La0.7Ca0.3MnO3 thin films change
their signs at λ < 0.9 μm and their spectra become very complicated without any
evidence of correlation with MR. For shorter wavelengths, a minimum appears in
magnetotransmission around 0.6 μm and R/R changes its sign again from the
negative to positive one (Fig. 5.15). In the case of La0.9Ag0.1MnO3 films, R/R
keeps its sign in the visible range [14]. The same is true for La5/8−yPryCa3/8MnO3
at T = 4.2 K in magnetic fields up to 120 kOe [60].

The most important finding is that magnetotransmission in La0.7Ca0.3MnO3 thin
films even in the visible range reaches ∼2 % in a relatively weak magnetic field of
3 kOe, oriented in parallel with thin film surface. It makes this effect promising for
application. Previously such large effect in magnetotransmission was observed only
in a very strong magnetic field, in Nd0.7Sr0.3MnO3 at T < TC in 89 kOe [65].

Thus, as judged from the sign of the observed spectra and their complicated struc-
ture in a wavelength range of 0.5–0.9 μm, magnetoreflection and magnetotransmis-
sion of the manganite films in the visible region of the spectrum have a different
nature as compared to the MRE effect observed in the IR spectral region, which
is associated exclusively with a high-frequency response on MR. The temperature
and field dependences of R/R and magnetotransmission studied in the visible re-
gion also support this conclusion [10, 13, 14, 16, 17, 21, 60, 65]. The origin of this
behavior is currently under debate [14] and several mechanisms are considered as
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Fig. 5.15 Spectra of
(a) magnetoreflection in an
out-of-plane magnetic field of
11 kOe for the
La0.7Ca0.3MnO3 films with
thicknesses of 50 nm (1) and
320 nm (2) at T = 265 K;
(b) magnetotransmission for
La0.7Ca0.3MnO3 film with a
thickness of 180 nm at
T = 265 K and in an in-plane
magnetic field of 2.8 kOe

possible candidates for explanation: (i) influence of the magnetic field on interband
transitions [13, 14]; (ii) influence of the magnetic field on the effective mass of non-
magnetic polarons [10]; (iii) suppression of the Jahn–Teller effect under the action
of the magnetic field [16]; (iv) even-parity MO effects [7, 14, 17, 21]; (v) influence
of magnetic field on the magnetic polarons [17].

In our opinion, the mechanism of the MRE in the visible range of spectrum in
manganites is as follows. The electronic structure of manganites is more sensitive to
variations in the magnetic field in comparison with other less complex materials. As
a result, the probability of an interband transition may depend on the magnetic field.
Since interband transitions are responsible for the dielectric permittivity and opti-
cal indices in the visible range (the first term in (5.4)), reflectivity and transmission
of the visible light may also depend on the magnetic field. The manganites under
investigation in the visible region are characterized by two fundamental absorption
bands at approximately 1.5 eV (0.82 μm) and 3.5 eV (0.35 μm) [68, 69]. There-
fore the probability of an interband transition is very high for this range, which is
also in a favor of the supposed scenario. This mechanism should work fairly well
over a wide range of temperatures both in the paramagnetic region and at low tem-
peratures. However, it can be especially pronounced in the vicinity of the Curie
temperature during the metal–insulator phase transition. In this case, the applied
magnetic field can lead to a change either in the electron density of states, or, what
amounts to approximately the same thing, in the relative fraction of delocalized
charge carriers, as well as to a change in the band width, a shift of the bands with
respect to each other, or a change in the wave functions, which, in turn, leads to a
change in the oscillator strength. To confirm or to neglect this scenario, the first-
principle calculations of electronic band structure of manganites in the presence of
the magnetic field are needed. Besides, we cannot completely exclude the possible
contributions from other mechanisms, listed above. Perhaps, all of them work in
competition.
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5.5 Possible Applications of the MRE

To understand advantages and disadvantages of the MRE in comparison with con-
ventional MO effects, let us compare the MRE magnitude in the reflection mode
with the transverse Kerr effect, which results in the change of intensity of reflected
p-polarized light under the magnetization, and the MRE in the transmission mode
with the Faraday effect.

In the IR range, say for λ > 1 μm, the parameter of the transverse effect Kerr
effect (δ) as a rule does not exceed 10−3 a.u. [51]. Sometimes it is difficult to mea-
sure the corresponding Kerr signal, whereas magnetoreflection in materials with the
giant MR (Sect. 5.2) or tunnel MR (Sect. 5.3) is about 1 % at normal incidence and
can be as high as ∼10 % in manganites with the colossal MR (Sect. 5.4) at room
temperature in reasonable magnetic fields.

In the visible range, manganites exhibit quite large MO effects (Fig. 5.16), the
parameter δ can reach 3 % at certain frequencies (see [14] and references therein)
and at the angles of incidence 50–67 degs. It is worth to remind the reader that
the transverse Kerr effect does not exist at normal incidence of light. Since mag-
netoreflection in manganites in this range significantly increases with the angle of
incidence (see Sect. 5.2) and is about 2 % at normal incidence, we can conclude that
the MRE in the reflection mode is at least two orders of magnitude larger than the
transverse Kerr effect in the IR range and can be also in several times larger in the
visible range.

The difference is more pronounced in the case of magnetotransmission in
manganites. The Faraday rotation is too small in the infrared range (Fig. 5.16)
but is about ∼40000 deg/cm in the visible range [70–72]. For the manganite
La0.7Ca0.3MnO3 film with a thickness of 320 nm, the magnitude of the Faraday
rotation does not exceed 1.3◦, which, in accordance with the Malus’ law, should
lead to a change in the intensity by approximately 0.05 %. This change in the in-
tensity of the light transmitted through the sample due to the Faraday rotation is
one order of magnitude smaller than the value of magnetotransmission in the visible
spectral region, which is no less than 0.7 % in a magnetic field of 1 kOe. So, in the
same geometry and the same magnetic field, the MRE in the reflection and trans-
mission modes is larger than even-parity MO Kerr and Faraday effects in the IR as
well as in visible spectral ranges. Besides, the MRE is nongyrotropic in the visible
and IR spectral regions; as a consequence, it has become possible to avoid the use
of light analyzers and polarizers in optical circuits, which can be of great practical
importance. Of course, it is an advantage only for nongyrotropic schemes. Since
manganites exhibit strong MO response, it is possible to utilize both gyrotropic and
nongyrotropic effects in one device.

The MRE can be used for development contactless magnetic sensors, modula-
tors of the IR and visible light, magnetic lens, attenuators, detectors of tempera-
ture [55, 61, 73–77] and so on. The MRE in the reflection mode makes possible
to effectively control MR of the key elements of spintronics—spin-valves—during
their production; this was proposed in several works [6, 8, 27].
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Fig. 5.16 Spectra of
(a) transversal Kerr effect for
La0.7Ca0.3MnO3 (1) and
La0.9Ag0.1MnO3 (2) films at
T = 80 K in H = 3.5 kOe
and (b) Faraday rotation for a
La0.7Ca0.3MnO3 film at
different temperatures in a
magnetic field of 2 kOe [70]

Fig. 5.17 Scheme of
modulation: M—the
magneto-optical element,
L—incident natural light,
P —transmitted and
S—reflected unpolarized
light, H—the source of the
controlling magnetic field
directed in plane or out of
plane to the surface of the
magneto-optical element

Before discovery of strong magnetoreflection in manganites, a scheme of a light
modulator was based on magnetotransmission [74–77]. Recently, it has been pro-
posed a novel scheme [78], in which modulation of light occurs simultaneously in
the reflection as well as in transmission modes for unpolarized light (Fig. 5.17). It
is worth mentioning that this scheme can work at any orientation of the magnetic
field.

Besides technical applications, the MRE can be used in physics for contactless
investigation of MR, spin asymmetry, high-frequency tunneling, surface inhomo-
geneity, magnetic and non-magnetic polarons, deformation modes and so on.

5.6 Conclusions

Significant progress in studying the MRE in different structures exhibiting giant,
tunnel and colossal magnetoresistance has been achieved in last years. It was unam-
biguously shown that for the IR spectral region the MRE in multilayers, granular
alloys, nanocomposites and manganites is associated with the high-frequency MR
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and it is in at least one or two orders of magnitude greater than the conventional MO
phenomena. In the visible region the MRE has been observed in manganites thin
films. It is not as large as in the IR region but in several times greater than effects in
magnetoreflection and magnetotransmission associated with MO Kerr and Faraday
effects.

Being quite large, in some cases up to 20–30 %, these are giant magnitudes for
magneto-optics, nongyrotropic, non-dependent on orientation of magnetic field and
light polarization at small angles of light incidence, the MRE can be successfully
used in magnetophotonic. In particular, the MRE is of interest for contactless mea-
surements of the MR in nanostructures, MO magnetic sensors, high-speed modula-
tors, and field-controlled optical elements.

However, many problems need to be studied further. First of all, we hope that
measurement of angular, polarization, temperature, frequency, and field depen-
dences of magnetoreflection and magnetotransmission for manganites will help to
clarify the origin of the MRE in the visible range. We think that the MRE in the
visible range is predominantly determined by the change in the electronic structure
under the action of the applied magnetic field but other mechanisms, mentioned
in Sect. 5.4.3, may also be in competition. For example, the relative role of even-
parity in magnetization for MO phenomena is not clear up to now. Secondly, it
should be emphasized that the MRE has not been studied yet in the cases of thin
films with anisotropic magnetoresistance and in the Heusler alloys with a large MR
in the vicinity of the martensitic transition important for underlying physics and
application. Thirdly, there is no experimental evidence of the magnetocapacitance
effect, which was predicted in magnetic tunnel junction metal/insulator/metal (see
Sect. 5.4). The list of important problems includes also (i) development of the theory
of spin-dependent tunneling in magnetically non-uniform media at high frequencies
and of the theory of the MRE in manganites; (ii) search for materials characterized
simultaneously with weak absorption, high MRE and weak operating field; (iii) de-
velopment of a technology for forming multilayer structures and magnetophotonic
crystals, containing manganite and nanocomposite films; (iv) extension of the fre-
quency range of applications toward the microwave and millimeter range of the
spectrum; (v) development of steady ground for novel MRE spectroscopy of mag-
netic materials.

We hope that our brief review will stimulate experimental and theoretical study
of the MRE in various magnetic nanostructures.
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Chapter 6
Magneto-Photonic Bragg Waveguides,
Waveguide Arrays and Non-reciprocal Bloch
Oscillations

Miguel Levy, Ashim Chakravarty, Pradeep Kumar, and Xiaoyue Huang

Abstract This chapter discusses optical transmission and waveguide mode prop-
agation in one-dimensional periodic structures fabricated in magneto-optic ridge
waveguides and waveguide arrays. The scattering process in multimode waveguide
Bragg reflectors is analyzed. Elliptical birefringence plays an important role in stop
band formation. Large band gap detuning in mixed-mode-order scattering is found,
with important applications to magnetically controlled optical switching. The chap-
ter also presents an analysis of non-reciprocal and unidirectional Bloch oscillations
in asymmetric magneto-optic waveguide arrays.

6.1 Introduction

The last decade and a half has witnessed a number of optical propagation and
polarization studies in magneto-photonic layered and waveguide structures. Inter-
esting scientific and technological possibilities open up due to the combination of
non-reciprocal effects such as Faraday rotation, the non-reciprocal-phase-shift ef-
fect in waveguides, and band gap engineering. Photon trapping in magneto-optic
non-reciprocal resonant cavities has been shown to lead to significant Faraday ro-
tation enhancement [1–5]. Stop band and polarization response to magnetic bias
in waveguide micro-cavities and Bragg reflectors have also been studied and used
to examine applications to optical switches and sensors [6–8]. Other authors have
explored electromagnetic unidirectionality in periodic magnetic stacks and two-
dimensional magneto-photonic crystals [9, 10] as well as magnetically controllable
band gaps in one-dimensional helicoidal magneto-photonic crystals [11]. Flat-top
response in multiple resonator one-dimensional magneto-photonic crystals [12] and
large polarization rotations in waveguide non-reciprocal Bragg systems have been
examined [13–15]. Other studies have analyzed band gap formation, local normal
mode coupling and Bloch states in elliptically birefringent magneto-photonic peri-
odic stacks [16–19].
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Here we present a discussion of one-dimensional periodic structures in multi-
mode magneto-photonic waveguides and waveguide arrays in magneto-optic films.
In particular, asymmetric coupling between different-order waveguide modes and
the presence of elliptical birefringence are shown to lead to significant polarization
and stop band tuning effects. Non-reciprocal and unidirectional propagation are also
analyzed in asymmetric waveguide arrays. Applications to optical switching are dis-
cussed.

The existence of high-order waveguide modes in addition to the fundamental
mode results in a rich complex of dispersion curves and qualitative changes in band
gap formation. The multimode regime plays an important role in the systems under
consideration, leading to wave-vector and frequency splitting for each fundamental
to high-order mode scattering processes. This particular type of splitting permits
magnetically controlled transmittance, strong near-band-edge polarization effects
and the possibility of magneto-photonic-crystal-based magnetic switches and sen-
sors. The essence of the effect can be traced to inter-modal back-reflection between
different mode-orders and mode helicity dependence of the transmittance. Of par-
ticular interest is mode conversion and mode hybridization upon helicity reversals
under asymmetric back-reflection in Bragg gratings. Some degree of Bloch mode
reconfiguration upon magnetization reversals does take place, as discussed in this
chapter, impacting the stop bands.

Elliptical birefringence, the difference in phase speed between elliptically polar-
ized normal modes, arises naturally in magneto-optic waveguides due to the com-
bined effects of magneto-optic gyrotropy and shape anisotropy [13–16]. Stress bire-
fringence, due to lattice mismatch between waveguide film and substrate also con-
tributes to the effect. We show that it is possible to induce significant changes in
the stop band spectral dispersion in elliptically birefringent multimode waveguides
through hybridized coupling between different forward and partially back-reflected
elliptically polarized waveguide modes. This stop band reconfiguration is traced to
the transmutation of elliptical normal modes into hybrid modes, through their ef-
fect on mode propagation in the waveguide. The stop bands for these normal modes
are detuned from each other due mostly to the large birefringence of the high-order
back-reflected modes.

Large near-band-edge polarization changes are induced through elliptically bire-
fringent photonic crystal asymmetric backscattering. The polarization changes are
due to the interplay between Faraday rotation and linear birefringence. These
changes come about from the partial selective reflection of positive and negative
helicity normal modes.

We also examine the application of the non-reciprocal phase shift effect to asym-
metric magneto-optic waveguide arrays. The possibility of unidirectional Bloch os-
cillatory motion in arrays forming Wannier–Stark ladders is examined. In the late
1920s and early 1930s F. Bloch and C. Zener predicted the phenomenon of Bloch
oscillations (BO), comprising oscillatory behavior of quantum particles in a peri-
odic potential subject to constant external force [20, 21]. In the last two decades the
idea of a discrete-optical system (e.g. a waveguide array) exhibiting diffraction-less
propagation of an optical beam has drawn attention to the possibility of visualizing
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the oscillatory motion in the spatial domain with controlled beam dynamics [22–24].
Here we extend the analysis of the Bloch oscillatory phenomenon to unidirectional
propagation in magneto-optic media.

This chapter is divided into the following sections. Section 6.1: Introduction.
Section 6.2: Fabrication and characterization of ridge waveguides and distributed
Bragg reflectors in magneto-optic films. Section 6.3: Stop-bands in magneto-optic
Bragg reflectors and Bragg filters. Section 6.4: Stop-bands and back-reflection pro-
cesses in magneto-optic elliptically birefringent media: stacked-layer model. Sec-
tion 6.5: Non-reciprocal and unidirectional optical Bloch oscillations in asymmetric
magneto-optic waveguide arrays.

6.2 Fabrication and Characterization of Ridge Waveguides and
Distributed Bragg Reflectors in Magneto-Optic Films

Photolithography is used to pattern ridge waveguide structures on the magneto-optic
iron garnet films. Electron-beam lithography (EBL) and focused ion beam (FIB)
patterning enable us to form one-dimensional photonic band gap structures on the
ridge waveguides. The first technology is mainly based on a converted JEOL JSM-
6400 scanning electron microscope (SEM) for the fabrication of our structures, and
the second one on a Hitachi FB-2000A focused-ion-beam system. Both technologies
have shown good results for patterning Bragg gratings having periods of more than
0.3 μm.

6.2.1 Photolithography and Plasma Etching

The typical steps involved in the photolithographic process are sample-cleaning in
acetone, isopropanol, and de-ionized-water; photo-resist layer formation by spin-
coating; soft baking; mask alignment, exposure, and development; and hard-baking.

Our processing involves the use of positive photo-resist Rohm & Haas SC1827TM

spin-coating on the sample using hexa-methyl-disilazane (HMDS) as an adhesive
layer. A two-step spin-coating at 500 rpm followed by 2000 rpm is applied. The sub-
strate is then pre-baked for 4 minutes at 100 ◦C. An Electronic Vision Group (EVG)
620 mask aligner is used to expose the ∼1 to 2 μm-thick layer of photo-resist for
10–15 seconds at a 15–20 mW/cm2 ultra-violet power density. Line widths on the
mask range from 1 to 10 μm. Post exposure processing entails development in an
Rohm & Haas MF319TM solution followed by a 20 minute hard-bake at 100 ◦C.
Ion-milling in an argon-ion plasma at 170–210 μA/cm2, 700 V beam voltage, 10–
20 sccm argon gas flow-rate and 8 × 10−5–4 × 10−4 Torr pressure, transfers the
pattern into the iron-garnet film at an approximate rate of 14 nm/min. Acetone, iso-
propanol, and de-ionized-water are used to remove the resist after milling. Sidewall
damage from the plasma milling is treated by dipping the sample into an ortho-
phosphoric acid bath for 12–15 seconds at 100 ◦C and rinsing in de-ionized water.
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Fig. 6.1 SEM micrograph,
cross sectional view of a ridge
waveguide in an iron garnet
film with polished facet

Fig. 6.2 SEM micrograph of
several ridge waveguides with
polished facet fabricated in a
Bi0.8Gd0.2Lu2.0Fe5O12 film.
The white area on one of the
waveguides near the facet
corresponds to a Bragg
grating patterned by
focused-ion beam milling.
First published in Physical
Review B by some of the
present authors, Ref. [19]
Fig. 4

Facet lapping follows the ridge waveguide patterning. Diamond lapping films of dif-
ferent grain coarseness are used sequentially from coarser to finer, down to a 0.3 μm
grain diamond lapping film finish. An SEM micrograph of a ridge waveguide cross
section after facet lapping is shown in Fig. 6.1. Figure 6.2 shows an angled top view
of several ridge waveguides patterned in the film.

6.2.2 Electron Beam Lithography

Electron beam lithography (EBL) is a high resolution patterning technique where
high energy electrons (10 to 100 keV) expose electron-sensitive resists such as poly
(methylmethacrylate) (PMMA). Proper conductive metal layer coating has to be
employed to avoid severe electron charging during exposure. Otherwise undesired
results such as unfocused exposure area, and lack of full exposure of the polymer
layer may occur. Proper metal (Au) coating is very important for the success of EBL
patterning. The metal coating usually requires more than 50 nm of gold for a 400 nm
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Table 6.1 Beam current (standard value for each aperture) and beam diameter (calculated value)
for FB-2000A

Aperture (μm) Beam mode

M1 M0

Beam current (nA) Beam dia. (nm) Beam current (nA) Beam dia. (nm)

500 11–15 1000

300 4–8 250

200 2–3.5 120 0.4–0.8 800

100 0.4–0.8 60 0.1–0.3 250

50 0.1–0.3 40 0.02–0.05 60

20 0.015–0.04 35 0.004–0.01 20

6 0.001–0.005 35 0–0.002 10

PMMA layer. Conductive taping near the target spot always improves the patterning
results.

A proper selection of electron dose is also very important for the fabrication of
good Bragg gratings in the resist mask because full exposure depends on a balance
between the polymer thickness and incoming electron density. We have found that
after a 200 nm-thick PMMA layer is spun on the garnet film, a dose of 350 μC/cm2

at 10 pA current should be used for electron-beam exposure. The patterning is con-
trolled with a Nabity nanometer pattern generation system (NPGS).

Once the pattern is formed on the resist, we tested pattern transfer via ion im-
plantation and wet etching. The ion implantation induces local damage on the gar-
net film surface that results in selective etching when the sample is immersed in
ortho-phosphoric acid. Here, again, the ion implantation condition is critical for a
good pattern transfer. Argon-ion implantation at 270 keV and 1 × 1014 cm−2 yields
∼100 nm deep grating grooves upon wet etching in ortho-phosphoric acid.

6.2.3 Focused Ion Beam Milling

The focused ion beam method performs mask-free milling. A focused beam of gal-
lium ions is accelerated to an energy of 5–50 keV (30 keV in our case) and scanned
over the surface of the sample. A Nabity NPGS control system was added to our FIB
model for vector-patterning purposes. The aperture, whose size varies from 6 μm to
500 μm, controls the beam current and spot size. There are two beam modes in
the single-beam Hitachi FB-2000A model: M1 for working beam mode and M0 for
imaging beam mode. Detailed beam configurations can be found in Table 6.1. Usu-
ally, we choose M1-100 for grating milling and M0-50 for imaging. The selection
is based on a balance between the milling time and desired depth.

The interaction of the ion beam with the sample results in ejection of atoms
from the surface (sputtering) and the production of secondary electrons and ions.
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Fig. 6.3 Bragg grating
patterned on a 5 μm-wide
0.8 μm-ridge height ridge
waveguide in an iron garnet
film. First published in
Physical Review B by some
of the present authors,
Ref. [19] Fig. 4

Fig. 6.4 Method of measuring grating groove depth: (a) Grooves are patterned near a facet.
(b) A large cube was removed by milling. The depth is then measured by SEM

The secondary charged particles can be collected, and their signals are amplified
and displayed to form an image of the surface. An imaging resolution below 500
angstroms is possible. Figure 6.3 shows a grating structure patterned on an iron-
garnet ridge waveguide by FIB patterning.

The depth of the grooves directly affects the Bragg filter strength and finesse of
resonant cavities patterned into the ridge waveguide. So it is very important to be
able to precisely control this mill depth parameter. A way has been developed to
calibrate experimentally the groove depths through FIB patterning and SEM char-
acterization. The procedure is illustrated below.

First, the grooves are patterned near a mirror-finish polished facet edge as shown
in Fig. 6.4(a). By milling away a large cube of material at the edge, the cross section
profile of the gratings can be imaged from the facet side as shown in Fig. 6.4(b). The
sample is then observed by SEM and the depth of the grooves is measured. Typical
groove dimensions are ∼150 nm wide and ∼700 nm deep.

