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Abstract. Feasible and practical routes to Artificial General Intelli-
gence involve short-cuts tailored to environments and challenges. A prime
example of a system with built-in short-cuts is the human brain. Deriv-
ing from the brain the functioning system that implements intelligence
and generality at the level of neurophysiology is interesting for many
reasons, but also poses a set of specific challenges. Representations and
models demand that we pick a constrained set of signals and behaviors
of interest. The systematic and iterative process of model building in-
volves what is known as System Identification, which is made feasible
by decomposing the overall problem into a collection of smaller Sys-
tem Identification problems. There is a roadmap to tackle that includes
structural scanning (a way to obtain the “connectome”) as well as new
tools for functional recording. We examine the scale of the endeavor, and
the many challenges that remain, as we consider specific approaches to
System Identification in neural circuitry.
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1 Tractable AGI through System Identification in Neural
Circuitry

Artificial General Intelligence (AGI) is, at a minimum, a system that is able to
deal with challenges or tasks arising in circumstances of our natural environ-
ment. It is possible that there are elegant mathematical approaches to AGI that
address those minimum requirements and are theoretically sound [1]. Theoretical
soundness does not imply practical feasibility. The most elegant mathematical
methods can be the most compute-hungry, slow, impractical solutions. From a
practical standpoint, there is much to be said for short-cuts that are suitable to
the environment and the challenges.

One system that contains many of those short-cuts and that we often think of
in terms of AGI is that of the (human) mind. Deriving from a brain a functioning
system that implements a degree of intelligence and a degree of generality within
the constraints of compatible environments may be done at several different levels
of cognitive abstraction. The level that most interests me and many colleagues
is that of computational neurophysiology, systems of neuronal circuitry [2].
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In part, this choice comes from the fact that neuroscience has spent the past
100 years gaining experience at that level and devising functional representa-
tions that are well grounded in identified physiological mechanisms. The other
reason for this choice is that our goals are in some ways a reversal of the quest
for practicable AGI. We begin with a system that has many specific short-cuts
built in that give it satisfactory performance under current real-world circum-
stances. But our interests involve making that system more adaptable to novel
environments and challenges [3].

In this paper, we highlight the importance of good System Identification [4].
We point out what choices need to be made and which tools may be applied.
Most importantly, we identify the significant challenges that appear throughout
the process of System Identification and due to the need to integrate efforts with
several different types of tools.

2 Representations and Models

The exact sciences depend on improving understanding by describing observed
effects through representations and models. Some things about nature are pre-
dictable. Pieces of nature exist within an environment. There, the various pieces
are not wholly independent. Conditions of some piece at some time predict as-
pects of the conditions in another piece. We say they affect each other. There
are signals between the pieces that convey information. We want to understand
more about the predictable dependencies, so we explicitly describe the signals
and how the information they convey is processed.

2.1 Behavior and Signals of Interest

Nature has an awful lot of pieces and descriptions become quite complicated.
Systematic and iterative improvement of a description is model building. Ini-
tially, we keep it simple, we constrain our models. There is an effect of particu-
larly interest. Ideally, we focus solely on the scope and details that are needed
to explain that effect. In neuroscience, the interesting effects are often called
(task-specific) behaviors. E.g., object recognition, emotional responses, execu-
tive decision making, and even conscious or aware behavior. In AGI, there are
also particular effects or behaviors that are interesting and for which we want
to carry out System Identification in the brain.

Now we know our piece of interest, e.g., a molecule of gas or a neural circuit in
the brain. We look at how that piece may be communicating with others. What
are the signals that could be involved in the effects? Overall, physics describes
all interactions in terms of four types: gravity, electromagnetism, weak nuclear
force and strong nuclear force. While those are a limited set, we can constrain
their manifestations further and consider electric current, electromagnetic ra-
diation, etc. A piece of neural tissue may respond to (ionic) electric currents,
temperature (gradients), pressure or shearing forces, sonic transmissions, elec-
tromagnetic fields, and more. Experimental work helps us to create a priority
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order. By and large, most signals appear to drown in noise, losing predictive
value. Electric currents, and in particular the powerful discharges known as neu-
ral action potentials or spikes appear to carry the dominant information [5].

