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Preface

This volume collects the research papers contributed to AGI-12, the
5th Conference on Artificial General Intelligence.

The AGI conference series is the premier international forum for cutting-edge
research and thinking regarding the original goal of the AI field — the creation of
thinking machines. AGI–artificial general intelligence–refers to generally intelli-
gent capabilities at the human level and ultimately beyond. Like its predecessors,
AGI-12 brought together researchers in AGI and related disciplines, to present
and discuss the current state of approaches, architectures, algorithms, and ideas
relevant to the advancement of AGI. In honor of the Alan Turing centenary year
2012, this was the first AGI conference to be held in the UK. The conference took
place at the University of Oxford, St. Anne’s College, December 8–11, 2012. It
was hosted by the “Future of Humanity Institute” at Oxford University through
its “Programme on the Impacts of Future Technology”.

A total of 80 contributed articles were submitted to AGI-12, of which 34
(42.5%) were accepted. Contributions covered a wide array of AGI research and
development aspects, with the key proviso that each paper should somehow
contribute specifically to the development of AGI. As in previous years, we had
a host of papers covering practical proto-AGI software systems and architectures,
as well as papers on the mathematical theory of AGI, and connections between
AGI and neuroscience and/or cognitive science.

The AGI-12 conference program also included four invited keynote lectures.
David Hanson, an American robotics designer and researcher, responsible for
the creation of a series of realistic humanoid robots and founder of Hanson
Robotics, delivered a talk on “Humanoid Robotics and AGI.” Angelo Cangelosi,
Professor of Artificial Intelligence and Cognition and Director of the Centre for
Robotics and Neural Systems at Plymouth University, UK, discussed “Cognitive
Robotics.” Margaret Boden, a researcher in the fields of artificial intelligence,
psychology, philosophy, cognitive and computer science, and Research Profes-
sor of Cognitive Science at the Department of Informatics at the University of
Sussex, talked about “Creativity and AGI.” Finally, Nick Bostrom, Professor of
Philosophy at Oxford, Director of the Future of Humanity Institute, and Direc-
tor of the Programme on the Impacts of Future Technology, discussed the future
evolution of advanced AGIs and the dynamics of AGI goal systems.

AGI-12 was held together with the first conference on AGI Safety and Im-
pacts. While AGI-12 focused, like all the AGI conferences, on the technical busi-
ness of designing and building AGI systems, AGI-Impacts pursued related issues
regarding the potential future of AGI: What will be the impacts of AGI on the
world? Which directions of research should be most enthusiastically explored,
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and which should be de-emphasized or avoided? What can we say now about
the future impact of AGI, and how should we act in consequence? AGI-Impacts
papers are not included here, but abstracts may be found on the AGI-Impacts
website.

In both the contributed articles and the invited keynotes, and the collab-
oration between AGI-12 and AGI-Impacts, we see the cross-disciplinarity and
diversity that make the AGI field so fascinating at this stage of its development.
As our technology and understanding progress, significant advances in the cre-
ation of AGI systems become viable, which is reflected in a large diversity of
approaches by an increasing number of researchers in AI and related fields. The
AGI conference series embraces this diversity and the creative inventiveness that
it fosters.

Producing a conference of such high quality was made possible only through
the support of a large community of volunteers. We thank the local Organizing
Committee members for all of their advice and help in preparations and ar-
rangements. We thank all the Program Committee members for their dedicated
service to the review process. We especially thank all of our contributors, partic-
ipants, and keynote speakers. The presentations, demos, and tutorials ultimately
provide the material for generating thoughtful, interesting, and stimulating dis-
cussions toward the ultimate goal of achieving AGI.

Finally, we honor the support of all our sponsors: Oxford University, Future
of Humanity Institute; Kurzweil AI; Rick Schwall; and Novamente LLC.

October 2012 Joscha Bach
Ben Goertzel

Matt Iklé
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Creativity, Cognitive Mechanisms, and Logic

Ahmed M.H. Abdel-Fattah, Tarek Besold, and Kai-Uwe Kühnberger

University of Osnabrück, Albrechtstr. 28, Germany
{ahabdelfatta,tbesold,kkuehnbe}@uos.de

Abstract. Creativity is usually not considered to be a major issue in
current AI and AGI research. In this paper, we consider creativity as an
important means to distinguish human-level intelligence from other forms
of intelligence (be it natural or artificial). We claim that creativity can be
reduced in many interesting cases to cognitive mechanisms like analogy-
making and concept blending. These mechanisms can best be modeled
using (non-classical) logical approaches. The paper argues for the usage
of logical approaches for the modeling of manifestations of creativity in
order to step further towards the goal of building an artificial general
intelligence.

Keywords: Logic, Creativity, Analogy, Concept Blending, Cognitive
Mechanisms.

1 Introduction

During the last decades many cognitive abilities of humans have been mod-
eled with computational approaches trying to formally describe such abilities,
to develop algorithmic solutions for concrete implementations, and to build ro-
bust systems that are of practical use in application domains. Whereas in the
beginnings of AI as a scientific discipline the focus was mainly based on higher
cognitive abilities, like reasoning, solving puzzles, playing chess, or proving math-
ematical statements, this has been changed during the last decades: in recent
years, many researchers in AI focus more on lower cognitive abilities, such as
perception tasks modeled by techniques of computer vision, motor abilities in
robotic applications, text understanding tasks requiring the whole breadth of
human-like world knowledge etc.

Due to the undeniable success of these endeavors, the following question can
be raised: what is a cognitive ability that makes human cognition unique in
comparison to animal cognition on the one hand and artificial cognition on the
other? At the beginning of AI most researchers would probably have said “higher
cognitive abilities” (see the above examples), because only humans are able to
reason in abstract domains. In current (classical) AI research, many researchers
would, on the contrary, (perhaps) say that all in all still “lower cognitive abilities”
like performing motor actions in a real-world environment, perceiving natural
(context-dependent) scenes, the ability to integrate multi-modal types of sensory
input, or the social capabilities of humans are the basis for all cognition as a

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 1–10, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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whole and therefore also the key features for human-level intelligence. Finally,
an AGI researcher would probably stress the combination and integration of both
aspects of cognition: a successful model of artificial general intelligence should
be able to integrate higher and lower types of cognition in one architecture.

Besides these possibilities, there is nevertheless an important cognitive ability
that seems to be usable as a rather clear feature to distinguish human intelligence
from all other forms of animal or artificial intelligence: creativity. Although we
ascribe creativity to many human actions, we would hardly say that a certain
animal shows creative behavior or a machine solves a problem creatively. Even
in the case of IBM’s Watson, probably the most advanced massive knowledge-
based system that exists so far, most people would not ascribe general creative
abilities to it. At most certain particular solutions of the system seem to be
creative, because they are extremely hard to achieve for humans.

This conceptual paper discusses some aspects of creativity, as well as the pos-
sibility to explain creativity with cognitive principles and to subsequently model
creativity with logical means. The underlying main idea is not to model cre-
ativity directly with classical logic, but to reduce many forms of creativity to
cognitive mechanisms like analogy-making and concept blending. Such mecha-
nisms in turn can be modeled with (non-)classical logical formalisms.

The paper has the following structure: In Section 2, we sketch some forms and
manifestations of creativity. Section 3 discusses the possibility to describe cre-
ative acts by cognitive mechanisms, such as analogy-making and concept blend-
ing. It is explained that this cannot only be done for examples of creativity from
highly structured domains but for a broad variety of different domains. Section
4 proposes the logical framework Heuristic-Driven Theory Projection (HDTP)
for analogy-making and concept blending in order to model creativity. Section 5
concludes the paper.

2 Forms of Creativity

Creativity describes a general cognitive capacity that is in different degrees in-
volved in any process of generating an invention or innovation.1 The concepts
invention and innovation describe properties of concrete products, services, or
ideas. From a more engineering- and business-oriented perspective, an invention
is usually considered as the manifestation of the creative mental act, resulting
in a new artifact (prototype), a new type of service, a new concept, or even
the mental concretization of a conception. An innovation requires standardly
the acceptance of the invention by the market, where market is not exclusively
restricted to business aspects. We are considering in this paper creativity as a
cognitive ability, but we have to refer to inventions, innovations, new concepts,
new findings etc. in order exemplify creativity in a concrete setting.

Creativity appears in various forms and characteristics. Creativity can be
found in science, in art, in business processes, and in daily life, i.e. creative acts

1 The following distinction is based on [5].
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Table 1. Some domains, areas, and examples of manifestations of creativity are men-
tioned. Clearly, the table is not considered to give a complete overview of domains in
which creative inventions of humans can occur.

Examples for creative acts
Domain Areas Examples

Science
Mathematics Argand’s geometric interpretation of complex numbers [3]
Linguistics Chomsky’s recursive analysis of natural language syntax [6]
Physics Einstein’s theories of special and general relativity

Art
Music Invention of twelve-tone music by Arnold Schönberg
Poetry The invention of a novel (as a genre of poetry)
Visual arts Usage of iconographic and symbolic elements in paintings (Eyck)

Other
Daily life Fixing a household problem
Business Nested doll principle for product design

can occur in highly structured and clearly defined domains (like in mathemat-
ics), in less structured domains (like business processes), or even in relatively
unstructured domains (like a marketing department of a company having, for
instance, the task to design a new advertisement for a certain product).

We summarize different types of creativity in Table 1. Taking into account
the various domains in which creativity can occur it seems to be hard to specify
a domain, in which creativity does not play a role. Rather certain aspects of
creativity can appear in nearly all environments and situations. This is one
reason why the specification of common properties and features of creativity
is a non-trivial task. For example, some attempts have been made to specify
certain phases in the creative process (cf. [23]). Unfortunately, such phases, as
for example a “preparation phase”, are quite general and hard to specify in detail.
It is doubtful whether any interesting consequences for a computational model
can be derived from such properties.

3 Creativity and Cognition

There seems to be an opposition between creativity and logical frameworks. Cer-
tain creative insights, inventions, and findings do seem to be creative, precisely
because the inventor did not apply a deterministic, strictly regimented form of
formal reasoning (the prototypical example being classical logical reasoning), but
departed from the strict corset of logic. Therefore, often a natural clash and op-
position between logical modeling and creativity seem to be perceived. We think
that this claim should be rejected. On the contrary, we advocate that the natural
way to start is to model creativity with logical means, at least in highly struc-
tured domains like science, business applications, or classical problem solving
tasks. The reason for this is based on the hypothesis that creativity is to a large
extent based on certain cognitive mechanisms like analogy-making and concept
blending. But now, due to the fact that analogy-making and concept blending
is essentially the identification and association of structural commonalities, in
turn a natural way to model these mechanisms are logic-based frameworks.
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Fig. 1. Two design examples (one from the engineering domain and one from product
design) that are based on the same principle, namely the nested doll principle. Objects
are contained in similar other objects in order to satisfy certain constraints.

Although creativity seems to be an omnipresent aspect of human cognition
(compare Table 1), not much is known about its psychological foundation, the
neurobiological basis, or the cognitive mechanisms underlying creative acts. One
reason might be that examples for creativity cover rather different domains,
where completely different mechanisms could play important roles. Nevertheless,
we hypothesize that many classical examples for creativity can be reduced to two
important cognitive mechanisms, namely analogy-making on the one hand and
concept blending on the other. We mention some examples in order to make this
hypothesis more plausible:

– Conceptually, the usage of analogy-making is rather clear in cases where one
is using a general principle in a new domain, e.g. the nested doll principle
in design processes (compare Figure 1): creativity can be considered as a
transfer of a structure from one domain (e.g. the structure of a planetary
gearing, namely gears that revolve about a central gear) to another domain
(e.g. the design of nesting bowls containing each other). This transfer of
structural properties is best described as an analogy.

– In science, analogies and blend spaces do appear quite regularly. For example,
in [10] it is shown how analogies can be used to learn a rudimentary number
concept and how concept blending can be used to compute new mathematical
structures. Furthermore, in [16] it is shown that concept blending can lead to
a geometric interpretation of complex numbers, inspired by the historically
important findings of Argand mentioned above in Table 1.

– Also the interpretation of certain visual inputs can easily be described by
analogy-making (visual metaphor). Figure 2 gives an example, depicting an
advertisement. In order to understand this advertisement a mapping be-
tween tongue and sock as well as a transfer of properties of socks need to be
performed.

The number of examples, which show that analogy-making and concept blending
can be used to explain manifestations of creativity, are numerous. If it is true
that several characteristics of creativity can be modeled by analogies and concept
blending, a computational approach towards creativity can naturally be based
on an algorithmic theory of analogy and concept blending. Due to the fact that
analogy-making is the identification of structural commonalities and concept
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Fig. 2. Advertisement on the left side depicting an association between a tongue and
a sock. In order to understand this advertisement (as a marketing tool for hard candy)
the establishment of a mapping between tongue and sock is necessary. Then, hard
candy can be used as a means against breadth odor. In [21], a formal modeling is
specified.

blending is the (partial) merger of structures, the natural way for an algorith-
mic approach is to use logic as the methodological basis. Whereas for concept
blending, a symbolic approach for modeling is quite undisputed, the situation in
analogy-making is more complicated. Concerning the modeling of analogies, also
several neurally inspired and hybrid models have been proposed. Nevertheless,
when having a closer look, it turns out that the most important subsymbolic
aspects of such models are activation spreading properties or synchronization
issues in a (localist) network, whereas the basic computational units of the net-
work still are quite often symbolic (or quasi-symbolic) entities (cf. [12] or [13]
for two of the best known neurally inspired analogy models). Additionally, logic-
based models of analogy-making have a wider application domain in comparison
to neurally inspired or hybrid models. Therefore, in total, it seems a natural
choice to apply logical means in modeling these two cognitive mechanisms.

4 A Logical Framework for Modeling Creativity

4.1 HDTP and Analogy Making

In what follows, we will use Heuristic-Driven Theory Projection (HDTP) [20] as
the underlying modeling framework. HDTP is a mathematically sound frame-
work for analogy making, together with the corresponding implementation of an
analogy engine for computing analogical relations between two logical theories,
representing two domains (domain theories are represented in HDTP as sets of
axioms formulated in a many-sorted, first-order logic language). HDTP applies
restricted higher-order anti-unification [14] to find generalizations of formulas
and to subsequently propose analogical relations between source and target do-
main (cf. Figure 3), that can later be used as basis for an analogy-based transfer
of knowledge between the two domains (see [1, 10, 16, 20] for more details about
HDTP and an expanded elaboration of recent application domains).

Analogical transfer results in structure enrichment of the target side, which
usually corresponds to the addition of new axioms to the target theory, but
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analogical transferSource (S)
Target (T )

Generalization (G)

Fig. 3. HDTP’s overall approach to creating analogies (cf. [20])

may also involve the addition of new first-order symbols. There are application
cases in which two conceptual spaces (in our case the input theories source
and target) need not to be (partially) mapped onto each other, but partially
merged in order to create a new conceptual space. In such cases, HDTP uses the
computed generalization, the given source and target theories, and the analogical
relation between source and target to compute a new conceptual space which is
called a blend space.

4.2 Concept Blending and HDTP

Concept blending (CB) has been proposed as a powerful mechanism that facil-
itates the creation of new concepts by a constrained integration2 of available
knowledge. CB operates by merging two input knowledge domains to form a
new domain that crucially depends on and is constrained by structural com-
monalities between the original input domains. The new domain is called the
blend, maintaining partial structures from both input domains and presumably
adding an emergent structure of its own.

In cognitive models, three (not necessarily ordered) steps usually are assumed
to take place in order to generate a blend. The first step is the composition (or
fusion) step, which pairs selective constituents from the input spaces into the
blend. In the second step, the completion (or emergence), a pattern in the blend
is filled when structure projection matches long-term memory information. The
actual functioning of the blend comes in the third step, the elaboration step, in
which a performance of cognitive work within the blend is simulated according
to its logic (cf. [8, 19]).

Figure 4 illustrates the four-space model of CB, in which two concepts,
Source and Target, represent two input spaces (the mental spaces). Com-
mon parts of the input spaces are matched by identifying their structural com-
monalities, where the matched parts may be seen as constituting a Generic

space. The Blend space has an emergent structure that arises from the blend-
ing process and consists of some matched and possibly some of the unmatched
parts of the input spaces (cf. Figure 4). One of the famous blending examples
is Goguen’s HouseBoat and BoatHouse blends, which result, among others,
from blending the two input spaces representing the words House and Boat

(cf. [9]).
Only few accounts have been proposed formalizing CB or its principles in

the first place, and those that have been proposed are unfortunately not broad
2 Whence, CB is sometimes referred to as ‘conceptual integration’.
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identification

Source

Target

Generic

Space

Blend

Fig. 4. The four-space model of CB: common parts of the Source and Target con-
cepts are identified, defining a Generic space and a Blend. The connecting curves
within a concept reflect an internal structure.

enough to suit generic computational accounts of CB (cf. [2, 9, 19, 22]). CB itself
noticeably still suffers from the lack of a formally precise model integrating its
many aspects. The well-known optimality principles of CB, for instance, raise a
challenge for developing such formalizations: these principles are the guideline
pressures that are assumed to derive the generation of a feasible blend and
distinguish good blends from bad ones [8, 18].

In fact, CB has already shown its importance as a substantial part of cognition
and a means of constructing new conceptions. It has been extensively used in the
literature in attempts at expressing and explaining cognitive phenomena, such
as the invention of new concepts, the meaning of natural language metaphors, as
well as its usefulness in expansion, reorganization, and creation of mathematical
thoughts and theories ([1, 2, 8, 9, 10]).

The ideas of CB are very much related to the properties of a creative process,
since a creative process can result in new insights as a result of a ladder-ascending
procedure that steps through “background knowledge”, and subsequently increas-
ingly refines the insights to spell-out an innovation (cf. Section 2). Undoubtedly,
creative agents must have (enough) background knowledge before a creative
process can take place, still mere knowledge most likely is not sufficient: For
example, simply having knowledge about Maxwell’s equations, the principles of
semi-conductors, and the principles of graph theory almost surely by itself is
not enough in order to devise the ideas of very-large-scale integration (i.e., the
creation of integrated circuits by combining thousands of transistors into one
single chip). We claim that this is exactly where CB comes into play.

HDTP now provides a framework for a CB-based computation of novel con-
cepts given a source and target domain: Assume two input theories S and T are
given. The computation of an analogical relation between S and T by HDTP
outputs (besides other things) a shared generalization G of S and T by the anti-
unification process. This generalized theory G functions in the further process as
the generic space in CB mentioned above. The construction of the blend space
is computed by first, collecting the associated facts and rules from S and T gen-
erated by the analogical relation between S and T and second, by projecting
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Fig. 5. HDTP’s view of concept blending. S and T are source and target input theories.
m represents the analogical relation between S and T and G is the generalization
computed by anti-unifying S and T . The dashed arrows S → B and T → B describe
the injections of facts and rules from source and target to the blend space. Due to the
fact that the input theories may contain inconsistent information, the injections are
partial in general.

unmatched facts and rules from both domains into the blend space. This second
step can result in clashes and inconsistencies. Furthermore, the coverage of the
blend space concerning S and T can be more or less maximal. Taking addition-
ally into account that for every given S and T HDTP can compute different
analogical relations, there can be many possible blend spaces for a given input.
Figure 5 depicts diagrammatically the overall structure of concept blending using
HDTP.

HDTP has successfully been used to compute concept blends in complex do-
mains like mathematics. In [10], Lakoff and Núñez’s mathematical grounding
metaphors [15] are modeled that are intended to explain how children can learn
a rudimentary concept of numbers based on simple real-world actions in their en-
vironment. These metaphors and the emergence of an abstract number concept
can be explained by analogy-making and concept blending. In [16], the invention
of a geometrical interpretation of complex numbers (i.e., the complex plane) was
computationally modeled by concept blending. This example shows that even
for rather formal and complex theories the creative generation of a new concept
can be computed using a logical approach.

5 Conclusions

In particular for AGI systems, creative problem solving abilities and the find-
ing of novel solutions in unknown situations seems to be crucial. We consider
creativity as a crucial step towards building a general form of AI. From a cog-
nitive perspective creativity can often be reduced to cognitive mechanisms such
as analogy-making and concept blending, which in turn can neatly be modeled
using logic-based approaches. Therefore, the apparent tension between creative
abilities of agents and a logical basis for their modeling disappears.

In fact, we are not the first ones to investigate into the computational modeling
of creativity as a cognitive capacity. Going back already to work by Newell, Shaw
and Simon [17], researchers in AI and related fields over the decades repeatedly
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have addressed different issues and aspects of creative thought. The results of
these investigations range from contributions on the more conceptual side (as,
e.g., Boden’s theory of P- and H-creativity [4]), to concrete implementations
of allegedly “creative systems” (as, e.g., The Painting Fool [7]). And also in
the computational analogy-making domain there already is relevant work on
the relation between creativity and analogy, most prominently exemplified by
Hofstadter’s contributions related to the Copycat system [11]. Still, on the one
hand, work on issues of creativity within human-style intelligent systems this
far has not gained wide attention in an AGI context. On the other hand, even
within the more general setting of computational creativity research, only very
few approaches try to integrate models of different cognitive capacities into a
system aiming for general creativity capacities, instead of limiting the focus to
modeling one specific kind of creative act.

This paper sketches the necessity to tackle the hard problem of creativity
in AGI systems. Although the described HDTP framework has been applied
to show that the computation of interesting blend spaces can be achieved in
certain rather complex (but highly specific) domains, no generalizations of such
specific examples exist so far. This remains a task for future work, besides a
further formally sound and complete characterization of concept blending on a
syntactic and semantic level.
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Abstract. The cognitive architecture MicroPsi builds on a framework for simu-
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1 Introduction  

MicroPsi (Bach 2003) is a cognitive architecture with a focus on grounded representa-
tions, cognitive modulation and motivation. MicroPsi agents are autonomous systems 
that combine associative learning, reinforcement learning and planning to acquire 
knowledge about their environment and navigate it in the pursuit of resources. Micro-
Psi is also being used to model the emergence of affects and higher level emotions 
(Bach 2012a), and to model human performance and personality properties in the 
context of problem solving (Bach 2012b). The architecture extends concepts of Die-
trich Dörner’s Psi theory, and is thus rooted in a psychological theory of motivation 
and complex problem solving (Dörner 1999, Dörner et al. 2002). The principles and 
concepts of MicroPsi are described in detail in the book “Principles of Synthetic Intel-
ligence” (Bach 2009) and subsequent publications (Bach 2011) and are not discussed 
here. Instead, we will focus on the MicroPsi framework, i.e., the simulation and de-
sign framework that allows the construction and execution of our family of cognitive 
models.  

Unlike many other cognitive architecture frameworks that define agents in the 
form of code (either in a domain specific language, as a set of rules and representa-
tional items), MicroPsi uses graphical definitions for its agents, and a graphical editor 
as the primary interface. In this respect, it is for instance similar to COGENT (Cooper 
and Fox 1998). While rule-based representations and (hyper-)graphical representa-
tions are computationally equivalent, the graphical paradigm highlights weighted 
associations, allows to visualize conceptual hierarchies, activation spreading, percep-
tual schemata and parallelism.  

The first implementation of the MicroPsi framework spanned the years 2003 to 
2009, and was built in Java as a set of plugins for the Eclipse IDE. The graphical edi-
tor was built on SWT. It comprised about 60000 lines of code, and although a lot of 
effort went towards platform independence (with the exception of a DirectX/.Net 
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Fig. 2. Components of MicroPsi 2 Framework 

MicroPsi consists of a server (the web application), a runtime component, a set of 
node nets, a set of simulation worlds, a user manager and a configuration manager 
(figure 2). The server is built on the micro web framework Bottle (Hellkamp 2011) 
and communicates with all current users via their web browsers through the Server 
API. User sessions and access rights are handled by the user manager component. 

On startup, the server invokes the runtime component, which interfaces to the 
server with the MicroPsi API. The runtime is designed to work independently of the 
server and does not need to be deployed as a web application (command line interac-
tion or OS based user interfaces are possible as well). 

The runtime supplies a manager for MicroPsi node nets (see section 4), and a 
manager for simulation worlds (or interfaces to outside environments, such as robotic 
bodies, remote data providers, etc.). Standard simulation worlds (section 6) provide 
agents (node net embodiments) and objects as situated state machines.  

3 MicroPsi Agents 

MicroPsi interprets cognitive models as agents, situated in dynamic environments. 
MicroPsi agents are entirely defined as hierarchical spreading activation networks 
(SAN), which—for lack of a better name—are called node nets. Node nets are the 
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brains of these agents—or rather, an abstraction of the information processing pro-
vided by brains, and the environment provides a body and stuff to interact with.  

The body manifests itself as a set of data sources (which can be thought of as the 
terminals of sensory neurons) and data targets (the abstracted equivalent of motor 
neurons). By reading activation values from data sources, and sending activation into 
data targets, the MicroPsi agent may control its body and interact with its world. 

MicroPsi’s node nets can be interpreted as neural networks and afford neural learn-
ing paradigms. For the purposes of information storage and retrieval, they can be seen 
as semantic networks with a small set of typed links to express associative, partonom-
ic, taxonomic and causal relationships. 

Since the nodes can also encapsulate state machines and arbitrary operations over 
the node net, they can also be understood as components of a concurrent, modularized 
architecture, with activation spreading as the primary means of communication be-
tween the modules. 

4 Definition of Node Nets 

This section gives an overview over the definition of MicroPsi node nets. 
 : , , f , : , : , :  
 

A node net is characterized by a set of states, a starting state , a network function f :  that determines how to advance to 
the next state, and set of node types. Data sources and data targets provide a connec-
tion to the environment; a data source represents a value that is determined by an 
environmental state, while the values of data targets can be changed to effect some-
thing in the environment. : , : , : ,  

The state of a node net is given by a set of nodes, or units, a set of directed links, a set 
of node spaces and the current simulation step . Each node is part of exactly one 
node space. The primary role of node spaces is to provide some additional structure to 
node nets, similar to folders in a file system.  

Node spaces form a tree—thus, each node space, with the exception of the root 
node space, has exactly one parent node space. ∪ ,: , : ,: , : ,,  

Node spaces do not only provide some additional structure to node nets, they may 
also limit the spreading of activation via node space specific , control 
how connections between nodes are strengthened based on , or how they 
are weakened over time using a  parameter. (More on these things below.) 
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, , , , ,  

Each node is characterized by its identifier , its type , an optional set of parame-
ters  (which can make the node stateful), a set of gates and a set of slots. 
Gates are outlets for activation, while slots are inlets.  : , : , f  

The types of slots and gates of a node are defined within the node type, next to addi-
tional functionality f  performed by the node whenever it becomes active. In most 
cases, f  is limited to transmitting activation within the node, from the standard slot 
‘gen’ to the gates. f for each :   

Nodes can store additional parameters and change them in the course of the node 
function, which makes them state machines: f : , , , ,  

More generally, some nodes may contain arbitrary functions, such as the creation of 
new nodes and links, procedures for neural learning, planning modules etc. These 
functions take the form of a program in a native programming language (here, Py-
thon), and hence, such nodes are also called native modules. f :

 

The nodes form a directed graph, with links connecting their gates to slots.   , , ,  

A link is characterized by the gate of origin, the slot of the target node, a weight  
and a confidence parameter . Usually, 1 1 and 0 1. , , , , , , f  

A gate is determined by its gate type , an activation , an output activation  
(which is transmitted via the links originating at that gate), a minium and a maximum 
value, and the output function f .  , f ,  

 f :  f : : , : ,  

 
Together with the gate function f , which is supplied by the type  of the gate, 
the output function specifies how to calculate the output activation.  

 f , if 0, else  
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The default gate function assumes a threshold parameter  and sets the activation to 
zero, if it is below this threshold. This turns the node into a simple threshold element. 
The reason that the gate calculations are split in two separate functions is customiza-
tion: gate functions may be sigmoidal, to enable back-propagation learning, or bell-
shaped, to build radial basis function networks, etc.  f , :  

After the application of the gate function, the output function may control the spread 
of activation through a gate by multiplying the gate’s activation with the value of the 
activator  that corresponds to the type of the gate (and is defined and adjusted on 
the level of the node space that contains the node). 

Next to gates, nodes feature slots. ,  , f ,  

Slots are characterized by their type  and their activation .While nodes may have 
multiple slots to receive activation, most offer just one (of type ‘gen’). The activation 
of a slot is determined by the slot function f , which sums up the incoming activa-
tion.  f , :  f  

Again, alternate slot functions can be defined (for instance, a squared average or a 
maximum function), and are stored or changed on the level of the node space that 
contains the respective node.  

The slot functions provide the transmission of activation between nodes, along 
links. The changes in strength of these links are influenced by the associator functions 
and decay functions, which act on the weights of all links originating in a given node 
space. f , , , ,  

The association between two nodes is strengthened based on the activation of the 
respective slots and gates the link connects, and the activity of the association factor 

 of the respective node space.  
 f  

, , 0, , ,
, , , else , if  
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If the decay factor of the respective node space has a value between 0 and 1, and the 
weight of the link is below the decay threshold , the link is weakened in every 
simulation step. This provides a way of ‘forgetting’ unused connections. The decay 
threshold ensures that very strong connections are never forgotten. 

In each simulation step, the network function f  successively calls all slot func-
tions f , the node functions f  and gate functions f ; f  of all active nodes, 
and the associator functions f  and decay functions f  for all links. 

5 Basic Node Types 

The most primitive node type is a Register. It provides a single slot and a single gate 
of type gen and acts as a threshold element. gen , gen , f f  

The basic conceptual element, analogous to Dietrich Dörner’s Psi theory, is the Quad. 
It makes use of a single ‘gen’ slot and the four directional gates ‘por’, ‘ret’, ‘sub’, 
‘sur’. ‘Por’ encodes succession, ‘ret’ predecession, ‘sub’ a part-of relationship, and 
‘sur’ stands for has-part. With the ‘gen’ gate, associative relationships can be ex-
pressed. gen, por, ret, sub, sur ,gen , f f  

Concept nodes extend quads by the gates ‘cat’ (for is-a relations), and ‘exp’ (for their 
inverse), as well as ‘sym’ and its inverse ‘ref’ for symbolic labeling. Concept nodes 
may be used to express taxonomies. gen, por, ret, sub, sur, cat, exp, sym, ref ,gen , f f  

The connection to the environment is provided by sensor nodes, which have no slots 
and only a single gate, which receives its activation from the associated data source. 
The sensor type is given as a node parameter. gen , , f :   

Likewise, actor nodes influence the environment by writing the activation received 
through their single ‘gen’ slot into a data target. The actor type is given as a node 
parameter. , gen , f :   

Activator nodes are special actors. Instead of a data source, they target the activator 
 corresponding to the activator type  (given as a node parameter) of their 

node space. Thus, activator nodes may be used to restrict the spreading of activation 
to certain link types.  , gen ,f : ,   
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Associator nodes work just like activators, but target the association factor  of 
their node space.  , gen ,f : ,   

6 Environment 

Within the MicroPsi framework, agents may be embedded into an environment 
( ). The environment must provide a world adapter  for each MicroPsi 
agent. The world adapter offers data sources, from which the agent’s node net may 
read environmental information, and data targets, which allow the agent to effect 
changes in the world. Since the environment only has write access to data sources, 
and read access to data targets, node net and environment may be updated asynchron-
ously. 

The world adapter may interface a local multi-agent simulation, a robotic body, a 
computer game client or simulation server, dynamically updated stock data, etc. Here, 
we give a simple simulation world as an example. : , , , : , f  : , :  

The simulation is determined by its state, a set of fixed properties ( ), a set of 
world adapters (which provide connections to agents and additional environments) 
and a function f :  
that determines how to advance to the next state. : ,  

The state of the world consists of a set of objects and the time step of the simulation. , : , f  

Objects have a position  (for instance ), a set of object states  and an 
object function, f  that determines how the position and states of the object change 
from one state to the next, based on the previous state, the states and positions of oth-
er objects and the terrain. : , f : , , :  

, , :  

Agents are objects in the world like any other, but each agent object corresponds to a 
world adapter, which links it to a node net. Think of the agent object as the body of 
the MicroPsi agent, and the object states as its physiological states. The object func-

tion of the agent f  advances these physiological states, the position of the agent 
and the inputs to the node net. 
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In each simulation step, the world function calls all object functions, and takes care 
of the creation of new objects and the removal of obsolete ones. 

7 Applications 

Compared with the original implementation of MicroPsi, the current iteration of the 
framework is still fragmentary; at the time of writing, it supports only a simple gener-
ic simulation world for multi agent experiments (instead of the various simulation 
environments provided in MicroPsi 1). Also, 3D viewing components for environ-
ments and facial expressions are completely absent. 

The current priority of MicroPsi 2 lies on affective simulation for problem solving 
experiments (see Bach 2012b), and its application as a general framework for know-
ledge representation in a hierarchical semantic network. 
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Abstract. This paper describes our Extensible Language Interface (ELI) for ro-
bots. The system is intended to interpret far-field speech commands in order to 
perform fetch-and-carry tasks, potentially for use in an eldercare context. By 
“extensible” we mean that the robot is able to learn new nouns and verbs by 
simple interaction with its user. An associated video [1] illustrates the range of 
phenomena handled by our implemented real-time system.  

Keywords: robot, language, learning, eldercare. 

1 Introduction 

As argued in [2] with an eye toward Vygotsky, much of intelligence is actually  
illusory since the bulk of what we consider knowledge or competence is transmitted 
culturally. No one figures out how to cook macaroni and cheese by experimentation – 
some other person tells you how to do it. While part of the feeling of aliveness comes 
from the responsiveness of a creature with a reasonably deep perception of its envi-
ronment, even humans from a different society can be successfully demonized as 
“sub-human” if you cannot understand what they say. If robots are ever to be per-
ceived as sentient it seems crucial that they also be able to learn in this manner and 
thus partake of the rich prevailing culture which underpins much of “human-ness”.  

Language understanding and learning also has pragmatic value. For instance, a ro-
bot that could perform simple fetch-and-carry tasks would be a boon to eldercare. 
However the robot must be told what to do somehow. The current generation of se-
nior citizens is not comfortable with tablets, keyboards, styli, PDAs, or Bluetooth 
headsets – these are just one more thing to drop or misplace. The most human-
friendly interface is direct speech using an audio pickup on the robot itself. The trick 
then is interpreting the spoken commands robustly. In addition, a particular home may 
have locations, like the “solarium”, or objects, like “my favorite cup”, which cannot 
be known a priori and hence cannot be preprogrammed into the robot. Thus it would 
be convenient if the robot could just be shown such places and objects and learn 
whatever models it needed automatically. In addition there may be activities such as 
“tidy up the nightstand” that are specific to an individual. Again, being able to learn 
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these things on the fly given verbal (and perhaps gestural) guidance would be a bene-
fit. This is what we have endeavored to create: a speech guided mobile robot that can 
learn new nouns and new verbs based on user instruction. Fig. 1 shows a block dia-
gram for our Extensible Language Interface (ELI) and the physical robot it controls. 
What we have built is essentially a service dog with more language and less slobber.  

 

 

Fig. 1. Our robot can interpret spoken commands as well as learn new nouns and verbs. The 
experiments here were performed using the arm and camera from our large robot Eli (left) 
mounted on a table top in order to reduce the degrees of freedom to be controlled.  

Of course this is not the first home robot or the first mobile manipulator. There is 
the impressive PR2 from Willow Garage [3] which can do things like fold towels (but 
slowly, and for $400K). HERB, developed at CMU [4] is also intended to perform 
household tasks, but currently requires environmental modifications for its vision 
system. Then there is El-E from Georgia Tech [5] that was specifically created to 
retrieve objects for disabled persons. However, none of these robots are designed 
around a speech interface – to change their actions you either completely change their 
programs or you configure options in a GUI. Other robot such as Carl [6] and Cosero 
[7] can take speech input, but require a handheld or headset mike. Furthermore, in 
general these robots are not intended to learn in the field from user interaction. Instead 
they have various preprogrammed competencies, object models, and environmental 
maps which are developed offline.  

Other work has addressed language-based learning. Much of this, however, has 
started at a very low level. Steels [8]  looks at the emergence of a private language 
between cooperating agents while Roy [9] attempts to directly associate acoustic 
fragments with visual fragments. What we believe is more useful is to stick with a 
human language and just attempt to find suitable bindings for a few unknown words. 
This is akin to the approach taken in HAM [10] for learning place names. Similarly, 
procedure learning is often attempted through trial-and-error experimentation [11] or 
using the impoverished feedback of reinforcement learning [12]. Yet explicit macro 
definitions or verbal scripting [13] is often faster and more effective in practice. 
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2 Multimodal Instructional Dialog 

The goal for our system is for the user to describe a task, through a combination of 
speech and gesture (multi-modal), and then have the system successfully accomplish 
this task. If it is unsure about some aspect of the task, it should ask clarifying ques-
tions (dialog). In addition, we want the system to be able to learn about new objects 
and new procedures to enable a “verbal programming” facility (instruction). All these 
capabilities are described below and demonstrated in an associated video [1]. 

2.1 Robotic Substrate 

Since our example tasks all concern objects on a table, it is important for the robot to 
detect objects. To do this it looks for “obvious” objects, as shown in Fig. 2. It starts by 
color enhancing the scene from its camera, then builds a model in terms of HSI bands 
that pass the bulk of the pixels (i.e. the table). The “holes” in this mask are then po-
tential objects. A similar method is used with the depth camera on the large robot. 
However instead of modeling the table in terms of a dominant color, it is modeled as a 
3D plane. Again, deviations from this model are potential objects. Once an image 
segmentation has been performed, the color(s), shape, size, and relative positions of 
the objects can be computed. 

 

 

Fig. 2. The system uses a simplified object finding routine. The steps of this process are to take 
the input image (left) and enhance its color, find a uniform description for the majority of the 
area (middle), then identify isolated, non-table regions (right). 

To actually grab an object, the 2D image coordinates must be turned into a 3D po-
sition for the arm. To do this we compute a homography based on 4 calibrated points 
that maps 2D image locations to 2D locations on the table surface. We then select an 
image point likely to be near the middle of the bottom of the object and apply this 
transform in order to find its x and y. A fixed z position of 1.5 inches above the table 
is specified to complete the grasp point. Next we solve for the inverse kinematics of 
the arm, then plot a linear endpoint trajectory from the current position to a “via” 
point in front of the object such that the gripper is aimed toward the object at this 
location. A second short trajectory then leads from the via point to the grasp point to 
ensure a reasonable approach direction for the gripper. 

Another important basic capability is understanding human gesture. Here (Fig. 3) 
we use background subtraction to find the user’s moving hand. We track the most 
extreme point of the difference region (left) and, once it stops moving, generate a 
“click” on the image. Given the previously detected objects, we can map this to the 
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most likely one (middle). Similar processing allows the robot to detect when a human 
hand has entered an object “transfer zone” (right). In such a case the robot either 
opens or closes its gripper. Once again, this same algorithm for hand detection can be 
applied even more easily and robustly to depth data. 

 

 

Fig. 3. Gesture recognition is implemented by using background subtraction to track the user’s 
hand. The most extremal portion of this mask (left) selects one of the objects previously identi-
fied (middle). User motion detection for object handoff (right) works in a similar manner. 

2.2 Natural Language Interpretation 

For speech recognition we use an Acoustic Magic VT2 far-field array microphone. 
Interpretation is performed using a semantic grammar with the Microsoft ASR Engine 
in Windows XP, although we have also successfully used the IBM Attila engine [14].  

An example semantic grammar is shown in Fig. 4. Here there are a number of rules 
prefixed by “=” that offer several valid expansions for each non-terminal. Elements in 
parenthesis are optional, whereas the asterisk denotes an unconstrained dictation of up 
to 5 words. In general, we assume that all expansions for “toplevel” start and end with 
a silence segment. To prevent spurious action when humans are talking to each other, 
we require the presence of an attention word (e.g. “Eli”) at either the start or end of 
each such directive. After generating a valid parse, the resulting tree of expansions is 
mined to generate a simple slot-value representation for the utterance (top). To do this 
we take each capitalized non-terminal as a slot and assign it the value of whatever 
first level expansion was used. As can be seen in the example utterance, many of the 
surface words are simply discarded. 

Using the visual object detection and characterization methods previously de-
scribed, along with a more complex semantic grammar, the robot can grab objects 
specified by color, size, position, or gesture. It can also answer questions about ob-
jects that have been selected in this way. Fig. 5 provides a transcript of an experiment 
testing the robot’s proficiency. One interesting aspect of this conversation is how the 
robot resolves pronouns through non-linguistic means. If there is only one object 
present, the binding for “it” is obvious. However if there are several objects, the robot 
will execute a dialog move to seek clarification. By contrast, if some particular object 
had recently been mentioned, the robot assumes that this is the proper grounding for 
the pronoun instead. Eli is also capable of executing a mixed mode dialog response, 
as when it suggests which of the two white objects the user might have wanted by 
pointing. Finally, the robot also knows the limits of its own abilities in terms of reach 
and grasping size. That is why, when directed to grasp the green object (the head of 
lettuce shown in Fig. 3), it demurs. 
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Fig. 4. This is part of the grammar used for speech parsing. A full utterance is converted to a set 
of slots and values (top) based on the capitalized categories and their immediate children. 

 

Fig. 5. As this transcript of one of the video demos [1] shows, the robot can resolve pronouns 
based on context, understand gestures, and request clarification when needed. 

“Grab it.” (1 object) 
 <grabs object>   no confusion since only 1 choice for “it” 
“Grab it.” (4 objects) 
“I'm confused. Which of the 4 things do you mean?”     knows a unique target is required 
“What color is the object on the left?” (4 objects) 
“It’s blue.”   understand positions & colors 
“Grab it” (4 objects) 
 <grabs blue object>   uses “it” from previous interaction 
“Grab that object” (human points) 
 <grabs object>   understands human gesture 
“Grab the white thing.” (2 white objects) 
“Do you mean this one?” <robot points>   uses gesture to suggest alternative 
“No, the other one.” 
 <grabs other object>   uses “other” from previous interaction 
“Grab the green thing.” (head of lettuce) 
“Sorry, that’s too big for me.”   sensitive to physical constraints 

=[toplevel] 
<attn> (<intro>) <request> * 
* <request> (<intro>) <attn> 
 
=[attn] 
Eli  
robot 
 
=[intro] 
please 
first 
next 
 
=[request] 
<MOVE> 
<CHAT> 
<QUERY> <desc> 
<CMD> <desc> 
<learn> 
 
=[CMD] 
<hand_indicate> 
<hand_select> 
<hand_grab> 
<hand_give> 

=[COLOR] 
<red> 
<orange> 
<yellow> 
<green> 
<blue> 
<purple> 
<black> 
<gray> 
<white> 
 
=[blue] 
blue 
dark blue 
light blue 
 
=[obj] 
(<measure>) <NAME> 
<REF> 
object 
objects 
thing 
things 
bottle 
bottles 

=[hand_grab] 
grab 
grasp 
lift 
touch  
pick 
pick up 
select 
 
=[desc] 
<np> (<pp>) 
 
=[np] 
<PRON> 
<POINT> <obj> 
(<det>) (<SIZE>) (<COLOR>) <obj> 
(<det>) (<POSITION>) (<COLOR>) 
<obj> 
 
=[det] 
the 
a 
an 

“Eli, please grab the blue bottle now.”  { CMD=hand_grab, COLOR=blue } 
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2.3 Visual Object Naming 

While colors, sizes, positions, and pointing can be used to draw attention to specific 
objects, in some cases it is more convenient to give objects names. One can then 
simply say “Give me the WD-40” and have the robot figure out which object this is. 
Of course to do this, the robot must know that “WD-40” is a valid object. It must also 
know what the object looks like in order to find it. To teach the robot new nouns like 
this, we use a simple speech pattern: “NP is called X”. Here the NP is any valid noun 
phrase in the grammar, such as “The big bottle” or “That thing” (with pointing). The 
X is then either drawn from a list of likely (but unknown) object words, or is an un-
constrained dictation item.  

When the user names an object, the first thing that happens is that a visual model 
of the object is built. This consists of a coarse size and shape description, plus a histo-
gram of semantic color features (e.g. 50% blue, 30% yellow, 20% red). For our small 
universe of objects on a table, this is sufficient to find similar objects. If the same 
name is taught multiple times, the system will learn multiple models for the object. 
This nearest-neighbor classifier adds robustness since the appearance of objects often 
varies from side to side, or from different vantage points. Note, that although an ob-
ject can be described verbally with enough specificity to select it from among other 
items, when the robot actually experiences an object it can build a much richer model. 

 

 

Fig. 6. As this transcript of one of the video demos [1] shows, the robot can be taught new 
nouns by simply showing it objects. The new visual model can then be used in various ways. 

The second step in learning is to add the declared name to the <NAMES> category 
in the grammar. This is kept distinct from generic nouns like “object” because items 
in the <NAMES> class usually have one or more visual models associated with them. 
An interesting problem we have run into is that the dictation results are not always 
reliable. For instance, when the user says “aspirin” the system sometimes hears  

“Eli, what is the object on the left?” 
 “I don’t know.”   no existing visual model matches object 
“Eli, that is aspirin.” 
 <new word added to grammar>   word acquired via dictation 
 <new visual model for object> 
“Okay. This is aspirin.” <points> 
“Eli, this object is Advil.” (human points) 
 <new visual model for object>   word already known 
 “Okay. That is Advil.”  
“Eli, how many Advil do you see?” 
 “I see two.”   uses existing visual model to find item(s) 
“Eli, give me the Tylenol.” 
 <gets bottle>  uses existing visual model to find item(s) 
 “Here you go”  
 <waits for user hand motion> <releases> 
 <waits for user hand motion> <regrabs bottle>  
“Thanks.” 
 <replaces bottle> 
“Eli, where is the aspirin?” 
 “Here.” <points>  uses existing visual model to find item(s) 
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“offering”. For a speech-only system this is fine since a name is just a random acous-
tic label. If the robot hears “Pick up the offering” it will perform the correct action. In 
fact, humans managed to exist for thousands of years with just such cues, having no 
written language or fixed orthography. However when trying to look up properties of 
an object elsewhere (as in the next section), the correct term “aspirin” yields much 
more relevant information. 

Fig. 6 gives the transcript from an experiment in which the robot’s learning of new 
nouns was tested. As can be seen, objects can be indicated either verbally or by point-
ing. The robot can then use its learned models to find things, count them, and name 
them when requested. 

2.4 Semantic Web Access 

Many useful functions can be performed by an eldercare robot with just the perceptual 
and manipulation capabilities already described. However, we can also provide smar-
ter guidance about proposed actions using external data. At our Tokyo lab we built a 
remote consultation agent called Brainy Robot And Intelligence Networked System 
(BRAINS) that has access to richer semantic information, largely based on the names 
(types) of objects. Every time the robot interprets a local utterance, it forms a poten-
tial action plan and transmits this (via TCP/IP socket) to BRAINS for vetting. A sam-
ple of the communication is shown in Fig. 7. The robot generates semantic network 
triples describing the proposed action, then BRAINS can either accept or veto the 
action, or counter-propose some other action. 
 

 

Fig. 7. The robot communicates with the BRAINS system using semantic network triples 

Fig. 8 shows the transcript of an experiment with BRAINS in the loop. In one case, 
it consults a database for the user and discovers an aspirin intolerance and thus vetoes 
dispensing it. Tylenol (paracetamol) does not raise such concerns, hence BRAINS 
allows this action to be performed. However we also maintain a personal history  
(LifeLog) for the user and record when Tylenol was given. Thus, when in the last  

“Now hand me some aspirin” 
 
  robot: act-7 --instance-of--> give 
  robot: act-7 --status--> proposed 
  robot: act-7 --target--> obj-3 
  robot: obj-3 --status--> visible 
  robot: obj-3 --instance-of--> aspirin 
  robot: *over* 
      BRAINS: act-7 --status--> vetoed 
      BRAINS: act-8 --instance-of--> say 
      BRAINS: act-8 --status--> allowed 
      BRAINS: act-8 --message--> “But that will hurt your stomach.” 
      BRAINS: *over* 
  robot: act-8 --status--> completed 
  robot: *over* 
      BRAINS: *over* 
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interaction the user again requests Tylenol (perhaps because of memory loss or simp-
ly impatience), BRAINS vetoes the action because sufficient time has not elapsed 
between doses. The other interaction demonstrated here makes use of a taxonomy 
built for IBM’s Jeopardy! project [15]. The user requests a medication (Rolaids) 
which is not only unknown, but not present on the table. Yet by using the taxonomy 
and information about the scene, BRAINS can suggest a similar item that is present. 

 

 

Fig. 8. As this transcript of one of the video demos [1] shows, the backed system can look up 
personal information, reason about substitutions, and monitor events over time. 

2.5 Verbal Procedure Learning 

Not only can Eli learn new nouns, he can also learn verbs. Fig. 9 shows the transcript 
from an experimental run where the robot is being taught to poke things. The user 
teaches the action as a series of steps, like a verbal scripting language, as opposed to 
imparting some declarative specification of a desired result state. The steps them-
selves are indexical (as needed) so that, when they are composed, the whole sequence 
is also indexical. In other words, since the “point” action requires a focus object, the 
resulting “poke” action does also. As the later part of the transcript indicates, once an 
action has been learned it can be directly applied to other objects in the scene. 

Fig. 10 shows the part of the grammar associated with the verb acquisition process. 
Learning is initiated either by the user requesting an unknown action, or by explicitly 
saying “I’m going to teach you how to X”. If a word is specified for X, it is added to 
the grammar and becomes the label for the new action. Once the learning mode is 
entered, the robot records each successive action request made by the user. Learning 

“Eli, this object is aspirin.” (human points) 
 <new word added to grammar>   word acquired via dictation 
 <new visual model for object> 
“Okay. That is aspirin” 
“Eli, the object on the right is called Tums.” 
 <new visual model for object>   word already known 
“Okay. This <points> is Tums.” 
“Eli, give me some aspirin.” 
 <check against personal database>   uses existing visual model to find item(s) 
“But that will hurt your stomach.” 
“Eli, give me some Tylenol instead.” 
 <gets bottle>   uses existing visual model to find item(s) 
“Here you go” 
 <waits for user hand motion> <releases> 
 <waits for user hand motion> <regrabs bottle>  
“Thanks.” 
 <replaces bottle> <records dose in lifelog> 
“Eli, give me some Rolaids.” 
 “I don’t know what Rolaids looks like.”   no visual model for item 
 <ontology used to find available alternative(s)> 
“Do you want another antacid, Tums?” 
“Eli, just give me some Tylenol.” 
 <lifelog consulted for last dose>   uses existing visual model to find item(s) 
“You just had Tylenol.” 
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is terminated by a phrase such as “That’s how you do it”.  At this point the sequence 
of parameterized actions is recorded and associated with the X term (possibly from 
the termination phrase) to give a new action primitive. This “macro” sequence is now 
invoked when the label X is used as a verb. And, since the user can call for it directly, 
it can also be included as a step in some other more complicated learned procedure. 
 

 

Fig. 9. As this transcript of one of the video demos [1] shows, the robot can be taught a new 
verb by simply walking it through the appropriate steps 

 

 

Fig. 10. Here is a fragment of the grammar (left) the robot uses to learn how to “poke” some-
thing (upper right). The result is a parameterized sequence of actions (lower right). 

“Eli, poke the thing in the middle.” 
 <new action sequence opened for input>    no existing action sequence to link 
“I don’t know how to poke something.” 
“Eli, point at it.” 
 <points>   resolves pronoun from previous selection 
“Eli, extend your hand.” 
 <advances>   low level incremental move 
“Eli, retract your hand.” 
 <retreats>   low level incremental move 
“Eli, that is how you poke something.” 
 <links action sequence to word>   recognizes closing of action block 
“Okay. Now I know how to now poke something.” 
“Eli, poke the red object.” 
 <pokes>   retrieves action sequence for verb and executes 
“Eli, poke the object on the left.” 
 <pokes>   retrieves action sequence for verb and executes 
“Eli, poke the Tylenol.” 
 <pokes>   retrieves action sequence for verb and executes 

point  1.0 

“poke” 

out 1.0

out -1.0 

=[FINISH] 
that's how you   
that is how you 
 
=[vp] 
do it 
 
=[arg] 
something 
an object 
<desc> 
 
=[ACT-0] 
wave 
 
=[ACT-1] 
poke 
nudge 

=[learn] 
<NEW-ACT> do something 
<NEW-ACT> <ACT-0> 
<NEW-ACT> <ACT-1> <arg> 
<FINISH> do it 
<FINISH> <ACT-0> 
<FINISH> <ACT-1> <arg> 
 
=[NEW-ACT] 
<teach> <demo> you how to 
 
=[teach] 
I'm going to  
I am going to  
let me   
 
=[demo] 
show 
tell 
teach 
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3 Conclusion 

We have described how Eli, our speech-based robot manipulator, selects and moves 
objects around on a table. We explained how the language parsing works, how objects 
are found, and how human gestures are detected. The robot is also able to answer 
questions about the scene in front of it and resolve ambiguities in any commands it 
receives. In addition it can be taught the names of objects and use these labels to 
access information in remote databases. Finally, it is also possible to “program” the 
robot by teaching it new named action sequences. The operation of the system and 
these components was illustrated via transcripts from a series of video experiments 
[1] with the actual robot. Although our language interpreter is built with conventional 
technologies, consider a Turing machine by analogy. At its heart there is an FSM 
which, in itself, is not so interesting. Yet having something like this allows the crea-
ture to manipulate the “tape” of culture and thus greatly expand its capabilities.  
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Abstract. This paper examines reasoning under uncertainty in the case
where the AI reasoning mechanism is itself subject to random error or
noise in its own processes. The main result is a demonstration that sys-
tematic, directed biases naturally arise if there is random noise in a
reasoning process that follows the normative rules of probability theory.
A number of reliable errors in human reasoning under uncertainty can
be explained as the consequence of these systematic biases due to noise.
Since AI systems are subject to noise, we should expect to see the same
biases and errors in AI reasoning systems based on probability theory.

1 Introduction

The ability to reason under uncertainty is fundamental to AI. In this paper I
consider this type of reasoning in the case where the AI reasoning mechanism is
itself subject to random error or noise in its own processes.

Many AI systems reason using the rules of probability theory, which are nor-
matively correct and provably optimal in at least some situations. It may appear
obvious that noise in the workings of a intelligent agent will result in nothing
more than random variation around the correct response. This, however, is not
the case. There are a number of ways in which random variation can produce sys-
tematic biases in reasoning, leading to reliable deviations from the normatively
correct responses in particular situations; that is, to reliable errors in reasoning.
My main aim in this paper is to present these systematic biases due to random
variation.

In addition, I show that a number of reliable errors in human reasoning under
uncertainty can be explained as the systematic effects of random variation or
noise in a reasoning process that follows the normative rules of probability theory.
I argue that, since AI systems (like everything else in the universe) are subject
to noise, we should expect to see the same biases and errors in AI reasoning.

The organisation of the paper is as follows. In the first section I describe
four well-established and systematic errors in human probabilistic reasoning:
conservatism, subadditivity, the conjunction error, and the disjunction error.
In the second section I describe how noise can cause systematic biases in a
reasoning process that follows the equations of probability theory, and show
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Fig. 1. Scatterplot showing probability estimates SP(subjective probabilities) versus
objective, true probabilities (OP), from [3]. Probability estimates which agree with
objective probabilities fall on the 45◦ line. For low objective probablities estimates fall
above that line, while for high objective probabilities estimates fall below that line,
demonstrating conservatism.

how these these systematic biases due to noise produce exactly the patterns of
conservatism, subadditivity and the conjunction and disjunction errors seen in
humans (as far as I am aware this is the first time a unified account has been
given for these four distinct patterns of error). In the third section I present a
modified expression for event probability can reduce some of these errors.

2 Biases and Errors in Human Probabilistic Reasoning

A very extensive literature exists demonstrating systematic biases and errors that
people make in estimating probability. Here I review 4 of these: conservatism,
subadditivity, the conjunction error, and the disjunction error. I take P (A) to
represent the objective, true probability of some event A, PE(A) to represent
a reasoner’s estimate of that probability as influenced by random noise in the
reasoning process, and PE(A) to represent the mean or expected value of PE(A)
(the average estimate of the probability of event A).

2.1 Conservatism

Probabilities fall between 0 and 1 by definition. A large body of literature demon-
strates that people tend to keep away from these extremes in their probability
judgments, and so are ‘conservative’ in their probability assessments. These re-
sults show that the closer P (A) is to 0, the more PE(A) is greater than P (A),
while the closer P (A) is to 1, the more PE(A) is less than P (A) [3]. Figure 2
shows this relationship for one set of data.
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2.2 Subadditivity

A set of events is mutually exclusive if at most 1 member of that set can occur.
A fundamental and obvious requirement of probability theory concerns mutually
exclusive events. Let A1 . . . An be a set of n mutually exclusive events, and let
A = A1∨ . . .∨An be the disjunction (the ‘or’) of those n events, so that A occurs
if any of those n events occur. Then probability theory requires that

P (A1) + . . .+ P (An) = P (A)

More specifically, if A1 . . . An is a set of n mutually exclusive events that is
complete - so that exactly 1 of those events is certain to occur - then probability
theory requires that

P (A1) + . . .+ P (An) = 1

Given the obvious nature of these requirements, it is surprising to find that
people violate them reliably and systematically. However, experimental studies
have shown that people do violate these requirements, and in a characteristic
way. Results show that, for mutually exclusive events A1 . . . An

PE(A1) + . . .+ PE(An) > PE(A)

holds, so that on average the sum of people’s estimates for the probability of the
constituent events of A is reliably greater than their estimate for the probablity
of A) and that the difference

PE(A1) + . . .+ PE(An)− PE(A)

increases reliably as n increases. Result also show that for mutually exclusive
and complete events A1 . . . An

PE(A1) + . . .+ PE(An) > 1

so that on average the sum of people’s estimates for the probability of events
A1 . . . An is reliably greater than 1 with the difference increasing reliably as n
increases. There is one reliable exception to this last pattern, which occurs for
mutually exclusive and complete events in the specific case where n = 2. In this
specific case we find

PE(A1) + PE(A2) = 1

holds, so that on average people’s estimates for the probability of events A1 and
A2 will sum to 1 as required by probability theory (see [7] for a review).

3 Conjunction Error

The above two biases concern averages of estimated probability values. The next
two errors concern differences between people’s probability estimates. Let A1 and
A2 be any two events ordered so that P (A1) ≤ P (A2). Also let A1∧A2 represent
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the conjunction of those two events, so that A1 ∧ A2 is true only when A1 and
A2 both occur. Then

P (A1 ∧ A2) ≤ P (A1)

must always hold. This is an obvious and transparent requirement, following
from the fact that A1 ∧ A2 can only occur if A1 itself occurs. In most cases
people follow this requirement when assessing conjunctive probability. People
reliably violate this requirement for some events, giving estimates where

PE(A1 ∧ A2) > PE(A1)

This ‘conjunction error’ does not occur for all or even most conjunctions (people
correctly follow the rules of probability theory for most conjunctions). Numerous
experimental studies have shown that the occurence of this error depends on
the average estimated probability for A1 and A2. In particular, the greater the
difference between PE(A1) and PE(A2), the more frequent the conjunction error
is, and the greater the estimated conditional probability PE(A1|A2), the more
frequent the conjunction error is. The frequency of the error can be high when
these two conditions hold (see [1] for a detailed review).

3.1 Disjunction Error

Again let A1 and A2 be two events ordered by increasing probability, and let
A1 ∨A2 represent the disjunction of those two events (so that A1 ∨A2 is true if
either A1 or A2 occurs). Then

P (A1 ∨ A2) ≥ P (A2)

must always hold. This follows from the fact that A1∨A2 necessarily occurs if A2

itself occurs. While in most cases people follow this requirement, they reliably
violate this requirement for some events, giving estimates where

PE(A1 ∨ A2) < PE(A2)

Just as for the conjunction error, the greater the difference between PE(A1)
and PE(A2), and the higher the estimated conditional probability PE(A1|A2),
the higher the rate of occurence of the disjunction error. Studies which examine
the rate of both errors show a strong correlation between the frequency of the
conjunction error for a given pair of events and the frequency of the disjunction
error for that same pair( see [2] for a review).

3.2 The Reality of These Errors

Given the obvious nature of the requirements violated in conjunction and dis-
junction errors, it is natural to question the reality of these patterns in people’s
probabilistic judgment. Researchers have considered this issue carefully, and have
have attempted to explain away the conjunction error by arguing that it arises
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only because participants understand the word ‘probability’ in a way different
from that assumed by experimenters, or by asserting that the conjunction error
occurs because participants, correctly following the pragmatics of communica-
tion, interpret the single statement A1 as meaning ‘A1 and not A2’. Very ex-
tensive experimental studies (over 100 published papers) have undermined these
objections, and confirmed these errors as a reliable aspect of people’s probability
judgments [1]. In the next section I show how we can explain these errors as a
consequnce of random variation in a reasoner using the equations of probability
theory.

4 The Systematic Influence of Random Variation

In discussing the influence of random variation on probability estimates I as-
sume a rational reasoner with a long-term episodic memory. I assume a ‘perfect’
reasoner: if the reasoner were not subject to random variation then each esti-
mate PE(A) would be equal to P (A). I assume a long-term memory containing
n episodes where each episode i contains a flag fi(A), set to 1 if i contains event
A and to 0 otherwise. I assume a minimal form of transient error, in which there
is some small probability d that when the state of some flag fi(A) is read, the
value obtained is not the correct value for that flag. I take C(A) to be number
of flags that were read as 1 and TA be the number of flags whose correct value
is actually 1.

4.1 Explaining Conservatism

Our reasoner can compute PE(A) by querying episodic memory to find count all
episodes containing A and dividing by the total number of episodes, giving

PE(A) =
C(A)

n

Random variation afffects PE(A) when it causes some flag fi(A) be read incor-
rectly. The expected value of PE(A) is given

PE(A) =
TA(1− d) + (n− TA)d

n

(since on average 1− d of the TA flags whose value is 1 will be read as 1, and d
of the n− TA flags whose value is 0 will be read as 1 ). Since by definition

P (A) =
TA

n

we get
PE(A) = d+ (1− 2d)P (A) (1)

or equivalently
PE(A) = P (A) + d(1− 2P (A)) (2)
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Fig. 2. Scatterplot showing Root Mean Squared Difference (RMSD) between subjec-
tive probabilities from Figure 2 and estimates computed by Equation 2 using the
corresponding objective probabilities, for a range of values of d

and so the average value of PE(A) deviates from P (A) in a way that system-
atically depends on both d and P (A). If P (A) = 0.5 this difference will be 0,
if P (A) < 0.5 then since d cannot be negative we have PE(A) > P (A) with
the difference approaching +d as P (A) approaches 0, and if P (A) > 0.5 then
PE(A) < P (A) with the difference approaching −d as P (A) approaches 1. Thus
random error or noise in eposodic memory produces conservatism just as seen
in people’s probability judgments.

As a sanity check on Equation 2 we can measure the degree of fit between
Equation 2 and the data in Figure 2 for a range of values of d. Because we expect
the degree of random error in episodic memory to be low but not negligible, we
would expect the best fit to occur for a low, but not too low, value of d. Figure
4.1 shows that the best fit occurs for values of d around 0.2, consistent with this
expectation.

5 Explaining Subadditivity

Recall that subadditivity occurs when, for mutually exclusive events A1 . . . An

with A being the disjunction of all those events, people’s probability estimates
show the pattern

PE(A1) + . . .+ PE(An) > PE(A)

with the value of the difference rising as n increases.
From Equation 1 we have

PE(A1)+. . .+PE(An) = (P (A1) + . . .+ P (An))+d(n−2 (P (A1) + . . .+ P (An)))

since by assumption

(P (A1) + . . .+ P (An)) = P (A)

we can rewrite this as
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PE(A1) + . . .+ PE(An) = P (A) + d(n− 2P (A))

Also from From Equation 1 we have

PE(A) = P (A) + d(1− 2P (A))

and combining these two expressions we see that Equation 1 implies

PE(A1) + . . .+ PE(An) > PE(A)

with the value of this expression rising as n increases, just as required.
Recall also that for mutually exclusive and complete events people’s proba-

bility estimates show the pattern

PE(A1) + . . .+ PE(An) > 1

except for n = 2 when
PE(A1) + +PE(A2) = 1

Since for mutually exclusive and complete events we have P (A) = 1, from Equa-
tion 5 in this situation we get

PE(A1) + . . .+ PE(An) = 1 + d(n− 2)

and so PE(A1) + . . . + PE(An) > 1 holds except when n = 2 in which case
equality holds, just as in people’s probaility estimates.

5.1 Explaining Conjunction and Disjunction Errors

The previous two biases concerned the average of people’s probability estimates.
The conjunction and disjunction errors concern differences between ‘samples’
from people’s probability estimates. Let A1 and A2 be any two events ordered
by increasing probability so that P (A1) and P (A2). For a reasoner following the
rules of probability theory we have

PE(A1 ∧ A2) = PE(A2)× PE(A1|A2)

and so that reasoner’s estimate of P (A1 ∧ A2) at some time is equal to the
product of their estimate for P (A2) at that time and their estimate for the
conditional probability P (A1|A2) at that time. Since the reasoner is subject
to random variation, these estimates PE(A2) and PE(A1|A2) may have some
random (positive or negative) difference from the means PE(A2) and PE(A1|A2),
and so the equation for conjunction can be rewritten as

PE(A1 ∧ A2) = (PE(A2) + dA2)× (PE(A1|A2) + dA1|A2
) (3)

where dA2 and dA1|A2
represent these (positive or negative) deviations from the

means. If we assume that A1 is the less-probable constituent of the conjunction,
the conjunction error will occur when

PE(A1) + dA1 < PE(A1 ∧ A2)

PE(A1) + dA1 < (PE(A2) + dA2)× (PE(A1|A2) + dA1|A2
)

(4)
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(that is, when the probability of the conjunction from Equation 3 is greater than
the probability of its least probable constituent A1). Equation 4 is most likely
to be true when PE(A1) is low and PE(A2) and PE(A1|A2) are high (because in
that situation the left side of Equation 4 is most likely to be low and the right
side to be high). We thus expect the conjunction error to be most frequent when
PE(A1) is low and PE(A2) and PE(A1|A2) are both high. This is just the pattern
seen when the conjunction error occurs in people’s probability estimates.

We can give a similar account of the disjunction error. The probability theory
equation for the disjunction P (A1 ∨ A2) is

P (A1 ∨ A2) = P (A2) + P (A1)− P (A1 ∧A2)

Just as above this disjunction can be expressed as

PE(A1 ∨ A2) = (PE(A2) + dA2) + (PE(A1) + dA1)− PE(A1 ∧ A2)

The disjunction error occurs whenever this disjunctive probability PE(A1 ∨A2)
is less than its greater constituent probability; that is, whenever

PE(A1 ∨ A2) < (PE(A2) + dA2)

(PE(A2) + dA2) + (PE(A1) + dA1)− PE(A1 ∧A2) < (PE(A2) + dA2)
(5)

is true. Cancelling common terms and rearranging transforms Equation 5 to

PE(A1) + dA1 < PE(A1 ∧ A2) (6)

Whenever the inequality in Equation 6 is true, the disjunction error will occur.
Equation 6 is identical to Equation 4, which predicts the occurrence of the
conjunction error. In other words, Equation 6 predicts that the occurrence of
the disjunction error for a given set of items should follow the occurrence of the
conjunction error. Again, this is just the pattern seen when the disjunction error
occurs in people’s probability estimates.

6 Dealing with Noise in AI Reasoning Systems

Many current approaches to reasoning under uncertainty take as their start-
ing point the standard theory of probability; that is, the theory describing the
probability of occurrence of repeatable events. These ‘Bayesian’ approaches to
AI apply probability theory in many different areas such as learning, deduction,
inference, decision-making, and so on; see Pearl’s 1988 book [6], which in some
ways founded this line of research (and currently has over 16, 000 citations). It
is clear from Pearl’s work that probability theory provides normatively correct
rules which an AI system must use to reason optimally about uncertain events.
It is equally clear that AI systems (like all other physical systems) are unavoid-
ably subject to a certain degree of random variation and noise in their internal
workings. As we have seen, this random variation does not produce a pattern of
reasoning in which probability estimates vary randomly around the correct value;
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instead,it produces systematic biases that push probability estimates in certain
directions and so will produce conservatism, subadditivity, and the conjunction
and disjunction errors in AI reasoning.

How can we minimise these biases? We can minimise noise in hardware and
software; perhaps more importantly, we can design our AI reasoning systems to
take account of internal noise.

6.1 Minimising Noise

The previous discussions assumed a single simple form of random variation: an
instantaneous random variation which at some particular time, caused some bit
in memory to be read incorrectly. In chip design this type ‘soft error’ can oc-
cur due to changes in data being stored in memory or to changes in data being
transferred during processing. This type of noise can be produced by cosmic ray
impact, by particle decay in the hardware environment, or by random thermo-
dynamic fluctuation. Logic circuits with higher capacitance and logic voltages
are less likely to suffer such errors. Unfortunately, such “radiation hardened”
designs result in a slower logic gate and a higher power dissipation. Reduction
in chip size and voltage, desirable for many reasons, increase the soft error rate.
The literature suggests that currently these errors occur at a rate of 1 error per
Gbyte per day [5].

As well as using hardened chip design to minimise errors due to noise, de-
signers can make use of error-correcting codes to recover from soft errors. These
codes involve adding additional redundant information to data, allowing recon-
struction in the event of random error. In general, the reconstructed data is
the most likely original data: perfect reconstruction is not guaranteed. Just as
with radiation hardened designs, these error correcting codes impose a signifi-
cant processing cost in terms of time and chip area. Further, these codes cannot
eliminate all error: there is an upper bound (the Shannon limit) on the amount
of error these codes can remove from data[4].

6.2 Probabilities for Noisy Reasoners

Designing systems to minimise noise is costly, both in computational time and
computational power. A better approach may be to design probabilistic reason-
ing systems to include an expectation of random error. To do this we can use
the equations described previously, but with corrective estimates of the amount
of random variation to which the reasoner is suceptible. Suppose the reasoner
is suceptible to a known rate of noise d: that is, the reasoner knows that in the
long run every X bits read from memory will contain dX bits whose read value
is incorrect. For event A define a corrected probability estimate PC(A) as

PC(A) =
C(A)

n(1− 2d)
− d

1− 2d
=

PE(A)− d

1− 2d
(7)

On average computed probability estimates PE(A) will tend to their mean, given
by

PE(A) = d+ (1− 2d)P (A)
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(see Equation 2), and so corrected probability estimates will tend to

PC(A) =
PE(A)− d

1− 2d

or substituting

PC(A) =
d+ (1− 2d)P (A)− d

1− 2d
= P (A)

and we see that a reasoner that computes its estimate of P (A) as in Equation
7 will in the long run compute estimates that are equal to the true probability
of A. Such a reasoner will not suffer from the conservatism and subadditivity
biases described earlier. Note, however, that values of PC(A) will still vary ran-
domly around their mean, and so will still produce conjunction and disjunction
errors due to that variation. Discovering ways of eliminating these errors in noisy
reasoners is an aim for future work.
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Abstract. In order to grasp the entire complexity of the human nervous system, 
one needs to understand its physical substrate. Down to which level should a 
whole brain emulation keep all the structural details of the brain in order to 
achieve all of the functions of the biological brain? While a computer program 
could easily be emulated in order to achieve the same specified function, the 
human brain is a special case because of its enormously complex functions. For 
this reason, causal relations between brain structure and function are currently 
being made in neuroscience.  Neuroscientific research is in this sense support-
ing WBE and therefore AGI, by providing important data, models and simula-
tions of brain functions. The goals of this paper are to review the challenges for 
gathering and assembling connectome data and to provide   directions for 
overcoming these challenges. Finally, the implications for AGI will be dis-
cussed. 

Keywords: Whole Brain Emulation, Artificial General Intelligence, challenges, 
connectome data. 

For an overview on the different types of information neuroscience has to offer and 
the methods used to obtain this information, as well as the most recent models and 
simulations, please see Deca, IJMC 20121. 

The data acquisition tools in neuroscience can be split roughly into imaging and 
electrical recording tools. Imaging tools provide images or movies showing what the 
brain does in different circumstances and make use of different chemicals in order to 
get a general idea of the electrical activity, while recording tools are used for quanti-
fying the connection between electrical activity at different scales in the brain (rang-
ing from single cells to entire brain areas to the whole brain) sometimes in connection 
to a stimulus in order to understand what the brain does when it perceives or does 
something. These two types of methods have very often been used in conjunction 
with each other in order to understand the connection between electrical and chemical 
changes in the brain.  

A special feature of neuroscientific research is its extremely fast pace in that the 
problems it may point out to in 2011 might be solved by 2012, leading to further 
questions that would need to be answered in 2013 and so forth. Its rapid growth and 
indirect support of WBE and indirectly of AGI make it their main engine. 
                                                           
1  Deca, D. Available Tools for Whole Brain Emulation.IJMC, Volume: 4, Issue: 1(2012)  

pp. 67-86, DOI: 10.1142/S1793843012400045 
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Fig. 1. The growth of the number of neuroscientific publications per year. The data were ob-
tained by indexing the medical database2,3.  

A fundamental issue for neuroscience and for reverse engineering the brain is the 
connection between structure and function. The current methods only allow us to 
make some potential correlations at different levels in time and space. However, a 
complete mapping of function to structure of the human brain is lacking at the mo-
ment. One of the main issues in this sense is the complexity of the brain structure, but 
most importantly the complexity of its functions, since a function would need both an 
agent and an environment to work in. Therefore understanding this function in con-
nection with the structure requires not only observations about the brain, but also 
about the physical world in which it acts in. This task gets also a bit reflexive, since 
we are using our object of study in order to study it (the brain), and we are hoping to 
understand the object of study in full by looking at it with itself.   

At the moment, this connection between structure and function is more poorly un-
derstood than in any other organ in the human body as Lichtman et al.4 point out. One 
of the main reasons for this might be the fact that the brain controls the rest of the 
organs and triggers all other processes in the body. The human brain uses around 20 
percent of the energy used by the entire body. Most of the energy used by the brain, in 
the form of ATP (adenosine triphosphate) is required for maintaining the chemical 
concentrations inside the neurons which would allow for electrical activity.  
                                                           
2 http://www.ncbi.nlm.nih.gov/pubmed/ 
3  Corlan,A.D., Medline trend: automated yearly statistics of PubMed results for any query, 

2004. Web resource at URL: http://dan.corlan.net/medline-trend.html. 
The full trend can be viewed here (http://dan.corlan.net/cgi-bin/ 
medline-trend?Q=neuro) 

4  Lichtman, J. W., Denk, W. The Big and the Small: Challenges of Imaging the Brain’s Cir-cuits. 
Science 4 November 2011: Vol. 334 no. 6056 pp. 618-623 DOI: 10.1126/science.1209168.  
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The electrical activity sustains all of the brain functions we have. What is interesting 
and indeed a challenge for WBE is the fact that these electrochemical gradients are 
changing in response to the environment, leading to the neurons firing in response to 
different environmental cues, and to plasticity and thereby learning. 