The FIB exposure dose is determined by the product of beam current and expo-
sure time. Figure 6.5(a) shows the groove-depth dependence versus FIB line doses
for a typical design groove-width of 100 nm and a bismuth-substituted iron garnet
film sample. Depth ranges from 400 to 800 nm as the line dose increases from 50
to 200 nC/cm. The trend towards saturation is due to substantial re-deposition and
backscattering for ion milling deeper into the material for this line width. We point
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Fig. 6.5 (a) Characterization of FIB milled groove depths with line dose. (b) Scanning—-
electron micrograph showing typical groove cross section in a liquid-phase-epitaxially grown
Bi0.8Gd0.2Lu2.0Fe5O12 iron garnet film

out, however, that multiple and alternative beam scans in the transverse (along the
groove length) and longitudinal (parallel to the grating axis) directions can reduce
re-deposition and yield deeper and straighter grooves. Figure 6.5(b) is an SEM im-
age of typical FIB-patterned grooves cross section.

A certain degree of ion implantation, sidewall damage and re-deposition occurs
with the ion milling that will negatively affect the optical performance of the Bragg
filters. These effects can be treated with an acid etch post-treatment by immersing
the patterned sample into a solution of ortho-phosphoric acid at 75 ◦C for 10–15 sec-
onds and rinsing in de-ionized water. A markedly improved optical response, with
more pronounced transmittance stop bands is achieved as a result.

6.2.4 Optical Measurements

The optical transmittance and output polarization spectra are studied by end-fire
fiber coupling from a 1480–1580 nm tunable laser source (Ando AQ4321A) in a
magnetic field parallel to the waveguide axis as shown in Fig. 6.6. The laser has
a 0.001 nm wavelength resolution and 7.9 mW (9 dBm) maximum, 0.079 mW
(−11 dBm) minimum output power. Lensed fiber tips focus the laser spot onto the
sample input facet.

Two configurations are used to magnetize the samples. Measurements that do
not require variable magnetic fields are performed by placing the sample on a thin
rectangular neodymium block-magnet plate fitted to the sample stage, return flux
oriented parallel to the ridge waveguide axis (North and south poles parallel to the
input and output sample facets). The return flux produces fields several hundred
oersted strong and is strong enough to saturate the in-plane magnetization of the iron
garnet film. To obtain data for the reversed magnetization direction, or for transverse
magnetization, we rotate the neodymium (∼cm-wide) block-magnet 180◦ or 90◦
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Fig. 6.6 Schematic illustration of the optical measurement setup

Fig. 6.7 (Left) Schematic depiction of the sample stage kit; (right) the photograph of the sample
stage kit with integrated cooling system

about the normal to the plate, keeping the sample orientation relative to the input
beam unchanged.

Measurements that require variable magnetic fields, such as hysteresis loops, use
a set of homemade magnetic coils equipped with a homemade water cooling system.
The coils and the cooling tubes are all integrated into a customized sample stage as
shown in Fig. 6.7.

The sample is first bonded to a sliding stage and then inserted into the middle of
the coils; two stage stoppers are used to fix the position of the slider. A small wa-
ter cooling system made of copper tubes keeps the stage from heating up at larger
currents (∼1 A). The current to generate the magnetic fields is produced by a pro-
grammable power supply which produces a self-stabilized step current with 1 mA
precision (±0.1 Oe). Fields of 40 Oe, generated at less than 0.5 A are enough to
saturate the in-plane magnetization in Bi0.8Gd0.2Lu2.0Fe5O12 films.

Transmittance spectra as a function of wavelength are acquired by recording the
output light intensity emerging from the waveguide sample. A computer-driven Lab-
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view interface to the laser source drives the wavelength scan, with controllable step-
size down to 0.2 nm. The input polarization from a single-mode optical fiber is ad-
justed through a digital polarization controller (Agilent 11896A). Depending on the
requirements of the experiment, the input polarization can be set to linearly horizon-
tal or quasi-transverse-electric (TE), linearly vertical or quasi-transverse-magnetic
(TM), circular or elliptical. The helicity, ellipticity and semi-major axis orientation
of elliptically polarized inputs are prepared as explained in Sect. 6.2.5 below. The
output beam emerging from the waveguide passes through a 10× microscope objec-
tive and is split into two beams by a 50 % non-polarizing beam-splitter. One beam is
directed into an infrared photo-detector connected to a Newport power meter, with
responsivity better than 0.9 A/W at 1550 nm (sub-nW power detection sensitivity).
A motorized rotatory Glan–Thompson polarizer with sub-degree precision can be
interposed between the sample and the photo-detector to analyze the polarization or
record the transmittance at a given linear polarization, as described below. Polariza-
tion states are measured by recording the Stokes parameters or by performing a full
360◦ analyzer scan with the Glan–Thompson polarizer. The other beam is directed
to an infrared Hamamatsu recording camera and monitors the output spot shape
and intensity. The camera can be equipped with a beam-profile analyzer (Spiricon
LBA-710PC).

6.2.5 Beam Preparation

Linear, circular and elliptical polarization states are prepared using a beam-
collimator, a quarter-wave plate, a polarization controller and a linear polarizer.
The optical beam from the fiber-pigtailed laser source goes through the polariza-
tion controller, a lensed fiber coupled to the output of the controller and a beam
collimator. It is then allowed to go either directly to the Glan-Thompson polarizer
to prepare linear-polarization or through the quarter-wave plate to prepare elliptical
polarization states. In the former case, the controller is adjusted to minimize the
output for the orthogonal polarization state. Extinction ratios of 1 to 4,000 (power)
are obtained with dark readings of ∼35 nW for 150 μW light.

For elliptical polarizations, the quarter-wave-plate’s fast axis orientation defines
the semi-major axis of the input polarization state. To configure the input beam
ellipticity (the ratio of the semi-minor to semi-major axes amplitudes of the polar-
ization ellipse), a linear polarizer placed after the quarter-wave plate is oriented so
that its transmission axis forms an angle π

2 − θ relative to the latter’s fast axis, with
tan θ equal to the desired ellipticity of the beam. The polarization controller is then
adjusted to minimize the intensity of the transmitted light emerging from these two
optical components for said configuration. The light coming out of the lensed fiber
has the desired polarization.

An ellipticity check is done to confirm the polarization state of the beam by
measuring its intensity directly from the lensed fiber for all 360◦ orientations of the
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polarizer axis in steps of 0.1◦. The measured ellipticity of a beam is given by the
following expression:

Ellipticity =
√
Imin

Imax
,

where Imin and Imax are the measured minimum and maximum intensities of the
beam. The polarizer-angle corresponding to the minimum intensity denotes the
semi-minor axis orientation of the elliptical polarization state.

Stokes parameters are used to decide the beam’s helicity. From the four Stokes
parameters Sj (j = 0–3), the sign of S3 determines the helicity of the propagat-
ing beam. In a Poincaré sphere representation, a beam with polarization coordinate
(s1, s2, s3) for normalized Stokes parameters sj = Sj

S0
is located in the upper hemi-

sphere if S3 is positive and polarized in the counter-clockwise sense as observed
from the source, or in the clockwise sense as observed from the detector point of
view (positive helicity). For a negative value of S3 the beam carries the opposite
(negative) helicity.

Experimentally, S3 can be measured using a quarter-wave plate and a linear po-
larizer. The beam intensity I (θ,ϕ), where θ , ϕ are the linear polarizer axis and
quarter-wave plate fast axis orientations, respectively, is first measured just with
the linear polarizer at θ = 0◦ and 90◦. Subsequently it is measured by inserting
the quarter-wave plate (ϕ = 90◦) into the beam path with the linear polarizer set at
θ = 45◦. S3 is given by

S3 = I
(
0◦,0◦)+ I

(
90◦,0◦)− 2I

(
45◦,90◦).

6.3 Stop-Bands in Magneto-Photonic Bragg Reflectors and
Bragg Filters

Multimode Bi0.8Gd0.2Lu2.0Fe5O12 garnet films are used for our experimental tests.
These are 2.7 μm-thick grown by liquid phase epitaxy (LPE) on (100)-oriented
gadolinium gallium garnet (GGG) substrates. The films have planar magnetic
anisotropy and in-plane coercivity of a few Oe. A specific Faraday rotation char-
acterized for propagation normal to the films of 83◦/mm was recorded at 1550 nm.
A second set of Bi1.28Lu1.69Gd0.03Fe3.65Ga1.35O12 films 2.8 μm-thick grown on
(100)-oriented GGG were also tested and gave results consistent with the first set.
These films have a specific Faraday rotation of 95◦/mm at 1550 nm wavelength and
planar magnetization anisotropy.

6.3.1 Mode Indices

Waveguide modes are characterized by prism coupling in un-patterned films.
Four TE and TM modes are supported by the slab waveguide for transverse
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magnetization. The refractive indices of the four TE waveguide modes in the
Bi0.8Gd0.2Lu2.0Fe5O12 garnet films are 2.2930, 2.2497, 2.1781, and 2.0765, from
fundamental to third order, respectively. Linear birefringence, defined as the differ-
ence between TE and TM mode indices, are 0.0005, 0.0047, 0.0120 and 0.0210,
respectively.

Waveguide ridges with 600 nm ridge height are patterned on the films by stan-
dard photolithography and plasma etching. A one-dimensional photonic crystal or
distributed Bragg reflector is formed by focused ion beam milling. Grating grooves
are 700 nm-deep, with a period of ∼343 nm. The thickness of the film at the tip
of the grating ridges is reduced by about 100 nm due to overlap milling. The ridge
waveguides are ∼1.0 to 1.5 mm-long with the Bragg filter (200 μm in length) are
positioned at different distances from the input facet, from 10 to 100 μm to ∼500 μm
away from one of the facets. The latter are prepared by polishing both input and out-
put ends of the waveguide as described in the fabrication section. For frequencies
away from the Bragg condition, the photonic structure on the slab slightly mod-
ifies the effective index and character of the allowed waveguide modes, resulting
in quasi-TE and quasi-TM modes with dominant in-plane (quasi-TE) or out-of-
plane (quasi-TM) polarizations for transverse magnetization. Effective indices of
the quasi-TE and quasi-TM modes can be determined by analysis of the stop band
spectrum.

6.3.2 Stop Bands in Transversely Magnetized Bragg Filters

Stop bands are produced by the partial back-reflection of waveguide modes in the
magneto-photonic Bragg filters. For transverse magnetization, quasi-TE and quasi-
TM modes behave as normal modes. That means that, once launched, these modes
maintain their polarization state.

For multimode waveguides the contra-directional coupling of modes of different
order is allowed. Multiple stop bands form as a result of the contra-directional cou-
pling of fundamental forward-propagating modes to different back-reflected waveg-
uide mode orders, as shown in Fig. 6.8. These multiple stop bands appear because
the optical wave incident in the grating region and the back-reflected wave satisfy
the phase matching condition βback = β incident + qK [25]. Here β incident and βback
are the propagation vectors of the incident and back-reflected waves, respectively;
K is the grating vector pointing in the direction of the ridge waveguide axis and re-
lated to the grating period Λ by |K| = 2π/Λ. q = 0,±1,±2, . . . , indicate the order
of the coupling. The vectors β incident + qK are called space harmonics and are pro-
duced as a result of the spatial modulation of the dielectric permittivity in the grating
region. Notice that waveguide mode propagation depends not only on the permit-
tivity of the waveguide core but also on the permittivity of the cladding and cover,
so that a relief grating introduces spatial modulation. The stop bands form when the
space harmonics match the propagation vectors of allowed waveguide modes trav-
eling in the backward direction. Several stop bands occur because the waveguides
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Fig. 6.8 Normalized
transmittance of a waveguide
Bragg reflector fabricated in a
2.7-μm-thick
Bi0.8Gd0.2Lu2.0Fe5O12 film.
The spectrum displays several
stop bands corresponding to
back-reflections into
different-order modes for TE
and TM fundamental mode
inputs. The spectra are taken
for transverse magnetization
in order not to mix the modes.
First published in Physical
Review B by some of the
present authors, Ref. [19]
Fig. 3

are multimode. The order of the coupling is −1, that is, first order contra-directional
coupling.

The mode character of the forward traveling and back-reflected waves has been
determined by an analysis of the stop band spectrum. This information was sup-
plemented by beam-propagation simulations to estimate that more than 90 % of
the coupled optical power in the forward direction is in the fundamental mode.
A commercial optical-waveguide simulation package distributed by RSoft Design
was used for this purpose. Back-reflected modes have different propagation vectors
|β(m)

b | = 2π
λ
n
(m)
b , where m is the mode order and n

(m)
b its effective or mode index.

These modes satisfy the phase-matching condition βb = βf − K sequentially, from
fundamental back-reflection at the longest-wavelength stop band, through first, sec-
ond and higher-orders towards shorter wavelengths in the stop band spectrum. Fig-
ure 6.8 labels the stop bands according to this trend. Stop band center-wavelengths
computed from the Bragg condition, as well as calculated stop bands based on power
transfer efficiency show very good agreement with the experimental data, with aver-
age departures of 2 nm (0.15 %) and less than 5 nm between calculation and experi-
ment. Power transfer efficiency is a function of the phase mismatch |βb−(βf −K)|.

6.3.3 Stop Bands in Longitudinally Magnetized Bragg Filters

6.3.3.1 Normal Modes

Activation of the gyrotropy upon longitudinal magnetization couples quasi-TE and
quasi-TM modes. The normal modes are no longer quasi-TE and quasi-TM but el-
liptically polarized in the transverse direction. The simultaneous presence of shape
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Fig. 6.9 Polarization response for plain waveguide of a normal mode (curve 1) and a reversed-he-
licity mode (curve 2) having the same ellipticity and semi-major axis orientation. The figure plots
polarization analyzer 360◦-scans, showing overlapping inputs into the waveguide (a) and differ-
ent outputs (b) after propagating through a 1.2 mm-long waveguide. First published in Physical
Review B by some of the present authors, Ref. [19] Fig. 5

anisotropy, lattice mismatch strain, and magnetic anisotropy establishes the ellipti-
cal birefringence, where opposite-helicity states advance at different phase speeds
through the guide. Once launched into the waveguide elliptically polarized inputs
can be shown to propagate with minimal change to their polarization state, as dis-
cussed below. It is in this sense that we speak of elliptically polarized normal modes.

An exact treatment of a birefringent magneto-gyrotropic waveguide requires
solving the wave equation in the waveguide core and the cladding, matching bound-
ary conditions. Here we use an alternative approach for the expressed purpose of
obtaining expressions for the polarization state of the elliptical eigenmodes. The
mode indices for all supported TE and TM waves in the waveguide are measured
experimentally in transverse magnetization. For each TE/TM pair of a given mode
order, the wave is treated as propagating in an anisotropic material having refrac-
tive indices for transverse horizontal and vertical polarizations equal to those of the
given TE and TM waveguide modes in transverse magnetization. The elliptical po-
larization and mode indices for longitudinal magnetization are obtained by solving
the dielectric permittivity eigenvalue problem in the presence of non-reciprocal gy-
rotropy. Thus, we approximate the diagonal components εxx and εyyof the relative
permittivity matrix with the relative permittivity scalars (the squares of the mode in-
dices for transverse magnetization) of the corresponding fundamental or high-order
TE and TM modes. This approach works extremely well in predicting the elliptical
polarization state of the normal modes of the waveguides.

Based on this formulation, elliptically polarized optical beams are prepared cor-
responding to the different normal mode polarization states. A saturation mag-
netic field of 300 Oe collinear with the waveguide axis in the forward and back-
ward directions is used to magnetize the sample. The waveguides are fabricated in
Bi0.8Gd0.2Lu2.0Fe5O12 films. The response in plain 6 μm-wide ridge waveguides
without Bragg filters confirm that the beams propagate with minimal changes to
their polarization state over distances of 1 mm.

Figure 6.9 plots the polarization response of an elliptical normal mode (Stokes
parameter s3 = 0.48) and a reversed helicity mode (s3 = −0.48) having the same
ellipticity. Shown are 360◦ analyzer scans of the input (Fig. 6.9(a)) and output
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Fig. 6.10 Experimentally acquired transmittance profiles for fundamental-forward to sec-
ond-order-backward propagating mode stop bands (normalized to the transmittance of a plain
waveguide) for horizontally and vertically oriented elliptical normal mode inputs in a longitudinal
magnetic field, (a) in the beam propagation direction and (b) opposite to the propagation direction.
Normal mode helicity reverses upon reversal of magnetic field direction. Stop bands for TE and
TM inputs are shown for comparison

(Fig. 6.9(b)), where 0◦ and 180◦ correspond to the orientation of the semi-minor
axis. Figure 6.9(b) shows that the reversed helicity mode deviates significantly from
the input, whereas the normal mode remains largely unaltered to within experimen-
tal accuracy (s3 ≤ 0.05). Ellipticity is preserved to s3 ≤ 0.05 or better. Devia-
tions of less than 8◦ in semi-major axis orientation over a 1.2 mm waveguide length
are routinely recorded for the normal mode. Our measurements confirm that the re-
versed helicity mode becomes normal upon reversal of the magnetization. Normal
mode analysis at different wavelengths in the 1525 ± 5 nm range shows that their
polarization state remains largely wavelength independent.

6.3.3.2 Distributed Bragg Reflectors and Elliptical Normal Modes

Normal mode beams are launched from the feeder (far) side toward the Bragg re-
flector, positioned 100 μm away from the output facet. Transmittance spectra for
fundamental forward to high-order (first, second and third) as well as fundamental
backscattered mode stop bands are measured. Normal mode polarization states are
prepared at the center-wavelength of the TE stop bands, with no significant input
polarization-state departures observed for ±20 nm wavelength detuning away from
the center-wavelength. For normal modes with semi-major axis in the vertical direc-
tion, the stop band shows large detuning relative to the horizontally oriented normal
mode. The reason for this detuning can be traced to the large birefringence between
the high-order normal modes that take part in the back-reflection process.

Figure 6.10 displays measured normal mode transmittance for a fundamental
forward-mode to second-order backscattered mode stop bands. Figure 6.10(a) cor-
responds to the stop bands of two elliptically polarized normal mode beams when
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Fig. 6.11 Transmittance profiles of fundamental-forward to backward-propagating second-order–
mode stop bands for elliptical normal-modes inputs and their corresponding reversed helicity
modes (in normalized units to the transmittance of a plain waveguide). Experimentally measured
strong stop band reconfiguration due to mode conversion is shown for reversed-helicity mode (not
normal) stop bands in (a) red and (b) green curves. (c) The plot shows theoretically calculated stop
bands for opposite helicity elliptical normal modes. (d) Stop bands for simultaneous helicity and
magnetization reversals obtained experimentally showing that simultaneous reversal reproduces
the stop bands

the magnetic field points in the light propagation direction. The stop bands for quasi-
TE and quasi-TM modes (transverse magnetization) are also plotted for reference.
Upon magnetization reversal the gyration vector is reversed and so is the normal
mode helicity. Figure 6.10(b) plots the normal mode stop bands for reverse mag-
netic field and opposite helicity modes, showing that the stop bands remain largely
unchanged.

Strong reconfiguring of the normal mode stop bands occur upon magnetization
reversal without reversing the input beam helicity. These can be traced to the trans-
mutation of normal modes into hybrid modes upon magnetization reversal and sub-
sequent polarization changes of the beam in the feeder section of the waveguide.
Strong stop band reconfiguration due to mode conversion are shown in Fig. 6.11.
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Stop band spectra of these modes for both forward and backward magnetic field con-
figurations were recorded for fundamental to second-order back-reflected modes.
The black and blue curves in Figs. 6.11(a) and (b) plot the transmittance profiles
of the horizontal and vertically oriented normal mode, respectively. Different re-
sponses, shown in the red and the green curves were obtained after magnetization
reversal for the same horizontal and vertical inputs.

Of particular note is the very large spectral detuning of the stop bands upon
magnetization reversal, as it may have useful applications to optical switching de-
vices. In particular, it should be noted that reconfiguration of the stop band upon
magnetization reversal or input-polarization helicity reversal can thus convert a stop
band into a pass band, enabling optical switching. This detuning is a direct conse-
quence of the inter-modal backscattering from fundamental to second-order mode.
The large refractive index difference between different helicity backscattered modes
is responsible for this detuning.

Mode conversion into the reverse-helicity normal mode in the waveguide feeder
section is almost complete, as the stop band shifts to the one corresponding to that
mode. These results agree remarkably well with stop band calculations based on
the theoretical model presented in Sect. 6.4, as shown in Fig. 6.11(c). The differ-
ence between experimental and modeled back-reflection contrast for vertically and
horizontally oriented polarization states is ascribed to differences in grating cou-
pling strengths in the waveguide, not accounted for in the theoretical model. Mode
conversion and strong stop band reconfiguration was reproducibly observed in all
samples tested.

A change in helicity from positive to negative for the horizontal normal mode
and from negative to positive for the vertical normal mode together with a change
in magnetization direction restores the original normal modes spectral response
(Fig. 6.11(d)). Thus, a change in helicity together with magnetization reversal pre-
serves the normal-mode character of the mode and yields an unchanged stop band.
These results are repeatable and have been reproduced in several samples.

6.3.3.3 Bloch Mode Reconfiguration upon Magnetization Reversal

The effect of Bloch mode reconfiguration on stop band restructuring upon mag-
netization reversal is studied experimentally by examining the Bragg filter re-
sponse to normal mode inputs launched into an input facet ∼10 μm-away from
the magneto-photonic crystal structure. We compare these results to stack model
calculations for asymmetric scattering from forward fundamental to second-order
back-reflected modes in 200 μm-long gratings with 345 nm period patterned on
Bi0.8Gd0.2Lu2.0Fe5O12, 2.7-μm-thick ridge waveguides. The theoretical treatment
is discussed in Sect. 6.4.

Upon magnetization reversal mode hybridization effects in the small 10 μm
feeder section (Fig. 6.2) are minimal. A comparison of the experimental transmit-
tance for forward- (normal mode) and backward pointing magnetization (not normal
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Fig. 6.12 Second-order back-reflected mode transmittance profile for horizontal elliptical normal
mode input stop band (black curve) and corresponding reversed-helicity mode input (red curve) for
a photonic crystal ∼10 μm away from the input facet. (a) Theoretically calculated stop band recon-
figuration calculated theoretically using the stack model in Sect. 6.4. (b) Experimentally measured
stop bands. The stop bands for TE input are shown for comparison

mode) is shown in Fig. 6.12. These results are reproducible and show that the stop
band changes are real, though not very large.

Theoretical calculations (Fig. 6.12(a)) based on the model described in Sect. 6.4
agree very well with these measurements. Bloch mode reconfiguration as a result
of magnetization reversal is due to helicity reversals in the local normal modes in
the photonic crystal. This reconfiguration impacts the coupling of the input polar-
ization to the Bloch state. Forward propagating modes, but especially backscattered
high-order modes exhibit strong departures from circular polarization (thin ellipses)
impacting the transmittance upon helicity reversal. Magnetization reversal rotates
the orientation of the semi-major axis of the normal mode polarization affecting
back-reflection even if the input polarization and its helicity are not altered. This is
also what we observe experimentally, as shown in Fig. 6.12(b).