2.2 Discovering the Transfer Function

In Control Theory, the piece of nature being modeled is sometimes called a
black box, which has state, receives input and produces output. The process
of updating its state and generating output is described mathematically by a
transfer function. When we find suitable transfer functions we learn about the
black box in the context specific behavior and signals. There are numerous formal
methods, and a general example of one that has been successfully applied (e.g.,
in Ted Berger’s neuroprosthesis [6]) is to find the kernels of a system that is
expressed as a discretized Volterra series expansion, as in Eq. 1. The kernels,
Hn, express the contributions of a history of input, x, to system output f(x),

with a finite number of mn coefficients h
(n)
i1...in

.

f(x) = H0x+H1x+H2x+ ...+Hnx+ ...+Hmx,

Hnx =

m∑

i1=1

...

m∑

in=1

h
(n)
i1...in

xi1 . . . xin . (1)

3 Mental Processes and Neural Circuitry: Brain
Emulation

The effects that interest us are those that we associate with our experiences:
Sensory Perception, Learning and Memory, Problem Solving and Goal-Directed
Decision Making, Emotional Responses, Consciousness and Self-Awareness, Lan-
guage Comprehension and Production, Motor Control. Some are externally ob-
servable and some are part of the internal experience. Neurophysiologically, these
involve the interactions of ensembles of neurons within a specific circuit layout.

3.1 System Identification in Neural Circuitry

There is no consensus about exactly which signals are or are not essential to
brain function, but we take an iterative and systematic approach. We make
initial assumptions about signal to noise ratios, about the sort of output that
reliably affects the environment during interesting behavior, and about the sort
of signals that neurons are well-suited to deal with. Biophysical mechanisms of
sensory input (e.g., at the cochlea, at the retina) produce electric nerve signals
characterized by trains of fairly uniform neural spikes with very specific rates
and time intervals. Similarly, the primary output through muscle control (e.g.,
vocal cords) employs trains of neural spikes. Finally, a primary means of long-
term state-change (ie., learning) is governed by modified synaptic strength. That
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modification also depends crucially on the temporal order and time-separation
between pre- and postsynaptic neural spikes [7]. A representation that success-
fully predicts spike times may therefore be a good first iteration of a model of
system processes in neural circuitry.

One result that was achieved with these assumptions is demonstrated in the
cognitive neural prosthesis devised by the lab of Theodore Berger (UCS). Using
System Identification in a Volterra series expansion, they developed a chip that
contains a multi-input multi-output model with non-linear parameters that are
specified after learning from consecutive presentations of spike data. The input
of the system is obtained through an array of electrodes in region CA3 of the
hippocampus, while the output is delivered to region CA1 [8]. These regions are
crucial in the formation of new declarative and episodic memories. The chip is
designed to alleviate dysfunction caused by stroke, trauma or disease.

A more general technique designed to work with out initial assumptions was
developed by Aurel A. Lazar and Yevgeniy B. Slutskiy and is called the devel-
opment of Channel Identification Machines [9]. It is a formal method to identify
a channel – modeled as a multi-dimensional filter – in a system where a commu-
nication channel is cascaded with an asynchronous sampler. The samplers con-
sist of neuroscience or communication models, e.g., integrate-and-fire neurons,
asynchronous sigma/delta modulators, general oscillators with zero-crossing de-
tectors. A channel can be approximated to an arbitrary degree of precision and
the method was generalized and applied in noisy conditions.

4 Simplification of an Intractable System into Collections
of System Identification Problems

Meaningful System Identification that could reproduce both observable behavior
and internal experiential states of an entire brain is entirely unfeasible when the
complete system is treated as the black box. This has to be broken down into
many black boxes that communicate with one-another. We need: a.) to choose
smaller black boxes, b.) to acquire enough data about I/O correlations at those
smaller black boxes for their System Identification, and c.) to know the relevant
communication that is possible between those black boxes.