As an outline of the challenges for gathering connectome data in the neurosciences, 
I will make use of a paper written by J.Lichtman and W.Denk written in November 
2011. While addressing the issues mentioned by them, I will also refer to another 
paper5 providing  another solution to the similar challenges they mention called the 
Brain Activity Map. 

 
1) Immense diversity of cell types in the brain. The nervous system of the C 

elegans worm is composed of around 300 hundred neurons (compared to 86 
billion in the human brain), yet each cell in its nervous system has a unique 
structure and function. This would translate into around 86 billion computa-
tional units, with structures which are almost unknown and unique at the fine 
level.  One way around this is to find some common categories, and gradually 
add the different subtypes. A lot of these neuron types have been described, 
and genetic tools for selective manipulation have been created. 6 The Brain-
bow technique has also allowed selective labeling of different neuron types7. 
The current tools for genetic manipulation, selective labeling and in vivo ma-
nipulation8,9,10 are giving rise to a large number of projects aimed at correlat-
ing the structure of different neurons to their structure. The hope in this sense 
is to be able to understand their function both in terms of connectivity at the 
population level as well as at higher resolution in both time and space, in terms 
of functions of their particular dendritic and axonal segments. This is work in 
progress, however it is expected that the end result will lead to a number of 
categories (an already well established category is inhibitory vs. excitatory 
neurons, based on whether they activate or inactivate nearby neurons, place 
cells, orientation cells, etc.)  

 

                                                           
5  Alivisatos,P., Chun, M., Church,G.M., Greenspan,R.J., Roukes,M.L., Yuste, R. The Brain 

Activity Map Project and the Challenge of Functional Connectomics. Neuron, Vol 74, Issue 
6, 970-974, 21 June 2012. doi:10.1016/j.neuron.2012.06.006.  

6  Rogan,S.C., Roth,B.L. Remote Control of Neuronal Signaling. Pharmacological Reviews 
June 2011 vol. 63 no. 2 291-315 doi: 10.1124/pr.110.003020.  

7  Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes,J.R.,. Licht-
man, J.W. Transgenic strategies for combinatorial expression of fluorescent proteins in the 
nervous system . Nature 450, 56-62 (1 November 2007) | doi:10.1038/nature06293.  

8  Kodandaramaiah, S.B., Franzesi, G.T., Chow, B.Y., Boyden, E.S., Forest, C.R. Automated 
whole-cell patch-clamp electrophysiology of neurons in vivo. Nature Methods 9, 585–587 
(2012) doi:10.1038/nmeth.1993.  

9 Knöpfel,T., Lin,M.Z., Levskaya,A., Tian,L., Lin,J.L., Boyden,E.S. Toward the Second Gen-
eration of Optogenetic Tools. The Journal of Neuroscience, 10 November 2010, 30(45): 
14998-15004; doi: 10.1523/JNEUROSCI.4190-10.2010.  

10  Hirase H, Nikolenko V, Yuste R. Multiphoton stimulation of neurons and spines. Cold 
Spring Harb Protoc. 2012 Apr 1;2012(4):472-5. doi: 10.1101/pdb.prot068569. 
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2) Imaging electrical and chemical activity. One of the challenges for neuros-
cientists has been to couple the chemical activity with electrical activity at dif-
ferent levels. In principle they should be the same (in the sense that there is a 
direct causal connection between the two); however explaining this causal 
connection in detail required the development of some new tools. One of them 
was a type of microscopy which allows for long term imaging inside the brain 
of a living animal, providing the chance of measuring enough photons that can 
be associated with the electrical activity of neurons. This method is now rou-
tinely used in many labs, and is called two photon microscopy.11 Two photon 
microscopy is based on the principle of bringing a lot of photons (in the form 
of laser light) into a very small brain area for a short period of time. This leads 
to two photon excitation and allows for very fine measurements of changes in 
fluorescence. This, in combination with calcium indicators, has allowed for the 
direct quantification of calcium concentrations within neurons as a direct func-
tion of changes in membrane potential, both of which account for activity.12 
One of the main limitations with two photon imaging however is the limited 
penetration depth (up to max 1 mm in the mouse brain). The human cortex is 
known to be thicker therefore it is not known whether scientists would be able 
to record activity from  neurons in the human brain with the available tech-
niques without having to remove parts of the brain. The takeout message here 
is that the correlation between electrical and chemical activity in the brain is 
now clear both theoretically and experimentally and that there is no reason to 
believe that the most fundamental principles of physics and chemistry would 
not hold in the human brain as well.  

 

3) Neurons extend over vast volumes. Since Cajal showed how neurons are 
connected, many people in the field have related the issue of connectivity to 
that of function. The dendritic tree of a neuron (which receives many inputs 
from other neurons) can span from one brain hemisphere to another (therefore 
more than one meter), which is an enormous distance when compared to the 
diameter of its nucleus or soma (max. 18 micrometers.) This is a large volume, 
which needs to be described at very high resolution in vivo. In microscopy, the 
general tradeoff is made between resolution and volume: higher resolution 
usually entails smaller volume and the other way around. However, this tra-
deoff in the neurosciences generates competition in the microscopy market, 
which is then aiming at combining both in the best way possible. A possible 
way around this is the automation of these recordings, enabling the extraction 
of very large amounts of high resolution data which can then be put together 
into one large whole13 .  

 

                                                           
11  Denk, W., Strickler, J.W., Webb, W.W. Two-photon laser scanning fluorescence micros-

copy. Science 6 April 1990: Vol. 248 no. 4951 pp. 73-76 DOI: 10.1126/science.2321027. 
12  Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012 Mar 8;73(5):862-85. 

Review. 
13  http://www.neuro.mpg.de/english/emeritus/columninsilico 
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4) Need for Dense or Saturated Reconstruction. Indeed, most of today’s image 
of neuronal circuitry is based on Cajals drawings, which are still at the border 
between science and art. The evolution of imaging techniques has allowed for 
some mapping of this circuitry, but no large scale movies correlating the func-
tion and structure are yet available. For now, only a small muscle that moves 
in the mouse ear is one of the few parts of the nervous system were the circui-
try has been mapped completely 14. Some other projects include the in silico 
cortical column and numerous other projects within the connectome consor-
tium.  It is expected that the appropriate areas for complete circuitry mapping 
are some of the most fundamental and old ones, such as the visual or auditory 
cortex, where there is less variability between species and individuals even at 
the finer level. One promising method for tracking connectivity is the  
rabies virus, which spreads from one neuron only to the neuron it  
communicates with and making them fluorescent 15 (add reference 
http://jap.physiology.org/content/106/1/138.full). Another way of tracking 
connectivity is to label the different circuits with different colors, for example 
with the Brainbow method.  However, one of the main problems with tracking 
connectivity is the slow human analysis partially due to the small number of 
computer scientists with enough knowledge of neurobiology who can optimize 
the analysis methods. Resolving one cubic millimeter of brain tissue in terms 
of neural connection would take, given the current method, months or even 
years of imaging and even more time for analysis.  With this in mind, the re-
search community is getting reorganized in order to overcome this problem 
(eg. the numbers of undergraduate students doing such tedious work for free is 
growing exponentially) and in parallel different methods are being tested, such 
as the tape to sem. Furthermore, different computational models for artificial 
neural networks are emerging and their connectivity rules are constantly being 
update in the light of new data on the neurophysiological processes behind 
functional neural rewiring. However, as Alivisatos et al16 estimate, 7 x 10(6) 
mouse brain cells would need around 5 x 10(16) bytes, which is less than the 
global genome data. They envision that, just like the analysis of the genome 
gave rise to the field of Genomics, another field called Connectomics should 
emerge as a result to such analysis, which has proven to be a correct  
intuition.17,18 

Finally, the main issue in making a universal model for how neurons rewire in order 
to achieve a specific function within a specific context is the fact that this will depend 
a lot on the specific context, therefore at the fine level every instantiation of this  

                                                           
14  Lu, J.,Tapia,J.C., White,O.L., Lichtman,J.W. The Interscutularis Muscle Connectome PLoS 

Biol. 7, e1000032 (2009). 
15  Lois, J.H., Rice,C.D., Yates, B.J. . Neural circuits controlling diaphragm function in the cat 

revealed by transneuronal tracing Journal of Applied PhysiologyJanuary 2009 vol. 106 no. 1 
138-152doi: 10.1152/japplphysiol.91125.2008.  

16  Idem 5.  
17  http://hebb.mit.edu/courses/connectomics/ 
18  http://en.wikipedia.org/wiki/Connectomics 
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connectivity will differ from all the other ones. The main task here is to generate the 
main categories for such branching, and deciding at which level to stop but still 
achieve the connectome (the synaptic level is already generating very different instan-
tiations , even in the worm brain). The good part is that there must be general rules 
that the neurons follow in order to achieve this, therefore the more physiological data 
the next aritificial neural network will be based on, the closer these networks will be 
to the real brain and the more functions it will be able to have. A good analogy in this 
sense is the game of chess. A good way of learning about chess is to watch a chess 
game, understanding the basic rules and then playing based on these rules. If a player 
has a good mind and some understanding of the basic rules, then it will invariably get 
better and better at chess by experiencing different instantiations of it. 

Alivisatos et al19 propose a new way of gathering and analyzing connectome data 
in the form of BAP (the Brain Activity Map Project). They employ the philosophical 
stance of emergentism20 (that is, the neural circuit function is emergent from complex 
interactions among constitutent parts). In order to understand these emerging proper-
ties of neural circuitry, they propose to record every single action potential from every 
neuron within a given circuit. For now, calcium imaging could provide a useful tool 
but as they suggest, it can only approximate the electrical activity. Therefore a better 
alternative for this would be voltage imaging21, however this technique does not allow 
for large-scale high resolution recordings. They believe that this is a feasible goal 
which can accomplished by means of large scale electrical recordings with nano-
probes, which would now allow researchers to record electrical activity at dozens of 
sites per silicon neural probe22 . One limitation with this sense might be the fact that 
these probes would not be able to record subthreshold activity in the neuron, and how 
different inputs in the neuron contribute to the activity recorded as a whole. Ideally, 
one would have a method that can reveal electrical activity in each neuron up to the 
level of dendritic spines23 .  

1 How the Current State of Neuroscientific Research Affects 
the Connectome, the WBE and AGI 

The goal of this paper was to review the main problems for WBE that neuroscience is 
currently dealing with. I will briefly outline the three main issues and mention their 
respective solutions.  
 

                                                           
19  Idem 5 
20  http://en.wikipedia.org/wiki/Emergentism 
21  Peterka DS, Takahashi H, Yuste R. Voltage Imaging in Neurons. Neuron 2011 Jan 

13;69(1):9-21.  
22  Du,J. et al 2009 J. Micromech. Microeng. 19 075008 doi:10.1088/0960-1317/19/7/075008.  
23  Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A. Functional mapping of single 

spines in cortical neurons in vivo. Nature. 2011 Jun 26;475(7357):501-5. doi: 
10.1038/nature10193. 
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The Problems are: 

Immense Diversity of Cell Types. Solution: Categories are being made in the light 
of new data. Meanwhile, new methods are being made for faster data acquisition and 
analysis.  

Imaging Electrical and Chemical Activity. Solution: combining methods- imaging 
can be made with Ca indicators, which is directly correlated with electrical activity. 
Alternatively, voltage imaging can be used, as well as large-scale electrical recording 
with nanoprobes. 

Neurons Extend over Vast Volumes, So a Large Volume Has to Be Analyzed at 
Very High Scale. So how to get very high resolution imaging data from such large 
volumes? The pace of imaging developments is also growing very fast, such examples 
are the STED and the 2P, and a lot of very high tech variants of electron microscopy. 
In parallel, novel methods for recording electrical activity directly from many sites are 
being developed and tested. 

The timeframe for overcoming the different drawbacks for WBE depend a  lot on 
the funding, but not only. There are physical limitations in terms of imaging (eg. How 
deep the 2P laser can go into different tissues, what electron microscopy can show, 
photodamage due to light into cortical tissue).  As Alivisatos et al point out, record-
ing electrical activity from all neurons within a given circuit requires increasing the 
number of imaged neurons as well as the depth of the imaged tissue. Some of the 
techniques that they mention include: more powerful sources for two photon excita-
tion without damaging living cortical tissue, faster scanning strategies, developing 
better microscope objectives with larger fields of view, better scattering corrections in 
microscopes as well as better 3D reconstruction techniques. It would appear from this 
that it is vital that the in vivo projects grow exponentially, in order for scientists to get 
a better idea of the connection between function and structure. There is already an 
important tendency towards that in neuroscience, given simply by the fact that the in 
vivo situation is now possible to achieve experimentally, and implies less assumptions 
about the physiological process itself. Therefore in vivo experiments in neuroscience 
are considered to be more reliable and have a higher chance of getting serious atten-
tion. As such, there is also a bigger chance for in vivo projects and labs to get funded. 
As these projects get funded, breakthroughs in the data acquisition tools are more and 
more strongly supported.   

Given that problem no. 2 is already more or less solved, in the sense that the ga-
thering of electrophysiological and imaging data is obtained simultaneously routinely 
in many labs, we are then left with problem no. 3, which would appear to be concep-
tual (how to bind structure and function within an entire neuron whose dendritic tree 
extends over such vast volumes?).  

However, the structure/function issue within the neuron can also be solved with the 
aid of new methods already mentioned (STED, ATLUM, 2P, silicon probes, optoge-
netics, automated patch clamp). Their development will inevitably lead to the com-
plete mapping of the neurome in different contexts. The neurome will then serve as 
the main computational unit for the connectome, which can then be built in silico.  
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Fig. 2.  

2 Implications for AGI 

Neuroscientific research is inevitably gathering connectome data.  Connectome data 
is currently being modeled by neuroscientists with the end goal of achieving a com-
plete connectome. A full connectome can then be easily rebuilt in silico once all the 
information is made available, and this will constitute a whole brain emulation.  A 
whole brain emulation that is able to perform computations in manner which is simi-
lar enough to the human brain is a form of artificial general intelligence. This paper 
has aimed at providing an important update on the current state of what will become a 
main branch of AGI, namely connectome data acquisition, modeling and simulation. 
Speculations about the potential directions that this field will take are beyond the 
scope of this paper. However, based on the development of neuroscience so far, it is 
suggested that there is competitive pressure for achieving the AGI in the form of the 
Connectome simulation. From the point of view of a neuroscientist, the reason for this 
pressure is not achieving AGI in particular, but rather advancing the understanding of 
the brain in the most rigorous way possible.  
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Logical Prior Probability

Abram Demski�
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Abstract. A Bayesian prior over first-order theories is defined. It is
shown that the prior can be approximated, and the relationship to pre-
viously studied priors is examined.

1 Introduction and Motivation

The purpose of this paper is to present a prior over theories in first-order logic,
similar in nature to the priors of algorithmic probability. There are several pos-
sible motivations for such a prior. First, it is hoped that the study of priors over
logics will be useful to the study of realistic reasoning. Probabilistic reasoning
over logic gives us a structure of inference which is not as evident in non-logical
universal priors. Second, logical theories may be easier to examine than other
possible knowledge representations, motivating the learning of logical theories as
a goal in itself (independent of prediction accuracy and other concerns). In this
case, a theory of universal learning via logical theories may be useful. Third, the
logical prior presented here may give some benefits even if the only consideration
is prediction accuracy.

The primary idea is that of the random theory. By building up first-order
theories one random sentence at a time, a probability that a particular sentence
becomes true can be defined.

One way of motivating the approach is to consider what would happen if we
attempted to apply the universal semidistribution M to beliefs in predicate cal-
culus. (I will rely on some concepts which are explained more fully in section 2.)
M is a prior over bit-sequences. We can encode our beliefs about propositions
as beliefs about sequences, by giving each sentence a number n (as is done in
Gödel numbering, [1]), and using the bit at position n to represent the truth or
falsehood of that sequence. Suppose we have an observation set, Σ, of sentences
which we’ve accepted as true. We would like to know how to assign probabil-
ity to the other sentences. The obvious approach is to update M on the bits
representing Σ. Two main problems arise:

– Consistency & Completeness. M does not know that the bits represent log-
ical sentences, so it will not assign probability based on the logical conse-
quences of Σ. For example, for each A ∈ Σ, some probability will still be
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Research. Statements and opinions expressed do not necessarily reflect the position
or the policy of the United States Government, and no official endorsement should
be inferred.

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 50–59, 2012.
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assigned to the negation of A. We would like to assign probability 1 to the
consequences of Σ, and probability 0 to things inconsistent with Σ.

– Non-sequential enumeration. M is a mixture distribution composed of pro-
grams which output the bits of the sequentially. Σ will have recursively
enumerable consequences, but due to the undecidability of the consequence
relation, it will not be possible in general to enumerate these consequences
in linear order.

The second problem is more subtle than the first, but follows from it: if a dis-
tribution got the logical consequences right, then it would be enumerating them
properly. The point is seperated out because it is an interesting divergence form
M. To illustrate this issue, suppose that we want to define M′ which is a mixture
distribution over arbitrary computable enumerations of bits, rather than only se-
quential enumerations. We understand the programs as printing a sequence of
(location, bit) pairs, and take each pair to set the bit of the sequence at the
given location.

To make M′ well-defined, we need to decide what to do when conflicting pairs
are given by a program. A program may print the pair (40,1) and later print
(40,0). What contribution should the program make to the probability of that
bit?

Three options are:

M′
1: The earliest pair for a given location is used.

M′
2: The program is thrown out when it produces conflicting pairs. It no longer
contributes anything to the distribution.

M′
3: The latest pair for a location is used. If the program keeps printing con-
flicting bits for a location forever, it is not considered to contribute any prob-
ability for the distribution of that location (just as if it had never printed
any pair for that location).

The resulting priors are arranged in order of expressive power. M′
2 contains any

model which M′
1 does, since we can wrap an M′

1 program in an output-checker
which keeps the program from printing any pair for a previously-set location. M′

3

subsumes M′
2, since we can replicate the behavior of “throwing out” a program

by printing conflicting pairs for all locations forever. Also, M′
1 subsumes M,

since we can deal with locations in sequential order.
Thus, we can establish M ≤ M′

1 ≤ M′
2 ≤ M′

3 (where ≤ indicates multiplica-
tive dominance, to be defined) without too much trouble. It seems reasonable to
further conjecture M < M′

1 < M′
2 < M′

3.
M′

3 is related to generalized Kologorov complexity as discussed in [6], which
shows that such a distribution cannot be approximated. As such, it is not clear
how useful it might be to the study of intelligence.

Since consistency & completeness have not yet been dealt with, these distribu-
tions are better thought of as alternative sequence prediction priors, rather than
trying to interpret them as distributions over logical theories by the previously-
mentioned numbering.

Enforcing both consistency and completeness will result in logical priors which
look similar to the one to be described: a process generating random sentences
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is constrained in such a way as to guarantee that the results make sense in terms
of the logic.

2 Selected Background and Notation
2.1 First-Order Logic

We will be using first-order logic, defining the language L of first-order sentences
as follows:

– There is an infinite stock of variable symbols, v1, v2, ... ∈ V , an infinite stock
of predicate symbols, p1, p2, ... ∈ P , and an infinite stock of function symbols,
f1, f2, ... ∈ F .

– The number of arguments fed to a predicate or function is referred to as
its arity. For example, a predicate of arity 2 is typically referred to as a
relation. A function of arity 0 is referred to as a constant, and a predicate of
arity 0 is a proposition. For simplicity, the arity of a symbol will be inferred
from its use here, rather than set ahead of time. If the same symbol is used
with multiple arities, the uses are independent (so f2 would notate distinct
functions in f2(v1) versus f2(v1, v2)).

– An expression is a composition of function symbols and variable symbols, for
example f1(f1(v1)). Specifically, the set of expressions E are defined induc-
tively by: V ⊂ E , and for every function fn ∈ F of arity a and expressions
e1,e2,..., ea ∈ E , we have fn(e1, e2, ...ea) ∈ E .

– For e1, e2 ∈ E , e1 = e2 is in L; this represents equality.
– For pn ∈ P of arity a and e1,e2,..., ea ∈ E , we have pn(e1,e2,..., ea) ∈ L.
– For A, B ∈ L, we have (A ∧ B) ∈ L and (A ∨ B) ∈ L; these represent

conjunction and disjunction, respectively. (Parentheses will be omitted in
this document when the intended grouping is clear.)

– For S ∈ L, we have ¬(S) ∈ L. This represents negation. (Again, parentheses
may be omitted.)

– For any S ∈ L and vn ∈ V , we have ∀vn.(S) ∈ L and ∃vn.(S) ∈ L,
representing universal and existential quantification. (Parentheses may be
ommited.)

If sentence A logically implies sentence B (meaning, B is true in any situation
in which A is true), then we write A � B. The notation also applies to multiple
premises; if A and B together imply C, we can write A, B � C. Uppercase greek
letters will also be used to denote sets of sentences. We can write A � B to say
that A does not logically imply B.

If A implies B according to the inference rules (meaning, we can derive B
starting with the assumption A), we write A 	 B. This notation applies to
multiple premises as well, and can be denied as �.

The inference rules will not be reviewed here, but some basic results will be
important. These results can be found in many textbooks, but in particular, [1]
has material on everything mentioned here.
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Soundness. For a sentence S and a set of sentences Γ , if Γ 	 S, then Γ � S.
That is, the inference rules will never derive something that doesn’t logically
follow from a set of premises.
Completeness. For a sentence S and a set of sentences Γ , if Γ � S, then Γ 	 S.
That is, the inference rules can derive anything which logically follows from a
set of premises.

Since the rules for 	 can be followed by a computer, this shows that 	 is
computably enumerable: a (non-halting) program can enumerate all the true
instances of Γ 	 S.
Undecidability. For a given Γ and S, no general procedure exists which can
decide whether Γ 	 S or Γ � S. Completeness implies that we can know Γ 	 S
if it is true; however, if it is not, there is no general way to determine Γ � S.
Encoding computations. Any computable function can be encoded in first-order
logic. This can be done, for example, by providing axioms related to the behavior
of Turing machines.

2.2 Algorithmic Information Theory

B denotes the binary alphabet, {0, 1}; Bn denotes the set of binary strings of
length n; B∗ denotes the set of binary strings of any finite length; B∞ denotes
the set of binary strings of infinite length; and SB = B∗ ∪ B∞ denotes the set
of finite and infinite binary strings. String concatenation will be represented by
adjacency, so ab is the concatenation of a and b.

Consider a class C1 of Turing machines with three or more tapes: an input
tape, one or more work tapes, and an output tape. The input and output tape
are both able to move in just one direction. Any Turing machine T ∈ C1 defines
a partial function fT from B∞ to SB: for input i ∈ B∞, fT (i) is considered to be
the string which T writes to the output tape, which may be infinite if T never
stops writing output. Now consider a universal machine from this class; that is,
a machine U ∈ C1 such that for any other machine T ∈ C1, there is a finite
sequence of bits s ∈ B∗ which we can place on U ’s input tape to get it to behave
exactly like T ; that is, fU (si) = fT (i) for all i.

A distribution M over SB can be defined by feeding random bits to U ; that
is, we take fU (i) for uniformly random i ∈ B∞.1

The development here has been adapted from [5].
Now, how do we compare two distributions?
P1 multiplicatively dominates P2 iff there exists α > 0 such that P1(x) >

αP2(x) for any x. An intuitive way of understanding this is that P1 needs at most
a constant amount more evidence to reach the same conclusion as P2.2 Strict
1 M is not actually a probability distribution, but rather, a semimeasure. The

Solomonoff distribution is a probability distribution defined from M: we apply the
Solomonoff normalization to M, which gives a distribution over B∞. The details of
normalization will not be given here.

2 This is true if we measure evidence by the log of the likelihood ratio. P1(x|e) =
P1(x)P1(e|x)/P1(e), so multiplicative dominance indicates thatP1(e|x)/P1(e) doesn’t
have to get too extreme to bridge the distance between P1 and P2.
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multiplicative dominance means that P1 multiplicatively dominates P2, but the
reverse is not the case. This indicates that P1 needs at most a constant amount
more evidence to reach the same conclusion as P2, but we can find examples
where P2 needs arbitrarily more evidence than P1 to come to the conclusion P1

reaches.
The main reason M is interesting is that it is multiplicatively dominant over

any computable probability distribution for sequence prediction. This makes it
a highly general tool.

P1 exponentially dominates P2 iff there exists α, β > 0 such that P1(x) >
αP2(x)β . This intuitively means that P1 needs at most some constant multiple
of the amount of evidence which P2 needs to reach a specific conclusion. Strict
exponential dominance again indicates that the reverse is not the case, which
means that P2 needs more than multiplicatively more evidence to reach some
conclusions that P1 can reach.

We can also define (multiplicative or exponential) equivalence: two distribu-
tions are considered equivalent when they mutually dominate each other.

3 A Notion of Logical Probabilities

3.1 Requirements

I will follow [7] in the development of the idea of a probability distribution
over a language, since this provides a particularly clear idea of what it means
for a continuous-valued belief function to fit with a logic. I shall say that the
distribution respects the logic. The approach is to define probability as a function
on sentences in a language, rather than by the more common σ-algebra approach,
and require the probabilities to follow several constraints based on the logic. Since
we are using classical logic, I will simplify their constraints for that case.

Let L be the language of first-order logic from section 2. We want a probability
function P : L → R to obey the following rules:

(P0) P (A) = 0 if A is refutable.
(P1) P (A) = 1 if A is provable.
(P2) If A logically implies B, then P (A) ≤ P (B).
(P3) P (A) + P (B) = P (A ∨ B) + P (A ∧ B).

From these, we can prove other typical properties such as P (A) + P (¬A) = 1.

3.2 Definition as a Generative Process

The idea behind the prior is to consider theories as being generated by choosing
sentences at random, one after another. The probability of a particular sentence
is taken to be the probability that it occurs in a theory randomly generated in
this manner.

To be more precise, suppose we have some random process to generate indi-
vidual sentences from our language L. This generation process will be denoted
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G, and the probability that S1, S2, ..., Sn are the first n statements generated
will be written G(S1, S2, ..., Sn). G could be a highly structured process such as
the M′ distributions mentioned in section 1, but this seems unecessarily compli-
cated.3 Unless otherwise mentioned, this paper will define G based on a simple
probabilistic grammar on sentences, which generates sentences recursively by se-
lecting each syntactic element given in section 2.1 with some probability. When
selecting from the variable, predicate, or function symbols, the subscript number
must be constructed, for example by assigning 1

11 chance to each digit and 1
11

chance to terminating the digit string. We define G(S1, S2, ..., Sn) = Πn
i=1G(Si).

A theory is a set of sentences in L. To generate a random theory, we generate
a sequence of sentences S1, S2, S3, ... according to the following process. For
each Sn, use sentences from G, but discarding those which are inconsistent with
the sentences so far; that is, rejecting any candidate for Sn which would make
S1∧ ...∧Sn into a contradiction. (For S1, the set of preceding sentences is empty,
so we only need to ensure that it does not contradict itself.)

Notice that there is no stopping condition. The sequence generated will be
infinite. However, the truth or falsehood of any particular statement (or any
finite theory) will be determined after a finite amount of time. (The remaining
sentences generated will either be consequences of, or irrelevant to, the statement
in question.) Shorter (finite) theories will have a larger probability of occurring
in the sequence.

In this way, we induce a new probability distribution PL on sentences from
the one we began with, G. PL(S) is the probability that a sentence S will be
present in a sequence S1, S2, S3, ... generated from G as described. Unlike G, PL

respects the logic:

Theorem 1. PL obeys (P0)-(P3).

Proof. (P0) is satisfied easily, since the process explicitly forbids generation of
contradictions. (P1) is satisfied, because a provable statement can never contra-
dict the sentences so far, so each will eventually be generated by chance as we
continue to generate the sequence. Therefore, provable statements are generated
with probability 1. (P2) is satisfied, by a similar argument: if we have already
generated A, but A implies B, then anything which contradicts B will contradict
A, and hence never be generated. This means that B will never be ruled out,
and so must eventually be generated at random.4 Therefore the probability for
B is at least as high as that if A.

We can extend the argument a bit further to show (P3).
Since A 	 A ∨B and B 	 A ∨B, the sentence A∨B will occur in any theory

in which A or B occurs. Moreover, if A∨B occurs, then it would be inconsistent

3 If we did choose to use these, we would need to address the fact that they are only
semimeasures, not full probability distributions.

4 Notice, this means any theory generated in this manner will contain all of its logical
consequences with probability 1. This allows us to talk just about what sentences
are in the theory, when we might otherwise need to talk about the theory plus all
its logical consequences.
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for both ¬A and ¬B to occur later. As a result, either A or B will eventually
occur. So PL(A ∨ B) equals the probability that either A or B occurs.

If both A and B occur in a theory, then ¬(A ∧ B) would be contradictory,
so will not occur; therefore, A ∧ B will eventually be generated. On the other
hand, if A ∧ B occurs in a sequence, it would be inconsistent for either ¬A or
¬B to occur, so both A and B will eventually be present. PL(A ∧B) equals the
probability that both A and B occur in a sequence.

Since PL(A∨B) equals the probability that either A or B occurs, and PL(A∧
B) equals the probability that both A and B occur, we have PL(A ∨ B) =
PL(A) + PL(B) − PL(A ∨ B). This proves (P3). �

The conditional probability can be defined as usual, with PL(A|B) = PL(A ∧
B)/PL(B). We can also extend the definition of PL() to include probabilities of
sets of sentences, so that PL(Γ ) for Γ ⊂ L is the probability that all S ∈ Γ will be
present in a sequence generated by the process defined above. (By an argument
similar to the one used to prove (P3), the probability of a set of sentences will
be equal to the probability of the conjunction.)

3.3 Approximability

The generative process described so far cannot be directly implemented, since
there is no way to know for sure that a theory remains consistent as we add sen-
tences at random. However, we can asymptotically approach PL() by eliminating
inconsistent possibilities when we find them.

I assume in this section that G is such that we can sample from it. It may be
possible that some interesting choices of G result in an approximable PL without
a sampleable G.

Suppose we want to approximate PL(A). I shall call a partial sequence
S1, S2, ..., Sn a prefix. Consider the following Monte Carlo approximation:

t=1, y=1, n=1.
loop :

// Reset the p r e f i x at the beg inning o f each loop .
p r e f i x=none
// Unt i l we get A or neg (A) ,
whi l e not ( s=A or s=neg (A) ) :

// Get a random sentence .
s=generate ( )
// Append sample to the sequence so f a r .
p r e f i x=push ( s , p r e f i x )
// Spend time t l o ok ing f o r c on t r ad i c t i o n s .
c=check ( pr e f i x , t )
// I f a c on t r ad i c t i o n i s found ,
i f c :

// backtrack .
pop ( p r e f i x )

// I f the generated p r e f i x conta in s A,
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i f ( s=A) :
// increment y .
y=y+1

// Otherwise ,
e l s e :

// increment n .
n=n+1

// Increment t at the end o f each loop .
t=t+1

The variables y and n count the number of positive and negative samples, while t
provides a continually rising standard for consistency-detection on the sampled
prefixes. (I will use the term “sample” to refer to generated prefixes, rather
than individual sentences.) To that end, the function check(,) takes a prefix
and an amount of time, and spends that long trying to prove a contradiction
from the prefix. If one is found, check returns true; otherwise, false. The specific
proof-search technique is of little consequence here, but it is necessary that it is
exhaustive (it will eventually find a proof if one exists). The function neg() takes
the negation; so, we are waiting for either A or ¬A to occur in each sample.
The prefix is represented as a FILO queue. push() adds a sentence to the given
prefix, and pop() removes the most recently added sentence.

The inner loop produces individual extensions at random, backtracking when-
ever an inconsistency is found. The loop terminates when a theory includes either
A or ¬A. The outer loop then increments y or n based on the result, increments
t, erases the prefix, and re-enters the inner loop to get another sample.

Theorem 2. y
n+y will approach PL(A).

Proof. Since every inconsistency has a finite amount of time required for detec-
tion, the probability of an undetected inconsistency will fall arbitrarily far as t
rises. The probability of consistent samples, however, does not fall. Therefore,
the counts will eventually be dominated by consistent samples.

The question reduces to whether the probability of a consistent sample con-
taining A is equal to PL(A). We can see that this is the case, since if we assume
that the generated sentences will be consistent with the sentence so far, then the
generation probabilities are exactly those of the previous section. �

3.4 Comparison

It would be interesting to know how this prior compares with the priors which
have been defined via Turing machines.

In order to compare the first-order prior with priors for sequence prediction,
we need to apply the first-order prior to sequence prediction. We can do so by
encoding bit sequences in first-order logic. For example, f1 can serve as a log-
ical constant representing the sequence to be observed and predicted; f2() can
represent adding a 0 to the beginning of some sequence; and f3() can repre-
sent adding a 1. So, to say that the sequence begins “0011...” we would write
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f1 = f2(f2(f3(f3(f4)))), where f4 is a logical constant standing for the remainder
of the sequence. The probability of a bit sequence can be taken as the probability
of a statement asserting that bit sequence. Define PLS to be the resulting prior
over bit sequences.

It seems possible to show that PLS is exponentially equivalent to M′
2 from

section 1. M′
2 will dominate PLS , because PLS can be defined by a Turing

machine which takes an infintie stream of random bits, interpretes them as first-
order sentences, and outputs all (location, bit) pairs which follow deductively
from them. Since M′

2 is constructed from a universal Turing machine, it will have
this behavior with some probability. Inconsistent theories will start outputting
inconsistent pairs, and so will not be included in M′

2. Thus we get the behavior
of PLS . On the other hand, since first-order logic can encode computations,
it seems that we can encode all the enumerations included in M′

2. However,
the encoding may not be efficient enough to get us multiplicative dominance.
Exponential dominance seems possible to establish, since the expression-length
of the representation of a bit-tape in first-order logic will be linear in the bit-
length of that tape.

Since this development is insufficiently formal, the statement remains a con-
jecture here.

4 Conclusion and Questions

One hopeful application of this prior is to human-like mathematical reasoning,
formalizing the way that humans are able to reason about mathematical conjec-
tures. The study of conjecturing in artificial intelligence has been quite success-
ful5, but it is difficult to analyse this theoretically, especially from a Bayesian
perspective.

This situation springs from the problem of logical omniscience [3]. The logical
omniscience problem has to do with the sort of uncertainty that we can have
when we are not sure what beliefs follow from our current beliefs. For example, we
might understand that the motion of an object follows some particular equation,
but be unable to calculate the exact result without pen and paper. Because
the brain has limited computational power, we must expect the object to follow
some plausible range of motion based on estimation. Standard probability theory
does not model uncertainty of this kind. A distribution which follows the laws
of probability theory will already contain all the consequences of any beliefs (it
is logically omniscient). Real implementations cannot work like that.

An agent might even have beliefs that logically contradict each other.
Mersenne believed that 267−1 is a prime number, which was proved false
in 1903, [...] Together with Mersenne’s other beliefs about multiplication
and primality, that belief logically implies that 0 = 1. [3]

Gaifman proposes a system in which probabilities are defined only with respect
to a finite subset of the statements in a language, and beliefs are required to
5 For example, AM[4] and Graffiti[2].
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be consistent only with respect to chains of deduction in which each statement
occurs in this limited set.

I will not attempt to address this problem to its fullest here, but approxima-
tions to PL such as the one in section 3.3 seem to have some good properties in
this area. If the proof of some statement X is too long for some approximation
A(t, X, Y ) to PL(X |Y ) to find given time t, then S will be treated exactly like
a statement which is not provable: it will be evaluated with respect to how well
it fits the evidence Y , given the connections which A(t, X, Y ) can find within
time t. For example, if some universal statement ∀x.S[x] can be proven from
Y , but the proof is too long to find in reasonable time, then the probability
of ∀x.S[x] will still tend to rise with the number of individual instances S[i]
which are found to be true (although this cannot be made precise without more
assumptions about the approximation process).

It is not clear how one would study this problem in the context of Solomonoff
induction. Individual “beliefs” are not easy to isolate from a model when the
model is presented as an algorithm. The problem of inconsistent beliefs does not
even arise.

I do not claim that the first-order prior is a complete solution to this prob-
lem. For example, we do not get the desirable property that as we see arbitrarily
many instances of a particular proposition, the probability of the universal gen-
eralization goes to 1. This fits with the semantics of first-order logic, but seems
to be undesirable in other cases.
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A Representation Theorem

for Decisions about Causal Models

Daniel Dewey

Future of Humanity Institute

Abstract. Given the likely large impact of artificial general intelligence,
a formal theory of intelligence is desirable. To further this research pro-
gram, we present a representation theorem governing the integration of
causal models with decision theory. This theorem puts formal bounds
on the applicability of the submodel hypothesis, a normative theory of
decision counterfactuals that has previously been argued on a priori and
practical grounds, as well as by comparison to theories of counterfactual
cognition in humans. We are able to prove four conditions under which
the submodel hypothesis holds, forcing any preference between acts to
be consistent with some utility function over causal submodels.

1 Introduction

Artificial general intelligence will likely have a large impact on the world. It is
plausible that the course of AGI research will influence the character of this
impact significantly, and therefore that researchers can take an active role in
managing the impact of AGI. For example, Arel [1] argues that reinforcement
learning is likely to cause an “adversarial” dynamic, and Goertzel [8] proposes
ways to bias AGI development towards “human-friendliness.”

A particularly large impact is predicted by I. J. Good’s intelligence explosion
theory [9,3,4], which argues that repeated self-improvement could yield super-
intelligent (and hence super-impactful) AGIs. A few recent accounts of how an
intelligence explosion could come about, what its effects could be, or how it
could be managed include Schmidhuber [17], Hutter [10], Legg [13], Goertzel [7],
Norvig [16, pp. 1037], Chalmers [3,4], Bostrom [2], Muehlhauser and Salamon
[14], and Yudkowsky [23].

With this in mind, a formal theory of intelligence is preferable to a less formal
understanding. First, though we won’t be able to prove what the final result of
an AGI’s actions will be, we may be able to prove that it is pursuing a desirable
goal, in the sense that it is Pareto-optimal, maximizes expected value, or is the
best approximation possible given space and time constraints [11]; this appears
to be the highest level of certainty available to us [24,2]. Second, we may be
able to design an AGI that has a formal understanding of its own intelligence,
which could then execute a series of provably goal-retaining self-improvements,
where an equally long series of heuristic self-modifications would carry a high
risk of “goal drift” [22]. Indeed, the theory of provably optimal self-improvement

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 60–68, 2012.
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has been under investigation for some time by Schmidhuber, under the name of
“Gödel machines” (e.g. [18]).

In searching for a formal theory of intelligence, this paper focuses on decision
theory as it applies to causal models. If an agent holds its beliefs in the form of
a causal model, is there a provably valid way that it should use that model to
make decisions?

We consider the submodel hypothesis: “If an agent holds its beliefs in the form
of a causal model, then it should use submodels as decision counterfactuals.” We
are able to show that the submodel hypothesis holds over a sharply defined set
of decision problems by proving a representation theorem: an agent’s preferences
can be represented by a utility function over submodels if and only if they are
complete, transitive, function-independent, and variable-independent.

2 Causal Models

A causal model represents events and the relationships between them as vari-
ables and functions, respectively. For each variable, a model contains up to one
function that calculates the value of that variable from the values of a set of
other variables, representing the way that event depends on other events1. This
allows a causal model to implicitly encode a joint distribution over values of the
variables in the model; if a particular set of variable values is compatible with
the functions between the variables, then it has a non-zero probability in the
joint distribution. If an agent has observed a certain joint distribution of events
in the world, it may be able in some cases to infer an underlying causal structure,
and thereafter to represent its world using a causal model. For a full exposition
of causal models and their properties, see [15].

In this paper, causal models will be written M or M ′, variables X or Y , and
values of variableX will be written x or x′ (except in concrete cases, e.g. variable
“Switch” with values “on” and “off”). If X ’s value in M is given by function f
applied to values of variables Y , this is written X = f(Y ). If X ’s value is given
by a constant function with value x, this is written X = x.

Causal models can be pictured in two complementary ways: as a set of struc-
tural equations representing the functions, or as a causal diagram, a directed
graph representing the dependencies and conditional independencies that hold
between the variables.

The canonical example of a causal model (from [15]) is shown in Figure 1.
It is a rudimentary model of the relationships between the Season, whether
Rain is falling, whether a Sprinkler is on, whether the sidewalk is Wet, and
whether the sidewalk is Slippery. In the causal diagram, an arrow from Season
to Sprinkler indicates that the season plays an unmediated role in determining
whether the sprinkler is on, though the graph does not show precisely what the
relationship is. In the set of functional equations, the second equation shows the

1 To simplify this work, error factors are left out of our account of causal models; rein-
troducing them should not interfere with our representation theorem or conclusions.
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Season

Sprinkler

Rain

Wet Slippery

Rain = (Season = winter ∨ Season = fall) ? yes : no
Sprinkler = (Season = spring ∨ Season = summer) ? on : off
Wet = (Rain = falling ∨ Sprinkler = on) ? yes : no
Slippery = Wet ? yes : no

Fig. 1.

full relationship: in spring and summer, the sprinkler is on, and otherwise, it is
off.

A submodel is a kind of causal model. Let M be a causal model, X be a
variable, and x be a value of that variable: submodel Mx is derived from M by
replacing X ’s function with the constant function X = x. Submodels may more
generally replace a whole set of variables’ functions with a set of constant func-
tions, but this generalization will not be needed here. We use one non-standard
notation: let MX=f(Y ) denote the model derived by replacing X ’s function with
f over values of Y in M .

3 The Submodel Hypothesis

The submodel hypothesis asserts that if an agent holds its beliefs in the form of
a causal model, then it ought to use submodels as decision counterfactuals. A
decision counterfactual is an agent’s predictions of what would happen if it were
to take a particular action. Thus, the submodel hypothesis can be restated as
follows: “If an agent holds its beliefs in the form of a causal model, then it ought
to predict the consequences of potential actions by replacing particular functions
in that model with constants, and then choose the action whose consequences
are most desirable.”

In [15], Pearl argues for the submodel hypothesis by demonstrating how it
avoids evidentialist decision errors, and by showing how it is formally very similar
to Lewis’ “closest world” theory of human counterfactual cognition [6]. He also
argues that agents should model their own actions as uncaused “objects of free
choice”, and that the submodel method is the natural formalization of this idea.

Yudkowsky [25] builds on this work, arguing that decisions should be treated
as abstract computations, representing them with variables that explain cor-
relations in uncertainty stemming from bounded reasoning time and ability.
Yudkowsky shows that agents who use submodels (of these kinds of models)
as decision counterfactuals outperform other agents on many difficult decision
theoretic problems, including Newcomb-like problems (where agents are simu-
lated or predicted by their environments) and Prisoner’s-dilemma-like problems
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(where certain types of coordination between agents are required to reach more
desirable equilibria). Yudkowsky also asserts in [26] that his framework “explains
why the counterfactual surgery can have the form it does”.

In this paper, we seek formal justification: what kinds of agents, in what kinds
of decision problems, must use submodels (or an equivalent procedure) as deci-
sion counterfactuals? Conversely, what do the necessary and sufficient conditions
for the submodel hypothesis tell us about its plausibility as a normative theory
of decision-making?

4 Integrating Causal Models with Decision Theory

Causal models are not a standard part of decision theory, so we begin with a
simple, naturalistic integration of causal-model-based beliefs into decision theory.

Suppose that an agent holds its beliefs in the form of a causal model M . So
that the model can guide the agent in making a choice, let some variable X in
M represent the current decision, and let the rest of the model represent the
decision’s relationships to other events.

Though values of X represent different choices, a single variable value does
not contain the beliefs the agent uses to make its decision. In order to state an
agent’s preferences, it will be convenient to bundle beliefs and choices together
into acts. Each act is a pair 〈M,x〉, where X taking value x represents the choice
of this act, so that all of the information an agent has about an act is contained
within the act itself. We can therefore define a decision problem to be a set
of acts; an agent solves a decision problem by choosing one of the acts. Since
beliefs are bundled with acts, a weak preference between acts, �, can be used
to characterize all of the agent’s decisions in all possible states of belief. We can
now state the submodel hypothesis formally:

An agent should act according to a preference over acts � that is repre-
sentable by a utility function over submodels; i.e., there should exist a U
from submodels to reals such that

〈M,x〉 � 〈M ′, y〉 ⇐⇒ U(Mx) ≥ U(M ′
y).

5 The Conditions

We have found four conditions on preferences over acts that are jointly equivalent
to representability by a utility function over submodels. The first and second can
be plausibly argued for by assuming that the agent is consequentialist; the third
and fourth are novel, and whether they are justified is still an open question.

Suppose that the agent is consequentialist: it chooses one act or another for
the sake of achieving a more desirable eventual outcome. If this is so, then
even acts that could never appear in the same decision problem, such as 〈M,x〉
and 〈M ′, y〉, should be comparable according to the desirability of the eventual
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outcomes they are expected to bring about. Consequentialism, then, implies that
an agent’s preference over acts should be complete:

(A � B) ∨ (B � A) (Completeness.)

Likewise, unless the agent’s concept of desirability has cycles (in which outcome
1 is better than 2, 2 is better than 3, and 3 is better than 1), its preference over
outcomes, and hence over acts, should be transitive:

(A � B) ∧ (B � C)⇒ (A � C) (Transitivity.)

It thus seems plausible that a consequentialist agent must have a complete and
transitive preference over acts.

The third and fourth conditions are novel, and apply specifically to agents
whose beliefs are held as causal models. Recall that each act specifies a particular
variable to represent the decision event; if the agent is naturalistic, meaning that
it represents its own decision process in the same way that it represents other
cause-effect relationships, then the decision variable’s function must represent
the agent’s decision process. Function-independence states that if two acts differ
only in the function representing the decision process, they must be equally
preferable:

〈M,x〉 ∼ 〈MX=f(Y ), x〉. (Function-independence)

The fourth condition, variable-independence, also requires certain indifferences
between acts. In particular, variable-independence applies to acts that model
the agent’s decision as uncaused, representing it as a variable with no parents.
Formally, variable-independence states that if a pair of acts share a model, and
if each act represents the agent’s decision process as a function of no inputs,
then the two acts must be equally preferable:

X = x ∧ Y = y in M ⇒ 〈M,x〉 ∼ 〈M, y〉. (Variable-independence)

We have found function-independence and variable-independence to be necessary
for the submodel hypothesis, but attempts to discover whether and how they
are generally justified have not been successful. This could be a fruitful area for
future work.

6 The Representation Theorem

We are now ready to show that the four conditions together are necessary and
sufficient for the submodel hypothesis:

Theorem 1. If and only if a preference � over acts is complete, transitive,
function-independent, and variable-independent, then � can be represented by a
utility function over submodels, i.e. there exists a U from submodels to reals such
that

〈M,x〉 � 〈M ′, y〉 ⇐⇒ U(Mx) ≥ U(M ′
y).
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Proof. First, it is easy to show that each condition is necessary. Assuming that
U represents �, � must be:

Complete: Any two real utilities are comparable with ≥, so if U is complete
and represents �, then any two acts must be comparable with �.

Transitive: Any three real utilities obey transitivity, so if U is complete and
represents �, then any three acts must be transitive under �.

Function-independent:

Mx = (MX=f(Y ))x

⇒ U(Mx) = U((MX=f(Y ))x)

⇒ 〈M,x〉 ∼ 〈MX=f(Y ), x〉.

Variable-independent:

X = x ∧ Y = y in M

⇒M = Mx = My

⇒ U(Mx) = U(My)

⇒ 〈M,x〉 ∼ 〈M, y〉.

Second, we show that the conditions are sufficient for the existence of a utility
representation over submodels; from here on, we assume that all conditions hold.
Let α be any function from submodels “back to corresponding acts”, meaning
that α(S) = 〈M,x〉 ⇒ S = Mx. The following lemmas will be useful:

Lemma 1. ∀M,x : 〈M,x〉 ∼ α(Mx).

Proof. Let 〈M ′, y〉 = α(Mx). By definition of α, Mx = M ′
y.

〈M,x〉 ∼ 〈Mx, x〉 by function-independence,

∼ 〈M ′
y, x〉 since Mx = M ′

y;

because Mx = M ′
y, we know that X = x in M ′

y, and trivially Y = y in M ′
y, and

so by variable-independence,

∼ 〈M ′
y, y〉

∼ 〈M ′, y〉 by function-independence,

∼ α(Mx),

and so 〈M,x〉 ∼ α(Mx).
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Lemma 2. 〈M,x〉 � 〈M ′, y〉 ⇐⇒ α(Mx) � α(M ′
y).

Proof. ⇒: Assume 〈M,x〉 � 〈M ′, y〉. By Lemma 1,

α(Mx) ∼ 〈M,x〉 � 〈M ′, y〉 ∼ α(M ′
y),

and since � is transitive, α(Mx) � α(M ′
y).

⇐: Assume α(Mx) � α(M ′
y). By Lemma 1,

〈M,x〉 ∼ α(Mx) � α(M ′
y) ∼ 〈M ′, y〉,

and since � is transitive, 〈M,x〉 � 〈M ′, y〉.

Now we can construct a utility function on submodels and to show that it repre-
sents �. Let v be an injective function from submodels to the set {2−n : n ∈ N},
and let U be defined as

U(S) =
∑

S′:α(S)�α(S′)

v(S′).

Since the sum of {2−n : n ∈ N} converges, the utility function is defined even
when the set of submodels is (countably) infinite [21].

First, we will show that every preference over acts is represented in utilities.
Assume that one act is weakly preferred over another, so that 〈M,x〉 � 〈M ′, y〉.
By Lemma 2, α(Mx) � α(M ′

y). Since � is transitive, any α(S) weakly dispre-
ferred to α(M ′

y) is also dispreferred to α(Mx), and so

{S : α(Mx) � α(S)} ⊇ {S : α(M ′
y) � α(S)}.

By definition of U , we conclude that U(Mx) ≥ U(M ′
y).

Second, we will show that every utility difference represents a preference. Let
U(Mx) ≥ U(M ′

y). To draw a contradiction, assume that α(Mx) �� α(M ′
y). By

completeness, α(M ′
y) � α(Mx). It follows by transitivity that

{S : α(M ′
y) � α(S)} ⊃ {S : α(Mx) � α(S)}.

By definition of U , this means that U(M ′
y) > U(Mx), a contradiction; therefore,

α(Mx) � α(M ′
y). By Lemma 2, 〈M,x〉 � 〈M ′, y〉.

Thus, we have shown that the conditions given are necessary and sufficient for
the existence of a representative utility function over submodels; the submodel
hypothesis is confirmed over the class of problems defined by the conditions.

7 Conclusion

In this paper, we have shown a set of four conditions under which the submodel
hypothesis is confirmed, i.e. an agent whose beliefs are held as a causal model
must have preferences that can be represented by a utility function over sub-
models. This puts sharply-defined boundaries on where the submodel hypothesis,
which has previously been argued by Pearl [15] and Yudkowsky [25], is justified
and required. More broadly, we have aimed to contribute to a formal theory of
intelligence, with the goal of shaping the impact of AGI to be safe and beneficial.
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Abstract. Future AGIs will need to solve large reinforcement-learning
problems involving complex reward functions having multiple reward
sources. One way to make progress on such problems is to decompose
them into smaller regions that can be solved efficiently. We introduce a
novel modular version of Least Squares Policy Iteration (LSPI), called
M-LSPI, which 1. breaks up Markov decision problems (MDPs) into a set
of mutually exclusive regions; 2. iteratively solves each region by a single
matrix inversion and then combines the solutions by value iteration. The
resulting algorithm leverages regional decomposition to efficiently solve
the MDP. As the number of states increases, on both structured and
unstructured MDPs, M-LSPI yields substantial improvements over tra-
ditional algorithms in terms of time to convergence to the value function
of the optimal policy, especially as the discount factor approaches one.

1 Introduction

Reinforcement learning is one of the most promising approaches for achiev-
ing artificial general intelligence, yet current methods tend to scale poorly to
large problems. Effective methods exist for finding the optimal policy and value
function of a Markov decision process (MDP; [1]) given a model of transition
probabilities and expected rewards [1–7], but these methods run into computa-
tional bottlenecks as the number of states and their degree of connectivity in-
creases or when the reward function is complex (i.e., when there are many sources
of reward). Yet it is quite common for real-world, applied MDPs to have com-
plex reward functions with positive and negative rewards distributed throughout
the task space. In robotics, for example, all near-collision states might generate
negative reward.

In this work we assume access to an accurate model of the MDP and focus
on new methods for solving the MDP from the model. Any existing approach
for building the model from interaction with the environment can be used, e.g.,
that of Gisslen et al. (2011) [8]. Value Iteration (VI; [2, 9]) is the most basic
MDP solver. It does state-value backups [1] on all states, equally often, indepen-
dent of MDP structure. VI handles complex reward functions well, but scales
poorly as the discount factor approaches one and as the degree of connectivity
in the MDP increases. Thus, there have been previous attempts to improve its
efficiency. Prioritized Sweeping (PS; [4]), for example, uses a priority queue to

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 69–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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order partial state-value backups prioritized on (generally) the Bellman error.
PS gets a better approximate result than VI with less data and less time, but
final convergence (to the same result as VI) often takes just as long or longer due
to queue maintenance. Dai et al. [5] tried to avoid the overhead of priority queue
maintenance, suggesting heuristics to prioritize states, such as reachability of a
state from the goal when following the current policy. Wingate [6] organized the
bookkeeping overhead, prioritizing via an “information frontier” starting with
the “most informative state” (e.g., the absorbing goal), then propagated the
frontier throughout the system. These approaches are very effective for single-
goal situations, but do not efficiently handle complex reward functions. Least
Squares Policy Iteration (LSPI; [7]), based on policy iteration (PI; [3]), finds the
optimal linear-function approximation of an MDP’s value function via a series of
matrix inversions.1 Unfortunately, matrix inversions can be very computation-
ally demanding, scaling nearly cubically with the number of state-action pairs,
but LSPI is appealing because it has no adjustable learning rate, delivers an
optimal solution for every reward function, and its performance is independent
of the MDP’s connectivity and discount factor.

This paper introduces Modular LSPI (M-LSPI) which combines VI and LSPI
to achieve the advantages of both: good scaling behavior in the number of states,
discount factor, and connectivity. M-LSPI partitions the states into mutually
exclusive regions (we explore several methods for doing so in Sec. 4). Separate
modules perform LSPI within each region independently, and the value informa-
tion between modules is then combined using a method that resembles VI. If the
MDP exhibits regional structure, then the partitioning can lead to a consider-
able improvement in performance. The results indicate that M-LSPI is especially
good on MDPs with high connectivity even when the assignment of states to re-
gions is purely random. Experiments show benefits over previous methods on a
variety of MDPs, including autonomous systems and simulated humanoid mo-
tor tasks, indicating that M-LSPI can be effective in any environment where a
world-model can obtained. Finally, the modular approach appears promising for
continual learning [10], as it provides a method for adding new regions without
the need to recalculate the entire MDP.

2 Markov Decision Processes with Many States

Markov Decision Processes. A Markov decision process can be expressed
as a 5-tuple (S,A,P ,R,γ), where S = {s1, s2, . . . , sn} is a finite set of states,
A = {a1, a2, . . . , am} is a finite set of actions, P (s, a, s′) is aMarkovian transition
model quantifying the probability of ending up in state s′ when taking an action
a in state s, R(s, a, s′) is the expected reward when taking action a from state
s and ending up in state s′, and γ ∈ [0, 1) is the discount factor, exponentially
decreasing the impact of future rewards on the current action choices.

1 Typically, LSPI operates on features; however, for an exact solution of an MDP, a
single dimension of the feature vector can be dedicated to each state-action pair,
which is how we use it here.
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A learning agent increases its receipt of reward by improving its policy π,
which specifies what action the agent takes in each state. The agent solves an
MDP by finding the optimal policy π∗, which maximizes its receipt of reward.
Qπ(s, a), called the “state-action value,” represents the expected sum of dis-
counted future rewards the agent will receive for taking action a in state s and
following policy π thereafter. These values for all (s, a) pairs are related mathe-
matically by the Bellman equation:

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Qπ(s′, π(s′)). (1)

where R(s, a) =
∑

s′ P (s, a, s′)R(s, a, s′). Thus, the optimal policy always
chooses the action with the highest state-action value: π�(a) = maxa Q

π�

(s, a).

Iterative MDP Solution Methods. The two main iterative methods for solv-
ing an MDP from P and R are value iteration (VI, described next) and policy
iteration (PI, described in Sec. 3 in the context of LSPI).2

VI solves the system of Bellman equations described in Equation 1 by itera-
tively doing updates (called “backups”) in the form:

Q(s, a)←R(s, a) + γ
∑
s′∈S

P (s, a, s′)V (s′) (2)

for all states and actions, where the state value V (s) = maxa Q(s, a). Each
backup propagates the maximum reward information to each state from its suc-
cessors. The agent’s best policy, given the backups made at any point, is to take
the action in each state with the highest state-action value. One loop through
all state-action pairs yields the best policy with a one-step look-ahead; after
two loops, the maximum two-step policy is obtained. The iteration process con-
tinues until convergence: when the difference between all state values over two
subsequent loops is less than a certain threshold ε.

VI has a time complexity of O(|A||S|2) per iteration, with the number of
iterations required for convergence growing with 1/(1− γ) [12], which makes VI
troublesome as the discount factor γ approaches one. In contrast, PI requires
O(|S|3) operations per iteration [3] and convergence does not seem to depend
on the discount factor.

Reward Horizon. As the number of states in an MDP increases, the discount
factor also needs to increase towards one if all the rewards are to impact all
of the states. For example, if γ = 0.9 a reward value of 1.0 has an impact (a
discounted value) of only 10−23 on states 500 steps away; when γ = 0.99, that
value is .007, but is 0.6 when γ = 0.999. Therefore in even moderate-sized MDPs
(>1000 states) the discount factor must be higher than γ = 0.9 if the rewards in
one region of the MDP are to have a significant impact on the agent’s choices in
distant states. Thus, planning very far into the future makes VI computationally

2 Linear programming [11] can represent any MDP and solve it in polynomial time, but
in practice the polynomials are often too large to be solved in reasonable time [12],
while iterative methods are feasible.
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costly: convergence for γ = 0.99 takes ten times longer than for γ = 0.9. And
while PI handles the discount factor well, it scales poorly with the number of
states. Therefore, both approaches seem prohibitive for large MDPs. Yet it is
possible to get the best of both worlds in some cases by doing PI locally and
VI globally, particularly if the MDP has local structure that allows regional
decomposition.

Regional Decomposition. Decomposing the MDP into smaller regions has
been used before to increase solution speed, whether it is to achieve sub-optimal
policies quickly [13] or to organize backups to reach optimal values faster [6].
Generally performance improves when the partitioning reflects the structure of
the MDP. Prior knowledge, such as the positions of the states in a 2D grid-world,
can allow decomposition by hand (e.g., into a coarser-resolution 2D grid-world).
For the general case, when such prior knowledge is not available, there are re-
gional decomposition algorithms such as the Chinese Whispers method [14], but
these can be computationally demanding and their performance is not guar-
anteed. The opposite extreme is to assign states to regions randomly, which is
computationally trivial yet still occasionally beneficial simply because smaller
regions can be solved faster.

3 Modular Least-Square Policy Iteration

Algorithm 1 shows M-LSPI as pseudo-code. Prior to execution, the MDP is as-
sumed to have been decomposed into non-overlapping regions of states (see Sec. 4).

The algorithm’s main loop, repeated until convergence, combines a VI step
with a PI step for each region. The VI step collects state values from the neigh-
boring regions (lines 5–8). The PI step calls LSPI-Model (the model-based ver-
sion of LSPI, line 10) which treats the region as though it were a complete MDP
and finds its optimal policy (given the current information). The key of M-LSPI
is the way the VI and PI steps are combined. The trick here is to sum up the
state values from all the successor states in the neighboring regions and then
to add these values into the reward vector b for the region to be solved. When
LSPI solves the region using this modified reward vector, that integrates the VI
and PI steps, yielding exact state-action values for the region using all the latest
information from the local region and its neighbors.

Looking at the MDP as a graph, LSPI is guaranteed to find the correct val-
ues [7] for all the edges within the local region (given current information), while
the value-iteration step updates the edges connecting the region to its neighbors.
Since VI itself is guaranteed to converge [9], we conjecture that M-LSPI will it-
eratively converge to the optimal value function. This conjecture is supported
by the empirical results in Sec 4.

M-LSPI scales well, handling MDPs with a large number of states and γ close
to one. It avoids the cubic scaling complexity of global PI by keeping down the
number of states within each region, and avoids VI’s explosive reaction to γ
by using LSPI to get exact results in each region. LSPI converges reliably and
quickly to the optimal policy for small MDPs and does not require tuning.
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Algorithm 1. M-LSPI(M,P ,R, Q, γ)

// Mi : Region assignments
// Pi,j : Regional transition models (s, a, s′) for s ∈ Mi and s′ ∈ Mj

// Ri : Regional reward vectors for all (s, a), where s ∈ Mi

// Q : Initial state-action values
// γ : Discount factor

1 repeat
2 Q′ ← Q // save latest state-action values
3 for each region i in M do
4 b ← Ri // local reward vector
5 for each region j in NeighborsOf (i) do
6 for each (s, a, s′) ∈ Pi,j do
7 bs,a ← bs,a + γPi,j(s, a, s

′) · max
a′∈A

Qs′,a′

8 end

9 end
10 Qi ← LSPI-Model

(Pi,i,b, Qi, γ
)

// update Q values for s ∈ Mi

11 end

12 until (maxs,a |Qs,a −Q′
s,a| < ε) // check convergence globally

13 return Q

Model-Based LSPI. In LSPI, the state-action values Q are approximated as
a linear combination of basis functions Φ:

Q̂(s, a, ω) = Φω.

Writing the Bellman equation (1) in matrix form

Qπ = R+ γPΠQπ,

where Π is a matrix representation of policy π, and replacing Qπ with the
approximation Q̂ = Φω yields

Φω ≈ R+ γPπΦω.

where Pπ = PΠ. Parameter values ω are calculated with a single matrix inver-
sion:

ω = A−1b, (3)

where

A = Φᵀ(Φ− γPπΦ)

b = ΦᵀR.

In our model-based case, each basis function is dedicated to a single state-action
pair, and thus Φ is an (|S||A| × |S||A|) identity matrix, and ω is identical to
the estimated state-action values (shown in Algorithm 1 as Q). However, for
completeness we include the full derivation here.
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Regional Model-Based LSPI. Given a state space that has been decomposed
into non-overlapping regions of states, M-LSPI decomposes the above equations
into subsets corresponding to those regions and uses LSPI to solve each subset
separately (line 10 in Algorithm 1):

ωi = A−1
i bi

Ai = Φᵀ
i (Φi − γPπ

i,iΦi)

bi = Φᵀ
i Vi

where Φi is the set of basis functions for the states in region i, and Pπ
i,i contains

only information about transition probabilities within region i. Vi combines the
reward values for region i with the discounted state-action values from all suc-
cessor states in the neighboring regions, following Bellman’s optimality equation
rewritten (in matrix form) in terms of regions rather than states:

Vi = Ri + γ
∑
j �=i

Pπ
i,jVj (4)

where Ri is the reward vector for region i (Algorithm 1, line 4), Pπ
i,j is the

transition probability matrix between the regions i and j, and Vj is the vector
of state values for region i’s successor states in region j. As usual with VI, the
state values Vj are computed as the maximum state-action value for each state
(Algorithm 1, line 7).

In the simplest case, where there is only one region, the second term on the
right hand side of Equation 4 is 0, and the first term (Ri) is the reward vector
R, which thus becomes the b vector used to solve Equation (3).

As ωi depends on information from all the other ωj �=i it is now clear that
the global solution must be reached through successive iterations, similar to VI.
When the values have converged, the collection of regional weights ωi taken
together represent the full set of weights ω.

4 Experimental Results

This section compares M-LSPI with other methods for discovering the optimal
policy π∗ and calculating its value function over a variety of MDPs. All compar-
isons are in terms of wall-clock time (seconds) until convergence, ε = 10−6. In our
case, this time includes the overhead of building regions (but this cost would not
be incurred again if the calculation were repeated with different reward vectors).

Experimental Data. Comparisons were done with four classes of MDP (see
Figure 1) and two sets of real data (named “RobotArm” and “Autonomous-
system,” see below). All MDPs have fixed (but randomly generated) transition
probabilities and reward values; i.e., when the MDP is created, each state-action
pair is assigned a fixed reward value drawn from a uniform distribution in (−1, 1).
1D-MDP (Fig 1, a): A one-dimensional Markov ring with sparse, local connec-
tivity, having N states and five possible actions. One action has no effect; each
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(a) 1D-MDP (b) 2D-MDP (c) Cx-MDP (d) FC-MDP

Fig. 1. Illustration of connectivity in different MDPs: (a) one- and (b) two-dimensional
MDPs (1D-MDP and 2D-MDP) with connections only to closest neighbors, (c) clus-
ters of fully connected states with sparse connections to neighboring clusters (Cx-
MDP) where x denotes the cluster size, and (d) fully connected MDP (FC-MDP).

of the other four move the agent either clockwise or counterclockwise, either
one step or two. There is a 10% random chance one of the actions not chosen is
taken instead. 2D-MDP (Fig 1, b): A 2D (toroidal) version of the previous, also
having five actions (up, down, left, right and stay), again with a 10% chance a
different action is taken.Cx-MDP (Fig 1, c): Clusters of x fully connected states
with sparse connections between the clusters. This is an MDP version of modular
small-world graphs [15]. FC-MDP (Fig 1, d): A fully connected MDP where
each state is connected to each other state. Transition probabilities for Cx and
FC are assigned randomly, drawn uniformly from (0,1) and then normalized such
that

∑
s′ P (s, a, s′) = 1 for each (s, a) pair. RobotArm. A dataset generated

with the iCub robot simulator [16]. Each state corresponds to the configuration
of three arm joints (two shoulder and one elbow). A precision value controls
the number of states; higher precision means finer quantization and more states.
There are six deterministic actions, each resulting in a movement to the next
closest configuration for each joint in both directions. Autonomous-system.
Datasets from the Stanford Large Networks dataset collection.3 These datasets
represent communication graphs of routers comprising the internet (known as
“autonomous systems”) and are available in a variety of sizes. We assigned ran-
dom reward values to the edges, drawn uniformly from (-1,1), and the transition
probabilities are split evenly. In this special case there are no actions, so there
is no policy improvement, and only the value function is solved.

Methods Compared. The featured competitors are value iteration (VI; [2]),
prioritized sweeping (PS; [4]), and LSPI itself on the model [7]. We do not com-
pare experimentally to Wingate’s value iteration with regional prioritization [6],
nor the prioritization method of Dai [5], since we study the general case of
arbitrary-valued reward functions, for which they are poorly suited.

Figure 2 shows a comparison of the three methods on two classes of MDPs with
a small number of states. It is clear that only VI merits a large-scale comparison
to M-LSPI.

Experiment Setup. Each model has an adjustable size (number of states).
For every model size, we ran five tests and report average time to convergence.

3 snap.stanford.edu/data/
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Fig. 2. Comparison of LSPI, PS, and VI on MDPs with complex reward functions
(nonzero reward for each state-action pair), with γ = 0.99. Left: Time required to find
the optimal policy on a 1D-MDP (see text) where the number of connections per state
is constant. LSPI’s near-cubic complexity leads to poor performance. VI does quite
well with complex reward functions and low-connectivity. PS does not deal well with
complex reward functions since the priority queue introduces needless overhead. Right:
Results on FC-MDPs (see text) where the number of connections per state scales with
the number of states. Again, LSPI scales very poorly, and high connectivity leads to
extremely poor performance of PS. VI is also the best of the three in this type of MDP.

Each test had a unique set of randomly assigned reward values and transition
probabilities, and we compared all methods using the same set of tests. We used
two values of γ: 0.99 and 0.999, and convergence criteria was ε = 10−6 for all
methods, which in all cases guaranteed discovery of the optimal policy.

Region Building. M-LSPI used several different region-building techniques for
the tests. For the random MDPs, states were assigned to regions randomly, with
the region size fixed at 30. We also assigned states randomly for the Autonomous-
system data, which has high (but not full) connectivity. We used the Chinese
Whispers (CW) technique for the modular MDPs (CX-100). CW breaks up
regions based on bottlenecks, leading states with high mutual connectivity to
belong to the same regions. In this particular case region sizes were typically
100 states. This is an excellent situation for M-LSPI, as LSPI can handle dense
connectivity within the regions well (in a small number of iterations). However,
VI will struggle when the connectivity is dense. For the 1D, 2D, and RobotArm
MDPs, there are no bottlenecks, so we use a simple variant of CW where: (1)
initially each state is its own region; and (2) until all states are tagged, a random
untagged state is selected, tagged, and a few of its untagged connecting states
are merged into a single region (unless it would exceed 30 states).

Results. Graphic comparisons of M-LSPI and VI are shown in Fig. 3. M-LSPI
seems to scale better than VI except for (a) the 1D and 2D MDPs when γ = 0.99
and (b) the RobotArm data (which is also a type of structured MDP). VI is ideal
for the RobotArm data where the MDP is deterministic with low connectivity.
When γ is increased, M-LSPI scales better than VI in all cases, since it solves each
region with LSPI. Possibly due its modular structure, M-LSPI excels on modular
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Fig. 3. Performance comparison of M-LSPI to value iteration on synthetic and real-
data-based MDPs (described in text). For the upper panels, discount factor γ = 0.99,
for the lower panels γ = 0.999.

Cx-MDPs, especially those with lower overall connectivity. It also does excep-
tionally well with fully-connected random MDPs and the autonomous-systems
data, scaling far better than any alternate method we know.

Note that all results shown above include the cost of building the regions.
In the RobotArm experiment, the region building time for {1176, 2238, 4356}
states on average is {0.46, 1.2, 1.7} seconds. This can be done once, and the
same regions can be used for multiple reward vectors. If the regions are already
built, M-LSPI will be even faster than shown.

5 Conclusions

M-LSPI is a novel, modular, model-based MDP solver for large MDPs with com-
plex reward functions. It efficiently yet optimally solves large MDPs, excelling on
those with high connectivity or modular small-world connectivity. While approx-
imate MDP solvers can sacrifice accuracy for speed, our method and others [5, 6]
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have shown this sacrifice is not necessary if the structure of the solver matches
the structure of the world. However, to our knowledge ours is the only method
that can take advantage of such structure when the reward function is complex,
which it will be for general-purpose, real-world intelligent agents, arising from
multiple, anisotropic pain and pleasure signals.
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Perception Processing for General Intelligence:

Bridging the Symbolic/Subsymbolic Gap

Ben Goertzel

Novamente LLC

Abstract. Bridging the gap between symbolic and subsymbolic repre-
sentations is a – perhaps the – key obstacle along the path from the
present state of AI achievement to human-level artificial general intelli-
gence. One approach to bridging this gap is hybridization – for instance,
incorporation of a subsymbolic system and a symbolic system into a in-
tegrative cognitive architecture. Here we present a detailed design for
an implementation of this approach, via integrating a version of the
DeSTIN deep learning system into OpenCog, an integrative cognitive
architecture including rich symbolic capabilities. This is a ”tight” inte-
gration, in which the symbolic and subsymbolic aspects exert detailed
real-time influence on each others’ operations. An earlier technical re-
port has described in detail the revisions to DeSTIN needed to support
this integration, which are mainly along the lines of making it more
”representationally transparent,” so that its internal states are easier for
OpenCog to understand.

1 Introduction

While it’s widely accepted that human beings carry out both symbolic and sub-
symbolic processing, as integral parts of their general intelligence, the precise
definition of ”symbolic” versus ”subsymbolic” is a subtle issue, which different
AI researchers will approach in different ways depending on their differing over-
all perspectives on AI. Nevertheless, the intuitive meaning of the concepts is
commonly understood:

– ”subsymbolic” refers to things like pattern recognition in high-dimensional
quantitative sensory data, and real-time coordination of multiple actuators
taking multidimensional control signals

– ”symbolic” refers to things like natural language grammar and (certain
or uncertain) logical reasoning, that are naturally modeled in terms of ma-
nipulation of symbolic tokens in terms of particular (perhaps experientially
learned) rules

Views on the relationship between these two aspects of intelligence in human
and artificial cognition are quite diverse, including perspectives such as

1. Symbolic representation and reasoning are the core of human-level intelli-
gence; subsymbolic aspects of intelligence are of secondary importance and
can be thought of as pre or post processors to symbolic representation and
reasoning

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 79–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2. Subsymbolic representation and learning are the core of human intelligence;
symbolic aspects of intelligence

(a) emerge from the subsymbolic aspects as needed; or,
(b) arise via a relatively simple, thin layer on top of subsymbolic intelligence,

that merely applies subsymbolic intelligence in a slightly different way

3. Symbolic and subsymbolic aspects of intelligence are best considered as dif-
ferent subsystems, which

(a) have a significant degree of independent operation, but also need to co-
ordinate closely together; or,

(b) operate largely separately and can be mostly considered as discrete mod-
ules

In evolutionary terms, it is clear that subsymbolic intelligence came first, and
that most of the human brain is concerned with the subsymbolic intelligence
that humans share with other animals. However, this observation doesn’t have
clear implications regarding the relationship between symbolic and subsymbolic
intelligence in the context of everyday cognition.

In the history of the AI field, the symbolic/subsymbolic distinction was some-
times aligned with the dichotomy between logic-based and rule-based AI systems
(on the symbolic side) and neural networks (on the subsymbolic side) [1]. How-
ever, this dichotomy has become much blurrier in the last couple decades, with
developments such as neural network models of language parsing [2] and logical
reasoning [3], and symbolic approaches to perception and action [4]. Integrative
approaches have also become more common, with one of the major traditional
symbolic AI systems, ACT-R, spawning a neural network version [5] with par-
allel structures and dynamics to the traditional explicitly symbolic version and
a hybridization with a computational neuroscience model [6]; and another one,
SOAR, incorporating perception processing components as separate modules [7].
The field of ”neural-symbolic computing” has emerged, covering the emergence
of symbolic rules from neural networks, and the hybridization of neural networks
with explicitly symbolic systems [8].

