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Abstract. Future AGIs will need to solve large reinforcement-learning
problems involving complex reward functions having multiple reward
sources. One way to make progress on such problems is to decompose
them into smaller regions that can be solved efficiently. We introduce a
novel modular version of Least Squares Policy Iteration (LSPI), called
M-LSPI, which 1. breaks up Markov decision problems (MDPs) into a set
of mutually exclusive regions; 2. iteratively solves each region by a single
matrix inversion and then combines the solutions by value iteration. The
resulting algorithm leverages regional decomposition to efficiently solve
the MDP. As the number of states increases, on both structured and
unstructured MDPs, M-LSPI yields substantial improvements over tra-
ditional algorithms in terms of time to convergence to the value function
of the optimal policy, especially as the discount factor approaches one.

1 Introduction

Reinforcement learning is one of the most promising approaches for achiev-
ing artificial general intelligence, yet current methods tend to scale poorly to
large problems. Effective methods exist for finding the optimal policy and value
function of a Markov decision process (MDP; [1]) given a model of transition
probabilities and expected rewards [1–7], but these methods run into computa-
tional bottlenecks as the number of states and their degree of connectivity in-
creases or when the reward function is complex (i.e., when there are many sources
of reward). Yet it is quite common for real-world, applied MDPs to have com-
plex reward functions with positive and negative rewards distributed throughout
the task space. In robotics, for example, all near-collision states might generate
negative reward.

In this work we assume access to an accurate model of the MDP and focus
on new methods for solving the MDP from the model. Any existing approach
for building the model from interaction with the environment can be used, e.g.,
that of Gisslen et al. (2011) [8]. Value Iteration (VI; [2, 9]) is the most basic
MDP solver. It does state-value backups [1] on all states, equally often, indepen-
dent of MDP structure. VI handles complex reward functions well, but scales
poorly as the discount factor approaches one and as the degree of connectivity
in the MDP increases. Thus, there have been previous attempts to improve its
efficiency. Prioritized Sweeping (PS; [4]), for example, uses a priority queue to
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order partial state-value backups prioritized on (generally) the Bellman error.
PS gets a better approximate result than VI with less data and less time, but
final convergence (to the same result as VI) often takes just as long or longer due
to queue maintenance. Dai et al. [5] tried to avoid the overhead of priority queue
maintenance, suggesting heuristics to prioritize states, such as reachability of a
state from the goal when following the current policy. Wingate [6] organized the
bookkeeping overhead, prioritizing via an “information frontier” starting with
the “most informative state” (e.g., the absorbing goal), then propagated the
frontier throughout the system. These approaches are very effective for single-
goal situations, but do not efficiently handle complex reward functions. Least
Squares Policy Iteration (LSPI; [7]), based on policy iteration (PI; [3]), finds the
optimal linear-function approximation of an MDP’s value function via a series of
matrix inversions.1 Unfortunately, matrix inversions can be very computation-
ally demanding, scaling nearly cubically with the number of state-action pairs,
but LSPI is appealing because it has no adjustable learning rate, delivers an
optimal solution for every reward function, and its performance is independent
of the MDP’s connectivity and discount factor.

This paper introduces Modular LSPI (M-LSPI) which combines VI and LSPI
to achieve the advantages of both: good scaling behavior in the number of states,
discount factor, and connectivity. M-LSPI partitions the states into mutually
exclusive regions (we explore several methods for doing so in Sec. 4). Separate
modules perform LSPI within each region independently, and the value informa-
tion between modules is then combined using a method that resembles VI. If the
MDP exhibits regional structure, then the partitioning can lead to a consider-
able improvement in performance. The results indicate that M-LSPI is especially
good on MDPs with high connectivity even when the assignment of states to re-
gions is purely random. Experiments show benefits over previous methods on a
variety of MDPs, including autonomous systems and simulated humanoid mo-
tor tasks, indicating that M-LSPI can be effective in any environment where a
world-model can obtained. Finally, the modular approach appears promising for
continual learning [10], as it provides a method for adding new regions without
the need to recalculate the entire MDP.