We can address c.) by looking inside the system, noting locations of the smaller
components and tracing the connectivity between them. For spike trains, the
communication pathways are dendrites and axons, and the synapses where they
meet. The new field of Connectomics in neuroscience deals with this problem [10].
For other effects, such as extracellular field potentials and diffuse neurotrans-
mitters, the surrounding medium and emission and diffusion may be taken into
account.

A well-known choice for a.) that contains very tractable sub-systems is de-
composition of neurons into the electrical compartment analogs of a so-called
compartmental neural model (Fig. 1). The I/O data that can be obtained largely
determines if this, or a another level such as whole neurons, is the appropriate
level of simplification. High-resolution connectomics by electron microscopy ob-
tains the morphological data for compartmental modeling. There are a number
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of labs working on this and in 2011 the approach resulted in proofs of concept
by Briggman et al. [11] and Bock et al. [12], using data from the lab of Winfried
Denk (Max Planck).

Fig. 1. The compartmental model of a Purkinje Cell. The electric cable analogy for
one compartment is highlighted in the box.

To satisfy b.) and properly characterize the response of a neuron we need
observations that allow us to set and test parameter values, which relate to
the sensitivity and manner in which input currents affect neuronal membrane
potential, the resulting action potential once a threshold potential is reached,
and the time-course of restorative dynamics (e.g. after-hyperpolarization, after-
depolarization).

4.1 Tools for Structural Decomposition

In neural tissue, sensible boundaries must be drawn around pieces of the neural
circuitry, and I/O contacts between the pieces must be identified. A geomet-
ric decomposition into 3D stacks of voxels of equal size is one approach, such
as through magnetic resonance imaging (MRI). Another method is to identify
neural cell bodies, as in slice or culture on top of an array of electrodes, and
to use the correlations between measured activity at each cell body to derive a
functional connectivity map.

Anthony Zador is developing a biological protocol to derive the target neu-
rons of any neuron. Zador uses biological markers such as unique sequences of
RNA or DNA to mark the pre- and postsynaptic sites of synapses. The markers
act as bi-directional pointers [13]. But the most detailed and successful tools
to date section or ablate pieces of brain tissue and take electronmicrographs
at resolutions up to 5nm from which 3D geometric morphology can be recon-
structed. Even individual synapses can be identified. Excellent results have come
out of the labs of Winfried Denk (Max Planck), Jeff Lichtman (Harvard) and
Ken Hayworth (Janelia Farms).
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4.2 Data from Structure

System Identification for individual neural compartments can use standard
models that employ an electric cable analogy and Hodgkin-Huxley equations.
Morphology can provide some insight into functional behavior. For example,
compartment radius and length constrains the conductance of electrical cur-
rents. Morphology can also categorize a neuron or synapse, which constrains the
possible response functions. Despite these constraints, even small systems con-
tain numerous parameters. Not all of those relate directly to visible and unique
morphological features. Even where they do, the reliability and precision of mea-
surements may not be adequate.

4.3 Parameter Tuning among Connected Systems: Reference Points

Parameters must be tuned such that sub-systems behave sensibly on their own
in in cohesion with connected neighbors. We can do System Identification for
signals of interest at a black-box by observing activity, or at a gray-box when
we can stimulate and observe. Tuning and verification involves measurements at
reference points.

If the resolution of reference points is less than the resolution of structural de-
composition then System Identification depends on our ability to map measure-
ments to a collection of sub-systems and the combinatorial size of the collective
problem. In how many ways might the sub-systems be interacting to produce ob-
served responses? We may not be able to determine system parameters uniquely
if that number is large. The amount of observations needed and the duration
of observation increase with complexity. Clearly, there is great value in having
tools that provide measurements at many more reference points, ideally at a
resolution that approaching the resolution of the sub-systems.

4.4 Tools for Characteristic Reference Recordings

There is now strong interest among neuroscientists in the development of tools
for high-resolution in-vivo recording. Arrays of thousands of recording electrodes
are being developed and combined with optogenetic techniques so that selective
observation of specific groups of neurons can be guaranteed. Microscopic wireless
probes and functionalized nanoparticles with simplified task-specific capabilities
are being developed to counter some of the disadvantages of extensive tethered
electrodes. There is also a collaborative effort underway to create biological tools
that employ DNA amplification as a means to write events onto a molecular
“ticker-tape” [14]. The project goal is to be able to record signals from all neurons
in a brain, and potentially to measure at resolutions beyond that.