6.4 Stop-Bands and Back-Reflection Processes in Magneto-Optic
Elliptically Birefringent Media: Layered-Stack Model

In order to account for the coupling between differently polarized elliptically bire-
fringent optical modes in the waveguide Bragg reflectors we present a layered-stack
model that locally mimics the mode index and polarization state of the propagating
wave. The diagonal components of the dielectric permittivity matrix in this model
are allowed to acquire values corresponding to the squares of local effective mode
refractive indices in the waveguide. In other words, the diagonal components εxx
and εyy are approximated by the squares of the mode indices for transverse magne-
tization for the corresponding fundamental or high-order TE and TM modes. Asym-
metric scattering between different forward and backward propagating modes is
treated by the model.
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Fig. 6.13 Layered stack used
for modeling the
transmittance for inter-modal
back-reflection. The model
makes use of a bilayer unit
cell with period Λ.
Propagation is in the
z-direction, normal to the
layer planes. First published
in Physical Review B by
some of the present authors,
Ref. [19] Fig. 1

The basic geometry of the model is depicted in Fig. 6.13. Plane waves im-
pinge normally on the periodic stack structure consisting of alternating elliptically
birefringent magneto-optic layers. The model, based on the treatment presented
in [17, 18], is quite general and does not impose any constraints on the relative
linear birefringence, gyrotropy, or thickness of the layers.

The electromagnetic wave equation in any particular layer of the stack is given
by

(
k2

0 ε̃ − k2I + kk
) · E0 = 0, (6.1)

where E0 is the plane wave amplitude, kk is a dyadic product of the wave vector, I is
the 3×3 identity matrix, and k2

0 = ω/c. c is the speed of light in vacuum and ω is the
angular frequency. The dielectric permittivity matrix ε̃ of the birefringent magneto-
optic crystal magnetized along the direction of light propagation (z-direction) in a
given layer has the form:

ε̃ =
⎛
⎝ εxx ±ig 0

∓ig εyy 0
0 0 εzz

⎞
⎠ . (6.2)

The above relation assumes no absorption of light in the medium, with εxx , εyy ,
εzz and g having real values. The condition for elliptical birefringence is given by
εxx �= εyy , and the magneto-optical gyrotropy is parameterized by the off-diagonal
components ±ig.

By solving the wave equation, (6.1), upon normal incidence of a monochromatic
plane wave propagating parallel to the z axis the elliptical eigenmodes and their
refractive indices in any particular layer are given by [17, 18]:

ê± = 1√
2

⎛
⎝ cosα ± sinα

±i cosα − i sinα
0

⎞
⎠ , (6.3)
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where

tan(2α)= εyy − εxx

2g
,

n2± = ε̄ ±
√
2 + g2,

ε̄ = εyy + εxx

2
,

and

= (εyy − εxx)/2.

n± are the mode indices of the elliptical eigenmodes. When the direction of magne-
tization is opposite to the direction of the beam propagation, the gyration vector of
the media is reversed and as a result the helicity of the eigenmodes is also reversed.
A magnetization reversal yields eigenmodes

êr± = 1√
2

⎛
⎝ ± cosα + sinα

−i cosα ± i sinα
0

⎞
⎠ ,

where the superscript r indicates helicity reversal [19].
A transfer matrix formulation can be built based on this model to calculate the

transmittance of the stack in Fig. 6.13, as described in [17, 18]. The dielectric per-
mittivity matrix in adjacent layers of the stack can be modeled by adjusting the
diagonal components (TE and TM mode index values) to account for differences in
ridge height and index contrast in the grating.

In order to formulate an expression for the transfer matrix, [17, 18] express the
Bloch mode in an arbitrary layer n of the stack in terms of local elliptically polarized
normal waveguide modes. Forward and backward traveling waves are allowed to
correspond to different mode-orders to account for fundamental to high-order back-
reflections. Thus, for any given layer n of the stack the field vector is expressed
as:

E(z, t) = ê
f
+E01 exp

(
iωn

f
+(z− zn)/c

)+ êb+E02 exp
(−iωnb+(z− zn)/c

)
+ ê

f
−E03 exp

(
iωn

f
−(z− zn)/c

)+ êb−E04 exp
(−iωnb−(z− zn)/c

)
. (6.4)

Here i = √−1 for a light-wave of frequency ω propagating in the z-direction. The
superscripts f and b refer to the forward and backward propagating modes, and zn is
the position of the interface. The mode indices nf,b± are assumed to correspond to lo-
cal waveguide normal modes of opposite helicity. The E0j , j = 1–4 are partial-wave
amplitude constants with zn as the location of the interface between two arbitrary
layers n and n + 1 in the media. The elliptical polarization-state unit-vectors êf,b± ,
in the form ê±(αf,b), are the elliptically polarized waveguide normal modes propa-
gating in the forward and backward direction, respectively. Notice that forward and
backward propagating normal modes have different elliptical polarizations.
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The transfer matrix is the calculated by solving for the wave propagation from
one layer to the next and matching boundary conditions at the interface, for the
two-layered unit cell in Fig. 6.13. For the full crystal it is then obtained by repeated
multiplication of the two-layered transfer matrix. The transfer matrix from layer
n− 1 to layer n+ 1 can be shown to be

T(n−1,n+1) = (P(n+1))−1(D(n+1))−1D(n)
(
P(n)

)−1(D(n)
)−1D(n−1),

where

D(n) =

⎛
⎜⎜⎜⎜⎜⎝

cosα(n)f cosα(n)b − sinα(n)f − sinα(n)b

n
(n)
+,f cosα(n)f −n

(n)
+,b cosα(n)b −n

(n)
−,f sinα(n)f n

(n)
−,b sinα(n)b

sinα(n)f sinα(n)b cosα(n)f cosα(n)b

n
(n)
+,f sinα(n)f −n

(n)
+,b sinα(n)b n

(n)
−,f cosα(n)f −n

(n)
−,b cosα(n)b

⎞
⎟⎟⎟⎟⎟⎠

and

P(n) =

⎛
⎜⎜⎜⎜⎝

exp(−i ωc n
(n)
+,f

dn) 0 0 0

0 exp(i ωc n
(n)
+,b

dn) 0 0

0 0 exp(−i ωc n
(n)
−,f

dn) 0

0 0 0 exp(i ωc n
(n)
−,b

dn)

⎞
⎟⎟⎟⎟⎠.

dn is the thickness of layer n.

6.5 Non-reciprocal and Unidirectional Optical Bloch Oscillations
in Asymmetric Magneto-Optic Waveguide Arrays

In the late 1920s and early 1930s Felix Bloch and Clarence Zener predicted a
remarkable phenomenon, based on the ideas of newly founded quantum mechan-
ics [20, 21]. That phenomenon is now known as Bloch oscillations (BO). They pro-
posed that electrons in a crystalline medium would exhibit oscillatory trajectories in
space and time when subject to a uniform external force. However, in the absence
of any experimental evidence, the phenomenon was intriguing but unconfirmed for
many years. The first experimental evidence confirming Bloch oscillations was re-
ported in 1960 when Chynoweth et al. [26] observed an evenly spaced energy spec-
trum, a Wannier-Stark ladder [27], for electrons in a crystal placed in an external
direct-current (DC) field. It is claimed by some authors that these and other ini-
tial results in the 1960s and 70s were inconclusive because of the smallness of the
effect [28]. Since then, however, further experimental tests have conclusively con-
firmed the phenomenon in different particle systems such as electrons in semicon-
ductor superlattices, cold atoms in optical lattices and electromagnetic waves in peri-
odic dielectric systems [29–33]. In the last two decades the idea of a discrete-optical
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system exhibiting diffraction-less propagation of an optical beam has drawn atten-
tion to the possibility of visualizing the oscillatory motion in the spatial domain.
As an example of particular relevance, photons in an array of evanescently coupled
waveguides with a transverse effective refractive index ramp have been shown to
perform periodic oscillatory motion with controlled beam dynamics [22–24, 34].

In the present study we extend the BO phenomenon idea to unidirectional prop-
agation in optical media. Prior work on this subject has dealt mostly with recip-
rocal phenomena [22–24, 34]. Recently, S. Longhi [33] predicted non-reciprocal
(NR) and unidirectional BO as a result of gain and/or loss in pseudo-Hermitian
systems. Subsequently some of the authors of this chapter showed the existence
of non-reciprocal and unidirectional BO in passive waveguide arrays for Hermitian
systems [35, 36]. Here we present a theoretical treatment demonstrating that it is
possible to attain cancellation of Bloch oscillatory motion in the optical regime in
one-propagation direction in the absence of gain or loss. We consider wave prop-
agation in optical media characterized by gyrotropic dielectric permittivity tensors
that are strictly Hermitian in character.

In particular, we show that normal modes of the waveguide array can exhibit
different phase coherence lengths in opposite directions and even significantly dif-
ferent coherence and decoherence characteristics in the two directions. A key role
is played by the transverse-magnetic (TM) mode non-reciprocal phase shift (NRPS)
effect, due to the confinement of light in magnetized asymmetric waveguides. This
NRPS effect critically depends on the introduction of unequal spatial gradients in
the gyrotropy parameter and in the refractive index across dissimilar waveguide in-
terfaces [37, 38].

Wave propagation in an array of ridge waveguides of different thicknesses is
considered in the presence of an in-plane transverse magnetic field. For each indi-
vidual waveguide in the array, assuming lossless continuous wave (cw) propagation,
coupled-mode theory yields the following equation of motion for the modal ampli-
tude af,bn in the nth waveguide [22]:

i
da

f,b
n

dz
+ δβf,bna

f,b
n + κf,b

(
a
f,b

n−1 + a
f,b

n+1

)= 0. (6.5)

Here f and b denote the forward (FW) and backward (BW) directions. The
wavenumber (β = (2π/λ) · neff) of the n = 0 guide has been separated out. κf,b

are the inter-waveguide coupling constants, in the FW and BW directions, λ is the
wavelength in vacuum, neff is the waveguide-mode index, and δβf,b is the difference
in waveguide-mode wavenumber between adjacent waveguides.

The light coupled into the central waveguide at the input facet can be described
as a linear combination of normal modes, the mth mode propagation constant given
by β0 +mδβ . β0 is the propagation constant of the zeroth normal mode. Refocusing
of the optical beam occurs when the normal modes recover an integer multiple of
their initial phases, so that the Bloch oscillation period is LB = 2π/δβ , [22].

In the waveguide array (Fig. 6.14(a)) the magnetization M is transverse to the
propagation direction. The permittivity tensor of the magnetic garnet layer is given
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by

ε̂ =
⎛
⎝ ε 0 ig

0 ε 0
−ig 0 ε

⎞
⎠ .

Here propagation is along the z-direction and the magnetization points in the
y-direction. The off-diagonal component g is the gyrotropic parameter, directly re-
lated to the specific Faraday rotation (θF) via g = (θF.λ.

√
ε)/π [38]. We take ε and

g to be real numbers, making the model system lossless. This is a good approxima-
tion for magnetic garnets, such as bismuth/rare-earth-substituted iron garnets, in the
near IR regime, where loss is small.

In the following we first develop a basic theory for non-reciprocal optical BO
in an array consisting of garnet-based waveguides (e.g. Bi or rare-earth-substituted
yttrium iron garnet (YIG) over Gd3Ga5O12 substrate). We then extend it to unidi-
rectional optical BO in a silicon platform with bonded [39] or sputter-deposited [40]
magnetic garnet cover layers.

The dielectric tensor ε̂ is spatially dependent, with different values in the film,
cover and substrate regions of the waveguide. For modes that propagate in the
z-direction (∼ exp(iβz)) quasi-transverse-magnetic (TM) modes (Hy � Hx,Hz,
where H is the optical magnetic field component), obey [37, 38]

(
ε∂x

1

ε
∂x + ∂2

y − β2 +ω2μ0ε0ε − β
g

ε
∂x + βε · ∂x g

ε2

)
Hy = 0. (6.6)

The linear terms in the propagation parameter β combine into βεHy∂x(g/ε
2)

producing non-reciprocal propagation for different vertical gradients ∂x(g/ε
2) at

dissimilar interfaces. The difference in propagation constant between FW and BW
system modes (β(nr) = βf − βb) is given in perturbation theory by

β(nr) = 2Re
∫∫

dx dy (∂xHy)H
∗
y (ig/ε

2)∫∫
dx dy |Hy |2ε−1

, (6.7)

where the superscript nr stands for non-reciprocal [37].
The inter-modal propagation constant difference between FW and BW directions

is

δβ
f

m+1,m − δβbm+1,m = β
f

m+1 − β
f
m − (βbm+1 − βbm

)
= β

(nr)
m+1 −β(nr)

m =
(
β(nr))

m+1,m, (6.8)

where m labels the normal mode [35]. Thus the phase matching responsible for
Bloch oscillatory motion in a given direction is affected by the magnetic non-
reciprocity. Assuming that Bloch-like oscillation conditions are met in the FW di-
rection, the following expression describes BW propagation:

i
dabn

dz
+ (δβf −

(
β(nr)

n

))
nabn + κb

(
abn−1 + abn+1

)= 0. (6.9)
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Here δβf and (β
(nr)
n ) refer to differences between adjacent waveguides in the

array. Equation (6.9) suggests that in the BW direction Bloch-like oscillations occur
with Bloch period 2π

δβf −(β(nr))
. This establishes that an optical beam launched

into the central waveguide shows dissimilar Bloch periods in opposite directions
of propagation, exhibiting non-reciprocal BO in the presence of magneto-optical
effect.

Moreover, it is possible to violate the conditions for Bloch oscillatory motion in
one direction while preserving them in the opposite. Equal magnitudes in δβf and
(β(nr)) will result in the wavenumber step δβb being canceled out completely,
thus suppressing the oscillatory motion in the backward direction.

Equation (6.8) states that the difference between the propagation constants for
FW and BW waves is equal to the difference in non-reciprocal propagation con-
stants. Thus, an array structure with inter-modal wavenumber difference δβf =
(βnr) will satisfy the conditions for Bloch oscillatory motion in the FW direction
with period 2π/(βnr), while in the BW direction δβb = δβf −(βnr)= 0, re-
sulting in a diffractive beam spread, analogous to the behavior of a homogeneous
array [22]. We note here that a large (βnr) is critical for practical realizations.

The array structure presented below can be made to satisfy these conditions. It
consists of a ridge-waveguide array in silicon-on-insulator (SOI) with a bonded or
sputter-deposited cerium-substituted yttrium iron garnet (Ce:YIG) cover [39, 40].
A schematic depiction of the array structure is shown in Fig. 6.14(a). The high index
contrast between core and cladding layers and large NRPS effect of the SOI array
with iron garnet cover is very well suited for unidirectional BO. Initial estimates
of the non-reciprocal effect for this case were carried out using a slab-waveguide
formulation presented in [41]. However, finite ridge-width effects were taken into
account through a perturbation theory approach [37] using (6.7).

A 3-D semi-vectorial beam-propagation method based on a finite difference algo-
rithm was used to simulate the array model. Mode indices and field profiles are ob-
tained through the correlation method [42]. The calculated NRPS values were found
to vary approximately linearly with mode-order propagation constants as shown in
Fig. 6.14(b). The plot depicts nearly equally spaced β and βnr values, representing
the Wannier–Stark ladder in the waveguide array system [22].

When a beam is launched into the central guide in the FW direction, an eigen-
mode spectrum is observed as shown in Fig. 6.15(a). We notice that all the nor-
mal modes have identical profile with consecutive modes shifted by a waveguide
step, constituting an optical equivalent of the Wannier–Stark states in the electronic
case [22]. In the FW direction each normal mode maintains a constant amplitude
and width (∼10 μm), whereas in the BW direction the modes diffract out as shown
in Figs. 6.15(b) and (c), respectively. It is important to note here that the system
modes themselves do not exhibit BO motion, rather it is their superposition that
does.

The array consists of nine waveguides (see Fig. 6.14(a)) made of a Si (nf = 3.44)
core on a SiO2 (ns = 1.45) substrate with Ce:YIG (nc = 2.22) cover layer, wherein
the thickness (0.26 to 0.5 μm) and the width (0.6 to 0.15 μm) have been adjusted
to yield a constant δβf of about 700 m−1 in the FW direction. We note here that
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Fig. 6.14 (a) Schematic depiction of the waveguide array highlighting geometrical differences in
the ridges leading to an effective index ramp (widths are scaled up and separations scaled down 4×
to fit in the sketch); (b) plot showing nearly equally spaced NRPS βnr and propagation constant
β for adjacent normal modes of the array

Fig. 6.15 (a) Field profiles
of the normal modes of the
array in the FW direction.
(b) A typical normal mode of
the array showing constant
amplitude and width in the
FW direction and,
(c) diffractive spread in the
BW direction

the wavelength range tolerated by the device is about 4 nm (1550 ± 2 nm). The
device will show unidirectional Bloch oscillations within this wavelength range for
any given design wavelength. However, the device is also fully scalable within a very
broad wavelength range, from 1300 to 1600 nm. As for design sensitivity, deviations
of up to 4 % in the ridge height and 2 % in the ridge width are tolerated and result
in unidirectional Bloch oscillations. Our calculations show that the device is more
sensitive to the dimensional changes in the ridges that are closer to the center of the
array than those away from the center.

A constant coupling parameter κ ∼ 605 m−1 corresponds to the inter-waveguide
separation ∼2 μm design. The ensuing δβf yields a Bloch period (LB) of about
9 mm and a lateral beam spread of ∼11 μm for forward propagation. For a 0.2-μm-
wide beam launched into the center waveguide the beam exhibits BO motion with a
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Fig. 6.16 (a) Beam evolution
for single guide excitation in
the FW direction showing BO
motion, and (b) the BW
direction, showing diffractive
beam spread; (c) beam
evolution for wide beam
excitation in the FW
direction, showing BO
motion with the beam mostly
confined to the high index
side, and (d) the BW
direction, showing diffractive
beam spread

period close to 9 mm and lateral spread ∼11 μm, as shown in Fig. 6.16(a). A wider
beam 6-μm-wide launched at the input facet of the array exhibits BO motion with
a similar period LB ∼ 9 mm, with the light largely confined to the high index side
with lateral spread ∼4 waveguides as shown in Fig. 6.16(c) [22].

A large NRPS is produced by reversing the propagation or the magnetization di-
rection for the given design, with (βnr)∼ 700 m−1. This is calculated perform-
ing the integration in (6.7) for a typical value of g ∼ 0.0086 at λ= 1.55 μm with a
Ce:YIG cover layer. The large index contrast between the Si core and the Ce:YIG
cover plays a critical role to realize this strong NRPS. The modification of the inter-
waveguide δβ caused by the non-reciprocal (βnr) in the BW direction counters
δβf and induces a δβb ∼ 0. The index ramp vanishes and an unlimited lateral beam
spread is observed for both single guide excitation (0.2-μm-wide) and broad beam
(6-μm-wide) excitation, as expected (LB = 2π/(δβf −(βnr))∼ ∞) and shown
in Figs. 6.16(b) and (d), respectively.

Silicon-based hybrid structures with magnetic garnet cover layers can yield
NRPS as large as ∼7.0 rad/mm, as demonstrated in recent work by Mizumoto and
co-workers [39]. The model system presented here has a similar garnet/SOI compo-
sition, making it possible to predict unidirectional optical BO phenomena for array
lengths of less than 1 cm.

An important technological consequence of unidirectional Bloch oscillations
(BO) in magneto-optic media is that it enables the design and fabrication of
multi-functional on-chip devices that can function as optical isolators, amplifiers,
switches, filters and routers all in one. For example the unidirectionality of the Bloch
oscillatory phenomenon can be used for optical isolation purposes since the input
beam is transversely confined and can be refocused into a single channel in the for-
ward direction, while a backward traveling beam will diffract away from the central
channel. At the same time, the same isolator device can also be used as a fast opti-
cal switch. A reversal of the magnetization direction in the cover layer will switch
off the output beam as the beam switches from Bloch oscillation into a diffracting
beam as a result of the magnetization reversal. This is because a magnetization re-
versal is equivalent to a reversal in propagation direction in these non-reciprocal
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devices. The forward diffracting beam is either guided away or absorbed out. More-
over, the spread and refocusing of the waveguide excitation into a single channel in
the forward direction may be used in other applications, such as non-saturated am-
plification in a semiconductor amplifier array. Although signals from several input
channels may be amplified in a wide domain of the array thus spreading the power
in a non-saturated fashion, they are refocused and leave the array through a single
channel.

In summary, we predict and analytically establish the existence of unidirectional
Bloch oscillations in asymmetric garnet/SOI waveguide media with transverse mag-
netization. It is shown that an array can be constructed with a constant wavenum-
ber step in one propagation direction that simultaneously violates the conditions
for standard Bloch oscillatory motion in the opposite. Under such conditions the
counter-propagating waves behave differently, with Bloch oscillatory motion in one
direction and unlimited beam spread in the opposite, as a result of the TM mode
NRPS effect.
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Chapter 7
Magnetophotonic Crystals: Experimental
Realization and Applications

M. Inoue, A.V. Baryshev, T. Goto, S.M. Baek, S. Mito, H. Takagi, and P.B. Lim

Abstract The most striking feature of photonic crystals, compared with homoge-
neous optical materials, is the existence of photonic band gaps. The band gaps are
responsible for resonant light coupling to constituents of photonic crystals in both
the cases where periodicity is ideal or broken by defects introduced intentionally.
What if photonic crystals are made of magnetic materials? May magnetism bring
about new advances in the field of photonic crystals where not only amplitudes but
also polarization states are controlled by the spin subsystem? Below we will discuss
magnetophotonic crystals and show that light confinement in their non-reciprocal
magnetic constituents results in new magneto-optical phenomena. This chapter re-
views studies on magnetophotonic crystals with various designs; it focuses on their
experimental realizations, theoretical analysis and application to spatial light mod-
ulators.

7.1 Introduction

The electrodynamics of inhomogeneous artificial materials has experienced rapid
development. Advances in experimental and applied electrodynamics are connected
with the rising potential of modern fabrication techniques, allowing creation of tiny
periodical structures with characteristic lengths (periodicity) comparable to or even
smaller than the wavelength of light. Among representatives of such structures are
photonic crystals (PCs) [1–5] and their remarkable extension—magnetophotonic
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Fig. 7.1 Scanning electron microscopy images of 1D magnetophotonic crystals: (a) garnet/SiO2
multilayer, (b) Fabri–Pérot microcavity, (c) dual microcavity, (d) and (e) Tamm structures

crystals (MPCs) [6–19]. Studies on MPCs were motivated by fundamental and prac-
tical interest to enhancing magneto-optical (MO) responses of existing MO mate-
rials and possibilities of controlling the flow of light by external magnetic fields.
Looking back and ahead on can state that MPCs revealed themselves as fruitful me-
dia exhibiting new physical phenomena that are attractive for various applications.

Initial theoretical studies on MPCs deal with light propagation in discontinu-
ous magnetic media with a 1D structure [6–8], where the Faraday rotation is ana-
lyzed using the matrix approach. 1D structures considered in these works are multi-
layer films composed of bismuth-substituted yttrium iron garnet (Bi:YIG) and SiO2,
which are piled up in an arbitrary sequence. For such multilayers, the enhancement
both in transmittance and in the Faraday rotation angle θF is shown to originate
from the localization of light caused by the multiple interference [20, 21]. Theoreti-
cal analysis shows that the angle of Faraday rotation increases as the degree of light
localization rises (see Chap. 1). The largest enhancement of θF can be obtained in
1D MPCs with a microcavity structure, where a garnet layer is sandwiched between
two Bragg reflectors [8, 13]. Following theoretical predictions, 1D MPCs were fab-
ricated by different techniques and their experimental evaluation was performed.
Below we will discuss experimental MPCs made by sputtering. Qualitative distinc-
tions among various MPCs will be reviewed. As for MPCs’ structural parameters
and fabrication details, they can be found in works cited in the present chapter.