2 Markov Decision Processes with Many States

Markov Decision Processes. A Markov decision process can be expressed
as a 5-tuple (S,A,P ,R,γ), where S = {s1, s2, . . . , sn} is a finite set of states,
A = {a1, a2, . . . , am} is a finite set of actions, P (s, a, s′) is aMarkovian transition
model quantifying the probability of ending up in state s′ when taking an action
a in state s, R(s, a, s′) is the expected reward when taking action a from state
s and ending up in state s′, and γ ∈ [0, 1) is the discount factor, exponentially
decreasing the impact of future rewards on the current action choices.

1 Typically, LSPI operates on features; however, for an exact solution of an MDP, a
single dimension of the feature vector can be dedicated to each state-action pair,
which is how we use it here.
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A learning agent increases its receipt of reward by improving its policy π,
which specifies what action the agent takes in each state. The agent solves an
MDP by finding the optimal policy π∗, which maximizes its receipt of reward.
Qπ(s, a), called the “state-action value,” represents the expected sum of dis-
counted future rewards the agent will receive for taking action a in state s and
following policy π thereafter. These values for all (s, a) pairs are related mathe-
matically by the Bellman equation:

Qπ(s, a) = R(s, a) + γ
∑

s′
P (s, a, s′)Qπ(s′, π(s′)). (1)

where R(s, a) =
∑

s′ P (s, a, s′)R(s, a, s′). Thus, the optimal policy always
chooses the action with the highest state-action value: π�(a) = maxa Q

π�

(s, a).

Iterative MDP Solution Methods. The two main iterative methods for solv-
ing an MDP from P and R are value iteration (VI, described next) and policy
iteration (PI, described in Sec. 3 in the context of LSPI).2

VI solves the system of Bellman equations described in Equation 1 by itera-
tively doing updates (called “backups”) in the form:

Q(s, a)←R(s, a) + γ
∑

s′∈S

P (s, a, s′)V (s′) (2)

for all states and actions, where the state value V (s) = maxa Q(s, a). Each
backup propagates the maximum reward information to each state from its suc-
cessors. The agent’s best policy, given the backups made at any point, is to take
the action in each state with the highest state-action value. One loop through
all state-action pairs yields the best policy with a one-step look-ahead; after
two loops, the maximum two-step policy is obtained. The iteration process con-
tinues until convergence: when the difference between all state values over two
subsequent loops is less than a certain threshold ε.

VI has a time complexity of O(|A||S|2) per iteration, with the number of
iterations required for convergence growing with 1/(1− γ) [12], which makes VI
troublesome as the discount factor γ approaches one. In contrast, PI requires
O(|S|3) operations per iteration [3] and convergence does not seem to depend
on the discount factor.

Reward Horizon. As the number of states in an MDP increases, the discount
factor also needs to increase towards one if all the rewards are to impact all
of the states. For example, if γ = 0.9 a reward value of 1.0 has an impact (a
discounted value) of only 10−23 on states 500 steps away; when γ = 0.99, that
value is .007, but is 0.6 when γ = 0.999. Therefore in even moderate-sized MDPs
(>1000 states) the discount factor must be higher than γ = 0.9 if the rewards in
one region of the MDP are to have a significant impact on the agent’s choices in
distant states. Thus, planning very far into the future makes VI computationally

2 Linear programming [11] can represent any MDP and solve it in polynomial time, but
in practice the polynomials are often too large to be solved in reasonable time [12],
while iterative methods are feasible.
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costly: convergence for γ = 0.99 takes ten times longer than for γ = 0.9. And
while PI handles the discount factor well, it scales poorly with the number of
states. Therefore, both approaches seem prohibitive for large MDPs. Yet it is
possible to get the best of both worlds in some cases by doing PI locally and
VI globally, particularly if the MDP has local structure that allows regional
decomposition.