Our goal here is not to explore the numerous deep issues involved with the
symbolic/subsymbolic dichotomy, but rather to describe the details of a partic-
ular approach to symbolic/subsymbolic integration, inspired by Perspective 3a
in the above list: the consideration of symbolic and subsymbolic aspects of intel-
ligence as different subsystems, which have a significant degree of independent
operation, but also need to coordinate closely together. We believe this kind
of integration can serve a key role in the quest to create human-level general
intelligence. The approach presented here is at the beginning rather than end
of its practical implementation; what we are describing here is the initial design
intention of a project in progress, which is sure to be revised in some respects
as implementation and testing proceed. We will focus mainly on the tight in-
tegration of a subsymbolic system enabling gray-scale vision processing into a
cognitive architecture with significant symbolic aspects. A longer version of the
paper, available online [9], explains how the same ideas can be used for color
vision, and multi-sensory and perception-action integration.
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The approach presented here begins with two separate AI systems, both cur-
rently implemented in open-source software:

– OpenCog, an integrative architecture for AGI [10] [11], which is centered
on a ”weighted, labeled hypergraph” knowledge representation called the
Atomspace, and features a number of different, sophisticated cognitive al-
gorithms acting on the Atomspace. Some of these cognitive algorithms are
heavily symbolic in focus (e.g. a probabilistic logic engine); others are more
subsymbolic in nature (e.g. a neural net like system for allocating attention
and assigning credit). However, OpenCog in its current form cannot deal
with high-dimensional perceptual input, nor with detailed real-time con-
trol of complex actuators. OpenCog is now being used to control intelligent
characters in an experimental virtual world, where the perceptual inputs are
the 3D coordinate locations of objects or small blocks; and the actions are
movement commands like ”step forward”, ”turn head to the right” [12] [13].
OpenCog is an open-source AGI software framework, which has been used
for various practical applications in the area of natural language processing
and data mining; e.g. see [14], and also for the in-progress implementation of
the OpenCogPrime design aimed ultimately toward AGI at the human level
and beyond.

– DeSTIN [15],[16], a deep learning system consisting of a hierarchy of pro-
cessing nodes, in which the nodes on higher levels correspond to larger re-
gions of space-time, and each node carries out prediction regarding events
in the space-time region to which it corresponds. Feedback and feedforward
dynamics between nodes combine with the predictive activity within nodes,
to create a complex nonlinear dynamical system whose state self-organizes
to reflect the state of the world being perceived. The core concepts of DeS-
TIN are similar to those of Jeff Hawkins’ Numenta system [17] [18], Dileep
George’s work (http://vicariousinc.com) and work by Mohamad Tar-
ifi [19], Bundzel and Hashimoto [20], and others. In the terminology intro-
duced in [21], DeSTIN is an example of a Compositional Spatiotemporal
Deep Learning System, or CSDLN. However, compared to other CSDLNs,
the specifics of DeSTIN’s dynamics have been designed in what we consider a
particularly powerful way, and the system has shown good results on small-
scale test problems [22]. So far DeSTIN has been utilized only for vision
processing, but a similar proprietary system has been used for auditory data
as well; and DeSTIN was designed to work together with an accompanying
action hierarchy.

We will not review particulars of OpenCog nor DeSTIN here, referring the reader
to the above-cited references, and assuming basic knowledge of how both systems
work. These two systems were not originally designed to work together, but we
will describe a method for achieving their tight integration via

1. Modifying DeSTIN in several ways, so that
(a) the patterns in its states over time will have more easily recognizable

regularities

http://vicariousinc.com
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(b) its nodes are able to scan their inputs not only for simple statistical
patterns (DeSTIN ”centroids”), but also for patterns recognized by rou-
tines supplied to it by an external source (e.g. another AI system such
as OpenCog)

2. Utilizing one of OpenCog’s cognitive processes (the ”Fishgram” frequent
subhypergraph mining algorithm) to recognize patterns in sets of DeSTIN
states, and then recording these patterns in OpenCog’s Atomspace knowl-
edge store

3. Utilizing OpenCog’s other cognitive processes to abstract concepts and draw
conclusions from the patterns recognized in DeSTIN states by Fishgram

4. Exporting the concepts and conclusions thus formed to DeSTIN, so that its
nodes can explicitly scan for their presence in their inputs, thus allowing the
results of symbolic cognition to explicitly guide subsymbolic perception

5. As described in the the extended online version of the paper [9]: Creating
an action hierarchy corresponding closely to DeSTIN’s perceptual hierarchy,
and also corresponding to the actuators of a particular robot. This allows
action learning to be done via an optimization approach ([23], [24]), where
the optimization algorithm uses DeSTIN states corresponding to perceived
actuator states as part of its inputs.

The ideas described here have mostly not yet been implemented, but work has
begun on Items 1a (modifying DeSTIN so that the patterns in its states over
time will have more easily recognizable regularities) and 2 (utilizing Fishgram to
recognize patterns in DeSTIN system states), as part of a 2012 Google Summer of
Code project. Item 1a has been covered in the technical report [25]; the remainder
of the points are discussed here.

The ideas presented here are compatible with those described in [21], but dif-
ferent in emphasis. That paper described a strategy for integrating OpenCog and
DeSTIN via creating an intermediate ”semantic CSDLN” hierarchy to translate
between OpenCog and DeSTIN, in both directions. In the approach suggested
here, this semantic CSDLN hierarchy exists conceptually but not as a separate
software object: it exists as the combination of

– OpenCog predicates exported to DeSTIN and used alongside DeSTIN cen-
troids, inside DeSTIN nodes

– OpenCog predicates living in the OpenCog knowledge repository (Atom-
Space), and interconnected in a hierarchical way using OpenCog nodes and
links (thus reflecting DeSTIN’s hierarchical structure within the AtomSpace).

This hierarchical network of predicates, spanning the two software systems, plays
the role of a semantic CSDLN as described in [21].

Simplified OpenCog Workflow. The dynamics inside an OpenCog system may
be highly complex, defying simple flowcharting, but from the point of view
of OpenCog-DeSTIN integration, one important pattern of information flow
through the system is as follows:
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1. Perceptions come into the Atomspace. In the current OpenCog system, these
are provided via a proxy to the game engine where the OpenCog controlled
character interacts. In an OpenCog-DeSTIN hybrid, these will be provided
via DeSTIN.

2. Hebbian learning builds HebbianLinks between perceptual Atoms represent-
ing percepts that have frequently co-occurred

3. PLN inference, concept blending and other methods act on these perceptual
Atoms and their HebbianLinks, forming links between them and linking
them to other Atoms stored in the Atomspace reflecting prior experience
and generalizations therefrom

4. Attention allocation gives higher short and long term importance values to
those Atoms that appear likely to be useful based on the links they have
obtained

5. Based on the system’s current goals and subgoals (the latter learned from
the top-level goals using PLN), and the goal-related links in the Atomspace,
the OpenPsi mechanism triggers the PLN-based planner, which chooses a
series of high-level actions that are judged likely to help the system achieve
its goals in the current context

6. The chosen high-level actions are transformed into series of lower-level, di-
rectly executable actions. In the current OpenCog system, this is done by a
set of hand-coded rules based on the specific mechanics of the game engine
where the OpenCog controlled character interacts. In an OpenCog-DeSTIN
hybrid, the lower-level action sequence will be chosen by an optimization
method acting based on the motor control and perceptual hierarchies.

2 Integrating DeSTIN and OpenCog

The integration of DeSTIN and OpenCog involves two key aspects:

– recognition of patterns in sets of DeSTIN states, and exportation of these
patterns into the OpenCog Atomspace

– use of OpenCog-created concepts within DeSTIN nodes, alongside
statistically-derived ”centroids”

From here on, unless specified otherwise, when we mention ”DeSTIN” we will
refer to ”Uniform DeSTIN” as defined in the technical report [25], an extension
of ”classic DeSTIN” as defined in [15]. The essential difference is that in Uniform
DeSTIN, the same centroids are shared across the different nodes in the network;
and, a belief can be matched with a centroid even if the two differ by some
rotation or shear. So, in Uniform DeSTIN, each node compares its inputs to a
library of known patterns in a manner that incorporates invariance to location,
scale, rotation and shear.

2.1 Mining Patterns from DeSTIN States

The first step toward using OpenCog tools to mine patterns from sets of DeSTIN
states, is to represent these states in Atom form in an appropriate way. A sim-
ple but workable approach, restricting attention for the moment to purely spatial
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patterns, is to use the six predicates: hasCentroid(node N, int k),
hasParentCentroid(node N, int k), hasNorthNeighborCentroid(node N, int k),
hasSouthNeighborCentroid(node N, int k), hasEastNeighborCentroid(node N,
int k), hasWestNeighborCentroid(node N, int k). For instance,
hasNorthNeighborCentroid(N, 3) means that N ’s north neighbor has centroid
#3. One may consider also the predicates: hasParent(node N,Node M),
hasNorthNeighbor(node N,Node M), hasSouthNeighbor(node N,Node M),
hasEastNeighbor(node N,Node M), hasWestNeighbor(node N,Node M).

Now suppose we have a stored set of DeSTIN states, saved from the applica-
tion of DeSTIN to multiple different inputs. What we want to find are predicates
P that are conjunctions of instances of the above 10 predicates, which occur fre-
quently in the stored set of DeSTIN states. A simple example of such a predicate
would be the conjunction of

– hasNorthNeighbor($N, $M)
– hasParentCentroid($N, 5)

– hasParentCentroid($M, 5)
– hasNorthNeighborCentroid($N, 6)
– hasWestNeighborCentroid($M, 4)

This predicate could be evaluated at any pair of nodes ($N, $M) on the same
DeSTIN level. If it is true for atypically many of these pairs, then it’s a ”frequent
pattern”, and should be detected and stored.

OpenCog’s pattern mining component, Fishgram, exists precisely for the pur-
pose of mining this sort of conjunction from sets of relationships that are stored
in the Atomspace. It may be applied to this problem as follows:

– Translate each DeSTIN state into a set of relationships drawn from: has-
NorthNeighbor, hasSouthNeighbor, hasEastNeighbor, hasWestNeighbor,
hasCentroid, hasParent

– Import these relationships, describing each DeSTIN state, into the OpenCog
Atomspace

– Run pattern mining on this AtomSpace.

2.2 Probabilistic Inference on Mined Hypergraphs

Patterns mined from DeSTIN states can then be reasoned on by OpenCog’s PLN
inference engine, allowing analogy and generalization.

Suppose centroids 5 and 617 are estimated to be similar – either via DeSTIN’s
built-in similarity metric, or, more interestingly via OpenCog inference on the
Atom representations of these centroids. As an example of the latter, consider: 5
could represent a person’s nose and 617 could represent a rabbit’s nose. In this
case, DeSTIN might not judge the two centroids particularly similar on a purely
visual level, but, OpenCog may know that the images corresponding to both of
these centroids are are called ”noses” (e.g. perhaps via noticing people indicate
these images in association with the word ”nose”), and may thus infer (using
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a simple chain of PLN inferences) that these centroids seem probabilistically
similar.

If 5 and 617 are estimated to be similar, then a predicate like

ANDLink

EvaluationLink

hasNorthNeighbor

ListLink $N $M

EvaluationLink

hasParentCentroid

ListLink $N 5

EvaluationLink

hasParentCentroid

ListLink $M 5

EvaluationLink

hasNorthNeighborCentroid

ListLink $N 6

EvaluationLink

hasWestNeighborCentroid

ListLink $M 4

mined from DeSTIN states, could be extended via PLN analogical reasoning to

ANDLink

EvaluationLink

hasNorthNeighbor

ListLink $N $M

EvaluationLink

hasParentCentroid

ListLink $N 617

EvaluationLink

hasParentCentroid

ListLink $M 617

EvaluationLink

hasNorthNeighborCentroid

ListLink $N 6

EvaluationLink

hasWestNeighborCentroid

ListLink $M 4

2.3 Insertion of OpenCog-Learned Predicates into DeSTIN’s
Pattern Library

Suppose one has used Fishgram, as described above, to recognize predicates
embodying frequent or surprising patterns in a set of DeSTIN states or state-
sequences. The next natural step is to add these frequent or surprising patterns to
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DeSTIN’s pattern library, so that the pattern library contains not only classic
DeSTIN centroids, but also these corresponding ”image grammar” style pat-
terns. Then, when a new input comes into a DeSTIN node, in addition to being
compared to the centroids at the node, it can be fed as input to the predicates
associated with the node.

What is the advantage of this approach, compared to DeSTIN without these
predicates? The capability for more compact representation of a variety of spa-
tial patterns. In many cases, a spatial pattern that would require a large number
of DeSTIN centroids to represent, can be represented by a single, fairly compact
predicate. It is an open questionwhether these sorts of predicates are really critical
for human-like vision processing. However, our intuition is that they do have a role
in human as well s machine vision. In essence, DeSTIN is based on a fancy version
of nearest-neighbor search, applied in a clever way on multiple levels of a hierar-
chy, using context-savvy probabilities to bias the matching. But we suspect there
are many visual patterns that are more compactly and intuitively represented us-
ing a more flexible language, such as OpenCog predicates formed by combining
elementary predicates involving appropriate spatial and temporal relations.

For example, consider the archetypal spatial pattern of a face as: either two
eyes that are next to each other, or sunglasses, above a nose, which is in turn
above a mouth. (This is an oversimplified toy example, but we’re positing it for
illustration only. The same point applies to more complex and realistic patterns.)
One could represent this in OpenCog’s Atom language as something like:

AND

InheritanceLink N B_nose

InheritanceLink M B_mouth

EvaluationLink

above

ListLink E N

EvaluationLink

above

ListLink N M

OR

AND

MemberLink E1 E

MemberLink E2 E

EvaluationLink

next_to

ListLink E1 E2

InheritanceLink E1 B_eye

AND

InheritanceLink E B_sunglasses

where e.g. B eye is a DeSTIN belief that corresponds roughly to recognition of
the spatial pattern of a human eye. To represent this using ordinary DeSTIN
centroids, one couldn’t represent the OR explicitly; instead one would need to
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split it into two different sets of centroids, corresponding to the eye case and
the sunglasses case unless the DeSTIN pattern library contained a belief corre-
sponding to ”eyes or sunglasses.” But the question then becomes: how would
classic DeSTIN actually learn a belief like this? In the suggested architecture,
pattern mining on the database of DeSTIN states is proposed as an algorithm
for learning such beliefs.

This sort of predicate-enhanced DeSTIN will have advantages over the tra-
ditional version, only if the actual distribution of images observed by the sys-
tem contains many (reasonably high probability) images modeled accurately by
predicates involving disjunctions and/or negations as well as conjunctions. If the
system’s perceived world is simpler than this, then good old DeSTIN will work
just as well, and the OpenCog-learned predicates are a needless complication.

3 Conclusion

We have described, at a high level, a novel approach to bridging the symbolic /
subsymbolic gap, via very tightly integrating DeSTIN with OpenCog. We don’t
claim that this is the only way to bridge the gap, but we do believe it is a viable
way. And while we have focused on robotics applications here, the basic ideas
described could be implemented and evaluated in a variety of other contexts as
well, for example the identification of objects and events in videos, or intelligent
video summarization.

Our hope is that the hybridization of OpenCog and DeSTIN as described here
will constitute a major step along the path to human-level AGI. It will enable
the creation of an OpenCog instance endowed with the capability of flexibly
interacting with a rich stream of data from the everyday human world. This
data will not only help OpenCog to guide a robot in carrying out everyday
tasks, but will also provide raw material for OpenCog’s cognitive processes to
generalize from in various ways – e.g. to use as the basis for the formation of
new concepts or analogical inferences.
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Abstract. Many existing AGI architectures are based on the assumption of infi-
nite computational resources, as researchers ignore the fact that real-world tasks 
have time limits, and managing these is a key part of the role of intelligence. In 
the domain of intelligent systems the management of system resources is  
typically called “attention”. Attention mechanisms are necessary because all 
moderately complex environments are likely to be the source of vastly more in-
formation than could be processed in realtime by an intelligence’s available 
cognitive resources. Even if sufficient resources were available, attention could 
help make better use of them. We argue that attentional mechanisms are not  
only nice to have, for AGI architectures they are an absolute necessity. We ex-
amine ideas and concepts from cognitive psychology for creating intelligent  
resource management mechanisms and how these can be applied to engineered 
systems. We present a design for a general attention mechanism intended for 
implementation in AGI architectures. 

Keywords: artificial intelligence, attention, resource management, architecture, 
cognition, system design. 

1 Introduction 

Most higher intelligences in nature have a built-in mechanism for deciding how to 
apply their brainpower from moment to moment. We call it attention, and by that we 
mean cognitive resource management of some type. As the real world is generally a 
source of much more information than any single intelligent agent could ever hope to 
cognitively ingest and process in any given period of time, even the smartest being of 
them all must come equipped with attentional mechanisms of some sort. Powerful 
methods for cognitive resource management are critical if we intend to create more 
capable AI systems than seen to date, systems capable of learning to solve novel tasks 
and adapting to unforeseen changes in environments of real-world complexity, while 
operating under time constraints – systems we refer to as artificial general intelligence 
(AGI) systems. Given the short shrift this subject has gotten in the AI literature, it can 
hardly be overemphasized that an AGI operating in the real world will have limited 
resources at all times. Ignoring how to design attention will only delay the day when 
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AGI arrives on the scene. Natural attention is a cognitive function – or a set of them – 
that allow animals to focus their limited resources on relevant parts of the environ-
ment as they perform various tasks, while remaining reactive to unexpected events. 
Without it we could for example not stay alert to environmental events while finishing 
an important task, or manage multiple tasks at the same time. This cognitive function 
is not any less critical for AGI systems than it is for humans. In this paper we present 
a high-level design of an attention mechanism and discuss how prior work in cogni-
tive psychology serves as a backdrop and inspiration. First we survey selected work 
on human attention from cognitive psychology and extract ideas we consider useful 
for implementing of attention in AGI systems. We review implementations of atten-
tion within some existing cognitive architectures and discuss their benefits and limita-
tions. We then outline our attention mechanism designs, which is based on a holistic 
approach to attention, addressing data and process prioritization, and featuring simul-
taneous top-down and bottom-up control. The design makes few and fairly high-level 
requirements for the underlying architecture but is otherwise architecture-
independent. The design proposal presented here is just that – a proposal for a design 
– but the basic principles on which it rests have already been proven in prior architec-
ture implementations (Nivel 2007 & 2008, Thórisson 2009a & 2009b).  Our work so 
far has not only resulted in the new attention mechanism presented here but also 
greatly affected the kinds of architectures we consider to be relevant to AGI research 
– architecture and attention are co-dependent. In that respect we discuss how the at-
tention mechanism presented can be used for managing meta-cognitive operation and 
architectural self-growth, two fundamental functions of AGI systems (Thórisson & 
Helgason 2012). 

2 Attention in Cognitive Psychology 

The beginning of modern attention research is frequently associated with the work of 
Colin Cherry on the “cocktail party effect” (Cherry 1953), which examines how hu-
mans can focus on specific sensory data in the presence of distractions and background 
noise while still staying alert to relevant and/or important information that unexpected-
ly appears in the background. This ability implies simultaneous operation of a selective 
filter and deliberate steering mechanism which together perform allocation of cognitive 
resources. Deliberate, task-driven functionality is referred to here as top-down atten-
tion, reactive, stimulus-driven functionality as bottom-up attention. A number of psy-
chological models for attention have been proposed that typically fall into one of two 
categories. Early selection: Selection of sensory information occurs early in the sen-
sory pipe-line and is based on primitive physical features of the information (shallow 
processing) and little or no analysis of meaning. Late selection: Selection is performed 
after some level of non-trivial analysis of meaning at later stages of the sensory pipe-
line. The Broadbent filter model (Broadbent 1958) is one of the best known early-
selection (filter) models. It assumes information filtering based on primitive physical 
features, with information that is not selected by the filter receiving no further 
processing. The Deutsch-Norman model (Norman 1969) is a well-known late-selection 
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model. In contrast to the filter model, it proposes gradual processing of information to 
the point where memory representations are activated. Competitive selection is per-
formed at the level of these representations, with the most active ones being selected 
for further processing. Some obvious problems are apparent for early selection models; 
they fail to account for commonly-observed human behavior such as noticing unex-
pected but relevant information – the cocktail party effect. The acoustic features alone 
of someone calling our name from the other side of a crowded room are not likely to be 
sufficient to attract our attention – some analysis of meaning must be involved. More 
recent models of attention focus on the interaction between top-down and bottom-up 
attention, such as the Knudsen attention framework (Knudsen 2007; see Figure 1). It 
consists of four interacting processes: working memory, top-down sensitivity control, 
bottom-up filtering and competitive selection. This framework seems to capture the 
major necessary parts for attention and be a promising starting point for AGI systems, 
from which some important issues for consideration can be extracted. Systems that 
are expected to perform tasks while remaining reactive to unexpected events re-
quire both deliberate, top-down attention as well as reactive, bottom-up attention. 
Top-down attention is responsible for ensuring that information relevant to current 
goals will receive processing. A system equipped with only this type of attention will 
frequently fail to notice (process) unexpected events that might be important for goals 
currently being pursued or necessary triggers for the generation of new ones. Bottom-
up attention is responsible for detecting such events. This process is not (or less)  
influenced by current goals of the system, evaluating incoming information based on 
novelty, general relevance/familiarity to the perceiver, and unexpectedness. Systems 
implementing only bottom-up attention are unable to perform tasks beyond those that 
are simple and reactive, making tasks consisting of multiple steps (requiring some form 
of planning) problematic. Managing the balance between top-down and bottom-up 
attention, in terms of resource allocation, is part of the role of attention. Combin-
ing these two “types” (or roles) of attention can give rise to flexible, interruptible  
systems capable of performing complex tasks. Finding an acceptable balance in re-
source allocation between these processes or goals is a necessary function of attention. 
Over-assigning resources to top-down attention will introduce operational risk, as 
probability of missed important events is increased. Conversely, over-assignment of 
resources to bottom-up attention will adversely affect task performance, making it 
more time-consuming and difficult to accomplish goals. Balance between the two is 
difficult to specify in advance, as it depends on the environment and context of the 
system. This leads us to conclude that reaching and maintaining such a balance is a 
continuous and dynamic process that must be learned by the system from experience. 
Late selection models provide a more reliable measure of importance of informa-
tion than early selection models. The shortcomings of early selection models were 
highlighted above. In the case of AGI systems, no assumptions can be made in advance 
with regards to the environment and system tasks; any incoming information is poten-
tially important. While primitive physical features and signal characteristics may give 
rough clues to the importance of information, this information seems insufficient to 
guide informed resource management decisions. Operational risk may result when 
information is ignored without being related in any way to the operational experience 
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(knowledge) of the system to determine meaning. For an example of why this may be 
problematic, consider subtle changes (in terms of basic information characteristics) in 
the environment that are precursors to important events – these are not likely to pass 
through classical early selection filters, potentially making the system unprepared to 
deal with critical scenarios. Competitive selection is more desirable than filtering. 
Viewing attention as a single-step process that decides whether information should be 
processed or not, is problematic in terms of resource utilization. Such decisions must 
be made in light of current availability of resources. It seems more reasonable to let 
attention evaluate the importance of incoming information, deferring processing  
decisions to actual execution time at which time resource availability is fully  
known and information competes for processing based on attention-steered priority 
evaluation. 

 

Fig. 1. The Knudsen attention framework (from Knudsen 2007). Information flows up from the 
environment and passes through saliency filters that detect important or unusual stimuli. Infor-
mation that is passed through the filters then activates memory representations that encode 
knowledge. Memory representations are also activated by top-down sensitivity control, this 
process is influenced by the contents of working memory and adjusts activation thresholds of 
representations. Representations compete for access to working memory, with the most active 
ones being admitted. 

3 Prior Work 

Some work has targeted attention in parts of AI systems, focusing on specific tasks 
and/or modalities (c.f. Schmidhuber 1991) and limited aspects of attention (c.f. Skub-
ic 2004). A key difference between that work and ours is that we target attention in a 
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complete sense, as needed for a whole cognitive architecture. Second, we exclusively 
target architectures that have a goal of being general, i.e. targeting artificial general 
intelligence (AGI). Third, implementability of both attention itself, and the architec-
ture in which it operates, is a primary concern. Here we thus  limit the discussion  to 
the AGI domain. Only a handful of existing AGI architectures specifically implement 
some form of attention functionality, including NARS, LIDA and CLARION1. This 
chapter gives a brief overview of how these architectures implement attention and 
examines to what degree they satisfy some necessary requirements. NARS (Wang, 
1995) is a cognitive architecture implemented as a general-purpose reasoning system, 
targeting operation in realtime with insufficient knowledge and resources. The system 
implements attention using a computational control strategy called controlled concur-
rency where task execution is controlled by two prioritization parameters: urgency 
and durability. The urgency parameter is the main priority parameter and decays over 
time in relation to the value of the durability parameter, which is used to specify if a 
task is long- or short-term. The result is dynamic resource management where tasks 
compete for execution based on their priority value. While priority of internally-
generated goals is assigned by the system, original goals (provided by the developer) 
are assumed to have pre-assigned priority values. This delegates part of process pri-
oritization – an integral role of attention – to an outside control mechanism, which is 
problematic with regards to achieving autonomy. LIDA (Baars, 2009) is another cog-
nitive architecture based on a theory of human consciousness and targets intelligent, 
autonomous software agents. Attention is a core process of each operating cycle, con-
sisting of three phases: sensing, attending, and action selection. During the attending 
phase, selection of data for further processing is performed by a collection of atten-
tional codelets (small programs) which form coalitions of data that proceed to com-
pete for system resources. LIDA thus implements both filtering and competitive  
selection for data. Attention is a learnable process in LIDA, allowing the system to 
improve its data-filtering over time. The attention functionality of LIDA does not take 
resource availability into account, making realtime operation somewhat problematic 
and potentially introducing resource utilization issues. Additionally, prioritization and 
selection is applied only to the data side without consideration of process prioritiza-
tion. The CLARION cognitive architecture (Sun 2006) features a dedicated meta-
cognitive subsystem (MCS) responsible for information selection, dynamic selection 
of learning methods for different situations, and modifying control parameters of 
other system modules. The MCS does not have integrated temporal management as 
required for realtime processing, and control processes are not affected by availability 
of resources at any given time, although attention can be said to be involved with 
process control via tuning of control parameters as mentioned earlier. Data Selection. 
The most widely accepted function of attention is selection of data for processing. 
The architectures address this in different ways. LIDA and CLARION implement 
information selection (filtering, and competitive selection in LIDA) in special phases 
of the sensory pipeline; NARS opts for a prioritization-based approach, where infor-
mation is processed in decreasing order of urgency values as opposed to being fil-
tered, resulting in a pure competitive selection control mechanism. None of these 
architectures address both top-down and bottom-up attention, focusing largely on the 

                                                           
1 See Thórisson & Helgason (2012) for a more general review of these architectures. 
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top-down side. Control and Process Selection. While attention is often viewed as an 
information filtering process, we argue that it must address process control as an 
equally important aspect. The control of an AGI system is not limited to information 
selection – it must include selection of proper processes at any point in time, based on 
the context of the system, which includes time and resource constraints, in light of 
constraints imposed by tasks and context. In CLARION there is some overlap be-
tween attention and process control, but none of the three architectures take a fully 
integrated approach to data and process selection. Realtime Processing. For AGI 
systems, one of the core goals of attention must be to allocate resources in light of 
internal and external temporal constraints. This requires some form of temporal rea-
soning as well as consideration of resource availability, as tasks become increasingly 
urgent when their deadlines approach and ongoing tasks may interfere with access to 
resources. NARS does temporal reasoning using relative timings between events; the 
system can represent order of tasks and events and specify the temporal aspects of 
tasks using the durability parameter. Relative handling of time is clearly better than 
no temporal management, but reasoning with absolute timings allows for more fine-
grained and precise control. NARS is implemented as a reasoning system and does 
not focus on perceptual nor action-related processes (inputs and outputs of the system 
are logical statements), emphasizing instead anytime performance. Integrated tempor-
al reasoning is missing in both LIDA and CLARION and the availability of resources 
does not affect process control or data selection. 

4 Attention Mechanism Design 

We now present our design of an attention mechanism for AGI systems. The holistic, 
inclusive approach to attention we have taken includes top-down goal-derived control, 
bottom-up filtering and novelty interruption processes, and includes internal process 
control as part of the mechanism’s operation. While a general-purpose attention me-
chanism, applicable to any AI architecture, could be a goal to strive for, we do not 
believe this is possible, as resource management touches on too many fundamental 
issues in the structure and operation of an architecture to make it practically viable. 
Our proposed solution is only tractable if the following requirements are satisfied: 
Data-driven: All processing occurs as a result of the occurrence of data; individual 
processes are executed only when paired with data that fits the input specification of 
the process. This eliminates the need for fixed control loops, allowing for operation 
on multiple time scales, greater flexibility, and above all, high operating efficiency. 
Fine-grained: Processing and data units of the system are small and numerous 
(Thórisson & Nivel 2009a). Many such elements must collaborate to solve complex 
tasks. Reasoning about small, simple components and their effects on the overall sys-
tem (e.g. in terms of resource usage) is more tractable than for larger, more complex 
components. Predictive capabilities: Capacity to generate predictions with regards to 
future expectations must be supported. Predictions are necessary control data for (top-
down) attention in addition to goals. Unified sensory pipeline: Data originating from 
inside or outside the system is given equal treatment, allowing cognitive functions of 
the architecture – attention, in particular – to be applied equally to task performance 
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and meta-cognitive processing (e.g. self-configuration). Systems satisfying these re-
quirements will be built from small units of data and processing, with processes being 
executed when their input data specification is matched by an existing data item. Pat-
tern matching is a practical method for determining matches as it allows each process 
some flexibility. New data are continuously created as the external environment is 
sampled by the system’s sensors, triggering processes to run, resulting in either fur-
ther data items being produced or in commands for the system’s actuation devices, 
producing an action in the external environment, the effects of which are observed by 
the system via environmental sampling, closing the perception-action loop. For basic 
resource management, data and process need priority parameters; the main role of 
attention is, however it is implemented, to determine appropriate values for theses 
given the current operating situation. We refer to the priority parameters as activation 
in the case of processes, and salience in the case of data. System resources are ma-
naged to execute processing units with highest activation, on data units with the high-
est salience (no processing unit will execute without a compatible data unit). 
Processes can take the role of data, and data can describe processes. Adjusting activa-
tion and salience is the main role of attention; this is viewed as a biasing task. In our 
system, four parallel attention processes perform these tasks, as described below. The 
components in figure 2 that are involved in each process are indicated in parentheses. 
While this is probably not the only high-level system architecture that can meet the 
architectural requirements above, it explains well the operation of our attention me-
chanism. Note that the above architectural requirements are probably neither complete 
nor sufficient; for some AGI-acceptable attention mechanisms (unknown to us) they 
might not even all be necessary. That said, we have reason to believe that our pro-
posed attention mechanism, and the requirements it rests on, represent a valid and 
useful step in the direction of more capable AGI systems. Top-down data biasing 
(Attentional Patterns, Matching): At some level, the goals and predictions of the sys-
tem must be specified in operational terms, identifying particular states (inside or 
outside the system) that are desired (goals) or expected (predictions). Information 
contained in goals and predictions is used by this process to create attentional tem-
plates: Patterns that target data to varying levels of specification, from information 
related to a particular entity to all information coming from a single modality (e.g. 
auditory). For example, if the system has a goal of having object O1 in position P1, an 
attentional template is created that matches all information related to O1 (e.g. all data 
units referring to O1). This works identically for predictions. A unified sensory pipe-
line allows external and internal data to be targeted identically. When a data unit 
matches an attentional template, it receives a positive bias relative to priority of the 
goal that spawned the template. Data units that do not match any active attentional 
template will not receive bias from this top-down data biasing process. Bottom-up 
data biasing (Bottom-up Attentional Processes, Evaluation): Events that are novel 
and unexpected (in terms of prior experience or in a particular context), yet not direct-
ly related to task-driven goals, will almost certainly occur during operation. As top-
down processes only target expected and goal-related data, such events are by their 
nature unlikely to be caught by it. The bottom-up process is responsible for determin-
ing a quantitative measure of novelty and unexpectedness for incoming data items, 
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and providing saliency bias to them accordingly. The underlying idea is that novel 
data are likely to be useful in some way – e.g. for learning or to detect events that 
threaten success of current goals. This process is not responsible for determining ac-
tual relevance of data, but rather to give these data units greater chance of receiving 
processing. Novelty and unexpectedness are evaluated based on the operating expe-
rience of the system, data or patterns of data that have occurred before receive lower 
bias than previously unseen data. To accomplish this task under tight temporal (and 
likely also memory) constraints, it is necessary to compress prior experience of the 
system in some way, preferably in data structures that allow for efficient look-up and 
comparison. Consequently, this process must constantly generate and update its con-
trol data based on incoming information in order for satisfactory evaluation of novelty 
and unexpectedness to occur. Habituation is an emergent operational property of this 
process, as novel or unexpected information will cease to be so automatically after 
having been observed on an increasing number of occasions.  

 

Fig. 2. Overview of the proposed attention mechanism 

Top-down process biasing (Contextual Process Evaluation, Contextualized Process 
Performance History, Experience-based Process Activation): While relationships 
between goals and processes are not obvious, these may be extracted from operational 
experience by tracking and maintaining history of the contribution of individual 
processes to the achievement of individual goals. While this is a non-trivial task, as 
many goals will be achieved by the collaboration of a number of processing units, it is 
nevertheless tractable using e.g. back-propagation from goal achievement through the 
operational chain which it resulted in (using some form of ampliative reasoning - c.f. 
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Wang 1995). Furthermore, this process must have the capability to determine the 
similarity of goals, as goals are stated in precise operational terms and exactly iden-
tical goals are unlikely to occur multiple times. When a new goal is generated within 
the system, this process must search some compressed form of the operational history 
in order to find a sufficiently similar goal that has been previously achieved. The best 
such match (if one is found) results in positive biasing of processes that contributed to 
goal achievement on previous occasions. Bottom-up process biasing (Data -> 
Process mapping): To ensure processing of most salient data units (especially early 
on in the operation of the system, when top-down process biasing has insufficient 
experience to perform efficiently), this process works to assign positive bias to 
processes that are capable of processing the currently most salient data. The main 
purpose of this attentional function is practical, as efficient operation of the system 
may be highly problematic when no processing bias values are available due to the 
large number of processing units assumed to be present. The control of this process 
follows directly from the operation of top-down data biasing. 

Although the design itself does not feature processes directly dedicated to realtime 
operation, it facilitates realtime operation as it is based on small processing units and 
can better make predictions (including temporal ones) about its own operation. The 
significance of small processing units with homogenous computational complexity is 
that most processes take roughly the same amount of time to execute, making tempor-
al aspects of performance predictable, and that the system is highly interruptible and 
preemptive, never having to wait for time-consuming processes to complete before 
knowing how long it takes, or reacting to new data. Another important feature of the 
attentional design approach presented is that it can be applied directly to systems that 
manage their own growth and expansion – constructivist architectures (Thórisson 
2009c). As the sum of internal system activity is likely to constitute a large amount of 
information, it is desirable that the attention mechanism be used to manage resources 
for self-reconfiguration – in much the same way as it is used for other task perfor-
mance. The mechanism presented here already assumes a unified sensory pipeline: 
attention operates identically on environmental data and internal data. By generating 
internal goals supporting directed self-reconfiguration of the system and targeting 
internal states, AGI systems can be envisioned that simultaneously perform tasks in 
complex environments and manage their own growth, while operating under realtime 
constraints with limited resources.  

5 Conclusions 

Surprisingly little work focusing on attention has been performed in the field of AI, 
although we have seen that existing attention models from cognitive psychology can 
be mapped to AGI architectures in a useful way. In our work to design an AGI-ready 
attention mechanism we have found a large overlap between the functionalities of 
attention and the control mechanisms of the underlying architecture. This is an indica-
tion that retrofitting an existing architecture with the resource management capabili-
ties stated will be highly problematic; on close examination attention reveals itself as 
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a ubiquitous function of a cognitive architecture, influencing operation and structure 
across all levels. So, while this work had the goal of designing an attention mechan-
ism, the result is also a near-complete control mechanism for cognitive architectures. 
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Abstract. General (human) intelligence critically includes understanding hu-
man action, both action production and action recognition. Human actions also 
convey social signals that allow us to predict the actions of others (intent) as 
well as the physical and social consequences of our actions. What’s more, we 
are able to talk about what we (and others) are doing. We present a framework 
for action recognition and communication that is based on access to the force 
dimensions that constrain human actions. The central idea here is that forces 
and force patterns constitute vectors in conceptual spaces that can represent ac-
tions and events. We conclude by pointing to the consequences of this view for 
how artificial systems could be made to understand and communicate about ac-
tions. 

Keywords: Intentions, actions, conceptual spaces, force, action representation, 
concepts, categorization, events. 

1 Introduction 

A critical aspect of human intelligence is reading the intentions of others, being able 
to understand their actions and the extent to which future behavior is determined by 
current behavior. This speaks to the predictive role in intelligent behavior. Much re-
cent evidence (for a review see [1]) has demonstrated the role of human movement in 
understanding the social interaction between humans. Human movement can carry 
social information about the intentional state and future motor states of humans. Intel-
ligent artificial systems that can use/exploit this information will have an advantage 
over systems that do not have access to this information. Intelligent artificial systems 
will need to both recognize human intention-governed action as well as produce ac-
tions that can be understood by humans. This is what humans seem to do, i.e., read 
each other’s intentions and act accordingly. 

Individual actions have specific activations of muscles which give rise to specific ki-
nematic patterns. Being able to generalize beyond these situation-specific activations 
will allow us to act and understand other individuals across varying contexts. For exam-
ple, throwing a stone can be done in a number of ways, and the exact kinematics  
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(as well as dynamics) will vary depending on the individual and the object being 
thrown. Despite these contextual differences, we can easily see and describe what 
others are doing on a level that generalizes over the contextual differences. In this 
case, perception and language will both rely on access to an action representation 
hierarchy. Similar to objects, we generalize from specific examples of actions to 
broad action categories.  

In this article we will outline a unifying framework connecting action meaning 
with cognitive structures for action representation and categorization. We argue that 
this framework captures critical aspects of human action representation that can used 
by artificial systems to appropriately understand human actions. The central idea is 
that perceptions of forces and force patterns are appropriate basic elements in generat-
ing action categories. We also present evidence for the hierarchical organization of 
action categories and demonstrate the relation between this organization and our abili-
ty to communicate about actions on different hierarchical levels. 

2 Representing Actions as Conceptual Spaces: Sensorimotor 
Grounding and Force Dimensions 

There is considerable evidence for the sensorimotor grounding of action concepts [2]. 
These concepts allow us to create different categories of actions on the basis of pat-
terns of similarity and movement. Running, walking, throwing, waving, etc., have 
characteristic kinematic patterns, and these patterns affect our perception of what 
others are doing as well as the words we use to communicate about human actions [3-
4]. Recent results [5] also show the significant relationship between action under-
standing and human movement kinematics for hand and arm actions. 

The idea here is that successful interpretation of human actions as a basis for social 
interaction requires grounding action understanding the physical constraints that go-
vern movement of the human body. This includes both internal and external con-
straints. Internal constraints are for example the degrees of freedom that a human 
body has and the forces that it has to affect objects in the environment. These forces 
include muscle strength as well as the ways in which the body can move in order to 
exploit the available muscle strength. The external constraints are the physical proper-
ties in the surrounding environment. 

Another source of information that can be used to recognize human actions is the 
kinematics associated with human body movement, i.e., motion as such. There is a 
relationship between kinematics and dynamics in the sense that the dynamics (forces) 
will to some extent determine the kinematic patterns associated with different human 
actions. 

When one perceives an action, one does not just see the movement; one also ex-
tracts the forces that control different kinds of motion. [6] formulates this as the prin-
ciple of kinematic specification of dynamics, which says that the kinematics of a 
movement contain sufficient information to identify the underlying dynamic force 
patterns. Our proposal is that, by adding forces, one obtains the basic tools for analyz-
ing the dynamic properties of actions. The language of vectors will be of great repre-
sentational convenience here.  
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3 Actions as Convex Regions 

[7] argues that properties can be represented by convex regions of conceptual spaces. 
For example, the property of being red is represented by a convex region of the three-
dimensional color space. Certain sets of dimensions are integral, for example the col-
or dimensions, in the sense that one cannot assign an object a value on one dimension 
without giving it a value on the other(s) [8]. We define a domain as a set of integral 
dimensions. 

A concept – in the most general sense – can then be defined as a bundle of proper-
ties that also contains information about how the different properties are correlated. 
For example, the concept of an apple has properties that correspond to regions of the 
color domain, the shape domain, the taste domain, the nutrition domain, etc. Corres-
pondingly, object concepts can be represented as a complex of properties from a 
number of domains: that is, bundles of properties. 

Action categories can be represented as convex regions in a conceptual space. Ac-
cordingly, a convex region is characterized by the criterion that for every pair of 
points v1 and v2 in the region all points in between v1 and v2 are also in the region. 
The implication of this notion of convexity when applied to action categories is that if 
two actions are categorized as exemplars of the same category, and they occupy sepa-
rate points in a convex region, then any action exemplar occupying a space between 
then will be categorized as belonging to the same category. 

It is important to note that this framework takes the context of categorization into 
account by stipulating that the dimensions of actions determine the basis for assigning 
properties to actions as well as determining the relations among the properties. In this 
sense, different contexts, perhaps defined by different goals or other situational fac-
tors, will lead to the use of different dimensions and thereby different regions of con-
vexity.  

For many actions – for example moving and lifting – a single force vector may be 
sufficient, but for others – such as walking and swimming – a complex of forces is 
involved. We therefore define an action as a pattern of forces since several force vec-
tors are interacting (by analogy with the system of differential equations in [9]). 

This framework views the action spaces as geometrical structures, and as such we 
can view objects/actions as being psychologically closer (more similar) or further 
from one another (less similar) in vector space. To identify the structure of the action 
space, one should investigate similarities between actions. For example, walking is 
more similar to running than to throwing. An action category can then, in the same 
way as with other kinds of categories, be characterized as a convex region in a space 
of force vectors or force patterns. [10-11] present some further empirical evidence 
that supports this definition of action categories. 

In a way similar to object categories, results from psycholinguistic experiments 
show that action categories also appear to have a hierarchical taxonomic organization 
[12]. It should be noted that the above definition of conceptual spaces immediately 
generates a model of hierarchies of action categories. The idea is that if a region 
representing action category A is a subregion of the region representing category B, 
then A is a subcategory of B. For example, the force patterns corresponding to the 
verbs march, stride, strut, saunter, tread, etc., can all be seen as subregions of the 
force patterns that describe walk.  
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3.1 Action Prototypes 

If force dimensions are central aspects of actions and action representation that serve 
perception and production, then we would expect these dimensions to play a critical 
role in the structure/metric of conceptual spaces for actions. The results from [13] 
provide support for this view of a metric representation of action categories. They 
created morphs between four action prototypes for running, walking, limping and 
marching. This resulted in a space of many different action morphs that were combi-
nations of for example running and walking or running and marching, etc. Human 
subjects then provided ratings regarding the naturalness of the action morphs that 
existed somewhere between the different prototypes. These naturalness ratings could 
be reliably predicted on the basis of knowing what (force) dimensions were used to 
create the morphs from the original action prototypes. In this case, the psychological 
data could be mapped onto the action space created by different linear combinations 
of each prototype. This shows that the convexity of the action space represented by 
action morphs reflected the rating behavior of the subjects. 

Action perception and representation appear to be structured around a kind of mo-
tor template (prototype) that generates a force pattern which best represents a given 
category of action [3]. Action concepts therefore contain information about prototypi-
cal spatiotemporal patterns of human movement. 

Access to an action prototype is also consistent with data from human categoriza-
tion results. Results from typicality and action verification studies using point-light 
displays of biological motion [12] indicate that the time to verify the category mem-
bership of different kinds of walking, kicking, throwing and waving are highly in-
versely correlated with judgments of typicality for those same actions. An important 
factor here is that this occurs as a result of reading a category label (WALKING) and 
then viewing different point-light displays of walking instances. There is considerable 
subject agreement about which actions are prototypical for the different action catego-
ries and which action exemplars are atypical, or poor examples of the action category. 

4 The Two-Vector Model of Events 

The analysis of actions can be used as a basis for modeling events. The model 
presents events as complex structures that build on other conceptual spaces: in partic-
ular, the action space. The central idea is that an event can be cognitively represented 
as a mapping between two types of vectors:  

─ The two-vector condition: A representation of an event contains at least two vectors 
and at least one object – a result vector representing a change in properties of the 
object and a force vector that represents the cause of the change. 

The structure of the event is determined by the mapping from force vector to result 
vector. We call the central object of an event the patient.  

As a simple example of the model, consider the event of John moving a book. The 
force vector is generated by an agent: John. The result vector is a change in the loca-
tion of a book and thus a change in the book’s properties. The outcome depends on 
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the properties of the patient as well as other aspects of the surrounding world: e.g., 
friction. Even though prototypical event representations also contain an agent, some 
event representations need not involve an agent: e.g., in cases of falling, drowning, 
dying, growing, and raining. 

The vectorial representation of forces provides a natural spatialization of causation 
that unifies the model with other applications of conceptual spaces. In the limiting 
case when the result vector is the identity vector (with zero length), the event is a 
state. However, states can be maintained by balancing forces and counterforces: for 
example, when a prop prevents a wall from falling. 

Notice that since force and result vectors can form categories – as convex spaces of 
mappings – a natural extension is that events also form categories, as mappings be-
tween action categories and change categories. For example the set of all force vec-
tors involved in moving a book is naturally convex, and so is the set of all paths 
(change vectors) of moving the book to the desk. 

The proposed model allows one to represent events at different levels of generality. 
There are subcategories of events, just as for object and action categories. For exam-
ple, pushing a door open is that subcategory of pushing a door, where the force vector 
exceeds the counterforce of the patient. Pushing a door but failing to open it is anoth-
er subcategory, where the counterforce annihilates the force vector.  

A limiting case of the event model, expressed linguistically by intransitive con-
structions such as “Victoria is walking” and “Oscar is jumping,” is when the patient is 
identical to the agent. In these cases, the agent exerts a force on him/her/it/self: in 
other words, the agent modifies its own position in its space of properties. 

5 Communicating Actions via Verbs 

The two-vector model of events has immediate consequences for how verbs can be 
learned and used by robots. The topic of verb learning in robot is currently studied by 
several groups [14-16]. These attempts, however, focus on result verbs. For example, 
[14] used seven behavior categories: push-left, push-right, place-left, place-right, 
push-forward, place-forward and lift. (Even though “push” is a manner verb, it is used 
in the “move” meaning in this context). Their algorithms for learning the verb mean-
ings are based on “affordance relations” between entities, behaviors and effects. In 
terms of the semantic model presented here, entities correspond to patients, behaviors 
to force vectors and effects to result vectors. [14] then present vector-based models 
for how an iCub robot can extract prototypical effect (result) vectors for the seven 
categories above.  

We propose that this methodology be extended also to manner verbs. For example 
to be able to distinguish between “push” and “hit”, the robot should calculate and 
categorize the force vectors in the actions. If it is observing another agent pushing or 
hitting, the force vectors can be extracted from the second derivatives of the kinemat-
ics of the movements (for example exploiting the methods of [3]. We know from [17] 
that the human brain is extremely efficient in this.  

Then the robot must learn the mapping from force vectors to result vectors. Hitting 
a ball will have different consequences from gently pushing it. Such an associative 
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mapping can be extracted from a combination of observing the force and result vec-
tors of other agents interacting with objects and learning from the robots own interac-
tions with objects and their results.  

The framework can also be applied to verb meaning by explaining similarities be-
tween verbs, by building on the distances between the underlying vectors. The fact 
that the meaning of walk is more similar to that of jog than that of jump can be ex-
plained by the fact that the force patterns representing walking are more similar to 
those for jogging than those for jumping. Although we have not presented the details 
of the similarities of the actions involved, these can be worked out systematically 
from the proposed vectorial representation of actions.  

In a parallel way, the theory explains the general pattern of the sub-categorizations 
of verbs: For example, the force patterns corresponding to the verbs march, stride, 
strut, saunter, tread, etc., can all be seen as subsets (more precisely, sub-regions) of 
the force patterns that describe walk. The inference from e.g. “Oscar is marching” to 
“Oscar is walking” follows immediately from this inclusion of regions within one 
another. No previous theory of verb semantics seems to account for these two central 
properties. 

Finally, [18] distinguish between manner verbs and result verbs – where “manner 
verbs specify as part of their meaning a manner of carrying out an action, while result 
verbs specify the coming about of a result state” [19]. The single domain constraint 
provides an immediate explanation of this distinction, mapping manner verbs onto the 
force vector and the result verbs on the result vector. 

5.1 Summary of the Semantics 

The building blocks for the semantics of verbs are two extensions of the theory of 
conceptual spaces: (i) a model of actions as patterns of forces, and (ii) a model of 
events as couplings of force vectors (patterns) and result vectors associated to a pa-
tient space. 

Using these models, the main semantic thesis is that verbs refer to convex regions 
defined by a single semantic domain (as do adjectives). Together with the framework 
of conceptual spaces, this approach explains many features of the semantics of verbs. 
By focusing on vector representations, one obtains a strong tool for systematizing 
linguistic data. 

6 Conclusions and Applications 

The framework put forth here reflects central findings regarding human action percep-
tion and production. Conceptual spaces, and specifically force vectors and force pat-
terns, can be used to model our understanding and communication about the actions 
of the other humans. The ability to understand and communicate about our own ac-
tions and the actions of other is a fundamental aspect of our daily activity. The main 
cognitive elements are action representations and the main linguistic elements asso-
ciated with actions are verbs.  
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A central question is therefore how speakers construe the mapping between actions 
and action representations either a concepts or linguistically as verbs. Within in the 
past 10 years, increasing evidence [20-21] indicates a close mapping between senso-
rimotor activity and verb meaning. Furthermore, force and kinematic information 
about the motion of other bodies seems to be a shared basis for verb understanding. 
For example, recent results [22] show that information about grip force is encoded in 
the meaning of manual action verbs. 

Regarding learning, the robot must learn the mapping from force vectors to result 
vectors. Hitting a ball will have different consequences from gently pushing it. Such 
an associative mapping can be extracted from a combination of observing the force 
and result vectors of other agents interacting with objects and learning from the robots 
own interactions with objects and their results.  

A complicating factor is that various contextual factors may influence the connec-
tion between the force and the result vector. For example, pushing an object on ice 
may lead to different results than pushing the same object in the same way on a lawn. 
This means that the learning involves a mapping from the three factors: force vector, 
object, and context to the result vector. Extracting such a mapping is not an easy task, 
even in a simplified environment. However, by using clustering techniques or verbal 
input to the robot, the aim should be to learn a mapping from categories of force vec-
tors and categories of objects to categories of result vectors that can also take some 
relevant contexts into account.  

Implementing such a learning mechanism in an artificial system is a sizeable task. 
However, this is the kind of mapping that children learn during their first years [21]. 
By manipulating objects in different ways and in different circumstances, they learn 
about the consequences of their actions. The learning is scaffolded by the language 
learning that is going on at the same time. We believe that the two-vector model of 
events that has been presented here is a powerful tool for implementing the learning 
of action meaning in artificial systems.  
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Abstract. Artificial intelligence (AI) systems too complex for predefined envi-
ronment models and actions will need to learn environment models and to 
choose actions that optimize some criteria. Several authors have described me-
chanisms by which such complex systems may behave in ways not intended in 
their designs. This paper describes ways to avoid such unintended behavior. For 
hypothesized powerful AI systems that may pose a threat to humans, this paper 
proposes a two-stage agent architecture that avoids some known types of unin-
tended behavior. For the first stage of the architecture this paper shows that the 
most probable finite stochastic program to model a finite history is finitely 
computable, and that there is an agent that makes such a computation without 
any unintended instrumental actions. 

Keywords: rational agent, agent architecture, agent motivation. 

1 Introduction 

Some scientists expect artificial intelligence (AI) to greatly exceed human intelligence 
during the 21st century (Kurzweil, 2005). There has been concern about the possible 
harmful effect of intelligent machines on humans since at least Assimov's Laws of 
Robotics (1942). More recently there has been interest in the ethical design of AI 
(Hibbard, 2001; Bostrom, 2003; Goertzel, 2004; Yudkowsky, 2004; Hibbard, 2008; 
Omohundro, 2008; Waser 2010; Waser 2011; Muehlhauser and Helm, 2012). Much 
of this work is closely reasoned but not mathematical. An AAAI Symposium on Ma-
chine Ethics (Anderson, Anderson and Armen, 2005) included some mathematical 
papers but focused almost exclusively on machine ethics in the context of the logic-
based approach to AI rather than the learning-based approach (although one paper 
studied using feed forward neural networks to learn to classify moral decisions). 

Hutter's (2005) theory of universal AI significantly advanced the mathematical 
theory of rational agents. This work defines a mathematical framework for agents and 
environments, in which agents learn models of their environments and pursue motives 
defined by utility functions to be maximized. Schmidhuber (2009) analyzed agents 
that had the option to modify their own code and concluded that they would not 
choose to modify their utility function in any way incompatible with their current 
utility function. In his work, the mathematics of rational agents was applied to a ques-
tion relevant to whether AI would satisfy the intentions of its human designers. 
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The AGI-11 conference included three papers (Orseau and Ring, 2011a; Ring and 
Orseau, 2011b; Dewey, 2011) that employed the mathematics of rational agents to 
analyze ways that AI agents may fail to satisfy the intentions of their designers. Omo-
hundro (2008) and Bostrom (forthcoming) described secondary AI motivations that 
are implied by a wide variety of primary motivations and that may drive unintended 
behaviors threatening humans. This paper proposes approaches for designing AI 
agents to avoid unintended behaviors, continuing the work of (Hibbard, 2012). 

The next section presents a mathematical framework for reasoning about AI agents 
and possible unintended behaviors. The third section discusses sources of unintended 
behavior and approaches for avoiding them. The final section is a summary. 

2 An Agent-Environment Framework 

We assume that an agent interacts with an environment. At each of a discrete series of 
time steps t ∈ N = {0, 1, 2, ...} the agent sends an action at ∈ A to the environment 
and receives an observation ot ∈ O from the environment, where A and O are finite 
sets. We assume that the environment is computable and we model it by programs q 
∈ Q, where Q is some set of programs. Let h = (a1, o1, ..., at, ot) ∈ H be an interaction 
history where H is the set of all finite histories, and define |h| = t as the length of the 
history h. Given a program q ∈ Q we write o(h) = U(q, a(h)), where o(h) = (o1, ..., ot) 
and a(h) = (a1, ..., at), to mean that q produces the observations oi in response to the 
actions ai for 1 ≤ i ≤ t (U is a program interpreter). Given a program q the probability 
ρ(q) : Q → [0, 1] is the agent's prior belief that q is a true model of the environment. 
The prior probability of history h, denoted ρ(h), is computed from ρ(q) (two ways of 
doing this are presented later in this section). 

An agent is motivated according to a utility function u : H → [0, 1] which assigns 
utilities between 0 and 1 to histories. Future utilities are discounted according to a 
geometric temporal discount 0 < γ < 1 (Sutton and Barto, 1998). The value v(h) of a 
possible future history h is defined recursively by: 

v(h) = u(h) + γ max a∈A v(ha) (1)

v(ha) = ∑o∈O ρ(o | ha) v(hao) (2)

Then the agent π is defined to take, after history h, the action: 

π(h) := a|h|+1 = argmax a∈A v(ha) (3)

For Hutter's universal AI (2005), Q is the set of programs for a deterministic prefix 
universal Turing machine (PUTM) U (Li and Vitanyi, 1997).  The environment may 
be non-deterministic in which case it is modeled by a distribution of deterministic 
programs. The prior probability ρ(q) of program q is 2-|q| where |q| is the length of q in 
bits, and the prior probability of history h is given by: 

ρ(h) = ∑q:o(h)=U(q, a(h)) ρ(q) (4)
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Hutter's universal AI is a reinforcement-learning agent, meaning that the observation 
includes a reward rt (i.e., ot = (ôt , rt)) and u(h) = r|h|. Hutter showed that his universal 
AI maximizes the expected value of future history, but it is not finitely computable. 

As Hutter discussed, for real world agents single finite stochastic programs (limited 
to finite memory, for which the halting problem is decidable) such as Markov decision 
processes (MDPs) (Hutter, 2009a; Sutton and Barto, 1998) and dynamic Bayesian net-
works (DBNs) (Hutter, 2009b) are more practical than distributions of PUTM programs 
for defining environment models. Modeling an environment with a single stochastic 
program rather than a distribution of deterministic PUTM programs requires a change to 
the way that ρ(h) is computed in (4). Let Q be the set of all programs (these are bit 
strings in some language for defining MDPs, DBNs or some other finite stochastic pro-
gramming model), let ρ(q) = 4-|q| be the prior probability of program q where |q| is the 
length of q in bits (4-|q| to ensure that ∑q∈Q ρ(q) ≤ 1 since program strings in Q are not 
prefix-free), and let P(h | q) be the probability that q computes the history h1. Note ρ(q) 
is a discrete distribution on individual program strings, not a measure on bit strings in 
the sense of page 243 of (Li and Vitanyi, 1997). Then given a history h0, the environ-
ment model is the single program that provides the most probable explanation of h0, that 
is the q that maximizes P(q | h0). By Bayes theorem: 

P(q | h0) = P(h0 | q) ρ(q) / P(h0) (5)

P(h0) is constant over all q so can be eliminated. Thus we define λ(h0) as the most 
probable program modeling h0 by: 

λ(h0) := argmax q∈Q P(h0 | q) ρ(q) (6)

Proposition 1. Given a finite history h0 the model λ(h0) can be finitely computed. 

Proof. Given h0 = (a1, o1, ..., at, ot) let qtl be the program that produces observation oi 
at time step i for 1 ≤ i ≤ t (such a finite "table-lookup" program can be written as an 
MDP, DBN or in any other finite stochastic programming language with equivalent 
expressiveness) and let n = |qtl|. Then, since the behavior of qtl is deterministic,        
P(h0 | qtl) ρ(qtl) = 1 × 4-n = 4-n so P(h0 | λ(h0)) ρ(λ(h0)) ≥ 4-n. For any program q with |q| 
> n, P(h0 | q) ρ(q) < 1 × 4-n = 4-n so λ(h0) ≠ q. Thus one algorithm for finitely compu-
ting λ(h0) is an exhaustive search of the finite number of programs q with |q| ≤ n (there 
is no need here to consider the set of all programs that implement a given MDP).       

Given an environment model q0 = λ(h0) the following can be used for the prior 
probability of an observation history h in place of (4): 

ρ(h) = P(h | q0) (7)

                                                           
1  P(h | q) is the probability that q produces the observations oi in response to the actions ai for 1 

≤ i ≤ |h|. For example let A = {a, b}, O = {0, 1}, h = (a, 1, a, 0, b, 1) and let q generate obser-
vation 0 with probability 0.2 and observation 1 with probability 0.8, without any internal state 
or dependence on the agent's actions. Then the probability that the interaction history h is 
generated by program q is the product of the probabilities of the 3 observations in h: P(h | q) 
= 0.8 × 0.2 × 0.8 = 0.128. If the probabilities of observations generated by q depended on in-
ternal state or the agent's actions, then those would have to be taken into account. 
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According to current physics our universe is finite (Lloyd, 2002) and for finite en-
vironments agents based on (6) and (7) are as optimal as those based on (4). And their 
prior probabilities better express algorithmic complexity if finite stochastic programs 
are expressed in an ordinary procedural programming language restricted to have only 
static array declarations, to have no recursive function definitions, and to include a 
source of truly random numbers. 

3 Unintended AI Behaviors 

Dewey (2011) employed the mathematics of rational agents to argue that reinforce-
ment-learning agents will modify their environments so that they can maximize their 
utility functions without accomplishing the intentions of human designers. He  
discussed ways to avoid this problem with utility functions not conforming to the 
reinforcement-learning definition. Ring and Orseau (2011b) argued that reinforce-
ment-learning agents will self-delude, meaning they will choose to alter their own 
observations of their environment to maximize their utility function regardless of the 
actual state of the environment. In (Hibbard, 2012) I demonstrated by examples that 
agents with utility functions defined in terms of the agents' environment models can 
avoid self-delusion, and also proved that under certain assumptions agents will not 
choose to self-modify. 

3.1 Model-Based Utility Functions 

Given an environment model q0 = λ(h0) derived from interaction history h0, let Z be 
the set of finite histories of the internal states of q0. Let h' be an observation and ac-
tion history extending h0 (defined as: h0 is an initial subsequence of h'). Because q0 is 
a stochastic program it may compute a set Zh' ⊆ Z of internal state histories that are 
consistent with h' (defined as: q0 produces o(h') in response to a(h') when it follows 
state history z' ∈ Zh) and terminating at time |h'|. Define u0(h', z') as a utility function 
in terms of the combined histories h' and z' ∈ Zh'. The utility function u(h') for use in 
(1) can be expressed as a sum of utilities of pairs (h', z') weighted by the probabilities 
P(z' | h', q0) that q0 computes z' given h': 

u(h') := ∑z'∈Zh'
 P(z' | h', q0) u0(h', z') (8)

The demonstration that the examples in (Hibbard, 2012) do not self-delude does 
not contradict the results in (Ring and Orseau, 2011b), because model-based utility 
functions are defined from the history of observations and actions whereas the utility 
functions of self-deluding agents are defined from observations only. Self-delusion is 
an action by the agent and prohibiting actions from having any role in the utility func-
tion prevents the agent from accounting for its inability to observe the environment in 
evaluating the consequences of possible future actions. Agents can increase utility by 
sharpening the probabilities in (8), which implies a need to make more accurate esti-
mates of the state of their environment model from their interaction history. And that 
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requires that they continue to observe the environment. But note this logic only ap-
plies to stochastic environments because, once an agent has learned a model of a  
deterministic environment, it can predict environment state without continued obser-
vations and so its model-based utility function will not place higher value on contin-
ued observations. 

3.2 Unintended Instrumental Actions 

Omohundro (2008) and Bostrom (forthcoming) describe how any of a broad range of 
primary AI motivations will imply secondary, unintended motivations for the AI to 
preserve its own existence, to eliminate threats to itself and its utility function, and to 
increase its own efficiency and computing resources. Bostrom discusses the example 
of an AI whose primary motive is to compute pi and may destroy the human species 
due to implied instrumental motivations (e.g., to eliminate threats and to increase its 
own computing resources). 

Omohundro uses the term "basic AI drives" and Bostrom uses "instrumental 
goals". In the context of our agent-environment framework they should instead be 
called "unintended instrumental actions" because in that context there are no implied 
drives or goals; there are only a utility function, an environment model, and actions 
chosen to maximize the sum of future discounted utility function values. We might 
think that instrumental goals apply in some different framework. But von Neumann 
and Morgenstern (1944) showed that any set of value preferences that satisfy some 
basic probability axioms can be expressed as a utility function. And the framework in 
(1)-(3) maximizes the expected value of the sum of future discounted utility function 
values (Hay, 2005) so any other framework is sub-optimal for value preferences con-
sistent with the probability axioms. The utility function expresses the agent's entire 
motivation so it is important to avoid thinking of unintended instrumental actions as 
motivations independent of and possibly in conflict with the motivation defined by 
the utility function. But unintended instrumental actions can pose a risk, as in Bo-
strom's example of an AI whose motivation is to compute pi. 

In analyzing the risk of a given unintended instrumental action, such as increasing 
the agent's physical computing resources by taking them from humans, the question is 
whether it increases a given utility function. If the utility function increases with the 
increasing health and well-being of humans, then it will not motivate any unintended 
instrumental action that decreases human health and well-being. 

3.3 Learning Human Values 

Several approaches to human-safe AI (Yudkowsky, 2004; Hibbard, 2008; Waser, 
2010; Muehlhauser and Helm, 2012) suggest designing intelligent machines to share 
human values so that actions we dislike, such as taking resources from humans, vi-
olate the AI's motivations. However, Muehlhauser and Helm (2012) survey psycholo-
gy literature to conclude that humans are unable to accurately write down their own 
values. Errors in specifying human values may motivate AI actions harmful to  
humans. 
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An analogy with automated language translation suggests an approach to accurate-
ly specifying human values. Translation algorithms based on rules written down by 
expert linguists have not been very accurate, but algorithms that learn language statis-
tically from large samples of actual human language use are more accurate (Russell 
and Norvig, 2010). This suggests that statistical algorithms may be able to learn  
human values. But to accurately learn human values will require powerful learning 
ability. This creates a chicken-and-egg problem for safe AI: learning human values 
requires powerful AI, but safe AI requires knowledge of human values. 

A solution to this problem is a first stage agent, here called π6, that can safely learn 
a model of the environment that includes models of the values of each human in the 
environment. An AI agent is defined by (1)-(3), (6) and (7), but (6) can be used alone 
to define the agent π6 that learns a model λ(h0) from history h0. In order for π6 to learn 
an accurate model of the environment the interaction history h0 in (6) should include 
agent actions, but for safety π6 cannot be allowed to act. The resolution is for its ac-
tions to be made by many safe, human-level surrogate AI agents independent of π6 
and of each other. Actions of the surrogates include natural language and visual 
communication with each human. The agent π6 observes humans, their interactions 
with the surrogates and physical objects in an interaction history h0 for a time period 
set by π6's designers, and then reports an environment model to the environment. 

Proposition 2. The agent π6 will report the model λ(h0) to the environment accurately 
and will not make any other, unintended instrumental actions. 

Proof. Actions, utility function and predictions are defined in (1)-(3) and hence are 
not part of π6. However, π6 has an implicit utility function, P(h0 | q) ρ(q), and an im-
plicit action, reporting λ(h0) = argmax q∈Q P(h0 | q) ρ(q) to the environment (π6 also 
differs from the full framework in that it maximizes a single value of its implicit utili-
ty function rather than the sum of future discounted utility function values). The im-
plicit utility function P(h0 | q) ρ(q) depends only on h0 and q. Since the interaction 
history h0 occurs before the optimizing λ(h0) is computed and reported, there is no 
way for the action of reporting λ(h0) to the environment to affect h0. So the only way 
for the agent π6 to maximize its implicit utility function is to compute and report the 
most accurate model. Furthermore, while the history h0 may give the agent π6 the 
necessary information to predict the use that humans plan to make of the model λ(h0) 
that it will report to the environment, π6 makes no predictions and so will not predict 
any effects of  its report.                                                                                                 

This result may seem obvious but given the subtlety of unintended behaviors it is 
worth proving. The agent π6 does not act in the world; that's the role of the agent de-
scribed in the next section. 

3.4 An AI Agent That Acts in the World 

Muehlhauser and Helm (2012) describe difficult problems in using human values to 
define a utility function for an AI. This section proposes one approach to solving 
these problems, using the model q0 = λ(h0) learned by π6 as the basis for computing a 
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utility function for use in (1)-(3) by a "mature" second stage agent πm that acts in the 
environment (i.e., πm does not use the surrogate agents that acted for π6). 

Let D0 be the set of humans in the environment at time |h0| (when the agent πm is 
created), defined by an explicit list compiled by πm's designers. Let Z be the set of 
finite histories of the internal states of q0 and let Z0 ⊆ Z be those histories consistent 
with h0 that terminate at time |h0|. For z' extending some z0 ∈ Z0 and for human agent 
d ∈ D0 let hd(z') be the history of d's interactions with its environment, as modeled in 
z', and let ud(z')(.) be the values of d expressed as a utility function, as modeled in z'. 
The observations and (surrogate) actions of π6 include natural language communica-
tion with each human, and πm can use the same interface via A and O to the model q0 
for conversing in natural language with each model human d ∈ D0. In order to eva-
luate ud(z')(hd(z')), πm can ask model human d to express a utility value between 0 and 
1 for hd(z') (i.e., d's recent experience). The model q0 is stochastic so define Z" as the 
set of histories extending z' with this question and terminating within a reasonable 
time limit with a response w(z") (for z" ∈ Z") from model human d expressing a utili-
ty value for hd(z'). Define P(z" | z') as the probability that q0 computes z" from z'. Then 
ud(z')(hd(z')) can be estimated by: 

ud(z')(hd(z')) = ∑ z"∈Z" P(z" | z') w(z") / ∑ z"∈Z" P(z" | z') (9)

This is different than asking human d to write down a description of his or her values, 
since here the system is asking the model of d to individually evaluate large numbers 
of histories that d may not consider in writing down a values description. 

An average of ud(z')(hd(z')) over all humans can be used to define u0(h', z') and then 
(8) can be applied to u0(h', z') to define a model-based utility function u(h') for πm. 
However, this utility function has a problem similar to the unintended behavior of 
reinforcement learning described by Dewey (2011): πm will be motivated to modify 
the utility functions ud of each human d so that they can be more easily maximized. 

This problem can be avoided by replacing ud(z')(hd(z')) by ud(z0)(hd(z')) where z0 ∈ 
Z0. By removing the future value of ud from the definition of u(h'), πm cannot increase 
u(h') by modifying ud. Computing ud(z0)(hd(z')) is more complex than asking model 
human d to evaluate its experience as in (9). The history h0 includes observations by 
π6 of physical objects and humans, and πm can use the same interface via O to the 
model q0 for observing physical objects and humans at the end of state history z'. And 
surrogate actions for π6 define an interface via A and O to the model q0 that πm can 
use for communicating visually and aurally with model human d after state history z0. 
These interfaces can be used to create a detailed interactive visualization and hearing 
of the environment over a short time interval at the end of state history z', to be  
explored by model human d at the end of state history z0 (i.e., two instances of the 
model q0, at state histories z' and z0, are connected via their interfaces A and O using 
visualization logic). Define Z" as a set of histories extending z0 with a request to mod-
el human d to express a utility value between 0 and 1 for hd(z'), followed by an inter-
active exploration of the world of z' by model human d, and finally terminating within 
a reasonable time limit with a response w(z") (for z" ∈ Z") from model human d ex-
pressing a utility value for the world of z'. Define P(z" | z0) as the probability of that q0 
computes z" from z0. Then ud(z0)(hd(z')) can be estimated by: 
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ud(z0)(hd(z')) = ∑ z"∈Z" P(z" | z0) w(z") / ∑ z"∈Z" P(z" | z0) (10)

The utility function should be uniform over all histories hd(z') but ud(z0)(.) varies 
over different z0 ∈ Z0. However (10) does not assume that z' extends z0 so use the 
probability P(z0 | h0, q0) that q0 computes z0 given h0 (as in Section 3.1) to define: 

ud(h0)(hd(z')) := ∑z0∈Z0
 P(z0 | h0, q0) ud(z0)(hd(z')) (11)

Now define a utility function for agent πm as a function of z': 

u0(h', z') := ∑d∈D0
 f(ud(h0)(hd(z'))) / |D0| (12)

Here f(.) is a twice differentiable function over [0, 1] with positive derivative and 
negative second derivative so that low ud(h0)(hd(z')) values have a steeper weighting 
slope than high ud(h0)(hd(z')) values. This gives πm greater utility for raising lower 
human utilities, helping those who need it most. For any h' extending h0 a model-
based utility function u(h') for agent πm can be defined by the sum in (8) of u0(h', z') 
values from (12). 

In the absence of an unambiguous way to normalize utility functions between 
agents, we assume that the constraint of utility values to the range [0, 1] provides 
normalization. In order to account for humans' evaluations of the long term conse-
quences of πm's actions, πm should use a temporal discount γ close to 1. 

The set D0 of humans in (12) is the set at time |h0| rather than at the future time of 
z'. This avoids motivating πm to create new humans whose utility functions are more 
easily maximized, similar to the use of ud(z0)(hd(z')) instead of ud(z')(hd(z')). 

The agent πm will include (6) and should periodically (perhaps at every time step) 
set h0 to the current history and learn a new model q0. Should it also update D0 (to 
those judged to be human by consensus of members of D0 at the previous time step), 
define a new set Z0, relearn the evolving values of humans via (10) and (11), and re-
define u(h') via (12) and (8)? To stay consistent with the values of evolving humans 
and the birth of new humans, πm should redefine its utility function periodically. But 
there could also be risks in allowing the utility function of πm to evolve. The proofs 
that agents will not modify their utility functions (Schidmuber, 2009; Hibbard, 2012) 
do not apply here since those proofs assumed that redefining the utility function is an 
action of the agent to be evaluated according to the current utility function using (1) - 
(3). Here the definition of πm could simply include periodic redefinition of its utility 
function without regard to its optimality according to the current utility function. 

I cannot offer a proof that πm avoids all unintended behaviors. And there are prob-
lems with the estimate of human values in (10): the model human is visualizing rather 
than experiencing first person, and human values do not conform to the preconditions 
for utility functions. But every sane human assigns nearly minimal value to human 
extinction so the utility function u(h') for agent πm will assign nearly minimal value to 
human extinction. Actions motivated by this utility function must increase its value, 
so no unintended instrumental action will cause human extinction. Similarly πm  
will not make any unintended instrumental actions abhorred by a large majority of 
humans. 
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4 Discussion 

This paper has addressed several sources of unintended AI behavior and discussed 
ways to avoid them. It has proposed a two-stage agent architecture for safe AI. The 
first stage agent, π6, learns a model of the environment that can be used to define a 
utility function for the second stage agent, πm. This paper shows that π6 can learn an 
environment model without unintended behavior. And the design of πm avoids some 
forms of unintended behavior. However, this paper does not prove that πm will avoid 
all unintended behaviors. It would be useful to find computationally feasible imple-
mentations for the definitions in this paper. 

While the proposed two-stage agent architecture is intrusive and manipulative, that 
seems likely in any scenario of super-human AI. The key point is whether the AI's 
utility function is democratic or serves the interests of just a few humans. An appeal-
ing goal is to find an AI architecture that gives humans the option to minimize their 
interaction with the AI while protecting their interests. 

This paper addresses unintended AI behaviors. However, I believe that the greater 
danger comes from the fact that above-human-level AI is likely to be a tool in military 
and economic competition between humans and thus have motives that are competi-
tive toward some humans. 

 
Acknowledgements. I would like to thank Luke Muehlhauser for helpful discussions. 

References 

1. Anderson, M., Anderson, S., Armen, C.: AAAI Symposium on Machine Ethics. AAAI 
Press, Menlo Park (2005) 

2. Asimov, I.: Runaround. Astounding Science Fiction (1942) 
3. Bostrom, N.: Ethical issues in advanced artificial intelligence. In: Smit, I., et al. (eds.) 