To start our consideration, let us recall peculiarities of a wave propagating
through a one-dimensional (1D) PC and later through a 1D MPCs shown in
Fig. 7.1(a). Let the PC be a periodical system of layers with dielectric constants
of ε1 and ε2 and thicknesses of d1 and d2. The electromagnetic fields at the differ-
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ent surfaces of a single layer are linearly connected due to linearity of the Maxwell
equations:

(
E

H

)
left

= T

(
E

H

)
right

, (7.1)

where T is a transfer matrix. For one homogeneous layer, the T -matrix takes the
form of
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As follows from (7.2), the T -matrix of a system of layers is equal to the product
of the T -matrices of all layers. In an infinite periodical system, Bloch’s theorem
asserts that the eigensolution is changed only by the phase at propagation through a
unit cell consisting of two layers:
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If we compare (7.3) and (7.1), one may find that eikBla is an eigenvalue of the T -
matrix of the unit cell, where kBl is the Bloch wave vector. For a 1D PC with such a
unit cell, we arrive at a dispersion relation:
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where a = d1 + d2 is a thickness of the unit cell. For small frequencies, we will get

kBl = ω
c

√
ε1d1+ε2d2

a
. This means that the dispersion relation kBl(ω) is just a linear

relation for long waves. At the same time, we have
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for the Bragg condition, and the right part of (7.4) becomes equal to −1 −
(
√
ε1−√

ε2)
2

2
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sin2(ω
c

√
ε1d1); this negative value is less than −1 and, therefore, kBl

is imaginary, see (7.4). This implies that, firstly, wave propagation is prohibited due
to the resonant reflection from an infinite 1D PC and that a photonic band gap (PBG)
develops for such waves, see Fig. 7.2. Secondly, the group velocity tends to zero for
modes approaching to edges of the PBG.

In spite of the similarity of wave phenomena in different areas of physics, there
is a difference between electrodynamics and quantum theory of solids: the electron
wave function is scalar (neglecting effects associated with spin) or two-spinor (tak-
ing into account degrees of freedom associated with spin), whereas the electric and
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Fig. 7.2 (a) Photonic band structure for circularly polarized waves calculated for normal inci-
dence of light onto a 1D MPC composed of SiO2 layers with the dielectric constant of ε1 = 2.1 and
Bi:YIG layers with the diagonal component of dielectric constant of ε2 = 5.6 and the off-diagonal
component (gyration) of g = 0.1; absorption and dichroism in the layers are neglected. (b) Nor-
malized Faraday rotation of a 1D MPC comprised of 20 Bi:YIG/SiO2 bilayers–(Bi:YIG/SiO2)20;
we will keep such a notation for multilayers through the chapter. Faraday rotation angle θgarnet is
the rotation of a homogeneous Bi:YIG film with a total thickness as that of Bi:YIG in the MPC

magnetic fields are the vector quantities. This difference becomes pronounced for
magneto-optical (MO) materials that can be described by a permittivity tensor

!
ε=
⎛
⎝ ε ig 0

−ig ε 0
0 0 ε

⎞
⎠ , (7.6)

where g describes the MO activity, i.e. gyrotropic properties of an MO material.
Application of MO materials as components of MPCs is of a great technological

interest, since manipulation of light characteristics (polarization plane and trans-
mittance) is possible upon application of an external magnetic field. For example,
modes with certain polarizations and the frequencies in the immediate proximity of
a PBG edge may satisfy either passband or band gap condition, i.e., their propaga-
tion may be either allowed or suppressed upon magnetization. Unfortunately, most
optical materials possess very small values of g. That is why to directly measure the
spectral shift of PBGs is not possible. However, one may observe an alteration of
PBGs when measuring rotation of the polarization plane—the Faraday effect [21].

The Faraday effect causes a rotation of the polarization plane of a wave prop-
agating through an MO medium. This rotation is a result of splitting of the dis-
persions for right and left circularly polarized waves: kright(ω) = ω

c

√
ε − g and



7 Magnetophotonic Crystals: Experimental Realization and Applications 167

kleft(ω) = ω
c

√
ε + g. Upon entering an MO material, a linearly polarized wave

splits into cophased left- and right-circularly polarized waves of the same ampli-
tude. These waves gain a relative phase shift during propagation along a traveled
distance of L, and then, when emerging from the material, they rebuild a linearly
polarized wave with rotated polarization plane. The angle of Faraday rotation is
calculated by

θF = 1

2
(kleftL− krightL)= ω

2c
(
√
ε + g − √

ε − g)L≈ ωgL

2c
√
ε
. (7.7)

Let us consider Fig. 7.2 illustrating a typical dispersion kBl(ω) for 1D MPCs. The
dispersion kBl(ω) is close to a line at small frequencies, and the Faraday rotation of
the MPC has the same magnitude as that of an inbuilt homogeneous MO material.
However, the dispersion curves kleft(ω) and kright(ω) more and more flatten when
approaching the PBG (this illustrates decrease of the group velocity). For a wave
with a certain frequency of ω∗, this results in the enhancement of the Faraday rota-
tion due to a much larger difference in |kleft(ω∗)− kright(ω∗)|. It should be pointed
out that the band edges are distinguished not only by zero group velocities but also
by a specific field distribution. It will be shown in Fig. 7.3(a) that the electric field of
modes corresponding to the low-frequency edge of the PBG is mainly concentrated
in the high-permittivity layers. On the contrary, the electric field concentration is
greater in the low-permittivity layers for modes from the high-frequency edge of
the PBG. This phenomenon can be referred to as the frequency analog of the Bor-
rmann effect [22, 23], which is known in the X-ray spectroscopy of conventional
solids [24].

In the next sections we will also discuss properties of MPCs, where the trans-
lational invariance is broken, see Figs. 7.1(b)–(e). For such MPCs, new solutions
of Maxwell’s equations can arise within their PBGs. These solutions will be shown
to have a resonant behavior, where propagating modes are spatially localized in
magneto-optical constituents of MPCs. Resonant propagation of a wave through a
resonator may be represented as a multipass regime in non-reciprocal materials. In
such a regime, the wave bounces inside resonator, i.e., travels across it many times
before emerging. Thus, the effective traveled distance L from (7.7) can be much
greater than the thickness of the built-in MO material. That is why the Faraday ro-
tation is accumulated due to non-reciprocity of the MO material as L, governed by
the Q-factor of the resonator, increases (see Chap. 1).

For 2D (and potentially for 3D) MPCs, a regime of multiple Bragg diffraction
appears to play a crucial role. This regime takes place when the Bragg resonances
for different families of planes of an MPC appear at the spectrally close position or
simply overlap. In PBG structures, this regime corresponds to the points where two
or more bands become degenerate (or nearly degenerate). It appears that the MO
activity affects PBGs and optical responses of MPCs only in the close proximity
to such degeneracies [17]. Due to the MO activity, components of the permittivity
tensor “intermix” polarizations corresponding to the degenerate bands; note that this
effect is rather marginal for modes that are far from degeneracies of a PBG [25, 26].
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Fig. 7.3 (a) Spatial distribution of dielectric constants and the in-sample distribution of the electric
field amplitude for wavelengths corresponding to PBG edges: gray line is for the short-wavelength
edge and black line–the long-wavelength edge. (b) Transmission (solid circles) and Faraday rota-
tion spectra (open circles) of the 1D MPC. Solid curves show the fitting of the experimental data
by the four-by-four matrix approach. Dashed line shows the interference-subtracted spectrum of
the Faraday rotation for a Bi:YIG film with the thickness equal to the total thickness of Bi:YIG in
the 1D MPC shown in panel (a). Spectra were measured at normal incidence and for the saturating
external magnetic field of 2 kOe

7.2 Optical Borrmann Effect in 1D Magnetophotonic Crystals

There is always a trade-off between the optical and magneto-optical responses for
a particular MO material–called in literature the figure of merit [21], since a larger
Faraday rotation is accompanied by a rise in absorption. Normally in case of MPCs
under our discussion, the materials used for Bragg mirrors of MPCs have low optical
losses in the visible and near infrared spectral ranges, and Bi:YIG has a significant
Faraday rotation.

Let us see the electric field distribution for a 1D MPC shown in Fig. 7.1(a).
The dielectric constant in a bounded MPC, which is a multilayer made of
(SiO2/Bi:YIG)5 stack of alternating λ/4-thick SiO2 (150 nm) and Bi:YIG (100 nm)
layers is plotted in Fig. 7.3(a). For the MPC, transmission is strongly suppressed in
a PBG of 730–1020 nm, see plot (b). In this spectral range, θF is found to decrease
down to zero for light escaping from the MPC. Outside the PBG, the magnitude of
θF oscillates and has local maxima at 640 and 720 nm that correspond to maxima
in the transmission spectrum.

The maximum angle of the Faraday rotation is seen at the long-wavelength edge
of the attenuation band, at 1070 nm. This is a clear manifestation of the optical
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Borrmann effect in the MPC [22, 23]. The modes with wavelengths of 720 and
1070 nm are concentrated in the Bi:YIG layers. The electric field augmentation
occurs most effectively for the wave with the wavelength corresponding to the long-
wavelength edge of the PBG; see the maxima of the black curve in plot (a) that
occur in the garnet layers. We will show in the next sections that the considered
(SiO2/Bi:YIG)n multilayers provide by itself building blocks for 1D MPCs with
various designs.

7.3 Light Localization or Defect Modes in Fabri–Pérot 1D MPCs

Work by Rosenberg et al. [26] states that “Faraday rotation of the plane of polar-
ization of light can be greatly enhanced by placing the Faraday rotating material in
a resonant cavity.” As a matter of fact, 1D MPCs with a single [8] and dual Fabri–
Pérot cavity structure [9] are theoretically shown to be most efficient media to gear
up the Faraday rotation of existing MO materials.

Single microcavities composed of two dielectric Bragg reflectors made of λ/4-
thick materials and a λ/2-thick Bi:YIG defect layer incorporated between them,
(Ta2O5/SiO2)n/Bi:YIG/(SiO2/Ta2O5)n, have been realized and evaluated in linear
and non-linear optical experiments [[19], see Chap. 8]. 1D MPCs with n = 5 is
shown in Fig. 7.1(b), and an in-sample electric field distribution together with opti-
cal spectra are plotted in Fig. 7.4.

For transmission and Faraday rotation spectra, formation of sharp peaks at
λ = 720 nm within an attenuation band of 600–850 nm is the result of the
well-known resonant light propagation through the Fabri–Pérot microcavity, i.e.
the light localization inside the Bi:YIG layer. Remarkable feature of such MPCs
is that the microcavity provides a high transmissivity and a large enhancement
of Faraday rotation simultaneously. Remarkable realization of all-garnet MPCs
is demonstrated by Grishin et al. where the crystals were fabricated from pure
bismuth iron garnet (Bi3Fe5O12) and non-doped garnet layers by pulsed laser
deposition or rf-magnetron sputtering: Bi3Fe5O12/Y3Fe5O12-based MPCs [13];
Bi3Fe5O12/Gd3Ga5O12-based MPCs layers [27]; Bi3Fe5O12/Sm3Ga5O12-based
MPCs [28, 29]. The above-cited works showed that heteroepitaxial garnet-based
MPCs exhibit excellent figures of merit in the visible and near-infrared spectral
ranges.

It is worth noting that the resonant transmission of the microcavity-type 1D
MPCs are controlled by the Bi:YIG defect layer; the thickness of Bi:YIG governs
spectral positions and the number of localized modes exhibiting enhanced angles of
Faraday rotation [19].
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Fig. 7.4 (a) Spatial
distribution of dielectric
constants and the in-sample
distribution of the electric
field amplitude for a resonant
wavelength.
(b) Transmissivity and
(c) Faraday rotation spectra
of an MO microcavity,
(Ta2O5/SiO2)5/Bi:YIG/(SiO2/
Ta2O5)5. Spectra were
measured at normal incidence
and for the magnetic field of
2 kOe

7.4 Light Localization in Dual-Cavity 1D MPCs

On magnetization transmission peaks located within the PBG of the considered
single-cavity MPCs split due to the difference in the refractive indices for the right
and left circularly polarized light. Theoretically, this causes an unwanted effect,
namely a reduction of the transmitted signal [9]. That is why magnitudes of trans-
missivity and the magneto-optical response of single-cavity MPCs is also a fun-
damental trade-off. To largely increase the responses, 1D MPCs containing two
defects—dual cavities, see Fig. 7.1(c)—are analyzed and shown to exhibit a maxi-
mal possible transmissivity and Faraday rotation up to 45 degrees [9]. However, a
recent experimental realization of the dual-cavity MPCs shows that even tiny struc-
tural defects have an extremely destructive effect, and the responses of the fabricated
dual cavities are smaller than predicted ones [30].

Figure 7.5 illustrates an in-sample electric field distribution for a dual-cavity
MPC and comparison between spectra of the dual cavity with its single-cavity coun-
terpart [31]. Bragg mirrors (BM) for these MPCs were λ/4 stacks of (Ta2O5/SiO2)5,
and the structures of dual and single cavities were BM/G/BM/S/BM/G/BM and
BM/G/BM/, respectively; G was a λ/2-thick Bi0.5Dy0.7Y1.8Fe3.3Al1.7O12 layer and
S was a λ/4-thick spacer made from SiO2. One can see that maxima of the electric
field distribution lie in the garnet layers plot (a), such a distribution should result
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Fig. 7.5 (a) Dual cavity: a sketch of the spatial distribution of dielectric constants and the in-sam-
ple distribution of the electric field amplitude for a resonant wavelength. (b) Transmissivity and
(c) Faraday rotation spectra of the dual (black line, circles) and single (gray line, triangles) cavi-
ties. Inset illustrates a double peak in the spectrum of Faraday rotation. Spectra were measured at
normal incidence and for the saturating external magnetic field of 2 kOe

in large enhancement of the Faraday rotation. However, spectra in Fig. 7.5(b) show
that the figure of merit of the single cavity is better than that of the dual cavity.
The only signature of the “dual” behavior can be seen in the inset. Here splitting of
the peak in the spectrum of Faraday rotation is an intrinsic feature of dual cavities,
illustrating a resonant coupling between the garnet defect layers.

The angle of Faraday rotation of the dual cavity was smaller than the doubled an-
gle of the single cavity, and the Q-factor of the dual cavity degraded for this exper-
imental sample. Since the dual cavity has been fabricated by successive sputtering
and two annealings, there is no identity of two single cavities composing the dual
cavity. This results in detuning the resonances and degrading optical responses of
the dual cavity. To conclude, our recent results show that, for realizing the concept
of dual cavity, (i) fabrication accuracy and (ii) thickness of BMs must exceed those
of the fabricated sample. Studies on dual cavities fabricated by adhesive bonding
with improved responses can be found in Ref. [31].

7.5 Optical Tamm States in 1D MPCs

An interesting realization of 1D MPC supporting optical surface states has been
recently demonstrated theoretically [32–37] and experimentally [38–40]. It was
shown that a boundary between two 1D PCs causes a localized state to appear,
and the frequency of such a state located inside the overlapping PBGs of two PCs.
The eigensolution f (z)eikBlz inside each PC is the Bloch wave and consists of two
factors—the exponential part eikBlz, where kBl is the Bloch wavenumber, and a pe-
riodic function f (z). For the band-gap frequencies, the electromagnetic field de-
creases exponentially from interfaces of a PC (since the Bloch wavenumber kBl is
an imaginary quantity) and is still modulated by the f (z) function. In the case of
two adjoining PCs, Fig. 7.1(d), two f functions make possible to satisfy the bound-
ary conditions between two exponentially evanescent from the boundary interface
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Fig. 7.6 (a) Spatial
distribution of dielectric
constants for the MPC shown
in Fig. 7.1(d) and the electric
field amplitude for a resonant
wavelength.
(b) Transmissivity of a
nonmagnetic PC and a
magnetic PC are denoted by
line 1 and 2 respectively.
Transmissivity of the system
of adjoining PCs (referred in
the text as the MPC) is shown
by circles (3); its calculated
spectrum is given by curve 4.
(c) Angle of Faraday rotation:
a reference (SiO2/Bi:YIG)5

multilayer (black solid line),
the experimental (circles) and
calculated (gray line) spectra
of the MPC

Bloch waves. This case results in developing a state spatially localized at the inter-
face between two PCs. This state is intrinsically a surface one and is cognate to the
Tamm state [41] known in Solid State Physics. Another mapping of Tamm’s struc-
ture onto the electrodynamics would be a system comprised of a PC and a film with
the negative permittivity adjoined to the PC. The existence of optical Tamm states
(OTSs) has been also theoretically discussed in Refs. [42, 43]. Below we discuss
OTSs in experimental MPCs.

Figure 7.1(d) shows a Tamm structure of two adjoining 1D PCs, sputtered
successively on a quartz substrate. The first, non-magnetic PC was the di-
electric multilayer Ta2O5/(SiO2/Ta2O5)5. Then, the magnetic (Bi:YIG/SiO2)5

multilayer was formed so that the resultant MPC had a structure of quartz
substrate/Ta2O5/(SiO2/Ta2O5)5/(Bi:YIG/SiO2)5. Another, more simple Tamm
structure was a quartz substrate/(SiO2/Bi:YIG)5/Au multilayer, see Fig. 7.1(e). For
resonant wavelengths, the electric field pattern within the MPCs together with the
dielectric constant profile is given in plots Figs. 7.6(a) and 7.7(a). For both realiza-
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Fig. 7.7 (a) Spatial
distribution of dielectric
constants for the MPC shown
in Fig. 7.1(e).
(b) Transmissivity of the
(SiO2/Bi:YIG)5 multilayer
and the Au film alone are
denoted by (1) and (2),
respectively. Transmissivity
of sample (SiO2/

Bi:YIG)5/Au is shown by
circles (3); its calculated
spectrum is given by curve 4.
(c) Angle of Faraday rotation:
the (SiO2/Bi:YIG)5

multilayer (black solid line,
experiment) and the
(SiO2/Bi:YIG)5/Au
(circles—experiment, gray
line—theory)

tions, the amplitude is remarkably high at the interface between the magneto-optical
substructure and the adjoined one, and it falls exponentially away from the interface.
Such a distribution confirms the formation of the OTSs seen in transmission spectra
[see plots (b), lines 3 and 4]. Also, the designs of the MPCs were such that all, for
the resonant wavelength of OTS, maxima of the field pattern were spatially located
inside the Bi:YIG layers.

According to work [35], if one of the adjoining PCs is magnetic, an OTS should
cause a substantial enhancement of the Faraday rotation. In order to verify that the
transmission peaks associated with OTSs are due to resonant coupling to Bi:YIG,
MO spectra of the reference (SiO2/Bi:YIG)5 multilayer have been measured. The
Faraday rotation of the conventional multilayer—the monotonous black solid line—
follows the ordinary response from the Bi:YIG constituents, see Fig. 7.6(c). As for
the Tamm structure, the Faraday rotation is enhanced at the transmission peak of
800 nm; θF is almost one order of magnitude larger than that of the magnetic PC. It
is worth noting that, qualitatively and from the view point of the measured optical
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and magneto-optical responses, this realization of MPCs is very close to the single
magnetic microcavity (Sect. 7.3).

Now let us consider an OTS in MPCs with a structure of (SiO2/Bi:YIG)5/Au,
in which the periodicity is terminated by an Au film with the negative permittivity.
For this MPC, the OTS with a wavelength of 780 nm appeared inside the attenu-
ation band of 600–850 nm. Intensity of the transmission peak was 25 %, and the
corresponding enhanced Faraday rotation angle was of −0.4◦ (see Fig. 7.7). As for
the reference (SiO2/Bi:YIG)5 multilayer, a peak related to the Borrmann-like en-
hancement is seen at a wavelength of 875 nm. Note again that this Tamm structure
represents the direct optical analog of the conventional crystals supporting the elec-
tron Tamm states, while the system of adjoined PCs resembles the microcavity-type
MPC discussed in Sect. 7.3.

To underline peculiarities of MPCs supporting optical Tamm states, one may
state that these structures can be employed for localizing light within any active
material used as the constitutive layers of PCs or introduced at the interface be-
tween two PCs. OTSs might provide the additional mechanism to increase the elec-
tric field strength in photonic structures called upon to excite long-range surface
plasmon–polaritons. Moreover, they can be attractive for sensing applications, since
their optical responses may strongly vary with a change of dielectric conditions in
the vicinity of open noble metal surfaces.

7.6 Interplay of Surface Resonances in 1D Plasmonic MPC Slab

Surface plasmon- (SPR) and localized surface plasmon resonance-affected magneto-
optical responses from various structures have found a remarkable interest aimed
at enhancing responses from known magneto-optical materials. Several magneto-
optical composites (see Chap. 4.7 in Ref. [5] and [44–47]) and structures (see
Chap. 5, [48–52]) have been reported to possess plasmon-related features in Fara-
day (or Kerr) rotation spectra, where enhanced polarization rotation is accompanied
by light interaction with noble metal subsystems.

Here we consider overlapping resonances in spectra of an MPC terminated by a
noble metal layer [(SiO2/Bi:YIG)5/Au multilayer shown in Fig. 7.1(e)]—the plas-
monic MPC slab, hereafter. Experimental conditions and parameters of the slab have
been chosen such that the slab supported OTS originating from the periodical struc-
ture and SPR on the noble metal (Au) film’s interface [53]. The Kretschmann con-
figuration has been used to match these resonances (Fig. 7.8). Experimentally ob-
served spectral positions of the SPR band are in agreement with that obtained from
the analytical expression [54] for excitation of surface plasmons:

np sin(α)− neff = 0, neff = Re

√
εAu(λ)n2

εAu(λ)+ n2
, (7.8)

where np is the refractive index of a coupling prism (np = 1.5), α is an angle of
incidence from the prism, εAu(λ) is a dielectric permittivity of the gold layer, and
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Fig. 7.8 (a) Experimental geometry for OTS and SPR excitation. (b) Reflection spectra of the
plasmonic MPC slab for internal, in-prism angles of incidence, α = 43–45.7◦. (c) Kerr rotation
spectra for same α as in plot (b)

n= 1 (air). The choice of the multilayer’s parameters is done so as to match spectral
positions of OTS and SPR in accord with the following expression:

λ(α)= λ(0)

√
1 −

(
np sinα

neff∗

)2

, (7.9)

where λ(0) is a spectral position of OTS at normal incidence, α is an angle of inci-
dence from the coupling prism, np is a refractive index of the prism, and neff∗ are is
the effective refractive index of multilayer.