Regional Decomposition. Decomposing the MDP into smaller regions has
been used before to increase solution speed, whether it is to achieve sub-optimal
policies quickly [13] or to organize backups to reach optimal values faster [6].
Generally performance improves when the partitioning reflects the structure of
the MDP. Prior knowledge, such as the positions of the states in a 2D grid-world,
can allow decomposition by hand (e.g., into a coarser-resolution 2D grid-world).
For the general case, when such prior knowledge is not available, there are re-
gional decomposition algorithms such as the Chinese Whispers method [14], but
these can be computationally demanding and their performance is not guar-
anteed. The opposite extreme is to assign states to regions randomly, which is
computationally trivial yet still occasionally beneficial simply because smaller
regions can be solved faster.

3 Modular Least-Square Policy Iteration

Algorithm 1 shows M-LSPI as pseudo-code. Prior to execution, the MDP is as-
sumed to have been decomposed into non-overlapping regions of states (see Sec. 4).

The algorithm’s main loop, repeated until convergence, combines a VI step
with a PI step for each region. The VI step collects state values from the neigh-
boring regions (lines 5–8). The PI step calls LSPI-Model (the model-based ver-
sion of LSPI, line 10) which treats the region as though it were a complete MDP
and finds its optimal policy (given the current information). The key of M-LSPI
is the way the VI and PI steps are combined. The trick here is to sum up the
state values from all the successor states in the neighboring regions and then
to add these values into the reward vector b for the region to be solved. When
LSPI solves the region using this modified reward vector, that integrates the VI
and PI steps, yielding exact state-action values for the region using all the latest
information from the local region and its neighbors.

Looking at the MDP as a graph, LSPI is guaranteed to find the correct val-
ues [7] for all the edges within the local region (given current information), while
the value-iteration step updates the edges connecting the region to its neighbors.
Since VI itself is guaranteed to converge [9], we conjecture that M-LSPI will it-
eratively converge to the optimal value function. This conjecture is supported
by the empirical results in Sec 4.

M-LSPI scales well, handling MDPs with a large number of states and γ close
to one. It avoids the cubic scaling complexity of global PI by keeping down the
number of states within each region, and avoids VI’s explosive reaction to γ
by using LSPI to get exact results in each region. LSPI converges reliably and
quickly to the optimal policy for small MDPs and does not require tuning.
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Algorithm 1. M-LSPI(M,P ,R, Q, γ)

// Mi : Region assignments
// Pi,j : Regional transition models (s, a, s′) for s ∈Mi and s′ ∈Mj

// Ri : Regional reward vectors for all (s, a), where s ∈Mi

// Q : Initial state-action values
// γ : Discount factor

1 repeat
2 Q′ ← Q // save latest state-action values
3 for each region i in M do
4 b ← Ri // local reward vector
5 for each region j in NeighborsOf (i) do
6 for each (s, a, s′) ∈ Pi,j do
7 bs,a ← bs,a + γPi,j(s, a, s

′) ·max
a′∈A

Qs′,a′

8 end

9 end
10 Qi ← LSPI-Model

(Pi,i,b, Qi, γ
)

// update Q values for s ∈Mi

11 end

12 until (maxs,a |Qs,a −Q′
s,a| < ε) // check convergence globally

13 return Q

Model-Based LSPI. In LSPI, the state-action values Q are approximated as
a linear combination of basis functions Φ:

Q̂(s, a, ω) = Φω.

Writing the Bellman equation (1) in matrix form

Qπ = R+ γPΠQπ,

where Π is a matrix representation of policy π, and replacing Qπ with the
approximation Q̂ = Φω yields

Φω ≈ R+ γPπΦω.

where Pπ = PΠ. Parameter values ω are calculated with a single matrix inver-
sion:

ω = A−1b, (3)

where

A = Φᵀ(Φ− γPπΦ)

b = ΦᵀR.
In our model-based case, each basis function is dedicated to a single state-action
pair, and thus Φ is an (|S||A| × |S||A|) identity matrix, and ω is identical to
the estimated state-action values (shown in Algorithm 1 as Q). However, for
completeness we include the full derivation here.
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Regional Model-Based LSPI. Given a state space that has been decomposed
into non-overlapping regions of states, M-LSPI decomposes the above equations
into subsets corresponding to those regions and uses LSPI to solve each subset
separately (line 10 in Algorithm 1):