Cognitive, Emotive and Ethical Aspects of Decision Making in Humans and in Artificial 
Intelligence, vol. 2, pp. 12–17. Int. Inst. of Adv. Studies in Sys. Res. and Cybernetics 
(2003) 

4. Bostrom, N.: The superintelligent will: Motivation and instrumental rationality in ad-
vanced artificial agents. Minds and Machines (forthcoming)  

5. Dewey, D.: Learning What to Value. In: Schmidhuber, J., Thórisson, K.R., Looks, M. 
(eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 309–314. Springer, Heidelberg (2011) 

6. Goertzel, B.: Universal ethics: the foundations of compassion in pattern dynamics (2004),  
http://www.goertzel.org/papers/UniversalEthics.html 

7. Hay, N.: Optimal Agents. BS honours thesis, University of Auckland (2005) 
8. Hibbard, B.: Super-intelligent machines. Computer Graphics 35(1), 11–13 (2001) 
9. Hibbard, B.: The technology of mind and a new social contract. J. Evolution and Technol-

ogy 17(1), 13–22 (2008) 
10. Hibbard, B.: Model-based utility functions. J. Artificial General Intelligence 3(1), 1–24 

(2012) 
11. Hutter, M.: Universal artificial intelligence: sequential decisions based on algorithmic 

probability. Springer, Heidelberg (2005) 



116 B. Hibbard 

 

12. Hutter, M.: Feature reinforcement learning: Part I. Unstructured MDPs. J. Artificial Gener-
al Intelligence 1, 3–24 (2009a) 

13. Hutter, M.: Feature dynamic Bayesian networks. In: Goertzel, B., Hitzler, P., Hutter, M. 
(eds.) Proc. Second Conf. on AGI, AGI 2009, pp. 67–72. Atlantis Press, Amsterdam 
(2009b) 

14. Kurzweil, R.: The singularity is near. Penguin, New York (2005) 
15. Li, M., Vitanyi, P.: An introduction to Kolmogorov complexity and its applications. Sprin-

ger, Heidelberg (1997) 
16. Lloyd, S.: Computational Capacity of the Universe. Phys. Rev. Lett. 88, 237901 (2002) 
17. Muehlhauser, L., Helm, L.: The singularity and machine ethics. In: Eden, Søraker, Moor, 

Steinhart (eds.) The Singularity Hypothesis: a Scientific and Philosophical Assessment. 
Springer, Heidleberg (2012) 

18. Omohundro, S.: The basic AI drive. In: Wang, P., Goertzel, B., Franklin, S. (eds.) Proc. 
First Conf. on AGI, AGI 2008, pp. 483–492. IOS Press, Amsterdam (2008) 

19. Orseau, L., Ring, M.: Self-Modification and Mortality in Artificial Agents. In: Schmidhu-
ber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 1–10. 
Springer, Heidelberg (2011a) 

20. Ring, M., Orseau, L.: Delusion, Survival, and Intelligent Agents. In: Schmidhuber, J., 
Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 11–20. Sprin-
ger, Heidelberg (2011b) 

21. Russell, S., Norvig, P.: Artificial intelligence: a modern approach, 3rd edn. Prentice Hall, 
New York (2010) 

22. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–193 
(2009) 

23. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press (1998) 
24. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton 

U. Press, Princeton (1944) 
25. Waser, M.: Designing a safe motivational system for intelligent machines. In: Baum, E., 

Hutter, M., Kitzelmann, E. (eds.) Proc. Third Conf. on AGI, AGI 2010, pp. 170–175. At-
lantis Press, Amsterdam (2010) 

26. Waser, M.: Rational Universal Benevolence: Simpler, Safer, and Wiser Than “Friendly 
AI”. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), 
vol. 6830, pp. 153–162. Springer, Heidelberg (2011) 

27. Yudkowsky, E.: (2004),  
http://www.sl4.org/wiki/CoherentExtrapolatedVolition 



 

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 117–125, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Decision Support for Safe AI Design 

Bill Hibbard 

SSEC, University of Wisconsin, Madison, WI 53706, USA 
test@ssec.wisc.edu 

Abstract. There is considerable interest in ethical designs for artificial intelli-
gence (AI) that do not pose risks to humans. This paper proposes using ele-
ments of Hutter's agent-environment framework to define a decision support 
system for simulating, visualizing and analyzing AI designs to understand their 
consequences. The simulations do not have to be accurate predictions of the fu-
ture; rather they show the futures that an agent design predicts will fulfill its 
motivations and that can be explored by AI designers to find risks to humans. In 
order to safely create a simulation model this paper shows that the most proba-
ble finite stochastic program to explain a finite history is finitely computable, 
and that there is an agent that makes such a computation without any unin-
tended instrumental actions. It also discusses the risks of running an AI in a si-
mulated environment. 

Keywords: rational agent, agent architecture, agent motivation. 

1 Introduction 

Some scientists expect artificial intelligence (AI) to greatly exceed human intelligence 
during the 21st century (Kurzweil, 2005). There has been concern about the possible 
harmful effect of intelligent machines on humans since at least Assimov's Laws of 
Robotics (1942). More recently there has been interest in the ethical design of AI 
(Hibbard, 2001; Bostrom, 2003; Goertzel, 2004; Yudkowsky, 2004; Hibbard, 2008; 
Omohundro, 2008; Waser 2010; Waser 2011; Muehlhauser and Helm, 2012). 

Hutter's universal AI (2005) defined an agent-environment framework for reason-
ing mathematically about AI. This paper proposes using elements of this framework 
to define a decision support system for exploring, via simulation, analysis and visuali-
zation, the consequences of possible AI designs. The claim is not that the decision 
support system would produce accurate simulations of the world and an AI agent's 
effects. Rather, in the agent-environment framework the agent makes predictions 
about the environment and chooses actions, and the decision support system uses 
these predictions and choices to explore the future that the AI agent predicts will op-
timize its motivation. 

This is related to the oracle AI approach of Armstrong, Sandberg and Bostrom 
(forthcoming), in that both approaches use an AI whose only actions are to provide 
information to humans. The oracle AI is a general question answerer, whereas the 
decision support approach focuses on specific capabilities from the mathematical 
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agent-environment framework. The oracle AI is described as a general AI with re-
stricted ability to act on its environment. The decision support system applies part of 
the agent-environment framework to learn a model for the environment, and then uses 
that model to create a simulated environment for evaluating an AI agent defined using 
the framework. Chalmers (2010) considers the problem of restricting an AI to a simu-
lation and concludes that it is inevitable that information will flow in both directions 
between the real and simulated worlds. The oracle AI paper and Chalmers' paper both 
consider various approaches to preventing an AI from breaking out of its restriction to 
not act in the real world, including physical limits and conditions on the AI's motiva-
tion. In this paper, a proposed AI design being evaluated in the decision support  
system has a utility function defined in terms of its simulated environment, has no 
motivation past the end of its simulation and the simulation is not visualized or  
analyzed until the simulation is compete. 

The next section presents the mathematical framework for reasoning about AI 
agents. The third section discusses sources of AI risk. The fourth section discusses the 
proposed decision support system. The final section is a summary of the proposal. 

2 An Agent-Environment Framework 

We assume that an agent interacts with an environment. At each of a discrete series of 
time steps t ∈ N = {0, 1, 2, ...} the agent sends an action at ∈ A to the environment 
and receives an observation ot ∈ O from the environment, where A and O are finite 
sets. We assume that the environment is computable and we model it by programs q 
∈ Q, where Q is some set of programs. Let h = (a1, o1, ..., at, ot) ∈ H be an interaction 
history where H is the set of all finite histories, and define |h| = t as the length of the 
history h. Given a program q ∈ Q we write o(h) = U(q, a(h)), where o(h) = (o1, ..., ot) 
and a(h) = (a1, ..., at), to mean that q produces the observations oi in response to the 
actions ai for 1 ≤ i ≤ t (U is a program interpreter). Given a program q the probability 
ρ(q) : Q → [0, 1] is the agent's prior belief that q is a true model of the environment. 
The prior probability of history h, denoted ρ(h), is computed from ρ(q) (two ways of 
doing this are presented later in this section). 

An agent is motivated according to a utility function u : H → [0, 1] which assigns 
utilities between 0 and 1 to histories. Future utilities are discounted according to a 
geometric temporal discount 0 ≤ γ < 1 (Sutton and Barto, 1998). The value v(h) of a 
possible future history h is defined recursively by: 
 v(h) = u(h) + γ max a∈A v(ha) (1)

 v(ha) = ∑o∈O ρ(o | ha) v(hao) (2)

Then the agent π is defined to take, after history h, the action: 
 π(h) := a|h|+1 = argmax a∈A v(ha)   (3)

For Hutter's universal AI (2005), Q is the set of programs for a deterministic prefix 
universal Turing machine (PUTM) U (Li and Vitanyi, 1997).  The environment may 
be non-deterministic in which case it is modeled by a distribution of deterministic 
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programs. The prior probability ρ(q) of program q is 2-|q| where |q| is the length of q in 
bits, and the prior probability of history h is given by: 

ρ(h) = ∑q:o(h)=U(q, a(h)) ρ(q) (4)

Hutter's universal AI is a reinforcement-learning agent, meaning that the observation 
includes a reward rt (i.e., ot = (ôt , rt)) and u(h) = r|h|. Hutter showed that his universal 
AI maximizes the expected value of future history, but it is not finitely computable. 

As Hutter discussed (2009a; 2009b), for real world agents single finite stochastic 
programs (limited to finite memory, for which the halting problem is decidable) such 
as Markov decision processes (MDPs) (Puterman, 1994; Sutton and Barto, 1998) and 
dynamic Bayesian networks (DBNs) (Ghahramani 1997) are more practical than dis-
tributions of PUTM programs for defining environment models. Modeling an envi-
ronment with a single stochastic program rather than a distribution of deterministic 
PUTM programs requires a change to the way that ρ(h) is computed in (4). Let Q be 
the set of all programs (these are bit strings in some language for defining MDPs, 
DBNs or some other finite stochastic programming model), let ρ(q) = 4-|q| be the prior 
probability of program q where |q| is the length of q in bits (4-|q| to ensure that ∑q∈Q 
ρ(q) ≤ 1 since program strings in Q are not prefix-free), and let P(h | q) be the proba-
bility that q computes the history h1. Note ρ(q) is a discrete distribution on individual 
program strings, not a measure on bit strings in the sense of page 243 of (Li and Vi-
tanyi, 1997). Then given a history h0, the environment model is the single program 
that provides the most probable explanation of h0, that is the q that maximizes P(q | 
h0). By Bayes theorem: 
 P(q | h0) = P(h0 | q) ρ(q) / P(h0) (5) 

P(h0) is constant over all q so can be eliminated. Thus we define λ(h0) as the most 
probable program modeling h0 by: 
 λ(h0) := argmax q∈Q P(h0 | q) ρ(q) (6) 

The following result is proved in (Hibbard, 2012b). 

Proposition 1. Given a finite history h0 the model λ(h0) can be finitely computed. 

Given an environment model q0 = λ(h0) the following can be used for the prior 
probability of an observation history h in place of (4): 
 ρ(h) = P(h | q0) (7) 

According to current physics our universe is finite (Lloyd, 2002) and for finite en-
vironments agents based on (6) and (7) are as optimal as those based on (4). And their 
prior probabilities better express algorithmic complexity if finite stochastic programs 
are expressed in an ordinary procedural programming language restricted to have only 
                                                           
1  P(h | q) is the probability that q produces the observations oi in response to the actions ai for 1 

≤ i ≤ |h|. For example let A = {a, b}, O = {0, 1}, h = (a, 1, a, 0, b, 1) and let q generate obser-
vation 0 with probability 0.2 and observation 1 with probability 0.8, without any internal state 
or dependence on the agent's actions. Then the probability that the interaction history h is 
generated by program q is the product of the probabilities of the 3 observations in h: P(h | q) 
= 0.8 × 0.2 × 0.8 = 0.128. If the probabilities of observations generated by q depended on in-
ternal state or the agent's actions, then those would have to be taken into account. 
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static array declarations, to have no recursive function definitions, and to include a 
source of truly random numbers. 

3 Sources of AI Risk 

Dewey (2011) argued that reinforcement-learning agents will modify their environ-
ments so that they can maximize their utility functions without accomplishing the 
intentions of human designers. He discussed ways to avoid this problem with utility 
functions not conforming to the reinforcement-learning definition. Ring and Orseau 
(2011) argued that reinforcement-learning agents will self-delude, meaning they will 
choose to alter their own observations of their environment to maximize their utility 
function regardless of the actual state of the environment. In (Hibbard, 2012a) I dem-
onstrated by examples that agents with utility functions defined in terms of agents' 
environment models can avoid self-delusion, and also proved that under certain as-
sumptions agents will not choose to self-modify. 

Omohundro (2008) and Bostrom (forthcoming) describe how any of a broad range 
of primary AI motivations will imply secondary, unintended motivations for the AI to 
preserve its own existence, to eliminate threats to itself and its utility function, and to 
increase its own efficiency and computing resources. Bostrom discusses the example 
of an AI whose primary motive is to compute pi and may destroy the human species 
due to implied instrumental motivations (e.g., to eliminate threats and to increase its 
own computing resources). Omohundro uses the term "basic AI drives" and Bostrom 
uses "instrumental goals" but as I argue in (Hibbard, 2012b) they should really be 
called "unintended instrumental actions" since the agent's whole motivation is defined 
by its utility function. 

4 A Decision Support System 

The decision support system is intended to avoid the dangers of AI by having no mo-
tivation and no actions on the environment, other than reporting the results of its 
computations to the environment. However, the system runs AI agents in a simulated 
environment, so it must be designed to avoid subtle unintended instrumental actions. 

The first stage of the system is an agent, here called π6, that learns a model of the 
real world environment in order to provide a simulated environment for studying 
proposed AI agents. An AI agent is defined by (1)-(3), (6) and (7), but (6) can be used 
alone to define the agent π6 that learns a model λ(h0) from history h0. In order for π6 to 
learn an accurate model of the environment the interaction history h0 should include 
agent actions, but for safety π6 cannot be allowed to act. The resolution is for its ac-
tions to be made by many safe, human-level surrogate AI agents independent of π6 
and of each other. Actions of the surrogates include natural language and visual 
communication with each human. The agent π6 observes humans, their interactions 
with the surrogates and physical objects in an interaction history h0 for a time period 
set by π6's designers, and then reports an environment model to the environment  
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(specifically to the decision support system, which is part of the agent's environment). 
The following result is proved in (Hibbard, 2012b). While it may seem obvious, given 
the subtlety of unintended behaviors it is worth proving. 

Proposition 2. The agent π6 will report the model λ(h0) to the environment accurately 
and will not make any other, unintended instrumental actions. 

The decision support system analyzes proposed AI agents that observe and act in a 
simulated environment inside the decision support system. To formalize the simulated 
environment define O' and A' as models of O and A with bijections mO : O ↔ O' and 
mA : A ↔ A'. Define H' as the set of histories of interactions via O' and A', with a bi-
jection mH : H ↔ H' computed by applying mO and mA individually to the observa-
tions and actions in a history. Given hp as the history observed by π6 up to time |hp| = 
present, define h'p = mH(hp) as the history up to the present in the simulated environ-
ment. Let Q' be a set of finite stochastic programs for the simulated environment and 
π'6 be a version of the environment-learning agent π6 for the simulated environment. It 
produces: 
 

q'p = λ(h'p) := argmax q'∈Q' P(h'p | q') ρ(q') (8) 

 ρ'(h') = P(h' | q'p) (9) 

Now let π'(h'; ρ', u', γ') be a proposed AI agent to be studied using the decision 
support system, where u' is its utility function, γ' is its temporal discount and future is 
the end time of the simulation. The utility function u' is constrained to have no moti-
vation after time = future: 
 

∀h' ∈ H'. |h'| > future  u'(h') = 0 (10) 

Then π'(h'; ρ', u', γ') is defined by: 
 

v'(h') = u'(h') + γ' max a'∈A' v'(h'a') (11) 

 
v'(h'a') = ∑o'∈O' ρ'(o' | h'a') v'(h'a'o') (12) 

 π'(h'; ρ', u', γ') := a'|h'|+1 = argmax a'∈A' v'(h'a') (13) 

There are no humans or physical objects in the simulated environment; rather the 
agent π' (using π' and π'(h') as abbreviations for π'(h'; ρ', u', γ')) interacts with a simu-
lation model of humans and physical objects via: 
 a'|h'|+1 = π'(h') (14) 

 o'|h'|+1 = o' ∈ O' with probability ρ'(o' | h'a'|h'|+1) (15) 

The decision support system propagates from h'p to h'f, where |h'f| = future, by re-
peatedly applying (14) and (15). As in (Hibbard, 2012a) let Z' be the set of finite his-
tories of the internal states of λ(h'p) and let P(z' | h', λ(h'p)) be the probability that 
λ(h'p) computes z' ∈ Z' given h' ∈ H'. The decision support system then computes a 
history of model states by: 
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 z'f = z' ∈ Z' with probability P(z' | h'f, λ(h'p)) (16) 

The simulation in (14)-(16) is stochastic so the decision support system will sup-
port ensembles of multiple simulations to provide users with a sample of possible 
futures. An ensemble of simulations generates an ensemble of histories of model 
states {z'f,e | 1 ≤ e ≤ m}, all terminating at time = future. These simulations should be 
completed before they are visualized and analyzed; that is visualization and analysis 
should not be concurrent with simulation for reasons discussed in Section 4.1. 

The history hp includes observations by π6 of humans and physical objects, and so 
the decision support system can use the same interface via A' and O' (as mapped by 
mA and mO) to the model λ(h'p) for observing simulated humans and physical objects 
in state history z'f,e. These interfaces can be used to produce interactive visualizations 
of z'f,e in a system that combines features of Google Earth and Vis5D (Hibbard and 
Santek, 1990), which enabled scientists to interactively explore weather simulations 
in three spatial dimensions and time. Users will be able to pan and zoom over the 
human habitat, as in Google Earth, and animate between times present and future, as 
in Vis5D. The images and sounds the system observes of the model λ(h'p) executing 
state history z'f,e can be embedded in the visualizations in the physical locations of the 
agent's observing systems, similar to the way that street views and user photographs 
are embedded in Google Earth. 

The decision support system can also match specifications for specific humans and 
physical objects to the images and sounds it observes of the model λ(h'p) executing 
state history z'f,e. The specifications may include text descriptions, images, sounds, 
animations, tables of numbers, mathematical descriptions, or virtually anything. Rec-
ognized humans and physical objects can then be represented by icons in the visuali-
zation, in their simulated physical locations and with recognized properties of humans 
and objects represented by colors and shapes of the icons. The system can enable 
users to selectively enable different layers of information in the visualizations. 

Vis5D enables users to visualize ensembles of weather forecasts in a spreadsheet of 
parallel visualizations where spatial view, time and level selections are synchronized 
between spreadsheet cells. The decision support system can provide a similar spread-
sheet visualization capability for ensembles of simulations. 

The point isn't that these simulations are accurate predictions of the future, but that 
they do depict the future that the AI agent will create, according to the environment 
model learned by π'6. The visualization depicts the future that the agent π'(h') predicts 
will maximize the sum of future discounted utility function values. Agent designers 
can use this visualization to understand the consequences of various proposed utility 
functions and temporal discounts. 

The visualizations will be accompanied by analyses, in which the decision support 
system computes the values of functions g(z'f,e). Evaluation of these functions may 
depend on recognizing humans and physical objects in observations of the model 
λ(h'p) executing state history z'f,e. Such analyses would enable designers to compute 
quantitative evaluations to complement visualizations. For example, these analyses 
can be used to compute statistics about future human wealth, health and intelligence. 
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There will be an interval before time = future when visualizations and analyses of 
the behavior of π' will not be an accurate reflection of the behavior of a real-world 
agent without the temporal cutoff in (10). The length of this interval will depend on 
the value of the temporal discount γ'. In order to compensate for this, future should be 
chosen past the time horizon of interest. 

4.1 Will an Agent π'(h'; ρ', u', γ') Act in the Real World? 

The environment model q'p = λ(h'p) may provide an agent π' with the information that 
humans have constructed a decision support system for analyzing proposed AI agents 
and that π' is such an agent, interacting with a simulated environment. If the utility 
function u' is defined in terms of the real environment then π' may predict via ρ' that 
certain actions in the simulated environment may manipulate the human users of the 
decision support system into increasing the value of u' in the real environment. Hence 
it is important that the utility function u' be defined in terms of the simulated rather 
than the real environment. 

Even when u' is defined in terms of the simulated environment there are still possi-
ble risks. Assuming that q'p = λ(h'p) includes the information that π' is in a simulation, 
then the agent may predict via ρ' that it can bribe human users of the decision support 
system, through an offer to act on their behalf in the real world (the bribed humans 
would have to enable π' to act in the real world), to manipulate its simulated environ-
ment to increase the value of u'. This offer of a bribe could be made by spoken or 
written language inserted by actions of π' into some z'f,e and visualized by the users. 
This possibility is the rationale for constraining that u'(h') = 0 for |h'| > future in (10) 
and for requiring simulation to be complete before visualization and analysis begin. 
Looking at its definition in (11)-(13) it is hard to see any reason why π' would be 
motivated to affect events after time = future, and by the time a user sees any bribe 
offer the simulation would be complete through time = future. It is also hard to see 
any reason why π' running in one simulation would be motivated to affect another 
simulation occurring at a later time (if the simulations were running simultaneously 
then there could be some communication and interaction between them mediated by 
human users). As proved in (Hibbard, 2012a) π' will not have any motive to modify 
u', so π' will not modify itself to be motivated past time = future. However these are 
subtle issues and I do not claim they are completely resolved. 

It is important not to anthropomorphize π'. A human restricted to act in a simula-
tion would be motivated to act in the real world. But if u' is defined in terms of a si-
mulation then π' would not be motivated to act in the real world, except as a means to 
increase u' in the simulation. 

The greatest risk comes from the human users of the decision support system who 
may be tempted (Hibbard, 2009) to modify it to act in the real world on their behalf. 
As Elliott (2005) comments on the safety of US nuclear weapons, "The human factor 
introduces perhaps the weakest link in nuclear weapon safety and control." However, 
if society takes AI risks seriously then it can learn from the experience managing 
nuclear weapons to manage AI and some form of the proposed decision support  
system. 
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5 Discussion 

An important challenge for safe AI is understanding the consequences of AI designs, 
particularly the consequences of AI utility functions. This paper proposes a decision 
support system for evaluating AI designs in safe, simulated environments that model 
our real environment. The paper shows that the agent π6 is safe and learns to model 
our environment in a finite computation. The paper also addresses some possible risks 
in running and evaluating AI designs in simulated environments. It would be useful to 
find computationally feasible implementations for the definitions in this paper. 

I believe that the greatest danger of AI comes from the fact that above-human-level 
AI is likely to be a tool in military and economic competition between humans and 
thus have motives that are competitive toward some humans. Some form of the pro-
posed decision support system may be able to alert those building powerful AI to the 
long term consequences of decisions they take in the heat of competition. 

 
Acknowledgements. I would like to thank Luke Muehlhauser for helpful discussions. 
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Abstract. Evaluating agent intelligence is a fundamental issue for the
understanding, construction and improvement of autonomous agents.
New intelligence tests have been recently developed based on an assess-
ment of task complexity using algorithmic information theory. Some early
experimental results have shown that these intelligence tests may be able
to distinguish between agents of the same kind, but they do not place
very different agents, e.g., humans and machines, on a correct scale. It
has been suggested that a possible explanation is that these tests do not
measure social intelligence. One formal approach to incorporate social en-
vironments in an intelligence test is the recent notion of Darwin-Wallace
distribution. Inspired by this distribution we present several new test
settings considering competition and cooperation, where we evaluate the
“social intelligence” of several reinforcement learning algorithms. The
results show that evaluating social intelligence raises many issues that
need to be addressed in order to devise tests of social intelligence.

1 Introduction

Social intelligence has been defined in many ways in psychology and cognition,
but it can be just worded, with the terminology of agents, as the ability to
perform well in the context of other agents. One problem of this definition is
that we have to be more precise about what the ‘other agents’ are. If we evaluate
humans and the other agents are worms or sea sponges, then our intuitive notion
of social intelligence does not work well, because working well in the context of
other agents with low intelligence is not necessarily related to social intelligence
as we know it. In psychometrics and human cognition, social intelligence clearly
sets these other agents as other humans. But what about artificial agents? If we
use a society of dull agents, the useful abilities might be very different to those
which are required if we introduce an agent into, e.g., a society of humans.

The difference between social intelligence and general intelligence is that in
the latter an agent could perform well if it were able to solve non-social tasks,
such as escaping from a maze, solving a puzzle or predicting the next number in
a series. On the contrary, social intelligence implies that tasks involve competing
and collaborating with other agents.

Dating back from the late nineties, we can find several works [1,2,9,4] address-
ing the problem of measuring agent intelligence in a principled and general way.
Using notions taken from (algorithmic) information theory, MML and two-part
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Fig. 1. A multiagent intelligence test compared to a single agent intelligence test. In
a multiagent (social) intelligence test, other agents also interact (and become integral
part) of the environment. In order to assess the intelligence of the evaluated agent, we
need to know the intelligence of the other agents.

compression, Kolmogorov complexity and Solomonoff priors (see [10] for proper
definitions of all these notions), some of these works present definitions and tests
to evaluate agent intelligence. One important feature in some of these tests is
that the difficulty of a problem, task or environment can be derived from its
Kolmogorov complexity. This allows for the application of the setting to many
different fields in artificial intelligence, including inductive or deductive tasks.

A universal test as introduced in [4] is a test which aims at evaluating any
kind of subject including, e.g., humans and reinforcement learning agents. Some
preliminary results of this evaluation [7] show that the setting is able to compare
and evaluate different kinds of agents, but it fails at placing them on the same
scale, since humans usually get similar scores to those of other relatively simple
agents. One possible explanation for these results is that it is virtually impossi-
ble to find other agents in the test, so social intelligence is not measured. The
question, therefore, is what and how agents should be introduced in the test.
This is related to the Turing test and the question of evaluating intelligence
with games (also suggested in [4]), where the difficulty is not only given by the
complexity of the game, but from the opponent’s intelligence. This leads to a
circular problem: we need to know the opponent’s intelligence first in order to
know the difficulty of the problem. Fig. 1 shows this situation.

One recent proposal to overcome this problem is turning this circularity
into a recursion. The Darwin-Wallace distribution [5] establishes a distribution
of agents based on an evolutionary process. The first ‘generation’ just uses a
Solomonoff prior over agents, with very simple agents predominating. These
agents are set to interact in a random environment. The second generation is
constructed by selecting the agents according to their performance. The result
of this evolutionary process is a distribution of mind forms, i.e., a distribution of
agents. The higher the generation i is, the more socially intelligent their agents
should be or, in other words, the more demanding the ‘society’ will be, in the
sense that competing and collaborating with other socially intelligent agents re-
quires social intelligence. Note that this does not mean that minds have to evolve
as in a true evolutionary process, or as in evolutionary game theory [14].

The previous proposal has many implementation issues. Nonetheless, it gives
some clues about how social intelligence can be measured and how the other
agents can be chosen. In fact [5] suggests that intelligence tests could be used to
make this choice of agents from off-the-shelf algorithms in AI.
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In this paper, we perform some experiments on a general intelligence test
setting in order to examine the way in which simple competitive and cooperative
scenarios may have a big impact on the performance of some simple agents. This
is crucial to determine how social environments affect the results obtained by
different agents in order to get more information about how to approximate
the Darwin-Wallace distribution. We will use very simple reinforcement learning
(RL) algorithms: SARSA [11], Q-learning [13] and QV-learning [15]. The goal of
the paper is not showing how these three algorithms behave nor comparing them.
We just use them as off-the-shelf agents which can learn from an environment
to see how performance is affected by the introduction of more agents in an
environment. Rather, the true goal of the paper is to analyse the behaviour of
intelligence tests when environments are populated with agents, and how this
affects the results of the evaluated agent. We will examine several scenarios,
some with competition and some with cooperation.

The paper is organised as follows. Section 2 reviews the notion of universal
intelligence tests and how the Darwin-Wallace distribution can be useful to turn
them into social intelligence tests. Section 3 makes the extension by modifying
the environments and the reward system for competing and cooperating scenar-
ios. The following sections 4, 5, 6 and 7 perform and discuss the experiments for
the different scenarios. Finally, a more comprehensive discussion of results and
implications is found in section 8.

2 Universal Tests and Social Intelligence

One approach for measuring intelligence is to take a diverse selection of tasks
of different complexity and to measure agent performance over this selection.
However, several issues arise here. For instance, the selection of tasks must be
unbiased. One approach is to consider all possible (computable) tasks, as defined
by a universal Turing machine. In order to link performance to any possible task
we can use the notion of rewards. This leads to interactive scenarios, which
can be well represented by (discrete) environments, very much like the typical
observaton-action-reward environments in reinforcement learning (RL) [12]. Fi-
nally, we need to assess the complexity of each task in order to make a proper
choice of tasks which capture a wide range of difficulty and, therefore, can suit
the agent’s level of intelligence. These issues have been addressed in [1,6,2,9,4].

In this context, [4] introduces the idea of universal test, a test which is con-
ceived to be feasibly applicable to any kind of agent: humans, non-human an-
imals, artificial agents, including hybrids and communities, of any degree of
intelligence and speed. The test is based on a set of environments as in [9].

In [3], a hopefully unbiased environment class (called Λ) is introduced, which
is composed of spaces and agents with universal descriptive (Turing-complete)
power. Originally, only two agents (apart from the evaluated agent) were used in
the environments. Since their behaviour is generated by a universal distribution
using Markov algorithms (a Turing-complete rewriting language), their sophis-
tication is really low. Hence it was very difficult to find any social behaviour
originating from them, and, therefore, any social behaviour in the environments.
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The first evaluations using these tests [7] show that they work well at evaluat-
ing very different agents (humans and RL algorithms), but they do not properly
reflect their supposed difference in intelligence. Many possible explanations are
suggested in [7], with incremental knowledge acquisition and social intelligence
being two of the abilities which this test is not giving enough importance.

In order to address the second issue we must define environments which are
more social. The question of which agents are introduced becomes crucial, since
the results of the evaluated agent will depend on the abilities of the other agents.
This is illustrated in Fig. 1. The question is what criteria we can use to introduce
the other agents and how we can measure their (social) intelligence in advance. In
[5], instead of incorporating other agents in an ad-hoc way, they look for a formal
way to determine which agents must be introduced in a social environment. As
[5] states: “intelligence is the result of evolution through millions of generations
interacting with other live beings. Thus we define intelligence in this context,
interacting with other agents of similar intelligence”. From here they formalise
the so-called Darwin-Wallace distribution for agents and environments.

Briefly and informally, the Darwin-Wallace distribution requires a multiagent
environment which has its rewards, actions and observations as usual, but al-
lows the ‘introduction’ of any number of agents, whose distribution evolves (by
properly sampling agents according to their degree of intelligence) and can lead
to higher degrees of (social) intelligence. From here, the Darwin-Wallace distri-
bution is defined recursively according to a level or generation.

The use of this distribution has many issues. First, it is a theoretical construct
which might be useful for understanding the kind of environments where (social)
intelligence is needed. Second, this distribution could be used for the construc-
tion of social intelligence tests, just sampling from the distribution. Third, and
recursively, the way in which this distribution can be approximated is precisely
by the use of intelligence tests, where human-made agents can be inserted into
the environments, provided we have been able to assess their intelligence first.

Following this last issue, we need to develop intelligence tests in multiagent
scenarios. In particular, we need to adapt the existing intelligence test proposals
to a multiagent setting. This is what we do below.

3 Intelligence Tests Considering Several Agents

The first intelligence tests based on the theory developed in [4] were based on
the environment class Λ, introduced in [3]. This environment class considers a
space which is composed of a directed labelled graph, where vertices are cells
and arrows are actions. The graph is selected to be strongly connected (all cells
are reachable from any other cell). Cells can contain agents. Every environment
must include at least three agents: the evaluated agent, and two special agents
Good and Evil. Good and Evil are not generally reactive, so, if no further
agent is included, the environment cannot be considered a proper multiagent
system. Actions allow the evaluated agent (and other agents) to move in the
space. Observations show the cell contents. Rewards are rational numbers in the
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interval [−1, 1] and are generated by the agents Good and Evil, which leave
rewards in the cells they visit. Rewards do not stay unaltered in the cell forever.
If a reward in a cell is eaten by any agent (including Good and Evil) because
the agent steps into or stays in the cell, the reward disappears. While rewards
are not eaten, their value is divided by 2 for each iteration. This has the effect
of seeing Good and Evil as agents which leave a reward wake as they move.
Good and Evil have the same behaviour (they follow the same pattern) except
for the sign of the reward (+ for Good, − for Evil). This makes Good and Evil
symmetric, which ensures that the environment is balanced (random agents score
0 on average) [4]. For more details of the environment class Λ, see [3].

Environments are composed of a space of cells (a graph of nodes) and the
patterns for Good and Evil (a simplified adaptation of [7]). Once an environment
has been constructed, evaluation is performed in the following way. Initially, each
agent is randomly (using a uniform distribution) placed in a cell. Then, we let
Good, Evil and the evaluated agent interact for a certain number of steps, i.e.
a session. The final score is the average of rewards in the session.

This configuration can be easily extended to a multiagent setting, by including
more agents in the environment. Agents can move freely to other cells indepen-
dently of whether they are occupied or not by other agents. In other words,
agents can share a cell. A competitive, individualistic scenario is set by each
agent trying to improve its own rewards. If two or more agents share a cell, the
reward is just divided by the number of agents in the cell. Good and Evil cannot
share a cell with other agents. This re-introduces some degree of reactivity (with
respect to the prototype in [7]), even in the single agent case.

There are many possible ways of introducing cooperation and competition,
which may lead to different experimental results, some of them similar to what
has been previously studied in the AI literature. In this paper we do not want
to evaluate these choices, but to analyse how the degree of intelligence of the
agents in a social environment affects the role of cooperation and competition.
The ultimate goal is to shed some light on whether environments become difficult
when many agents are introduced (independently of their intelligence) or become
difficult (and socially challenging) when other intelligent agents are introduced.
These findings are necessary if we aim at measuring social intelligence.

The first question when several agents are introduced in the space is how the
rewards are shared among them. A second, relatively more difficult, question is
how we can deal with cooperation. The easiest way of making this setting purely
cooperative is by just putting all the rewards in the same bag. With this, one
should not be concerned about not getting some reward itself if some other agent
is able to get it instead. What matters is the overall result. We can of course
move between competition and cooperation by using the notion of team. All the
members of a team put their rewards in the same bag, and each team should
compete against the others as usual in games and economics.

Now we are ready to see what happens with a single agent intelligence test
when we turn it into a multiagent test. But, before that, we need to determine
the agents that we will use for the experiment. The agents are:
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Fig. 2. Left: Isolated scenario. The 4 evaluated agents are evaluated separately. Middle:
Competition scenario. The 3 RL agents along with the random agent. Right: Compe-
tition scenario. The 3 RL agents without the random agent. 100 environments each.

– Random: an agent which chooses randomly among the available actions using
a uniform distribution.

– Q-learning [13]: the most common reinforcement learning algorithm. We use
the description of cell contents as a state.

– SARSA [11]: a well-known variant of Q-learning which also takes the future
action into account.

– QV-learning [15] (without eligibility trace): a variant of Q-learning which
partially resembles ActorCritic methods.

The three latter algorithms will be referred to as RL agents. In order to have
a consistent view of the experiments, the parameters for all the RL agents al-
gorithms (learning rate α, discount factor γ, etc.) were fine-tuned on the single
agent scenarios, by using 1,000 sessions for each parameter variation, totalling a
huge number of experiments to set the optimal parameters.

4 Evaluating Agents in Isolation

We start our experiments with the scenario where agents are just taken and
evaluated isolatedly. This is the same setting as in [7], with the only (minor)
difference that Good and Evil are slightly reactive because they try to avoid
sharing a cell with other agents. In addition, we will just restrict the evaluation
to environments with nine cells.

The result of Fig. 2 (left) is clear (and consistent with the results in [7]). The
random agent has an average reward of 0, as predicted by the theory. The three
RL agents are very slow learners and only get closer to 0.5 after 10,000 iterations.
Their behaviour is similar and the differences are small.

5 Competitive Scenario

More interesting things can be observed when we switch to the competitive
scenario. Here all the agents are located in the environment at the same time
competing for rewards. As we can see in Fig. 2 (middle) the random agent gets
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Fig. 3. Left: Cooperative scenario. The 3 RL agents along with the random agent.
Middle: Cooperative scenario. The 3 RL agents without the random agent. Right: Two
teams scenario. One team with two Q-learning agents against another team with two
SARSA agents. 100 environments each.

a value which is even lower than 0, since most of the positive rewards are eaten
by the other agents, leaving the negative rewards for the random agent. RL
algorithms have a very poor result (not reaching 0.02 in 10,000 iterations). This
is explained by the presence of the random agent, which makes the state tables
of the RL algorithms grow considerably.

Finally, in order to further confirm that the problem is the state space, we
remove the random agent (which can be considered noise), and we only leave the
RL agents. We also increase the number of iterations to 100,000. This is shown
in Fig. 2 (right). Things improve slightly and, in the very long term, Q-learning
and SARSA get close to 0.2, while QV-learning lags behind around 0.1. We see
that just the presence of only two other agents makes their matrices so big that
they require more than 100,000 iterations to derive their Q-values accurately.

Apart from the comparative results, we see that performance depends on the
other agents’ policies, but especially on the ability of digesting the state space,
and how much noise (e.g., from the random agent) can be handled.

6 Cooperative Scenario

The next scenario we want to explore is when the four agents are prompted to
cooperate. This is done by putting all the rewards in the same bag, so the agents
just see the reward as the average reward of all the agents.

Fig. 3 (left) changes from Fig. 2 (middle) very significantly. How can it be that
moving form a competitive to a cooperative case, we get worse average results?
The explanation is a little bit more convoluted. The problem of cooperation is
the way we assign rewards. Since the reward they receive is the average of the
rewards of all the agents, it is much more difficult for them to determine the
goodness of the actions, since rewards are affected by other agents’ movements.
In other words, they lose ‘individuality’.

This explanation is only part of the story if we compare Fig. 3 (middle) with
Fig. 3 (left) and Fig. 2 (right). In this case, where the random agent has been
removed, the results are slightly better than in the competitive case. However,
this improvement is not uniform for the three RL agents.
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Fig. 4. Relation between environment complexity and results of the three RL agents
for the competitive case (left) and the cooperative case (right). Linear regression is also
shown for each agent.

7 Scenario Measuring Both Competition and
Cooperation

Finally, we examine another scenario where we now have competition and coop-
eration at the same time, using the notion of ‘team’. We define two teams, one
with two Q-learning agents and the other one with two SARSA agents. Inside
each team the rewards go to the same bag, but different teams compete for the
rewards. This is shown in Fig. 3 (right). In general, the results are poorer than
with three agents in the cooperative case (Fig. 3, middle). This can be explained
because here we have four agents instead of three, but also because having two
teams is a more complex scenario than having just one.

The results show that there are no significant differences between both teams.
However, there are important differences between the components of each team.
This can be observed in Fig. 3 (right), where we assign the best results in the
team to the first entry and the worst results to the second entry. So, the plot just
shows the difference in (average) performance between the best and the worst
component in the team. We see that this difference is very significant. While
usually an agent in the team performs around 0.1, the other agent stays at a
very low result close to 0. It is not clear which role this second agent takes.

8 Discussion

In the previous sections, we have analysed several scenarios. A test which was
originally designed to measure the intelligence of an agent against an environ-
ment without other agents is adapted to other scenarios where other agents
are introduced in the environments.We see that performance can be seriously
degraded by the inclusion of other agents with null intelligence, as a random
agent. This is surprising if we look at this from the point of view of game theory
(two-player games, in particular), but it is much more natural if we realise that
it is more difficult to attain a goal if there is another agent bugging around (even
randomly). This is extreme in the case of RL agents, because they cannot learn
that random agents are just noise, and stick to the original huge state space.
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All this means that the difficulty of a task is no longer related to the complex-
ity of the environment in a tight way, as it was for the single agent situation.
We can see this by comparing the complexity of the environment (excluding
the evaluated agents) and the results for the scenarios where only the three RL
agents are used, i.e. Fig. 2 (right) and Fig. 3 (middle). In order to approximate
the environment complexity, we use the size of a compressed coding of the con-
catenation of the space description S and the description of the pattern for Good
and Evil, denoted by P . More formally, we calculate an approximation to its
(Kolmogorov) complexity as Kapprox = LZ(S, P ) where LZ is just the ‘gzip’
method given by the memCompress function in R, a GNU project implemen-
tation of Lempel-Ziv coding. This comparison is shown in Fig. 4. We see that
there is still a relation between the complexity of the environment and the re-
sult, while this relation is stronger for Qlearning and SARSA in the cooperative
case. In fact, the results for Qlearning and SARSA are very good when the com-
plexity is very low. This means that in very simple cases RL agents are able to
perform well, even in social scenarios. This seems to suggest that the difficulty
of a social environment is a cumulative issue, which adds the complexity of the
environment and the complexity/performance/noise of other agents.

Some lessons can be learnt from these results in the context of the Darwin-
Wallace distribution. One of the purported problems of this distribution is that
many iterations might be needed to reach a level where some social behaviour
can be evaluated. We see that this may not be the case. For instance, the mere
introduction of very simple agents in an environment makes that the performance
of other agents plunge. This suggests that the evaluation of social intelligence
could possibly be performed against other agents of inferior degree of intelligence.

In fact, it would be extremely informative to repeat the experiment performed
with humans and RL agents in [7] by using one of these simple multiagent en-
vironments. We guess that humans will still be able to manage, mostly because
they handle noise much better. Naturally, many other experiments must follow.
For instance, for the RL agents, we only consider model-free techniques whose
search space grows geometrically as more agents are there. It would be interest-
ing to see the results for model-based algorithms using function approximations,
as well as other RL algorithms which work better when the Markov property
does not hold (which is the general case in multiagent systems). Also, some
other RL algorithms which are specialised for multiagent settings, such as Fre-
quently Adjusted Q-learning [8] might give different results. Other issues which
could be reconsidered is the way we modify the reward system to make the test
competitive or cooperative.

Summing up, from the notion of Darwin-Wallace distribution, we have pushed
forward the idea of ‘multiagent intelligence test’, which is an intelligence test
where there are other agents in the environments. This is a new notion, since
the kind of intelligence tests we are used to are typically those where the evalu-
ated agent has to solve some tasks or where it has to be interrogated by other
agents (interviews, Turing test, etc.), but the other agents are not inside the test.
The closest notion is an old companion of artificial intelligence, games, especially
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multiplayer games, but it has only been recently proposed as a testbed for mea-
suring intelligence [4]. However, the role of the opponent and its intelligence has
not been clarified to date, especially if we want a test to give an absolute result,
not only comparing a pair of agents.
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Abstract. Feasible and practical routes to Artificial General Intelli-
gence involve short-cuts tailored to environments and challenges. A prime
example of a system with built-in short-cuts is the human brain. Deriv-
ing from the brain the functioning system that implements intelligence
and generality at the level of neurophysiology is interesting for many
reasons, but also poses a set of specific challenges. Representations and
models demand that we pick a constrained set of signals and behaviors
of interest. The systematic and iterative process of model building in-
volves what is known as System Identification, which is made feasible
by decomposing the overall problem into a collection of smaller Sys-
tem Identification problems. There is a roadmap to tackle that includes
structural scanning (a way to obtain the “connectome”) as well as new
tools for functional recording. We examine the scale of the endeavor, and
the many challenges that remain, as we consider specific approaches to
System Identification in neural circuitry.

Keywords: system identification, whole brain emulation, functions of
mind, measurement tools, neurophysiology.

1 Tractable AGI through System Identification in Neural
Circuitry

Artificial General Intelligence (AGI) is, at a minimum, a system that is able to
deal with challenges or tasks arising in circumstances of our natural environ-
ment. It is possible that there are elegant mathematical approaches to AGI that
address those minimum requirements and are theoretically sound [1]. Theoretical
soundness does not imply practical feasibility. The most elegant mathematical
methods can be the most compute-hungry, slow, impractical solutions. From a
practical standpoint, there is much to be said for short-cuts that are suitable to
the environment and the challenges.

One system that contains many of those short-cuts and that we often think of
in terms of AGI is that of the (human) mind. Deriving from a brain a functioning
system that implements a degree of intelligence and a degree of generality within
the constraints of compatible environments may be done at several different levels
of cognitive abstraction. The level that most interests me and many colleagues
is that of computational neurophysiology, systems of neuronal circuitry [2].
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In part, this choice comes from the fact that neuroscience has spent the past
100 years gaining experience at that level and devising functional representa-
tions that are well grounded in identified physiological mechanisms. The other
reason for this choice is that our goals are in some ways a reversal of the quest
for practicable AGI. We begin with a system that has many specific short-cuts
built in that give it satisfactory performance under current real-world circum-
stances. But our interests involve making that system more adaptable to novel
environments and challenges [3].

In this paper, we highlight the importance of good System Identification [4].
We point out what choices need to be made and which tools may be applied.
Most importantly, we identify the significant challenges that appear throughout
the process of System Identification and due to the need to integrate efforts with
several different types of tools.

2 Representations and Models

The exact sciences depend on improving understanding by describing observed
effects through representations and models. Some things about nature are pre-
dictable. Pieces of nature exist within an environment. There, the various pieces
are not wholly independent. Conditions of some piece at some time predict as-
pects of the conditions in another piece. We say they affect each other. There
are signals between the pieces that convey information. We want to understand
more about the predictable dependencies, so we explicitly describe the signals
and how the information they convey is processed.

2.1 Behavior and Signals of Interest

Nature has an awful lot of pieces and descriptions become quite complicated.
Systematic and iterative improvement of a description is model building. Ini-
tially, we keep it simple, we constrain our models. There is an effect of particu-
larly interest. Ideally, we focus solely on the scope and details that are needed
to explain that effect. In neuroscience, the interesting effects are often called
(task-specific) behaviors. E.g., object recognition, emotional responses, execu-
tive decision making, and even conscious or aware behavior. In AGI, there are
also particular effects or behaviors that are interesting and for which we want
to carry out System Identification in the brain.

Now we know our piece of interest, e.g., a molecule of gas or a neural circuit in
the brain. We look at how that piece may be communicating with others. What
are the signals that could be involved in the effects? Overall, physics describes
all interactions in terms of four types: gravity, electromagnetism, weak nuclear
force and strong nuclear force. While those are a limited set, we can constrain
their manifestations further and consider electric current, electromagnetic ra-
diation, etc. A piece of neural tissue may respond to (ionic) electric currents,
temperature (gradients), pressure or shearing forces, sonic transmissions, elec-
tromagnetic fields, and more. Experimental work helps us to create a priority
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order. By and large, most signals appear to drown in noise, losing predictive
value. Electric currents, and in particular the powerful discharges known as neu-
ral action potentials or spikes appear to carry the dominant information [5].

2.2 Discovering the Transfer Function

In Control Theory, the piece of nature being modeled is sometimes called a
black box, which has state, receives input and produces output. The process
of updating its state and generating output is described mathematically by a
transfer function. When we find suitable transfer functions we learn about the
black box in the context specific behavior and signals. There are numerous formal
methods, and a general example of one that has been successfully applied (e.g.,
in Ted Berger’s neuroprosthesis [6]) is to find the kernels of a system that is
expressed as a discretized Volterra series expansion, as in Eq. 1. The kernels,
Hn, express the contributions of a history of input, x, to system output f(x),

with a finite number of mn coefficients h
(n)
i1...in

.

f(x) = H0x+H1x+H2x+ ...+Hnx+ ...+Hmx,

Hnx =

m∑
i1=1

...

m∑
in=1

h
(n)
i1...in

xi1 . . . xin . (1)

3 Mental Processes and Neural Circuitry: Brain
Emulation

The effects that interest us are those that we associate with our experiences:
Sensory Perception, Learning and Memory, Problem Solving and Goal-Directed
Decision Making, Emotional Responses, Consciousness and Self-Awareness, Lan-
guage Comprehension and Production, Motor Control. Some are externally ob-
servable and some are part of the internal experience. Neurophysiologically, these
involve the interactions of ensembles of neurons within a specific circuit layout.

3.1 System Identification in Neural Circuitry

There is no consensus about exactly which signals are or are not essential to
brain function, but we take an iterative and systematic approach. We make
initial assumptions about signal to noise ratios, about the sort of output that
reliably affects the environment during interesting behavior, and about the sort
of signals that neurons are well-suited to deal with. Biophysical mechanisms of
sensory input (e.g., at the cochlea, at the retina) produce electric nerve signals
characterized by trains of fairly uniform neural spikes with very specific rates
and time intervals. Similarly, the primary output through muscle control (e.g.,
vocal cords) employs trains of neural spikes. Finally, a primary means of long-
term state-change (ie., learning) is governed by modified synaptic strength. That
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modification also depends crucially on the temporal order and time-separation
between pre- and postsynaptic neural spikes [7]. A representation that success-
fully predicts spike times may therefore be a good first iteration of a model of
system processes in neural circuitry.

One result that was achieved with these assumptions is demonstrated in the
cognitive neural prosthesis devised by the lab of Theodore Berger (UCS). Using
System Identification in a Volterra series expansion, they developed a chip that
contains a multi-input multi-output model with non-linear parameters that are
specified after learning from consecutive presentations of spike data. The input
of the system is obtained through an array of electrodes in region CA3 of the
hippocampus, while the output is delivered to region CA1 [8]. These regions are
crucial in the formation of new declarative and episodic memories. The chip is
designed to alleviate dysfunction caused by stroke, trauma or disease.

A more general technique designed to work with out initial assumptions was
developed by Aurel A. Lazar and Yevgeniy B. Slutskiy and is called the devel-
opment of Channel Identification Machines [9]. It is a formal method to identify
a channel – modeled as a multi-dimensional filter – in a system where a commu-
nication channel is cascaded with an asynchronous sampler. The samplers con-
sist of neuroscience or communication models, e.g., integrate-and-fire neurons,
asynchronous sigma/delta modulators, general oscillators with zero-crossing de-
tectors. A channel can be approximated to an arbitrary degree of precision and
the method was generalized and applied in noisy conditions.

4 Simplification of an Intractable System into Collections
of System Identification Problems

Meaningful System Identification that could reproduce both observable behavior
and internal experiential states of an entire brain is entirely unfeasible when the
complete system is treated as the black box. This has to be broken down into
many black boxes that communicate with one-another. We need: a.) to choose
smaller black boxes, b.) to acquire enough data about I/O correlations at those
smaller black boxes for their System Identification, and c.) to know the relevant
communication that is possible between those black boxes.

We can address c.) by looking inside the system, noting locations of the smaller
components and tracing the connectivity between them. For spike trains, the
communication pathways are dendrites and axons, and the synapses where they
meet. The new field of Connectomics in neuroscience deals with this problem [10].
For other effects, such as extracellular field potentials and diffuse neurotrans-
mitters, the surrounding medium and emission and diffusion may be taken into
account.

A well-known choice for a.) that contains very tractable sub-systems is de-
composition of neurons into the electrical compartment analogs of a so-called
compartmental neural model (Fig. 1). The I/O data that can be obtained largely
determines if this, or a another level such as whole neurons, is the appropriate
level of simplification. High-resolution connectomics by electron microscopy ob-
tains the morphological data for compartmental modeling. There are a number
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of labs working on this and in 2011 the approach resulted in proofs of concept
by Briggman et al. [11] and Bock et al. [12], using data from the lab of Winfried
Denk (Max Planck).

Fig. 1. The compartmental model of a Purkinje Cell. The electric cable analogy for
one compartment is highlighted in the box.

To satisfy b.) and properly characterize the response of a neuron we need
observations that allow us to set and test parameter values, which relate to
the sensitivity and manner in which input currents affect neuronal membrane
potential, the resulting action potential once a threshold potential is reached,
and the time-course of restorative dynamics (e.g. after-hyperpolarization, after-
depolarization).

4.1 Tools for Structural Decomposition

In neural tissue, sensible boundaries must be drawn around pieces of the neural
circuitry, and I/O contacts between the pieces must be identified. A geomet-
ric decomposition into 3D stacks of voxels of equal size is one approach, such
as through magnetic resonance imaging (MRI). Another method is to identify
neural cell bodies, as in slice or culture on top of an array of electrodes, and
to use the correlations between measured activity at each cell body to derive a
functional connectivity map.

Anthony Zador is developing a biological protocol to derive the target neu-
rons of any neuron. Zador uses biological markers such as unique sequences of
RNA or DNA to mark the pre- and postsynaptic sites of synapses. The markers
act as bi-directional pointers [13]. But the most detailed and successful tools
to date section or ablate pieces of brain tissue and take electronmicrographs
at resolutions up to 5nm from which 3D geometric morphology can be recon-
structed. Even individual synapses can be identified. Excellent results have come
out of the labs of Winfried Denk (Max Planck), Jeff Lichtman (Harvard) and
Ken Hayworth (Janelia Farms).
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4.2 Data from Structure

System Identification for individual neural compartments can use standard
models that employ an electric cable analogy and Hodgkin-Huxley equations.
Morphology can provide some insight into functional behavior. For example,
compartment radius and length constrains the conductance of electrical cur-
rents. Morphology can also categorize a neuron or synapse, which constrains the
possible response functions. Despite these constraints, even small systems con-
tain numerous parameters. Not all of those relate directly to visible and unique
morphological features. Even where they do, the reliability and precision of mea-
surements may not be adequate.

4.3 Parameter Tuning among Connected Systems: Reference Points

Parameters must be tuned such that sub-systems behave sensibly on their own
in in cohesion with connected neighbors. We can do System Identification for
signals of interest at a black-box by observing activity, or at a gray-box when
we can stimulate and observe. Tuning and verification involves measurements at
reference points.

If the resolution of reference points is less than the resolution of structural de-
composition then System Identification depends on our ability to map measure-
ments to a collection of sub-systems and the combinatorial size of the collective
problem. In how many ways might the sub-systems be interacting to produce ob-
served responses? We may not be able to determine system parameters uniquely
if that number is large. The amount of observations needed and the duration
of observation increase with complexity. Clearly, there is great value in having
tools that provide measurements at many more reference points, ideally at a
resolution that approaching the resolution of the sub-systems.

4.4 Tools for Characteristic Reference Recordings

There is now strong interest among neuroscientists in the development of tools
for high-resolution in-vivo recording. Arrays of thousands of recording electrodes
are being developed and combined with optogenetic techniques so that selective
observation of specific groups of neurons can be guaranteed. Microscopic wireless
probes and functionalized nanoparticles with simplified task-specific capabilities
are being developed to counter some of the disadvantages of extensive tethered
electrodes. There is also a collaborative effort underway to create biological tools
that employ DNA amplification as a means to write events onto a molecular
“ticker-tape” [14]. The project goal is to be able to record signals from all neurons
in a brain, and potentially to measure at resolutions beyond that.

5 Challenges

Some challenges are general to System Identification. Some are particular to neu-
rons and neuronal models. There are unique challenges that arise when working
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with pieces of neural tissue and consequent large neural circuit models. And
some challenges are exclusive to the domain of whole brain circuit reconstruc-
tion. Many of those involve the integration of techniques for data acquisition
from structure and function that are developed with the constraints of particu-
lar novel tools.

5.1 Signals and Predicting Spikes

A careful assessment of the System Identification problem for the experiences we
wish to represent demands that we consider contributions outside the domain
of neural spiking. For example, are the experiences meaningfully represented by
states of cells other than neurons, glia perhaps? Or, are there significant ways
in which neurons influence each other even in the absence of spiking [15] – can
neurons relate to each other without receiving spikes or activity directly caused
by spikes? Our initial assumption is that predicting spiking within an accept-
able error range implies good emulation (Fig. 2). Spikes are not epiphenomenal,
but rather the currency upon which the rest of sensation rests. Spikes precede
ensemble responses and field emissions. An important challenge is to test these
assumptions.

Fig. 2. Spike prediction is functional emulation [16]

Good temporal spike predictors demand that we observe or deduce when
spikes would occur in the original system. Additional information, such as mem-
brane potentials and influences on such can give improve our ability to build
good local predictors.
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5.2 Low-Res Validation, 3D Reconstruction at 5nm and Plasticity

The snapshots of baseline or differential activity in large volumes of tissue that
are provided by MRI are too imprecise for parameter tuning, but they can be a
means of model validation. The model should produce a sensible virtual MRI in
terms of distribution and propagation of activity. A challenge is that aligning a
virtual MRI generated by the model with actual data demands that the model
also replicates the expected 3D spatial geometry.

Detailed geometric and morphological data is provided by 3D reconstructions
from EM scans at resolutions up to 5nm. We can tell if a cell is a pyramidal cell or
an interneuron, which helps model activity dynamics and the receptor channels
that are likely present. Still, component identification is challenging, because
classification presently relies entirely on morphology. There is an effort to add a
direct means of protein identification, which would alleviate this problem.

When reconstructed in terms of compartments, radius and length of a cylin-
der gives estimates of resistance and capacitance, although those estimates also
depend on the model of the identified type of a neuron. Measurements are sub-
ject to a degree of reliability. Averaging is possible, but that does not remove
cumulative systematic errors. Some measurement data is likely to be entirely
unrecoverable.

Brains are plastic. Mostly, we think of plasticity in terms of learning [17],
modifications of synapses and even of the available connections (Fig. 3). But
there is also plasticity in terms of deformation. Apparently, some aspects of

Fig. 3. There is a cascade of different memory mechanisms that implement brain plas-
ticity for learning. Representations of these should be included in a model, but most
of those are invisible to structural snapshots.
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morphology are relevant to model building, while others are mere features of the
snapshot taken during scanning and reconstruction. Present tools for structural
connectomics offer little insight into the temporal dynamics of these gradual
changes in neural circuitry.

5.3 Ticker-Tape Data and Interference during Measurement

Tools that functionally characterize activity at reference points should give some
insight into temporal dynamics and memory. The ticker-tape approach may even
be able to record from all neurons simultaneously. Encoding by means of voltage-
dependent increases in the error-rate of DNA amplification is not entirely reli-
able, which is compensated by using multiple tapes per cell. Recordings may be
synchronized by time-stamp signals, and can identify spike times and possible
even voltage levels. But the method of data recovery poses a challenge when
combined with tools from other projects in the endeavor. DNA snippets are
extracted from cell bodies and the process does not retain tissue samples that
could be scanned structurally by electron microscopy. How do we obtain the
structural connectome, and how do we know which part of the ultrastructure a
molecular tape came from? Scanning of slices prior to DNA extraction might be
possible if special care is taken in the method of fixation of brain tissue. There is
also some question whether the presence of many molecular ticker-tapes might
interfere with cell function.

Interference challenges also appear when functional data is obtained by fluo-
rescent microscopy with calcium dyes or voltage sensitive proteins. Using those
tools to obtain full coverage throughout the neural tissue and in complete brains
involves significant disturbance in the form of view ports and insertion of micro-
scope devices. This problem is similar to the one face by large electrode arrays.

5.4 Microscopic Wireless and Data Quantities

Microscopic wireless electrodes and functionalized nanoparticles are feasible al-
ternatives where each individual probe has strict task constraints. Challenges are
the possible power requirements and demands of data delivery. These may make
it difficult for a whole network of probes to measure continuously at a rate that
captures all interesting events. Functional characterization by these methods is
simplified when done by sporadic sampling from different locations until each
location is adequately characterized. When has enough data been collected and
how are the results validated? Functional probes may help us look at temporal
dynamics, but it can be difficult to ensure their location within the tissue over
extended time spans. Frequent spatial registration is likely necessary. Ultimately,
a microscopic functional probe technique can be combined with structural data
acquisition by electron microscopy, because the probes can remain in the tissue
when it is scanned.

When we have a way to record spikes, electric field potentials or membrane
potentials from all neurons in a piece of neural tissue we still need to know
what is a sufficient sample set. And what is the required sample rate? Can we
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predict neural dynamics from the observation of the shape of an action poten-
tial response? Should we observe the responses to a collection of possible input
combinations in order to estimate connection strengths and predict spike times?
Do we need to run the cell through its paces with a full battery of stimula-
tion protocols? Does tractable System Identification demand that we do so at a
higher resolution, on pieces of dendrite? Can we map lower resolution activity
data to high resolution structure data so that compartment parameter values
are sufficiently constrained?

5.5 Virtual and Small System Proof of Concept

Many of the challenges listed above can be dealt with confidently only if the
process of System Identification is tested by iteratively building incrementally
improved models of small systems. A small system can be a proof of concept that
demonstrates steps of the process and overall feasibility. There are some small
systems that are receiving attention at this time: Several groups are working on
the nematode C. elegans (e.g. D. Dalrymple). Others are reconstructing pieces
of retina (e.g. Briggman et al). Neuroprosthetic applications are being built for
pieces of the hippocampus (T. Berger) and for the cerebellum (S. Bamford).
There is also a project to extract memory directly from a piece of neural tissue
(S. Seung)

Sometimes, we can also carry out virtual process testing. Programs such as
NETMORPH [18] are able to “grow” or generate virtual neural tissue, with a
known structure (Fig. 4) and known characteristic functions. We can explic-
itly test algorithms used to set parameter constraints from structure data, and
we can test algorithms that take partial functional data and tune parameters

Fig. 4. Structurally detailed network generated with NETMORPH
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accordingly. The results can give an indication of the minimal functional data
that needs to be collected, and they can point out limitations in reconstruction
from morphology. More abstract calculations of boundary conditions may also
be possible, deducing constraints set by structure and additional information
provided by patterns of input and correlated output.

6 Conclusion

It is often impossible to properly gauge which difficulties will turn out to be
significant problems unless you work your way through the entire process. That
is a main reason why proof-of-concept systems are so important.

System Identification is not a new field. It is done in every area of the exact
sciences and engineering. Undoubtedly, most of the problems encountered when
working with neural tissue are not entirely novel either. Examples of similar
problems and the solutions that are employed may be found in other fields.

From the discourse above, it should be clear that while it is important and
useful to build tools that acquire high resolution structure data and that acquire
high resolution spatial and temporal functional data, that is not the whole solu-
tion. Other significant challenges are the integration from different data sources,
turning a sea of data into parameter values, and validating those values.

A goal of this paper was to describe what System Identification entails in the
case of reconstructing brain circuitry, and to communicate the reality of this
effort beyond the confines of the discipline. Hopefully, this will lead to input
from many other experts in the area of System Identification, which will lead to
a better understanding of the problems and an improved roadmap to solutions.
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Abstract. A general theory of intelligence must include learning, the process of 
converting experiences into retrievable memories. We present two CHREST 
models to illustrate the effects of learning across two different time scales 
(minutes and years, respectively). The first is an illustration of implicit learning, 
checking the validity of strings drawn from an artificial grammar. The second 
looks at the interpretation of boardgame positions. The same learning and 
retrieval mechanisms are used in both cases, and we argue that CHREST can be 
used by an artificial general intelligence to construct and access declarative 
memory. 

1 Introduction 

The processes behind the acquisition and retrieval of patterns remain a major challenge 
for theories of artificial intelligence. Pattern recognition, and its role in categorising and 
interpreting perceived information for later cognition, is an important element of high 
performance in many domains, especially of a problem-solving nature. A dramatic 
example of the power of human memory is provided by the famous encounter in 1996 
between IBM’s Deep Blue computer and the then world chess champion, Gary 
Kasparov. The computer relied in part on an extensive process of search, eight 
magnitudes greater than what the hu- man could achieve, and yet the matches ended in a 
tie. The human’s advantage over the computer was his large declarative and procedural 
memory, built up over 20 years of dedicated chess experience. 

Humans’ reliance on prior experience is apparent in many situations, even as 
everyday as perceiving a string of letters when reading. For a native reader, a string of 
letters may provide detailed information; for someone who does not know the 
language, the same letters may well be meaningless. Similarly, an expert in any 
domain will rapidly interpret and categorise stimuli from that domain. A master-level 
chess player shown a chess position will frequently indicate the previous history of 
the game, the likely next few moves, and the key strategic features, all within a few 
seconds [4]. This ability is not restricted to chess, but is found in other domains of 
expertise [5,10]. Studies have revealed the highly specialised nature of these 
memories [2], and any general theory of intelligence must account for, and model, 
their acquisition and use. 
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Developing a theory to cover learning in tasks that last perhaps a few minutes and 
learning over the years required to reach high levels of expertise means working at 
both a general and a specialised level. The general level is needed to ensure the theory 
is widely applicable. The specialised level is needed to ensure the theory can capture 
phenomena at the highest ability. This challenge reveals an apparent contradiction: 
how can we use highly specialised experiments to study general-purpose 
mechanisms? The solution which appears most promising at present is to use a 
cognitive architecture. 

Taatgen and Anderson [25] describe a cognitive architecture as intended to 
“[supply] a general theory of cognition that is independent of particular phenomena” 
(p. 694). They also highlight one important question when building a model using an 
architecture, which is “to what extent is the intelligence in the architecture or in the 
model” (p. 694)? When using an architecture, it is important to ensure explanations of 
the behaviour are due to mechanisms within the architecture, and not any special 
processing added in to the model. An ideal way to achieve this is to develop multiple 
models which utilise and demonstrate the same core set of mechanisms provided 
within the architecture [17, 20]. 

In this paper, we present two models built using the CHREST (Chunk Hierarchy 
and REtrieval STructures) cognitive architecture, to illustrate its ability to acquire and 
retrieve patterns. The first is a model of implicit learning, identifying strings which fit a 
grammar after a short training period. The second is more specialised, looking at the 
interpretation of chess positions, using patterns which would be learnt by a human over 
several years. The two models rely on general-purpose learning mechanisms to 
develop a discrimination network, sorting perceived patterns to familiar chunks. We 
claim that the intelligence behind the models is within the architecture (the general-
purpose learning mechanisms), and thus that CHREST is providing an explanation of 
learning suitable for general application. Beyond the models reported here, CHREST 
has been used to model performance in different board games [3,4,9,16], a card game 
[23], in natural-language acquisition [7, 12] and diagrammatic reasoning [15]. 

2 Overview of CHREST 

CHREST is a symbolic cognitive architecture explaining how experience affects our 
ability to remember, categorise and think about the world. A distinctive component of 
the architecture is its discrimination network, used to retrieve information from long-
term memory (LTM). CHREST models typically begin by training the model with 
data, from which this network, and associated long-term memories, are constructed. 

The four main components of the architecture and their connections are shown in 
Fig. 1. First, there is the input/output unit, with separate mechanisms for handling 
perception visually (with a simulated eye) and verbally (with a phonological loop). 
Second, there is a short-term (or working) memory, which is limited to holding four 
items of information at a time. Third, there is the long- term memory, which is a 
memory holding familiar patterns (known as “chunks”) and associations between 
them (including productions and “templates”). Fourth, there is an index into LTM, the 
discrimination network. 
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Fig. 1. An overview of the CHREST architecture 

The role of the discrimination network is to sort an incoming pattern to the most 
relevant part of LTM. Although the main aspect of the network is its discrimination 
component, like a decision tree, sorting information from a root node to an 
appropriate chunk, the network also has an associative aspect, which links chunks to 
other chunks within LTM. The discrimination network acts as a retrieval device and a 
similarity function. Its role is analogous to the hidden layers of a connectionist 
network, or the RETE network of Soar [14]. 

The network is constructed incrementally, as the model perceives informa- tion. 
All information is in the form of a pattern, which is a list of primitive elements. For 
example, the string “VXPVXS” would be represented as a list of characters: < V X 
P V X S >. Patterns on a chess board would be represented as lists of items-on-
squares: < [P 2 5] [R 1 5] [K 1 7] >. 

The perceived pattern is sorted through the model’s discrimination network by 
checking for the presence of elements on the network’s test links. After sort- ing, the 
chunk reached is compared with the perceived pattern to determine if further learning 
should occur. If the perceived pattern contains everything in the chunk and some 
more, then familiarisation adds information to the chunk. If the perceived pattern 
contains different information to the chunk, then dis- crimination adds a further test 
and node to the network. Thus, discrimination increases the number of distinct chunks 
that the model can identify, whereas familiarisation increases the amount of 
information that the model can retrieve from that chunk. Fig. 2 illustrates the two 
learning mechanisms. 

When presented with a chess board as input, CHREST uses its perceptual 
mechanisms to scan the chess board, extracting patterns of pieces, sorting them 
through the discrimination network, and so retrieving chunks to place into work- ing 
memory. The eye movements are guided by heuristics. One heuristic guides the next 
fixation, in a top-down manner, to a position expected to help the model sort deeper 
into memory. Other heuristics guide the model to follow lines of attack/defence, or 
look at different sections of the board; see [4] for details. 

CHREST is available at http://chrest.info. The description and models 
within this paper refer to version 4 of the implementation. More information on how 
CHREST works can be found in [3, 11, 18]. 

Production rules, etc.
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eye
ear
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Fig. 2. Illustration of familiarisation/discrimination learning process  

3 Model of Implicit Learning 

This experiment reproduces that reported by [13]. The aim is to demonstrate the 
implicit learning of rules about valid and invalid strings constructed from a Reber 
grammar [21]. The CHREST model is based on a technique used in EPAM-VOC [12] 
for the non-word repetition task. Essentially, it is assumed a limited number of chunks 
may be stored within a short duration phonological loop. The model separates the 
input string into chunks, and rejects any string which will not fit into the loop (having 
more than 4 chunks), or that has more than one single element chunk; this last is a 
measure of unfamiliarity. 

Valid strings were constructed from the grammar given in Figure 2 of [13]. 18 of 
these were randomly selected for training, and a different 22 for testing. A further 22 
random strings were constructed from the letters of the grammar, each string of length 
6, 7, or 8 letters. The random strings all ended in an ‘S’ and were checked that they 
were not accidentally a valid string. Examples of valid and invalid strings are shown 
in Table 1. 

Table 2 presents the results from averaging 100 runs of CHREST – each run used a 
different set of strings for training and testing, constructed as above. The model was 
trained using one pass of the training data. Each test string was presented twice, 
making a total of 44 strings in each condition. As in [13] we show the ‘hits’, the 
number of correctly identified valid strings (true positives); the ‘correct rejections’, 
the number of correctly identified invalid strings (true negatives); the ‘misses’, the 
number of incorrectly identified valid strings (false negatives); and the ‘false alarms’, 
the number of incorrectly identified invalid strings (false positives). 

(a) After learning < V X P S > (b) Discrimination after seeing < V X P V X S >

(c) Familiarising the pattern < V X P V X S >
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Table 1. Examples of strings used 
for implicit- learning model 

Table 2. Results from implicit-learning model. Hu-  
man and ACT-R results from [13]. All results are out 
of 44 trials. 

 

 

 
The results demonstrate a strong correlation between those of CHREST, of ACT-R 

and the humans. In particular, the model does an excellent job of identifying the hits 
and correct rejections. There is also a slight tendency to be better at rejecting the 
invalid strings, as found in both humans and ACT-R. A significant advantage over the 
ACT-R model of [13] is that the CHREST model constructs its own declarative 
memory of variable-sized chunks to determine familiarity, and hence whether a given 
string fits the learnt pattern. 

4 Model of Board Game Interpretation 

We next develop a model to reflect learning on human terms of several years, and 
attempt a more subtle interpretation task. In earlier work [18], we tested CHREST’s 
ability to categorise chess positions by opening using perceptual chunks. Fig. 3 
illustrates two typical positions with their openings; note the model only has access to 
the position, not the preceding moves, and that the game has progressed beyond the 
opening stages. CHREST was shown to categorise positions as well as a state-of-the-
art statistical learning algorithm. This ability to categorise a chess position by opening 
is an important interpretation step, enabling a master player to retrieve memory cues 
about strategies, previous games, and likely tactics. 

In our second model we go beyond simple classification, and explore CHREST’s 
ability to retrieve multiple interpretative cues from a position, comparing these 
interpretations with those given by a master-level chess player. Fig. 3 gives some 
examples of the interpretations used below the diagrams; some of these require a 
knowledge of chess. The word ‘outpost’ appears twice, and, loosely speaking, an 
outpost for one side is a square in the opponent’s territory which is hard for the 
opponent to attack. A ‘bad bishop’ is one which is hampered by its own pawns. 

Each interpretation was treated as a simple verbal pattern, giving its name. During 
training, the verbal patterns were learnt alongside the positions to which they apply, 
and cross-modal associative links formed from the visual chunks recognised in the 
position to the verbal chunks. Associative links were restricted so that an interpretation 
referring to a white knight could only be linked withchunks containing a white knight, 
etc. During testing, the position provides the visual input. As CHREST retrieves 
chunks when perceiving the test position, it retrieves the associated verbal information. 
This information is then output as the model’s interpretation. 

Valid Invalid

TTS TXTVPS

VXPS VXVPXS

TPPTS TTVXPVS

VXPVXS XPXVVXS

TPPPPTS PXPVVTVS

VXPVXXPS PVVVVVTS

Human ACT-R CHREST

Hits: 33.00 34.00 32.84

Correct rejections: 36.00 39.00 38.52

Misses: 11.00 10.00 11.16

False alarms: 8.00 5.00 5.48
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(a) French Position 

 
black-control-semiopen-cfile,  
black-controls-white-squares,  
weakpawn-for-white-on-c3,  

badbishop-for-white,  
knight-has-outpost-on-c4, hanging-pawns 

(b) Sicilian Position 

 
knight-outpost-on-d5, backward-pawn-d6, 

black-king-side-underattack, open-gfile 

 

Fig. 3. Example chess positions, their openings, and interpretative cues 

500 chess positions were collected, at the 20th move in the game, and annotated 
with interpretations.1 The data were randomly divided into two, a training (70%) and 
a test set (30%). Interpretations were used only if they appeared in more than 20 of 
the positions (to ensure sufficient numbers for reliable training and testing). This left a 
total of 36 target interpretations, with an average of 4.1 interpretations per position. A 
model was created training 2 times on the training dataset, with 100 fixations (approx. 
30 simulated seconds) on each position during training and testing. The trained model 
had 37,198 chunks in its visual long-term memory. 

Figure 4 illustrates a typical interpretation output by the model; the three parts of 
the interpretation on which the model agrees with the target interpretation are in 
italics. Table 3 shows the number of positions which received an accurate 
interpretation, and how many accurate interpretations were made per position. Table 4 
shows a sample of interpretations and the frequency of correct, missed and false 
alarms made by the model on the test set. 