Figure 7.8(b) presents reflection spectra of the plasmonic MPC slab where a peak
associated with the OTS and the SPR band are manifested. One can see that, in
the range of α = 43–45.7◦, the SPR band experienced a fast shift and spectrally
intersected OTS. Note that, for α = 43–45.7◦, the OTS peak slightly shifts (λ ≈
20 nm) in accord with (7.9).

Figure 7.8(c) demonstrates that the Kerr rotation spectra of the slab experience
a large modification when the peaks associated with the OTS and SPR resonances
spectrally overlap. Interestingly, the magnitude of θK altered with sign reversal by
the crossing between OTS and SPR. For example, one can see that θK changed sign
from +1◦ to −1.4◦ when scanning λ= 585–695 nm; see the spectrum for α = 45◦.
Symmetrical shape of the R(λ) curve (thick solid line, α = 45◦) is a signature in-
dicating that the minima of the OTS and SPR resonances are spectrally close. The
interplay between these overlapping resonances resulted in more and more asym-
metrical shape of the θK(λ) spectra. Obviously, a power distribution ‘in OTS and
SPR tandem’ together with phase relations between rays emerging from the slab
were responsible for the observed transformation of the θK spectra. One may expect
that, for structures with high-Q factors for OTSs, the above mentioned change of
θK will accordingly increase.

Motivated by an idea of an artificial medium able to support resonances of dif-
ferent nature, the plasmonic MPC slab is considered as a new approach to engineer
responses of magnetophotonic crystals and similar systems. It is rather interesting
that the spectra of θK [Figs. 7.8(b) and (c)] have a Fano resonance-line [55] shape at
the condition of λOTS = λSPR, where there should be an interaction of a spectrally
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narrow OTS laying inside a wide SPR band. The observed modification of the polar-
ization rotation spectrum θK can be thought of as a vector-field analog of the scalar
Fano resonance.

7.7 Multiple Bragg Diffraction in Quasi Two-Dimensional MPCs

Up to the present section the chapter dealt with the realizations of one-dimensional
MPCs, although fabrication of two- (2D) and three-dimensional (3D) MPCs (see
Figs. 7.9 and 7.13) has been done by combining different approaches [19]. In
fact, the MO responses of such experimental structures are not much competitive
with that of 1D MPCs. However, theoretically predicted effects (for instance, mag-
netic superprism [17, 18], waveguide circulator [56, 57]) provide room for the next
challenges in the development of 2D and 3D MPCs. In the search for successful
MPCs with higher dimensionality, 2D MPCs [58–62] have been fabricated by au-
tocloning [63]. For setting periodicity of MPCs, patterned substrates can be used
where sputtered materials transpose symmetry of the substrates. In this section we
present a discussion of the structural and optical properties of 2D MPCs fabricated
on an opal film and a lithography-made pattern, Fig. 7.9(d).

Two-dimensional periodicity in the “quasi-2D” (Q-2D) MPC has been set by a
structured substrate, where a 1D array of photoresist bars had a lattice constant of
400 nm and the bars had a width of 200 nm, see inset to Fig. 7.9(d). Up to seven
Bi:YIG/SiO2 bilayers have been stacked so that the symmetry of the photoresist
pattern has been replicated across and along the MPC. The cleaved edge reveals the
Q-2D periodicity, where scattering elements can be denoted by parallelograms, see
Fig. 7.10(a). Sputtering was made simultaneously for the Q-2D MPCs and for a reg-
ular, reference 1D MPC fabricated on top of a flat quartz substrate (same type as in
Sect. 7.2). The geometry of the experiment together with polarization directions for
incident light and the orientation of samples is shown in Fig. 7.10(b). The linearly
polarized electric field has been set by a polarizer to be of a chosen orientation: the
electric field vector is across the photoresist bars for p-polarized light (E⊥,ψ = 0◦),
and it is parallel to the bars for s-polarized light (E‖,ψ = 90◦).

Transmission spectra and spectra of the Faraday rotation at the normal incidence
for the Q-2D (Bi:YIG/SiO2)7 multilayer, and the reference 1D MPC are shown in
Fig. 7.11. One can see spectrally neighboring, overlapping bands in transmission
spectra. Light with wavelengths from such an overlap will experience the so-called
multiple Bragg diffraction (the effect [64] known from the X-ray spectrography).
In the case of magneto-optical materials, such diffraction should introduce unusual
responses from MPCs with 2D and 3D structures.

Let us consider features in spectra of the Q-2D MPC. The band in a range of 580–
830 nm for 1D MPC (gray line) can be also traced in the spectra of the Q-2D MPC.
Interestingly, the T‖- and T⊥-polarized spectra of the sample have a reach struc-
ture with a number of resonant peaks and showed large transmission anisotropy,
Fig. 7.11(a). The prominent difference in the spectra of the sample is an additional
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Fig. 7.9 2D MPCs fabricated
by the autocloning method:
(a) patterned Bi:YIG on an
opal thin film, (b) same as
in (a) after ion
etching [58–60], (c) YIG
garnet fabricated on a GGG
crystalline substrate covered
by a 2D platinum
array–mono-and
poly-crystalline YIG
substructures are seen [59],
and (d) corrugated
Bi:YIG/SiO2 multilayer with
a “quasi-2D”
periodicity [61, 62]

Fig. 7.10 (a) Model of the “quasi-2D” structure of the multilayer shown in Fig. 7.9(d): diffraction
planes, interplanar spacing and scattering elements are shown. (b) Scheme of experiment together
with orientation of the sample and the polarization plane. The inset shows an orientation of an opal
sample under discussion in Sect. 7.8, Fig. 7.14

stop band in a range of 535–600 nm. This band with its minimum at λ= 570 nm is
clearly seen in the T⊥ spectrum. For E‖-polarized light, the additional band merged
with that located in the long-wavelength range. The additional band is due to diffrac-
tion from “oblique sine curve piece” (OS) periodical scattering elements of the mul-
tilayers. And “inflection sine curve piece” (IS) scattering elements are responsible
for the spectral features in long wavelengths. These three sets of effective diffraction
planes in the structure can be seen in Fig. 7.10(a). Thus, the set of planes 1 (or IS
elements) are responsible for attenuation in the longer range. Planes 2 and 3 (or OS
elements) diffract light with shorter wavelengths of λ= 530–600 nm.

Actually, when scanning the angle of incidence α, analysis of spectral fea-
tures shows that the OS band splits into two bands moving apart as α raises,
see Figs. 7.12(a) and (b). Decomposing the spectra into two Gaussians, shifts
of minima for the splitting bands can be roughly fitted by the Bragg law, λ =
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Fig. 7.11 (a) Polarization-
resolved transmission and
(b) Faraday rotation spectra
of a Q-2D MPC at normal
incidence. Spectrum of a 1D
MPC with the same number
of SiO2/Bi:YIG bilayers
(gray line) is shown for
reference

Fig. 7.12 Angle-resolved
transmission spectra of the
Q-2D MPC for E‖- and
E⊥-polarized light; plots (a)
and (b), respectively.
(c) Angle-resolved Faraday
rotation spectra for the E‖
polarization. Incident angles
α were 0◦, 2◦ and 5◦. Gray
lines show spectra for the
reference 1D MPC measured
at normal incidence.
(d) Angle-resolved split
between the bands shown in
plot (b); calculated Bragg
wavelengths are shown by the
dashed line

2dneff cos(γ − sin−1(sinα/neff)) with due account of refraction, see Fig. 7.12(d).
Here an effective refractive index (neff) of the Q-2D MPC, an angle (γ ) between the
Bragg diffraction plane and the sample basal plane, and also an interplanar distance
(d) are the fitting parameters.

For the reference 1D MPC, the Borrmann-effect-related enhancement of Faraday
rotation is seen at the band edges (λ = 590 and 825 nm); shown by a gray line in
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Fig. 7.12(c) is the enhancement at the short-wavelength edge. Similarly, a significant
enhancement of the rotation angle is seen in the θ‖ spectrum of the Q-2D MPC at
λ= 550 nm, at the short-wavelength edge of the additional band. If compared with
θ1D MPC, one order of magnitude larger rotation angle was observed for light with
λ= 610 nm tunneling through the sample; transmissivity in this range is suppressed.
Also, the polarization rotation rapidly changes in the range of 590–610 nm.

The observed features are attributed to the multiple Bragg diffraction, where light
beams with a fixed wavelength simultaneously experience diffraction events from
three diffraction planes. In this regime light should be maximally trapped inside the
sample. And, as expected in accord with non-reciprocity of the Faraday effect, the
polarization rotation should be accumulated. However, the θ⊥ spectrum illustrates
that the Faraday rotation can be as well as suppressed, see Fig. 7.11(b). The pro-
cesses contributing to the magneto-optical responses and the results of diffraction
experiments are discussed in more detail in Ref. [61], showing a superprism effect
accompanied with the demultiplexing phenomenon.

If the multiple Bragg diffraction is a key factor for altering polarization, detun-
ing the overlap of the adjacent stop bands should bring a notable modification in
the Faraday rotation spectra. We prove now this assumption. Figure 7.12(c) shows
transmission and Faraday rotation spectra for normal and oblique incidence. Inter-
estingly, a moderate change in α resulted in strong changes of spectra of Faraday
rotation: θ‖ at α = 2◦ is flipped with respect to θ‖ at α = 0, and the rotation angle
for α = 5◦ did not exceed the rotation angle of the reference 1D MPC (gray line).
Experiments showed that, at other angles of incidence except for α = 0 and 2◦,
Faraday rotation spectra are similar to that measured at α = 5◦. With due account
taken of the sign of Faraday rotation, the mirror symmetry in the spectra and rota-
tion degradation implies that the MO response is extremely sensitive to strength of
each diffraction channel (one IS and two OS channels).

To conclude this section: multiple Bragg diffraction results in a significant en-
hancement of the MO response of Q-2D MPCs. Moreover, the enhancement is ac-
companied by the change of the polarization rotation direction in a narrow spectral
range, where neighboring photonic stop bands overlap.

7.8 Three-Dimensional Magnetophotonic Crystals

Studies on fabrication and magneto-optical responses of 3D MPCs (Fig. 7.13) have
been done mostly by use of the technology of artificial opals, where opals were
3D templates for magneto-optical materials [65–69]. Indeed, the lattice of direct
opals—image (a)—with a continuous net of voids between close-packed spherical
particles has been shown to be a unique, nanoscale container for various materials
[image (c)] and also for inversion of the opal lattice [image (d)]. Moreover, opals
have been used as building blocks of various complex structures; see image (b) and
Refs. [58, 69].

To give an outlook on polarization transformation in photonic crystals, we first
discuss polarized light coupling to an oriented opal sample. Opals have been shown
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Fig. 7.13 Scanning
microscope images of an opal
thin film and opal-based 3D
MPCs

Fig. 7.14 Transmission spectra an opal sample made of SiO2 spheres with a diameter of
315 ± 15 nm. (a)–(c) Transmittance measured at normal and oblique incidence for light with dif-
ferent polarizations (Es—thick line, Ep—dashed line and E45◦ —thin line). (d)–(f) Polarization
direction alteration for Es , Ep and E45◦ polarizations at α = 0◦. (g)–(i) same as in (d)–(f) for
α = 25◦

to be a unique model object for various studies on photonic crystals [5], and
polarization-resolved spectra of opals are very instructive. Figure 7.14 illustrates
the anisotropy of polarized light propagation together with polarization twisting in
an opal sample. The sample was studied under the condition of a low dielectric
contrast. These conditions were achieved by impregnating the sample—the space
between spherical SiO2 particles—with an immersion liquid. Here, for s, p and 45◦
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polarization directions and the angle of incidence on the (111) plane ϕ = 0◦, 15◦,
25◦, one can see transmission spectra illustrating the spectral shifts of the stop bands
arising from the Bragg diffraction form the {111} planes. Note that these bands have
certain intensities, and detection of polarization states of attenuated waves is possi-
ble for all wavelengths from a range of the {111} stop bands.

Difference in the transmission shown in plot (a)–(c) can be coarsely understood
in terms of the Fresnel theory and Brewster effect [70, 71]. Simply, apart from the
Bragg diffraction, the intensity of a stop band depends on reflection coefficient at
each interface in a photonic crystal. Plots (d)–(f) show that, for ϕ = 0◦, the initial
polarization directions (Es , Ep and E45◦ ) of the incident beam are slightly altered
as compared with that emerging from the sample, and the ellipticity of the trans-
mitted wave is close to zero. However, the polarization rotation (and the ellipticity)
increases as the angle of incidence is increased. The incident Es - and Ep-polarized
light gains an additional rotation of 1◦, and the E45◦ -polarized light is rotated over
10◦ during propagation.

Why is the maximum optical rotation angle achieved for the polarization of E45◦
at oblique incidence? Provided that the polarization direction for waves with linearly
independent vectors Es and Ep does not change considerably during their propaga-
tion in a crystal, it becomes obvious that considerable polarization rotation of the
E45◦ field appears due to the amplitude anisotropy of the orthogonal components
Es:45◦ and Ep:45◦ (E45◦ = Es:45◦ + Ep:45◦ ). This rotation is a change in the electric
field orientation caused by a change in the vector sum of Es:45◦ + Ep:45◦ during the
propagation. The phase anisotropy reveals itself in the spectra of ellipticity, show-
ing maxima of ellipticity with the helicity of opposite sign at the (111) band edges.
The validity of this model is confirmed by the fact that the ellipticity for modes
corresponding to the minima of the (111) stop bands is zero; for more details see
Ref. [72].

The optical properties of the opal sample discussed in Fig. 7.14 are certainly com-
mon for photonic crystals with 1D and 2D photonic crystals. In the case of MPCs,
their magneto-optical activity may trigger the amplitude and phase anisotropy of
light propagation. This anisotropy may contribute constructively or destructively to
spectra of the Faraday rotation. In the general case, the initial linear polarization is
transformed into a new state with an elliptical polarization.

Opal thin films fabricated by vertical deposition have been also used as con-
stituent elements of MPCs, Fig. 7.13(b). Magneto-optical response of opal/Bi:YIG/
opal heterostructures in the Faraday geometry at normal incidence on the (111) crys-
tallographic plane is illustrated in Fig. 7.15; for details see Ref. [58]. Here a Faraday
rotation (line 1) and transmission (line 2) spectra of the heterostructure are plotted
together with a Faraday rotation spectrum of a reference single Bi:YIG film. One
can see an enhancement of Faraday rotation up to −0.30◦ for the transmission peak
of 24 % at λ = 567 nm corresponding to light localization. This heterostructure is
in principle analogous to 1D MPC discussed in Sect. 7.3. Unfortunately, the quality
of the opal films (thickness homogeneity and limited thickness) leads to weaken-
ing and broadening of the peak associated with light localization. Also, it should be
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Fig. 7.15 Faraday rotation (1) and transmission (2) spectra of an opal/Bi:YIG/opal heterostruc-
ture. Spectra were measured at normal incidence. For reference, a Faraday rotation spectrum (3)
of a Bi:YIG single film is presented. The dashed line shows the peaks associated with resonant
propagation

noted that there was observed a dramatic variation of Faraday rotation of the het-
erostructure in the range of 480–520 nm. This is due to light coupling to the 2D
hexagonal lattice of the patterned Bi:YIG layer shown in Fig. 7.9(a) [58, 60].

7.9 Applications of Magnetophotonic Crystals

High transmissivity and large Faraday rotation of 1D MPCs make them attractive
for film-type optical isolators [10, 73] and gyrotropic waveguides (see Chap. 6) and
switches [74], magnetic field [75] and refractive index sensing [76], and applica-
tions connected with modulation of light beam polarization: magneto-optical spa-
tial light modulators (MOSLM), and a holographic data storage utilizing MOSLMs
[77–79]. Interesting development for improving performance of all-garnet MPCs
by erbium doping of garnets has been shown in [29, 80, 81]. These works demon-
strate that the photo-luminescence of Er3+ atoms is intensive at room temperature
and the Er3+-doped MPCs provide an optical gain together with a large Faraday
rotation.

Here we will confine the discussion only to a theoretical consideration and ex-
perimental data on of prototypes of reflection-type MOSLMs based on MPCs. Fig-
ures 7.16 and 7.17 show a principle of light modulation by MOSLMs [82–84] and
a current-driven MOSLM chip together with a control board fabricated by FDK
Company (Japan). First MOSLMs were based on liquid phase epitaxial thick garnet
films with perpendicular magnetization. Their operation is done by current lines,
and overheat caused by pixels’ driving obstructs performances of the MOSLMs.
This is why new approaches have been suggested where MPC-based MOSLMs is a
promising solution [85–90].

Before discussion on MOSLMs it is worth mentioning about theoretical consid-
erations of devices based on MPCs with 2D and 3D structures. One of such works
deals with a 2D MPC-based three-port isolator/circulator [56] having a MO defect
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Fig. 7.16 (a) Magneto-optical spatial light modulator; device operation in reflection mode.
(b) Pixel with driving, reflecting electrodes. (c) Micrograph of magnetic image of magnetized
pixels. From Ref. [82] with modifications

Fig. 7.17 (a) Magneto-optical spatial light modulator; device operation in reflection mode.
(b) Pixel with driving, reflecting electrodes. (c) Micrograph of magnetic image of magnetized
pixels

in the hexagonal lattice together with a complicated magnetization pattern. Isolation
(circulation) in this circulator is due to an interference of counter rotating defect
modes that are in-phase for one of the ports while out-of-phase for another one.
These studies discuss an idealization, and an extension of the model investigation
has been done in Ref. [57]. Analysis of a simplified Si/air/garnet 2D MPC circulator
showed that a realistic model circulator has weaker responses.

Works devoted to a so-called magnetic superprism effect taking place in 2D
MPCs have recently attracted attention [17, 18]. These works show that a large
light deflection (superprism effect, known in non-magnetic 2D PCs [91, 92]) can be
achieved by 2D and 3D MPC at application of the external magnetic field. Briefly,
the principle of such a magnetic superprism is that the non-diagonal elements are
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magnetic field dependent. Degenerated band gaps of non-magnetized crystals shift
for left and right circularly polarized waves such that light flow in a particular di-
rection in MPCs can be allowed or prohibited, where “prohibited” means strongly
deflected.

Experimental 2D MPC discussed in Sect. 7.7 is noteworthy; it is a magnetic re-
alization of the superprism exhibiting related effects together with a large alteration
of the polarization plane. However, any deflection of light rays on magnetization
has not been detected because of littleness of alteration of garnet permittivity and
structural imperfection. A numerical analysis on magnetic superprism phenomenon
by such Q-2D MPCs can be found in Ref. [93], where potentiality for light flow
alteration due a scaled gyrotropy of magnetic constituents is discussed.

3D MPCs discussed in Sect. 7.8 have been in focus of experimental studies
mainly discussing their synthesis and magnetic properties [14, 68, 94–96]. Fabri-
cated representatives of 3D MPCs were mainly opal-based structures, and studies of
non-magnetic opal photonic crystals dealing with their polarization-resolved spectra
can be found in Refs. [70–72, 97–99].

There are various types of reusable modern SLMs with a 2D array of pix-
els, which have been intensively developed over the past three decades. Of these,
MOSLMs have the advantages of a high switching speed, solid-state and robust de-
vice with high nonvolatility and radioactive resistance [82]. Unfortunately, however,
the devices developed so far had a serious heat problem in their operations because
large drive currents reaching 200 mA are needed to reverse the magnetization of a
pixel.

Recent renewed interest in MOSLMs has resulted from the development of opti-
cal volumetric holographic recording [100], particularly, collinear holography [79].
Collinear holography utilizes SLM for both writing and retrieving processes, where
a high speed SLM is essential for ensuring the high transfer rate. For such a purpose,
MOSLM becomes very attractive due to its high operation speed. In fact, the pixel
switching speed of approximately 15 ns was reported [82] in MOSLMs with LPE-
grown magnetic garnet films. For such requirements, 1D MPCs are useful because
they simultaneously exhibit considerably large MO response and high transmissiv-
ity for extremely thin Bi:YIG layers operated by a smaller magnetic field. To realize
high-speed MOSLMs with at low power consumption, one of the possible solutions
can be operation by multiferroic media [101], where the magnetization is controlled
by a voltage applied to a piezoelectric subsystem of miltiferroic structures. In this
respect, utilizing the concept of MPC with built-in electro-optical (EO) or piezo-
electric constituents might be fruitful [89].

Theoretical analysis of responses of an electro-/magneto-optical SLM (e-
MOSLM) prototype [89] shown in Fig. 7.18(a) has revealed that modulation of
phase and polarization direction is possible, when controlling the EO constant of
the PLZT layer and simultaneously keeping the magnetization of the Bi:YIG layer.
For data under discussion in Fig. 7.18, this e-MOSLM prototype had a structure
of AR coating/SGGG/(Ta2O5/SiO2)9/Bi:YIG/PLZT/(SiO2/Ta2O5)18. Optical con-
stants of materials and structural parameters used for calculations can be found in
Ref. [89]. Here we note only that the Bragg reflectors were the λ/4 multilayers, the
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Fig. 7.18 (a) Prototype of e-MOSLM and geometry of analysis. (b) Reflection and polarization
rotation spectra of the prototype. (c) Reflection spectra of the prototype and phase shifts accu-
mulated during propagation for left- (circles and solid line) and right- (squares and dashed line)
circularly polarized light. (d) Change in reflectivity and polarization direction; the magnetization
of garnet is constant, and PLZT is subjected to the external electric field. Here, the rotation angle
means an angle between the direction of the E-field of the emerging elliptically polarized wave and
that of the incident linearly polarized wave

optical thickness of the EO layer (together with ITO electrodes) was λ/2 and that
of the MO layer was 2λ.

Reflection spectrum of the prototype has a double peak in the vicinity of λ =
780 nm associated with the difference in the refractive indices for light with the
eigen right- and left-circular polarizations, see Fig. 7.18(c). The maximum polar-
ization rotation angle is seen at λ = 780 nm, which features the largest phase shift
between the eigen modes rebuilding the linear polarization of light emerging from
the sample. The performance of the prototype versus applied voltage is plotted in
Fig. 7.18(d); the magnetization of the MO layer is assumed to be constant, and the
refractive index changed is assumed to change with the voltage as in Ref. [102].
For the resonant wavelength, the polarization direction was shown to continuously
decrease as the voltage increased. Importantly, when modulating the polarization
direction, the intensity of reflected light is alternated insignificantly.
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Fig. 7.19 (a) Structure of the working pixel of v-MOSLM, (b) a fabricated v-MOSLM, and
(c) a polarization microscope image of the v-MOSLM’s pixels at different running conditions

Fig. 7.20 (a) Optical responses of a working pixel of v-MOSLM (1D MPC prototype): reflectiv-
ity (black line), an experimental (squares) and calculated (gray line) angle of the Kerr rotation.
(b) Kerr rotation versus applied voltage; arrows show field direction. The angle of light incidence
is 7◦

Another voltage-driven 1D MPC-based SLM (v-MOSLM) is shown in Fig. 7.19:
(a) the structure of the working pixel, (b) a photograph of a fabricated v-MOSLM,
and (c) a polarization microscope image of the v-MOSLM’s pixels at different run-
ning conditions. The pixels had a multilayer structure of (Ta2O5/SiO2)2/BiDyAl:
YIG/(SiO2/Ta2O5)5.5/PZT. Here, BiDyAl:YIG is poly-crystalline bismuth/dys-
prosium/aluminum-substituted yttrium iron garnet (Bi1.3Dy0.7Y1.0Fe3.1Al1.9O12).
The magnetization direction of the BiDyAl:YIG layer (the polarization rotation of
a pixel) is controlled continuously via inverse magnetostriction, when applying a
voltage to the PZT actuator and hence a stress to BiDyAl:YIG [103].