ωi = A−1
i bi

Ai = Φᵀ
i (Φi − γPπ

i,iΦi)

bi = Φᵀ
i Vi

where Φi is the set of basis functions for the states in region i, and Pπ
i,i contains

only information about transition probabilities within region i. Vi combines the
reward values for region i with the discounted state-action values from all suc-
cessor states in the neighboring regions, following Bellman’s optimality equation
rewritten (in matrix form) in terms of regions rather than states:

Vi = Ri + γ
∑

j �=i

Pπ
i,jVj (4)

where Ri is the reward vector for region i (Algorithm 1, line 4), Pπ
i,j is the

transition probability matrix between the regions i and j, and Vj is the vector
of state values for region i’s successor states in region j. As usual with VI, the
state values Vj are computed as the maximum state-action value for each state
(Algorithm 1, line 7).

In the simplest case, where there is only one region, the second term on the
right hand side of Equation 4 is 0, and the first term (Ri) is the reward vector
R, which thus becomes the b vector used to solve Equation (3).

As ωi depends on information from all the other ωj �=i it is now clear that
the global solution must be reached through successive iterations, similar to VI.
When the values have converged, the collection of regional weights ωi taken
together represent the full set of weights ω.

4 Experimental Results

This section compares M-LSPI with other methods for discovering the optimal
policy π∗ and calculating its value function over a variety of MDPs. All compar-
isons are in terms of wall-clock time (seconds) until convergence, ε = 10−6. In our
case, this time includes the overhead of building regions (but this cost would not
be incurred again if the calculation were repeated with different reward vectors).

Experimental Data. Comparisons were done with four classes of MDP (see
Figure 1) and two sets of real data (named “RobotArm” and “Autonomous-
system,” see below). All MDPs have fixed (but randomly generated) transition
probabilities and reward values; i.e., when the MDP is created, each state-action
pair is assigned a fixed reward value drawn from a uniform distribution in (−1, 1).
1D-MDP (Fig 1, a): A one-dimensional Markov ring with sparse, local connec-
tivity, having N states and five possible actions. One action has no effect; each
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(a) 1D-MDP (b) 2D-MDP (c) Cx-MDP (d) FC-MDP

Fig. 1. Illustration of connectivity in different MDPs: (a) one- and (b) two-dimensional
MDPs (1D-MDP and 2D-MDP) with connections only to closest neighbors, (c) clus-
ters of fully connected states with sparse connections to neighboring clusters (Cx-
MDP) where x denotes the cluster size, and (d) fully connected MDP (FC-MDP).

of the other four move the agent either clockwise or counterclockwise, either
one step or two. There is a 10% random chance one of the actions not chosen is
taken instead. 2D-MDP (Fig 1, b): A 2D (toroidal) version of the previous, also
having five actions (up, down, left, right and stay), again with a 10% chance a
different action is taken.Cx-MDP (Fig 1, c): Clusters of x fully connected states
with sparse connections between the clusters. This is an MDP version of modular
small-world graphs [15]. FC-MDP (Fig 1, d): A fully connected MDP where
each state is connected to each other state. Transition probabilities for Cx and
FC are assigned randomly, drawn uniformly from (0,1) and then normalized such
that

∑
s′ P (s, a, s′) = 1 for each (s, a) pair. RobotArm. A dataset generated

with the iCub robot simulator [16]. Each state corresponds to the configuration
of three arm joints (two shoulder and one elbow). A precision value controls
the number of states; higher precision means finer quantization and more states.
There are six deterministic actions, each resulting in a movement to the next
closest configuration for each joint in both directions. Autonomous-system.
Datasets from the Stanford Large Networks dataset collection.3 These datasets
represent communication graphs of routers comprising the internet (known as
“autonomous systems”) and are available in a variety of sizes. We assigned ran-
dom reward values to the edges, drawn uniformly from (-1,1), and the transition
probabilities are split evenly. In this special case there are no actions, so there
is no policy improvement, and only the value function is solved.

Methods Compared. The featured competitors are value iteration (VI; [2]),
prioritized sweeping (PS; [4]), and LSPI itself on the model [7]. We do not com-
pare experimentally to Wingate’s value iteration with regional prioritization [6],
nor the prioritization method of Dai [5], since we study the general case of
arbitrary-valued reward functions, for which they are poorly suited.