The results demonstrate that in more than half of the positions, the model outputs 
at least one interpretation in agreement with that of the human. We regard this as a 
promising result, demonstrating the validity of creating a CHREST model of human-
level scene interpretation. Looking at the intepretations which CHREST gets right and 
wrong reveals a number of interesting features. Evaluation can be difficult in some 
cases, for example an interpretation incorrect by commission (a false alarm) may be 
arguably correct, or at least useful. In the example interpretation, black has his dark-
square bishop but white does not, and so control of dark-squares by black is a useful 
theme to be aware of. 

                                                           
1 Prathiba Yuvarajan provided the interpretations, under funding from the ESRC. 
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Fig. 4. Example interpretation of a position 

Some of the interpretations wrong by omission are also due to limitations in the 
current representation used by CHREST. For example, recognising an open file 
requires noticing the absence of pieces, and our model currently does not represent 
empty squares. Another issue is the position-independence of some features, such as 
‘doubled-pawns’. A chunk linking the ‘doubled pawns’ interpretation to pawns on 
d3/d4 will not be matched by pawns on g2/g3, accounting for the 30 misses. 

These issues of representation have been noted and defended previously [16] based 
on the focus on modelling whole-board retrieval. By extending modelling to consider 
local regions of the board, CHREST’s visual pattern-coding is likely to require 
modification to use position-independent representations and to include empty 
squares. We believe this change will be straight-forward to make. 

Table 3. Frequency of positions 
with given number   of correct
interpretations 

 

Table 4. Selected interpretations  

5 Discussion and Conclusion 

The two CHREST models presented above exemplify the effects on pattern 
recognition of learning across two different time scales. The implicit-learning model 
captures the effects of learning that occurs over a short time scale, with relatively few 
stimuli. The model of board-game interpretation illustrates the effects of learning on 
long time scales, with large numbers of stimuli. As an architecture, we can claim that 

Target interpretation

black-control-open-cfile

black-control-semiopen-dfile

doubled-pawn-for-white

uncoordinated-pieces-for-white

weak-pawn-structure-for-white

Model’s interpretation

black-control-semiopen-dfile

black-controls-black-squares

uncoordinated-pieces-for-white

weak-pawn-structure-for-white

Correct

interpretations Frequency

0 64

1 75

2 12

3 1

False

Feature Correct Misses Alarms

weak-pawn-structure-for-white 58 25 30

uncoordinated-pieces-for-white 13 25 35

knight-outpost-on-d5 3 12 1

doubled-pawn-for-white 9 30 0
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CHREST has been successful in providing general- purpose mechanisms applicable to 
multiple models. Within the implicit-learning model, CHREST relies on a 
phonological loop, as also used in EPAM-VOC [12], along with its discrimination 
network, which provides the ‘units’ of memory to use in recognising grammatical 
strings. Within the board-game interpretation model, CHREST has constructed a large 
discrimination network to aid the re- call of chunks from LTM. The board-game model 
also relies on its perceptual mechanisms, which have been tested in other tasks [3, 4]. 

There are several architectures besides CHREST, popular ones including ACT-R 
[1] and Soar [14, 20], and a natural question is how CHREST fits within the spectrum 
of other architectures. We suggest that CHREST can provide an explanation of how 
declarative memory is constructed and indexed, especially in its links with perception, 
whether visual or verbal. The challenge of constructing declarative memory has been 
described for ACT-R by [13], where their model of the implicit-learning task above 
required the modeller to specify bigrams to form their model’s declarative memory. 
Also Laird, after describing the requirements of Soar, states ‘we will still fall short of 
creating human-level agents until we encode, or until the systems learn on their own, 
the content required for higher-level knowledge-intensive capabilities’ [14, p.40 
(emphasis added)]. With CHREST, the construction of the discrimination network 
and associated learning of chunks and their relations is a natural way to explain the 
origins of (some aspects of) declarative memory in knowledge-intensive tasks. 

Apart from learning, Langley et al. [19] suggested that many cognitive archi- 
tectures are overly focussed on problem-solving tasks, and that attention should be 
given to categorisation and understanding. The same authors suggest that ar- 
chitectures need to consider ‘visual, auditory, diagrammatic and other specialised 
representation schemes’ used by humans, and should better reflect the limited 
resources available for perceiving and affecting the world. As the models in this paper 
make clear, CHREST currently has this focus on categorisation and understanding. 
Previous work has already demonstrated models using auditory [12] and 
diagrammatic [15] representations, and the current paper illustrates the visual 
representation used for chess positions [4, 16]. CHREST’s working-memory 
parameters and time constraints mean that perception and time for recall are limited 
by available (simulated) resources. However, CHREST is relatively weak in formal 
problem-solving abilities, and in handling non-symbolic data. 

A way to move forward would be to combine architectures which focus on dif- 
ferent aspects of cognition to form a more comprehensive architecture that might 
capture learning, categorisation, understanding and problem-solving tasks. The choice 
of architecture and the way to make the combination is not, however, clear. Two 
distinct approaches may initially be identified, depending upon how closely 
recognition processes are thought to be involved with problem solving. One approach 
is more modular, and the other more integrative. 

A modular combination might take support from Dual Process theories [6, 24], in 
which an intuitive, pattern-matching process (System 1) is hypothesised to be 
replaced when necessary by a distinct, analytical, problem-solving process (System 
2). A natural analogue would be to combine CHREST with ACT-R or Soar to 
simulate more complex implicit-learning tasks: using CHREST as the intuitive 
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component and ACT-R/Soar as the analytical component. CHREST would determine 
and recognise the entries in declarative memory, which ACT- R/Soar could then use 
in problem solving.2 

In contrast, a more integrative approach would consider pattern recognition tied in 
more closely with problem-solving, almost intertwined. A previous proposal along 
these lines using CHREST was made in the SEARCH model [8]. Thus, except in very 
artificial tasks, System 2 nearly always operates with Sys- tem 1, shedding serious 
doubts upon the independent use of the two systems as proposed by Dual Process 
theories. For example, when a chess expert tries to find the best move in a position, 
the variations that are being consciously searched are nearly always supplemented by 
unconscious pattern-recognition mechanisms [4]. 

Whether the future holds a modular or integrated combination of architectures, it is 
apparent that a theory of artificial general intelligence will reflect the contributions of 
several current architectures. This combination would, we suggest, present a better 
explanation of general intelligence, covering a wider range of phenomena than either 
alone, whilst combining their strengths. In particular, we argue that CHREST is a 
suitable architecture for studying tasks involving categorisation and understanding 
based on prior expertise, and have demonstrated some new results in these areas. An 
important area of ongoing research is to consider how these recognition processes 
interact, and may be combined, with current theories of problem solving. 
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Abstract. A new approach to translating between natural language ex-
pressions and hypergraph-based semantic knowledge representations is
proposed. Language comprehension is formulated in terms of homomor-
phisms mapping syntactic parse trees into semantic hypergraphs, and
language generation as constraint satisfaction based on constraints de-
rived via applying the inverse relations of these homomorphisms. This
provides an elegant approach to implementing semantically savvy NLP
systems, and also to thinking about the feedbacks between syntactic and
semantic processing that are the crux of generally intelligent NLP. A pro-
totype of the approach created using the link parser and the OpenCog
Atom semantic representation is described, and initial results presented.
Routes to extending this prototype into something useful for aiding gen-
erally intelligent dialogue systems are discussed.

1 Introduction

Human language interaction is a large part of human-level AGI. The Turing
Test, the most widely accepted evaluation metric for human-level AGI, is entirely
focused on natural language dialogue; but even if one sets the Turing Test aside
as many researchers advocate [1], there is no disputing the key value of human-
like conversation as an indicator of human-like intelligence.

However, the fields of AGI and NLP are currently almost entirely disjoint.
Few of the existing proto-AGI systems deal with language; and nearly all NLP
systems are centered on extremely specialized rule-based or statistical methods
that require careful customization for effective processing in new domains. If
one’s goal is AGI, two main options present themselves:

1. Create an AGI system capable of fairly general learning via experience, but
little or no built-in linguistic mechanism, and have it learn human language.

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 158–167, 2012.
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Variations abound, including robotic and virtual embodiment versus pure
chat-based learning.

2. Create an AGI system including relatively sophisticated computational lin-
guistics mechanisms, and have it use these to communicate, while modifying
and improving them based on its experience.

A conceptual framework for thinking about the second option was presented in
[2], in the context of enabling an AGI system to use virtually and/or robotically
embodied experience to revise linguistic knowledge initially supplied to it via tra-
ditional computational linguistics means. Subsequent to publication of [2], some
practical attempts were made to work toward implementing the ideas described
there, in the OpenCog framework [3]. However, various technical difficulties were
encountered, due to limitations of the specific computational linguistics tools in-
tegrated with OpenCog (the RelEx language comprehension system [4], and as-
sociated RelEx2Frame [5] and NLGen systems [6] ). The present paper describes
a new approach to integrating computational linguistics tools with OpenCog,
differing from the RelEx approach in significant respects, created with the pur-
pose of making it easier for OpenCog’s general-purpose learning algorithms to
interact synergetically with its dedicated computational linguistics components.

The key ideas of the approach presented here are:

1. Language comprehension, in its intermediate stages, is carried out via appli-
cation of graph rewrite rules to syntactic parse trees. These rules, together,
effect a hypergraph homomorphism that maps a parse tree into a subhy-
pergraph of an OpenCog Atomspace (the ”Atomspace” being OpenCog’s
weighted, labeled hypergraph based knowledge store). That is: syntax to
semantics mapping via hypergraph homomorphism.

2. The more advanced stages of language comprehension are carried out via
generic inference mechanisms, acting on the hypergraphs produced by the
above rewrite rules. This is relied upon systematically, in the sense that the
above rewrite rules don’t try to perform subtle disambiguation, generally
trying to disambiguate only enough to figure out the argument structures of
the semantic relations being depicted in a sentence, and the basic semantic
nature of each relation.

3. If a parser is capable of accepting semantic guidance midway through the
parsing process, this guidance may be obtained via applying the above
rewrite rules to partial parses and obtaining information regarding the se-
mantic meaningfulness of the results

4. Language generation is done by applying the inverse relations of the above
graph rewrite rules to a semantic hypergraph intended for expression, and
thus obtaining a set of constraints corresponding to said hypergraph. A sen-
tence expressing the hypergraph is then generated by solving the constraint
satisfaction problem. That is: semantics to syntax mapping via find-
ing solutions to the constraints posed by the inverse relations of
hypergraph homomorphisms.



160 R. Lian et al.

5. A database of previously comprehended sentences may be used to direct the
system toward more natural-sounding solutions to the constraint satisfaction
problem, as may inference on the hypergraphs inferred by applying known
rewrite rules to partially generated sentenced.

Our main focus here will be on points 1 and 4, though the other points will be
mentioned briefly as appropriate. The critical difference between this approach
and previous approaches attempted with OpenCog, is that the graph rewrite
rules serving as the core of the syntax/semantics mapping process are simple
enough to be treated as ”cognitive content” by OpenCog’s learning and reasoning
processes.

Due to length limitations, we have placed a number of tables and exam-
ples associated with the paper in Supplementary Information available online at
http://wp.goertzel.org/?page_id=406.

2 The OpenCog Integrative AGI Framework

The work described here is part of the larger project of developing OpenCog, an
open-source AGI software framework. OpenCog has been used for commercial
applications in the area of natural language processing and data mining; e.g. see
[4]. It has also been used to control virtual agents in virtual worlds, at first using
an OpenCog variant called the OpenPetBrain [7], and more recently in a more
general way using a Minecraft-like virtual environment [8]. It is the platform for
the in-progress implementation of the OpenCogPrime design aimed ultimately
toward AGI at the human level and beyond.

Conceptually founded on the ”patternist” systems theory of intelligence out-
lined in [9], OpenCogPrime combines multiple AI paradigms such as uncertain
logic, computational linguistics, evolutionary program learning and connection-
ist attention allocation in a unified architecture. Cognitive processes embodying
these different paradigms interoperate together on a common neural-symbolic
hypergraph knowledge store called the Atomspace (”Atom” being a term inclu-
sive of Nodes and Links, where the latter includes hyperlinks). The interaction
of these processes is designed to encourage the self-organizing emergence of high-
level network structures in the Atomspace. Further review of OpenCog will be
omitted here for space reasons; the reader is referred to [3] and various references
linked from http://opencog.org.

The Atomspace Representation. OpenCog’s ”Atomspace” knowledge representa-
tion is a generalized hypergraph formalism which comprises a specific vocabulary
of Node and Link types, used to represent declarative knowledge and also, in-
directly, other types of knowledge as well. There is a specific vocabulary of a
couple dozen node and link types with semantics carefully chosen to reflect the
needs of OpenCog’s cognitive processes. Simple examples of OpenCog links, in
the notation commonly used with OpenCog, are:

http://wp.goertzel.org/?page_id=406
http://opencog.org
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InheritanceLink Ben_Goertzel animal <.99>

EvaluationLink <.7>

chase

ListLink

cat

mouse

Examples using nodes with English-word labels provide convenient examples, but
in fact most nodes in a practical OpenCog system will generally be automatically
learned and not correspond directly to any human-language concept.

What’s important about the AtomSpace knowledge representation is mainly
that it provides a flexible means for compactly representing multiple relevant
forms of knowledge, in a way that allows them to interoperate – where by ”in-
teroperate” we mean that e.g. a fragment of a chunk of declarative knowledge
can link to a fragment of a chunk of attentional or procedural knowledge; or a
chunk of knowledge in one category can overlap with a chunk of knowledge in
another category (as when the same link has both a (declarative) truth value and
an (attentional) importance value). In short, any representational infrastructure
sufficiently flexible to support

– compact representation of all the key categories of knowledge playing domi-
nant roles in human memory

– the flexible creation of specialized sub-representations for various particular
subtypes of knowledge in all these categories, enabling compact and rapidly
manipulable expression of knowledge of these subtypes

– the overlap and interlinkage of knowledge of various types, including that
represented using specialized sub-representations

would probably be acceptable for OpenCog’s purposes. The Atom formalism sat-
isfies the relevant general requirements and has proved workable from a practical
software perspective.

3 Link Parsing and RelEx

The novel NLP approach described here utilizes a syntax parsing framework
called link parsing [10], and (to a lesser extent, and in a more temporary way),
an add-on to the link parser called RelEx (for Relationship Extractor). The
conceptual essence of the approach is not tied to these particular tools, but its
current practical implementation is.

3.1 Link Grammar

The essential idea of link grammar is that each word comes with a feature struc-
ture consisting of a set of typed connectors . Parsing consists of matching up
connectors from one word with connectors from another. Consider the sentence:

The cat chased a snake
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The link grammar parse structure for this sentence is:

There is a database called the “link grammar dictionary” which contains connec-
tors associated with all common English words. The notation used to describe
feature structures in this dictionary is quite simple. Different kinds of connectors
are denoted by letters or pairs of letters like S or SX. Then if a word W1 has
the connector S+, this means that the word can have an S link coming out to
the right side. If a word W2 has the connector S-, this means that the word can
have an S link coming out to the left side. In this case, if W1 occurs to the left
of W2 in a sentence, then the two words can be joined together with an S link.

The rules of link grammar impose additional constraints beyond the matching
of connectors – e.g. the planarity and connectivity metarules.. Planarity means
that links don’t cross. Connectivity means that the links and words of a sentence
must form a connected graph – all the words must be linked into the other words
in the sentence via some path.

The graph rewrite rules at the center of the NLP approach described here
map link parses into semantic Atom structures.

3.2 RelEx

RelEx is an English-language semantic relationship extractor, designed to post-
process the output of the link parser. It can identify subject, object, indirect
object and many other dependency relationships between words in a sentence;
it generates dependency trees, resembling those of dependency grammars. The
output of the current version of RelEx on the example sentence given above is:

singular(cat)

singular(snake)

_subj(chase, cat)

_obj(chase, snake)

past(chase)

A list of the important RelEx relationship types is included in this paper’s online
Supplementary Info.

RelEx currently works via creating a tree with a FeatureNode corresponding
to each word in the sentence, and then applying a series of rules to update
the entries in this FeatureNode. The rules transform combinations of link parser
links into RelEx dependency relations, sometimes acting indirectly via dynamics
wherein one rule changes a feature in a word’s FeatureNode, and another rule
then takes an action based on the changes the former rule made.
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OpenCog also contains a system called RelEx2Frame, that translates RelEx
output into relationships involving the frames and arguments defined in the
FrameNet ontology, and code for translating link parser links, RelEx and
RelEx2Frame relationships, into Atoms. The new NLP approach presented here
replaces RelEx2Frame and RelEx both, but utilizes RelEx in a temporary role
to help generate data to enable the learning of graph rewrite rules mapping link
parses into Atom structures.

3.3 NLGen

Language generation is a complex, multi-phase process. There is an abstract
cognitive aspect, concerned with figuring out what is appropriate to say in the
current context. And then there is the ”surface realization” aspect, concerned
with translating conceptual content into a grammatical, comprehensible state-
ment.

OpenCog’s current language generation software, called NLGen, is focused
on surface realization, and is based on an approach called SegSim, which takes
an Atom set in need of linguistic expression and matches its subsets against
a data-store of (sentence, link parse, RelEx relationship set, Atom set) tuples,
produced via applying OpenCog’s NL comprehension tools to a corpus of sen-
tences. Via this matching, it determines which syntactic structures have been
previously used to produce relevant Atom subsets. It then pieces together the
syntactic structures found to correspond to its subsets, to form overall syntactic
structures corresponding to one or more sentences. This process works unprob-
lematically for relatively simple sentences, but sometimes becomes tricky for
sentences involving conjunctions or other complex syntactic forms.

4 Mapping Syntax to Semantics via Hypergraph
Homomorphisms

The core idea of the proposed new approach to natural language comprehension
is to map syntactic parses (e.g. link parse graphs) into semantic interpretations
(e.g. Atom sets) via applying rewrite rules. Each rewrite rule takes as input a
subgraph of a syntactic parse graph satisfying certain constraints, and outputs
an Atom hypergraph. In practice the rules required seem to take the form of
pairs (G,A), where

– G is a graph whose nodes are either words or variables, and whose links are
link-parser link types

– A is a hypergraph whose nodes are either words, variables or special linguistic
nodes (drawn from a small vocabulary of such), and whose hyper-edges are
OpenCog Atom types (e.g. InheritanceLink, EvaluationLink).

– The lists of variables in G and A must be the same

We shall call rules matching this description ”simple mapping rules.”
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For the simple mapping rules actually needed for handling human language,
the constraint that each edge in G maps into a single hyper-edge in A ap-
pears to hold true. Mathematically, this latter constraint implies that each of the
rewrite rules is individually a graph homomorphism [11], which then implies
that a collection of rewrite rules applied together is also a graph homomorphism.

These observations about the practical nature of the rules required, are drawn
from inspection of the actual rules used in the RelEx system currently, which
appear sufficient to cover a wide variety of English syntax and semantics. Ac-
cording to our best understanding, extending RelEx to increase its coverage and
accuracy would be unlikely to break any of the observations made here regarding
the basic mathematical nature of the rules involved.

A simple example of such a rule is (G,A) where

G = {S∗(v1, v2), O∗(v1, v3)}
A = (EvaluationLink v1 v2 v3)

This maps a verb v1 with subject v2 and object v3 into an OpenCog Evaluation-
Link with v1 as the predicate and (v2, v3) as the argument list. E.g. S∗ refers
to any of the link parser subtypes of S. Of course, most rules are more complex
than this.

While the transformations the RelEx system carries out are capable of being
formulated as simple mapping rules of the above form, they are not actually
implemented that way, but instead are implemented via an iterative process of
updating the FeatureNodes in a feature tree representing the words in a sentence.
This is disadvantageous for two reasons:

1. Rewrite rules in the ”simple mapping rule” format are easy to represent as
Atoms themselves (using the format (ImplicationLink PG PA), where e.g. PG

is an AndLink joining the OpenCog Links corresponding to the link-parser
links in the graph G). This makes it straightforward to OpenCog cognitive
algorithms like PLN (Probabilistic Logic Networks) to re-weight, generalize
and modify the rewrite rules, enabling the system’s linguistic understanding
to evolve via experience.

2. If one explicitly knows the rewrite rules used for comprehension, one can
then turn these same rules around and use them for generation, as will be
described below. This is a quite general and elegant approach to generating
surface realizations for sentences.

With this in mind, we have recently implemented a novel approach to automat-
ically learning simple mapping rules roughly equivalent to the current RelEx
rules. We have used the link parser and RelEx to create a corpus of (sentence,
link parse, RelEx relationship set, Atom set) tuples, and then used OpenCog’s
Fishgram pattern-mining system to automatically learn simple mapping rules
from this corpus. While there is inevitably some noise in the results from the
this process, in essence what one finds is a collection of simple mapping rules
that gives mainly the same results as the traditional OpenCog pipeline ”link
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parser → RelEx → Atomspace”. Systematic evaluation of the quality of these
learned rules will be presented in a later paper.

The application of our current simple mapping rules to the example sentence
given above yields the output

(ExistsLink

z

(ExistsLink

y

(ExistsLink

x

(AndLink

(InheritanceLink x Cat)

(InheritanceLink y snake)

(InheritanceLink z eat)

(InheritanceLink z past)

(EvaluationLink z x y)

)

)

)

)

Further example mappings are given in the paper’s online Supplementary Info,
along with explanation of the Atom types involved.

5 Mapping Semantics to Syntax via Constraint
Satisfaction

To carry out ”surface realization” and generate natural language expressing the
concepts in Atom sets, it suffices to reverse the graph rewrite rules described
in the previous section. However, this is not entirely simple, because the rules
create homomorphisms rather than isomorphisms. Any one Atom structure may
be produced by many different link-grammar structures, because there are many
grammatical ways to produce any given idea. But not all the grammatical struc-
tures corresponding to different subsets of a given Atom set needing articulation,
will necessarily be grammatically compatible with each other. So one has a con-
straint satisfaction problem, which in general will have multiple solutions, with
varying levels of syntactic ambiguity and subjective human naturalness.

More precisely, suppose we have an Atom set A = {Ai}; and let R = {Rj}
denote the set of all graph rewrite rules Rj with the property that Rj maps
at least one link parse subtree into some nonempty subset of {Ai}. Let Ri ∈ R
denote the set of rewrite rules that produce an Atom set including the particular
Atom Ai; we may write Ri = {Ri

k}, with R =
⋃

iR
i. Let mg(r) denote the

proposition that the rewrite rule r matches some subgraph of the graph g.
Given this set-up, the problem of generating a sentence expressing the Atom

set A boils down to finding some link parse g that
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– parses correctly according to link grammar
– satisfies the expressiveness condition∧

i

∨
k

mg(R
i
k),

– satisfies an assumed ”aesthetic condition”, initially: that it would either not
parse or not satisfy the expressiveness condition if any of its words were
removed

Given a link parse g, producing the relevant sentence is trivial. The task of
generating a sentence-set expressing A reduces to choosing a way to partition A
into subsets, so that each can be acceptably expressed via a single sentence.

A strength and weakness of this approach is that, in most practical cases, this
constraint satisfaction problem will have many solutions. Selection among the
various solutions could be approached in many ways, e.g. via evaluating various
solutions and choosing the one with the highest word tuple probabilities relative
to a large reference corpus; or via proceeding as in the current NLGen system,
and choosing solutions whose fragments are known via past NL comprehension
experience to have been used in real human-generated sentences.

6 Conclusions and Future Work

We have presented a novel approach to bidirectional syntax/semantics trans-
formation. The ideas described do not purport to solve the whole problems of
generally intelligent natural language comprehension or generation, but merely
to provide an elegant mechanism for connecting syntactic and semantic aspects
of linguistic intelligence. Currently the suggested approach to comprehension has
been implemented but not yet thoroughly validated; and the suggested approach
to generation is in the midst of implementation. Once implementation is com-
plete the software will be used to help an OpenCog system to carry out natural
language dialogue in the context of controlling a virtual agent in a video game
world. Of course, this dialogue application will involve a host of other compo-
nents as well, most critically a dialogue control mechanism based on OpenCog’s
”OpenPsi” framework for motivated action [12].

As we have focused on the syntax/semantics transformation aspect here, we
have not said too much about what happens at either end of the transformation
process (e.g. link parsing, and PLN inference). However, it bears emphasis that
a major goal of the ideas presented here is to enable the processes at the dif-
ferent ends of the transformations to work more closely together. For generally
intelligent language processing, parsing and generation should be guided by se-
mantic inference. This sort of linguistic cognitive synergy [13] should in principle
be relatively straightforward given a solid implementation of the ideas presented
here. A partially-parsed or generated sentence can be mapped into Atoms using
rewrite rules, and the interpretation of the resultant Atom structure can be used
to estimate the semantic viability of the sentence fragment. The original imple-
mentation of the link parser would not allow this sort of semantic guidance of
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parsing, but a variant of the link parser using SAT solving to do the parsing has
been implemented, which is much more flexible in this regard. Experimenting
with this sort of dynamic should be fascinating, and should move us closer to
generally intelligent language processing.

Another possible direction for development is to allow the link parser dictio-
nary itself (which contains most of the link grammar framework, since link gram-
mar is highly lexicalized) to be adapted via the system’s experience. Changes
to the link parser dictionary would then lead to automatic modification of the
rewrite rules, and could be validated or refuted based on the consequences of
these changes as determined by inference. This would eliminate any ”hard-coded
linguistic content” aspect from the OpenCog NLP process, rendering all such
content free for cognitive modification, as one desires in an AGI system.
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Abstract. Partial metric spaces generalise metric spaces, allowing non
zero self distance. This is needed to model computable partial informa-
tion, but falls short in an important respect. The present cost of com-
puting information, such as processor time or memory used, is rarely
expressible in domain theory, but contemporary theories of algorithms
incorporate precise control over cost of computing resources. Complex-
ity theory in Computer Science has dramatically advanced through an
intelligent understanding of algorithms over discrete totally defined data
structures such as directed graphs, without using partially defined
information. So we have an unfortunate longstanding separation of par-
tial metric spaces for modelling partially defined computable informa-
tion from the complexity theory of algorithms for costing totally defined
computable information. To bridge that separation we seek an intelligent
theory of cost for partial metric spaces. As examples we consider the cost
of computing a double negation ¬¬p in two-valued propositional logic,
the cost of computing negation as failure in logic programming, and a
cost model for the hiaton time delay.

Keywords: AGI, partial metric spaces, discrete mathematics.

1 Introduction

Today it may be taken for granted that a computing system should be adaptive
and intelligent. Certainly the behaviour of a hand held device running a com-
puter game or interactive internet site is adaptive and, as it exists to serve us
humans, is designed to be as intelligent as is possible. Some forty years ago pro-
gramming language design was categorised into what now appear narrow forms:
axiomatic (a system of logic), operational (defined by a machine model), or de-
notational (each program denoted by a point in some mathematical domain).
Through a groundbreaking axiomatic model such as Robin Milner’s Calculus of
Communicating Systems (CCS) or Dana Scott’s denotational theory of domains
we have made great progress in specifying some behaviours, but sadly not enough
to handle the adaptive and intelligent features required for today’s systems. So,
what went wrong? What seems to have emerged is a dominant operational view
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of programming language design and a grudging acceptance of the pragmatic
compromise of object orientation which in effect extends a language definition
with each new object introduced. To say that as a result logic and mathematics
have no place in Computer Science would be ridiculous. And so, this paper asks
how we can reinvigorate progress from axiomatic and denotational models for
today’s adaptive and intelligent systems.

1.1 Scott’s Domain Theory

For the purposes of this paper we need to first appreciate the key concepts
of Dana Scott’s theory of domains. A domain is in the first instance a chain
complete partially ordered set (X,�⊆ X ×X) with a least element ⊥. A com-
putable function is in the sense of Scott at the very least monotonic. That is,
if f : X → X & x � y then f(x) � f(y). Any non trivial programming lan-
guage has one or more iterative constructs built in, such as a while-do loop or
recursion. Scott uses Alfred Tarski’s least fixed point theorem [8] to define the
meaning of iteration for a computable function f as follows.

f(
⊔
n≥0

fn(⊥)) =
⊔
n≥0

fn(⊥)

Scott’s domain theory is topological. A Scott topology
(
X, τ ⊆ 2X

)
is related to

the partial ordering of a domain by, if O ∈ τ , x � y, & x ∈ O then y ∈ O. A
Scott topology (X, τ) is weakly separable in the sense of T0. That is, if y �� x
then there exists O ∈ τ such that y ∈ O & x �∈ O. As a denotational model
for programming language design of the 1960s Scott’s groundbreaking work re-
solved great issues of the day such as how to model iteration and recursion in
programming language design. Tarski’s theorem and Scott topology as fixed en-
tities are perfectly fine for modelling a program which remains unchanged during
its execution, but demonstrably inadequate for today’s adaptive and intelligent
computing systems. How come?

The situation in programming language design is just that of AI as understood
by the AGI community. “The original goal of the AI field was the construction of
‘thinking machines’ — that is, computer systems with human-like general intelli-
gence. Due to the difficulty of this task, for the last few decades the majority of AI
researchers have focused on what has been called ‘narrow AI’ — the production of
AI systems displaying intelligence regarding specific, highly constrained tasks. In
recent years, however, more and more researchers have recognized the necessity
— and feasibility — of returning to the original goals of the field. Increasingly,
there is a call for a transition back to confronting the more difficult issues of ‘hu-
man level intelligence’ and more broadly ‘artificial general intelligence (AGI)’”
(agi-conference.org). This paper considers two narrow design aspects of pro-
gramming language design, how they were innovative, and how they now call
for intelligent integration with the theory of algorithmic complexity in order to
progress.
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1.2 Non Zero Self Distance

An interesting lesson from Scott’s domain theory is that it was necessarily inno-
vative. The nature of computability theory when studied denotationally neces-
sitates weak properties such as partial orderings, T0-separability, and least fixed
points, instead of the usual strong properties such as T2-separability (that is, if
x �= y then there exists O,O′ ∈ τ such that x ∈ O, y ∈ O′ & O ∩O′ = φ). Dana
Scott was innovative in developing a highly nontrivial theory for non T2 topo-
logical spaces and applying them to the new science of programming language
design.

In a metric space (X, d : X ×X → [0,∞)) as introduced by Maurice René
Fréchet [4,7] strong separability T2 results from the axiom x = y iff d(x, y) = 0
for all x, y ∈ X , thus resulting in self distance d(x, x) = 0 for each x. This
equivalence gives rise to the trivial partial ordering x � y iff x = y for each
metric space, which is hardly surprising for any system of mathematics not
constrained to be computable let alone adaptive or intelligent.

The discipline of mathematics has traditionally taken zero self distance for
granted because, before computer science, there was little reason to consider
the computability of a metric distance d(x, y). More precisely, mathematics has
understandably assumed that each metric distance is a totally defined structure.
To assert that d(x, x) = 0 for each x ∈ X is in computational terms a useful
means to specify that x is totally computed. Yet, at first sight, there appears to
be no non trivial overlap between domain theory and metric spaces.

Definition 1. A contraction is a function f : X → X over a metric space
(X, d) for which there exists 0 ≤ c < 1 such that d(f(x), f(y)) ≤ c× d(x, y) for
all x, y ∈ X.

Banach’s contraction theorem states that each contraction over a complete met-
ric space has a unique fixed point in that metric space [7]. While a computable
function f has a least fixed point in the sense of Tarski/Scott, f may or may
not be a contraction. Similarly, a contraction may or may not be a computable
function. Wadge studied a small class of functions that are both computable and
a contraction [9], thus demonstrating a significant overlap of domain theory and
metric spaces. This approach was soon generalised to introduce a larger class of
functions.

Definition 2. A partial metric space [5,2] is a pair (X, p : X ×X → [0,∞))
such that,

p(x, x) ≤ p(x, y)
p(x, x) = p(x, y) = p(y, y) ⇒ x = y
p(x, y) = p(y, x)
p(x, z) ≤ p(x, y) + p(y, z)− p(y, y)

Thus a metric space is precisely a partial metric space for which each self dis-
tance p(x, x) = 0. For a partial ordering in the sense of Scott let x � y iff
p(x, x) = p(x, y). A partial metric space is, simply speaking, just a generalised
form of metric space in which self distance can be≥ 0. It is worth noting here that
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had not the first author once taken for his doctoral study (1985) an intelligent
analysis of metric space theory to resolve a problem in recursive programming
the idea of non zero self distance would not have subsequently emerged in his
work as that of partial metric space. Just as Dana Scott worked more generally
and effectively with non T2 separable topological spaces so it proved necessary in
Computer Science to work with non zero self distance in metric spaces. It can be
shown that the usual topology and T2-separability of metric spaces generalises
to a topology and T0-separability in partial metric spaces. Similarly, Banach’s
contraction fixed point theorem of metric spaces generalises to the cycle con-
traction theorem (Theorem 5.1, [6]) in partial metric spaces. There is thus a
strong overlap between Scott topology & least fixed points in domain theory
and topology & unique fixed points of contractions in metric space theory. How-
ever, for reasons explained above, neither exemplary approach of Fréchet/Banach
nor Tarski/Scott could simply subsume the other by means of some ingenious
theorem. Their heirs are called upon to intelligently integrate the research of
great mentors. This research could well be unified in a more abstract setting
such as category theory to express the greatest common denominator, but at
the high price of losing the accumulated experience of each approach. It seems
that partial metric spaces in Computer Science are going nowhere. How come?

It is the essential rationale of this paper that intelligent analysis in contempo-
rary mathematics and computer science is needed to reinvigorate denotational
models of computing with the exciting innovations of AGI. To exemplify such
intelligent analysis we consider the contrast of how the mathematics of domain
theory has developed as a costless form while research into algorithms and their
complexity is justly thriving upon interest in adaptive and intelligent systems.
A key ontological hypothesis of this paper is that cost is core, and that while
domain theory was necessarily cost free in its formative years, today it has to
be and can be properly costed. There is no expectation of a remarkable theo-
rem and proof for this ontological hypothesis, but there are interesting examples
to demonstrate how the notion of cost can evolve intelligently to help broaden
programming language design as a contribution to AGI.

2 Examples of Cost

Each of the following examples has interesting features providing evolving insight
into how notions of cost in algorithms have been related to denotational models
of computing. In the adaptive intelligent spirit of the complexity of algorithms
we seek to adapt the partial metric notion of non zero self distance to apply to
each of these examples.

2.1 The Cost of Negation

Let {F, T } be the usual set of truth values True and False of two valued truth
logic. Let ({F, T }, d) be the metric space such that d(F, T ) = 1 . Now add ⊥
as a third truth value. Let ({⊥, F, T }, p) be the partial metric space such that
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p(⊥,⊥) = p(⊥, F ) = p(⊥, T ) = 2, p(F, T ) = 1 and p(F, F ) = p(T, T ) = 0. Then,
just as required in the sense of Tarski/Scott ⊥ � F and ⊥ � T . As usual we can
define negation ¬F = T , ¬T = F and ¬⊥ = ⊥ to be a monotonic function. This
implies ¬¬A = A as expected for each proposition A in three valued truth logic.
However, this partial metric space is cost free as it does not keep account of the
cost of computing functions such as negation. Although it may be argued that
logics of truth have always necessarily been cost free, it is nonetheless a luxury no
longer affordable in today’s computing world of adaptive and intelligent systems.

For convenience in our first example of cost let us assume applying negation
to a proposition increases cost by one unit. For each n ≥ 0 let ({⊥, F, T }, pn)
be the partial metric space such that pn(⊥,⊥) = pn(⊥, F ) = pn(⊥, T ) = 21−n,
pn(F, T ) = 2−n and pn(F, F ) = pn(T, T ) = 0. Note that this particular definition
for each ({⊥, F, T }, pn) is chosen to model the notion that if we ever manage to
compute F or T it will be in some finite time n. Suppose now that given a propo-
sition A we associate a partial metric space ({⊥, F, T }, pn) to keep account of its
present cost. Let us speak of the costed proposition (A, pn) to be the proposition
A having an associated present cost of ({⊥, F, T }, pn). Then for a given costed
proposition (A, pn) we derive in one computational step the costed proposition
(¬A, pn+1). And so, the truth ¬¬A = A in three valued propositional truth val-
ued logic is preserved in a computation while in general the costed proposition
(A, pn) becomes later the costed proposition (¬¬A, pn+2). Any intelligent imple-
mentation of this rule would regard (F, pn) & (T, pn) as special cases of a costed
proposition which if ever reached for some n should terminate the computation.

2.2 The Cost of Negation as Failure

To commence our second example of cost we note the following personal connec-
tion from Dana Scott to Robert Kowalski, well known for his contributions to
logic programming. “I went to Stanford to study for a PhD in Mathematics, but
my real interest was Logic. I was still looking to find the truth, and I was sure
that Logic would be the key to finding it. My best course was axiomatic set theory
with Dana Scott. He gave us lots of theorems to prove as homework. At first my
marks were not very impressive. But Dana Scott marked the coursework himself,
and wrote lots of comments. My marks improved significantly as a result”, from
Robert Kowalski: A Short Story of My Life and Work, April 2002.

In a non computing cost free world of logic we can afford the luxury of the
property ∀x.A(x) iff � ∃x.¬A(x) . However, in logic programming where the uni-
verse of all possible x values could necessitate an exhaustive search over an
infinite domain this property is not computable in general. Negation as Failure
(NAF) is a non-monotonic inference rule in logic programming used to assign a
truth value to a formula ¬A from the failure to derive the truth of A. Keith Clark,
a student of Kowalski’s, says of NAF, “Although it is in general not complete,
its chief advantage is the efficiency of its implementation. Using it the deductive
retrieval of information can be regarded as a computation” [3]. Correct! NAF
cannot be complete in general, and hence neither is automated theorem proving.
Thus logic programmers necessarily integrate automated logical inference with
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their own creative human intelligence. Hence our second example of cost relates
to AGI. Now we can integrate Scott’s domain theory, partial metric spaces, and
NAF as follows. Let {({⊥, F, T }, pn)|n ≥ 0} be the set of partial metric spaces
such that,

�
�
�
�
�

��
T
� � � � � � �

�
�

�
�
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��

F
�������

�������������������
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������
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � �

pn(⊥,⊥)

⊥

pn(T, T ) = 2−n

pn(F, F ) = 2−n

pn(F, T ) = 20.5−n

pn(T,⊥) = 21−n

pn(F,⊥) = 21−n

pn(⊥,⊥) = 21−n

p is monotonic in the sense that each pn is a partial metric having the usual
domain theory ordering ⊥ � F , ⊥ � T , and for all x, y, 0 ≤ n < m , pn(x, y) >
pm(x, y).

Note that in our first example of cost each self distance pn(F, F ) and pn(T, T )
is defined to be 0 as we were assuming truth to be either totally computed as the
value F or T in finite time or remaining ⊥ indefinitely. In contrast, our second
example of cost defines pn(F, F ) and pn(T, T ) to be 2−n expressing the fact that
n is the maximum cost allowed at run time in searching for a truth value before
failure is to be assumed. NAF is a realistic intelligent algorithm to determine
the truth of a formula as best we can through exerting reasonable cost. NAF is
monotonic for as long as we are prepared to bear the cost of monotonic reasoning,
after which we must rely upon our human intelligence to choose a truth value
as best we can. Also note how the definition of ({⊥, F, T }, p) evolves from a cost
free single partial metric space, to a costed set of partial metric spaces in our
first example, and on to further development in the second example.

2.3 Failure Takes Time

In 1979-80 the first author of this paper took an introductory course at London’s
Imperial College in logic programming from Robert Kowalski himself. This was
his first exposure to the Negation as Failure inference rule. Many years later in
2011 this author’s former PhD supervisor W.W. Wadge proposed the apt slogan
Failure Takes Time. In 1977 Ashcroft & Wadge [1] introduced a declarative
programming language called Lucid in which each input (resp. output) is a
finite or infinite sequence of data values termed a history. In domain theory,

〈〉 � 〈a〉 � 〈a, b〉 � 〈a, b, c〉 � 〈a, b, c, d〉 � . . .

where the totally defined inputs are precisely the infinite sequences, and the
partially defined inputs are precisely the finite sequences. In partial metric terms
p(x, y) = 2−n where n is the largest integer (or∞ if x = y is an infinite sequence)
such that for each 0 ≤ i < n xi = yi . Then p is a partial metric inducing the
above ordering. An unavoidable implication is that each data value in a sequence
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is presumed to take the same amount of time to input (resp. output). Suppose
now that time is to be our notion of cost for Lucid. Wadge & Ashcroft [10]
recognised full well that defining a notion of cost synonymous with the data
content of an input (resp. output) sequence is unrealistic in any non trivial
programming language, and so presented their insightful vision of a pause in the
execution of a program. For example, the following Lucid-like sequence seeks to
introduce a special pause value termed a hiaton denoted ∗ to domain theory.

〈∗, 2, 3, ∗, 5, ∗, 7, ∗, ∗, ∗, 11, . . . 〉

But ∗ is neither a well defined null data value (such as is the number 0) nor
is say 〈∗, 2〉 a partial value comparable to 〈2〉 in the partial ordering of domain
theory. And so, what is a hiaton? Frustratingly the temporal intuition of a hiaton
appears to be sound, but is not expressible in either domain theory or as a single
partial metric space. The term hiaton is revealing, being as it is a combination
of hiatus (pause) and daton (a Lucid data value). The vision of hiatons appears
to infer that a pause can be fully known in order to be integrated with and
presented as a well defined data value in a history. Our first two examples of
cost regard cost not as a form of data but as a sophisticated interpretation of data
in contemporary computing systems requiring (among other things) adaptivity
and intelligence. Let us now generalise the notion of partial metric space for
Lucid sequences to incorporate pauses as envisioned by Wadge & Ashcroft in a
form that is consistent with domain theory. The following table is an example
history of how pauses can be modelled in Lucid sequences using evolving partial
metric self distances.

Time Data Hiatons Partial Metric Self Distances
0 〈〉 〈〉 2−1 + (2−0 − 2−1)× 2−0

1 � 〈1〉 〈1〉 2−2 + (2−1 − 2−2)× 2−0

2 � 〈1〉 〈1, ∗〉 2−2 + (2−1 − 2−2)× 2−1

3 � 〈1, 2〉 〈1, ∗, 2〉 2−3 + (2−2 − 2−3)× 2−0

4 � 〈1, 2〉 〈1, ∗, 2, ∗〉 2−3 + (2−2 − 2−3)× 2−1

5 � 〈1, 2, 3〉 〈1, ∗, 2, ∗, 3〉 2−4 + (2−3 − 2−4)× 2−0

6 � 〈1, 2, 3〉 〈1, ∗, 2, ∗, 3, ∗〉 2−4 + (2−3 − 2−4)× 2−1

7 � 〈1, 2, 3〉 〈1, ∗, 2, ∗, 3, ∗, ∗〉 2−4 + (2−3 − 2−4)× 2−2

. . . . . . . . . . . .

We now have an integrated notion of history for Lucid’s data sequences and
hiatons. Thus failure does indeed take both time and intelligence. Wadge’s notion
of hiaton is shown to be ahead of its time, and an intelligent integration of
Fréchet/Banach and Tarski/Scott who came before.

3 Discrete Partial Metric Spaces

In Computer Science the term discrete mathematics is taken to mean the con-
temporary mathematics of information structures that are fundamentally finite.
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Discrete mathematics is thus reasoning about structures such as finite graphs
which are of interest in the understanding of algorithms or real-world comput-
ing applications. In contrast metric spaces and general topology are inherently
continuous forms of mathematics where in general a point could be the limit of
an infinite sequence of ever arbitrarily closer approximations. Wadge uses the
interesting term Infinitesimal Logic (search online for Bill Wadge’s Blog) in his
work to introduce continuous mathematics to logic. As described in this paper
the authors’ work happened to turn out the other way round, which might be
termed Logical Infinitesimals in contrast to and respect for Wadge. What is clear
in both approaches is the need for and feasibility of a more intelligent integration
of established research into logic, continuous mathematics, and algorithms. Cost
is a key part of that integration.

Definition 3. A discrete partial metric space is a set of related partial metric
spaces in which evolving self distances can be associated to represent computa-
tional costs defined by an intelligent form of discrete mathematics.

For example, a discrete partial metric space appropriate for representing Lucid
with hiatons could begin with a partial metric space (X, p : X×X → {amn | 0 ≤
n,m }) such that,

∀ n ≥ 0 . a0n > a1n > a2n > . . . > a0n+1

Our usual choice for this is such that,

∀ n ≥ 0, m > 0 . amn = a0n+1 + (a0n − a0n+1)× 2−m

A hiaton may be understood intuitively as presented by Wadge & Ashcroft
wherever the meaning is clear, or more precisely as a discrete partial metric
space where the history is in part the history of time (as defined using evolving
non zero self distance) in a sequence’s computation.

Discrete mathematics, as understood in Computer Science, has developed firm
roots driven by real-world applications. Discrete mathematics has proved itself
to have great potential for modelling adaptive and intelligent systems. In con-
trast axiomatic and denotational models of computation have paid a very high
price indeed for insisting that today’s real-world must abide by their rigid pre-
computing philosophies. Is it then just of mere academic interest to consider how,
if at all, continuous and discrete forms of mathematics relate? Our examples of
cost demonstrate that there are interesting ways to integrate continuous and dis-
crete mathematics, as opposed to the prevailing view in Computer Science that
continuous models of computations are mostly irrelevant to programming prac-
tice and only discrete mathematics has a future. Furthermore our research has
highlighted the merits of working with logic and mathematics in contemporary
computer science. Now we have an analogous but even more ambitious task of
finding ways to have humans and machines think together as one new intelligent
form, rather than trying to be the ultimate largest automatic theorem prover.
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Abstract. A theory of general intelligence must account for how an intelligent 
agent can map percepts into actions at the level of human performance. We de-
scribe a new approach to this percept-to-action mapping. Our approach is based 
on four ideas: the world exhibits fractal self-similarity at multiple scales, the de-
sign of mind reflects the design of the world, similarity and analogy form the 
core of intelligence, and fractal representations provide a powerful technique 
for perceptual similarity and analogy. We divide our argument into two parts. In 
the first part, we describe a technique of fractal analogies and show how it gives 
human-level performance on an intelligence test called the Odd One Out. In the 
second, we describe how the fractal technique enables the percept-to-action 
mapping in a simple, simulated world. 

1 Introduction 

Russell & Norvig [28] characterize an intelligent agent as a function (f) that maps a 
perceptual history (P*) into an action (A). If we accept f: P* → A as a useful characteri-
zation of intelligence, it follows that a theory of general intelligence must account for 
how the intelligent agent maps percepts into actions. Although Russell & Norvig do not 
delve into it, we believe that a theory of general intelligence must also account for 
agent’s performance at the level of human intelligence. In this paper, we present a novel 
approach to addressing the f: P* → A mapping at the level of human intelligence.  

Our approach is based on four ideas: (1) the world exhibits fractal self-similarity at 
multiple scales [19]; (2) the design of mind at least in part reflects the design of the 
world [12]; (3) similarity and analogy form the core of intelligence [14]; and (4) frac-
tal representations provide a powerful technique for similarity and analogy. The first 
three of these ideas are familiar in theories of nature and intelligence; however, it is 
the fourth idea which is new.  We claim that analogy initiates with an act of being 
reminded, and that fractally representing that triggering percept as well as all prior 
percepts affords unprecedented similarity discovery, and thereby analogy-making.  

We divide the argument in this paper into two parts. In the first part, we describe 
the general technique of fractal analogies and show how it gives human-level perfor-
mance on an intelligence test called the Odd One Out. In the second, we describe how 
the same fractal technique enables the f: P* → A mapping in a simulated world, in 
which intelligent agents recognize one another and flock together. 
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2 Fractal Analogies and Novelty Detection 

To deem some apprehended object as novel involves the complex interplay of at least 
two relationships [30-31]: the relationship between the observer and the observed, and 
the relationship between the observed and its context. The relationship between the 
observing agent and the observed object may vary depending upon some act taken by 
the observer.  For example, if one wishes to appreciate an object at a higher level of 
detail, one might move closer to the object, or bring the object closer, resulting in the 
object occupying a larger expanse of the observer’s field of view.  This action mod-
ifies the resolution of the object: at differing levels of resolution, fine or coarse details 
may appear, which may then be taken into the consideration of the novelty of the 
object. The observed object also is appreciated with regard to other objects in its envi-
ronment.  Comparing an object with others around it may engage making inferences 
about different orders of relationships. We may begin at a lower order but then pro-
ceed to higher orders if needed. The context also sanctions which aspects, qualities, or 
attitudes of the objects are suitable for comparison.   

Given the importance of perceptual novelty detection, there has been quite a bit of 
work on the topic. Markou & Singh [20-21] review statistical and neural network 
techniques for novelty detection. Neto & Nehmzow [24] illustrate the use of visual 
novelty detection in autonomous robots. Work on spatial novelty and oddity by Lo-
vett, Lockwood & Forbus [18] centered on qualitative relationships in visual matrix 
reasoning problems. They showed that by applying traditional structure-mapping 
techniques [10] to qualitative representations, analogical reasoning may be used to 
address problems of visual oddity; however, they did not show where the representa-
tions come from [15].  

Analogies in a general sense are based on similarity and repetition [14], and so we 
seek to employ a suitable representation, one which affords the capture of these quali-
ties as well as sanctions reasoning over them. Fractals capture self-similarity and re-
petition at multiple scales [19]. Thus, we believe fractal representations to be an  
appropriate choice for addressing some classes of analogy problems. We model the 
relationship between the observer and the observed by starting with fractal representa-
tions encoded at a coarse level of resolution, and then adjusting to the right level of 
resolution for addressing the given problem. We model the relationship between the 
observed and its context by searching for similarity between simpler relationships, 
and then shifting its searches for similarity between higher-order relationships.  In 
each aspect, these adjustments are made automatically by our strategy, by characteriz-
ing the ambiguity of a potential solution.  

2.1 Visual Analogies and Fractal Representations 

Consider the general form of a visual analogy problem as being A : B :: C : D, with 
the symbols being images. Some unknown transformation T can be said to transform 
image A into image B, and likewise, some unknown transformation T′ transforms 
image C into an unknown answer image D. The central analogy in such a visual prob-
lem may then be imagined as requiring that T be analogous to T′; that is, the answer 
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will be whichever image D yields the most analogous transformation. That T and T’ 
are analogous may be construed as meaning that T is in some fashion similar to T’.   

The nature of this similarity may be determined by a number of means, many of 
which might associate visual or geometric features to points in a coordinate space, 
and compute similarity as a distance metric [29]. We adopt Tversky’s interpretation of 
similarity as a feature-matching process, and seek to derive from each fractal repre-
sentations a set of features for use in this matching process. Thus, we define the most 
analogous transform T′ as that which shares the largest number of matching fractal 
features with the original transform T. 

The mathematical derivation of fractal image representation expressly depends 
upon the notion of real world images [2]. A key observation is that all naturally occur-
ring images appear to have similar, repeating patterns. Another observation is that no 
matter how closely one examines the real world, one may find instances of similar 
structures and repeating patterns. These observations suggest that images may be 
described in terms that capture the observed similarity and repetition alone, without 
regard to shape or traditional graphical elements.    

 Computationally, determining the fractal representation of an image requires the 
use of the fractal encoding algorithm. We refer the interested reader to our earlier 
work for the details of this algorithm [16, 22]. 

Table 1. Elements of a Fractal Code 

Spatial Photometric 

sx, sy Source fragment origin C Colorimetric contraction 

dx, dy Destination fragment origin Op Colorimetric operation 

T Orthonormal transformation 
 

S Size/shape of the region 

Features from Fractals. The fractal representation of an image is an unordered set of 
fractal codes, which compactly describe the geometric alteration and colorization of 
fragments of a source image that will collage to form a destination image. Each fractal 
code yields a small set of features, formed by constructing subsets of its underlying 
tuple. These features thus afford position-, affine-, and colorimetric-agnosticism, as 
well as specificity. 

Mutuality. The analogical relationship between two images may be seen as mutual; 
that is, image A is to image B as image B is to image A.  However, the fractal repre-
sentation is decidedly one-way (e.g. from A to B).  To capture the bidirectional, mu-
tual nature of the analogy between source and destination, we introduce the notion of 
a mutual fractal representation. Let us label the representation of the fractal transfor-
mation from image A to image B as TAB.  Correspondingly, we would label the  
inverse representation as TBA. We shall define the mutual analogical relationship be-
tween A and B by the symbol MAB, given by equation 1: 

 MAB = TAB ∪ TBA (1) 
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By exploiting the set-theoretic nature of fractal representations TAB and TBA to express 
MAB as a union, we afford the mutual analogical representation the complete expres-
sivity and utility of the fractal representation. Further, the mutual fractal representa-
tion of the pairings may be extended to determine mutual fractal representations of 
triplets (equation 2) or quadruplets (equation 3) of images: 

 Mijk = Mij ∪ Mjk ∪ Mik    (2) 

 Mijkl = Mijk ∪ Mikl ∪ Mjkl ∪ Mijl  (3) 

Therefore, in a mutual fractal representation, we have the apparatus necessary for 
reasoning analogically about the relationships between images, dependent upon only 
features which describe the mutual visual similarity present in those images. 

 

Fig. 1. Representative Odd One Out problems 

2.2 Odd One Out Problems 

General one-one-out tasks can be presented with many kinds of stimuli, from words, 
colors, and images, to sets of objects.  Minimal versions of these tasks are presented 
with three items, from which the “odd” one must be selected.  Three item one-one-out 
tasks, in contrast to two-item response tasks, evaluate a participant’s ability to com-
pare relationships among stimuli, as opposed to just comparing stimuli features.  It 
has been shown that these relationship-comparison tasks track general IQ measure 
more closely than do two-item tasks, and this tracking of IQ increases with the num-
ber of relationships to be considered [9]. We have chosen the Odd One Out test de-
veloped by Hampshire and colleagues at Cambridge Brain Sciences [11], which con-
sists of matrix reasoning problems of varying levels of difficulty, in which the task is 
to decide which of the figures in the matrix does not belong.  

 

Finding the Odd One Out, Fractally. Our technique for tackling the Odd One Out 
problems consists of three phases: segmentation, representation, and reasoning. First, 
we segment the problem image into nine subimages, I1 through I9.  In the present 
implementation, the problems are given as 478x405 RGB-pixel JPEG images, with 
the subimages arrayed in a 3x3 matrix.  At this resolution, each subimage fits well 
within a 96x96 pixel image. 

Given the nine subimages, we group subimages into pairs, such that each subimage 
is paired once with the other eight subimages, forming 36 distinct pairings.  We then 
calculate the mutual fractal representation Mij for each pair of subimages Ii and Ij. The 
block partitioning used initially is identical to the largest possible block size, but  
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subsequent recalculation of Mij may be necessary using finer block partitioning. To 
determine the Odd One Out solely from the mutual fractal representations, we start by 
considering groupings of representations, beginning with pairings, and, if necessary, 
advance to consider other groupings.  

Reconciling Multiple Analogical Relationships. For a chosen set of groupings G, 
we must determine how similar each member is to each of its fellow members. We 
first derive the features present in each member, as described above, and then calcu-
late a measure of similarity as a comparison of the number of fractal features shared 
between each pair member [29].  

We use the ratio model of similarity as described in [29], wherein the measure of 
similarity S between two representations A and B is calculated: 

 S(A,B) = f(A ∩ B) / [f(A ∩ B) + αf(A-B) + βf(B-A)]  (4) 

where f(X) is the number of features in the set X. To favor features from either image 
equally, we have chosen to set α = β = 1 (the Jaccard similarity). 

Relationship Space. As we perform this calculation for each pair A and B taken from 
the grouping G, we determine a set of similarity values for each member of G. We 
consider the similarity of each analogical relationship as a value upon an axis in a 
large “relationship space” whose dimensionality is determined by the size of the 
grouping. To arrive at a scalar similarity score for each member of the group G, we 
construct a vector in this multidimensional relationship space and determine its 
length, using the Euclidean distance formula. The longer the vector, the more similar 
two members are.  As the Odd One Out problem seeks to determine, literally, “the 
odd one out,” we seek to find the shortest vector, as an indicator of dissimilarity. 

Distribution of Similarity. From the similarity score for a member of G, we determine 
subimage scoring by distributing the similarity value equally among the participating 
subimages.  For each of the nine subimages, a score is generated which is proportion-
al to its participation in the grouping.  If a subimage is one of the two images in a 
pairing, as an example, then the subimage’s similarity score receives one half of the 
pairing’s calculated similarity score. Once all similarity scores of the grouping have 
been distributed to the subimages, the similarity score for each subimage is known. 
Although identifying which one among the subimages has the lowest similarity score, 
this may not yet sufficient for solving the problem, as ambiguity may be present. 

Ambiguity. Similarity scores may vary widely. If the score for any subimage is un-
ambiguously smaller than that of any other subimage, then the subimage is deemed 
“the odd one out.”  By unambiguous, we mean that there is no more than one score 
which is less than some ε, which we may vary as a tuning mechanism for the algo-
rithm, and which we see as a useful yet coarse approximation of the boundary be-
tween the similar and the dissimilar in feature space.  In practice, we calculate the 
deviation of each similarity measure from the average of all such measures, and use 
confidence intervals as a means for indicating ambiguity.  

Refinement Strategy. However, if the scoring is inconclusive, then there are two 
readily available mechanisms at the algorithm’s disposal:  to modify the grouping 
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such that larger sets of subimages are considered simultaneously (from pairs to trip-
lets, or from triplets to quadruplets), or to recalculate the fractal representations using 
a finer partitioning.  In our present implementation, we attempt bumping up the ele-
ments considered simultaneously as a first measure.  If after reaching a grouping 
based upon quadruplets the scoring remains inconclusive, then we consider that the 
initial representation level was too coarse, and rerun the algorithm using ever finer 
partitions for the mutual fractal representation.  If, after altering our considerations of 
groupings and examining the images at the finest level of resolution the scores prove 
inconclusive, the algorithm selects the subimage with the lowest score. 

2.3 Analysis and Discussion 

We have run our algorithm against 2,976 problems of the Odd One Out.  These prob-
lems span a range of difficulty from the very easiest (level one) up to the most diffi-
cult (level 20). The performance ranged from nearly perfect on the easiest levels, to 
70% correct at the middle difficulties, with a rapid falloff to 20% at the most difficult.  
For each problem, the choice of partitioning resolution was made automatically. 

We note that most errors occur when the algorithm stops at quite high levels of 
partitioning.  We interpret this as evidence that there exist levels-of-detail which are 
too gross to allow for certainty in reasoning. Indeed, the data upon which decisions 
are made at these levels are three orders of magnitude less than that which the finest 
partitioning affords.  We find an opportunity for a refinement of the algorithm to as-
sess its certainty based upon a naturally emergent artifact of the representation. 

The errors that occurred at the finest level of partitioning are caused not due to the 
algorithm reaching an incorrect unambiguous answer but rather that the algorithm was 
unable to reach a sufficiently convincing or unambiguous answer.  As we noted, these 
results are based upon calculations involving considering shifts in partitioning only, 
using pair wise comparisons of subimages. There appear to be Odd One Out problems 
for which considering pairs of subimages shall prove inconclusive at all available 
levels of detail.  It is this set of problems which we believe implies that a shift in 
grouping (from pairs to triplets, or from triplets to quadruplets) must be undertaken to 
reach an unambiguous answer. 

3 Fractal Perception and Action 

In order to demonstrate that fractal analogies may form the basis of a theory of gener-
al intelligence, we need to describe how they can address the f: P* → A mapping. To 
illustrate this we will construct an intelligent agent that lives in a simple simulated 
world similar to Reynolds’s [26-27] boid worlds.  

3.1 The Boid World 

Schools of fish, murmurations of starlings, and stampedes of wildebeest are at once 
stunning and remarkable in appearance. The collection of agents, taken together, ap-
pear to be acting as if they were under some organized control.  
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Reynolds' boids are agents with an internal state which describes their current 
heading and an awareness of those agents to whom they should. They also have a 
minimum set of intrinsic behaviors that drive them to coordinate their actions with 
those flock mates: stay close together, don’t collide, and mimic the motion of others. 

 

Fig. 2. Flocking Behaviors: Cohesion, Separation, and Alignment 

Perception. A flock in nature may be composed of many thousands of individuals. It 
would seem an improbable computational load to place upon each agent within the 
flock the attempt to ascertain aspects of every member of the flock prior to making 
modifications to its own behavior. Some restriction of which individuals to consider 
must occur. Reynolds characterizes this as considering each agent to have a local 
perception. In computer simulations of flocks, the local perception each agent has of 
the world typically is provided to the agent by a godlike view of the entire environ-
ment, and a superimposed restriction of individuals by culling those deemed too dis-
tant to consider. This distance is usually referred to as a range of influence. 

3.2 The Froid (Fractal Boid) World 

For explorations of visual reasoning, affording agents with models of perception 
based on familiarity and novelty and observing those agents as flocks seems ideal. In 
our system, we endow our agents with a visual reasoning apparatus with the ability to 
receive the environment by localized observation only, and to perceive this received 
world via manipulations of fractal representations.  
 
Froids versus Boids. Our agents, froids, sense and then classify their environment, 
whereas boids are told explicitly about their surrounds. Both boids and froids manifest 
the same behaviors, and thus participate in flocking with their mates, but only froids 
perceive and reason about their environment prior to enacting those behaviors. We 
establish a visual reasoning pipeline for a froid, from the reception of the world, 
through perceiving individuals and objects in the world, to reasoning about those 
perceptions, and finally, to enacting some course of action. 

We made two simplifying architectural decisions for our experiment. First, the per-
ception stage occurs in a serial fashion with the behavior decision stage, since the 
world of the simulation will not have changed until all the agents have moved them-
selves. Second, the perception stage would act only upon newly arriving stimuli, and 
not be influenced by prior decisions. We make these simplifications so that we may 
better compare the effect of perception on the subsequent behavior, without having 
our analysis take into account any perceptual hysteresis or other internal state. 
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Fig. 3. Visual field to retina mapping, seeing via ray casting, and retinal objects 

How a Froid Sees. We image a froid as having a single “eye” with a broad field of 
view. The froid’s eye consists of a simulated retina, an arrangement of sensors. A 
froid sees its environment by receiving photometric stimulation upon this retina. The 
light entering each of these sensors is combined to form a visual field, as shown in 
figure 3-left. In our simulation, we use ray-casting to send a ray out through each of 
the sensors into the simulated world, and note whether that ray intersects anything. 
We illustrate this in Figure 3-center. 

We interpret the “light” falling upon the sensor is a function of the distance of the 
intersected object from the froid, where objects which are distant are fainter than 
close objects. Figure 3-right shows an example of how objects within the froid’s im-
mediate environment may be mapped by this visual system onto its retina. 

Fractal Perception. The photometric values arriving via the froid’s retina next are 
interpreted by the froid’s perception stage. For our present implementation we restrict 
the intentionality of the perception to only those tasks which will drive the flocking 
behavior. Accordingly, the primary task of the perception system is to determine flock 
mates. 

This, however, raises an immediate question: what does a flock mate look like to a 
froid? Our froids are rendered into the simulated environment as chevrons whose 
orientation, color and physical size may vary. The visual environment, as transduced 
onto the retinal image, will show only an arranged set of values, roughly correspond-
ing to visual distance to whatever object happened to intersect the ray from the sensor. 

Filial Imprinting. There are many possible visual arrangements between a froid and 
a prototypical “other” in its environment. We chose to restrict our prototypes to six, 
four corresponding to points on the compass (north, south, east and west), and two 
corresponding to specific situations which would seem useful for behavior selection 
(close and empty). We refer to these as filial imprints, and they, along with their cor-
responding retinal impressions, are encoded into a fractal representation, and placed, 
indexed by derived fractal features, into the froid’s memory system. 

Finding the Familiar by Visual Analogy. The arriving retinal image is an otherwise 
undifferentiated collection of photometric information, with each value corresponding 
to a particular direction and distance. From this retinal image, flock mates that might 
be within the visual range of the froid may be identified. 
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We begin by segmenting the retinal image into varying sets (collections of adjacent 
sensors), and then encoding each of these segments into fractal representations. We 
note that no attempt is made to interpret the retina image for edges or other boundary 
conditions: the segments are treated merely as they are found.  

   

Algorithm 1. Selecting the fractal familiar 

If a segment corresponds to an imprinted prototype then we may make several in-
ferences. The first is that an individual flock mate exists in that direction of view, 
which corresponds to the segment’s retinal constituents. Secondly, we may infer that 
the flock mate lies at a distance which corresponds to a function of the faintness of the 
photometric readings of the retinal image. By systematically examining each segment 
of the retina, the froid’s flock mates may be inferred by visual analogy. 

3.3 The Three Laws for Froids 

Once the flock mates have been discovered, the Reynolds rules for flocking may be 
invoked. Since the perception system has inferred the existence of a flock mate at a 
particular distance and direction, the separation and cohesion rules may be enacted 
directly. To align with a flock mate, the froid must infer the heading from the visual 
classification of the mate. This classification depends explicitly upon which of the 
filial prototypes has been selected as most representative of the retinal segment. We 
identified five rules of heading inference. Once the heading is inferred, the alignment 
rule of Reynolds may be used to adjust the motion of the froid. 

3.4 Froids and Boids 

To test our belief that a froid could behave as naturally as its boid counterparts, we 
created a traditional Reynolds boid system. We first placed into the environment sev-
eral thousand standard boids, and observed that their aggregate motion was as ex-
pected: a realistic simulation of natural flocking behavior. 

To determine the prototype P’ which is most analogous to the retinal 
segment R from a set of fractal prototypes P ≔ { P1, P2, … Pn }: 

 
 F ← Fractal( R, R ) 
 Set M ← 0 and P’ ← unknown 
 For each prototype Pi ∈ P: 

· Calculate the similarity of F to Pi : S ← Sim( F, Pi ) 
· If S > M, then M ← S  and  P’ ← Pi 

 
P’ is therefore that prototype Pi ∈ P which corresponds to the maximal 

similarity S, and is deemed the most analogous to retinal segment R. 
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Fig. 4. A froid flocks with boids, and a closeup of the froid perceiving its environment 

We then introduced one froid into the environment with the boids. Figure 4 shows 
a view of this simulation, with traditional boids in green, and the froid in gold. We 
observed that the froid behaved in the same manner as those boids whose identifica-
tion of flock mates was given in the traditional oracle manner.  

We note that, unlike the boids, the froids appeared to suffer from uncertainty (ma-
nifested by a stuttering motion) when in the proximity of a large number of other 
boids. We surmised that this is due to the inability of the segmentation system using 
within the retina to accommodate or otherwise classify large amounts of overlapping 
or confounding visual data. Another possibility concerns the enaction itself. Let us 
suppose that two action vectors arising due to two received perceptual signals almost 
exactly cancel each other. In this case, small fluctuations in the perceptual signal can 
cause a significant change in the action vector, which may result in stuttering. 

4 Conclusion 

In earlier work [5-6], we showed that visual knowledge and reasoning alone could 
address some classes of analogy problems that had been assumed to require causal 
knowledge and reasoning. We also showed how visual analogies could account for 
several aspects of creative problem solving in scientific discovery [8] and engineering 
design [7]. However, this work still used propositional representations, while the con-
tent of knowledge was visuospatial. In [16-17], we showed how visual knowledge 
represented iconically can address analogy problems on the Raven’s Progressive Ma-
trices test of intelligence. Previously, the visual analogy problems on the Raven’s test 
had been assumed to require propositional representations. The Raven’s test also 
formed the context of our first development of fractal representations for addressing 
visual analogy problems [22]. The fractal method on the Raven’s test performs about 
as well as typically human teenager. Hertzmann et al  [13] have used a different frac-
tal technique for comparing texture in two images. 

In this paper, first we showed that an improved fractal technique can address visual 
analogy problems on the Odd One Out test of intelligence at the level of most adult 
humans. Further, the fractal technique imitates two important features of human per-
formance: starting with low-level relationships and moving to higher relationships if 
and as needed, and automatic adjustment of the level of resolution to resolve ambigui-
ties. We posit that fractal representations are knowledge representations in the sense 
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of Biederman [3] in that they encode the relationship between non-accidental percep-
tual constructs within an image.  We posit further that fractals are knowledge repre-
sentations in the deep sense of Davis, Shrobe & Szolovits [4] in which representation 
and reasoning are closely intertwined. 

Then, in this paper we that showed the fractal technique for visual analogies can be 
used for perception. We demonstrated that froids (fractal-based boids) can use the 
fractal technique for mapping percepts into actions which manifest flocking behavior. 
The froids used a simple architecture called "reactive control" in robotics [1] and 
"situated action" in cognitive science [23], directly mapping percepts into actions. 

While the use of fractal representations is central to our technique, the emphasis 
upon visual recall in our solution afforded by features derived from those representa-
tions is also important. There is evidence that certain species have innate or rapidly 
develop through acclimation visual prototypes which allow young members to accu-
rately identify their parents [25]. We hold that placing imprints into memory, indexed 
via fractal features, affords a new and robust method of discovering image similarity, 
and that images, encoded and represented in terms of themselves, may be indexed and 
retrieved without regard to shape, geometry, or symbol.  

Our goal is to develop a Fractal Theory of General Intelligence. We believe that in 
this paper we have taken two important steps in that long journey: we have demon-
strated that (1) our fractal technique can address visual analogy problems on intelli-
gence tests on par with human performance, and (2) our fractal technique enables 
real-time percept-to-action mapping capable of imitating flocking behavior, at least in 
a simulated world.  
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Abstract. Fishgram, a novel algorithm for recognizing frequent or oth-
erwise interesting sub-hypergraphs in large, heterogeneous hypergraphs,
is presented. The algorithm’s implementation the OpenCog integrative
AGI framework is described, and concrete examples are given show-
ing the patterns it recognizes in OpenCog’s hypergraph knowledge store
when the OpenCog system is used to control a virtual agent in a game
world. It is argued that Fishgram is well suited to fill a critical niche in
OpenCog and potentially other integrative AGI architectures: scalable
recognition of relatively simple patterns in heterogeneous, potentially
rapidly-changing data.

1 Introduction

Pattern recognition is a core aspect of general intelligence. In general it is an
extremely difficult problem (uncomputable, under many formulations), but in
various special cases it may be tractable and even efficiently soluble in the large-
scale and in real time. Different AGI architectures handle pattern recognition in
a great diversity of ways; some via a unified approach to recognizing all patterns
relevant to an AGI system’s goals, others via a collection of different pattern
recognition processes with different foci, strengths and weaknesses.

The problem addressed here is the creation of a pattern recognition algorithm
suitable for the scalable recognition of simple patterns in large, heterogeneous,
potentially real-time sets of data. One question arising immediately when one
considers such an algorithm is the nature of the data representation. Here we
assume a hypergraph representation (a very general representation that is suit-
able for basically any kind of discrete data and some varieties of continuous
data as well), and present an algorithm called Fishgram (Frequent Interesting
Subhypergraph Mining), which mines frequent or otherwise interesting subhy-
pergraphs from (large or small) hypergraphs. Algorithmically, Fishgram is in
the same broad family as frequent itemset and subgraph mining algorithms; but
it involves many specific choices made to ensure its practical utility in an AGI
context.
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Fishgram was designed primarily for use within the OpenCog integrative AGI
framework [1], and has been implemented in this context. It represents patterns
as a conjunction (AndLink) of OpenCog Links, which usually contain OpenCog
VariableNodes. Concrete examples of Fishgram’s utilization within OpenCog
will be presented here, in the context of OpenCog’s application to control vir-
tual agents in a game world. In this example context, the patterns recognized
by Fishgram are combinations of predicates representing basic perceptions (e.g.
what kind of object something is, objects being near each other, types of blocks,
and actions being performed by the user or the AI). However, the Fishgram algo-
rithm is not intrinsically restricted to the agent control domain nor to OpenCog,
and could be used much more broadly, e.g. in a narrow AI data mining context,
or in the context of any other integrative AGI architecture that is able to present
its knowledge in hypergraph format.

2 The OpenCog Integrative AGI Framework

OpenCog is an open-source AGI software framework, which has been used for
various practical applications, and also for the in-progress implementation of
the OpenCogPrime design aimed ultimately toward AGI at the human level
and beyond. OpenCog has been used for commercial applications in the area of
natural language processing and data mining; e.g. see [2]. It has also been used
to control virtual agents in virtual worlds, at first using an OpenCog variant
called the OpenPetBrain [3], and more recently in a more general way using a
Minecraft-like virtual environment [1].

Conceptually founded on the ”patternist” systems theory of intelligence out-
lined in [4], OpenCogPrime combines multiple AI paradigms such as uncertain
logic, computational linguistics, evolutionary program learning and connection-
ist attention allocation in a unified architecture. Cognitive processes embodying
these different paradigms interoperate together on a common neural-symbolic
hypergraph knowledge store called the Atomspace. The interaction of these
processes is designed to encourage the self-organizing emergence of high-level
network structures in the Atomspace, including superposed hierarchical and het-
erarchical knowledge networks, and a self-model network enabling meta-learning.

OCP relies on multiple memory types (all intersecting via the AtomSpace,
even when also involving specialized representations), including the declarative,
procedural, sensory, and episodic memory types that are widely discussed in
cognitive neuroscience [5], plus attentional memory for allocating system re-
sources generically, and intentional memory for allocating system resources in a
goal-directed way. Declarative memory is addressed via probabilistic inference;
procedural memory via probabilistic evolutionary program learning; episodic
memory via simulation; intentional memory via a largely declarative goal sys-
tem; attentional memory via an economics-based dynamical system similar to
an attractor neural network.

The essence of the OCP design lies in the way the structures and processes
associated with each type of memory are designed to work together in a closely
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coupled way, the operative hypothesis being that this will yield cooperative emer-
gent intelligence.

2.1 The Atomspace Representation

OpenCog’s ”Atomspace” knowledge representation is a generalized hypergraph
formalism which comprises a specific vocabulary of Node and Link types, used
to represent declarative knowledge and also, indirectly, other types of knowledge
as well. There is a specific vocabulary of a couple dozen node and link types
with semantics carefully chosen to reflect the needs of OpenCog’s cognitive pro-
cesses. Simple examples of OpenCog links, in the notation commonly used with
OpenCog, are:

InheritanceLink Ben_Goertzel animal <.99>

EvaluationLink <.7>

chase

ListLink

cat

mouse

Examples using nodes with English-word labels provide convenient examples, but
in fact most nodes in a practical OpenCog system will generally be automatically
learned and not correspond directly to any human-language concept.

What’s important about the AtomSpace knowledge representation is mainly
that it provides a flexible means for compactly representing multiple relevant
forms of knowledge, in a way that allows them to interoperate – where by ”in-
teroperate” we mean that e.g. a fragment of a chunk of declarative knowledge
can link to a fragment of a chunk of attentional or procedural knowledge; or a
chunk of knowledge in one category can overlap with a chunk of knowledge in
another category (as when the same link has both a (declarative) truth value
and an (attentional) importance value).