Characteristics of the MPC shown in Fig. 7.19(a) are plotted in Fig. 7.20. Here
a reflection peak together with the Kerr rotation spectrum illustrates excitation of
the Fabri–Pérot resonance (λ= 530 nm) and the corresponding enhancement of the
polarization rotation. Kerr rotation spectrum of the MPC has been measured at an
angle of incidence of 7◦ in a saturating external magnetic field of 1 kOe. Perfor-
mance of the MPC versus voltage (i.e. versus inverse magnetostriction) is shown in
Fig. 7.20(b); the Kerr rotation for λ = 530 nm has been measured in a small bias
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magnetic field of ≈600 Oe applied in the opposite direction to the magnetization
direction of garnet. The angle of rotation continuously changed from 3.8◦ to 2.4◦
as the voltage increased; however, the response has not changed after switching-off
voltage. This illustrates the complexity of magnetization of the BiDyAl:YIG layer
in the reversing external bias field–the magnetization profile of BiDyAl:YIG films
comprising small grains revealed that the magnetization reversal of each grain in the
films happened independently [104].

7.10 Conclusion

Designing a microscopic distribution of fields inside the primitive cell of a PC allows
tuning light interaction with PC constituents made of active materials and brings
a significant change in their optical, magneto-optical, and other responses. In the
chapter we have demonstrated that MPCs composed of sequences of magnetic and
dielectric layers permit to enhance responses of known magneto-optical materials.
Light coupling to MPCs, where the magneto-optical constituents are periodically
arranged, built-in as a defect layers into a periodic structure, comprise structures
supporting surface states or multiple Bragg diffraction, results in a significant en-
hancement of the polarization rotation and many other interesting non-reciprocal
phenomena.

We have reviewed applications where magnetophotonic crystals are the key com-
ponents. Implementation of MPCs to optical integrated devises promises fast on-
spin-relaxation, multi-mode and multi-directional control of light flow by these
miniature magnetic media.

Some additional aspects of studies on nano-magnetophotonic structures can also
be found in Chap. 4.7 of Ref. [5] and Ref. [105].
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Chapter 8
Nonlinear Magneto-Optics in Magnetophotonic
Crystals

Oleg A. Aktsipetrov, Andrey A. Fedyanin, Mitsuteru Inoue, Miguel Levy,
and Tatyana V. Murzina

Abstract The chapter surveys the results on the investigation of the nonlinear
magneto-optical properties of magnetophotonic crystals (MPC) and microcavities.
The effects of the second- and third-harmonics generation as well as nonlinear
magneto-optical Faraday and Kerr effects are reviewed. The main magnetic ma-
terial used in the MPC structures, which determines the magneto-optical activity of
the magnetophotonic structures, is yttrium–iron garnet (YIG), which appears as a
continuous layer in 1D MPC, microcavity layer in magnetophotonic microcavities
or YIG nanoparticles incorporated in artificial opal structure. We demonstrate that
many-fold amplification of the nonlinear magneto-optical effects is attained within
the spectral edge of the photonic band gap and within the microcavity mode as
compared to linear magneto-optical analogs. Strong light localization as well as the
realization of the phase matching conditions are discussed as possible mechanisms
of the observed enhancement of the nonlinear magneto-optical effects.

8.1 Introduction: Nonlinear Optics and Magneto-Optics
in Photonic Band-Gap Materials

Magnetic photonic band-gap materials that are spatially periodic structures com-
posed (at least partially) of magnetic materials, are a subject of high interest due
to their unique optical and magneto-optical properties absent for bulk materials of
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the same composition. These properties originate from the modification of the opti-
cal spectra of magnetophotonic crystals (MPC) that leads to the appearance of the
photonic band gap and/or magnetophotonic microcavity (MMC) mode and to the
corresponding strong changes in the light localization and dispersion. These effects,
in turn, can modify drastically the spectral efficiency of optical and nonlinear optical
processes.

In this chapter we mostly review the results of our recent studies of optical
second- and third harmonics generation in garnet-based one-dimensional MPC and
MMC, as well as in YIG-substituted artificial opals. In what follows we will demon-
strate that such structures reveal many-fold amplification of the linear magneto-
optical Faraday and Kerr effects as well as the second- and third-order nonlin-
ear optical and magnetization-induced effects. These properties are very attractive
for magnetic-field operation over the light flow in such structures, including that
based on the nonlinear optical effects. In the latter case, in spite of a relative com-
plicity of the nonlinear optical technique, enormously large values of the nonlin-
ear magneto-optical effects (i.e. magnetization-induced rotation of the polarization
plane or changes in the harmonics’ phase and intensity) can be of practical interest
as they combine high nonlinearity, photonic band gap (PBG) and magnetic proper-
ties of magnetophotonic crystals.

In order to increase an intrinsically weak efficiency of the nonlinear optical pro-
cesses of the materials that constitute photonic crystals (PC), the following approach
can be realized in case of MPC, namely, the possibility to fulfill the phase match-
ing conditions in spatially periodic media. This phenomenon was pointed out by
N. Bloembergen [1, 2]. As it is well known, for the case of second-harmonic gen-
eration (SHG) the phase matching conditions that provide the maximal efficiency
of this nonlinear process can be written as k2ω = 2kω +2k, where kω and k2ω are
the fundamental and SHG wave vectors and 2k is the phase mismatch that appears
due to the dispersion of PC constituting materials. Similar conditions for the case of
third-harmonic generation (THG) looks like k3ω = 3kω + 3k. In real anisotropic
crystals the phase mismatch k can be compensated by the differences in the phase
velocities of o and e waves of the corresponding wavelength. On the contrary, the
condition k = 0 in a PC can be realized for the pump and harmonics waves of
the same polarizations due to the modification of the PC dispersion in the spec-
tral vicinity of the PBG edge. In that case the phase mismatch at the fundamental
and harmonics wavelength can be compensated due to the appearance of the recip-
rocal lattice vector, G, so that 2k = k2ω − 2kω + G = 0. Such an enhancement
of the nonlinear optical effects in non-magnetic PC was observed in a number of
papers [3–5].

One more mechanism of the enhancement of the nonlinear optical effects is at-
tributed to a strong spatial light localization in PBG structures—photonic crystals
and photonic microcavities. In the latter case a many-fold enhancement of the local
optical field resonant with the microcavity mode is attained due to the multiple in-
terference and multipass character of light propagation within the MC layer. For the
case of PC structures, an increase of the local density of states is realized because of
the Bloch nature of the electromagnetic waves in PC. The mentioned above effects
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of the amplification of the local optical fields in spatially periodic structures were
realized in the reviewed works for the case of magnetophotonic structures so that
a significant amplification of the nonlinear-optical magnetic effects were observed
[33–36].

8.2 Nonlinear Magneto-Optics: Background

Nonlinear optics describes the interaction of intense light with a matter when the ef-
ficiency of the nonlinear-optical effects (harmonics generation, self-action of light,
optical rectification and Kerr effect, CARS and many others) is a nonlinear function
of the fundamental beam intensity. The variety of nonlinear optical phenomena is
enlarged further in the case of magnetic structures, where additional symmetry op-
erations can lead to the appearance of new effects in the nonlinear-optical response.

In centrosymmetric materials the magnetization vector does not break the in-
version symmetry due to its axial nature. Thus even-order nonlinear-optical effects
(like optical second harmonic generation), including nonlinear magneto-optical
ones (like magnetization-induced SHG (MSGH)), require the lack of the inversion
symmetry within the electric-dipole approximation. On the contrary, magnetization-
induced effects in third-harmonic generation (MTHG) can be observed in materials
of any symmetry. The electromagnetic fields at the double and triple frequencies of
the fundamental radiation are induced by the quadratic and cubic nonlinear polar-
izations, P(2)(2ω) and P(3)(3ω), which are written (in the electric-dipole approxi-
mation) as follows:

P(2)(2ω)= χ(2)(M) : EωEω, (8.1)

P(3)(3ω)= χ(3)(M)
...EωEωEω, (8.2)

where Eω is the fundamental field amplitude, χ(2) and χ(3) are the quadratic and
cubic electric-dipole susceptibility tensors of a magnetic material (i.e. garnets in our
case) that forms the MPC and MMC structures. Hereafter the influence of the do-
main walls is neglected since all the presented effects in MSHG and MTHG are ob-
served using saturating dc-magnetic fields providing a single-domain state of mag-
netic garnet films. The dependence of χ(2) and χ(3) tensors on the magnetization
vector M can be written as a sum of three terms:

χ(2)(M)= χ(2,0) + χ(2,1) · M + χ(2,2) : MM, (8.3)

χ(3)(M)= χ(3,0) + χ(3,1) · M + χ(3,2) : MM. (8.4)

The tensors χ(2,0) and χ(3,0) describe the non-magnetic (crystallographic) contribu-
tions to χ(2) and χ(3), respectively, while the axial tensors (or pseudotensors) χ(2,1)

and χ(3,1) induce the MSHG and MTHG contributions in P(2)(2ω) and P(3)(3ω),
which are odd in the magnetization. The tensors χ(2,2) and χ(3,2) are responsible
for the MSHG and MTHG terms that are even in M. Non-zero tensor elements can
be found when using the invariance of the susceptibility tensors under the symme-
try operations valid for a particular point symmetry group of a material. Here we



194 O.A. Aktsipetrov et al.

necessarily have to take into account different transformation matrices for the polar
and axial frames.

Yttrium–iron garnet possesses the inversion symmetry, however, thin garnet
films, both epitaxial and polycrystalline, are often noncentrosymmetric. Lowering
of the symmetry of initially centrosymmetric garnet lattice was concluded by obser-
vation of the magnetoelectrical effect linear in the electric field, which requires the
medium with the broken inversion symmetry [11]. The lattice deformation and the
variation of the lattice parameters of the polycrystalline yttrium-garnet films due to
the formation of oxygen vacancies is directly obtained from X-ray diffraction anal-
ysis [12]. Numerous SHG studies in magnetic garnet films also allow breaking the
YIG inversion symmetry. For example, enhancement of quadratic susceptibility of
Bi-substituted YIG (Bi:YIG) films films in comparison with undoped YIG film was
directly observed in reflected [13] and transmitted [14] SHG. Temperature variations
of the SHG response are observed in Bi-doped garnet films grown on gadolinium-
gallium garnet substrates [15, 16]. The thickness dependence of the SHG intensity
from Bi:YIG films is reported in Ref. [17].

The inversion symmetry of thin Bi:YIG films is lifted since the film plane be-
comes mirror plane no more. Such a growth-induced film anisotropy is more likely
attributed to the local distortion of the garnet cell by bismuth atoms and their or-
dering on nonequivalent crystallographic sites during the film growth [15]. Another
source of an enhanced quadratic susceptibility of Bi:YIG films is proposed to be the
lattice misfit strain in the deformed garnet layer near the substrate [12, 18] forming
a polar axis along the film normal. Both mechanisms can be responsible for the in-
version symmetry breaking in Bi:YIG layers in the studied MPCs and MMCs. As
the garnet films used are heavily doped by bismuth atoms (one Bi atom per two Y
atoms), thus large distortions in the dodecahedral rare-earth-ions sublattice of the
garnet crystal cell are expected. Polar axis along the Bi:YIG film normal can be also
yielded by the film sputtering on the fused quartz substrate or amorphous silicon
dioxide layers and the subsequent high temperature annealing of the Bi:YIG layer
with two nonequivalent, garnet–air and garnet–silicon dioxide, interfaces. Mean-
while, the description of microscopic mechanisms of the inversion symmetry break-
ing in Bi:YIG films remains incomplete.

We use a macroscopic description of the electric-dipole SHG sources in garnet
films, which deals with appropriate symmetry elements related to the whole gar-
net film. Bi:YIG films are treated as layers possessing ∞m symmetry group with
mirror planes perpendicular to the film plane. We will consider a Cartesian frame
ex, ey, ez with the xy plane perpendicular to the symmetry planes mz so that the
xy plane is the film surface and the xz plane denotes the plane of incidence. The
non-zero elements of the χ(2,1) and χ(3,1) tensors describing the magnetization-
induced quadratic and cubic polarizations, P (2),M

i = χ
(2,1)
ijkL E

ω
j E

ω
k ML and P

(3),M
i =

χ
(3,1)
ijklNE

ω
j E

ω
k E

ω
l MN , are shown in Table 8.1. For comparison, the non-zero ele-

ments of the χ(2,0) and χ(3,0) tensors that define the non-magnetic component
of the quadratic and cubic polarizations, P (2),NM

i = χ
(2,0)
ijk Eω

j E
ω
k and P

(3),NM
i =
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Table 8.1 Non-zero elements of χ(2,1)
ijkL , χ(3,1)

ijklN , χ(2,0)
ijk , and χ

(3,0)
ijkl tensors for the ∞m symme-

try group divided into the magnetization vector components (columns) and polarization combina-
tions of the fundamental and harmonic waves (rows). MX , MY and MZ relate to the longitudinal,
transversal and polar nonlinear magneto-optical Kerr effect (NOMOKE) configurations. ×1 de-
notes the columns containing non-magnetic SHG and THG contributions. m indicates the mixed
polarization of the fundamental radiation, which is 45◦-rotated relative to the s and p-polarizations.
Last two rows contain the non-zero tensor elements, which contribute in polarization combinations
with m-polarization only

THG SHG
×MX ×MY ×MZ ×1 ×MX ×MY ×MZ ×1

s → s 0 0 0 χyyyy χyyyX 0 0 0
s → p χzyyyX 0 χxyyyZ 0 0 χxyyY 0 χzyy
p → s χyxxzX ,

χyzzzX

0 χyxzzZ ,
χyxxxZ

0 χyxxX ,
χyzzX

0 χyxzZ 0

p → p 0 χzxzzY ,
χxxxzY ,
χzxxxY ,
χxzzzY

0 χzzzz,
χxxxx ,
χzxxz,
χxxzz

0 χxxxY ,
χxzzY ,
χzxzY

0 χzzz,
χxzx ,
χzxx

m→ s χyyyzX χyxyzY χyxyyZ χyxxy ,
χyyzz

0 χyxyY 0 χyzy

m→ p χzxxyX ,
χxyzzX ,
χxxyzX

χzxyyY ,
χxyyzY

χxyzzZ ,
χxxxyZ

χxxyy ,
χzyyz

χzyzX ,
χxyxX

0 χxyzZ 0

χ
(3,0)
ijkl E

ω
j E

ω
k E

ω
l , are presented as well. The tensor elements are divided into differ-

ent columns in accordance with the magnetization direction and combinations of
polarization of the fundamental and harmonics’ waves.

In transparent materials, the elements χ(2,0) and χ(3,0) tensor elements are real
values, while χ(2,1) and χ(3,1) tensor components are imaginary. Interference be-
tween non-magnetic and magnetization-induced components of the second har-
monic (SH) and third harmonic (TH) fields which leads to the observation of odd in
the magnetization effects in the SHG and THG intensity, requires absorption. This
is the case of Bi:YIG films, which reveal the absorption band above 500–550 nm de-
pending on the Bi content [19]. Bi:YIG films transparency in the red and IR regions
allows the high contrast multiple interference of the fundamental radiation resulting
in pronounced photonic band gap effects and fundamental field localization at the
microcavity mode.

One more but equivalent approach for the description of nonlinear magneto-
optical effects is based on another form of phenomenological description of the
magnetization-induced nonlinear-optical susceptibility tensor. The general expres-
sion for the nonlinear polarization is as written in (8.1), while the second- and third-
order susceptibility tensors are divided into odd and even in M parts,

χ(2)(M)= χ(2)even(M)± χ(2)odd(±M), (8.5)

χ(3)(M)= χ(3)even(M)± χ(3)odd(±M), (8.6)

where even in M susceptibility components include both the crystallographic and
even (quadratic) in magnetization effects. Such a description was first developed in
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Ref. [7] for the surfaces of a cubic crystal of different crystallographic orientations.
Such formulas do not require to justify the expansion of the nonlinear polarization
in powers of M and to estimate the corresponding small parameter.

It should be noted that non-zero tensor elements summarized in Table 8.1 or in
more detail in Ref. [7] reveal the symmetry of magnetization-induced nonlinear-
optical response of the surface of an isotropic or cubic medium, which can be ap-
plied to the case of iron-garnet layers. At the same time, in case of MPC or MMC
the propagation effects of the fundamental and SHG waves within the YIG layers
determine the SHG efficiency and should be considered when analyzing the values
of the magnetization-induced SHG effects.

It stems from Table 8.1 that depending on the geometry of the application of the
dc-magnetic field, magnetization-induced rotation of the SHG polarization plane
(polar and longitudinal NOMOKE), or intensity and phase (transversal NOMOKE)
changes of the harmonics’ waves can be observed, similarly to the linear magneto-
optics. At the same time, there is a difference in the values of the linear- and nonlin-
ear magneto-optical effects (NOMOKE). In the latter case the intensity and polariza-
tion effects for typical ferromagnetic metals or dielectrics exceed magneto-optical
analogs by one-two orders of magnitude, which was shown both theoretically and
experimentally [6–10].

The wave equation for the fundamental, second and third harmonics can be writ-
ten as

E(jω)+ ε(jω)

c2

d2

dt2
Ej (jω)= − 1

ε0c2

d2

dt2
P(2,3)δ(2,3)j (8.7)

where j = 1,2,3, ε(jω) is the dielectric function at the corresponding frequency,
and second- and third-order nonlinear polarizations are the source terms. In the lin-
ear case (8.7) is homogeneous, and left- and right-circularly polarized waves are
its eigen solutions. Magneto-optical effects are governed in that case by the non-
diagonal components of ε(ω), or by the complex refractive indices for the circular
waves n±. For the harmonics’ generation not only the n± at the SHG and THG
wavelengths rule out the magnetic field induced effects, but χ(2,3)odd(M) as well,
which are present in the right-hand part of (8.7) and that are comparable in value
with the even in magnetization terms, χ(2,3)even. This additional magnetic-field in-
duced material susceptibility is mostly responsible for large values of NOMOKE.

In what follows we will mostly describe the transversal NOMOKE, i.e. magnetic-
field induced changes in the SHG(THG) intensity. As a measure of this effect the
SHG(THG) magnetic contrast is introduced as

ρ2ω,3ω = I2ω,3ω(+)− I2ω,3ω(−)

I2ω,3ω(+)+ I2ω,3ω(−)
, (8.8)

where the signs + and − denote the direction of the transversal dc-magnetic field.
Taking into account that the susceptibility terms χ(2,3)even and χ(2,3)odd(M) are the
sources of the corresponding SHG(THG) fields E(2ω,3ω), the total field at the
second- and third-harmonics wavelengths is expressed by the vector sum

I (2ω,3ω)= ∣∣Eeven(2ω,3ω)± Eodd(2ω,3ω)
∣∣2, (8.9)
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Thus in the assumption of a small value of odd in M component of the SHG (THG)
fields one can obtain the expression for the magnetic contrast

#2ω,3ω ≈ 2
Eodd(2ω,3ω)

Eeven(2ω,3ω)
cosϕ, (8.10)

where ϕ is the phase shift between Eodd and Eeven. Thus both the relative value
Eodd(2ω,3ω)/Eeven(2ω,3ω) as well as ϕ determine the magnetic contrast that is
measured experimentally. The latter quantity can be estimated experimentally from
the SHG(THG) interferometry measurements.

8.3 Samples and Set-Ups

Magnetophotonic microcavities are formed from two dielectric Bragg reflectors and
a ferrimagnetic cavity spacer. Reflectors consist of five pairs of alternating quarter-
wavelength-thick SiO2 and Ta2O5 layers. The cavity spacer is a Bi-substituted
yttrium–iron-garnet layer, Bi1.0Y2Fe5Ox . The spacer optical thickness is a half of
wavelength. MMCs are grown on a glass substrate by the RF sputtering of corre-
sponding targets in Ar+ atmosphere with the sputtering pressure of 6 mTorr. Before
fabrication of the top Bragg reflector, the sample is annealed in air at 700 ◦C for
20 minutes for the residual oxidation and crystallization of the Bi:YIG spacer. The
MMC samples have λMC � 900 nm and λMC � 1115 nm that correspond to the
Bi:YIG spacer thickness of approximately 195 nm and 245 nm, respectively. Here-
after λMC denotes the spectral position of the microcavity mode at normal incidence
and determine the optical thickness of layers in MMC. For magnetophotonic crys-
tals λMC is replaced by λPC which is related to the PBG center of the MPC at normal
incidence.

The fabrication procedure [20] of 1D magnetophotonic crystals consists of suc-
cessive rf-sputtering of SiO2 and Bi:YIG from the corresponding targets in Ar+
atmosphere with the residual pressure of 6 mTorr onto a 2.5 mm thick fused quartz
substrate. The latter was initially optically polished with residual roughness below
5 nm to increase the interface quality of the MPC layers. Substrate temperature is
kept at 140 ◦C at all sputtering stages to avoid the temperature-induced drift of the
sputtering rate. After evaporation of each successive garnet layer, the MPC is re-
moved from the sputtering machine and annealed in air at 700 ◦C for 20 minutes.
The oxygen access during annealing is necessary for oxidation and crystallization
of initially amorphous garnet films that are responsible for the ferrimagnetic state of
MPC constituting garnet films.

Cleavage of MMCs and MPCs is studied using field-emission scanning electron
microscope (FESEM). The FESEM images are shown in Fig. 8.1. Abrupt interfaces
between magnetic garnet and dielectric layers as well as a reproducible layer thick-
ness in all repeats can be seen. The layer-by-layer thickness deviation is estimated to
be below 2 percents. The SiO2 layers of the thickness of d1 � (134±5) nm alternate
the Bi:YIG layers of d2 � (87 ± 3) nm thick. The layers’ thickness is kept constant
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Fig. 8.1 The FESEM images
of the MMC (upper panel)
and MPC (lower panel)
cleavages

along the sample with the lateral corrugation in thickness being below 5 nm/μm. The
atomic-force microscope (AFM) image of surface of the uppermost garnet layer of
MPC showed that Bi:YIG layers are formed from columnar microcrystals with the
lateral size ranging from 1 to 2 μm. The surface roughness is estimated to be approx-
imately 2 nm everywhere at the garnet microcrystallite surface but at the boundaries
where it is increased up to 5 nm.