5 Challenges

Some challenges are general to System Identification. Some are particular to neu-
rons and neuronal models. There are unique challenges that arise when working
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with pieces of neural tissue and consequent large neural circuit models. And
some challenges are exclusive to the domain of whole brain circuit reconstruc-
tion. Many of those involve the integration of techniques for data acquisition
from structure and function that are developed with the constraints of particu-
lar novel tools.

5.1 Signals and Predicting Spikes

A careful assessment of the System Identification problem for the experiences we
wish to represent demands that we consider contributions outside the domain
of neural spiking. For example, are the experiences meaningfully represented by
states of cells other than neurons, glia perhaps? Or, are there significant ways
in which neurons influence each other even in the absence of spiking [15] – can
neurons relate to each other without receiving spikes or activity directly caused
by spikes? Our initial assumption is that predicting spiking within an accept-
able error range implies good emulation (Fig. 2). Spikes are not epiphenomenal,
but rather the currency upon which the rest of sensation rests. Spikes precede
ensemble responses and field emissions. An important challenge is to test these
assumptions.

Fig. 2. Spike prediction is functional emulation [16]

Good temporal spike predictors demand that we observe or deduce when
spikes would occur in the original system. Additional information, such as mem-
brane potentials and influences on such can give improve our ability to build
good local predictors.
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5.2 Low-Res Validation, 3D Reconstruction at 5nm and Plasticity

The snapshots of baseline or differential activity in large volumes of tissue that
are provided by MRI are too imprecise for parameter tuning, but they can be a
means of model validation. The model should produce a sensible virtual MRI in
terms of distribution and propagation of activity. A challenge is that aligning a
virtual MRI generated by the model with actual data demands that the model
also replicates the expected 3D spatial geometry.

Detailed geometric and morphological data is provided by 3D reconstructions
from EM scans at resolutions up to 5nm. We can tell if a cell is a pyramidal cell or
an interneuron, which helps model activity dynamics and the receptor channels
that are likely present. Still, component identification is challenging, because
classification presently relies entirely on morphology. There is an effort to add a
direct means of protein identification, which would alleviate this problem.

When reconstructed in terms of compartments, radius and length of a cylin-
der gives estimates of resistance and capacitance, although those estimates also
depend on the model of the identified type of a neuron. Measurements are sub-
ject to a degree of reliability. Averaging is possible, but that does not remove
cumulative systematic errors. Some measurement data is likely to be entirely
unrecoverable.

Brains are plastic. Mostly, we think of plasticity in terms of learning [17],
modifications of synapses and even of the available connections (Fig. 3). But
there is also plasticity in terms of deformation. Apparently, some aspects of

Fig. 3. There is a cascade of different memory mechanisms that implement brain plas-
ticity for learning. Representations of these should be included in a model, but most
of those are invisible to structural snapshots.
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morphology are relevant to model building, while others are mere features of the
snapshot taken during scanning and reconstruction. Present tools for structural
connectomics offer little insight into the temporal dynamics of these gradual
changes in neural circuitry.

5.3 Ticker-Tape Data and Interference during Measurement

Tools that functionally characterize activity at reference points should give some
insight into temporal dynamics and memory. The ticker-tape approach may even
be able to record from all neurons simultaneously. Encoding by means of voltage-
dependent increases in the error-rate of DNA amplification is not entirely reli-
able, which is compensated by using multiple tapes per cell. Recordings may be
synchronized by time-stamp signals, and can identify spike times and possible
even voltage levels. But the method of data recovery poses a challenge when
combined with tools from other projects in the endeavor. DNA snippets are
extracted from cell bodies and the process does not retain tissue samples that
could be scanned structurally by electron microscopy. How do we obtain the
structural connectome, and how do we know which part of the ultrastructure a
molecular tape came from? Scanning of slices prior to DNA extraction might be
possible if special care is taken in the method of fixation of brain tissue. There is
also some question whether the presence of many molecular ticker-tapes might
interfere with cell function.