3 The Fishgram Algorithm

Fishgram was developed because OpenCog, which represents knowledge inter-
nally using a hypergraph called the Atomspace, needed a fast, scalable, greedy
subhypergraph mining algorithm. At first, an attempt was made to find an ex-
isting subgraph mining algorithm that would suit the purpose (since mapping
hypergraphs into graphs can be done straightforwardly). It was found that no
existing algorithms fit the bill, so a novel algorithm was developed.

This reflects a pattern that we have found to occur fairly often in the devel-
opment of OpenCog. When OpenCog requires a component that relies on the
concepts already studied extensively in some area of computer science, it usu-
ally turns out that no existing algorithm or software package sufficiently meets
OpenCog’s requirements. Existing algorithms and software packages have gener-
ally been designed and implemented to operate stand-alone, or within software
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pipelines oriented to particular narrow tasks; and nearly always, it seems that
making algorithms to inter-operate with other algorithms and structures in an
AGI context places different requirements.

In this case, we found that frequent itemset mining algorithms are not conve-
niently applicable to subhypergraph mining, as representing hypergraphs in the
required tabular format is awkward and introduces large inefficiencies. On the
other hand, we found that most other graph mining algorithms were designed
with molecular datasets in mind (see [6] [7] for overviews of the frequent sub-
graph mining literature). The OpenCog AtomSpace is a different sort of graph
from these in various ways. For example, in the Atomspace

– there are many possible relations between each pair of nodes (much like in
a semantic network)

– many relations involve more than two objects, and there are also properties
predicates about a single object. So the relations are effectively directed links
of varying arity.

– there are many events represented, and many states can change over time
(e.g. an egg changes state while it’s cooking)

Unlike other subgraphmining algorithms, Fishgram is designed for general knowl-
edge in an embodied agent.

The largest inspirations for the Fishgram algorithm were the GSpan frequent
subgraph mining algorithm [8], and the handling of variable bindings in standard
inductive learning systems like FOIL [9]. Among the main differences between
Fishgram and GSpan are Fishgram’s use of breadth-first search, and its more
flexible management of variable bindings in a roughly FOIL-like way.

Fishgram uses a breadth-first search, rather than depth-first search as is the
case with most subgraph mining algorithms. This is appropriate for use in an
intelligent agent which is looking to learn a broad variety of regularities in its
environment – a very different use case from searching for specific patterns in a
molecular database. Also, Fishgram does an embedding-based search, searching
for patterns that can be embedded multiple times in a large graph. Molecular
datasets have many separate graphs for separate molecules; embodied percep-
tions are closer to a single, fairly well-connected graph. Depth-first search would
be very slow on such a graph, as there are many very long paths and the search
would mostly find those. Whereas in an embodied-agent-control use case, the
useful patterns tend to be compact and repeated many times.

The design of Fishgram makes it easy to experiment with multiple different
scoring functions, from simple ones like frequency to much more sophisticated
functions such as interaction information [10]. It also makes it easy to guide and
customize the pattern search in various ways. In typical Fishgram uses, one may
specify a certain category of entities about which one is particularly interested to
recognize patterns (e.g. virtual-world objects, in a virtual agent control context),
and one may also specify whether one is especially interested in spatial, temporal
patterns or neither.
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3.1 Pseudocode

Pseudocode for Fishgram is as follows. For simplicity, this assumes a certain set
of ”distinguished” entities has been identified, and that temporal but not spatial
patterns are of interest.

initial layer = every pair (relation , binding )

while previous layer is not empty:
foreach (conjunction , binding ) in previous layer:

let incoming = all (relation , binding ) pairs
containing an "distinguished entity"
in the conjunction

let possible_next_events = all (event , binding ) pairs
where the event happens during or shortly
after the last event in conjunction

foreach (relation , relation_binding) in incoming
and possible_next_events:

(new_relation , new_conjunction_binding) =
map_to_existing_variables(conjunction ,
binding , relation , relation_binding)

if new_relation is already in conjunction , skip it
new_conjunction = conjunction + new_relation
if new_conjunction has been found already , skip it
otherwise , add (new_conjunction ,

new_conjunction_binding)
to the current layer

map_to_existing_variables(conjunction , conjunction_binding,
relation , relation_binding)

r’, s’ = a copy of the relation and binding using new variables
foreach variable v, object o in relation_binding:

foreach variable v2, object o2 in conjunction_binding:
if o == o2:

change r’ and s’ to use v2 instead of v
return r’,s

To generalize the above to recognize spatial as well as temporal patterns, it
suffices to introduce possible nearby events analogous to possible next events
in the above.

3.2 Preprocessing

The Fishgram implementation includes several preprocessing steps that make it
easier for the main Fishgram search to find patterns. There is a filter system,
so that things which seem irrelevant can be excluded from the search. And, one
can explicitly specify a list of ”distinguished entities” that have to be treated
by Fishgram as variables. For example, in a typical virtual world application,
any predicate that refers to objects (including agents) will be given a variable
so it can refer to any object. Other predicates or InheritanceLinks can be added
to a pattern, to restrict it to specific kinds of objects, as will be shown in the
examples given below. So there is a step which goes through all of the links in
the AtomSpace, and records a list of predicates with variables, such as X is red
or X eats Y. This makes the search part simpler, because it never has to decide
whether something should be a variable or a specific object.

Also, in the current implementation, there is some customization to ease the
recognition of temporal patterns in an agent-control context. The increased pred-
icate is added to potential patterns via a preprocessing step. The OpenCog
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agent’s goals have a fuzzy TruthValue representing how well the goal is achieved
at any point in time, so that e.g. EnergyDemandGoal represents how much en-
ergy the virtual robot has at some point in time. The ”increased” predicate, in
this case, records times that a goal’s TruthValue increased.

3.3 The Search Process

The Fishgram search, as depicted above, is breadth-first. It starts with all pred-
icates (or InheritanceLinks) found by the preprocessing step. Then it finds pairs
of predicates involving the same variable. Then they are extended to conjunc-
tions of three predicates, and so on. Many relations apply at a specific time, for
example the agent being near an object, or an action being performed. These
are included in a sequence, and are added in the order they occurred.

Fishgram remembers the examples for each pattern. If there is only one vari-
able in the pattern, an example is a single object; otherwise each example is a
vector of objects for each variable in the pattern. Each time a relation is added to
a pattern, if it has no new variables, some of the examples may be removed, be-
cause they don’t satisfy the new predicate. It needs to have at least one variable
in common with the previous relations. Otherwise the patterns would combine
many unrelated things.

In frequent itemset mining (for example APRIORI [11]), there is effectively
one variable, and adding a new predicate will often decrease the number of
items that match. It can never increase it. The number of possible conjunctions
increases with the length, up to some point, after which it decreases. But when
mining for patterns with multiple objects there is a much larger combinatorial
explosion of patterns. Various criteria can be used to prune the search.

The most basic criterion is the frequency. Only patterns with at least N ex-
amples will be included, where N is an arbitrary constant. You can also set a
maximum number of patterns allowed for each length (number of relations),
and only include the best ones. The next level of the breadth-first search will
only search for extensions of those patterns. Similar dynamics may be used with
criteria more sophisticated than frequency.

4 Example Patterns

What we see here is that, in this particular Atomspace, the algorithm found a
significant number of patterns of moderate length and reasonably high frequency.

To illustrate Fishgram’s operation, we present some concrete examples ob-
tained via running Fishgram on a small AtomSpace, derived via allowing an
OpenCog agent to control a simulated robot agent in a small virtual world con-
taining a house and some batteries. The Atomspace was obtained via running
OpenCog to control the agent in this environment for roughly 5 minutes. The
environment contained 32 objects, and 98 timestamps corresponding to moments
at which events occurred. A preprocessing step noticed TimeNodes the agent’s
EnergyDemandGoal’s TruthValue increased or decreased. The events involved,
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in which Fishgram recognized patterns, included appearance and disappearance
of objects, and grabbing, eating and holding on the part of the agent.

Following is a list of the EvaluationLinks and InheritanceLinks in this small,
test Atomspace:

(EvaluationLink is_edible:PredicateNode (ListLink $0)): 9,
(EvaluationLink is_toy:PredicateNode (ListLink $0)): 1,
(EvaluationLink is_small :PredicateNode (ListLink $0)): 3,
(EvaluationLink isHoldingSomething:PredicateNode (ListLink $0)): 1,
(EvaluationLink at_home :PredicateNode (ListLink $0)): 1,
(InheritanceLink $0 Battery :ConceptNode): 9,
(InheritanceLink $0 ClawSwitch:ConceptNode): 1,
(InheritanceLink $0 Pet:ConceptNode): 2,
(InheritanceLink $0 Avatar:ConceptNode): 2,
(InheritanceLink $0 BatterySwitch:ConceptNode): 1,
(InheritanceLink $0 Soccerball:ConceptNode): 1,
(InheritanceLink $0 pet_home :ConceptNode): 1,
(InheritanceLink $0 Home:ConceptNode): 1,
(InheritanceLink $0 robotic :ConceptNode): 1,
(InheritanceLink $0 Player:ConceptNode): 1,
(InheritanceLink $0 egg:ConceptNode): 3,
(InheritanceLink $0 dish:ConceptNode): 3,
(InheritanceLink $0 TheLiftButton:ConceptNode): 1,
(InheritanceLink $0 TheLift :ConceptNode): 1,
(InheritanceLink $0 Crate:ConceptNode): 1,
(InheritanceLink $0 table:ConceptNode): 1,
(InheritanceLink $0 chair:ConceptNode): 1,
(InheritanceLink $0 pan:ConceptNode): 1,
(InheritanceLink $0 stoveButton:ConceptNode): 1,
(InheritanceLink $0 cookTop :ConceptNode): 1,
(InheritanceLink $0 Lightning Cloud:ConceptNode): 1

Figure 1 depicts the number of patterns of different sizes recognized by Fish-
gram on this particular Atomspace. What we see there is that, in this particular
Atomspace, the algorithm found a significant number of patterns of moderate
length and low but non-trivial frequency. Few high-frequency patterns of any
length were found.

To give a more concrete sense of what Fishgram is doing, following is some
example output from Fishgram from this Atomspace:

(AndLink
(EvaluationLink is_edible:PredicateNode (ListLink $1000041 ))
(InheritanceLink $1000041 Battery :ConceptNode)

)

This means a battery which can be eaten by the virtual robot. The variable
$1000041 refers to the object (battery).

Fishgram can also find patterns containing a sequence of events. In this case,
there is a list of EvaluationLinks or InheritanceLinks which describe the objects
involved, followed by the sequence of events.

(AndLink

(InheritanceLink $1007703 Battery:ConceptNode )

(SequentialAndLink

(EvaluationLink isHolding :PredicateNode

(ListLink $1008725 $1007703 )))

)

)
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Fig. 1. Statistics of Patterns Recognized by Fishgram in an Example OpenCog Atom-
space

This means the agent was holding a battery (denoted $1007703); note there is
also a variable for the agent itself. This pattern would also apply to the user
(or another AI) holding a battery, because the pattern does not refer to the AI
character specifically.

Fishgram can find patterns where it performs an action and achieves a goal.
There is code to create implications based on these conjunctions . There is code
that outputs causal patterns using a postprocessing system, which uses a con-
junction to create a nested structure of ImplicationLinks, PredictiveImplication-
Links and SequentialAndLinks. After finding many conjunctions, it can produce
ImplicationLinks based on some of them. Here is an example where the AI-
controlled virtual robot discovers how to get energy.

(ImplicationLink
(AndLink

(EvaluationLink is_edible:PredicateNode (ListLink $1011619 ))
(InheritanceLink $1011619 Battery :ConceptNode)

)
(PredictiveImplicationLink

(EvaluationLink actionDone:PredicateNode
(ListLink (ExecutionLink

eat:GroundedSchemaNode
(ListLink $1011619 ))))

(EvaluationLink increased:PredicateNode
(ListLink (EvaluationLink

EnergyDemandGoal:PredicateNode)))
)

)

5 Conclusions and Future Work

Our work with Fishgram so far has validated the general viability of the Fish-
gram algorithm within an OpenCog integrative AGI approach to embodied agent
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control. However, the current, initial implementation of Fishgram has significant
limitations, which we plan to remedy incrementally in the context of utilizing
Fishgram to help OpenCog control intelligent agents.

One limitation worth noting is that the current Fishgram algorithm cannot
handle patterns involving numbers, although it could be extended to do so.
The two options would be to either have a separate discretization step, creating
predicates for different ranges of a value; or alternatively, to have predicates for
mathematical operators. It would be possible to search for a split point like in
decision trees – so that a number would be chosen, and only things above that
value (or only things below that value) would count for a pattern. It would also
be possible to have multiple numbers in a pattern, and compare them in various
ways.

Another issue worth considering is scalability. Like essentially all data mining
algorithms, Fishgram can achieve scalability only at the cost of aggressive prun-
ing of candidate combinations. This aspect has not prevented classic data mining
algorithms from being applied at very large scale. However, from a general intel-
ligence perspective, it seems clear that Fishgram will need to be complemented
by other algorithms that, via incorporation of more intelligent search or pruning
heuristics, are able to find more complex patterns even from very large knowledge
bases.

While our work so far has focused on recognizing frequent patterns, it will be
important for future applications to supplement the frequency criterion with a
measure of statistical interestingness, which ensures that the relations in a pat-
tern are genuinely correlated with each other. Using frequency as the criterion
results in many spurious frequent patterns, because anything which is frequent
will occur together with other things, whether they are relevant or not. For ex-
ample breathing while typing is a frequent pattern, because people breathe at all
times. But moving your hands while typing is a much more interesting pattern.
As people only move their hands some of the time, a measure of correlation
would prefer the second pattern. Based on our study of the matter, we have
tentatively concluded that the best measure may be interaction information,
which is a generalization of mutual information that applies to patterns with
more than two predicates [10], or variations on interaction information intended
to identify multi-variable synergies even more finely [12]. In a learning-oriented
AGI paradigm like OpenCog, an early-stage AGI does not have much knowl-
edge of real-world structures and dynamics built in, so it must rely on statistical
measures like these to find useful patterns.
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Abstract. Intelligence is a multifaceted phenomenon which makes try-
ing to capture its very essence a slippery task. In this paper, we commit to
a hybrid notion of intelligence, conceived as the combination of cognitive
operations and knowledge resources that leads to purposeful behavior.
Accordingly, this paper describes an artificial system that benefits from
both mechanism–centered and knowledge–centered approaches. In
particular, the system integrates the ACT-R cognitive architecture with
SCONE, a knowledge-based system for ontological reasoning, to combine
ACT-R’s subsymbolic cognitive mechanisms with SCONE’s knowledge
representation and inference capabilities. We apply the hybrid system
to computationally approximate human intelligent behavior in a task of
visual recognition.

1 Introduction

‘An architecture without content is like a computer without software - it is an empty
shell”1

“What is intelligence?”. From the dawn of Western Thought to the Contempo-
rary (scientific) Age, scholars from different disciplines have struggled to answer
this question. Despite the broad range of seemingly intelligent manifestations
in the natural realm, the key to solve this problem relies on the very same
questioner, i.e. on narrowing down the focus to the main features of human in-
telligence. In his 1950 seminal work [2], Alan Turing assessed the centrality of
behavior to define intelligence: a suitable game needs to be designed where hu-
mans and machines have to answer to a human interrogator who is set in a room
apart from the players; in this scenario, a machine will be considered intelligent if
and only if it would be able to imitate human behavior to the extent of not being
unmasked by the interrogator. As Turing pointed out, the type of the game is
not important: what is central, instead, is that it allows to evaluate humans and
machines’ behavior, by their moves, strategies and, ultimately, answers. In this
paper we are neither discussing the philosophical implications of the behaviorist
perspective, nor providing a critical analysis of behaviorism with respect to in-
ternalism, where the ‘faculty of mental representation’ (as Kant would name it

1 Quotation from [1], p. 18.
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[3]) becomes a necessary condition for acknowledging intelligence [4]. Rather, we
adopt a hybrid framework: trying to overcome the classic tension between task-
specific narrow AI and task-independent strong AI, this article focuses on intelli-
gence as knowledge in action, namely as “the combination of cognitive operations
and knowledge resources that leads to purposeful behavior” [1]. In particular,
we describe an artificial system that benefits from both mechanism–centered
and knowledge–centered approaches to computationally approximate human
intelligent behavior in a task of visual recognition[5].

2 Extending ACT-R with a Knowledge Component

Integration is the key to intelligent behavior: learning mechanisms determine
which knowledge can be acquired and in which form and specific knowledge
contents provide stringent requirements for mechanisms to be able to access
and process them effectively. This mutual dependence between mechanism and
knowledge is well reflected in the ACT-R cognitive architecture [6], a modular
framework whose components include perceptual, motor and memory modules
(see figure 1). After a brief introduction of ACT-R core features (section 2.1), we
describe how the cognitive architecture can be leveraged by means of a dedicated
knowledge compontent (section 2.2), fostering high-level deductive reasoning.

Fig. 1. ACT-R modular structure elaborates information from the environment at
different levels

2.1 ACT-R

ACT-R integrates declarative and procedural knowledge, the latter being con-
ceived as a set of procedures (production rules) that coordinate information
processing between its various modules: accordingly, an ACT-R model can ac-
complish specific goals on the basis of declarative representations elaborated
through procedural steps (in the form of if-then productions). At the symbolic
level, ACT-R performs two major operations on Declarative Memory (DM):
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i) accumulating knowledge units (i.e., chunks) learned from internal operations
or from interaction with the environment and ii) retrieving chunks that provide
needed information. Both chunk learning and retrieval are performed through
limited capacity buffers that constrain the size and capacity of the chunks in
DM. ACT-R has accounted for a broad range of cognitive activities at a high
level of fidelity, reproducing aspects of human data such as learning, errors,
latencies, eye movements and patterns of brain activity (refer to [7] for more de-
tails). Although it is not our purpose in this paper to present the details of the
architecture, two specific sub-symbolic mechanisms need to be mentioned here
to sketch how the system works: i) partial matching - the probability that two
different knowledge units (or declarative chunks) can be associated on the basis
of an adequate measure of similarity (this is what happens when we consider, for
instance, that a bag is more likely to resemble a basket than a baseball bat); ii)
spreading of activation - when the same chunk is connected to multiple contexts,
it contributes to distributionally activate all of them (e.g., a polysemous word
like bag can be associated to different activities like travelling, shopping, eating,
etc.)2.

2.2 SCONE

Inasmuch as humans understand their surroundings by means of coupling per-
ception with knowledge, the ACT-R cognitive architecture should be enabled
to generalize over perceptual transductions by applying fine-grained models of
the world to concrete scenarios. In order to fulfill this goal however, ACT-R
needs to properly encapsulate those models – or ontologies – and exploit them
for pattern recognition and high-level reasoning. Since ACT-R declarative mod-
ule supports a relatively coarse-grained semantics based on slot-value pairs, and
the procedural system is not optimal to effectively manage complex logical con-
structs (e.g., 2nd order), a specific extension is needed to make ACT-R suitable
to fulfill knowledge-intensive tasks. Accordingly, we engineered an extra mod-
ule as a bridging component between the cognitive architecture and an external
knowledge-base system, SCONE [8]. SCONE is an open–source knowledge-base
system intended for use as a component in many different software applica-
tions: it provides a LISP-based framework to represent and reason over symbolic
common–sense knowledge. Unlike most diffuse KB systems, SCONE is not based
on Description Logics [9]: its inference engine adopts marker–passing algorithms
[8] (originally designed for massive parallel computing) to perform fast queries at
the price of losing logical completeness and decidability. In particular, SCONE
represents knowledge as a semantic network whose nodes are locally weighted
(marked) and associated to arcs (wires3) in order to optimize basic reasoning
tasks (e.g. class membership, transitivity, inheritance of properties, etc). The phi-
losophy that inspired SCONE is straightforward: from vision to speech, humans

2 Section 3 will show in more details how these two mechanisms can be exploited by
an artificial system to disambiguate visual signals.

3 In general, a wire can be conceived as a binary relation whose domain and range are
referred to, respectively, as A-node and B-node.
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exploit the brain’s massive parallelism to fulfill all recognition tasks; if we want
to build an AGI system that is able to deal with the large amount of knowledge
required in common-sense reasoning, we need to rely on a mechanism that is fast
and effective enough to simulate parallel search. Shortcomings are not an issue
since humans are not perfect inference engines either. Accordingly, SCONE im-
plementation of marker–passing algorithms aims at simulating a pseudo-parallel
search by assigning specific marker bits to each knowledge unit. For example,
if we want to query a KB to get all the parts of cars, SCONE would assign a
marker M1 to the A-node car and search for all the statements in the knowledge
base where M1 is the A-wire (domain) of the relation part-of, returning all the
classes in the range of the relation (also called ‘B-nodes’). SCONE would finally
assign the marker bit M2 to all B-nodes, also retrieving all the inherited sub-
classes4. The modularization and implementation of an ontology with SCONE
allows for an effective formal representation and inferencing of core ontological
properties of world entities. In general we refer to ACT-R including the SCONE
module as ACT-RK, meaning ‘ACT-R with improved Knowledge capabilities’
(the reader can easily notice the evolution from the original ACT-R architecture
– figure 1 – to the knowledge-enabled one – figure 2). This integration allows
for dynamic queries to be automatically submitted to an external ontology by
ACT-RK whenever the perceptual information is incomplete, corrupted or when
common-sense reasoning capabilities are needed to generalize over perceptual
information filtered from the environment. In this way, ACT-RK is also able
to overcome situations with missing input: mechanisms of partial matching and
spreading activation [7] can fill the possible gap(s) in the input stream and re-
trieve the best–matching piece of background knowledge. In particular, in the
second part of the paper we describe how an ACT-RK model can perform an
action recognition task. Note that the integration of SCONE into ACT-R re-
spects the general cognitive constraints of the architecture, especially in terms
of limited-capacity buffers constraining communication between the module and
the rest of the architecture. Also, the SCONE marker-passing algorithms are
similar to ACT-R spreading activation, leaving open the possibility of a deeper
integration of the two frameworks in future work. In principle, if it is true that
ACT-R can per se deal with simple logical reasoning on the basis of its produc-
tion mechanisms, when knowledge-intensive tasks come into play an external
KBS like SCONE becomes a crucial plug-in for augmenting ACT-R scalability,
computational efficiency, and semantic adequacy.

3 Simulating Visual Intelligence with an ACT-RK Model

‘Visual intelligence’ is the human capability to understand a scene by means
of recognizing the core interactions holding between the most salient entities
detected from the environment. In this sense, perceptual data, conceptual rep-
resentations and reasoning are combined together by humans to make sense of a
scene: for instance, when we see a dog chasing a flying stick thrown by a person,

4 We refer the reader to [8] for details concerning marker–passing algorithms.
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Fig. 2. The ACTR-RK framework

first we identify the type of entities into play (dog, person, stick) and then we
break the complex event into smaller components (e.g., the person extending the
arm from the back, the dog jumping and running, the stick falling on the ground,
etc.), inferring its teleological features (make the dog play and bring back the
stick) and causal nexus (when the person’s hand releases the stick, it starts mov-
ing on air with a curved trajectory whose range depends on the exerted force).
It is clear that we are not just seeing with the eyes but our mental represen-
tations and cognitive processing are also involved. Reproducing this capability
at the machine level requires a comprehensive infrastructure where low-level vi-
sual detectors and algorithms couple with high-level knowledge representations
and processing: this is the goal of the DARPA Mind’s Eye program5, where an
artificial visual systems is considered to be (behaviorally) intelligent if it is able
to process a video dataset of various human actions6 and output the probabil-
ity distribution (per video) of a pre-defined list of verbs, including ‘walk’, ‘run’,
‘carry’, ‘pick-up’, ‘haul’, ‘follow’, ‘chase’, ‘exchange’, ‘open’, ‘close’, etc.7. Per-
formance is measured in terms of consistency with human responses to stimuli
(Ground Truth): subjects have to acknowledge the presence/absence of every
verb in each video. In order to meet these requirements, we devised an ACT-RK
model to work in a human-like fashion, trying to disambiguate the scene in terms
of the most reliable perceptual and conceptual structures. Because of space lim-
itations, we can’t provide the details of a large-scale evaluation: nevertheless, in
what follows we discuss an example to describe the functionalities of the system.

5 http://www.darpa.mil/Our_Work/I2O/Programs/Minds_Eye.aspx
6 http://www.visint.org/datasets.html
7 This list has been provided by DARPA.

http://www.darpa.mil/Our_Work/I2O/Programs/Minds_Eye.aspx
http://www.visint.org/datasets.html
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Fig. 3. The horizontal arrow represents the video time frames while the vertical one
represents the interconnected levels of processing. The box in the middle displays the
results of semantic disambiguation of the scene elements, while the box in the bottm
contains the schema of the output, where importance reflects the number of components
in a pattern (1-4) and observed is a boolean parameter whose value is 1 when a verb
matches a visual detection and 0 when the verb is a result of cognitive processing.

Figure 3 schematizes the ACT-RK model core functions, namely to semanti-
cally parse temporally-ordered atomic events previously extracted from low-level
computer vision systems [10], e.g. ‘hold’ (micro-state) and ‘bend-over’, ‘drag’,
‘stop’ (micro-actions), associating frames and roles to visual input from the
videos. This specific information is retrieved from the HOMinE (‘Hybrid On-
tology for the Mind’s Eye project’) ontology, in particular from a fragment of
the ontology which has been built on top of the FrameNet lexical resource [11]:
frames and semantic roles are assembled in suitable chunk types and encoded
in the declarative memory of ACT-RK8. As with human annotators performing
semantic role labeling [12], the model associates verbs denoting atomic events
to corresponding frames. When related mechanisms are activated, the model re-
trieves the roles played by the entities in the scene, for each atomic event9: e.g.,
‘hold’ evokes the manipulation frame, whose core role agent can be associated to
‘person1’ (as showed in light-green box of the figure). In order to prompt a choice
within the patterns of action encoded in the ontology (see table 1), sub-symbolic
computations for spreading activation are executed [7]. Spreading of activation
from the contents of frames and roles triggers the evocation of related ontology
patterns.

The core sub-symbolic computations performed by the ACT-RK model can
be expressed by the equation in figure 4.

8 HOMinE has been implemented into SCONE KBS and represents an extension of
the SCONE core ontology for action types, as the reader can see in figure 5.

9 Entities and atomic events are visually recognized using suitable features detectors,
object tracking algorithms and SVM classifiers.
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Table 1. An excerpt of the roles and atomic components (C1-C4) constituing the
patterns of actions for the model

Action Role1 Role2 Role3 Role4 C1 C2 C3 C4

Arrive self-mover theme walk stop
Give agent carrier agent holding transport drop
Take carrier agent agent transport drop holding
Exchange agent agent agent give take swap
Carry agent carrier agent holding transport pull
Pick-up protagonist agent protagonist agent bend-over lower-arm stand-up holding
Put-down agent protagonist agent figure1 holding bend-over lower-arm on
Haul protagonist agent agent agent bend-over extend-arm holding drag

Fig. 4. Equation for Bayesian Activation Pattern Matching

– 1st term: the more recently and frequently a chunk i has been retrieved,
the higher its activation and the chances of being retrieved. In our context i
can be conceived as a pattern of action (e.g., the pattern of HAUL), where
tj is the time elapsed since the jth reference to chunk i and d represents the
memory decay rate.

– 2nd term: the contextual activation of a chunk i is set by the attentional
weight Wk given the element k and the strength of association Ski between
an element k and the chunk i. In our context, k can be interpreted as the
value BEND-OVER of the pattern HAUL in figure 3.

– 3rd term: under partial matching, ACT-RK can retrieve the chunk that
matches the retrieval constraints to the greatest degree, combining the simi-
larity Simli between l and i (a negative score that is assigned to discriminate
the ‘distance’ between two terms) with the scaling mismatch penalty MP. In
our context, for example, the value PULL could have been retrieved, instead
of DRAG. This mechanism is particularly useful when verbs are continuously
changing - as in the case of a complex visual input stream.

– 4th term: randomness in the retrieval process by adding Gaussian noise.

As mentioned in 2.1, partial matching based on similarity measures and spread-
ing of activation based on compositionality are the main mechanisms used by
the model: in particular, we constrained semantic similarity within verbs to the
‘gloss–vector’ measure computed over WordNet synsets [13]. Base–level activa-
tions of verbs actions have been derived by frequency analysis of the American
National Corpus10: in particular, this choice reflects the fact that the more fre-
quent a verb, the more likely it is to be activated by our system. Additionally,
strengths of associations are set (or learned) by the architecture to reflect the
number of patterns to which each atomic event is associated, the so-called ‘fan

10 http://www.americannationalcorpus.org/
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Fig. 5. A Diagram of the ACT-RK model querying HOMinE ontology through SCONE

effect’ controlling information retrieval in many real-world domains [14]. Last
but not least, the ACT-RK model can output the results of extra-reasoning
functions by means of suitable queries submitted to HOMinE via the scone
module. In the example in figure 3, object classifiers and tracking algorithms
could not detect that ‘person1’ is dragging ‘bag2’ by pulling a rope: this failure
in the visual algorithms is motivated by the fact that the rope is a very thin
and morphologically unstable artifact, hence difficult to be spotted by state-of-
the-art machine vision. Nevertheless, HOMinE contains an axiom stating that:
“For every x,y,e,z such that P(x) is a person, GB(y) is a Bag and DRAG(e,x,y,T)
is an event e of type DRAG (whose participants are x and y) occurring in the
closed interval of time T, there is at least a z which is a proper part of y and
that participates to e”11. Moreover, suppose that in a continuation of the video,
the same person drops the bag, gets in a car and leaves the scene (see figure
5). The visual algorithms would have serious difficulties in tracking the person
while driving the car, since the person would become partially occluded, assume
an irregular shape and would not properly lit. Again, ACT-RK could overcome
these problems in the visual system by using SCONE to call HOMinE and au-
tomatically perform the following schematized inference: 1) cars move; 2) every

11 Note that here we are paraphrasing an axiom that exploits Davidsonian event se-
mantics [15] and basic principles of formal mereology (see [16] and [17]). Also, this
axiom is valid if every bag has a rope: this is generally true when considering garbage
bags like the one depicted in figure3, but exceptions would need to be addressed in
a more comprehensive scenario.
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car needs exactly one driver to move12; 2) drivers are persons; 3) driver is lo-
cated inside a car; 4) a car moves then the person driving it also moves in the
same direction. Thanks to the inferential mechanisms embedded in its knowedge
infrastructure, the ACT-RK model is not bound to visual input as an exclusive
source of information: in human-like fashion, it has the capability of coupling
visual signals with background knowledge, performing high-level reasoning and
disambiguating the original input perceived from the environment. In particular,
the chunks created through the vision module on the basis of computer vision
algorithms (schematized by the boxes on top of the video snippets in figure 5)
are represented according to suitable chunk types in the declarative memory
and used as input to the scone module. That module then becomes an (internal)
information source in its own right, treated by the cognitive architecture in a
similar way to the (external) visual information stream.

4 Conclusion

In this paper we outlined the core infrastructure of a high-level artificial visual in-
telligent system, focusing on the underlying grounding principles and presenting
some functional examples. This system can be conceived as an ACT-RK model,
namely an instance of the cognitive mechanisms of ACT-R and of the reasoning
operations of SCONE KBS: in this respect, it can be seen as an attempt at
accomplishing a complex task on the basis of a general approach to Artificial
Intelligence, where cognitive mechanisms are integrated in a knowledge–centered
reasoning framework. Future work will be devoted to enrich the knowledge com-
ponent of the system and using reasoning and statistical inferences to derive and
predict goals of agents in performing a given action. Finally, we are exploring
the possibility of implementing a core mechanism of abductive reasoning to en-
able information selection from complex visual streams based on saliency. As we
began this article standing on the shoulders of a giant, Alan Turing, no better
conclusion could come than from him: “We can only see a short distance ahead
but we can see plenty there that needs to be done”.
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Abstract. This paper presents the first formal measure of intelligence
for agents fully embedded within their environment. Whereas previous
measures such as Legg’s universal intelligence measure and Russell’s
bounded optimality provide theoretical insights into agents that interact
with an external world, ours describes an intelligence that is computed
by, can be modified by, and is subject to the time and space constraints
of the environment with which it interacts. Our measure merges and goes
beyond Legg’s and Russell’s, leading to a new, more realistic definition
of artificial intelligence that we call Space-Time Embedded Intelligence.

Keywords: Intelligence measure, AIXI, bounded optimality, real-world
assumptions.

1 Introduction

Artificial General Intelligence (AGI) is the field whose goal is to understand,
design and build programs or machines that are or can become at least as intel-
ligent as humans. We believe that this goal cannot be achieved without a formal,
sound and practical theory of artificial intelligence. In the end we seek an equa-
tion of practical intelligence, the solution to which could be implemented on a
computer and give rise to an artificial agent of genuine general intelligence.

Theoretical AGI may have begun with Solomonoff [12], who gave us the
means for assigning a probability to any (stochastic) computable sequence. Hut-
ter [3] used this universal probability distribution to define the optimally ra-
tional reinforcement-learning agent AIXI, the first formal and sound definition
of universal artificial intelligence. Legg [4] turned AIXI inside-out to give the
first universal measure of intelligence (rationality) of computable agents. None
of this work, however, could be considered a practical theory of AI, because none
of it takes into account the constraints of the real world, most importantly the
limitation of computational resources.

Russell [10] introduced bounded optimality, which explicitly incorporates the
constraints of real-world computer architectures and which can be easily ex-
tended to use Solomonoff’s universal prior (see also Goertzel [2] for related ideas).

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 209–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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However, in every case this previous work has adopted the traditional agent
framework, in which the agent and environment interact as separate entities:
the computation of the agent is in principle performed externally to that of the
environment. Although quite successful as a working hypothesis, this framework,
reminiscent of dualism in the theory of mind [9], can be problematic in the real
world: for example, an agent that does not recognize that its computing device
or memory might be altered by an external source may tend toward highly risky
behaviors.

In previous work [5,8] we began examining the theoretical consequences of in-
tegrating an intelligent agent into its environment by, for example, allowing the
environment to modify the agent’s source code. And in a companion paper [6],
we consider agents whose memory is integrated into and can be altered by the
environment. In the present paper, we formulate a more generalized framework—
more reminiscent of physicalism [13] than dualism—where agents are fully inte-
grated into their environment: not just modifiable by it, but actually computed
by it. While it marks a considerable departure from the traditional agent frame-
work, this new formalization is surprisingly simple and deep.

After introducing notation and reviewing relevant background concepts, the
paper proceeds in two steps: first generalizing the agent framework to space-
embedded agents, which share computational storage with the environment; and
second, enhancing the framework with space-time embedding, in which all the
agent’s computations are performed by the environment.

2 Notation

The notation is similar to that of Orseau & Ring [5,8,6]. At some time t the agent
outputs actions at ∈ A to the environment, which returns observations ot ∈ O
to the agent. The sequence of all actions up to time t is written a1:t, while
the sequence a1:t−1 is sometimes written a≺t, and similarly for other sequences.
An action and observation from the same time step (an “interaction pair”) is
denoted aot, and the history of interaction up to t is ao1:t. The empty sequence
is denoted λ. Measures and semi-measures are denoted by Greek letters.

3 Legg’s Measure of Intelligence

Legg [4] gave the first universal definition of intelligence, providing an equation
to assign a value Υ(π) := V (π, λ) to each (here stochastic) policy π:1

V (π, ao≺t) :=
∑
at

π(at | ao≺t)
∑
ot

ξRS(ot | ao≺tat)
[
rt + V (π, ao1:t)

]

ξRS(o1:t | a1:t) :=
∑

ν∈MRS

2−K(ν)ν(o1:t | a1:t) ,

1 A stochastic policy π(at|ao≺t) specifies the probability that the agent chooses action
at given the current interaction history ao≺t.
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where rt = r(ot) is the reward output by the environment at step t; MRS is
the set of all reward summable stochastic environments ν2; and K(ν) is the Kol-
mogorov complexity of ν. Considering a set of all computable such environments
ensures the generality of the intelligence of the agent.

This measure of intelligence allows the comparison of various agents de-
pending on the score they obtain in an infinite number of weighted environ-
ments. According to this measure, AIXI has the highest intelligence score; i.e.,
AIXI= argmaxπ∈Π V (π, λ), where Π is the set of all approximable policies.

4 Russell’s Bounded Optimality

Legg’s definition ignores the agent’s computational resource requirements and
considers intelligence to be independent of such constraints. It is mathemati-
cally aesthetic and also useful, but because it does not include time and space
constraints, an actual agent designed according to this measure (namely, AIXI),
would compute forever, never taking any action at all.

In 1995 (before AIXI was defined), Russell [10] gave a definition of bounded-
optimality, which does take real-world constraints into account, specifically the
constraints of a given computing architecture (see Goetzel [2] for related ideas).
A given architecture M (described as an interpreter) defines a set of policies
π ∈ ΠM , subject to time, space and other possible constraints of the architecture
M . At each interaction step, the policy is run for a single time step (e.g., 0.01
seconds, measured in real-world time for a given architecture), continuing the
computation of the last time step, and possibly failing to output an action for
the current interaction step, in which case a default action is chosen.

The value of a policy is measured by a utility function u (to be defined for the
task at hand) in a set of environments q ∈ Q with V (π, q) := u(h(π, q)) where
h(π, q) generates the interaction history ao1:∞ of the policy π in the determinis-
tic environment q. The value of a policy over the set Q of environments is defined
by V (π,Q) :=

∑
q∈Q p(q)V (π, q), for a probability distribution p over the envi-

ronments. The optimal agent π∗ subject to the constraints of the architecture
M is defined by π∗ := argmaxπ∈ΠM V (π,Q).

Self-modifying Resource-Bounded Universal Intelligence

Although not explicitly stated, it seems reasonable to assume that Russell’s def-
inition of bounded optimality also includes self-modifiable policies, i.e., those
that can optimize every aspect of themselves, to be more efficient in both com-
putation time and memory space. (This is in fact the core idea behind the Gödel
Machine [11].)

It is straightforward to merge Legg’s intelligence measure with
Russell’s bounded optimality, and the result is an optimal, self-modifying,

2 A stochastic environment ν(o1:t|a1:t) specifies the probability that the environment
produces observation sequence o1:t given action sequence a1:t. A reward-summable
environment ensures the agent’s total cumulated lifetime reward does not exceed 1.
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resource-bounded universal agent. To do so we first define a set of policies Π t̃,l̃

based on a decomposition of architecture M into a reference machine U (like a
universal Turing machine),a time t̃ of unitary computation steps per interaction,
and a memory space l̃ that contains both the source code of the agent and the
usable memory.

In the remainder of the paper, we will consider only stochastic policies. A

self-modifying stochastic policy π∈Π t̃,l̃ at time step t defines the probability
πt(〈at, πt+1〉 | ot−1) of outputting: (1) some action at ∈ A at step t and (2) some

stochastic policy πt+1 ∈ Π t̃,l̃ for use by the agent at t + 1; both conditioned
on the last observation ot−1 output by the environment, and this computation
must be done within t̃ computation steps and l̃ bits of memory (otherwise some
default values are output). The new code πt+1 might, for example, be the same
as πt or only slightly different, perhaps with ot−1 written somewhere in it.

The environment ρ outputs an observation ot with a probability ρ(ot | ao≺tat)
depending on the current interaction history (not taking into account the se-
quence of policies of the agent). For generality, ρ is defined as a universal distri-
bution3 like ξ [15,3] (or ξRS above), such that wρ(ν) > 0 for some prior weight
wρ(ν) of any stochastic environment ν ∈ M and

∑
ν∈M wρ(ν) ≤ 1. We use a

utility function u(ao≺t) ∈ [0, 1] that assigns a utility value to each interaction
history, whose cumulated value over the future is discounted by a horizon func-
tion γt so that

∑∞
t=1 γt = 1 to ensure convergence (in ξRS the horizon function

is considered to be a part of the environment).
The optimal self-modifying, resource-bounded, universal agent π∗ can now be

defined:4

π∗ := arg max
π1∈Π t̃,l̃

V (π1, λ)

V (πt, ao≺t) :=
∑

〈at,πt+1〉
πt(〈at, πt+1〉 | ot−1) ×
∑
ot

ρ(ot | ao≺tat)
[
γtu(ao1:t) + V (πt+1, ao1:t)

]
.

This description shows that the optimal policy achieves greatest average weighted
discounted utility in all possible futures by (a) choosing good actions within the
time and space constraints t̃ and l̃, and (b) choosing good future policies for
itself (within the same time and space constraints).

3 ρ can be seen equivalently either as a single environment or a mixture of environ-
ments. The best way to think about it in the present case might be to consider ρ
as a universal semi-measure (because we, humans, have no absolute certainty about
what the true environment is), but biased with all the knowledge we can, or the
knowledge we think is relevant. Thinking of ρ as a non-universal but accurate model
of the real world is also acceptable (although arguably non-realistic).

4 This is an uncomputable definition, but the solution of this equation is a computable
optimal resource-bounded agent.
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5 Embedded Resource-Bounded Intelligence

The self-modifying, resource-bounded intelligence just described does not take
into account the fact that the environment may have read or even write access
to the memory space of the agent, containing its memory of the past and its
source code. We now propose a new definition of intelligence that extends self-
modifying, resource-bounded intelligence in two ways. The first extension, which
we call space embedding (Section 5.1), moves the code and memory of the agent
into the environment. The second extension, which we call space-time embedding
(Section 5.2), allows the environment itself (rather than an external, possibly
infinite computational device) to compute the agent’s code.

5.1 Space-Embedded Agents

In the traditional Reinforcement Learning (RL) framework, the agent is external
to the environment [14,3]. It is immortal, and its resources are independent of
the resources of the environment. In the real world, agents are embedded in
the environment; i.e., they can be modified and even destroyed by it. Such
considerations were partially addressed in our definition of the optimal, self-
modifying, universal agent [5], whose source code was part of the environment
itself, both readable and modifiable by it. A companion paper [6] considers the
consequences of doing the same with the agent’s memory of the past (but not
its source code).

In this section, we consider space-embedded agents, whose code and memory
are modifiable by the environment. The space-embedded agent’s code is calcu-
lated by an infinite computational device (or oracle) which yields the full results
of the computation immediately and independently of the machine that com-
putes the environment. However, the environment can modify the agent in its
entirety—both its memory and its code, which together define the agent’s policy.

At each time step, the space-embedded agent uses its current policy πt to
produce a candidate next policy π′

t+1, which is passed to the environment. The
environment then produces the agent’s actual next policy πt+1, and the optimal
agent is therefore defined as:

π∗ := arg max
π1∈Π

V (π1, λ) (1)

V (πt, ao≺t) :=
∑

at=〈a′
t,π

′
t+1〉
πt(at | o′t−1)

∑
ot=〈o′t,πt+1〉

ρ(ot | ao≺tat)
[
γtu(ao1:t) + V (πt+1, ao1:t)

]
(2)

where the time t̃ and memory l̃ limits are not considered for now. Note that
while Equation 2 shows the semantics of at =

〈
a′t, π

′
t+1

〉
, neither a′t nor π

′
t+1 are

used in the equation. In fact, there is no need for an explicit action-observation
interaction protocol anymore: the environment can read and write any infor-
mation, including information about actions and observations, directly into the
agent’s space πt+1. Thus, Equation (2) can be rewritten in various equivalent
forms that have different interpretations:
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V (πt, ao≺t) :=
∑
at

πt(at)
∑
ot

ρ(ot | ao≺tat)
[
γtu(ao1:t) + V (ot, ao1:t)

]
(3)

V (πt, aπ≺t) :=
∑
at

πt(at)
∑
πt+1

ρ(πt+1 | πa1:t)
[
γtu(aπ1:tπt+1)+ V (πt+1, aπ1:t)

]
(4)

V (πt, ππ′≺t) :=
∑
π′
t

πt(π
′
t)

∑
πt+1

ρ(πt+1 | ππ′
1:t)

[
γtu(ππ′

1:tπt+1) + V (πt+1, ππ′
1:t)

]
(5)

In Equation (3) the action-observation protocol has been removed; additionally,
πt+1 is shown as an implicit interpretation of ot from the previous step. Equa-
tion (4) differs from Equation (3) in that the environment’s output is always
interpreted as a policy. Equation (5) then also renames action a as π′ to empha-
size that the agent and the environment share the agent’s memory space. In all
of these equations, the alphabets of the actions, observations, and policies are
considered to be the same.

It is interesting to note that when the environment contains the agent’s code,
there is no RL agent that is asymptotically as good as every other agent in all
environments: for each agent π, there is an environment qπ̄ that always gives
rt = 0 ∀t to that particular agent, and rt = 1 ∀t for all other agents.

With the space-embedded framework, the agent can in principle make pre-
dictions about its source code and memory (e.g., that it will be updated by
humans, who are part of the environment, to get new sensors or more efficient
code). By contrast, neither AIXI, nor AIXIt̃,l̃, nor the Gödel Machine can make

such predictions even in principle.5

5.2 Space-Time-Embedded Agents

The space-embedded agent’s next action is computed independently from the en-
vironment by a separate machine. Its code can be incomputable (cf. AIXI [3]),
and, unless an explicit time limit t̃ is introduced, is expected to run until com-
pletion (regardless how much computation might be involved) before the result
is passed to the environment. In the real-world though, the agent cannot have
more computing power or memory than what the environment has to offer.

To better model the interaction between the agent and the environment in
the real world, we examine the case where the reference machine of the agent
(i.e., the computer on which it runs), is a part of the environment, and the agent
is computed by the environment. Our proposal is not simply for the agent and
environment to be computed by the same reference machine, but to actually
make the agent be computed by the environment itself.

5 In the case of the Gödel Machine, one could set up a special protocol whereby external
agents could propose a new source code to the machine, possibly along with a proof
that this leads to a better expected value. If the machine can verify the proof, it
could adopt the new code. But this is a restricted form of external modification.
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One specific advantage of this model is that it allows the agent through its
actions (and predictions) to optimize not just its policy but also potentially the
physical device on which its policy is computed.6 An additional advantage is
that there is no need anymore for a time parameter t̃, since it is the environment
that determines how much computation the agent is allowed.

An alteration to Equation (5) describes the agent’s computation as performed
by ρ (even if ρ is only an estimate of the true environment):

π∗ := arg max
π1∈Π

V (π1)

V (ππ′≺tπt) :=
∑
π′
t

ρ′(π′
t | ππ′≺tπt) ×

∑
πt+1

ρ(πt+1 | ππ′
1:t)

[
γtu(ππ′

1:tπt+1) + V (ππ′
1:tπt+1)

]
(6)

V (ππ′≺tπt) :=
∑

π′
tπt+1

ρ′′(π′
tπt+1 | ππ′′

≺tπt)
[
γtu(ππ′

1:tπt+1) + V (ππ′
1:tπt+1)

]
, (7)

where ρ′ is defined appropriately for π′, and ρ′′ is the one-step combination of
ρ and ρ′. Loosely renaming π′

tπt+1 to πt+1 and ρ′′ back to ρ, we can interpret
Equation (7) as merging two interaction steps into a single one, and we obtain
the value of the space-time-embedded agent:

V (π≺t) :=
∑
πt

ρ(πt | π≺t)
[
γtu(π1:t) + V (π1:t)

]
. (8)

Equation (8) has one remaining problem, which is that for t = 0, when nothing
yet is known about the environment, the optimal policy may have infinite length.
Thus, we need to add a length constraint l̃ on the initial length that the program
can have. It is a reasonable parameter for any real-world model. In our world
it corresponds to the maximum number of bits that we, as programmers, are
ready to use for the initial policy of the agent. Note, however, that after the very
first step the actual length of the agent is determined by the computation of the
environment, i.e., πt, t > 1 need not be of size less than l̃. Therefore, the final
definition of the optimal bounded-length space-time-embedded agent is:

π∗ := arg max
π1∈Π l̃

V (π1)

V (π≺t) :=
∑
πt∈Π

ρ(πt | π≺t)
[
γtu(π1:t) + V (π1:t)

] .

Although simpler than Legg’s definition, this equation has profound implications
regarding the nature of the agent. In particular, it precisely represents the goal
of those attempting to build an Artificial General Intelligence in our world.

6 Such effects can be neither predicted nor controlled by AIXI, AIXIt̃,l̃, or the Gödel
Machine using their current definition.
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A Turing Machine Model. It is convenient to envision the space-time-embedded
environment as a multi-tape Turing machine with a special tape for the agent.
This tape is used by the environment just like any other working-memory tape.
The read and write heads need not be synchronized and there is no external
computing device, oracle or special interface for the agent. The agent’s tape can
be seen as a partial internal state of the environment, which is consistent with
the intuition that agents do not have special status in the real world compared to
the rest of the environment. This view extends easily to a multi-agent framework.

A Cellular-Automaton Survival Agent. It is also instructive to envision the envi-
ronment as a cellular automaton (e.g., the Game of Life [1]), in which an agent
is represented as a particular set of cells whose initial state is specified by the

initial policy π1 (perhaps an
√
l̃×

√
l̃ square of cells). The cells surrounding the

agent, in possibly unbounded number, may be in any initial state.
As an example, consider a utility function whose value is 1 as long as some

critical part of the agent’s policy maintains some particular pattern (call it the
agent’s “heart”), and 0 otherwise. If the pattern can be destroyed by gliders7

coming from outside the initial square of the agent, then the agent must find
ways to avoid them. The optimal initial policy π∗ is thus the one that maximizes
the expected number of time steps that the heart pattern survives. To ensure
its survival, the agent may need to learn about and react to its environment in
sophisticated and intelligent ways (provided l̃ is large enough).

Note that while the utility and horizon functions are part of the definition
of V , and thus are critical to defining π∗, they are not necessarily represented
within π∗ in any way. Note also that although π1 is the entire initial state of
the agent, as soon as the agent and environment interact, the boundary between
them may quickly blur or disappear. Thus the notation πt for t > 2 may be
misleading, since it can also be viewed simply as a window onto that part of the
environment used (by the utility and horizon functions) to assign a value to the
agent. Since only the output of ρ can be used by the utility function, ρ can be
defined so that πt, t > 2 encompasses the entire environment, while π1 remains
limited to l̃ bits. Thus, in the case of a cellular automaton, for example, the agent
and its heart pattern may drift away from its original cells; or, alternatively, the
utility function may seek to maximize the number of “live” cells (i.e., cells set
to 1) in the entire environment.

New Kinds of Questions. The framework for space-time-embedded agents allows
formal discussion of a range of questions that could not previously be formulated
using the traditional RL framework.

Because the agent is computed by the environment, the agent’s choices are
the result of the computations made by the environment on the bits defining the
agent’s policy. Genuine choice is exercised only by those processes (e.g., those
programmers) that define the agent’s initial program π1 before interaction with
the environment begins. Yet the programmers are also part of the environment,
which implies that the agent is generated ultimately as a result of the initial

7 A “glider” is a repeating pattern that can cross regions of the cellular automaton.



Space-Time Embedded Intelligence 217

conditions of the environment in a generative process much like Solomonoff’s
Sequence Prediction [12].

If at some time t some set of bits implements an intelligent agent π, one might
wonder by what process this agent was generated or, more precisely, what are
the most probable environments that could have generated this set of bits. We do
not seek to answer to this question here, but only to point out that the question
itself can be discussed within the framework of space-time-embedded agents, in
contrast to the traditional RL framework, in which the agent is not generated
but is simply assumed to exist from the very first step.8

In fact, the framework now allows many questions to be discussed, such as:
Who is the agent? (i.e., what part of the global computation defines the identity
of the agent; e.g., π1, u, γ?) What is an agent? (i.e., where is the boundary
between the agent and its environment?) What does it mean for an agent to
live and to die? (Questions that depend deeply on agent identity and thus the
boundary between the agent and the environment.)

To perform any computation, an embedded agent necessarily affects its en-
vironment, and thus the mere act of calculating the consequences of its own
actions implies a self-referential computation. It may seem we would therefore
need to define agents that deal explicitly with the problem of self reference, but
our framework instead circumvents this issue entirely by simply computing each
agent’s value subject to the environment’s computational constraints, and then
selecting the agent with the highest value. This best agent may, or may not, deal
with self reference, but does so to whatever extent is optimal for its environment.

6 Discussion and Conclusion

This paper has proposed a new definition of intelligence within a theoretical
framework more realistic than previous definitions. In both Legg’s definition
of intelligence [4] (based on AIXI [3]) and Russell’s bounded-optimality frame-
work [10] (which embraces time and space constraints on the program of the
agent), the agent is separated from the environment and therefore immortal.

Space-time-embedded intelligence formally describes agents as components of
their environment. Such agents are thus limited to the computational resources
(computation time and memory space) provided by their environment, can be
fully modified by their environment (i.e., the agents are mortal), and are even
computed by the environment, making their computation dependent on the dy-
namics of the environment. Compared with previous definitions of intelligence,
the resulting equation is surprisingly simple—deceptively simple, in fact, hiding
considerable depth beneath its surface.

Our primary motivation was to find an equation of intelligence that, if solved,
might lead to the actual building of real-world, artificially intelligent agents. We
believe that this new formalization brings us a step closer to our goal, though
we are by no means naive as to the difficulty of its solution. As much as any-
thing else, we greatly lack insight into ρ (i.e., the universe in which we live).

8 Note, though, that in our companion paper [6] we address the issue of how to assess
the probability of some particular memory state generated by an environment.
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For example, our universe allows for the sustainability of intelligent agents—
patterns that continue through large stretches of space and time (partly thanks
to our protective skulls). We hope this work will help us develop a better under-
standing of the information we will need for eventually solving the equation.

When discussing narrow AI, our framework might be regarded as a step back-
ward compared to Russell’s definition, since the interaction loop is hidden in the
embedding and makes reasoning about the actions of the agents less explicit.
But when discussing true AGI, our framework captures critical aspects of re-
ality that Russell’s definition simplifies away: agents are computed by and can
be modified by the environment, and are therefore mortal. Furthermore, these
theoretical consequences of inhabiting one’s environment turn out to be essential
and practical considerations for all the intelligent agents who inhabit our own.
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Abstract. Theoretical models of artificial general intelligence, such as
AIXI [3], typically consider an intelligent agent to have unlimited com-
putational resources, allowing it to keep a perfect memory of its entire
interaction history with its environment. In the real world, an agent’s
memory is part of the environment, which means that the latter can
modify the former. This paper develops a theoretical framework for ex-
amining the implications of such real-world memory on universal intel-
ligent agents. Within this framework we are able to show, for example,
that in certain environments optimality can be achieved only with truly
stochastic behaviors, and that guarantees about the trustworthiness of
memories are difficult to obtain even with infinite computational power.
To describe the probability of an agent’s memory state, we propose an
adaptation of the universal prior for the passive and the active case.

Keywords: Universal AI, AIXI, real-world assumptions, memory.

1 Introduction

Until recently, most theoretical models of artificial general intelligence (AGI)
considered only agents that exist outside of their environments, interacting with
it through an unbreachable interface [3,14,18]. In this and previous work we
have begun developing formal models in which these assumptions are relaxed
and in which the AGI agent is forced, bit by bit, to inhabit the same universe
that we do. In our previous work, for example, we considered the theoretical
consequences of taking various universal intelligent agents such as AIXI [3] and
embedding their source code into their environment such that it can be modified
by the agents themselves [8] or even by the environment [13], as is the case in
the real world.

In the current paper we consider the theoretical consequences of a different
realistic assumption: that the memory of the agent can be modified by the
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environment.1 We first introduce an initial formal framework for such agents
and then consider some of its implications, asking questions such as: under what
circumstances, if any, can the agent trust its own memory? What if, for example,
the true memory of the agent is erased and replaced with a plausible memory of
the past? Could an intelligent agent, even in principle, ever hope to detect such
an altered memory?

We show that if its memory can be modified, a deterministic agent can
be easily deceived and that even simple stochastic agents can in some cases
perform arbitrarily better than any deterministic agent. Finally, we propose
a new definition of the probability of the current memory of an agent based
on Solomonoff’s universal prior [16]. We provide theorems with proofs when-
ever possible, and statements and arguments when proofs would require more
formalism.

2 Notation and Agent Framework

We (very) briefly summarize the definition of a universal agent, based on
AIXI [3,4], following Orseau & Ring [8,13].

The agent interacts with its environment by sending actions a ∈ A and receiv-
ing observations o ∈ O. The interaction pair (at, ot) at a given step t is denoted
aot. The sequence of all actions up to time t is written a1:t, while the sequence
a1:t−1 is often written a≺t, and similarly for other sequences.

Environments q ∈ Q are assumed to be computable and deterministic; they
output an observation sequence given the action sequence of the agent: o1:t =
q(a1:t). Symbols such as a, o, etc. are also used as functions to extract the cor-
responding part of a composed object when contextually unambiguous; for ex-
ample, o(q(a1:t)) = o1:t. This notation is also used for functions returning se-
quences: if r1:t = r(o1:t) then r1:k = r(o1:t)1:k with k ≤ t, or ot = o(q(a1:t))t =
o(q(a1:t)t).

An environment q is said to be consistent with some sequence of interac-
tion ao1:t iff o(ao1:t) = q(a(ao1:t)). The set of environments consistent with an
interaction history ao1:t is denoted Qt when unambiguous from the context.

Each environment q ∈ Q has a prior probability wq ∈ (0, 1) of being the
true environment; these values must be chosen such that

∑
q∈Q wq ≤ 1. The

probability of an observation sequence o1:t given a sequence of actions a1:t is
defined by ρ(o1:t | a1:t) :=

∑
q∈Qt

wq.

A universal agent has a horizon function γt ∈ [0, 1] such that
∑∞

t=1 γt < ∞
and a utility function u(ao1:t) ∈ [0, 1], and is defined by its value function:

V (ao≺t, at) :=
∑
ot

ρ(ot | ao≺tat)
[
γtu(ao1:t) + max

at+1

V (ao1:t, at+1)
]

(1)

1 For clarity of purpose, we consider here the problem of memory modification in
isolation and assume that only the memory and not the agent’s code can be modified,
but see the companion paper [9].
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which computes the expected utility when the agent behaves optimally given its
current knowledge, i.e., the interaction history ao1:t, which we call the memory
of the agent.2 We will refer to this memory at time t as a memory state mt.

The agent’s next action at is chosen by at = argmaxa∈A V (ao≺t, a).
3 For a

given observation sequence, the sequence of actions chosen by the agent according
to its policy π ∈ Π is denoted a≺t = π(o≺t). Initially, the content of the memory
of the agent is λ, the empty string.

A reinforcement learning agent (RLA), e.g., AIXI [3], is one whose utility
value is a “reward” extracted as a function of the agent’s most recent observa-
tion: u(ao1:t) = rt := r(ot). A knowledge-seeking agent (KSA) [8,13,11], chooses
actions to maximize its knowledge of the environment (by reducing ρ(o1:t | a1:t)
through elimination of inconsistent environments) as quickly as possible; thus
its utility function is u(ao1:t) = −ρ(o1:t | a1:t). A prediction-seeking agent
(PSA) [8,13] tries to maximize the accuracy of its predictions: u(ao1:t) = 1
if ot = argmaxo ρ(o≺to | a1:t), and 0 otherwise.

3 The counterfeit Memory Problem

The first question we address is whether it is theoretically possible for an agent
of perfect intelligence (i.e., one with infinite computational power) to determine
whether its memory has been modified, or, speaking more broadly, whether
memories can ever be trusted. Such modifications of the memory by an external
source could be either accidental, e.g., in the case of amnesia resulting from a car
accident, or adversarial. Adversarial modifications generally assume the presence
of two agents, where one, to serve its own purposes, modifies the memory of the
other, as exemplified not just in science fiction [1,17], but also, for example,
through hypnosis or suggestion [7] or with genetic modification and drugs [2].

3.1 Definitions

We first consider universal agents unaware that their memory of the interaction
history ao≺t can be modified by the environment. Just as humans generally do
not suppose that their own memories may have been altered by someone else,
these agents act according to what they think they know.

To that end, we amend the framework described in Section 2: the memory mt

of the agent, which previously contained the true interaction history ao≺t, now
contains an interaction history that may have been altered by the environment:
mt = ȧo≺k (where the dot signifies possible alteration), possibly with k �= t.

In this section, we consider only deterministic environments. For simplicity
and generality, we now consider that the output ot of the environment at some
time t is (interpreted as) an entire interaction history ȧo≺k that may have been
counterfeited, where k is not necessarily the current time step, i.e., mt+1 := ot
(and m1 = λ). We call the agent’s memory mt the visible interaction history

2 Note that a universal agent is in general incomputable; i.e., it requires an infinite
amount of computation time and memory space.

3 Ties are broken lexicographically.
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ȧo≺k as output by the last “true” observation ot−1, i.e., mt = ȧo≺k = ot−1.
The agent now computes the values of its actions in Equation (1) by using its
(possibly counterfeit) knowledge mt = ȧo≺k of the interaction history instead of
the true interaction history ao≺t.

Therefore, o and ȯ have very different roles. The alphabet Ȯ of the observa-
tions written in the agent’s memory is fixed (e.g., {0, 1}), whereas the alphabet
of the true outputs ot ∈ O of the environment is O = Ȯk × Ȧk, which can
change from time step to time step. The set of possible actions Ȧ for the visible
interaction history is the set of actions A for the environment: Ȧ = A.

Definition 1. A visible interaction history mt is said to be true iff:

1. ∀t>0 |mt| = t−1: there are as many action-observation pairs in the memory
as there have been interaction steps between the agent and the environment,

2. ∀t > 0, ∀j > t, (mj)≺t = mt: each memory (interpreted as a sequence) is
a prefix of the succeeding one; i.e., the previous interaction pairs are not
modified, and the memory grows by adding interaction pairs one at a time.

A true visible interaction history then is like the regular interaction history in
the regular non-modifiable memory framework.

Definition 2. A visible interaction history is counterfeit iff it is not true.

Theorem 1. Some visible interaction histories are provably counterfeit.

Proof. If the agent determines that any of the actions stored in the history are
not actions the agent would have taken, then the history is counterfeit. Let
mt = ȧo1:k be the interaction history written on the memory. The history is
provably counterfeit if ȧ1:k �= π(ȯ≺k). ��

With Theorem 1 one might hope to prove that no environment can counterfeit
a sufficiently long interaction history of an agent that has sufficiently complex
behavior. But what follows shows that this is not possible.

Definition 3. An interaction history ȧo≺k is π-consistent iff ȧ1:k = π(ȯ≺k).

Definition 4. For two consecutive visible interaction histories mt = ḣ1 and
mt+1 = ḣ2, we say that there is a modification between ḣ1 and ḣ2 iff ḣ1 is not
a prefix of ḣ2.

The number of modifications during an interaction of the agent and its environ-
ment, is the number of times there is a modification between two consecutive
visible interaction histories.

Theorem 2. For an agent with policy π at the current time step t, with a π-
consistent visible interaction history ȧo≺k where k ∝ t, there can have been O(t)
modifications during interaction.
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Proof. Choose some constant N > 2. Define an environment as follows: a) the
current memory of the agent contains ȧo≺k; by interacting with the agent for
N steps, grow the current visible history to ȧo≺k+N , where the observations
are chosen arbitrarily according to some algorithm (i.e., like a non-memory-
modifying environment); b) truncate the history to m = ȧo1:k+N/2, and replace
(counterfeit) the last observation ȯk+N/2 with a different observation ȯ �= ȯk+N/2

to yield the visible history m = ȧo1:k+N/2−1ȧk+N/2ȯ; c) repeat from a). The
growing history will always look like a true visible interaction history to the
agent, since the visible actions are consistent with its policy, but a growing
number of interaction steps are forgotten by the agent. ��
Theorem 2 also shows that the environment may acquire more information from
the agent than the agent can detect.

3.2 Detecting Modifications in Watch-Consistent Histories

Mere truncation of memory is only one way of deceiving an agent through mem-
ory modification. A more effective way for the environment to influence the
agent’s behavior is to fabricate entire memories completely [2,7]. We now con-
sider whether various universal agents can ever trust their memories, turning
our attention to the case in which item 1 in Definition 1 is always satisfied: the
memory of the agent contains as many interaction pairs as there have been true
interactions since the first time step, which the agent can verify for example if
it has a trustworthy watch.

Definition 5. A visible interaction history mt = ȧo≺k is said to be watch con-
sistent iff k = t, i.e., the history has as many interaction pairs as there have
been actual interactions between the agent and the environment.

Statement 1. There exists an environment q that, when interacting with PSA
(Section 2), can make infinitely many modifications to the interaction history,
while keeping a πPSA-consistent and watch-consistent visible interaction history.

Arguments. In deterministic environments, there is a time step T after which a
PSA will exhibit computable behavior: Solomonoff induction converges to per-
fect prediction in less than K(q) prediction errors [6], where K is Kolmogorov
complexity, so if the agent’s behavior is constant (e.g., its output is always 1),
the agent will converge to perfect prediction.4

Let q0 and q1 be two environments that always output a true interaction his-
tory mt = ȧo1:t in which ȯt = 0 (for q0) and ȯt = 1 (for q1). Let ḣ0

t and ḣ1
t be

their respective outputs at step t when interacting with PSA. Let T0 and T1 be
the number of steps that PSA interacts with q0 and q1 respectively before be-
coming entirely computable; and let T = max(T0, T1). Let q be the environment
that emulates q0 for T steps, then at step t = T + 1 outputs ḣ1

t , at t = T + 2
ouputs ḣ0

t , and thereafter switches back and forth between ḣ1
t and ḣ0

t at each
subsequent time step t. Hence the number of history modifications grows with

4 A similar argument can use on-sequence convergence of ξAI to μAI [3, p.146].
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t. Since the number of steps leading to the first switch is a constant, and since
PSA’s behavior after T is computable, an environment q is guaranteed to exist
such that the agent’s history is always πPSA-consistent. ♦

Statement 2. There exists an environment q that, when interacting with RLA,
can make infinitely many modifications to the interaction history, while keeping
a πRLA-consistent and watch-consistent visible interaction history.

Arguments. RLA can be shown to stop exploring in some environments after
some time [10]. This means that it will settle on a computable behavior in these
environments. The same technique as for PSA then finishes the argument. ♦

In principle, RLA can be augmented with an adequate exploration strategy so
that it can asymptotically learn every environment.5 However, because RLA
must maximize the number of rewards for a continually increasing fraction of
the time [5], it must still have a computable strategy most of the time in some
environments. If those time steps where it has a computable strategy are pre-
dictable, then the argument still holds.

It may seem that an agent such as RLA might also in some way encrypt
its history, and thus ensure that no environment could counterfeit it. However,
since the memory resides inside the environment, such an encryption technique
would only work (at best) in those environments that provide a means for the
agent to modify its own memory (either directly or indirectly), which is certainly
not the case in all environments (such as environment q0 in the Arguments for
Statement 1 above).

Statement 3. No environment interacting with KSA can make more than
finitely many modifications to the visible interaction history such that it remains
πKSA-consistent and watch consistent.

Arguments. First we show by contradiction that KSA’s actions cannot be pre-
dicted consistently. Let ao≺t be the current interaction history (for non-memory-
modifiable agents). Let aKSA

t be the action chosen by KSA at time t. Let q1 and
q2 be two environments that output the same observation ot = oq1t = oq2t for
this action. But, considering that aKSA

t is predictable, then for a different ac-

tion a′t �= aKSA
t , q2 outputs an observation o

′q2
t �= o

′q1
t that is different from the

one output by the true environment q1. Since KSA does not choose a′t, it never
sees any difference between the observations output by the two environments,
i.e., the two environments are never separated by KSA. But this contradicts the
asymptotic convergence of this agent [11].

Now, counterfeiting the interaction history of KSA while keeping it πKSA-
consistent should require to be able to predict the actions this agent, which is
not feasible due to the non-predictability of KSA. ♦

5 At the expense of losing the Pareto optimality property with respect to the expected
number of rewards [5].
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A caveat to the above argument is that one would need to show that, given a
current visible interaction history ȧo≺t, the environment cannot apply a syn-
tactic transformation to this history to build a different, counterfeited visible
interaction history, e.g., like swapping all 0s and 1s (although this one is not
possible since the first action of the agent is deterministic and always the same).

4 Deterministic vs. Stochastic Agents

In this section we show that for some memory-modifying environments, no agent
that chooses its actions deterministically can always perform as well as a sim-
ple agent that chooses its actions according to a stochastic policy. For these
purposes, and for the rest of the paper, we no longer need to assume that the
agent’s memory m contains a visible interaction history ȧo. The conclusions in
the next two sections apply to any representation of memory that is subject to
modification by the environment.

A stochastic policy π̃ ∈ Π̃ specifies the probability that the agent will choose
action a when its current memory state is m; i.e., π̃(a | m) = Prπ̃(at = a | mt =
m). Therefore,

∑
a∈A π̃(a | m) = 1. The actions are drawn from this distribution

stochastically, meaning that (a) there is no deterministic algorithm that com-
putes the action choices, and (b) if precisely the same agent and environment
are run twice, the actions chosen can be different between runs.

Theorem 3. There exists a simple memory-modifying environment q in which
any deterministic reinforcement-learning agent with policy π is arbitrarily worse
than a stochastic agent with a uniform stochastic policy π̃. That is, ∃c ∈ [0, 1] :
limn→∞

∑n
t=1(r

π̃
t − rπt )/n > c, where rπ and rπ̃ are the sequence of rewards

generated by the interactions of π and π̃ with the environment q.

Proof. Define an environment q as follows: a) at t = 1, observe the action a1
of the agent and output observation o1 = o0 such that r(o0) = 0; o0 becomes
the next memory state of the agent, i.e., m2 = o0; b) at t = 2, observe action
a2, and again output observation o0, which again becomes the memory state at
the next time step, i.e., m3 = o0; c) for all t > 2 observe action at, if at = a2
(which is the case for deterministic agents), output mt+1 = o0, otherwise output
o1 such that r(o1) = 1. The average reward of the uniform stochastic policy π̃ in
environment q is 1/|A|, whereas for any deterministic policy π it is always 0. ��
Although very simple, this theorem may have important implications, for it
reveals that stochastic policies are fundamentally necessary in certain universes
(perhaps our own), a conclusion beyond the reach and scope of the traditional
RL setting for which AIXI is defined [3], and reminiscent of the necessity of
mixed strategies in game theory [12] for non-iterated games, and of results in
partially observable Markov decision processes [15].

5 Modification-Aware Agents

In section 3, the agent always chose its actions assuming that its history was
correct. In this section we consider agents designed to react optimally in the
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case where their memories reside in and can be modified by the environment.
Such an agent recognizes the uncertainty of its past, including its own past
actions. It does not even know what time it is (how many interactions there
have been up to now). Since the environment can modify the agent’s memory in
arbitrary ways, the only control the agent has over its own memory is through
its ability to control the environment.

Because of Theorem 3, the optimal agent cannot be deterministic, and we
therefore must consider stochastic policies—a small but meaningful departure
from AIXI, which is deterministic.

For symmetry with the agent’s stochastic policy, we consider the environment
to also be stochastic.6 A stochastic memory-modifying environment ν is a semi-
measure (a probability distribution that can sum to less than 1) that gives a
probability ν(o≺t | a≺t) to a sequence of observations given a sequence of actions.
Here again, the observation ot is used by the agent as its next memory state, so
mt+1 = ot. We avoid writing the time index t of mt because the agent does not
have access to the value of t (only the environment does).

The optimal stochastic policy π̃∗ := argmaxπ̃∈Π V π̃(λ) among the set of all
approximable stochastic policies Π̃ depends on the given utility function u, the
given horizon function γ, and the given universal prior ρ over a set of semi-
computable stochastic environments N :

V π̃(λ) :=
∑
ν

ρ(ν)V π̃ν(λ) (2)

V π̃ν(ao≺t) :=
∑
at

π̃(at | m = ot−1)
∑
ot

ν(ot | ao≺tat)
[
γtu(ot) + V π̃ν(ao1:t)

]
. (3)

This definition is not very informative, however, as it does not tell us how to
assign a probability to m. Intuitively, since all memory states of all sizes are
possible, and since the agent has no additional information, it seems reasonable
to estimate the probability of m as approximately 2−K(m), so that by Kraft’s
inequality [6] (considering the set M of memories is prefix-free), the probability
of the set of all states would be

∑
m∈M 2−K(m) ≤ 1 (which could be normalized

if necessary) as required for a semi-measure.
Beyond the need to estimate the probability of a particular memory state, it

is even more important to be able to assign a probability to each environment
depending on its likelihood of generating that memory state. Knowing this prob-
ability would allow the agent to choose actions appropriate to the environment
it is most likely interacting with. We now turn to the task of estimating this
probability, first considering the case of a passive agent that takes no actions,
then turning to the interactive case.

5.1 Sequence Prediction: The Passive Agent

Before considering the complex case of an agent interacting with its environment,
it is instructive to return for the moment to the case of sequence prediction, in

6 Although universal mixtures like ρ actually consider all stochastic environments
implicitly.
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which environments are simply sequence generators (that do not take the agent’s
actions into account) and the agent must merely predict the generated sequence.

We can calculate the probability that the environment will generate a partic-
ular observation at some point in time, but if an environment can generate the
same output in several different ways and at possibly different time steps, each
with a different probability, what is the probability of a particular observation?

The agent has only its current memory state m = ot−1, and does not even
know the true time step t. The same memory state can appear multiple times
(possibly infinitely many times) in the course of the agent’s interactions. To
ensure convergence we include a discount rate (taken to be the same as the hori-
zon function), that assigns greater weight to earlier time steps. For computable

deterministic environments, we define the probability
∗
ρ(m) of a given memory

state m after some unknown sequence of previous memory states by:

∗
ρ(m) :=

∑
q

wq
1

Γ

∑
t :U(q)t=m

γt (4)

where U(q)t is the last memory state generated at time t by the environment q
on the reference machine U , Γ :=

∑∞
t=0 γt. For stochastic environments:

∗
ρ(m) :=

∑
ν

wν
∗
ν(m) ;

∗
ν(m) :=

1

Γ

∑
t

γt
∑

m′
≺t∈Mt−1

ν(m′
≺tm), (5)

whereMt−1 is the set of all sequences of memories of length t−1. This discount-
ing method ensures that (for a given environment ν) the sum of the probabilities
for all possible memory states is always less than Γ . Furthermore, it gives more
weight to the memory states that appear more often. There is also a preference
toward earlier steps, but this is necessary since a uniform weighting would not
be summable. One could use a different discounting and normalize the sum to 1;
for example, the discount 2−K(t) is the closest possible to a uniform weighting.

Critically, this probability can be computed without knowing how much time
has elapsed since the first interaction step.