Small gradual increase of the upper garnet layers thickness in MPCs is apparently
associated with different shrinkage of garnet films during annealing and changes in
sputtering rate due to the change of substrate temperature during sputtering. Hys-
teresis loops measured in vibrating sample magnetometer are shown in Fig. 8.2 and
demonstrate that the coercivity of MPCs and MMCs is approximately 30 Oe for the
longitudinal magnetic field. Saturating field which is slightly above 100 Oe indicates
that the easy-magnetization axis is aligned along the Bi:YIG surfaces as expected
for thin ferromagnetic films.

Spectroscopy of microcavities and one-dimensional photonic crystals implies the
tuning the wave-vector component kz parallel to the periodicity direction. Two con-
figurations of the nonlinear spectroscopy are used in the study. In the first one, the
fundamental radiation wavelength λω is tuned at the fixed angle of incidence θ and
is named below as spectroscopy in the frequency domain. The output of a nanosec-
ond OPO laser system tunable from 720 nm to 1000 nm is used as the fundamental
radiation. The laser energy is approximately 10 mJ per pulse, pulse width is below
2 ns and the laser spot area is below 0.5 mm2.
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Fig. 8.2 Magnetization curve
of a 1D-MPC

The case of the fixed fundamental radiation and tuning angle of incidence is
named angular spectroscopy, or spectroscopy in the wave-vector domain. In that
case, the output of a nanosecond YAG laser at the wavelength of 1064 nm is used.
The energy of the fundamental beam is below 10 mJ per pulse, pulse width is ap-
proximately 15 ns and the laser spot area is about 1.0 mm2. The radiation at the SH
or TH wavelength is selected by an appropriate set of filters and detected by a pho-
tomultiplier tube. The SH intensity spectrum acquired in the frequency domain is
normalized over the spectral sensitivity of the detection system and the tuning OPO
curve using a SH intensity reference channel operating with a wedged z-cut quartz
plate and with the detection system identical to the one in the sample channel.

The saturating dc-magnetic field of the strength up to 2 kOe providing the
single-domain state is applied to the samples for the longitudinal and transversal
NOMOKE, or along the normal to the samples for the polar NOMOKE using per-
manent FeNdB magnets. The schematic view of the experimental laser set-up along
with the SHG interferometry scheme are shown in Fig. 8.3.

8.4 Optical and Magneto-Optical Spectra of Magnetophotonic
Crystals and Microcavities

8.4.1 Faraday Effect Enhancement Induced by Multiple
Interference

Figure 8.4 shows the transmission spectrum of MMC with λMC � 900 nm. Low
transmission is observed in the spectral region from 750 to 1000 nm, where the
transmittance is decreased down to 10−3. This corresponds to the photonic band
gap of the structure. The PBG spectral width and the value of attenuation in the
PBG are determined by the number of repeats and the refractive index difference in
the SiO2/Ta2O5 Bragg reflectors. A peak in the transmittance spectrum observed at
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Fig. 8.3 Scheme of the experimental set-up for the SHG spectroscopy in magnetophotonic struc-
tures. Callout in the figure: the scheme of the SHG interferometry

Fig. 8.4 Spectra of
transmittance (filled circles,
left scale) and the Faraday
rotation angle (open circles,
right scale) of the MMC with
λMC � 900 nm measured at
normal incidence

910 nm is attributed to the microcavity mode. The quality factor of MMC is Qω =
λ0/λ0 � 75 where λ0 is the resonant wavelength and λ0 is the full width at
half-magnitude. The spectrum of the Faraday rotation angle θF measured in crossed
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Fig. 8.5 Spectra of
transmittance (filled circles,
left scale) and the Faraday
rotation angle (open circles,
right scale) of the MPC
measured at normal incidence

Glan-prizm polarizer and analyzer is also shown in Fig. 8.4. The θF spectrum has
a peak at the MMC mode, where θF is enhanced up to −1.5◦. It corresponds to
an effective value of −7.7◦/μm, which is approximately 50 times larger than the
Faraday rotation angle for a single Bi:YIG film of the same thickness deposited
directly on the substrate and measured at this wavelength.

Optical transmission spectrum of MPC is shown in Fig. 8.5. The spectral region
from 850 to 1100 nm with a small transmittance indicates the existence of photonic
band gap. The smallest transmittance value is reached at λω � 965 nm and is ap-
proximately 0.10. Outside the PBG, optical spectrum demonstrates the interference
fringes, where transmittance is increased up to 0.9. θF is enhanced up to −0.8◦ at
the long-wavelength edge of PBG at 1100 nm. It corresponds to an effective value
of −0.75◦/μm, which is approximately 8 times larger than the Faraday rotation an-
gle for the single Bi:YIG film at this wavelength. For the wavelengths tuned inside
the PBG, Faraday rotation is strongly suppressed. The spectral position of the peaks
of θF at 750 nm and 830 nm correlate with the transmission spectrum maxima and
ride on the monotonous θF increase with the wavelength decrease associated with
the Faraday rotation spectrum of Bi:YIG.

The four-by-four matrix technique is utilized for the Faraday effect calculation.
The optical field inside each layer is given as a sum of four normal modes: right and
left circular polarized waves for both propagation directions. Then a set of four-by-
four matrices is calculated: each matrix corresponds to each layer of the structure
and determines the values of optical field on the layer boundaries. Multiplying all the
matrices one can obtain the matrix characterizing reflectance and transmittance of
the whole structure. Among the reflection and transmittance, Faraday angle and spa-
tial optical field distribution in the structure are calculated. The same approach can
be also applied for calculating the transversal Kerr effect spectra in 1D-MPCs [21].

For the calculation, the considered model of MMC consists of two Bragg reflec-
tors and a magnetic Bi:YIG MC layer squeezed between them. Each Bragg reflector
has five pairs of alternating λ/4-thick magnetic Bi:YIG and non-magnetic SiO2 lay-
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Fig. 8.6 Set of optical (a) and magneto-optical (b) spectra vs. thickness of the MMC cavity spacer.
Transmittance and Faraday angle are shown by gray scale on the patterned plot. Right plots show
the optical (a) and magneto-optical (b) spectra for MPC and 3λ/4-MMC structures

ers. The refractive indices are supposed to be nBi:YIG = 2.6 and nSiO2 = 1.45. The
gyration vector is assumed to be gBi:YIG = 0.0054 which is close to the experimen-
tal values. Optical thickness of the cavity spacer, Λ, is varied from λ/4 to 3λ/4. The
λ/2-thick cavity spacer corresponds to the MMC with the microcavity mode cen-
tered at the wavelength λ that coincides with the PBG center. The λ/4-thick spacer
corresponds to the MPC with no microcavity mode. For Λ = 3λ/4, the microcav-
ity mode is almost degenerated into a long-wavelength PBG edge, such a structure
is called 3λ/4-MMC. The transmittance (a) and Faraday angle (b) spectral depen-
dences as functions of the spacer thickness are shown in Fig. 8.6 in the patterned
plot. Right plots in Fig. 8.6 represent optical (a) and magneto-optical (b) spectra for
MPC and 3λ/4-MMC, labeled MPC and MMC, respectively.

White areas in the patterned plot in Fig. 8.6(a) correspond to the transmittance
maxima. Black area in the patterned plot in Fig. 8.6(a) for the wavelengths from 800
to 1200 nm corresponds to the PBG, white curve across the PBG shows the thick-
ness dependence of the microcavity mode, white areas at the PBG edges reveal the
transmittance maxima. White area in the patterned plot in Fig. 8.6(b) shows a strong
suppression of the Faraday effect at the wavelengths corresponding to the PBG. It
can be seen that the Faraday angle θF is enhanced drastically at the microcavity
mode. For Λ = λ/4 and Λ = 3λ/4, θF is enhanced at the PBG edges, especially at
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Fig. 8.7 (a) Band structures of 1D MPC for ω(kL) (solid line) and ω(kR) (dashed line) calculated
for normal incidence at the 1D MPC consisted of layers of non-magnetic material with dielectric
constant of ε1 = 2.1 and magnetic one with diagonal component of dielectric constant of ε2 = 5.6.
(b) The same for ε1 = 5.6 and ε2 = 2.1

the long-wavelength one at 1200 and 1150 nm, respectively, as is indicated in the
figure by black arrows.

The spectral positions of the Faraday rotation maxima are correlated with the
transmittance maxima. The calculations show the absence of the ellipticity of the
transmitted light polarization at the maximum of θF. It means that MPC and 3λ/4-
MMC give an opportunity to rotate efficiently the polarization plane without distor-
tion and weakening the transmitted light. The θF enhancement in the 3λ/4-MMC is
nearly 3 times higher than the same in the MPC and reaches the values up to −16◦
at the wavelength of 1150 nm corresponding to the long-wavelength PBG-edge.

8.4.2 Nonlinear Verdet Law in Magnetophotonic Crystals

The Faraday effect originates from different phase velocities for the right- and left-
circular polarized waves traveling inside a magnetic medium. Taking into consider-
ation the band structure of a photonic crystal, this approach can be extended on the
Faraday effect in multilayered photonic structures. Figure 8.7 shows the dispersion
relations ω(kL) and ω(kR) calculated for the left- and right-circularly polarized
(RCP and LCP) optical waves propagating in MPC formed from a stack of mag-
netic and non-magnetic quarter-wavelength-thick layers. The main differences of
dispersion properties for the normal modes and consequently for Faraday rotation
are achieved at the photonic-band-gap edges. In the case of magnetic layers with
higher refractive index, which corresponds to the experimental materials, Faraday
effect is predicted at the long-wavelength PBG edge (Fig. 8.7(a)). In the opposite
case (magnetic layers possess lower refractive index) short wavelength PBG edge
exhibits an enhancement of the Faraday effect (Fig. 8.7(b)) [23].

It is worth mentioning that the difference in the dispersion properties and phase
velocities of LCP and RCP waves in photonic crystals is accompanied by flattening
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Fig. 8.8 (a) The transmission spectrum of 1D MPC upon normal incidence (filled circles) and
its numerical approximation (gray curve). (b) Faraday rotation angle spectrum (open circles) and
its numerical approximation (gray curve), dashed curve is the interference-subtracted spectrum of
Faraday angle in homogeneous Bi:YIG slab of the same thickness. (c) Set of θF spectral depen-
dencies vs. number of layers of MPC (3D plot) (numerical results). (d) Maximum θF vs. number
of layers of MPC: calculated data and nonlinear fit

of the dispersion curves, resulting in the decrease of the group velocity of a wave
packet traveling through the photonic crystal. It is equal to the localization of the
electromagnetic field in different layers of MPC. A strong point lies in the fact
that the difference in the phase velocities at different PBG edges is correlated with
the optical field localization in magnetic and non-magnetic layers, correspondingly
[22, 23].

Optical and magneto-optical spectra of 1D MPC are shown in Figs. 8.8(a)
and (b). The spectral region from 725 to 1025 nm (where the transmission is strongly
suppressed) corresponds to the photonic band gap of MPC. The Faraday rotation an-
gle is also decreasing in this spectral region. Outside the PBG the transmission of the
MPC increases and shows interference fringes. The Faraday rotation angle θF also
oscillates with the spectrum having a local maxima at 640 and 720 nm, which cor-
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relates well with the local transmission maxima. In can be seen that the largest en-
hancement of θF is observed near 1070 nm that coincides with the long-wavelength
PBG edge.

The spectrum of the Faraday angle for a uniform slab of Bi:YIG with the thick-
ness of 520 nm corresponding to the total Bi:YIG thickness in MPC is calculated us-
ing the known spectra of the diagonal and off-diagonal components of the complex
dielectric function tensor of Bi:YIG with the same Bi concentration [19]. The θF
enhancement coefficient at the long-wavelength PBG edge reaches the value of 6.5
in comparison with a homogeneous Bi:YIG slab, while θF increase at the short-
wavelength PBG edge appears to be 1.9 and 2.7 at the certain interference fringes.

Both experimental spectra are fitted simultaneously using the four-by-four ma-
trix technique with the spectral dependence of the refractive indices and absorption
coefficients taken into account [19]. Particular applications of the 4 × 4 matrix for-
malism for 1D MPC are discussed in detail in Refs. [24, 25]. Briefly, transmission
and polarization transformation of linearly polarized waves upon the propagation
through 1D MPC is governed by a set of transfer matrices Mij and Φj , accounting
the boundary conditions for the complex amplitudes of the left- and right-circular
polarized waves at the interface between ith and j th layers and their propagation
through particular j th layer, respectively. Therefore, the field EN+1 outgoing from
the 1D photonic crystal consisted of N layers is expressed for every wavelength λ

as a result of tensorial multiplication of the incoming field E0 on series of transfer
matrices:

EN+1 = MN+1,NΦN · · ·M2,1Φ1M1,0E0. (8.11)

Vector-columns EN+1 and E0 are formed by a set of complex amplitudes E of
normal modes, i.e. right- and left-circular polarized waves (indices r and l, respec-
tively):

E0 = (1, rr ,1, rl)
T , EN+1 = (tr ,0, tl,0)T , (8.12)

where rr,l and tr,l are the amplitudes of the transmission and reflection coefficients
for the two circular polarizations, which can be obtained by solution of a corre-
sponding set of four algebraic equations. Optical properties of MPC are fully de-
rived from rr,l and tr,l ; for example, the Faraday rotation angle is given by

θF = Im

[
arctan

(
tr − tl

tr + tl

)]
, (8.13)

while the real part of this expression characterizes the ellipticity η of transmitted
light. In this way, reflection and transmission coefficients are given by

R = (|rr + rl |2 + |rr − rl |2
)
/4, (8.14)

T = (|tr + tl |2 + |tr − tl |2
)
/4. (8.15)

The enhancement is predicted and experimentally observed at the wavelength
tuned at the long-wavelength PBG edge at 1060 nm. The Faraday effect is 6.5
times enhanced in comparison with single Bi:YIG layer with the thickness equal
to the total thickness of the magnetic material in MPC. Experimental results are
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in good agreement with theoretical calculations. The correlation of θF and trans-
mittance maxima opens up prospects for practical application of MPC in various
magneto-optical devices as it gives an opportunity to rotate polarization plane with-
out neither distortion nor weakening transmitted light. The calculations also show
that ellipticity of the transmitted light η achieves a minimum at the maximum
of θF.

An increase of the number of layers in MPC, N , leads to a better field localiza-
tion in MPC combined with the total magnetic material thickness increase. Such
combination is expected to result into specific thickness dependence θF(N). Fig-
ure 8.8(c) shows a 3D-plot of thickness and spectral dependence θF(λ,N). Faraday
angle maxima are achieved at both PBG edges. However, for considered experimen-
tal situation as magnetic layers have larger refractive index, θF enhancement at the
long-wavelength PBG edge is significantly larger than that at the short-wavelength
edge and shows a nonlinear dependence θF(N) of maximum values achieved at
the wavelength tuned at the PBG edge (Fig. 8.8(d)). It can be interpreted as Verdet
rule violation. As has been mentioned above for the uniform media θF(D) ∼ D,
where D is magnetic material thickness. However, in the case of multilayered struc-
ture this rule is broken, MPC exhibits nonlinear θF(D) ∼ D2 dependence. In con-
clusion combination of spatial optical field distribution with difference in phase
velocities of RCP in LCP is shown to be responsible for nonlinear dependence
of θF(D)∼D2.

Spectral dependences of spatial optical field distribution in the sample for the
λ/4-MPC (a) and the 3λ/4-MMC (b) are given in Fig. 8.9. In the case of the λ/4-
MPC, the field is localized in all magnetic layers at the long-wavelength PBG edge
at approximately 1200 nm and the field amplitude in the central layer is 2.7 times
higher than that of the incident light. The 3λ/4-MMC provides the better field local-
ization in all magnetic layers in comparison with the λ/4-MPC, the field amplitude
in the microcavity spacer at the wavelength of 1150 nm is almost two times higher
than that in the λ/4-MPC sample. The field localization in magnetic layers indicates
the constructive interference resulted in the Faraday effect enhancement and vividly
explains the ΘF enhancement at the PBG edge of λ/4-MPC and 3λ/4-MMC.

The increase of number of layers in MPC leads to the enhancement of Faraday
rotation at the PBG edge by the combined effect of field localization and the in-
crease of magnetic material thickness. The enhancement up to θF = 45◦ is expected
in 3λ/4-MMC consisting of about 20 pairs of layers. Therefore, Faraday rotation
angle in the finite MPCs appears to be a nonlinear function of the total thickness of
magnetic material in the stack that can be interpreted as the nonlinear Verdet law.
Relation between the enhancement of the Faraday rotation and localization of opti-
cal field in magnetic layers is treated as a Borrmann-type effect. This relation shows
that the Faraday rotation can be considered as a measure of the density of photonic
states trapped within Bi:YIG layers [22, 23].
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Fig. 8.9 Spectral dependence of spatial optical field distribution in λ/4-MPC (a) and 3λ/4-MMC
(b). Field amplitude is shown by gray scale on the patterned plot. White color corresponds to
the maxima of the field amplitude. Upper and right plots at each panel represent spatial field
distribution at the PBG edge and its spectrum in the central layer taken at cross sections marked by
white lines. Magnetic layers are labeled M and non-magnetic layers N

8.5 MSHG and MTHG in Magnetophotonic Microcavities and
Magnetophotonic Crystals

In this section, the results of the nonlinear magneto-optical Kerr effect in mag-
netic microcavities formed from dielectric Bragg reflectors and a magnetic garnet
spacer are discussed [26, 28–30, 35, 36]. Magnetization-induced variation of the
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Fig. 8.10 Transversal
NOMOKE in SHG measured
in the p-in, p-out polarization
combination for opposite
directions of magnetic field,
solid, and open circles,
respectively. Inset: the
spectrum of the SHG
magnetic contrast in the
vicinity of the microcavity
mode

SH intensity, rotation of the SH wave polarization, and the shift of the relative SH
phase are observed at the wavelength (angular) resonance of the fundamental ra-
diation with the microcavity mode. The symmetry properties of quadratic suscep-
tibility (pseudo)tensors allow the clear separation of the magneto-optical effects.
Namely, magnetization-induced changes in the SH intensity and relative phase are
observed in the transversal configuration, while the SH wave polarization rotation
is obtained in the longitudinal and polar configurations. Then, the mechanisms of
magnetization-induced variations in SH intensity in MPCs consisted of the stack
of Bi:YIG layers are discussed in terms of local field enhancement phase-matching
fulfillment [36]. Finally, the MTHG studies in magnetophotonic microcavities are
reviewed [36].

8.5.1 Transversal NOMOKE in MSHG: Intensity and Phase
Effects

Intensity effects in MSHG are demonstrated in Fig. 8.10 where the spectral de-
pendence of the SH intensity measured in the MMC with λMC � 900 nm is
shown [26, 36]. Dc-magnetic field is applied in the transversal configuration, i.e.
M = (0,MY ,0).

The SH intensity is enhanced as the fundamental wave is tuned across the micro-
cavity mode. The ratio of the intensities for the opposite directions of the magnetic
field is almost two. Spectral dependence of the magnetic contrast in the SH inten-
sity, ρ = (I+ − I−)/(I+ + I−), where + and − denote the directions of the field,
is shown in the inset of Fig. 8.10. ρ reached values of 0.3 and appears to be inde-
pendent of spectrum. The inverting the magnetic-field direction varies only the SH
intensity and no spectral shifts of SHG resonances are observed.

Another experimental configuration is angular spectroscopy. Figure 8.11 shows
the SH intensity as a function of the angle of incidence measured in the MMC with
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Fig. 8.11 Transversal
NOMOKE in SHG measured
in the p-in, p-out polarization
combination for opposite
directions of magnetic field,
solid, and open circles,
respectively. Inset: the
angular spectrum of the SHG
magnetic contrast in the
vicinity of the microcavity
mode

λMC � 1115 nm in the transversal NOMOKE configuration. The inverting the mag-
netic field direction varies I2ω approximately by a factor of four. The angular spec-
trum of the SHG magnetic contrast shown in the inset of Fig. 8.11 is independent of
the angle of incidence and achieves values of 0.65.

Magnetization-induced changes of the relative phase of the SH wave are ob-
served using SHG interferometry [27]. The SHG interference patterns are obtained
by translating the SHG reference sample along the direction of the laser beam prop-
agation, so that the distance l between the reference and the MMC sample is varied.
The SHG reference sample is a 30 nm-thick indium tin oxide film deposited on
fused quartz plate. The total SH intensity, I2ω(l,M), is produced by the coherent
sum of the SH waves from the reference, Er

2ω , and the MMC sample, E2ω(M):

I2ω(l,M)= c

8π

∣∣Er
2ω(l)+ E2ω(M)

∣∣2
= I r2ω + I2ω(M)+ 2α

√
I r2ωI2ω(M) cos

(
2πkl +Φrs(M)

)
, (8.16)

where k = 2n/λω with n= n2ω − nω describing air dispersion, Φrs is the phase
difference between the reference and sample SH waves, and α < 1 is the phe-
nomenological parameter accounting for both spatial and temporal coherence of
the laser pulses. Changing the magnetic field direction to the opposite one shifts the
SHG interference patterns by almost a half of a period. This indicates the shift of the
relative SH phase at approximately 180◦. The angular dependence of the SH phase
shifts measured at the vicinity of the mode is shown in Fig. 8.12. The phase shifts
are slightly smaller than 180◦ and almost constant in θ .

The SH intensity variations which are odd in the magnetization are observed
only in the transversal NOMOKE configuration. In the p-in, p-out polarization
combination, the non-magnetic (crystallographic) SH field ENM is induced by χzzz,
χzxx , and χxxz elements of the χ(2,0) tensor. The magnetization-induced SH field
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Fig. 8.12 Phase effects in
MSHG: The
magnetization-induced shift
of the relative SH phase
measured in the transversal
NOMOKE configuration in
the angular vicinity of the
microcavity mode. Inset: row
SHG interference patterns for
opposite directions of
magnetic field measured at
θ = 28◦

EM exp(iϕM) is generated by χxzzY , χzxzY , and χxxxY elements of the χ(2,1) ten-
sor and is shifted in phase by ϕM with respect to the ENM field. Interference
of the non-magnetic and magnetization-induced SH fields leads to the cross-term
±2ENMEM cosϕM in the SH intensity. This term changes the sign upon the revers-
ing the magnetic-field direction and results in the SH intensity variations, which are
linear in M. The relative value of these variations depends on the phase shift ϕM .
The constant value of ρ in the vicinity of the microcavity mode indicates that the
SH fields ENM and EM are enhanced similarly due to the fundamental field local-
ization. For the 1064-nm fundamental wavelength ϕM takes the values close to 0◦
or to 180◦ for opposite directions of M. This is seen in phase measurements, where
the magnetization-induced shift of the relative SH phase is close to 180◦. For small
refraction angle θω in the Bi:YIG layer and ϕM � 0, the ratio between ENM and EM

can be estimated as

ENM/EM � χxxxYMY /(2χzxx tan θω). (8.17)

It gives the ratio of χxxxYMY /χzxx � 0.15 for ρ � 0.65.