Figure 2 shows a comparison of the three methods on two classes of MDPs with
a small number of states. It is clear that only VI merits a large-scale comparison
to M-LSPI.

Experiment Setup. Each model has an adjustable size (number of states).
For every model size, we ran five tests and report average time to convergence.

3 snap.stanford.edu/data/
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Fig. 2. Comparison of LSPI, PS, and VI on MDPs with complex reward functions
(nonzero reward for each state-action pair), with γ = 0.99. Left: Time required to find
the optimal policy on a 1D-MDP (see text) where the number of connections per state
is constant. LSPI’s near-cubic complexity leads to poor performance. VI does quite
well with complex reward functions and low-connectivity. PS does not deal well with
complex reward functions since the priority queue introduces needless overhead. Right:
Results on FC-MDPs (see text) where the number of connections per state scales with
the number of states. Again, LSPI scales very poorly, and high connectivity leads to
extremely poor performance of PS. VI is also the best of the three in this type of MDP.

Each test had a unique set of randomly assigned reward values and transition
probabilities, and we compared all methods using the same set of tests. We used
two values of γ: 0.99 and 0.999, and convergence criteria was ε = 10−6 for all
methods, which in all cases guaranteed discovery of the optimal policy.

Region Building. M-LSPI used several different region-building techniques for
the tests. For the random MDPs, states were assigned to regions randomly, with
the region size fixed at 30. We also assigned states randomly for the Autonomous-
system data, which has high (but not full) connectivity. We used the Chinese
Whispers (CW) technique for the modular MDPs (CX-100). CW breaks up
regions based on bottlenecks, leading states with high mutual connectivity to
belong to the same regions. In this particular case region sizes were typically
100 states. This is an excellent situation for M-LSPI, as LSPI can handle dense
connectivity within the regions well (in a small number of iterations). However,
VI will struggle when the connectivity is dense. For the 1D, 2D, and RobotArm
MDPs, there are no bottlenecks, so we use a simple variant of CW where: (1)
initially each state is its own region; and (2) until all states are tagged, a random
untagged state is selected, tagged, and a few of its untagged connecting states
are merged into a single region (unless it would exceed 30 states).

Results. Graphic comparisons of M-LSPI and VI are shown in Fig. 3. M-LSPI
seems to scale better than VI except for (a) the 1D and 2D MDPs when γ = 0.99
and (b) the RobotArm data (which is also a type of structured MDP). VI is ideal
for the RobotArm data where the MDP is deterministic with low connectivity.
When γ is increased, M-LSPI scales better than VI in all cases, since it solves each
region with LSPI. Possibly due its modular structure, M-LSPI excels on modular
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Fig. 3. Performance comparison of M-LSPI to value iteration on synthetic and real-
data-based MDPs (described in text). For the upper panels, discount factor γ = 0.99,
for the lower panels γ = 0.999.

Cx-MDPs, especially those with lower overall connectivity. It also does excep-
tionally well with fully-connected random MDPs and the autonomous-systems
data, scaling far better than any alternate method we know.

Note that all results shown above include the cost of building the regions.
In the RobotArm experiment, the region building time for {1176, 2238, 4356}
states on average is {0.46, 1.2, 1.7} seconds. This can be done once, and the
same regions can be used for multiple reward vectors. If the regions are already
built, M-LSPI will be even faster than shown.

5 Conclusions

M-LSPI is a novel, modular, model-based MDP solver for large MDPs with com-
plex reward functions. It efficiently yet optimally solves large MDPs, excelling on
those with high connectivity or modular small-world connectivity. While approx-
imate MDP solvers can sacrifice accuracy for speed, our method and others [5, 6]
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have shown this sacrifice is not necessary if the structure of the solver matches
the structure of the world. However, to our knowledge ours is the only method
that can take advantage of such structure when the reward function is complex,
which it will be for general-purpose, real-world intelligent agents, arising from
multiple, anisotropic pain and pleasure signals.
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