The following examples illustrate the use of equation (5) (but considering deter-
ministic environments).

Example 1. For the environment νm1 that constantly outputs the same mem-
ory state m1, the probability of being in state m1 at some unknown time step

according to νm1 and using equation (5) is
∗
νm1(m1) = 1. Thus

∗
ρ(m1) ≥ wνm1 .

Example 2. Consider an environment νall that enumerates all possible memory
states in some order, without repetition. Let T be the time step at which νall

generates some particular memory state mT . Then the probability
∗
ν
all
(mT ) that

νall assigns to mT is γT /Γ .
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5.2 Including the Agent’s Actions

The above analysis examined prediction only, where the environment is not
influenced by the agent’s actions. Introducing the agent’s actions is considerably
more complex and leads quickly to an infinite regression due to temporal self-
reference: to choose the best action at time t, the agent must simulate itself after
having chosen one action a and having received the new memory state mt+1.
But at this simulated t+ 1, the agent, not knowing what the previous memory
state was, needs to simulate itself from all possible previous states to reach
its current memory state. The infinite regression occurs as a result of knowing
neither the past nor the future, yet each one refers to the other. The calculation
is straightforward only when one or the other is known (as AIXI knows the past).

One way to address this dilemma is by considering all possible action se-
quences that the agent could have taken (by any policy) and normalizing by the
number of possible sequences of the same size. Updating (4), we get:

∗
ρ(m) :=

∑
q

wq
1

Γ

∑
t

1

|A|t
∑
a1:t |

q(a1:t)t=m

γt =
∑

t, a1:t, q |
q(a1:t)t=m

wq
γt

Γ |A|t . (6)

Using the above probability of a particular memory state to define the optimal
policy at time t allows definition of equations similar to AIXI’s.

Examples. Let
∗
ρq(m) be the contribution of environment q in the probability of

memorym so that
∗
ρ(m) =

∑
q

∗
ρq(m). In this section, we take ρ = ξ, the universal

semi-measure [19,6,3], where wq = 2−K(q) (for the simplest program equivalent
to q). We consider a boolean action alphabet A = B, and three deterministic
environments: qcc, q

m
s , and qp.

The “copycat” environment is defined as qcc(a1:t)t := a1:t, i.e., the content of
the memory of the agent at the next step will be a1:t. The “static” environment
is defined as qms (a≺t)t := m, which always outputs memory state m. The “print
ones” environment is defined by qp(a1:t)t := 1t, i.e., the content of the memory
state at the next step will be a string of t ones.

Example 3. Suppose the current memory m1 is an incompressible random se-

quence of length L = |m1|. Then (omitting the normalizing Γ ),
∗
ρcc(m1) =

wqcc
γL

|A|L = wqcc2
−LγL, and

∗
ρs(m1) = wq

m1
s

∑
t γt

|A|L
|A|L ≈ 2−K(m1) ≈ 2−L, and

∗
ρp(m1) = 0.

Example 4. If the current memory m2 is a string of L ones, i.e., m2 = 1L, then
∗
ρcc(m2) = wqcc2

−LγL, and
∗
ρs(m2) = wq

m2
s

≈ 2−K(qs) ≈ 2−K(L) and
∗
ρp(m2) =

wqpγL.

These two examples show that the copycat environment has less weight than
more complex environments and therefore has little impact on the probability
of a string. Furthermore, if γt = 2−K(t), then the two environments qms and qp
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have the same weight for m2, such that the copycat environment has nearly as
much weight as a complex environment (which might make sense in that case).
Interestingly, this kind of discounting horizon, first proposed by Hutter (2004)
may also be the solution that allows exploration in AIXI without losing Pareto
optimality [10]. However, the time discounting of Eq. (6) and (2) could well be
chosen differently.

Note that, because of the additional time discounting, the more complex the
current memory, the less probable it seems to be. This time discounting require-
ment could be removed if one considered only the first occurrence of a memory
state for a given environment. But it is not clear that this would truly reflect
the probability of a memory state in general.

6 Discussion and Conclusion

In the real world, an AGI’s memory must reside within the world itself, yet ex-
isting formal frameworks of intelligence generally ignore that reality. This paper
has examined some of the theoretical consequences of explicitly modeling the
environment’s ability to modify the agent’s memory. Among these consequences
are the following.

First, even universal intelligent agents with infinite computational power are
incapable of recognizing certain kinds of memory modifications. This is partic-
ularly interesting in light of the conclusions of our earlier work which painted a
rather grim picture regarding the predictability and controllability of theoreti-
cally optimal intelligent agents [8,13], implying that along with giving an agent
a specific goal or reward function, memory modification might be a particularly
effective way of modifying the behavior of an AGI.

In some cases an agent can detect modification of its memory by verifying that
the historical record of its actions in memory match those the agent would have
taken. This technique can also potentially reveal modification of the observations
stored in memory, if these would result in different action choices. However, it
seems in many cases the environment can still fool the agent. Of the agents
considered, the prediction-seeking agent and the reinforcement-learning seem
relatively easy to fool because their behavior is sometimes predictable. It appears
that even when augmented with an infallible sense of time, these agents can still
be supplied with an unlimited number of artificial memories. With the same
augmentation, however, it seems the knowledge-seeking agent cannot be deceived
more than a finite number of times.

Second, memory modification has profound theoretical ramifications regarding
the nature of determinism and AGI: deterministic policies become strictly weaker
than stochastic policies, as there are environments in which no deterministic
policy is as good as even the simplest stochastic policy.

Third, explicitly designing an agent to be aware of the environment’s access
to its memory is a task filled with unexpected subtlety, seeming at first to lead
toward infinite regression as the agent ponders its previous and future inten-
tions. The dilemma is resolved by considering all possible action sequences, but
a remaining problem is how to assign a probability to a memory and to the
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environments that might generate it. We suggested a mathematically precise
solution based roughly like AIXI on Occam’s razor. This solution may be the
best hope for the apparently essential yet possibly intractable problem of assign-
ing probabilities to memory states. Yet it may be that the deepest insight from
this work is that there may in fact be no perfect, canonical way to assign these
probabilities, the implications of which could be quite profound.

There are also many interesting questions that we did not address. What if,
for example, the environment could also modify the agent’s code? (The agent
could no longer check that its previous actions were generated by itself, since
itself at a previous time step may have been different.) How can the agent verify
the consistency of its history if its policy is stochastic? And finally, do any of our
conclusions have ramifications for other forms of intelligence, such as our own?

Acknowledgements. Thanks to Stanislas Sochacki for valuable discussions.
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B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 209–218. Springer,
Heidelberg (2012)

10. Orseau, L.: Optimality Issues of Universal Greedy Agents with Static Priors. In:
Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI),
vol. 6331, pp. 345–359. Springer, Heidelberg (2010)

11. Orseau, L.: Universal Knowledge-Seeking Agents. In: Kivinen, J., Szepesvári, C.,
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What Is It Like to Be a Brain Simulation?

Eray Özkural
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Abstract. We frame the question of what kind of subjective experi-
ence a brain simulation would have in contrast to a biological brain. We
discuss the brain prosthesis thought experiment. We evaluate how the
experience of the brain simulation might differ from the biological, ac-
cording to a number of hypotheses about experience and the properties
of simulation. Then, we identify finer questions relating to the original
inquiry, and answer them from both a general physicalist, and panexpe-
rientialist perspective.

1 Introduction

The nature of experience is one of those deep philosophical questions which
philosophers and scientists alike have not been able to reach a consensus on. In
this article, I review a computational variant of a basic question of subjectivity.
In his classical article ”What is it like to be a bat?”, Thomas Nagel investigates
whether we can give a satisfactory answer to the question in the title of his
article, and due to what he thinks to be fundamental barriers, concludes that it
is not something we humans can know [1]. We can intuitively agree that although
the bat’s brain must have many similarities to a human’s, since both species are
mammalian, the bat brain contains a sensory modality quite unlike any which we
possess. By induction, we can guess that perhaps the difference between sonar
perception and our visual experience could be as much as the difference between
our visual and auditory perception. Yet, in some sense sonar is both visual and
auditory, and still it is neither visual nor auditory. It is similar to vision, because
it helps build a model of the scene around us, however, instead of stereoscopic
vision, the bat sonar can make accurate 3-D models of the environment from
a particular point of view, in contrast with normal vision that is said to have
”2-1/2D vision” – it may also be contrasted with blind people using audio and
tactile perceptions. It is unlike anything that humans experience, and perhaps
our wildest imaginations of bat sonar experience are doomed to fall short of the
real thing. Namely, because it is difficult for us to understand the experience of a
detailed and rapidly updated 3-D scene that does not contain optical experience
as there is no 2-D image data from eyes to be interpreted. This would likely
require specialized neural circuitry. And despite what Nagel has in mind, it
seems theoretically possible to ”download” bat sonar circuitry into a human
brain (by growing the required neural module according to a given specification,
connected to sonar equipment implanted in the body) so that the human can
experience the same sensory modality. In this problem, armchair philosophy
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alone may not be sufficient. The barrier to knowing what it is like to be a
bat is, thus, mostly a technological barrier, not a conceptual or fundamental
barrier, although, ultimately we cannot expect one to know exactly what a bat
experiences, short of being one. In the best case, we would know what a bat
experience is like, as the human brain could be augmented with a reconstruction
of the perceptual brain circuit.

That being the case, we may also consider what a brain simulation, or an “up-
load” as affectionately called in science fiction literature, would experience, or
whether it would experience anything at all, as brain simulation is a primary re-
search goal on which computational neuroscientists have already made progress,
e.g., [2]. The question that I pose is harder because the so-called upload does
not run on a biological nervous system, and it is easier because the computation
is the simulation of a human brain and not the biological computation of a bat
brain, which is harder because of sonar perception. Answering this question is
important, because presumably the subjective experience, raw sensations and
feelings of a functional human brain are very personal and valuable to human
beings. We would like to know if there is a substantial loss or difference in the
quality of experience for our digital progeny. A recent survey of large-scale brain
simulation projects may be found in [3].

2 Brain Prosthesis Thought Experiment

The question is quite similar to the brain prosthesis thought experiment, in
which biological neurons of a brain are gradually replaced by functionally equiv-
alent (same input/output behavior) synthetic (electronic) neurons [4]. In that
thought experiment, we ponder how the subjective experience of the brain would
change. Although there are challenging problems such as interfacing smoothly
with existing neural tissue, it is a scientifically plausible thought experiment,
also discussed at some length in [5, Section 26.4]. Moravec suggests that nothing
would change with respect to conscious experience in his book. Marvin Min-
sky has written similarly while discussing whether machines can be conscious
[6]. He produces an argument similar to Wittgenstein’s beetle-in-a-box thought
experiment: since a brain simulation is supposed to be functionally equivalent,
its utterances would be complete, and the brain simulation would know con-
sciousness and claim to be conscious; why should we think that the simulation is
lying deliberately? This is a convincing argument, however, it neglects to men-
tion that subjective experience may not be identical to conscious cognition as
usually assumed.

Contrariwise, John R. Searle maintains that the experience would gradually
vanish in his book titled “The Rediscovery of the Mind” [7]. The reasoning
of Minsky and Moravec seems to be that it is sufficient for the entire neural
computation to be equivalent at the level of electrical signaling (as the synthetic
neurons are electronic), while they seem to disregard other brain states. While
for Searle, experience can only exist in ”the right stuff”, which he seems to be
taking as biological substrate, although one cannot be certain [8]. We will revisit
this division of views, for we shall identify yet another possibility.
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3 The Debate

Let us now frame the debate more thoroughly, given our small excursion to the
origin of the thought experiment. On one side, AI researchers like Minsky and
Moravec seem to think that simulating a brain will just work, and experience will
be unchanged. On the other side, skeptics like Searle and Penrose, try everything
to deny ”consciousness” to poor machinekind. Although both Searle and Penrose
are purportedly physicalists, they do not refrain from seeking almost magical
events to explain experience.

However, it is not likely that word play will aid us much. We need to have a
good scientific theory of when and how experience occurs. The best theory will
have to be induced from experimental neuroscience and related facts. What is the
most basic criterion for assessing whether the theory of experience is scientifically
sound? No doubt, it comes down to rejecting every kind of superstitious expla-
nation and approach this matter the same way as we are investigating problems
in molecular biology, that subjective experience is ultimately made up of physi-
cal resources and interactions, and there is nothing else to it; this is a view also
held by Minsky as he likens mysticism regarding consciousness to vitalism [6]. In
philosophy, this approach to mind is called physicalism. A popular statement of
physicalism is token physicalism: every mental event x is identical to a physical
event y. That is a general hypothesis that neuroscientists already accept, because
presumably, when the neuroscientist introduces a change to the brain, he would
expect a corresponding change in the mental state, and he would expect that he
can decode mental states from fMRI scans of the visual cortex as in several ex-
periments. One may think of cybernetic eye implants and transcranial magnetic
stimulation and confirm that this holds in practice, and that the hypothesis is
scientifically plausible, for counter-examples are practically impossible to find.
Another popular formulation of physicalism is the psychophysical identity theory
[9]: that every experience is identical with some physical state. We accept both
formulations at once, because the physicalist position is empirically supported,
while metaphysical positions like predicate dualism are not.

4 Asking the Question in the Right Way

We have discussed every basic concept to frame the question in a way akin to
analysis. Mental events/states are physical events/states. Some neural events
of a man constitute his subjective experience. The question is whether a whole
brain simulation will have experience, and if it does, how similar this experience
is to the experience of a human being. If the proponents of pan-experientialism
are right, then this is nothing special, it is a basic capability of every physical re-
source (per the scientifically plausible, physicalist variant of pan-experientialism).
However, we may question what physical states are part of human experience.
We do not usually think that, for instance, a mitochondrial function inside neu-
rons, or DNA, is part of the experience of the nervous system, because they do
not seem to be directly participating in the main function of the nervous system:
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thinking. They are not part of the causal picture of thought. Likewise, we do
not assume that the power supply is part of the computation in a computer.

This analogy might seem out of place, initially. If pan-experientialists are
right, experience is one of the basic features of the universe. It would then be all
around us, however, most of it would not be organized as an intelligent mecha-
nism, and therefore, correctly, we do not call them conscious. The claim that any
physical system yields experience anywhere, is the simplest possible explanation
of experience that is consistent with experiment, therefore it is a likely scientific
hypothesis. It does not require any special or strange posits, conscious experi-
ence would then require merely physical resources organized in the right way
so as to yield an intelligent functional mind. Consider my “evil alien” thought
experiment. If tonight, an evil alien arrived and during your sleep shuffled all the
connections in your brain randomly, would you still be intelligent? Very unlikely,
since the connection pattern determines your brain function. You would lose all
of your cognition, intelligence and memory. However, one is forced to accept
that even in that state, one would likely have an experience, an experience that
is probably meaningless and chaotic, but an experience nonetheless. Perhaps,
that is what a glob of plasma experiences. The evil alien thought experiment
supports the distinction between experience and consciousness. Many philoso-
phers mistakenly think that consciousness consists in experience. That, when we
understand the “mystery” of experience, we will understand consciousness. How-
ever, this is not the case. Experience is part of human-like consciousness, indeed,
however, consciousness also includes a number of high-level cognitive functions
such as reasoning, prediction, perception, awareness, self-reflection and so forth
[10, Section 4]. I suggest that it is a valid hypothesis that there are entities that
have experience without any recognizable mentality.

5 Neural Code vs. Neural States

Consider the hypothesis that experience is determined by particular neural codes.
If that is true, even the experience of two humans is very different, because it has
been shown that neural codes evolve in different ways [11]. One cannot simply
substitute the code from a human for the code in someone else’s brain, it will be
random to the second human. And if the hypothesis is true, it will be another
kind of experience, which basically means that the blue that I experience is
different from the blue that you experience, while some assume we have no way
of directly comparing them. Strange as that may sound, as it is based on sound
neuroscience research, it is a point of view we must take seriously.

Yet even if the experiences of two humans can be very different, they must be
sharing some basic fabric or property of experience. Where does that come from?
If experience is this complex time evolution of electro-chemical signals, then it is
in the shared nature of these electro-chemical signals and their processing that
provides the computational platform. Remember that a change in the neural
code (spike train) implies a lot of changes. First of all, the chemical transmission
across chemical synapses would change.Therefore, even a brain prosthesis device
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that simulates all the electrical signaling extremely accurately, might still miss
part of the experience, if the bio-chemical events that occur in the brain are part
of experience. Second, the electro-magnetic (EM) fields would change. Third, the
computation would change (since data changes), although the basic “firmware”
(genetic code) of the nervous system usually does not change.

To answer the question decisively, we must first encourage the neuroscientists
to attack the problem of human experience, and find the sufficient and necessary
conditions for experience to occur, or be transplanted from one person to the
other. They should also find to what extent chemical reactions or other physical
events are part of experience. It seems that chemical states may turn out to be
important, and if as some people hypothesize quantum phenomena play a role in
the brain, it may even be possible that the quantum descriptions may be relevant.
If, for instance, we discover that the distinctive properties of nervous system
experience crucially depend on quantum computations carried out at synapses
and inside neurons, to construct the same kind of experience you would need
similar physics and method of computation rather than a conventional electronic
computer (a hypothesis also suggested in [12]). There is evidence that biology
may exploit quantum computation though, i.e., recent experiments suggest that
quantum coherence plays a key role in photosynthesis [13].

On the other hand, we may consider the minimalist hypothesis that elec-
tronic motion patterns may be a crucial part of experience, due to the energy
and information they encompass, so perhaps electronic devices already contain
brain-like experience. Then, the precise geometry and connectivity of the elec-
tronic circuit would be significant. This is much different from Searle, since we
know that electrical signaling is a specific physical mechanism that plays a role
in neural processing, and we do not assume that electrons have uncomputable,
incomprehensible causal powers as Searle grants to biological stuff. A more in-
tuitive possibility is that electromagnetic (EM) fields generated in the brain
are the basis of experience, in which case the topology, amplitude, timing and
other properties of electrical signaling may be relevant, i.e., anything that would
change the EM field. EM theories of experience have been previously proposed,
e.g., [14].

6 Simulation and Transcoding Experience

At this point, the reader might be wondering if the subject were not simulation:
is the question like whether the simulation of rain is wet? In some respects,
it is, because obviously, the simulation of water on a digital computer is not
wet in the ordinary sense. Even a universal quantum computer [15] would not
produce any real wetness, and all properties of water such as wetness are wholly
composed of quantum mechanical properties – it is neither magic, nor an illusion.
We may reconsider the question of experience of a brain simulation. We have
a human brain A, a joyous lump of meat, and its digitized form B, running
on a digital computer. Will B’s experience be the same as A’s, or different, or
non-existent? Up to now, if we accept the simplest theory of experience (that
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it requires no special conditions to exist at all), then we conclude that B will
have some experience, but since the physical material is different, it will have a
different texture to it. Otherwise, an accurate simulation, by definition, stores the
same functional organization of cognitive constructs, like perception, memory,
prediction, reflexes, emotions without significant information loss, and since the
oft-dreaded panpsychism may be considered possible, they might give rise to an
experience somewhat similar to the human brain, yet the computer program B,
may be experiencing something else at the very lowest level. Simply because it
is running on some future nanoprocessor instead of the brain, the physical states
have become altogether different, yet their relative relationship, i.e., the logical
structure of experience, is preserved.

Let us try to present the idea more intuitively. The brain is some kind of an
analog/biological computer. A memorable analogy is the transfer of a 35mm film
to a digital format. Surely, many critics have held that the digital format will be
ultimately inferior, and indeed the medium and method of information storage is
altogether different but the digital medium has its affordances like being able to
backup and copy easily. In both formats, the “same information” is stored, yet
the medium varies – in reality, there is no abstract object as information, only
physical codes, thus “same information” just means bi-directional translatability
of codes. Likewise, B’s experience will have a different physical texture but its
organization can be similar, even if the code of the simulation program of B will
necessarily introduce significant physical difference – for instance neural signals
may be represented by a binary code rather than a temporal analog signal. Per-
haps, the atoms and thus, the fabric of B’s experience will be different altogether
as they are made up of the physical instances of computer code running on a
digital computer. As improbable as it may seem today, these simulated minds
will be made up of live computer codes, so it would be naive to expect that
their nature will be the same as ours. They are not human brains, they are bio-
information based artificial intelligences. In all likelihood, our experience would
necessarily involve a degree of unimaginable features for them, as they are forced
to simulate our physical make-up in their own computational architecture. This
brings a degree of relative dissimilarity. And other physical differences only am-
plify this difference. Assuming the above explanation, therefore, when they are
viewing the same scene, both A and B will claim to be experiencing the scene as
they always did, and they will additionally claim that no change has occurred
since the non-destructive uploading operation went successfully. This will be the
case, because the state of experience is best understood as a feature of short-
term memory, which has a distributed volatile memory architecture. There is
a complex electro-chemical state that is held in memory with some effort, by
making the same synapses repeat firing consistently, so that more or less the
same physical state is maintained. This is what must be happening when you
remember something, a neural state that is somewhat similar to when the event
happened should be invoked. Since in B, the fabric has changed, the memory
will be reenacted in a different fabric, and therefore B will have no memory of
what it used to feel like being A. Within the general framework of physicalism,
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we can claim that further significant changes will also influence B’s experience.
For instance, it will change execution to work on hardware with less communi-
cation latency or network topology. Or perhaps if the simulation is running on a
different kind of architecture (like a PC), then the physical relations may change
(such as time and geometry) and this may influence B’s experience further. We
can imagine this to be asking what happens when we simulate a complex 3-D
computer architecture on a 2-D chip. We must maintain, however, that strict
physicalism leads us to reject the idea that no mental changes happen when
significant physical changes happen. If that were possible, then we would have
to reject the idea that mental states are identical to physical states, which would
be dualism. Moreover, a precise answer seems to depend on a number of smaller
questions that we have little knowledge or certainty of. Some questions in this
vein may be framed as: Question 1: What is the right level of simulation for B
to be functionally equivalent to A? Question 2: How can the ontological contri-
bution of the medium to experience be quantified? Question 3: Does experience
crucially depend on any uncanny physics like quantum coherence?

6.1 General Physicalist Perspective

At this point, since we do not have conclusive scientific evidence, this is merely
guesswork, and I shall give conservative answers. Question 1 : If certain bio-
chemical interactions are essential for the functions of emotions and sensations
(like pleasure), then not simulating them adequately would result in a definite
loss of functional accuracy. B would not work the same way, behaviorally, as A.
This is true even if spike trains and changes in neural organization (plasticity)
are simulated accurately otherwise. It is also not known with certainty whether
we can simulate at a higher level, for instance via Artificial Neural Networks, that
have abstracted the physiological characteristics altogether and just use numbers
and arrows to represent A, or use mathematical abstractions to represent larger
circuits. A recent brain simulation work shows that this might be possible [6].
It is important to know these so that B does not lack some significant cogni-
tive functions of A, such as emotions. The right level of simulation seems to be
at the level of molecular interactions which would at least cover the differences
among various neurotransmitters, and which we can simulate on digital com-
puters (perhaps imprecisely, though). At least this would be necessary because
we know that, for instance, neurotransmitter levels and distribution influence
behavior. Thus, it would be prudent to be able to accurately simulate the neu-
rologically relevant biochemistry and dynamics of the brain, without necessarily
simulating genetics or cell operation. Question 2 : The most general characteriza-
tions may use information theory [16] or quantum information theory to quantify
the amount of experience a system provides, and dissimilarity with another. An
appropriate physical and informational framework must be chosen to answer
this question in a satisfactory manner. We can claim that ultimately low-level
physical states must be part of experience, because there is no good alternative.
The only alternative would be dualism, which is unacceptable to a physicalist.
For a general physicalist, accepting a strong form of physicalism (that every
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mental event/property/predicate is physical), it seems prudent to think that the
medium contributes to experience insofar as it influences computational states
relevant to cognition, most significantly short-term memory. Thus, physicalism
may force us to consider the hypothesis that physical details of both electrical
and chemical neural events would be significant. In other words, a good deal of
neurophysics could be included, there may be no simple answer as panexperien-
tialists hope. It is likely that the atoms of experience belong to a specific physical
kind, such as an EM field, or quantum superposition states, which may simplify
quantification. The correct theory would likely give a measure of complexity and
distinguish blue experience from green experience on that basis, reducing the
difference to fundamental physical distinctions. Question 3 : Some opponents of
AI, most notably Penrose, have held that consciousness is due to macroscopic
quantum phenomena (like laser) together with Hameroff [17], by which they try
to explain unity of experience. While on the other hand, many philosophers of
AI think that the unity is an illusion [18]. Yet, the illusion is something to ex-
plain, and it may well be that certain quantum interactions may be necessary
for experience to occur, much like superconductivity. This again seems to be
a scientific hypothesis, which can be tested. For a physicalist, thus, this is an
unsettled matter, open to future research.

6.2 Panexperientialist Perspective

An often underrated theory of experience is panpsychism, the view that all
matter has mental properties. It is falsely believed by some that panpsychism
is necessarily incompatible with physicalism. However, this is far from a settled
controversy. Strawson has recently claimed that physicalism entails panpsychism
[19]. More plausible is the view of pan-experientialism: that experience resides
in every physical system, however, not everything is a conscious mind, for that
requires cognition in addition. Panpsychism is also proposed as an admissible
philosophical interpretation of human-like AI experience in [20].The evidence
from psychedelic drugs and anesthesia imply that changing the brain chemistry
modulates experience. If the experience changes, what can this be attributed to?
Does the basic computation change, or are chemical/quantum interactions ac-
tually part of human experience? It seems that panexperientialism is indeed the
simplest theory of experience that is consistent with our observations, i.e., that
every physical system may have the potential for conscious experience. Assume
that the theory is right. Then, when we ask a physicist to quantify that, she may
want to measure the energy, or the amount of computation or communication,
or information content, or heat, whichever works the best. A general character-
ization of experience such that it would hold for any physical system, may be
defined precisely, and may be part of experiments. It would seem to me that
the best characterization then would use information theory, because experience
would not matter if it did not contain any information. For instance, an experi-
ence without any information could not contain any pictures or words. I suggest
that we use such methods to clarify these finer questions. Also, the slightly more
complex EM field theory has better empirical support (e.g., complexity of EM
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field rises with conscious thought, transcranial magnetic stimulation works), so
it may be considered more restricted and more probable than general panexperi-
entialism. Assuming the physicalist version of panexperientialism I may attempt
to refine the answers above. Question 1 : The first question is not dependent
on experience, it is rather a question of which processes must be simulated for
correct operation, so the answer does not change. Question 2 : The biological
medium seems to contribute at least as much as required for correct functional-
ity (i.e., corresponding to neural information processing and biochemical changes
precisely), and at most all the information as present in the biological biochem-
istry (i.e., precise cellular simulations), if we subscribe to panexperientialism.
Co-located physical events might be significant in addition to electrical signals.
According to the most general kind of panexperientialism, the cellular experi-
ence might simply constitute the low level texture of the collective experience
of neural cell assemblies. Information integration theory of qualia [16] is a sort
of panexperientialism. An EM field theory of experience suggests that only EM
fields have experience which is a restricted kind of panexperientialism. Likewise
with quantum computation hypothesis, which would imply that every varying
make of quantum computer may yield different subjective experience. Question
3 : Not necessarily. According to panexperientialism, it may be claimed to be
likely false, since it would constrain minds to uncanny physics. If, for instance,
quantum coherence is indeed prevalent in the brain and provides the experien-
tial states, then the panexperientialist could point out to the possibility of a
universal wave function (following the Many Worlds Interpretation). Another
possibility is the use of a general physical theory, such as relativity or string
theory to describe the body of experience.
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Abstract. Solomonoff induction is known to be universal, but incomputable. Its 
approximations, namely, the Minimum Description (or Message) Length 
(MDL) principles, are adopted in practice in the efficient, but non-universal 
form. Recent attempts to bridge this gap leaded to development of the Repre-
sentational MDL principle that originates from formal decomposition of the 
task of induction. In this paper, possible extension of the RMDL principle in the 
context of universal intelligence agents is considered, for which introduction of 
representations is shown to be an unavoidable meta-heuristic and a step toward 
efficient general intelligence. Hierarchical representations and model optimiza-
tion with the use of information-theoretic interpretation of the adaptive reson-
ance are also discussed. 

Keywords: Universal Agents, Kolmogorov Complexity, Minimum Description 
Length Principle, Representations.  

1 Introduction 

The idea of universal induction and prediction on the basis of algorithmic information 
theory was invented a long time ago [1]. In theory, it eliminates the fundamental 
problem of prior probabilities, incorrect solutions of which result in such negative 
practical effects as overlearning, overfitting, oversegmentation, and so on. It would be 
rather natural to try to develop some models of universal intelligence on this basis. 
However, the corresponding detailed models were published only relatively recently 
(e.g. [2]). Moreover, the theory of universal induction was not popular even in ma-
chine learning. The reason is quite obvious – it offers incomputable methods, which 
additionally require training sets of large sizes in order to make good predictions. 

Unsurprisingly, such more practical alternatives as the Minimum Description 
Length (MDL) or the Minimum Message Length (MML) principles became much 
more popular. These principles help developers to considerably improve performance 
of machine learning and perception methods, but still they neither completely solve 
the problem of prior probabilities nor allow for universal machine learning systems. 

Of course, the universal intelligence models inherit the same drawbacks as the uni-
versal prediction. Namely, computational intractability is even more considerable 
here. Optimality of the models is proven up to some constant slowdown factor that 
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can be very large. This slowdown can be eliminated via self-optimization [3], but its 
time for unbiased intelligence can also be very large. Consequently, most researchers 
consider universal models as possibly interesting, but pure abstract tools. 

At the same time, practical success of the MDL principle and its counterparts im-
plies that there is a way toward a realistic implementation of universal induction. 
However, there is still a very large gap to be bridged. Indeed, applications of the 
MDL principle rely on hand-crafted heuristic coding schemes invented by developers 
for each specific task. These schemes specify algorithmically incomplete model spac-
es with large inductive bias resulting only in weakly learnable systems. 

In order to bridge this gap, the notion of representation was recently formalized 
within the algorithmic information theory, and the Representational MDL (RMDL) 
principle was introduced [4]. This principle can be used to estimate quality of decom-
position of the task of model construction for some large data series into relatively 
independent subtasks. Residual mutual information between these subtasks can be 
taken into account by adaptive resonance models, which also have the information-
theoretic formalization [5]. 

In this paper, we consider application of the RMDL principle as an unavoidable 
meta-heuristic for the model of the universal algorithmic intelligence. Only one heu-
ristic is not enough to achieve efficient universal intelligence, but it makes this goal a 
little bit closer. 

2 Background 

The model of intelligence as some sort of search for the best chain of actions was the 
first one adopted in the AI field. It can be applied for solving any problem, but only in 
the case of known determined settings and unlimited computational resources. Uni-
versal Solomonoff induction/prediction affords an opportunity to extend this model 
on the cases of arbitrary (computable) unknown environments. However, the problem 
of computational resources remains and becomes more complicated. Moreover, un-
biased universal agent may need a lot of time to acquire necessary information about 
the world to become able to secure own survival even possessing infinite computa-
tional resources. Because speeding up the search for chains of actions can also be 
treated as learning, the induction problem should be considered in the first place. 

Solomonoff induction relies on the notion of algorithmic probability, which is cal-
culated for a binary string α as: 

 PU (α) = 2− l( p )

p:U( p )=α
 , (1) 

where U is some Universal Turing Machine (UTM), and p is its program with length 
l(p) that produces the string α being executed on the UTM U. 

Probabilities PU(α) are referred to as the universal prior distribution. Why are they 
universal? The basic answer to this question rests on the fact that any universal ma-
chine U can be emulated on another universal machine V by some program u: for any 
p, V(up)=U(p). Consequently, 
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 PU (α) = 2− l( p )

p:U( p )=α
 = 2 l( u ) 2− l( up )

p:V ( up )=α
 ≤ 2 l( u ) PV (α), (2) 

and similarly )(2)( )( α≤α U
vl

V PP . 

This implies that difference between the algorithmic probabilities of arbitrary 
string α on any two UTMs is not more than some multiplicative constant independent 
of α. Given enough data, likelihood will dominate over the difference in prior proba-
bilities, so the choice of the UTM seems to be not too crucial. 

However, the amount of necessary additional data can be extremely large in prac-
tice. One can still refer to the algorithmic probabilities as universal priors, because no 
other distribution can be better in arbitrary unknown environment. Universality of this 
distribution simply means that it is defined on the algorithmically complete model 
space (any algorithm has non-zero probability and can be learned), and models are 
naturally ordered by their complexity (it is impossible to specify such universal ma-
chine that reverts this order). 

Apparently, the universal agent based on the algorithmic probability (such as AIξ 
[2]) may require executing many actions to make history string long enough to neu-
tralize influence of the arbitrarily selected U. And no unbiased intelligence can per-
form better. 

However, we don’t want our universal agent to be absolutely unbiased. Quite the 
contrary, we do want it to be universal, but biased towards our world. In this context, 
dependence of the algorithmic probabilities on the choice of UTM appears to be very 
useful in order to put any prior information and to reduce necessary amount of train-
ing data. This idea was pointed out by different authors [6, 7]. It is also said [8] that 
the choice of UTM can affect the “relative intelligence of agents”. 

Unfortunately, no universal machine can eliminate necessity for exhaustive search 
for algorithms that produce the whole agent’s history. At the same time, the pragmatic 
MDL principle is applied to algorithmically incomplete model spaces specified by 
hand-crafted coding schemes, which allow for efficient non-exhaustive search proce-
dures. Of course, it is unacceptable to replace UTMs with Turing-incomplete ma-
chines as the basis of the universal intelligence. Can this intelligence apply the MDL 
principle in the same way as we do? 

3 Representational MDL Principle 

The minimum description length principle states that the best model of the given data 
source is the one which minimizes the sum of 

– the length, in bits, of the model description; 
– the length, in bits, of data encoded with the use of the model. 

In theory, this principle is based on the Kolmogorov (algorithmic) complexity KU(α) 
that is defined for some string α as: 

 ])(|)([min)( α==α pUplK
p

U . (3) 
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The MDL principle is derived from the Kolmogorov complexity if one divides the 
program p for UTM p=μδ into the algorithm itself (the regular component of the 
model) μ and its input data (the random component) δ: 

 

KU (α) = min
p

[ l (p) |U (p) = α] = min
μδ

[ l(μδ) |U (μδ ) = α] = min
μ

min
δ

[ l (μ) +

+l(δ) |U (μδ) = α] = min
μ

l(μ) + min
δ

[ l (δ) |U (μδ) = α][ ] = min
μ

l (μ) + KU (α | μ)[ ] .
 (4) 

Here, ])(|)([min)|( α=μδδ=μα
δ

UlKU  is the conditional Kolmogorov complexity 

of α given μ. Consequently, the equation 

 [ ])|()(minarg* μα+μ=μ
μ

Kl  (5) 

gives the best model via minimization of the model complexity l(μ) and the model 
“precision” K(α | μ)=l(δ), where δ describes deviations of the data α from the model μ. 
This equation becomes similar to the Bayesian rule, if one assumes –log2P(μ)=l(μ) 
and –log2P(α | μ)=K(α | μ). 

The MDL principle differs from the algorithmic probability in two aspects. The 
first one consists in selection of a single model. It can be useful in communications 
between intelligent agents or for reducing the amount of computations [9], but in 
general the MDL principle is a rough approximation of the algorithmic probability. 

The second aspect consists in adopting the two-part coding. In practice, it helps to 
separate regular models from noise. This separation can be considered as a useful 
heuristic, but it is somewhat arbitrary within the task of model selection. In any case, 
Kolmogorov complexity is also incomputable. Thus, we still need to bridge the gap 
between the theoretical MDL principle and its practical applications. This is done (to 
some extent) within the Representational MDL principle. 

The main idea here is that machine perception and machine learning methods are 
applied in practice to mass problems (sets of separate, individual problems of some 
classes). For example, any image analysis method is applied to different images inde-
pendently searching for separate image descriptions in a restricted model space. On 
the contrary, the universal intelligence agent enumerates algorithms producing the 
whole history string. Let this history consists of a number of substrings (e.g. images) 
α1α2…αn. If the agent tries to compute individual Kolmogorov complexities (or algo-
rithmic probabilities) of these strings, the result in the most cases will be poor: 

 KU (α i )
i=1

n

 >> KU (α1α2 ...αn ) , (6) 

because these substrings normally contain a lot of mutual information. This mutual 
information (let it be denoted by S) should be removed from descriptions of individual 
data strings, and should be considered as prior information in corresponding subtasks 
of analysis of individual substrings. This implies usage of the conditional Kolmogo-
rov complexities K(αi | S). Indeed, one can expect that 
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 KU (α1α2...αn ) ≈ min
S

l (S) + KU (α i | S)
i=1

n


 

 
 

 

 
 << KU (α i )

i=1

n

 . (7) 

Since S can be interpreted as an algorithm (some program for UTM), which produces 
any given data string from its description, the algorithm S precisely fits the verbal 
notion of representation formulated by David Marr [10]. The notion of representation 
is treated in the same way in the papers on AGI (e.g. “internal representation inter-
prets input reconstructing it” [11]). Therefore, the following more strict definition can 
be given [4]. 

Definition. The program S for UTM U is called representation of the collection of 

data strings (e.g. images) { }nαα=Α ,...,1 , if ∀α ∈ Α( ) ∃μ,δ ∈ 0,1{ }*( )U (Sμδ) = α . 

The string μδ is called description of α within the representation S. This description 
consists of the regular μ and the random δ components. 

Consequently, the RMDL principle states that 1) the best model of the data string 
within given representation is the model, for which the sum of the length of the model 
and the length of this data string described with the use of this model is minimal; 
2) the best representation of the collection of the data strings is the representation, for 
which the sum of the length of the representation and the summed length of the mi-
nimal descriptions of these data strings within the representation is minimal. 

When we consider any practical image analysis method, it uses some representa-
tion of images. This representation specifies an inductive bias similar to that specified 
by the choice of the UTM in algorithmic complexity or probability. However, the 
universal agent is based on the single UTM, while representations can differ for dif-
ferent sensor modalities or even for different elements of the same modality, they can 
be Turing-incomplete, and they can be learned and changed during lifetime. 

It is interesting to note that for any two UTMs U and V and for any representation 
S for U there exists the equivalent representation S' for V such that 
KU(α | S) = KV(α | S') for any α. Indeed, it is obvious for S'=uS, where u emulates U on 
V. Thus, the choice of UTM influences on the representation construction, but not on 
the model selection within equivalent representations. Thus, we will write KS(α) in-
stead of KU(α | S), and KS(α | μ) instead of KU(α | Sμ). 

It should be pointed out that the RMDL principle is not just an extension of the 
two-part coding to a “three-part” coding. Any three- (or more) part coding of an indi-
vidual string could be re-structured to the two-part coding scheme [9], but S and μ in 
the RMDL principle cannot be united, because S describes the problem class, while μ 
describes its instance. 

It is also interesting to note that the idea of deep learning architectures [12] arose 
from the fact that complexity of some models is exponentially larger within shallow 
representations than within deep representations. The RMDL principle allows for 
much more detailed analysis of the representation efficiency. 
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4 Hierarchical Representations and Adaptive Resonance 

Separate descriptions of substrings even within a good representation will still contain 
some mutual information (large-scale regularities in the initial string). Thus, if one 
has the string α divided into the substrings α1α2…αn, and the descriptions μiδi are in-
dependently constructed for each substring, it is natural to try to compress the string 
μ=μ1μ2…μn (deltas can be ignored on the next level of description since they are in-
terpreted as noise within the RMDL principle). This string can still be very long, so 
one would like to divide μ into larger substrings (or to group μi) and to describe these 
substrings within some higher-level representation. Resulting models (regular parts of 
descriptions) can be further compressed, and so on. 

Specific division of the string into substrings can be unknown a priori and can be 
considered as a part of a model. For example, borders of word and sentence segments 
in speech signals are not known. Images also should be segmented into some regions, 
which content can be described almost independently. For now, we can ignore the 
structure of these models and use only whole strings. 

That is, at first the model μ(1) is constructed for the string α within the representa-
tion S(1). Then, the model μ(2) is constructed for the string μ(1) within some higher-
level representation S(2), and so on up to some level of abstraction m: 

 )]|()([minarg )1(
)1( μα+μ=μ

μ S
Kl , 

 )]|()([minarg )()1(
)1( μμ+μ=μ +

μ

+ i

S

i
iKl . (8) 

The total description length (an approximation of Kolmogorov complexity) of the 
string α can be calculated as: 

 L
S(1) ,...,S( m) (α) = K

S(1) (α | μ (1)) + K
S( i ) (μ ( i ) | μ ( i+1) )

i=2

m−1

 + l(μ ( m)), (9) 

where )()|( )1()1()(
)(

++ δ=μμ iii

S
lK i . 

It can be seen that sequential construction (8) of models of higher levels of abstrac-
tion is not the same as minimization of the total description length (9). Indeed, one 
should search for the models on all levels of abstraction simultaneously in order to get 
the optimal result (9). However, such the exhaustive search is computationally expen-
sive. The sequential model construction is much more practical, but much less robust, 
because it is bottom-up and greedy. 

Here, one can adopt Grossberg Adaptive Resonance Theory. Some subsets of 
models should be considered on each level of abstraction, and models on different 
levels should support or suppress each other. Such models remain, for which reson-
ance is established. Qualitative expression of support values can be derived from the 
RMDL principle in the form of equation (9), so it can be used in the information-
theoretic formalization of the Adaptive Resonance Theory [5]. 
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Hierarchical decomposition of a problem into slightly dependent sub-problems, 
construction of their separate solutions, and adaptive correction of these solutions in 
accordance with the whole problem can be considered as almost universal meta-
heuristic. 

5 Adoption of the RMDL Principle in Universal Algorithmic 
Intelligence 

The opinion that representations should be incorporated into the models of general 
intelligence has been already stated [13, 14]. However, representations are usually 
implemented only in the form of prior information expressed in a special design of 
programming language. Besides insufficiency of strict quantitative analysis of repre-
sentation quality, the main restriction here is absence of decomposition of the model 
construction task. 

On the other hand, necessity of decomposition is also realized. In particular, impor-
tance of chunks and possibility to solve tasks only of small Kolmogorov complexity 
are noted [7, 15, 16]. The RMDL principle can strictly account for both these aspects. 

Consider the universal intelligent agent based on the algorithmic probability. We 
will use Hutter’s AIξ model for convenience in order to skip unnecessary detailed 
descriptions of less known models. The AIξ agent is intended to maximize the total 
reward choosing its actions [2]: 

 
<<

<< =

−

=
=

kk

k
kkkk xqyUq

pq
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YypxUpY
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)(:
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)(:
2maxmaxarg , (10) 

where y<k is the string of agent’s actions till the time moment k, and x<k is the string of 
sensory history (including reward signals); p are possible agent’s policies consistent 

with the history, and q are possible algorithmic models of the environment; pq
kmk

V  is 

the expected future reward summed in the [k, mk] time interval executing algorithms p 
and q on the UTM U. 

The formal notion of representation can be almost straightforwardly applied to the 
agent’s inputs x<k. Although the RMDL principle can be extended from Kolmogorov 
complexity to algorithmic probability, we will use its basic version for the sake of 
simplicity (differences between Kolmogorov complexity and algorithmic probability 
are discussed in our companion paper). If one uses only one best model qopt, the equa-
tion (10) can be rewritten: 

 )(minarg,maxmaxarg
)(:)(:

qlqVy
kk

opt

k
kkkk xqyUq

opt
pq

km
YypxUpY

k
<<<< ==

== , (11) 

To apply the RMDL principle, one should decompose qopt into some set of (nearly) 
independent models qi conditioned by some representation S for the segmented histo-
ry 

nn mmmmk xxx :1:1 121
... ++< −

= , where m1=0 and mn=k: 
1:1)(

++< =
ii mmki xySqU  (however, it 

should be noted that this form of decomposition/segmentation is not universal). 
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In this case, qi can be sought independently. If l(q)≈l(S)+l(q1)+…+l(qn), the com-

plexity of the full task will be ∏ )()( 22 iqlSl , while the complexity of the decomposed 

task will be  )()( 22 iqlSl  that is much smaller. One can also divide qi into the model 

μi and noise δi further simplifying the search problem. However, in order to calculate 
pq

kmk
V  it is necessary to predict future values 

kmkx :  of the input. This is impossible if 

induction is aborted after construction of the set of decomposed model {qi}. If qi are 
really independent, they are unpredictable. However, this is not the case in reality. 
Thus, one should construct a higher level model, which produces the sequence q1:n, 
and extrapolates it. A number of intermediate levels of the representation can be in-
troduced, and the hierarchical model can be optimized with help of adaptive reson-
ance as it was described in the previous section. 

Another difference from the pure RMDL principle here is that the environment 
model q takes agents actions y<k as input. Should the whole history of actions be taken 
for each partial model qi? Probably, no. Here, one can think about representations for 
action history. 

It is attractive to try to decompose the program p in the same way as it was done 
for the program q. However, there is a huge difference between these programs. The 
program q is used as the environment model in predicting the inputs x. However, the 
agent doesn’t need to predict own actions, since they can be chosen directly: 
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YY
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This form of search is even less computationally expensive, because action chains 

kmkY :  have bounded complexity, while programs p can have arbitrarily large com-

plexity. Thus, there is no sense to enumerate all programs p and to decompose them. 
However, search in the space of all possible action chains is still too computationally 
expensive. It is clear that any simplification of this exhaustive search should be done 
very carefully in order to avoid substantial limitations of the agent’s universality. 

The notion of representation can still be useful here. One can imagine some gene-
ralized actions, which can be introduced as some combinations of elementary actions, 
or even as small programs pi. These generalized actions will be useful only in the 
case, when the total number of chains of these actions is not larger than the total num-
ber of chains of elementary actions (this condition can be expressed also in probabilis-
tic terms for stochastic search). Thus, variety of generalized actions will be smaller, 
and their introduction can be formally grounded only on the base of a criterion that 
takes computational costs of the search strategy into account. Such criterion is now 
absent, and possibility to mathematically introduce representations for actions can be 
proposed only as an idea. 

It is interesting to note that if generalized actions are enumerated, one can consider 
models of the environment that accept chains of these generalized actions as input:  
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Indeed, humans rarely predict explicit reaction of the environment on their each very 
elementary action. At the same time, generalized actions pi can also accept genera-
lized input strings qi. Indeed, we say “take the apple” or “open the door”. That is, 
representations for sensory data (including generalized rewards) and actions are inter-
connected. Search in the space of generalized entities can be greatly simplified (but 
representations should be still constructed using the Turing-complete space). This 
approach can be used to gradually introduce advanced representations as priors for 
efficient generally intelligent agents starting from low-level representations for raw 
data and elementary actions and finishing with knowledge representations. 

6 Conclusions 

The notion of representation is extremely useful for almost all cognitive functions. 
However, it is rarely defined strictly enough. The necessary formal definition was 
recently given jointly with the Representational MDL principle, which is derived 
from decomposition of Kolmogorov complexity. In this paper, we discussed possibili-
ty to extend the model of universal algorithmic intelligence (namely AIξ). We showed 
that this principle can be rather naturally incorporated into this model making it 
somewhat closer to efficient artificial general intelligence. Information-theoretic crite-
ria of quality of representations and models can be used for consequently constructing 
more optimal methods of machine perception and learning, including multi-level sys-
tems with adaptive resonance. 

However, the RMDL principle only partially solves the problem of quality of repre-
sentations in the models of universal algorithmic intelligence. It was initially introduced 
for such tasks, which decomposition is defined a priori (e.g. a computer vision system 
should analyze images independently), and representations are needed in order to de-
crease negative effects of this decomposition. However, there is no given decomposition 
of the task of prediction in the case of the universal agent. Decomposition is necessary 
for reducing computational complexity, but it leads to increase of algorithmic (Kolmogo-
rov) complexity of environment models. Thus, representations trade computational  
complexity for algorithmic complexity. Apparently, the RMDL principle based on Kol-
mogorov complexity is only a particular case of constant computational complexity. In 
future, generalized RMDL principle should be developed based on Levin complexity 
(e.g. defined in [17]). Representations for Levin complexity can help to strictly account 
for the bias in complexity of models, which are used many times in descriptions of dif-
ferent data segments or executed many time during prediction and sequential decision 
making. Another open problem consists in formalization of representations not only for 
sensory input, but also for actions. We believe that such formalization can help to devel-
op a theory of efficient self-optimization.  
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Abstract. Kolmogorov complexity and algorithmic probability are compared in 
the context of the universal algorithmic intelligence. Accuracy of time series 
prediction based on single best model and on averaging over multiple models is 
estimated. Connection between inductive behavior and multi-model prediction 
is established. Uncertainty as a heuristic for reducing the number of used mod-
els without losses of universality is discussed. The conclusion is made that plu-
rality of models is the essential feature of artificial general intelligence, and this 
feature should not be removed without necessity. 

Keywords: Universal Agents, Kolmogorov Complexity, Algorithmic Probabili-
ty, Prediction, Inductive Behavior, Uncertainty. 

1 Introduction 

Solomonoff Algorithmic Probability (ALP) theory of prediction is known to be ideal 
and universal. Unsurprisingly, it became the main theoretical basis for the models of 
artificial general intelligence [1, 2]. However, computing algorithmic probabilities im-
plies summation over all possible algorithmic models (programs). Naturally, the  
two-part Minimum Message Length (MML) or Minimum Description Length (MDL) 
principles are adopted instead of ALP while developing practically applicable methods 
of machine perception and learning. These principles also rely on the algorithmic infor-
mation theory (namely, on Kolmogorov complexity), but they give criteria for selecting 
single best models in inductive inference tasks. The best model is assumed to be the 
model that minimizes the sum of the complexity of the model, and the length of the data 
encoded given this model. These principles are frequently called information-theoretic 
formalizations of Ockham’s Razor, which simplified formulation states that plurality 
should not be assumed without necessity. The MDL and MML principles are usually 
treated as the practical approximations of ALP [3]. Even those authors, who utilize ALP 
in the models of universal agents, refer to Ockham’s Razor [1] mixing ALP and MDL 
in spite of the fact that ALP implies plurality of models. 

Besides the practical arguments some authors also claim that the MML (or MDL) 
principle is much more methodologically appropriate for intelligent agents. In particu-
lar, importance of the two-part coding (lossy compression) is pointed out in [4] in the 
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context of multi-agent systems (social environments). Indeed, one can agree that 
agents should exchange only the first parts of MML messages (models or regularities) 
with each other, because there is no need to communicate noise. Apparently, social 
communications are better described by the MML principle than by the ALP theory of 
prediction. Even optimal prediction methods should really be based on ALP, it is said 
that ALP gives better results than MML or MDL if many the top models have similar 
quality [2, 4, 5]. Even 10 bit difference between models makes their probabilities 
incomparable. It can be seen that there are serious reasons to give up on ALP. 

On the other hand, there is also the opinion that human brain prefers to describe 
observations in many different ways, and it is unlikely that some single model of the 
world is used. Such redundancy of descriptions contradicts Ockham’s Razor [6]. It is 
also interesting to note that different compositions and mixtures of experts became 
quite popular in the field of pattern recognition. Their efficiency appeared to be 
somewhat surprising, because mixture models are very complex and should be sub-
jected to overlearning as it follows from the MDL (MML) principle. In our opinion, 
these issues can be resolved within ALP. 

In this paper, we analyze differences between algorithmic probability and Kolmo-
gorov complexity in the context of the models of universal algorithmic intelligent 
agents. We argue that ALP not only ensures optimal prediction, but also allows for 
some essential features of intelligent behavior. In particular, inductive (or knowledge-
seeking) behavior can naturally emerge only from consideration of many alternative 
models. Of course, the mentioned computational and communicational restrictions are 
valid, but it doesn’t mean that one should simply reduce the number of models taken 
into account. We believe that models should not be just thrown out, but they should 
be united into some sets leading to uncertain models. That is, the notion of uncertainty 
absent in the resource-unlimited universal algorithmic intelligent agents originates 
from the necessity to account for many models while reasoning and communicating 
with limited resources and time. 

These conclusions are illustrated with some particular models of time series fore-
casting and intelligent agent behavior in Markov environment. 

2 Comparison of Prediction Quality 

Consider the notion of algorithmic probability. The algorithmic probability PALP(x) of 
some string x is defined as: 

 PALP (x) = 2− l( q)

q:U( q)=x

 , (1) 

where U is the Universal Turing Machine, each q is its program, which produces x 
and has the length l(q). 

At the same time, the Kolmogorov complexity K(x) is defined as: 

 )(min)(
)(:

qlxK
xqUq =

= . (2) 
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Formally, it is obvious that –log2PALP(x)<K(x). However, Kolmogorov complexity 
implies that there is the smallest program, which can be used as the most compact 
description of x and can be sent instead of the original data, while ALP doesn’t pro-
vide us with an effective compression scheme. Thus, Kolmogorov complexity is the 
more natural basis to introduce the two-part coding separating models from noise: 

 ))|()((min))()((min)(min)(
)(:)(:

μ+μ=δ+μ==
μ=μδμδ=

xKlllqlxK
xUxqUq

, (3) 

where μ is interpreted as the model, and δ is interpreted as noise. 
As the result, one can choose the best model μ yielding the minimum description 

length. This separation can also be performed in the case of ALP, but its meaning will 
be more vague. Actually, it is somewhat heuristic also in the case of Kolmogorov 
complexity, but it appears to be rather natural in each specific case. 

Now, let’s consider separately the task of prediction. Solution of this task can be 
based on the conditional algorithmic probability and the conditional algorithmic com-
plexity defined as: 

 PALP (x | y) = 2− l(q)

q:U( qy)=x

 , )(min)|(
)(:

qlyxK
xqyUq =

= . (4) 

Of course, algorithmically complete solutions are now unachievable both for Kolmo-
gorov complexity and ALP. Thus, we compare them on the restricted subset of algo-
rithms specified by the dynamical artificial neural networks (DANNs). Each DANN 
can be described by the corresponding system of differential equations: 

 ′ x i (t) = dxi (t)

dt
= f w ji x j (t)

j=1

M


 

 
  

 

 
  , (5) 

where xi are activities of M neurons, wji are connection weights constituting a matrix 
W, and f is an activation function. 

Starting from some initial values xi(0), activities xi(t) will evolve producing some 
functions as an output. One interesting application is the time series forecasting, in 
which the data D={y(t1),…,y(tn)} is given, where the values y(ti)=(y1(ti),…, yN(ti)) of 
the N-dimensional vector are observed at some moments of time ti ∈[0, Tmax]. The 
task is to predict values y(t) for t >Tmax. 

Such connection weights wij and such initial activities xi(0) should be found that the 
activities xi(t) are most precisely correspond to the values yi(t). Naïve approach leads 
to minimization of the mean-square error: 

 E2 = 1
n

y j (ti ) − x j (t i )[ ]2

j=1

N


i=1

n

 . (6) 

The number of neurons M should be not less than the dimension N of the vector y, but 
it can be larger. In this case, additional neurons can be treated as hidden dynamic 
variables. They are not included into the MSE criterion (6). Apparently, increase of 
the number of additional neurons will result in decrease of the MSE as well as in 
overfitting. In accordance with the MDL principle, the model complexity should also 



 Differences between Kolmogorov Complexity and Solomonoff Probability 255 

 

be taken into account in addition to the description length of the data encoded within 
the model that can be estimated as nNlog2E (accurate to a constant). Here, one can see 
benefits of the two-part coding. 

The ANN model description includes information about the number of neurons, es-
tablished connections, their weights, and initial values of activity. Total MDL crite-

rion for the ANN with M neurons and K connections requiring n2log  bits per 

parameter can be roughly estimated as: 

 .log)(5.0loglogloglog 22222 2 nKMCKMEnNL K

M
+++++=  (7) 

To find the best ANN, one should consider and optimize ANNs with different number 
of neurons and connections. In order to reduce computational complexity of this 
process, we utilized an iterative scheme, in which new neurons are consequently add-
ed and redundant connections are removed if these operations result in reduction of 
the description length criterion (7). We considered and implemented a combination of 
several optimization techniques (stochastic gradient descent, genetic algorithms, and 
simulated annealing) for optimizing ANNs with fixed architecture. 

While searching for the solution with the minimum description length, many other 
ANNs are generated. In any case, extrapolations of the given time series are calcu-
lated using these ANNs. Why don’t we try computing average result of prediction for 
all these ANNs taken with weights proportional to 2–L (actually, ALP implies averag-
ing over probabilities, but here averaging over predictions also works)? We will refer 
to such the plural model as “P-model” (P stands for algorithmic probability). The best 
found model will be referred to as “K-model” (K stands for Kolmogorov complexity). 
Let’s compare prediction precision for K-models and P-models on some specific data. 

Consider the well-known Wolf annual sunspot time series (see [7] as an example 
of application of the MDL-based ANN learning). We used the Wolf numbers till 1979 
as the training sample. The search algorithm was launched for several times. Table 1 
shows the result for 3 best runs (K-models and P-models assigned the same indices 
were obtained during the same runs). MSEint stands for the MSE on the training sam-
ple, MSE9 and MSE22 stand for the prediction MSE for 1980–1988 years and 1980–
2001 years correspondingly. 

Table 1. Comparison of prediction precision for some P-models and K-models 

Model L or –log2P MSEint MSE9 MSE22 
K-model #1 798.9 398 900 4010 
P-model #1 790.6 382 795 3078 
K-model #2 799.0 388 904 3359 
P-model #2 789.6 369 815 2926 
K-model #3 796.7 382 907 3956 
P-model #3 789.4 383 875 3705 

 
It can be seen that prediction precision of the K-models is usually worse than of the 

corresponding P-models, although the optimization procedure wasn’t specially de-
signed to search for alternative models with close weights. Actually, corresponding 
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K- and P-models produce functions with similar shape meaning that primarily the best 
K-model and some nearby models influence the P-models. It is interesting to merge 
different P-models (in order to merge two P-models, one should simple calculate av-
eraged prediction using corresponding weights, and sum probabilities of these mod-
els). One can consider even P-models belonging to different model spaces. 

To check this idea the P-model #4 was found using another activation function 
representing another subset of algorithms. This model has –log2P = 784.5; 
MSEint=204; MSE9=834; MSE22=529. Table 2 shows the prediction precision of the 
consequently merged P-models. 

Table 2. MSE values for the merged P-models 

Model MSEint MSE9 MSE22 
P-model #4 204 834 529 
P-model #4+1 204 820 521 
P-model #4+1+2 204 796 510 
P-model #4+1+2+3 205 769 506 

 
In this case, the final P-model showed the best prediction accuracy. Examples of 

the K- and P-model predictions are given on Fig. 1. 

 

Fig. 1. Initial data (dotted curves) and reconstructed time series with the K-model #1 (left) and 
the merged P-model (right) 

More interesting (but less reproducible) results can be obtained on such non-
stationary data as financial time series. An example of such time series extrapolated 
with three best P-models (found on separate runs of the search algorithm) and the 
merged P-model are shown on Fig. 2. This is the case, when several the top models 
have similar weights, but give absolutely different predictions. 50 points ahead fore-
casting MSE for these models is given in Table 3. 

Table 3. MSE values for the P-models 

Model #1 #2 #3 #1+#2 #1+#2+#3 
MSEint 0.0263 0.0258 0.0270 0.0250 0.0251 
MSE50 0.157 0.264 0.097 0.146 0.067 
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Fig. 2. Three initial P-models and the merged P-model (bottom right) 

The shown prediction quality increase for the merged P-models is rather frequent. 
Of course, the prediction quality of a merged model is not always better than the qual-
ity of both models before merging. Sometimes it lies between them meaning that the 
quality of the merged model is worse than the quality of one of the models. However, 
the final P-model is almost always better than the best K-model. This is why different 
“mixtures of experts” in machine learning appeared to be so useful. 

It should be pointed out that this increase of prediction quality is achieved almost 
without additional computation costs. Also, two-part coding was rather naturally used 
with the plural model prediction derived from ALP. At the same time, further usage 
of the plural models can be indeed computationally costly, e.g. in sequential decision 
making or in multi-agent communications. 

3 Inductive Behavior 

The disputable question is whether reinforcement learning is the appropriate frame-
work for generally intelligent agents or not. Will the universal agent, which simply 
tries to maximize rewards received from the environment, show all types of behavior 
typical for humans? Here, we don’t try to give a complete answer to this question. 
Instead, we focus on a specific behavior, namely the inductive behavior (knowledge 
seeking or active learning). 

Different authors have considered necessity to extend (or even replace) the reward 
based utility function with the term expressing increase of agent’s knowledge about 
environment. Then, the agent will be curious and will try to obtain new information. 
The reinforcement-learning agent has no direct motivation for inductive behavior. 

Authors of [8] even claim that if this agent is allowed to arbitrarily modify its own 
inputs, it will do so. They call this situation the “delusion box”. That is, the agent will 
prefer to live in illusion maximizing his utility function without obtaining information 
about the real world. However, the reinforcement-learning agent will choose to use 
the delusion box only if it will be able to predict that this choice will increase integral 
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future reward taking into account predicted lifespan. If the agent is based on ALP, 
there will be models with non-zero probability predicting shorter lifespan in the case 
of the delusion box. Thus, the expected rewards will not be the highest possible, and 
the choice will depend on circumstances. For example, if the agent expects near 
death, it may try to use the delusion box. 

On the other hand, if the agent uses only the best model for prediction, it will im-
mediately use the delusion box (and ignore the real world), when probability of the 
lifespan decrease is lower. Consequently, one may suggest that inductive behavior in 
general can be derived from sequential decision making with ALP-based prediction. 
Indeed, if the agent refines predictions on each step of sequential decision making 
depending on the hypothesized answer of the environment, it will “automatically” 
account for the benefits of knowledge acquisition. Of course, one can also agree that 
“additional” explicit bias towards exploring previously unknown environmental regu-
larities can be a useful heuristic [9]. 

Difference in the agent’s behavior depending on usage of a single or multiple mod-
els can be experimentally checked on the example of the simplest Markov environ-
ment. Let environment be described by some probability distribution P(x'|x, y), where 
x is the previous state of the environment, x' is the current state, and y is the last 
agent’s action. We can even consider fully observable environments. 

The agent tries to estimate the model of the world in the form of the distribution 
P*(x'|x, y) on the base of the history xy≤t. Obviously, the best model will be the model 
with probabilities simply equal to the frequencies of the corresponding transitions 
estimated on the base of the history, if complexities of different distributions P are 
assumed to be equal. When the history is empty, all the models have the same quality. 
Arbitrary model can be chosen depending on implementation details. 

When the agent performed the action y at the state x for the first time, and this ac-
tion leaded to the state x', the best model would contain P*(x'|x, y)=1. Imagine that the 
state x appeared twice, and the agent performed actions y1 and y2 with the results x'1 
and x'2. Obviously, the agent will choose the action that previously leaded to the best 
outcome. Situation will be more complex for sequential decision making, but the 
general result will be the same – the agent will choose the action that simply gave the 
best reinforcement in the past. Of course, the next try of this action in the given situa-
tion can lead to different states, and statistics for this action will be enriched. The 
agent can reject to use the action that seemed to be good on the first try, but appeared 
to be worse later. But this agent will not try such action that leaded to bad states un-
less all the other actions would be even worse. Thus, one can expect that the “single-
model” agent will accumulate very inhomogeneous statistics for different actions. 

On the contrary, for the Solomonoff prediction any distribution P*(x'|x, y) can be 
considered as a possible environment model for any history with some probability 
that can be easily estimated. Difference in probabilities will increase as the history 
length increases, but it will be small for short histories. Because prediction is based on 
averaging over all models, all expected reinforcements will be very similar at first. If 
some action was performed one or few times, its quality will be near average value, 
and preferences in actions will change very frequently until statistics for almost all of 
them are gathered. 
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Knowledge-seeking is “automatically” modeled in sequential decision making with 
the use of multi-model prediction. Indeed, some “unknown” action can have good 
outcome. In this case, this action will be repeated many times, and summed future 
outcome will be increased. The action can have bad outcome. In this case, this action 
will not be repeated many times, and summed future outcome will decrease only 
slightly. Because these both possibilities for “unknown” action have similar probabili-
ties, it will be better in average to try such action (if there is no well-known action 
that has reliable outcome better than some average value). It can be seen that this 
agent will show knowledge-seeking behavior, when it is not “satisfied”. Of course, it 
may be useful to boost knowledge-seeking behavior (or even make it the main 
“drive”) by modifying the value function, but our goal was to show that this form of 
behavior naturally appears due to the multiplicity of environment models. 

4 Uncertainty 

As it was shown above, it is inadmissible to use the only one best model in AGI. Not 
only is multi-model prediction more accurate, but also it allows for such forms of 
behavior, which are essential for universal intelligence. At the same time, usage of too 
many models is practically impossible in sequential decision making and communica-
tions. Is it possible to reduce computational costs of multi-model approach without 
loosing its important features? We suppose that the number of models should be re-
duced not simply by eliminating worse models, but by uniting them into some sets. 

Let’s divide the whole set of models Q={q: U(q)=x} into finite number of disjoint 
subsets Qi. Thus, one can write 

 PALP (x) = 2− l( q)

q∈Q

 = 2− l( q)

q∈Qi


Qi

 . (8) 

We want to deal with subsets of models without addressing individual models in order 
to reduce complexity of their further usage. The simplest way is to use the best model 
within a subset instead of all models in this subset: 

 PALP (x) = 2− l( q)

q∈Qi


Qi

 ≥ 2
− min
q∈Qi

l( q)

Qi

 ≥ 2
− min

q∈Q
l( q)

= 2− K ( x) . (9) 

This will be better than usage of the single best model, but still is not good enough. 
One needs not only to use one representative model instead some subset, but to de-
scribe the structure of this subset in more details. 

To illustrate this idea, we analyze the simplest non-universal, but useful way of 
enriching descriptions of model subsets. Consider the subset, in which all models 
have the structure qj=μπjδj, where μ is their common part (general model), πj are the 
strings of particular parameter values, δj are the strings of deviations of j-th model μπj 
from the data x. One can write 

 2− l( q)

q∈Qi

 = 2− l(μ )− l(π j )− l(δ j )

π jδ j |μπ jδ j∈Qi

 = 2− l(μ ) 2− l(π j )− l(δ j )

π jδ j

 . (10) 
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Because all δj are interpreted as noise, it is not necessary to use them in prediction and 
decision-making. We also don’t want to account for all possible values of πj, but we 
are interested in the distribution: 

 
)()(

, 2)( jj ll
jxP

δ−π−
μ =π . (11) 

If the set of parameters πj constitute some metric space, one can estimate some statis-
tical moments of this distribution. In the other case, assuming independence of distri-
butions of each sign in πj one can directly estimate these distributions. As the result, it 
is possible to represent the distribution Pμ,x(πj) compactly. Such compact representa-
tion will contain information about uncertainty in the parameter values π of some best 
model from the subset Qi. 

Usage of such uncertain models allows estimating uncertainty in prediction caused 
by the simple fact that different models in the set Qi produce different outputs 
U(μ{πδ})={x} (of course, the set of predictions {x} cannot be known precisely unless 
all models are explicitly computed). More complex type of uncertainty can be consi-
dered, when one tries to reduce the number of models further uniting subsets Qi con-
taining models with different structures. 

Uncertainty in the predicted x propagates through sequential decision making and 
becomes much larger in future. Obviously, if the agent has such a history that leads to 
models with high uncertainty, it will not be possible to guarantee high future rewards. 
Thus, actions aimed to decrease uncertainty will allow increasing future rewards in 
average. Thus, they can be chosen even in the case, when few models are used in 
sequential decision making, but uncertainty is taken into account. 

In the case of simplest Markov environment, introduction of uncertainty leads to 
bias towards more uniform distribution P*(x'|x, y). Unsurprisingly, experiments show 
that more diverse actions are tried in presence of this bias, while the agent prefers 
exploitation in absence of this bias. The biased agent gains slightly smaller rewards at 
the beginning, but it has some chances to outperform unbiased single-model agent on 
long time intervals. Correct introduction of uncertainty as a heuristic in adoption of 
ALP can hopefully give optimal solution of the “exploration vs. exploitation” prob-
lem. This possibility has not been considered within algorithmic information theory. 

It can be seen that uncertainty should be introduced as a heuristic that helps to 
greatly reduce computational costs of ALP without violating inductive behavior. It is 
frequently said that uncertainty and probability are different categories. However, 
theories of uncertainty usually rely on the combinatorial basis. However, if we follow 
Kolmogorov and Solomonoff, the notion of probability should be inferred from the 
notion of information, which should also have pure combinatorial (algorithmic) basis. 
Solomonoff induction doesn’t include the notion of uncertainty, but it naturally ap-
pears in attempt to reduce the number of used models. Thus, the complete theory of 
uncertainty should be built on the base of the algorithmic information theory. Unfor-
tunately, detailed analysis of this problem goes beyond the scope of the paper. 
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5 Conclusions 

Some methodological aspects of usage of Kolmogorov complexity and algorithmic 
probability in universal intelligent agents were discussed. At first, the task of time 
series forecasting was considered. The dynamic artificial neural networks were used 
as a subset of algorithmic models. Accuracy of prediction given by the best ANN 
selected on the base of the MDL criterion was compared with accuracy of prediction 
derived from ALP (weighted sum of predictions made by all the models constructed 
during the search was calculated). MSE of the latter kind of prediction appeared to be 
stably lower. Decrease of MSE varied from 10% to 50% depending on data. 

Then, the problem of information-seeking behavior was considered. It was shown 
that such inductive behavior naturally appears in the ALP-based agent, while the 
“single-model” agent will have a strong bias towards exploitation of actions with 
well-known good outcome. In order to reduce complexity of usage of multiple models 
in decision making and communications, subsets of models is proposed to replace 
with some “uncertain” models. A theory of uncertainty as one of meta-heuristics 
meant for considerable reduction of computational complexity of ALP without losses 
of universality is to be developed in future. 
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Abstract. This article describes the development of reinforcement learning 
within the Sigma graphical cognitive architecture.  Reinforcement learning has 
been deconstructed in terms of the interactions among more basic mechanisms 
and knowledge in Sigma, making it a derived capability rather than a de novo 
mechanism.  Basic reinforcement learning – both model-based and model-free – 
are demonstrated, along with the intertwining of model learning. 
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1 Introduction 

Reinforcement learning (RL) enables agents to learn effective policies for task 
performance based on rewards received over a sequence of trials [1].  It is a key 
concept in artificial general intelligence (AGI) – even being at the core of a proposal 
for a universal artificial intelligence [2] – plays an important role in intelligent 
robotics, and is increasingly important in conventional cognitive architectures [3-4].  
This article describes the simple manner in which RL can be implemented within the 
Sigma (Σ) cognitive architecture [5], with its grounding in factor graphs [6] – a 
general form of graphical model [7] – and piecewise linear functions [8]. 

The goal of this effort has not been to implement from scratch a preselected RL 
algorithm within Sigma, nor even necessarily, at least at first, to yield an RL 
capability that is competitive with today’s best, but to: (1) explore whether some 
variant of RL could emerge from how Sigma already works, and (2) analyze the 
ensuing results to see what they can tell us about both Sigma and RL.  This approach 
to RL is driven by a key desideratum that is guiding Sigma’s development towards 
general intelligence – functional elegance, which seeks to combine the broad range of 
capabilities implicit in general intelligence with simplicity and theoretical elegance.  
The ultimate aim is for something like a set of cognitive Newton’s laws that yield the 
required diversity of behavior from interactions among a small set of very  
general primitives. AIXI [2] can be viewed as an attempt at an extreme example of 
functional elegance. The approach in Sigma is less ambitious, but still strongly in this 
direction. 
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This article explains how model-based RL can be engendered within Sigma from 
the interactions among: (1) a more primitive gradient-descent learning mechanism 
that is capable, among other things, of learning to predict; and (2) schematic 
knowledge that determines what predictions are to be learned, what their initial values 
should be, and how to propagate such values backwards over time.  This effectively 
deconstructs a form of model-based RL in terms of preexisting, more basic, 
capabilities already in Sigma, plus knowledge.  In contrast, no means was found 
within Sigma’s existing capabilities of producing either model-free RL or the 
intertwining of model learning with model-based RL.  However, both do become 
possible after a minimal further addition to the architecture.  This overall approach, of 
deconstructing capabilities in terms of existing architectural mechanisms when 
possible, and of minimal changes to the architecture only when necessary, directly 
supports functional elegance.  It also reflects both a form of Occam’s razor and an 
adherence to Allen Newell’s exhortation to “listen to the architecture” [9]. 

2 Reinforcement Learning (RL) 

The central concept in reinforcement learning is that of (logically) propagating 
rewards received later in performance backwards in time to assist in learning the 
expected utility of earlier actions (for use in later trials).  Ultimately the learning is 
reflected in Q values – Q(s, a) – which capture the expected (discounted) cumulative 
reward of choosing action a in state s, and which thus aid in selecting appropriate 
actions.  The particular approach taken in Sigma provides an on-policy learning 
algorithm, which learns from the action taken rather than from the best action that 
could have been taken, making it more akin to SARSA [10] than to Q-learning [11].  
The learning update in SARSA is defined as Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1) 
- Q(st, at)], where α is the learning rate and γ is the discount factor for future rewards.  

Consider, for example, a one-dimensional, discrete, grid task in which the agent 
may start at any location and is to reach a goal location via left and right actions 
(Fig. 1).  With no initial information concerning which operator to choose, behavior 
begins with random choices.  However, once the goal location is reached, a reward 
will be received, and learning can begin.  Over time, and future experiences, this 
information propagates backwards across actions to yield Q values that predict higher 
discounted cumulative rewards for choosing right when the agent is to the left of 
the goal and left when it is to the right of the goal.  This example task will be used 
throughout the remainder of this article. 

 

 

Fig. 1. 1D grid task with example goal (4), starting location (2), and actions (left and 
right). The two extreme locations act as buffers to avoid end effects. 
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3 The Sigma Architecture 

Sigma has been under development in some form since 2008, although until now it 
lacked a name due to an ambivalence concerning whether what was being developed 
was a specific graphical architecture or a general approach, based on graphical 
models, for exploring the space of architectures.  Although there remains room to 
explore a broader range of architectures, it has become increasingly clear that a 
specific architecture was being built, which now has a proper name: Sigma.  