Interference challenges also appear when functional data is obtained by fluo-
rescent microscopy with calcium dyes or voltage sensitive proteins. Using those
tools to obtain full coverage throughout the neural tissue and in complete brains
involves significant disturbance in the form of view ports and insertion of micro-
scope devices. This problem is similar to the one face by large electrode arrays.

5.4 Microscopic Wireless and Data Quantities

Microscopic wireless electrodes and functionalized nanoparticles are feasible al-
ternatives where each individual probe has strict task constraints. Challenges are
the possible power requirements and demands of data delivery. These may make
it difficult for a whole network of probes to measure continuously at a rate that
captures all interesting events. Functional characterization by these methods is
simplified when done by sporadic sampling from different locations until each
location is adequately characterized. When has enough data been collected and
how are the results validated? Functional probes may help us look at temporal
dynamics, but it can be difficult to ensure their location within the tissue over
extended time spans. Frequent spatial registration is likely necessary. Ultimately,
a microscopic functional probe technique can be combined with structural data
acquisition by electron microscopy, because the probes can remain in the tissue
when it is scanned.

When we have a way to record spikes, electric field potentials or membrane
potentials from all neurons in a piece of neural tissue we still need to know
what is a sufficient sample set. And what is the required sample rate? Can we
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predict neural dynamics from the observation of the shape of an action poten-
tial response? Should we observe the responses to a collection of possible input
combinations in order to estimate connection strengths and predict spike times?
Do we need to run the cell through its paces with a full battery of stimula-
tion protocols? Does tractable System Identification demand that we do so at a
higher resolution, on pieces of dendrite? Can we map lower resolution activity
data to high resolution structure data so that compartment parameter values
are sufficiently constrained?

5.5 Virtual and Small System Proof of Concept

Many of the challenges listed above can be dealt with confidently only if the
process of System Identification is tested by iteratively building incrementally
improved models of small systems. A small system can be a proof of concept that
demonstrates steps of the process and overall feasibility. There are some small
systems that are receiving attention at this time: Several groups are working on
the nematode C. elegans (e.g. D. Dalrymple). Others are reconstructing pieces
of retina (e.g. Briggman et al). Neuroprosthetic applications are being built for
pieces of the hippocampus (T. Berger) and for the cerebellum (S. Bamford).
There is also a project to extract memory directly from a piece of neural tissue
(S. Seung)

Sometimes, we can also carry out virtual process testing. Programs such as
NETMORPH [18] are able to “grow” or generate virtual neural tissue, with a
known structure (Fig. 4) and known characteristic functions. We can explic-
itly test algorithms used to set parameter constraints from structure data, and
we can test algorithms that take partial functional data and tune parameters

Fig. 4. Structurally detailed network generated with NETMORPH
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accordingly. The results can give an indication of the minimal functional data
that needs to be collected, and they can point out limitations in reconstruction
from morphology. More abstract calculations of boundary conditions may also
be possible, deducing constraints set by structure and additional information
provided by patterns of input and correlated output.

6 Conclusion

It is often impossible to properly gauge which difficulties will turn out to be
significant problems unless you work your way through the entire process. That
is a main reason why proof-of-concept systems are so important.

System Identification is not a new field. It is done in every area of the exact
sciences and engineering. Undoubtedly, most of the problems encountered when
working with neural tissue are not entirely novel either. Examples of similar
problems and the solutions that are employed may be found in other fields.

From the discourse above, it should be clear that while it is important and
useful to build tools that acquire high resolution structure data and that acquire
high resolution spatial and temporal functional data, that is not the whole solu-
tion. Other significant challenges are the integration from different data sources,
turning a sea of data into parameter values, and validating those values.

A goal of this paper was to describe what System Identification entails in the
case of reconstructing brain circuitry, and to communicate the reality of this
effort beyond the confines of the discipline. Hopefully, this will lead to input
from many other experts in the area of System Identification, which will lead to
a better understanding of the problems and an improved roadmap to solutions.
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