8.5.2 Longitudinal and Polar NOMOKE in MSHG: Polarization
Effects

Figure 8.13 shows dependences of the SH intensity on the orientation angle Θ of the
analyzer axis measured for opposite directions of magnetic field applied in the longi-
tudinal NOMOKE configuration [28, 30]. The fundamental radiation is s-polarized
and its wavelength is 868 nm, which corresponds to the microcavity mode. The
SH wave is linearly polarized. The longitudinal NOMOKE manifests itself in the
magnetization-induced rotation of the SH wave polarization. The angle of polariza-
tion rotation is Θ = 38◦ for the angle of incidence of 30◦ and almost Θ = 48◦
as the angle of incidence is 15◦.
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Fig. 8.13 SH wave polarization diagrams measured for opposite directions of magnetic field ap-
plied in the longitudinal configuration to the MMC with λMC � 900 nm. The angle of incidence is
15◦ (a) or 30◦ (b). The zeroth value of the analyzer angle corresponds to the p-polarized SH wave.
Curves are the fit to intensity of the linearly polarized wave

Fig. 8.14 SH wave
polarization diagrams
measured in MMC with
λMC � 1115 nm for the
opposite directions of the
magnetic field applied in the
longitudinal configuration.
The angle of incidence is 28◦.
The zeroth value of the
analyzer angle corresponds to
the p-polarized SH wave.
Curves are the fit to intensity
of the linearly polarized wave

The magnetization-induced rotation of the SH wave polarization plane is in-
creased as the fundamental radiation is tuned to the long-wavelength region. Fig-
ure 8.14 shows the SH wave polarization diagrams measured for the s-polarized
fundamental radiation with λω = 1064 nm. The magnetization-induced rotation of
the polarization plane up to Θ = 85◦ is observed, while for the p-polarized fun-
damental radiation the Θ value is approximately 60◦.

In the longitudinal NOMOKE configuration, the non-magnetic and magnetiz-
ation-induced SH fields are polarized orthogonally, ENM being p-polarized and
EM—s-polarized, respectively. The magnetization-induced effects appear in rota-
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Fig. 8.15 Polarization effects
in MSHG: The spectrum of
the SH wave polarization
rotation in MMC with
λMC � 900 nm upon the
inverting the magnetic field
direction in the polar
NOMOKE configuration

tion of the polarization plane of the total SH light. The SH intensity depends on the
analyzer angle Θ as

I2ω(Θ)∝ ∣∣ENM
p cosΘ +EM

s exp(iφM) sinΘ
∣∣2, (8.18)

where the phase shift φM describes the SH field ellipticity and the subscripts s

and p indicate the polarization of the corresponding SH fields. The SH wave
is considered as linearly polarized with φM � 0. The rotation angle of the SH
field polarization upon the inverting the magnetic field direction is estimated as
Θ � 2 arctan(EM

s /E
NM
p ) and depends on the ratio of corresponding elements of

the χ(2,0) and χ(2,1) tensors [28]. For longitudinal NOMOKE configuration and the
s-polarized fundamental radiation

Θ � 2 arctan
(
χyyyXMX/(χzyy sin θω)

)
. (8.19)

For Θ2ω = 48◦ and θ = 15◦, it gives the ratio of χyyyXMX/χzyy � 0.1 at λω =
870 nm, which is close to the value of the χxxxYMY /χzxx ratio estimated from the
transversal NOMOKE measurements. For Θ2ω = 85◦, θ = 28◦, it gives the ratio
of χyyyXMX/χzyy � 0.15 at λω = 1064 nm.

The spectrum of the polar NOMOKE is shown in Fig. 8.15. Tuning the funda-
mental wavelength through the microcavity mode leads to a gradual increase of Θ ,
from 1◦ to 7◦. In the polar NOMOKE configuration, EM

s is yielded by three sources.
First, it is generation of the s-polarized magnetization-induced SH field described
by the χyxzZ element, EM

s,1 = F 2ω
y Fω

x F
ω
z χyxzZMZI

2
ω with F%

i is the Green-function
correction for corresponding component of the SH or fundamental wave amplitudes
[31] and Iω is the fundamental wave intensity. Second, it is the generation of the
s-polarized SH field via the χyzy element of the crystallographic quadratic sus-
ceptibility, EM

s,2 = F 2ω
y Fω

z F
ω
y χyzyI

2
ω sin(Θω/2), where Θω is the linear (Faraday)

rotation angle of the fundamental wave. The Faraday rotation of the fundamental
radiation is greatly enhanced at the resonance with the microcavity mode due to
multiple reflection in the Bi:YIG spacer [32] that is the directly attributed to the
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Fig. 8.16 Angular spectra of
the THG intensity for
different polarization
combinations of the pump
and THG modes

nonreciprocity of the light propagation in the magnetic materials. Faraday rotation
of initially p-polarized fundamental wave is equivalent to the appearance of the
s-polarized component of the fundamental radiation that allows generation of the
s-polarized SH wave in the m-in, s-out polarization combination. The last source
of the s-polarized SH wave is the Faraday rotation of the p-polarized SH wave,
EM
s,3 = ENM

p sin(Θ2ω/2), where Θ2ω is the Faraday rotation angle of the SH wave.
For small angles of incidence, the contribution of the χzzz susceptibility element is
small and ENM

p = (F 2ω
z (Fω

x )
2χzxx +F 2ω

x Fω
z F

ω
x χxzx)I

2
ω. For the correct calculation

of the total SH wave polarization rotation, tanΘ = 2(EM
s,1 + EM

s,2 + EM
s,3)/E

NM
p ,

one should know the relation between χyzy , χzxx and χxzx elements. However, for
the estimation, suppose them to be equal one to each other. For small refractive
angles θω, Green-function corrections F 2ω

z ,Fω
z → 0 and F 2ω

x ,Fω
x ,F

ω
y ,F

2ω
y → 1,

tanΘ � Θ , sinΘ2ω � Θ2ω and sinΘω � Θω. The Θ value can be estimated
within these assumptions as [35]

Θ � χyxzZMZ/χzxx +Θω/2 +Θ2ω. (8.20)

The first term in (8.20) is wavelength-independent since the elements of the χ(2,0)

and χ(2,1) tensors are constant within narrow spectral region of the MC mode. The
term Θ2ω is also independent from λω due to large absorption at the SH wavelength.
The second term in (8.20), Θω(λω) reaches the maximum for oblique angles of
incidence when s- and p-modes are overlapped. Note that the rotation of the SH
field polarization plane via non-magnetic quadratic susceptibility is related strongly
to the symmetry of the magnetic spacer since it requires the non-zero χyzy element.

8.5.3 MTHG in Magnetophotonic Microcavities

Optical third harmonic generation in MMC was first studied in the absence of the
external magnetic field in near-resonant conditions for the excitation of the micro-
cavity mode. Figure 8.16 shows the angular spectra of the THG intensity for dif-
ferent polarization combinations of the pump and THG modes. In accordance with
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Fig. 8.17 Intensity effects in
MTHG: Angular spectra of
transversal NOMOKE in
THG measured in MMC with
λMC � 1115 nm for opposite
directions of magnetic field,
solid, and open circles,
respectively. Squares shows
the THG magnetic contrast in
the angular vicinity of the
microcavity mode

the symmetry analysis summarized in Table 8.1, only s-in, s-out and p-in, p-out
geometries are allowed for the THG in an isotropic medium that was proven exper-
imentally. The magnetization-induced effects in the intensity of the third-harmonic
generation are studied for the transversal NOMOKE configuration. The symmetry
analysis shows that for this geometry of the magnetic field application the elements
of the cubic susceptibility tensor χ(3,1), which are odd in the magnetization, lead to
the appearance of additional contributions to the p-polarized THG signal. The ex-
periments performed for the p-in, p-out polarization combination for the transver-
sal NOMOKE do not reveal magnetization-induced variations of the THG intensity
within the experimental accuracy, on the contrary to a much larger magnetic contrast
in the SHG intensity.

In order to reveal a small magnetization-induced effect in the THG intensity, the
following experimental scheme is chosen. The p-polarized THG intensity is mea-
sured, while the polarization plane of the fundamental radiation is chosen to form an
angle of about 5–10 degrees out from the s-polarization. For this polarization com-
bination, almost the entire magnetic component of the THG intensity generated by
the χzyyyX component is recorded, which interfered with a strongly suppressed non-
magnetic p-in, p-out THG signal. Figure 8.17 shows the THG spectra measured in
the wave-vector domain for the oppositely directed magnetic field for the transver-
sal NOMOKE configuration. Similar to the magnetization-induced SHG, the THG
magnetic contrast is determined by the expression ρ3ω = (I 3ω+ − I 3ω− )/(I 3ω+ + I 3ω− ),
where I 3ω+ and I 3ω− are the THG intensities for the oppositely directed magnetic
fields. The measured value of the magnetic contrast in the THG intensity is found
to be about 0.1 for the angles of incidence corresponding to the resonance with the
microcavity mode.

The observed THG magnetic contrast is due to the third-order susceptibility
χ(3,1) components’ interference with the non-magnetic ones due to the internal ho-
modyne effect. This results in the revelation of a weak magnetic THG contribution
on the background of a much stronger non-magnetic THG. In this case, an esti-
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Fig. 8.18 Filled circles.
Intensity spectrum of the SH
wave reflected from MPC in
the p-in, s-out polarization
combination in longitudinal
configuration of the
dc-magnetic field application.
Line: the Faraday rotation
spectrum at normal incidence

mation can be made for the χzyyyX element as χzyyyX ∼ 10−3χ
(3)
eff , where χ

(3)
eff is

the effective non-magnetic cubic susceptibility responsible for the generation of the
p-polarized TH field with s- or mixed-polarized fundamental radiation.

8.5.4 Phase-Matched MSHG in Magnetophotonic Crystals

Figure 8.18 shows the spectrum of the SH intensity measured in MPC for the p-in,
s-out polarization combination in the longitudinal NOMOKE configuration. Spec-
trum demonstrates the resonant enhancement at λω � 1055 nm. The spectral po-
sition of the peak correlates with the long-wavelength PBG edge, which is blue-
shifted from 1110 nm for oblique angles of incidence. In the p-in, s-out polariza-
tion combination, the non-magnetic (crystallographic) SH field ENM

2ω induced by
the χ(2,0) tensor is equal to zero. Thus in the longitudinal NOMOKE configuration
as M = (MX,0,0), the SH intensity is entirely associated with the magnetization-
induced SH field EM

2ω induced by the χyxxX and χyzzX elements of the χ(2,1) tensor.
The MSHG enhancement in MPC is interpreted as a result of the phase matching
conditions achieved as the fundamental wavelength is tuned across the PBG edge.
This stems from the comparison of the amplitudes of the SHG resonances at PBG
edges. The intensity enhancement at the long-wavelength PBG edge of MPC is at
least five times larger than that at the short-wavelength edge. Spatial localization of
the optical field is similar at both PBG edges and the SHG enhancement yielded by
this mechanism is expected to be the same order of magnitude. Inversion of the mag-
netic field direction does not change the value of the SH intensity, which indicates
that ENM

2ω = 0.
This is in contrast to the p-in,p-out polarization combination. In the transver-

sal NOMOKE configuration the non-magnetic SH field ENM
2ω interferes with

the magnetization-induced SH field EM
2ω exp(iϕM). The intensity cross-term



216 O.A. Aktsipetrov et al.

Fig. 8.19 The SHG spectra
of MPC in the p-in, p-out
polarization combination and
in transversal magnetic-field
configuration measured for
opposite directions of the
dc-magnetic field; open and
filled circles, respectively.
Line: the Faraday rotation
spectrum at normal incidence

±2ENM
2ω EM

2ω cosϕM changes the sign upon changing the magnetic field direction
and manifests the internal homodyne effect in MSHG. This term leads to variations
of the SH intensity, which are linear in M and depends on the relative phase ϕM
between ENM

2ω and EM
2ω. Figure 8.19 shows the SHG spectra measured for opposite

directions of magnetic field in the transversal NOMOKE configuration. The SHG
intensity is many-fold enhanced in the spectral vicinity of 1050 nm corresponding to
the phase-matched conditions for SHG at the long-wavelength PBG edge of MPC.
Changing the magnetic field direction varies the SH intensity approximately by a
factor of seven at λω � 1055 nm that indicates the noticeable interference between
the ENM

2ω and EM
2ω fields. At λω � 1025 nm the SH intensity for one of the magnetic

field direction is close to zero. It means that the contrast of the magnetization-
induced variations in the SH intensity is close to unit, which the upper limit for
SHG magnetic contrast.

8.5.5 Nonlinear Magneto-Optical Kerr Effect in
Three-Dimensional Magnetophotonic Crystals

As has been discussed above MPC and MPMC are attractive structures for poten-
tial applications. One of the perspective approaches for the composition of MPC is
the infiltration of a magnetic material into porous PC template, thus the structure
periodicity is governed by the non-magnetic porous PC and the magneto-optical
properties are supplied by the infiltrated magnetic material.

Synthetic opals composed of spheres of silica oxide are unique self-assembling
materials that form a strongly periodic 3D structure. Depending on the size of the
constituting spheres they can reveal the PBG in the visible and near infra-red spec-
tral regions. The structure of the opals supposes the existence of hexagonal system
of pores with the volume fraction of no less than 26 % (in case of close packed
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Fig. 8.20 SEM image of the
experimental opal sample

silica oxide spheres). As concerning 3D MPCs, there are several papers related to
studies of their magnetic and structural properties, including the observation of an
enlarged Faraday rotation [10, 11]. Here we describe the results on the composition
and investigation of the nonlinear magneto-optical Kerr effect (NOMOKE) in 3D
MPC based on artificial opals infiltrated by yttrium–iron garnet (YIG). Here we will
mainly describe the results from [37].

8.5.5.1 Sample Composition and Characterization

Templates of artificial opals were composed of monodisperse amorphous close-
packed SiO2 spheres with the diameter of about 330 nm. The bare opals have been
grown by use of the technological route described in [39]. The samples studied in
the nonlinear-optical experiments were the plates of about (4 × 4 × 0.5) mm in size
cut parallel to the (111) opal crystalline plane (Fig. 8.20). Opal templates possessed
polydomain structure, the size of a single domain with highly ordered SiO2 spheres
ranged from 30 to 100 μm.

Two technological approaches were used for the infiltration of opals templates
by yttrium–iron garnet. The first batch of samples was soaked by the colloidal so-
lution of yttrium–iron hydroxides taken in stoichiometric proportion, the size of the
colloidal particles being about 5 nm. The filling factor of pores was 25–30 % vol. In
order to form YIG nanocrystals inside the pores the subsequent annealing at 1300 K
was performed. X-ray diffraction analysis has shown the appearance of the strongest
YIG peak from [420] set of planes. Such a relatively poor XRD spectrum can ev-
idently be caused by the formation of silicate due to the reaction of yttrium oxide
with SiO2, so that only a small amount of crystalline YIG was formed.

An attempt to prevent the chemical reactions between the yttrium oxide and the
silica matrix was made for the second set of samples, where a thin platinum layer
covering the inner surface of the opal matrix was deposited prior to the infiltration
by YIG. A thin layer of platinum (2–3 nm) is deposited on silica surface using the
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Fig. 8.21 Magnetization
curve for opal-Pt-YIG
composite PC

method described in [17, 18]. The gravimetric measurements have shown that the
filling factor of pores by Pt is about 5 % vol. After the deposition of a thin Pt layer
the samples were infiltrated by an aqueous solution of yttrium and iron acetates fol-
lowed by the thermal annealing in a similar way as described above for bare opals.
The filling factor of pores with YIG was about 30 % vol. In the case of this set of
samples the XRD analysis revealed the existence of the following crystalline phases:
Pt, yttrium–iron garnet Y3Fe5O12 with the lattice parameter a = 12.25(7) Å, as
well as some impurities [γ -Fe2O3, yttrium silicates and crystalline forms of SiO2
(cristobalite and tridymite)]. Before starting the optical measurements, the rest vol-
ume of pores in the opal-YIG and opal-Pt-YIG samples was infiltrated with glycerol
to decrease diffuse scattering. Magnetization measurements for Pt-covered YIG-
infiltrated opals (Fig. 8.21) have shown that within the experimental accuracy there
is no hysteresis in the magnetization curve, while for the magnetic fields over ap-
proximately 2 kOe the magnetization is close to the saturation. Such features are
typical for super-paramagnetic systems composed of nanocrystallites of magnetic
materials such as YIG crystallized within opals’ nanopores.

Optical characterization of YIG-infiltrated opals was first performed by linear
reflectance spectroscopy. The reflectance spectra measured for different angles of
incidence of the fundamental beam with the wavelength range from 500 to 1100 nm
are shown in Fig. 8.22. The reflectivity maxima correspond to the PBG and demon-
strate a blue-shift with the increase of the angle of incidence, which is typical for
opals [40, 41]. The inset in Fig. 8.22 shows a linear dependence of the central PBG
wavelength on sin2(θ) that stays in good agreement with the Bragg diffraction con-
dition λ= 2d111

√
εeff − sin2 θ , where d111 is the crystal lattice parameter along the

crystallographic direction [111] and εeff is the effective dielectric constant of the
composite opal.

When studying the nonlinear optical spectroscopy in composite opals with YIG,
the output of a nanosecond OPO laser system in the spectral range from 700 to
1100 nm with a pulse duration of about 4 ns and a peak intensity of 1 MW/cm2 is
used as the fundamental radiation. A Fresnel rhomb (placed in front of the sample)
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Fig. 8.22 Reflectivity spectra
of opal-Pt-YIG composite PC
for various angles of
incidence of the fundamental
beam. Inset: dependence of
the square of the PBG central
wavelength λ2 on sin2(θ)

Fig. 8.23 Main panel: SHG
intensity (left scale) and the
NOMOKE (right scale)
spectra in opal-YIG sample
measured for θ = 20◦. Insets:
reflectivity spectra of the
same sample and for θ = 20◦

and Glan–Taylor polarizer (placed in the reflected from the sample beam) select
the p-polarizations of both the fundamental and SHG waves. The SHG signal in the
direction of the specular reflection is detected by a PMT and a boxcar integrator. The
magnetic field of 2 kOe is applied to the sample in the geometry of the transversal
magneto-optical Kerr effect, i.e. in the plane of the sample and perpendicular to the
plane of incidence, as is shown schematically on the inset in Fig. 8.23. As has been
described in the previous sections, this experimental geometry can lead only to the
magnetization-induced changes the intensity of the reflected SHG.

Figure 8.23 shows the linear reflectivity spectra measured for θ = 20◦ for opal-
YIG composite (without the Pt coverage) that reveals a spectral maximum centered
at λ≈ 790 nm. SHG intensity spectrum of the same sample attained also for θ = 20◦
in the spectral vicinity of the PBG is shown in the main panel of Fig. 8.23. The spec-
tral peak of the SHG intensity is centered around 770 nm, which corresponds to the
PBG edge similarly to observed for Si-infiltrated opals [38]. Such behavior can be
attributed to the fulfillment of the phase-matching conditions for the second har-
monic generation, similarly to observed in 1D MPC and associated with a modified
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Fig. 8.24 Main panel: SHG intensity (left scale) and the NOMOKE (right scale) spectra in opal-P-
t-YIG sample measured for θ = 20◦. Inset: reflectivity spectra of the same sample and for θ = 20◦

dispersion law of opal-based PC in this spectral region, which can be treated as
nonlinear diffraction in 3D PC.

To reveal the magnetic state of opal-YIG composites, the transversal NOMOKE
is studied for the two types of sample and the SHG contrast was measured for fixed
wavelengths of the fundamental beam. The SHG intensity was first measured for
one of the directions of the magnetic field for about 5000 laser pulses and gave the
value I2ω(H+), then the direction of H was reversed and the value I2ω(H−) was
measured. This procedure was repeated for dozens of times for each wavelength of
the pump beam close to the spectral maximum of the SHG intensity. An example of
the measured SHG intensities for the subsequent experiments is shown in Fig. 8.23,
where N indicates the number of switching of the magnetic field. The values of the
SHG intensity I2ω(H+) and I2ω(H−), averaged over the whole set of measurements,
were taken to determine the SHG magnetic contrast.

The NOMOKE contrast for opal-YIG composites is shown in Fig. 8.23 (right
scale for the main panel), the attained value is ρ2ω = 4 %. For comparison, in linear
magneto-optical transversal Kerr effect for thin YIG films the analogous value is
about 0.1 % or less.

Figure 8.24 shows the results of linear-optical (inset) and nonlinear-optical (main
panel) spectroscopy of opal-Pt-YIG sample measured for θ = 20◦. The reflectivity
maximum for the opal-Pt-YIG composite is twice as high as that for the opal-YIG
composite under the same experimental conditions (insets in Figs. 8.23 and 8.24).
This is probably related to a better quality of the SiO2-Pt-YIG interfaces as com-
pared with the SiO2-YIG sample, as platinum prevents chemical reactions between
yttrium oxide and the silica opal matrix. The main panel in Fig. 8.24 shows the SHG
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spectrum, which reveals a sharp peak centered around 767 nm, which corresponds
to the spectral position of the short-wavelength wing of the reflectivity spectrum.
The mechanism of the SHG enhancement in the opal-Pt-YIG sample is expected
to be the same as in the opal-YIG sample and is attributed to the realization of the
phase-matching conditions for the SHG process at the PBG edge, while the increase
of the SHG peak intensity is about one order of magnitude larger.

The SHG magnetic contrast in opal-Pt-YIG samples is about 7.5 % for the wave-
lengths close to the SHG spectral maximum. This value was obtained in the same
way as for the SHG magnetic contrast for the opal-YIG composites and is shown
in Fig. 8.24 for several wavelengths (the data refer to the right scale of the panel).
Larger ρ2ω values attained for opal-Pt-YIG composites as compared with Pt-free
opal-YIG samples are probably caused by larger concentration of crystalline YIG
inside the opal-Pt matrix due to the protective role of the Pt internal layers pre-
venting strong chemical interaction of YIG precursors and the SiO2 spheres. As the
result, this leads to higher magnetization-induced nonlinear-optical effects in the
sample.

Summing up, the SHG and NOMOKE spectroscopy are studied in 3D magneto-
photonic crystals based on artificial opals infiltrated by yttrium–iron garnet. The
existence of the crystalline magneto-optical YIG inside the 3D opal matrix is proven
by XRD studies. The SHG magnetic contrast of 7.5 % is observed for the spectral
edge of the photonic band gap of the composed magnetophotonic crystals.

8.6 Conclusions and Prospectives

In this chapter we have discussed the modern trends in nonlinear optics of novel
photonic-band-gap systems based on conjugation of gyrotropic materials with bro-
ken time-reversal symmetry with photonic crystals approach yielding new possi-
bilities to control the nonlinear generation and propagation of light that is flexible
under external control impacts, such as a dc magnetic field. Nonlinear-optical ana-
log of magneto-optical Kerr effect revealing itself in magnetization-induced changes
of second- or third-harmonic intensity, polarization or relative phase is experimen-
tally demonstrated in transversal, longitudinal and polar configuration of magnetic
field application. One of the further developments of nonlinear magneto-optics in
magnetophotonic crystals might be the search of similar effects in magnetoplas-
monic crystals [42–44] and magnetoplasmonic nanostructures [45, 46] involving
collective excitations of electron plasma. This might stimulate the integration of
these new materials in modern telecommunication systems.
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