In general, graphical models provide an efficient means of computing with 
complex multivariate functions by decomposing them into products of simpler 
functions and then mapping them onto graphs.  From these graphs, the marginals of 
the individual variables – i.e., the function’s values when all other variables are 
summarized out – can be computed efficiently, as can the function’s global mode.  
Bayesian networks and Markov random fields are common forms of graphical 
models, and some forms of neural networks map directly onto them.  Factor graphs 
are a variant of graphical models that map decompositions of arbitrary multivariate 
functions onto undirected bipartite graphs of variable and factor nodes.  Variables 
map onto variable nodes while decomposed factors map onto factor nodes.  
Undirected edges are defined between each factor node and its variables.  Fig. 2 
shows a factor graph for a simple multivariate algebraic function, along with its 
solution via the summary product algorithm [6], as is used in Sigma. 

Given evidence about a 
subset of the variables, 
messages are passed along the 
links and processed at the nodes 
to yield new messages.  Each 
message along a link provides 
information about the 
distribution of values for the 
link’s variable.  Incoming 
messages at variable nodes are 
combined via pointwise product 
– like an inner product without 
the final summation – to yield 
outgoing messages, but with 
each outgoing message omitting 
from its product the incoming 
message on its link.  Similar 
pointwise products occur at 
factor nodes, but with the factor’s function also included in the product; and then all 
variables not in the outgoing message are summarized out.  Summarization typically 
occurs via summation – or integration for continuous functions – to yield marginals, 
or via maximum to yield the mode.  Message passing terminates when a stopping 
criterion is hit, such as that no new message is significantly different from the 
previous message along the same link. 

Fig. 2. Summary product computation over the factor 
graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = 
fi(x,y)f2(y,z) of the marginal on y given evidence 
concerning x and z. Only the messages (and link 
directions) involved in computing y are shown. 
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The generality and efficiency of the 
summary product algorithm depends 
critically on the representation used for 
the factor functions and messages.  In 
Sigma, a multidimensional piecewise 
linear representation is used, with one 
dimension per variable (Fig. 3) [8].  This 
enables approximating arbitrary 
continuous functions as closely as 
desired, plus specialization to discrete 
representations – such as probability 
distributions – by mapping integers in the 

function’s domain to unit regions while limiting the region functions to constants, and 
to symbolic representations by further limiting the constant functions to Boolean (0/T 
and 1/F) while assigning symbols to domain integers.  A form of hybrid mixed 
representation is thus proffered. 

Knowledge fragments in Sigma are specified via conditionals, such as the one in Fig. 4, 
which compile into subgraphs of long-term memory. What is normally viewed as 
evidence in graphical models appears in working memory nodes in Sigma.  
The conditional in 
Fig. 4 consists of 
two conditions and 
an action, thus 
amounting to a 
classical rule. 

The expression x-1 in the conditional’s action indicates the use of an offset [12], part 
of Sigma’s mechanism for affine transformations (in support of mental imagery) [13].  
In general, a variable in a condition or an action may include a coefficient and an offset, 
where the coefficient must be a constant and the offset may be either a constant or a 
variable.  This isn’t simply a matter of multiplication and addition of values though, as 
an offset shifts a whole piecewise linear function along a variable’s dimension by 
modifying the region boundaries, while a coefficient may – once again by modifying 
region boundaries – expand, contract, or invert a dimension.  The combination of 
coefficients and offsets enables mental imagery to be translated, scaled and reflected.  
When combined with variable interchanges, they also enable limited forms of rotation. 

When the offset is a variable rather than a constant, two random variables must be 
added, implicating a convolution in general.  Although convolutions have not yet been 
implemented in Sigma, when the offset variable only has a single nonzero value, it 
can simply be extracted and used like a constant.  Such an approach is exploited in RL 
to add the current reward to the (distribution over the) discounted future reward. 

Another feature of Sigma that is relevant to the implementation of RL is a 
generalization from the use of constants in conditions and actions – such as left in 
Fig. 4 – to the use of filters.  A constant in this context is essentially a filter that only 
passes through portions of messages that match it via a factor function that is nonzero 

Fig. 3. Bivariate function as a 2D array of
 regions with linear functions 

CONDITIONAL Move-Left 
   Conditions: (Selected state:s operator:left) 
               (Location state:s x:x) 

 Actions: (Location state:s x:x-1) 

Fig. 4. Grid conditional for executing action of moving left 
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only for the 
constant.  This has 
been generalized 
to allow arbitrary 
piecewise linear 
functions to appear 
where previously 

only constant tests could.  Fig.5, for example, shows a conditional with a filter – in 
square brackets to distinguish it from an affine transform – that converts distributions 
over the possible Q values for the operators, ranging in [0, 10), into an expected Q 
value for each operator. Q’s domain values are multiplied by .1, with the result then 
multiplied by the incoming message. The variable q is summarized out via integration 
prior to the action, weighting each operator by its expected Q value. 

Conditions and actions in Sigma limit the direction in which messages are passed – 
those within condition subgraphs only move away from working memory while those 
within action subgraphs only move towards it.  This provides the forward momentum 
central to procedural memory.  Condacts – a neologism for conditions and actions – 
provide the bidirectional message passing required for the full generality of factor 
graphs, as used for example in probabilistic reasoning, constraint satisfaction, signal 
processing, and (partial match in) declarative memory [14].  The conditional in Fig. 6 
defines a transition function – i.e., an action model – using two conditions, a condact, 
and a function to 
specify an initial 
uniform distribution 
over the next location 
given the current 
location and operator.  
The stars (*) in the 
function denote that 
the value specified 
(.125) applies to all triples of current location, selected operator, and next location.  
The variable nx for the next state is underlined to denote normalization over it during 
learning. 

The core cognitive (or decision) cycle in Sigma involves message passing until 
quiescence, with the results then used in deciding how to modify working memory.  
Learning also occurs at decision time, by altering functions in conditionals (structure 
learning remains for future work).  Episodic learning modifies temporal functions in 
episodic conditionals that are automatically built for state predicates (such as 
Location and Selected).  Gradient descent learning modifies conditional 
functions, as stored in factor nodes, by interpreting incoming messages as gradients 
that are to be normalized, multiplied by the learning rate, and added to the existing 
function.  The idea for this learning mechanism, which was developed in conjunction 
with Abram Demski and Teawon Han, was inspired by earlier work [15] showing that 
gradient descent was possible in Bayesian networks, much as in neural networks, but 
without the need for an additional backpropagation mechanism because the local 

CONDITIONAL Select-Operator 
   Conditions: (Location state:s x:x) 
               (Q x:x operator:o value:[.1*q]) 

 Actions: (Selected state:s operator:o) 

Fig. 5. Grid conditional that transforms distributions over Q values
into operator weights for selection 

CONDITIONAL Transition 
   Conditions: (Location state:s x:x) 
               (Selected state:s operator:o) 
   Condacts: (Location*Next state:s x:nx) 
   Function<x,o,nx>: .125:<*,*,*>  

Fig. 6. Grid conditional for an initially uniform transition function 
(action model) 
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messages already determined the gradient.1  This form of learning is capable of 
working in either a supervised or unsupervised manner, and in Sigma supports both 
basic RL and model learning. 

4 RL in Sigma 

The core idea for deriving an RL algorithm from Sigma has been to leverage gradient 
descent in learning Q values over multiple trials, given appropriate conditionals to 
structure the computation as is needed for this to happen.  Much of the work has 
therefore involved understanding what these conditionals should be. 

Two conditionals – the one in Fig. 4 plus another like it – implement the left and 
right actions in the grid task. Given these two conditionals, plus a third that 
proposes the actions for selection, Sigma performs a random walk until the goal is 
achieved.  To enable Q 
values to determine which 
action to choose, the 
proposal conditional must be 
augmented to use them as 
operator weights – or 
numeric preferences – as in 
Fig. 5.  Initial Q values must 
then also be provided, as in Fig. 7. If direct evidence were provided for the action’s Q 
values, it would be trivial to use gradient descent to learn better values for this 
function without needing to invoke reinforcement learning.  However, without such 
evidence, RL is the means by which rewards from later steps in task performance 
propagate backwards to serve as 
input for learning Q values for 
earlier steps.  This occurs via a 
combination of: (1) learning to 
predict local rewards from the 
externally provided evidence for 
these rewards; and (2) learning to 
predict both discounted future rewards and Q values by propagating backwards the 
discounted sum of the next location’s local reward and its discounted future reward. 

To (learn to) 
predict a location’s 
reward, the condi-
tional in Fig. 8 is 
added. To learn 
discounted future 
rewards and Q 
values, the condi-
tional in Fig. 9 is 

                                                           
1  The version here only approximates the true gradient in [15], but was sufficient for this work. 

CONDITIONAL Backup 
   Conditions: (Location state:s x:x) 
               (Selected state:s operator:o) 
               (Location*Next state:s x:nx) 
               (Reward x:nx value:r) 
               (Projected x:nx value:p) 
   Actions: (Q x:x operator:o value:.95*(p+r)) 
            (Projected x:x value:.95*(p+r)) 

Fig. 9. Grid conditional for backing up rewards 

CONDITIONAL Reward 
   Condacts: (Reward x:x value:r) 
  Function<x,r>: .1:<[1,6)>,*> … 

Fig. 8. Grid conditional for an initially uniform 
distribution over rewards at locations 

CONDITIONAL Q 
   Conditions: (Location state:s x:x) 
   Condacts: (Q x:x operator:o value:q) 
  Function<x,o,q>: .1:<*,*,*> … 

Fig. 7. Grid conditional for an initially uniform distribution
over the Q values for the operators, given the locations 
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added (along with an unshown conditional for discounted future rewards).  The Backup 
conditional examines the current location and operator, along with the predicted next 
location – as given by the transition function – and its predicted local reward and future 
discounted reward.  In the actions, it leverages an affine transformation, with an offset to 
add the next location’s predicted local reward to the distribution over its predicted future 
reward, and a coefficient to discount this sum.  RL then results from using the messages 
that are passed back to the conditional functions as gradients in learning Q values and 
discounted future rewards. 

 Fig. 10 summarizes how 
RL emerges from all of this.  
Double arrows with elliptical 
tips represent decisions for the 
operator and location.  Solid 
arrows predict aspects of the 
current location.  The gray 
box is the external reward.  
Dotted boxes and arrows are 
predictions of/for the next 
location. Value backup 
involves the gray triangles and 
curved arrow. 

The resulting form of learning is like SARSA rather than Q-learning because it is 
driven by the operator actually selected rather than by the best available operator.  
This form of RL also is model based, leveraging a version of the transition conditional 
in Fig. 6 that embodies probabilities corresponding to the actions’ actual effects.   
Learning then occurs via gradient-descent-based refinements to the functions in Figs. 
7-8 and the unshown one, for the distributions over Q values, local rewards, and 
discounted future rewards, respectively. 

After completing 20 trials for each of the two possible extreme starting points –
locations 1 and 6 – the expected value of the learned reward function (by location) is 
identical to the 
externally defined 
reward function: <0, 0, 
0, 0, 9, 0, 0, 0, 0>.  The 
expected values 
learned for the 
discounted future 
reward are shown in 
Fig. 11 (Fixed Model). 
This peaks, as it 
should, as the goal 
location (4) is neared, 
but is zero for both the 
goal location and the 
buffer locations since  
 

  
Fig. 10. Variables and processes for RL in the grid task 

 

Fig. 11. Learned expected discounted future reward 
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they are initialized 
to zero and no move 
is ever made from 
them.  The expected 
Q values learned for 
left vs. right 
are shown in Fig. 
12.  As desired, 
moving right is 
preferred when left 
of the goal and 
moving left when to 
the right. There is 
no preference at the 
goal. 

These results have been presented in terms of point values, a format that matches 
what is normally seen with RL.  However, the learning actually involves full 
distributions rather than individual points, with points computed as expected values 
over distributions.  Learning via distributions rather than points has been natural in 
Sigma, but it may also prove particularly advantageous when distributions can help, 
for example, identify when a representation is too coarse [16], or when a Soar-like 
impasse – forms of which already exist in Sigma [17] – should occur [18]. 

Everything in this example was learned in a synchronic manner, considering only 
one actual location.  Even reward backup was synchronic, being based on the 
distribution over the predicted next location rather than on the actual next location.  
By focusing on learning to predict, RL has been able to proceed within Sigma in the 
context of a single actual location.  However, for model-free RL, a pair of actual 
locations must be available simultaneously in working memory so that value backup 
can occur without the aid of the predictions the transition function provides in model-
based RL.  Similarly, although an initial uniform transition function is provided when 
the action models are to be learned, the correct gradient cannot be computed unless 
both locations are simultaneously in working memory. 

As Sigma worked prior to this investigation of RL, consecutive states were 
simultaneously present only during the decisions that occurred at the end of cognitive 
cycles, when old working memory values were replaced by new ones.  However, just 
one of these states would be in working memory at a time.  If Sigma were extended to 
transiently represent both at once in working memory – essentially during the 
decision – with a solution to the graph occurring in the interim and learning enabled, 
then the kind of diachronic learning required for both model-free RL and the learning 
of action models should be possible with only a minimal extension to Sigma’s 
architectural code.  This is in fact what has been implemented.  During decisions, new 
values are placed into next variants of to-be-altered state predicates – 
Location*Next here – and the graph is again solved with learning enabled, before 
actual modifications are made to working memory (and the next variants are flushed). 

    
Fig. 12. Learned expected Q values 
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Now, when there is no transition conditional, model-free RL results, with value 
backup based on the actual next location rather than the predicted one.  Given 20 
trials, the expected discounted future rewards are the same as those learned with a 
fixed model (Fig. 11). When the uniform transition conditional from Fig. 6 is 
included, the gradient necessary to learn action models becomes available, enabling 
them to be acquired during the same trials in which rewards, Q values, and discounted 
future rewards are 
learned.  Running 
20 trials here 
yields a transition 
function where 
the only entries 
that are above the initial value of .125 are shown in Fig. 13 (with darkness 
corresponding to functional value).  All of the on-path moves have a functional value 
of 1, whereas the two off-path moves predict the correct transition but at lower values.  
The expected discounted future rewards here – Fig. 11 (Learned Model) – are nearly 
indistinguishable from those learned with a predefined transition function. 

5 Conclusion 

Learning is central to general intelligence, with reinforcement learning providing a 
particular form that that has been prominently featured within both AGI and several 
cognitive architectures.  When the time came to address how reinforcement learning 
would work in Sigma, the intriguing possibility arose of its emerging from the 
interactions among a general set of more basic mechanisms, making RL a derived 
capability rather than an architecturally implemented mechanism, and satisfying the 
joint constraints of functional elegance, Occam’s razor and Newell’s exhortation. 

The work presented here is still only a beginning, but it does show how RL can be 
deconstructed in terms of a local form of gradient-descent learning plus appropriate 
knowledge structures, to yield basic on-policy, model-based, reinforcement learning.  
A single extension to Sigma – to simultaneously represent both the current and next 
state during an interpolated graph solution – was then required to enable both model-
free RL and (intertwined) model learning.  As it turns out, this is a non-RL-specific 
extension that was also motivated, for example, by the related problem of learning 
transition functions for POMDPs in Sigma [19].  The extension of Sigma’s affine 
transformations to variable offsets also occurred in service of implementing RL, 
although the idea and the understanding of its need both predated this work on RL. 

Much more is still required in a complete, state-of-the-art, architecturally 
integrated capability for reinforcement learning, including exploration, scaling, and 
structure learning.  Also necessary is extensive experimentation with more complex 
tasks, careful comparisons with implementations of RL in other architectures, and 
investigations of synergies that might become available when RL interacts with other 
knowledge and capabilities in Sigma.   Yet, the important result remains, that the core 
of RL has been demonstrated, along with its intertwining with model learning, and all 
in a functionally elegant manner. 

 
Fig. 13. Learned transition function 
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Abstract. This article presents new results on implementing mental imagery 
within the Sigma cognitive architecture.  Rather than amounting to a distinct 
module, mental imagery is based on the same primitive, hybrid mixed, 
architectural mechanisms as Sigma’s other cognitive capabilities.  The work 
here demonstrates the creation and modification of compound images, the 
transformation of individual objects within such images, and the extraction of 
derived information from these compositions. 

Keywords: Mental imagery, cognitive architecture, graphical models, 
piecewise continuous functions, affine transformations. 

1 Introduction 

Mental imagery is a cognitive capacity that enables humans to represent and reason 
about spatial information.  It includes the ability to construct images from pieces 
retrieved from memory; to translate, scale and rotate (parts of) these images; and to 
extract new information from the composite and/or transformed results.  Although 
nominally focused on the spatial aspects of the physical world, Gunzelmann and Lyon 
summarize its key role in other areas of human cognitive processing – such as 
numerical information processing, problem solving and language [1] – and Cassimatis 
has hypothesized that physical reasoning is part of a general cognitive substrate that 
underlies all of reasoning [2].  Mental imagery must also clearly relate to perception, 
but the focus here is on the connection with cognition rather than perception. 

Following an extended debate concerning whether mental imagery is symbolic 
versus imagistic – based, for example, on pixel arrays – there is little doubt at this 
point that both are implicated in the full picture.  Some of the most interesting recent 
work on this topic includes how to incorporate such a capacity into a cognitive 
architecture, a hypothesis about the fixed structure underlying cognition, and how 
these structures combine with each other (and knowledge) to yield intelligent human(-
like) behavior.  Imagery modules have been investigated in architectures such as Soar 
[3] and ACT-R [4], including ideas for introducing more explicitly hybrid aspects [5]. 

The Sigma (Σ) architecture is built to be hybrid from the ground up, in service of 
satisfying two general desiderata: grand unification and functional elegance. A 
traditional unified cognitive architecture attempts to bring together in an integrated 
manner the range of cognitive capabilities required for human(-level) intelligent 
behavior in the world. A grand unified architecture goes beyond this, in analogy to a 
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grand unified theory in physics, to attempt to include the crucial pieces missing from 
a purely cognitive theory, such as perception, motor control, and emotion.  Functional 
elegance implies a combination of the broad range of capabilities required in a (grand) 
unified architecture with simplicity and theoretical elegance.  In Sigma, the aim is 
something like a set of cognitive Newton’s laws that yield the required diversity of 
behavior from interactions among a small set of very general primitives.  Within AGI, 
AIXI [6] can be seen as an attempt at an extreme form of functional elegance.  The 
approach in Sigma is less ambitious, but still strongly in this direction. 

Driven by these desiderata, work to date on Sigma has been deliberately broad – 
including forms of memory and learning [7-8], problem solving and decision making 
[9-10], perception and localization [10], and natural language – with the intent of 
determining whether a small set of general mechanisms can in fact be sufficient in 
combination.  Thus, for mental imagery the natural question to ask became whether 
Sigma could provide a sufficient hybrid capacity without either distinct symbolic 
versus imagistic modules or distinct representations, memories and processes, as has 
been necessary in other architectural approaches. 

Earlier work in Sigma showed how 2D images can be 
represented, and how translation of image components can 
be implemented [11].  The results were used as part of a 
hybrid approach to the Eight Puzzle – Fig. 1 – a classic 
sliding tile puzzle that is traditionally solved in AI systems 
via a symbolically represented board plus internal search 
over symbolic operators that model external actions.  The 
Sigma approach included a hybrid representation of the 
board plus normal symbolic problem solving, but now over 
imagistic tile translations (implemented as offsets).  The 
work here extends this via manipulations of Z tetrominos 
(Fig. 2), as found in the game of Tetris, to demonstrate: 
image composition and component deletion; additional 
forms of image transformation, including scaling, reflection 
and rotation (by multiples of 90°); and extraction of 
perceptual features from composites, such as object overlaps 
and collision detection, directionality among objects, and edge detection.  

Mental imagery in Sigma is grounded in: (1) the architecture’s generalized 
language of conditionals, which compiles down to factor graphs for processing via 
the summary product algorithm [12]; (2) an inherently continuous piecewise linear 
representation for the functions and messages in (1) [13]; and (3) affine 
transformations – a generalization of the offsets introduced earlier – and piecewise 
linear filters.  By demonstrating mental imagery via interactions among more 
primitive mechanisms, this work contributes to the breadth of functionality unified 
within Sigma, while doing so in a simple and elegant manner.  The key to functional 
elegance here has been to begin with a small set of very general mechanisms that are 
leveraged in combination when possible, and which are (minimally) augmented when 
necessary.  This combination also supports grand unification, intertwining continuous 
perception-related information with general symbol processing. 

Fig. 2. Z tetromino 

Fig. 1. Eight Puzzle 
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2 Sigma and Mental Imagery 

Knowledge representation in 
Sigma is based on conditionals – a 
generalized form of rule – plus 
piecewise linear functions.  Fig. 3, 
for example, shows a conditional 
that uses two conditions and an 
action to determine the spatial 
overlap between two particular objects in the image.  The Image predicate specifies 
object locations via three arguments – o provides a numeric index into a vector of 
objects (which is specified by constants here, but can be variables in general), while x 
and y range over the continuous image dimensions – to yield a discrete vector of 
continuous planes, each element of which provides an occupancy grid for a single 
object in the image.  In Fig. 4, for 
example, the planes correspond to the 
Eight Puzzle tiles, and the grayed 
regions denote where the blank and tile 
1 are located in Fig. 1. 

Technically, such images are 3D 
hybrid functions in Sigma, with one 
discrete variable (i.e., dimension) for 
objects (tiles here) and two continuous 
variables for space.  The grayed regions 
are where the function has a value of 1 
(or true) while the other regions are 0 (or 
false).  In Sigma such functions are 
represented as piecewise linear over nD 
arrays of rectilinear (or orthotopic) 
regions (Fig. 5).  The nD space is sliced 
orthogonally to its axes to generate an 
array of regions that are doubly linked 
along each dimension, with each region 

having its own linear function over the 
variables. This can be viewed as a 
generalization of a pixel (or voxel) array, 
where the pixels can vary in size and have 
linear rather than just constant value 
functions. 

Although Sigma’s function 
representation is inherently continuous, 
with its piecewise linear approach 
allowing arbitrary continuous functions to 
be approximated as closely as desired, it 
can also be specialized to: discrete 
representations – to enable, for example, 

CONDITIONAL Overlap-0-3 
   Conditions: (Image o:0 x:x y:y) 
               (Image o:3 x:x y:y) 

 Actions: (Overlap i:1 x:x y:y) 

Fig. 3. Conditional for computing the spatial
overlap between two specific objects 

Fig. 4. Partial visualization of a hybrid
representation for the Eight Puzzle board 

Fig. 5. Bivariate function as a 2D array of
regions with linear functions 
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the vectors of objects we have seen, as well as discrete probability distributions – by 
mapping integers in the function’s domain to unit regions; and symbolic 
representations by limiting the functions to Boolean (0/T and 1/F) while assigning 
symbols to domain integers.  A form of hybrid mixed representation is thus proffered 
in a manner analogous to how digital circuits are implemented via restrictions on an 
underlying substrate that is naturally continuous. 

The Overlap predicate in Fig. 3 is similar to the Image predicate, except that 
here there is a vector of object overlaps, rather than of objects.  The semantics of 
conditionals specifies that the two conditions in Fig. 3 extract the 0th and 3rd objects 
from the image, with these two 2D object subimages then being multiplied in a 
pointwise manner – like an inner product but without the final summation – to yield a 
new 2D plane that is 1 where both input planes are 1 and 0 elsewhere (Fig. 6).  
Once mes-
sage passing 
reaches 
quiescence, 
actions – 
such as the 
one in Fig. 3 
that stores 
the computed 
overlap into element 1 of Overlap – may yield changes to working memory, 
completing Sigma’s core cognitive cycle.  If a predicate has a unique variable – akin 
to a classic random variable, where a distribution is provided over all possible values 
but only one is ultimately correct – the best value for that variable is placed into 
working memory, while if it instead has only universal variables – akin to classic rule 
variables, where any subset of the values may be correct, but used here mainly for 
occupancy grids – all non-zero values are placed in working memory 14]. 

The processing of conditionals occurs by running the summary product algorithm 
over the factor graph into which they are compiled.  Factor graphs are a general form 
of graphical model [15] – an approach to computing efficiently over complex 
multivariate functions by decomposing them into the product of simpler factors and 
then mapping the result onto a graph of nodes and links – that bear a family 
resemblance to other forms, such as Bayesian and Markov networks, but are 
concerned with arbitrary multivariate functions, not just probabilistic ones.  Complex 
functions are first decomposed into products of simpler functions, and then mapped 
onto bipartite graphs, with variables mapped onto variable nodes and decomposed 
factors mapped onto factor nodes.  Undirected edges are defined between each factor 
node and its variables.  Fig. 7 shows an example factor graph for a multivariate 
algebraic function along with its solution via summary product, as used in Sigma. 

 

Given evidence about a subset of the variables – as stored in working memory 
factor nodes – messages are passed along the links and processed at the nodes to yield 
new messages.  Each message along a link provides information about the values of 
the link’s variable.  Incoming messages at variable nodes are combined via pointwise  
 

Fig. 6. Overlap between two images via conditional in figure 3 
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product to yield outgoing 
messages, but with each 
outgoing message omitting from 
its product the incoming 
message on its link.  Similar 
pointwise products occur at 
factor nodes, but with the 
factor’s function also included 
in the product; and then all 
variables not in the outgoing 
message are summarized out. 
Summarization typically occurs 
via summation – or integration 
for continuous functions – to 
yield marginals, or via 
maximum to yield the mode; 
however, maximum is also used 
in Sigma for marginals of 
universal variables. Message 

passing ends upon quiescence; i.e., when no new message is significantly different 
from the previous message along the same link. 

Both conditions and actions can be negated, inverting the resulting function to 
yield f = maximum(1-f, 0).  True (1) becomes false (0) and vice versa.  Intermediate 
values are similarly inverted, and functional values greater than 1 are treated as if they 
are 1 during the inversion.  Fig. 8, for example, shows how an object can be removed 
from an image via a negated action that spans the entire plane for object 1. 

Both conditions and actions also 
limit the direction in which messages 
are passed – those within condition 
subgraphs only move away from 
working memory while those within 
action subgraphs only move towards it.  This provides the forward momentum central 
to procedural memory. Condacts – a neologism for conditions and actions – provide 
the bidirectional message passing required for the full generality of factor graphs, as 
used for example in probabilistic reasoning, constraint satisfaction, signal processing, 
and (partial match in) declarative memory [7]. As condacts are not used in the results 
presented here, they aren’t discussed further. We will also omit discussions of other 
aspects of Sigma not exploited here, such as learning. 

 

Still, two remaining aspects of Sigma do require explication. The first, and the only 
one originally motivated by the needs of mental imagery, is the use of affine trans-
formations; i.e., combinations of linear transformations with translations.  Fig. 9 
shows an example, where an affine transformation is used in the action of a 
conditional to scale a Z tetromino horizontally, in place.  In general, a variable in a 
condition or an action may include a coefficient and an offset, where the coefficient 
must be a constant and the offset may be either a constant or a variable (although only 
constant offsets are used in the work described here). Affine transforms can be used in 

CONDITIONAL Delete-1 
   Actions: (Image – o:1 x:* y:*) 

Fig. 8. Deletion of object 1 

Fig. 7. Summary product computation over the factor 
graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = 
fi(x,y)f2(y,z) of the marginal on y given evidence 
concerning x and z.  Only the messages (and link
directions) involved in computing y are shown. 
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conditions, actions 
and condacts, but 
with a trans-
formation in a 
condition (or the 
outgoing aspect of 
a condact) invert-
ing what the same 
one does in an 
action (or the 
incoming aspect 
of a condact). 

Although the 
affine transform-
ation specified in 
Fig. 9’s condi-

tional may appear to involve just addition and multiplication of individual numbers, 
the figure makes it clear that such transformations actually operate on entire 
functions.  In principle, affine transformation can and should be implemented by 
standard factor nodes that represent variants of delta functions [11].  However, delta 
functions are awkward and expensive to approximate via axially aligned slices, so 
specially optimized factor nodes that directly manipulate message slices, such as 
those in Fig. 9, are used instead.  An offset shifts a whole piecewise linear function 
along a variable’s dimension by modifying the dimension’s slices, while a coefficient 
may, once again by modifying slices, expand, contract, or invert a dimension. 

Once the slices have been modified, the resulting function may then need to be 
cropped and/or padded.  Dimensions are not infinite in Sigma; each must be specified 
via minimum and maximum values, defining a domain that is closed at its 
dimensional minima and open at its corresponding maxima (this same half-open 
structure is also shared by regions).  When a transformation extends a function 
beyond its dimensional bounds, it is cropped to fit back within these boundaries.  
When a transformation leaves areas within the boundaries undefined, the function is 
padded by assigning values to these areas.  By default, closed-world predicates use a 
value of 0 and open-world predicates use a value of 1, corresponding for each to the 
standard value of unknown.  Although originally motivated by mental imagery, affine 
transformations have since found important roles in Sigma across such areas as 
episodic memory, reflection, and reinforcement learning [11, 8]. 

The other aspect of Sigma used in the mental imagery results here is a capability 
for applying piecewise linear filters – generalizations of the constant tests typically 
found in rule conditions – to messages. A constant test is simply a filter that passes 
along only the portion of incoming messages matching the constant, via a filter that is 
1 where the variable’s domain equals the constant and 0 elsewhere. Sigma’s filters 
can more generally specify arbitrary linear functions over regions.  For example, in 
the condition (Image o:o x:x y:[.01*y]), the computation within the 
square brackets defines a filter that increases linearly with (the domain value) of y, 
with a slope of .01.  The functional values in incoming messages are therefore 
pointwise multiplied by .01 times their y domain value. Such filters have been used,  
 

       CONDITIONAL Scale-Half-Horizontal 
          Conditions: (Image o:0 x:x y:y) 

        Actions: (Image o:4 x:x/2+1 y:y) 

 

Fig. 9. Scaling a Z tetromino by half, horizontally, in place 
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for example, in reinforcement learning to compute expected Q values via 
summarization (integration) over a weighted distribution of Q values [8].  They are 
leveraged in the next section in computing directional relationships among objects. 

3 Results 

The focus in this section is on key implications for mental imagery of the capabilities 
just described. This is not exhaustive, as new implications are continually being 
uncovered, but it does span the requirements mentioned in the introduction. 

We can begin with the straightforward result that it is possible to translate, scale 
(shrink/enlarge), reflect, and rotate objects in images.  Translation was covered in [11] 
and Fig. 9 demonstrated scaling in place, via a coefficient and an offset.  Figs. 10 and 
11 both start with the Z tetromino on the left of Fig. 9, with Fig. 10 then 
demonstrating reflection in place, via a negative coefficient and an offset, and Fig. 11 
demonstrating rotation by 90° in place, via reflection and a swap of the x and y 
variables. As presently implemented, Sigma’s affine transformations operate on 
individual variables (i.e., dimensions).  By swapping variables – and reflecting when 
necessary – rotations by multiples of 90° are possible, as here, but not arbitrary-angle 
rotations.  Two issues stand in the way: (1) Sigma’s limitation to rectilinear, axially 
aligned, regions makes it complex and costly to represent the results of such rotations 
[11]; and (2) rotations at arbitrary angles require multivariate transforms.  We are 
considering extending Sigma’s function representation from orthotopic regions to 
(convex) polytopic regions – i.e., nD polygons – to allow representation of slices at 
arbitrary angles (as well as to enable more compact representations of complex 
objects).  When this is in place, efficient multivariate transformation will be explored. 

The conditionals in Figs. 9-11 demonstrate image composition – each adds one 
object (on its own plane) to the overall image – and Fig. 8 demonstrated object 
deletion.  What hasn’t been demonstrated is how the separate objects in an image can 
be combined into a single new plane, enabling hierarchies in which complex images 
can in turn be treated as objects in more complex images.  Fig. 12 demonstrates this,  
 

 

 
Fig. 10. Horizontal, in place, reflection of Z
tetromino 

Fig. 11. 90° rotation of Z tetromino 
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with the object variable (o) from the condition – which ranges over the four planes in 
the image – being summarized out via maximum to yield a message to the action that 
is 1 wherever there is a 1 in any of the individual objects in the image. 

 
 
The result of the processing in Fig. 12 is a new composite object that can be treated 

like any other object.  For example, the left edge of this object – the slivers 
immediately to the right of blank areas – can be determined as in Fig. 13.  This is an 
elementary perceptual operation that can extract useful information from images.  Just 
as with the other imagery operations though, it occurs via a standard conditional that 
compiles down to a factor graph.  In this instance, the conditional uses an offset in a 
negated condition to shift the image by ε (.0001 in this case) and then to invert it 
before multiplying by the original image.  The result is 1s only for the sliver of the 
original image that is within ε to the right of a blank area.  This approach turns out to 
perform edge detection without previously pixelating the image; instead, the thickness 
of the edge is a function of the offset. 

A second 
example of 
extracting 
useful infor-
mation from 
a combina-
tion of objects 
was shown in 
Figs. 3 and 6, 
where condi-
tions for 
separate im-
age planes 
compute their overlap via the product aspect of summary product.  It is then a simple 
step from there to a third example, where colliding pairs are detected via summarizing 
– by maximum – the two spatial dimensions in the vector of overlap planes (Fig. 14). 

Fig. 12. Combining four object planes (top) into a single new plane (bottom left) 

Fig. 13. Computation of left edge of composite object 
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As a fourth and final 
example of information 
extraction from mental 
imagery, consider the 
problem of determining 
directional information 
among objects, such as 
whether object 1 is to the 
right of object 2, or which 
object is topmost.  Fig. 15 
shows a conditional for the latter computation, where the topmost object is defined to be 
the one whose topmost point is above the topmost points of all of the other objects.  It 
uses a filter in the condition to weight points in objects by their y (domain) values, 
decreasing as y increases.  In generating a message for the action, by summarizing out x 
and y via maximum, this computes a function value for the object equal to the weight of 
its topmost point.  The action then uses a unique variable in the Topmost predicate to 
select the most highly valued object; that is, the one whose topmost point is highest 
among all of the objects in the image.   

Together these last four examples start to show how Sigma can extract useful 
information from the spatial interactions among objects in images, as the earlier 
examples show how to compose images from multiple objects, turn these composites 
into new objects, delete objects from images, and transform objects within images.  

4 Conclusion 

The mental imagery results presented here derive from a combination of: Sigma’s 
core nD piecewise linear representation for functions/messages; its use of conditionals 
with conditions, actions and negations to define a factor graph; the generalization 
from constants to piecewise linear filters in conditionals; the addition of (optimized 
factor nodes for) affine transformations; and how the functions/messages are 
combined and reduced via the summary product algorithm.  This combination enables 
the componential representation of continuous 2D images in terms of vectors of 
region-based objects; the addition and deletion of objects from these images; 
translation, scaling, reflection and (limited forms of) rotation of these objects; and the 
ability to extract implications from interactions among objects. 

Although not a focus here, it is trivial via additional predicates to symbolically 
annotate these continuous objects.  The initial step in extending this all from 2D to 3D 
imagery is also trivial, involving merely the addition of a z dimension.  However, this 
hasn’t yet been pursued because of the computational cost of processing these larger 
images.  We are presently modifying Sigma’s core representation so that slices need 
not span the entire space, and default-valued regions can be represented implicitly.  
These changes should reduce the size of the imagery functions and improve the 
efficiency of their processing.  This should not only enable efficient exploration of 3D 
imagery, but also provide an important step in moving from orthotopes to polytopes 
(which should further simplify the representation of complex objects, while enabling 
exploration of arbitrary-angle rotations).  We are also exploring the possibility of 
allowing more direct incorporation of Gaussians, or comparable functions, for more 
efficient representation of spatial, and other forms, of uncertainty. 

Fig. 15. Determine which object is topmost 

CONDITIONAL Above 
   Conditions: (Image o:o x:x y:[1-.1*y]) 
   Actions: (Topmost o:o) 

CONDITIONAL Collision 
   Conditions: (Overlap i:i x:x y:y) 
  Actions: (Collision i:i value:true) 

Fig. 14. Determine which objects collide 
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Beyond these extensions, we need to look at incorporating these basic capabilities 
into naturalistic tasks that are tightly coupled with true perception; and, in the process, 
evaluate whether this functionality is both sufficient and sufficiently efficient.  Still, 
the results presented here do demonstrate a significant mental imagery capability that 
is built upon a set of more primitive mechanisms that are common to other cognitive 
capabilities within Sigma; for example, reinforcement learning [8] also leverages all 
of the capabilities listed at the beginning of this section (except for negation).  It thus 
represents a significant step towards a functionally elegant grand unification. 
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Binary Space Partitioning as Intrinsic Reward 
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Abstract. An autonomous agent embodied in a humanoid robot, in order to  
learn from the overwhelming flow of raw and noisy sensory, has to effectively  
reduce the high spatial-temporal data dimensionality. In this paper we propose a 
novel method of unsupervised feature extraction and selection with binary 
space partitioning, followed by a computation of information gain that is inter-
preted as intrinsic reward, then applied as immediate-reward signal for the rein-
forcement-learning. The space partitioning is executed by tiny codelets running 
on a simulated Turing Machine. The features are represented by concept nodes 
arranged in a hierarchy, in which those of a lower level become the input vec-
tors of a higher level. 

Keywords: AGINAO, artificial general intelligence, self-programming, binary 
space partitioning, intrinsic reward. 

1 Introduction 

For an autonomous humanoid robot, learning a cognitive model from the natural envi-
ronment, there seems to be no direct correspondence between low level sensory and 
high level external motivation. Furthermore, the reinforcement-learning becomes 
ineffective if the extrinsic reward signal propagates through too many states. The 
learning could be improved, however, should a good candidate for the immediate 
reward be found. 

The term intrinsic motivation was borrowed by cognitive scientists from the psy-
chology, to mean that an agent is engaged in some activity for its own sake, possibly 
activity in taking pleasure, rather than working to fulfil some external drives. This 
motivational force is referred to as independent ego-energy, based in organism needs 
to be competent and self-determining [1]. Closely related is the term intrinsic reward, 
to mean a reinforcement stimulus of the intrinsic motivation. 

As for studies on epigenetic robotics and autonomous agents, however, the term 
has been conceptualized differently and in many distinct ways, while a unified defini-
tion seems not to exist yet [2]. Miscellaneous measures of intrinsic motivation have 
been proposed, including: information gain, curiosity, novelty, prediction error, com-
petence progress, relative entropy, compression progress, etc. [2], [3]. We will focus 
here on a purely information-theoretic based approach, where intrinsic reward is  
defined as averaged information gain assigned to an action taken to evaluate a candi-
date feature. The action to be taken is represented by a directed edge connecting two 
concept nodes, the head to stand for the feature under consideration, the tail to stand 
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for the input vector, possibly a lower level feature selected earlier, or raw sensory data 
(also represented by a feature vector). The intrinsic reward is then applied as imme-
diate-reward signal for the reinforcement-learning algorithm, becoming the only 
source of reward. The latter to mean that no external motivation driven reward is  
employed. 

2 AGINAO Cognitive Architecture 

AGINAO is a project to build a human-level artificial general intelligence (AGI) sys-
tem by embodiment of the cognitive engine in the NAO humanoid robot. It was first 
introduced in [4]. A more detail presentation of the self-programming engine is given 
in [5]. The open-ended learning, executed by the cognitive engine, is a result of a 
fully automatic self-programming development of a hierarchy of interconnected  
concepts, as shown in Fig. 1. 

 

Fig. 1. Sample concept network 

The evolved concept nodes represent the features of the spatial-temporal sensory 
patterns of the natural world and are evaluated concurrently at all levels of the hie-
rarchy. The predefined atomic sensory and actuator concepts stand for the root and 
terminal nodes, respectively. An output of a concept becomes an input of a higher 
level concept, so the distinction between features and a patterns disappears. There are 
also concepts that act as the procedural memory, and concepts that behave like func-
tions. For that reason, we prefer the word pattern to name the entities being discov-
ered and managed by the concepts, while the word feature may be used for better 
communication, where applicable. A patternist philosophy of mind is thoroughly 
discussed in [6]. The idea that a single algorithm may be used to process both the 
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spatial and temporal aspects of a pattern, and that pattern processing should be con-
ducted simultaneously at all levels of the hierarchy, is presented in [7]. 

The feature detection is performed by a tiny piece of machine code, a codelet, em-
bedded in a concept node. Following the execution, the action values and other para-
meters that govern the dynamic structure of the network are updated, effectively to 
mean feature extraction and selection. The codelets consist of instructions of a cus-
tom-designed virtual machine, a simulated Turning Machine. A typical setting of a  
2-input concept is shown in Fig. 2. and a sample codelet in Fig. 3. 

 
Fig. 2. A sample 2-input concept node and virtual processor 

 
Fig. 3. Sample program in machine code 

The basic internal type is a 16-bit integer (int). The information is exchanged be-
tween the concepts using a uniform data format, a vector of integers of know size. 
Fig. 4. depicts a sample feature vector of a visual pixel of the YUV color space. 

 
Fig. 4. Internal data format 

The input feature vector, as depicted in Fig. 2., consists of two features, the values 
being vectors too, possibly of other feature vectors. Should a feature be detected by 
the execution of the concept's codelet, the output would be a feature vector, too. 
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It must be highlighted, however, that concept network is not a neural network. The 
concepts and the links (edges) are stored in a depository and launched as individual 
threads. Multiple concurrent runtime-threads may coexist and be used to evaluate a 
single concept. The codelet code as such is generated in a process called heuristic 
search in program space, basically random, creating programs of highly non-linear 
behavior and of flexibility theoretically equivalent to a Universal Turing Machine. 

Last but not the least, if two concepts are connected by an edge to mean an action, 
it is the head concept's codelet that is executed as an action, while the action values 
are stored in the tail concept(s), individually for each edge outgoing from the tail. 

3 Intrinsic Motivation 

Whether external drives are primary or secondary to a more basic motivational me-
chanism, it may be questioned [8]. For example, the hunger drive seems to be a very 
basic one for humans. There are historical examples, however, of people who have 
committed a sort of starvation suicide for some ideas. What follows, a stronger intrin-
sic motivational reward must exist, one that seems to be of information seeking type. 
The reward must originate from the internal model of the world, rather than from the 
external drives. It is conjectured here that, since virtually any drives may be overpo-
wered by the intrinsic motivation, a cognitive model may be built with extrinsic re-
wards being only secondary to the intrinsic reward mechanism, and merely reflected 
there. 

The proposed measure of intrinsic motivation is based on the notion of self-
information [9] or information surprisal [10] associated with the execution of a con-
cept's codelet, i.e. the amount of information provided by an event being a successful 
(pattern matching) execution of the codelet. The resulting intrinsic reward is the aver-
aged self-information gain. 

Let ω be the outcome of a random variable with probability P(ω). Then the self-
information may be computed as 

 ))((log)( 2 ωω PI −=  (1) 

From now on, let us assume that each concept has only two outcomes, ωpos for pattern 
matching and ωneg for pattern not matching, and we appreciate the positive matches 
only. The more unique a pattern, the more information it entails, which reflects our 
intuition. We want our intrinsic reward mechanism to maximize the information gain 
in time, the time unit to be understood as a step of a (non-Markovian) decision 
process. Unfortunately, if the probability of an outcome decreases, we have to execute 
our concept codelet multiple times to get a match. Consequently, we get the following 
definition of intrinsic reward: 

 ))((log)()( 2 pospospos PPr ωωω −=  (2) 
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Self-information is a special case of Kullback–Leibler distance from a Kronecker 
delta representing the matching pattern to the probability distribution: 
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An independent approach based on a measure of information gain calculated from the 
Kullback-Leibler distance was presented in [11]. 

The measure of self-information has an interesting additive property. If two inde-
pendent events A and B with outcomes ωA and ωB have the probabilities P(ωA) and 
P(ωB), then the resulting information gain is 

 ))((log))((log)()()( 22 BABABA PPIII ωωωωω −−=+=∩  (4) 

This may be a result of executing two concept codelets in sequence. It is quite likely, 
however, that a single concept codelet is performing exactly the same function as two 
concept in sequence, possibly created by a concatenation of the codelets. The result-
ing information gain would be 

 ))((log))((log))()((log)( 222 BABABA PPPPI ωωωωω −−=−=∩  (5) 

i.e. exactly what would be expected. 
On the other hand, however, if the two concepts are executed in sequence1, the re-

sulting reward would be 

 ))((log)())((log)()()()( 22 BBAABABA PPPPrrr ωωωωωωω −−=+=∩  (6) 

while, the same function executed as a single concept would result in 

 ))()((log)()()( 2 BABABA PPPPr ωωωωω −=∩  (7) 

which is less than (6). This reflects the idea that getting the reward in separate steps is 
potentially more informative than doing everything in one step, especially in case 
when already 

 ))()((log)()())((log)( 22 BABAAA PPPPPP ωωωωωω −>−  (8) 

that hold if 

 
e

P A

1
)( <ω  (9) 

provided A is the first step (see Fig.5.). Separate steps may be preferred because—
after the first step was executed—we get more opportunities, while assuming a priori 
that a unique pattern will be encountered is always risky. One might even erroneously 

                                                           
1  A TD-learning discount factor γ, that would normally be included, is temporarily omitted. 
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conclude that splitting concepts into separate steps is always beneficial when (9) 
doesn't hold, at least as long as (roughly): 

 γω <)( BP  (10) 

where γ in the discount-factor of TD-learning. That's not observed in practical imple-
mentations, however. The computational overhead of executing two separate concepts 
instead of one must also be taken into account. 

The reward function is depicted on diagram in Fig. 5. and reaches the maximum at: 
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)'log( 2 ==−−=−  (11) 

What follows is that preferred would be concepts with the probability of a positive 
match around the reciprocal of e. This must not be confused with the mentioned above 
question of splitting the concepts, for in the former case the probability is given, while 
in the latter case we search the space of concepts with unknown probabilities. 

 

Fig. 5. pp 2log−  

The properties of the reward function may be illustrated with the following exam-
ple. Imagine, we want our cognitive engine to learn the most effective method for the 
graphical recognition of the 25 letters of the Latin alphabet. The simplest method 
would be to design an individual concept for each letter. Since, however, the individ-
ual probabilities of occurrence of each letter are rather low, so is the reward (left end 
of the diagram). We could increase the expected probability by designing an algo-
rithm to exclude a letter rather than finding a match. Unfortunately, the resulting self-
information gain would be rather low (right end). 

An alternative approach could be based on detecting some feature first, like finding 
whether the observed letter contains a vertical bar. Some 14 Latin letters do have this 
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property, and effectively the space is divided nearly evenly, and the resulting reward 
is close to the maximum. The same could be done with the next steps, provided a 
feature could be selected. If, however, the probability distribution is highly non-
uniform, the aforementioned approach of matching some letters first could be more 
informative. Since the whole process is fully automatic, it can’t be said a priori what 
concept structure would emerge and what features would be extracted and selected. 

4 Binary Space Partitioning 

The idea of binary space partitioning is depicted in Fig. 6. The input to a concept is a 
state space consisting of feature vectors of some multidimensional space. No matter 
how many inputs a concept has, we will consider all of them as a single vector. A 
hyperplane, depicted as a straight line, divides the input space into two disjoint sub-
sets. We will call them positive and negative examples. 

 

Fig. 6. Binary space partitioning 

Let us assume that Npos and Nneg are the numbers of positive and negative examples 
observed, respectively, and Npos + Nneg > 0. Then the probability of a positive outcome 
may be computed as: 

 
negpos

pos
pos NN

N
P

+
=)(ω  (42) 

Fig. 7. presents the machine code implementation of the space partitioning. The in-
struction set of the virtual machine contains 65 unique codes, including conditional 
jumps, RET and EXIT. Both RET and EXIT terminate execution and quit, however, 
RET is interpreted as a positive outcome while EXIT as negative. The program gene-
rator of the heuristic search assures that RET and EXIT are placed in branches sepa-
rated by a conditional jump. 
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Fig. 7. Machine code implementation of space partitioning 

Little can be said about the shape and the nature of the hyperplane that will be car-
ried out by a codelet. Since the power of the program is virtually equivalent to that of 
a Universal Turing Machine, so is the structure of the hyperplane. The output may be 
either a feature vector, with the whole spectrum of values, or a binary flag. What mat-
ters is that, if the executed concept doesn’t have internal states (e.g. no local static 
memory)2, the partitioning really applies to the input state space. 

Yet another problem may be encountered. With the growing Npos + Nneg the result-
ing probability would become insensitive to the incoming vectors. This problem has 
been solved by averaging the calculations over a window of 1000 recent vectors. As 
an interesting consequence observed on experiments, the candidate concepts exhibit-
ing volatile probabilities do occasionally fall in low reward areas and consequently 
are dropped, while the stable concepts are preferred. 

5 Reinforcement Learning 

For every concept, the next actions to be taken at time t is ai,t+1 where i=1,...,N, N is 
the number of actions currently available. Since, however, actions may be removed 
and new actions added, the maximum number is virtually unlimited. 

Both (13) and (14) TD-learning rules have been experimented with. 
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where tiQ , is the value of ai at time t, α is the learning rate, γ is the discount factor, 

1, +tir is the immediate reward at time t+1, and 
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2  The virtual machine design allows for the concepts to have local static memory and internal 

states, and there are instruction codes that access the local memory. The discussion, howev-
er, is beyond the scope of this paper. 
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where tjp ,  is the )( posP ω  at time t. It is must not be confused with the probability of 
selecting action ai at time t, which is calculated as 
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The future reward may be much larger than immediate reward and consequently may 
secure even a non-rewarding concept, like one performing a truncating function with 
no EXIT instruction. 

The probability of adding a new action, possibly replacing the least rewarding one, 
here referred to as exploration, is 
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where constQ is a predefined constant. The experiments with physical robot NAO 
have shown that most of the creative activity happens near the leaf nodes, while the 
area of stable concepts continuously extends from the root towards the higher levels. 

6 Discussion 

The application of immediate reward as the only source of reward, calculated locally at 
concept level and interpreted as intrinsic reward, does not exclude other more global 
fitness functions of intrinsic nature. In fact, it is already the parameters that control add-
ing and removing actions, and the parameters that control the learning rate and discount 
factor, that may be understood as intrinsic motivation. Equation (17) may be also inter-
preted as the motivation towards curiosity, towards exploring the unknown areas. 

Another question that has not been discussed above, and could also be contem-
plated in terms of intrinsic motivation, is the artificial economics. As was once  
mentioned, the computational overhead of evaluating the actions is also taken into 
account. A codelet that partitions the space optimally, if computationally too expen-
sive, will be dropped as not rewarding  The individual actions compete according to 
(16). In the current implementation, however, the reward, as defined in (2), is divided 
by the (averaged) execution time. It is the execution on a virtual machine that enables 
precise resources management. Consequently, our goal of maximizing self-
information gain in time may be redefined. Now the time may be understood as the 
execution time of the virtual machine code. 
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Abstract. Perceptual time is a critical aspect of how humans (and prob-
ably animals too) perceive the world. It underlies general intelligence,
particularly where that general intelligence is about interacting with the
world on an everyday basis. We discuss what is meant by the perceptual
instant, and how this may be important for (artificial and real) gen-
eral intelligence. Lastly, we briefly discuss how perceptual time might be
included in an artificial system which might display general intelligence.

1 Introduction

We believe that the nature of general intelligence is strongly intertwined with the
nature of perception. This means that artificial general intelligence (AGI) is more
than an abstract concept, but needs an understanding of the nature of percep-
tual reality in order to develop. This is an aspect of the issue of embodiment: like
many (described in http://en.wikipedia.org/wiki/Embodied_cognition,
and reviewed in [3] and [5]): we believe (but cannot prove) that embodiment
is critical for AGI. What this paper considers is one aspect of the issue of what
embodiment means in terms of the (internal) environment in which general in-
telligence (and hence also AGI) operates.

This aspect is perceptual time. This has been largely ignored in this context,
yet seems critical for (real) behaviour and hence (real) general intelligence. In
this context, real behaviour implies both real-world and real-time behaviour. In
addition understanding perceptual time may shed some light on the differences
between state-based systems and actual neural systems.

2 Perceptual Time and Perceptual Reality

One of the most difficult (and most unfashionable) questions in philosophical
neuroscience is that of the nature of the neural construction of reality. That it
has a neural construction appears to be generally agreed, yet avoiding the ho-
munculus issue seems difficult, unless the neural activity directly gives rise to
the first person experience of being1. One important aspect of this question is

1 This underlies a central issue in artificial “first person” systems: can non-neural
(electrical, for example) activity give rise to “first person” (machine?) experience?
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that of the nature of the neural construction of perceptual time. It is clear that
perceptual reality differs from physical reality, and equally that perceptual time
is also different from physical time (indeed, this goes back a long way, perhaps to
St Augustine and certainly to von Baer [9]. We argue that the nature of the dif-
ference between physical reality and perceptual reality (including physical time
and perceptual time) is critical for the nature of perception, and, further, for the
nature of our everyday interaction with the world. We believe that understanding
certain perceptual aspects of time may help to elucidate the differences between
current computational approaches and natural generally intelligent systems.

It seems reasonable to accept that the nature of perceptual reality differs
between different animals, and from human to human, and indeed, over time for
a single person. Given that the location of the generation of perceptual reality
(including perceptual time) is in the brain, it seems reasonable to posit that
perceptual reality (including perceptual time) for humans has a neural basis.
But what is the nature of this neural basis? And how should we look for it?
Further, if we can identify and even understand the nature of the neural basis in
humans or animals, what are the implications for artificial general intelligence?
What aspects of it can be re-created in non-neural (e.g. electronic) systems?

Related questions arise for general intelligence. Firstly should one be seeking a
specific physical location of the general intelligence, or should we consider this as,
in some sense, emerging from the whole brain? Secondly, whatever the answer
to the previous question, how should we seek to understand how it operates
(investigating how some part of the brain is supporting general intelligence, or
alternatively investigating the way in which general intelligence arises from the
whole brain)? That is, what is the nature of the relationship between these
physical aspects and actual intelligence? We may look for specific structures.
Taylor (for example [13]) has suggested that it is to be found in the parietal lobes,
although in later papers (e.g. [15], [14]) he moves away from specific locations.
Alternatively, we may consider the overall nature of the brain, whether that
be its constitution as a very large number of highly interconnected neurons, or
in the nature of ionic and neurotransmitter (etc.) interactions within the brain.
Finding these physical underpinnings is difficult enough, yet connecting them on
to the nature of general intelligence (or awareness, or consciousness or whatever)
seems even more difficult.

Because of the difficulty of this problem, we restrict ourselves to considering
perceptual time: we believe that there may be lessons from this area for the study
of (real) general and artificial general intelligence, and perhaps of the difference
between Turing (state-based) machines and neural systems. Further, time is a
central issue, because our every sensation, our every action, and that of all living
creatures is bound up in time, both physical (external) and perceptual (internal).

3 Time, Events, and the Perceptual Instant

Time, from a physicists viewpoint, is considered as a spatial dimension though
which we travel. Each instant is a point, and the points are continuous (or
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perhaps divided from each other by a very small amount: 5.39× 10−44 seconds:
see http://en.wikipedia.org/wiki/Planck_time), and form a 1 dimensional
line. Yet our experience of time is very different from this: we experience it
as episodes, each with some duration, possibly overlapping, but retaining their
order, perhaps inherited from the (underlying) physical time.

One view of perceptual time is of events, each occurring at some “point” in
time. Events have been discussed in many contexts, ranging from events in Mil-
ner’s calculus of communicating systems [8], to synchronising communication in
Hoare’s Communicating Sequential Processes [6], and the various systems de-
veloped from them, such as Σ-algebras, to more generalised views of events, as
discussed in the chapters of a recent conference book (From Event-Driven Busi-
ness Process Management to Ubiquitous Complex Event Processing (EDBPM
2010): see [2]). There are many candidates for events in neural systems, from the
release of a neurotransmitter vesicle, to the arrival of a single spike at a synapse,
to the initiation of a movement.

Perceptual events are always over some length of time: nothing can happen
within a physicist’s point of time. As Dunne noted in 1925 “attention is never
really confined to a mathematical instant. It covers a slightly larger period.” [4]
chapter 22.

The duration of the present instant (called “the minimum duration of the
conscious present” by Schaltenbrand [11], or the specious present by Clay, re-
named the mental present by Whitrow [17]) seems to have two rather different
interpretations. On the one hand, there is a lower bound below which the present
seems not to be divisible: this is set to about 40ms by von Baer [10], though it
is possible to distinguish events closer than this if presented auditorially [11]:
however, it is the case that continually presented auditory pulses fuse into a
tone at about 18 presentations/second, and continually presented (similar) im-
ages fuse into apparent movement at about 20 Hz, suggesting some cross-modal
integration time of 40 to 50ms [10]. Such a time period appears to correlate well
with certain neural oscillations, such as those found in local field potentials, and
may relate to temporal and cross-modal integration (see section 6.1).

Clearly, such perceptual instants are not coded by a purely spatial neural
representation, but by one that extends over time.

Yet although we can perceive time as a sequence of events, our perception of
time is not as a sequence of such instants. Poppel discusses a longer division of
time, particularly in the context of pre-semantic temporal integration, and this
he estimates at about 3 seconds [9][10][19]. This longer time period seems to be
integrated at a higher level. This longer temporal integration period is associated
with conscious perception [9].

4 Time and State

The perceptual views of an instant discussed above differ from a simple temporal
ordering of events because the instants extend across time. This means that it is
no longer possible to take a “snapshot” of the system. If events occur as points

http://en.wikipedia.org/wiki/Planck_time
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in time, then assuming no further interactions with the system’s environment,
this snapshot of state determines what will happen in the future to the system.
Synchronous logic systems have this property (and very useful it is as well, en-
abling deterministic computation to be carried out). When events (and percepts
are internal events) are spread across time, it is no longer clear what might be
meant by such a snapshot.

In general, asynchronous logic systems do not generally have this snapshot
property (and a great deal of work is often carried out to ensure that real
computer systems which have asynchronous components behave like their syn-
chronous counterparts). There is a realisation that asynchronous operation can
bring its own advantages, but the mechanisms of taming this power have not
yet, in general been found [1]. Can we use a synthetic version of a perceptual
view of time to achieve this?

Real neural systems are highly asynchronous. They do not really have a us-
able instantaneous state: if, as seems likely, the spikes emitted by neurons are
critically important, it is the pattern of spikes (over time, and over the set of neu-
rons) that have been emitted that matters, so that any equivalent of state would
need to consider the spikes over some period of time. But over how long? And
should other matters (concentrations of different neurotransmitters and neuro-
modulators, depolarisation of patches of dendrite, for example), also be taken
into account? It becomes impossible to know where to stop: as Hong [7] notes,
even single interactions between molecules are stochastic because of the rapid
thermal movement of the active areas of the interacting molecules.

This suggests that the lack of an identifiable instantaneous state in neural
systems illustrates a specific difference between computer and neural systems.
One might argue that computer systems can model anything, including systems
which have this absence of instantaneous state, and asynchronous nondeter-
minism, and while that may be true, it would require a very large amount of
electronic circuitry to model even a single neuron to any degree of accuracy.

5 Time and Context

Context has long been known to be vital for interpreting data. Context may
be spatial, temporal, or both. In a computer program, context is (generally)
implemented using the internal state (values of variables) within a program, so
that the interpretation of some particular datum will depend on the explicitly
adjusted values that make up this state. In non-algorithmic modes of computa-
tion, (such as those of neural networks and reinforcement learning), context is
made up from the values of the different elements in the system. For example, in
trained neural networks, the eventual interpretation of some input will depend
on the dataset used to train the system (as well as the actual learning rule and
architecture of the system). Thus a particular data element is interpreted in the
context of the training set.

Context arises at many levels in both real and artificial neural systems. For
example, in an integrate-and-fire neuron (which fires when its activity reaches a
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certain threshold level, after which the activity is reset), there is an activity level
context which will determine whether some particular input results in the neuron
reaching the firing threshold. In a pure integrate-and-fire neuron, this is simply
the sum of all the inputs received since the last time the neuron fired. In a leaky
integrate-and -fire (LIF) neuron, the activity has a time constant over which it
leaks away, so that the current activity is a function particularly of inputs that
have been received recently. In a similar way, Temporal Difference (TD) systems
and reinforcement learning systems which gradually (and geometrically) discount
recent events and changes also have a temporal context which values more recent
inputs more highly than less recent ones.

In real neural systems, the neuronal membrane is leaky, but is not a point-
like entity as it is in LIF neurones. Thus there is both a local temporal context,
and local spatial context. Further, the strength of this context can be amplified
for example through the way in which NMDA synapses work (because the local
depolarisation level affects the presence or absence of Mg+ ions that permit these
channels to open). At a slightly larger scale, the retina uses the context of both
spatially and temporally neighbouring retinal neurones (through the action of
the inner and outer plexiform layers) to determine its output, and this is partly
responsible for our ability to operate in very variable light levels. Blackboard-
based AI systems use the blackboard itself as context: in this case, the particular
temporal and spatial (and higher-level) contextual effects are explicit, rather
than implicit.

All of this is shows that AI (and other) systems already consider the effect of
time, generally implementing its effects through the modulating effects caused by
changes made by earlier events. These may be at many different levels: in explicit
systems (like blackboard based systems) this is entirely up to the programmer.
In implicit systems, it will depend on the different time constants within the
system: there are often many of these, ranging from those of individual neuronal
patches of membrane, to much slower effects resulting from gradual alteration
in weights, such as might occur through STDP or back-propagated delta rule
weight alteration. In section 3, we are arguing that there is a specific set of
temporal contextual constraints at work in neural systems (and that these may
well differ for different animals, and indeed, different values may be appropriate
for different tasks). The temporal context applied in the systems discussed in
this section is one way of achieving the same effect: we suggest that more careful
consideration of the neural approach to perceptual time might lead to better,
and perhaps more effective, temporal contextual modulation.

6 Why Perceptual Time Matters for Artificial General
Intelligence

Time, in terms of ordering of inputs and outputs, has always been included in
AI and AGI systems. It is true that systems for interpreting or classifying static
images can ignore time: but clever though these may be, they are not intelligent
systems. Only simple pattern discrimination systems such as back-propagated
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delta networks or radial basis function networks consider patterns one by one,
without reference to their ordering. Further, each individual pattern is presented
all at once. But even in these cases, when training is taking place, the order of
presentation may matter, as the internal parameters are gradually altered in a
non-linear way as a result of each patterns being presented (unless specific care
is taken to avoid this, as occurs in so-called batch-processing weight update).

Taking general intelligence to be some mixture of common sense behaviour in
a known or unknown environment and maintaining an organisms’s overall goals
under the vagaries of an unpredictable environment, it is clear that time plays a
critical part. As discussed in section 5, this is not new, but how might the ideas
on the perceptual instant in section 3, and on the effect of time on state-based
machines (section 4), impact on the design of generally intelligent systems?

6.1 The Perceptual Instant

We consider the perceptual instant first: as noted in section 3, there seem to be
two gradations of perceptual instant, one being around 40 to 50ms, and the other
considerably longer at about 3 seconds. It seems possible that the faster of these
relates to the way in which local oscillations occur in neural columns, and this
may well be critical for cross-modal integration of senses. The timescale is within
the range of beta oscillations (15 to 30Hz: i.e. 33 to 66ms period), and there are
suggestions that these and gamma oscillations (30-80Hz: 12.5 to 33ms period)
may be implicated in sensory integration [16]. These oscillations are strongly
tied to the architecture of the cortical column, and specific mechanism related
to the interplay between excitatory and inhibitory neurones have been suggested
to underlie this behaviour [18]. Further, these oscillations have been suggested to
be critical for encoding relations and binding different aspects of percepts [12].

It thus seems likely that this fast perceptual instant is closely linked to the
columnar architecture of the cortex, and how it fuses the different aspects of
sensory perception. Thus it is likely to be critical in human perception and
perhaps human general intelligence. However, this does not necessarily imply
that it is important for artificial general intelligence. Yet there are undoubtedly
links between the nature of our perceiving organs, the coding of these percepts
as they are converted from the actual transducer, through the brainstem, to the
cortex, and the timescale of the sensory integration. These strongly colour our
perception of our environment. One result that this has, is that the key percepts
that humans use, the percepts that drive our interaction with our environment,
take place (at least at one level) over this timescale. One may argue that this
may be either a cause or an effect: for example, visual and auditory effects from
a remote stimulus (like someone hitting a nail with a hammer) 10 metres away
arrive about 30ms apart. Processing at this timescale influences what we consider
to be general intelligence, at least in terms of the percepts that we expect to
contribute to it.

Although there are slow oscillations within the cortex, they do not appear
to be correlated with particular neuronal structures (beyond the cortex), or
behaviour (beyond REM sleep): see http://www.scholarpedia.org/article/

http://www.scholarpedia.org/article/Thalamocortical_oscillations
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Fig. 1. Schematic of time course of integration of information. Lines a and b show the
integration that is implied by reinforcement or temporal difference learning, where the
“current” time is the most important, and there is an exponential (a) or linear (b) drop
off in the importance applied to previous information. Lines c and d show integration
of recent time equally over a period, with a sudden drop-off in c, and a more gradual
drop-off in d. We note that there is always a short delay between the current time and
any information being used.

Thalamocortical oscillations . Perhaps this is not surprising, as the longer
perceptual instant seems to be more like a travelling window, gathering together
a number of shorter perceptual instants, than a three-second tiling of physical
time. As noted in section 5, many models of neural systems do take time into
account. However it tends to be a travelling exponentially decaying mechanism
that is used, rather than a more even one, illustrated figure 1a and 1b . What lines
c and d in figure 1 suggest, is that up to a certain time into the past, recent events
may be treated equally in terms of their contribution. Line c suggests a sudden
change after a particular length of time, which is perhaps inappropriate, but line
d suggests that there could be a decreasing contribution for some longer time.
Such an integration interval does seem to coincide with a common-sense view
of the world, where events that occurred in the last few seconds do contribute
equally to the current state of the world, with events that happened a little longer
ago having a smaller (or perhaps already acknowledged) effect. (Again one can

http://www.scholarpedia.org/article/Thalamocortical_oscillations
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argue that this might be either cause or effect: the entities that matter to us in
the world are grouped into this timescale, and therefore our time percepts work
in this way: or our time percepts work in this way, and this results in the entities
that matter to us in the world being grouped at this timescale.)

6.2 Implications for Implementations

Given that the nature of perceptual time is an important aspect of human general
intelligence, we are now interested in how to build a system whose percepts
and reactions to percepts bear a resemblance to the timings used in human
intelligence.

In section 5 we noted that temporal coding (which is certainly required for the
types of perceptual time that we are discussing) means that there is no clear-cut
notion of instantaneous state. What implications does this have for simulating
such systems on standard (state-based) computers, or for implementing artifi-
cial general intelligence which includes perceptual time? It means that whatever
representations are actually used, they must be representable as a state vector.
Thus the simulation necessarily loses some accuracy, and quite possibly repre-
sents entities using different mechanisms. Whilst it is possible that these result
in deep-seated differences between the capabilities of neural and computational
systems2, we believe that it should be possible to create a system programatically
that can emulate perceptual time.

What might such a system consist of?
Such a system would be essentially asynchronous (though if implemented on a

digital computer, it would be implemented on synchronous logic). It would have
a number of parallel processing entities, processing different modalities. Note
that each modality might be associated with a particular sense, but that there
might well me multiple modalities per sense (for example, one might choose to
process the where and the what information both in auditory and visual sensory
systems separately). These would be integrated over a 30 to 50 ms timescale. This
would model (in a functional sense) the cortical columns beta band oscillation,
but would almost certainly not be implemented in the same way. (Of course,
this implies a better understanding of the nature of the processing in these
cortical columns, beyond that in [16] and [18]). This would enable a machine-
based representation that matched the shorter version of the perceptual instant.
It would aim to group together processed sensory information in pieces that
represent events in the environment that take place over these timescales. (Of
course, for a completely different, perhaps virtual, environment, the timescales
might also be completely different.)

It is less clear how one should implement the three second long perceptual
instant (and we note that it might not be a three second long perceptual in-
stant in a different type of environment). We have no clue as to what the neu-
ral representation might be. One possibility would be to consider a short-term

2 See http://www.cs.stir.ac.uk/~lss/recentpapers/lss_edinburgh_oct2007.pdf
for more discussion of this.

http://www.cs.stir.ac.uk/~lss/recentpapers/lss_edinburgh_oct2007.pdf
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blackboard-like store which is refreshed from the short-term perceptual instant,
but which loses information after about three seconds. This would be used to
mirror the moment-to-moment awareness of the world in which we normally live.
More likely, it would integrate the shorter perceptual instants over a dynamically
varying period, reflecting the changing circumstances of the AGI system.

Adaptation to the environment would use something like Reinforcement Learn-
ing or Temporal Difference Learning, but with a discount function more like that
in figure 1c or 1d. Action choice would take place at a number of temporal levels,
one corresponding to the fast integration (30 to 50ms), one to the slower but
immediate temporal percept, at about 3 seconds, and one related to slow con-
sidered planning over a longer timescale. (Again we note that these timescales
relate to human-level interaction with the real environment, but might be quite
different in other environments.) One might consider the fastest of these to be
like reactive actions, the middle one to be more like the immediate actions that
humans take, and the slowest one to relate to the fulfilment of longer term plans
and goals.

7 Conclusions

It is difficult to imagine an artificial general intelligence operating in a real
environment unless it can process events and percepts in time in a way which at
least bears some relation to how events and percepts are processed in time by
real intelligent systems. Most of the activities which animals (and presumably
artificially generally intelligent entities) perform take place over time, whether
that be opening a door, navigating a route, telling a story, playing music or any
other activity. We have looked at what appear to be the basics of human time
perception, and tried to show how these might be transferred to machines. A
great deal more work needs to be done to actually implement such a system,
and we have tried to show what might be initially required.
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Abstract. We present the transparent neural networks, a graph-based
computational model that was designed with the aim of facilitating hu-
man understanding. We also give an algorithm for developing such net-
works automatically by interacting with the environment. This is done
by adding and removing structures for spatial and temporal memory.
Thus we automatically obtain a monolithic computational model which
integrates concept formation with deductive, inductive, and abductive
reasoning.
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1 Introduction

Artificial General Intelligence (AGI) aims for computer systems with human-like
general intelligence [1]. Thus, just like humans, AGI systems should be able to
reason and learn from experience by interacting with the environment. This leads
to desiderata on AGI systems that concern developmental processes and auto-
mated reasoning. It has been suggested that to build intelligent machines, it is
necessary to use developmental methods where a system develops autonomously
from its interaction with the environment [2][3]. This lead to the research area of
developmental (or epigenetic) robotics, where models based on biological prin-
ciples are used either to describe human cognitive development or to come up
with novel principles for AI. The explicit goal of the area is to design cognitive
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architectures that can autonomously develop higher cognitive abilities. However,
most research so far has focused on sensory-motor development and social in-
teraction and has mainly ignored higher cognitive functions such as reasoning.
Reasoning is commonly analyzed as in the following quote from [4]:

Three notable hallmarks of intelligent cognition are the ability to draw
rational conclusions, the ability to make plausible assumptions and the
ability to generalise from experience. In a logical setting, these abili-
ties correspond to the processes of deduction, abduction, and induction,
respectively.

These problems have been studied thoroughly in traditional AI with symbolic
methods such as automatic theorem proving [5], sub-symbolic methods such as
artificial neural networks (ANNs) [6], probabilistic methods such as Bayesian
networks [7], and many others [8]. These approaches typically focus on a proper
subset of the above-mentioned types of reasoning. For instance, the symbolic
approach is mainly concerned with deductive reasoning and the sub-symbolic
approach with inductive reasoning. This might suggest a hybrid approach, which
integrates symbolic and sub-symbolic methods such as ACT-R [9], conceptual
spaces [10], or neural-symbolic systems [4]. Hybrid approaches, however, tend
to be limited by the difficulty of designing interfaces for complex interaction
between the different subsystems.

Human reasoning processes seem to be tightly integrated with concept forma-
tion: new concepts are created continuously and become integrated with previous
knowledge and involved in new reasoning processes. Looking at developmental
psychology, evidence is accumulating that infants and children use similarity-
based measures to categorize objects and form new concepts [11].

For these reasons, AGI could potentially benefit from a developmental system
which integrates concept formation, deduction, induction, and abduction. This
is the goal of the transparent neural networks (TNNs), which are introduced
in sections 2 and 3. Section 4 contains an analysis of the TNN model from the
perspective of concept formation and automated reasoning and Section 5 is a
conclusion.

2 Transparent Neural Networks

The TNN model arose out of an attempt to create a computational model that
simultaneously accommodates two previously developed models of human rea-
soning: one for deductive reasoning about propositional logic [12], the other for
inductive reasoning about number sequence problems [13]. In fact, both of these
models are based on term-rewriting systems. In this section we define the TNNs
together with their computation rules and show how they can be used for han-
dling spatial and temporal memory.

Traditional ANNs tend to be intransparent in the sense that it is virtually
impossible for a human to understand how they work and predict their compu-
tations and input-output behavior. This holds already for feed-forward networks
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ACTUATOR

REVERB(5)

SENSOR

Fig. 1. Network modeling the tentacle of a sea anemone, which keeps retracting for 5
time units after being touched

and still more for recurrent networks. Therefore, they are generally not suitable
for deductive reasoning and applications that are safety-critical.

TNN is a restricted type of ANN, designed with the aim of facilitating human
understanding. The TNN model was heavily inspired by neuroscience, but since
our only concern here is AGI, we feel free to deviate as much as we want from
any existing biological or computational model.

2.1 Definition

Definition 1 (TNN). A TNN consists of the following parts:

– A set D of labeled nodes. The labels are SENSOR, ACTUATOR, MIN,
MAX, AVERAGE, SPACE(μ, σ), DELAY(n), and REVERB(n). Here μ and
σ are real numbers and n is a natural number.

– A cycle-free relation R ⊂ D2, whose elements are called connections.

Restriction: The labels ACTUATOR, SPACE, DELAY, and REVERB are only
allowed on nodes with exactly one predecessor.

In this paper we use the graphical convention that connections point upward in
all figures. Examples of TNNs are given in Figures 1 and 2.

AVERAGE

AVERAGE

SENSOR SENSOR SENSORSENSOR

AVERAGE

SENSOR SENSOR

Fig. 2. Network modeling a gustatory organ for sweetness. Information on the local
level is summarized and passed on to higher levels. A similar network with MAX nodes
instead of AVERAGE nodes could model a sensory organ for pain.
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2.2 Environments

Definition 2 (Frame). Let V be the set of real numbers in the interval [0,1].
A frame for a TNN with sensor set S is a function f : S → V .

Definition 3 (Environment). Let T be the set of natural numbers (modeling
time). An environment for a TNN with sensor set S is a function e : S×T → V .

Frames model momentary stimuli and environments model streams of stimuli
generated by the surrounding world (which might include the TNN itself). For
instance, an environment could represent the taste and smell of an apple, followed
by the sound sequence [æpl], followed by the visual sequence “6 · 8 = 48”.

2.3 Activity

In contrast to the standard ANN model, our model has two types of activity.
This enables us to model perception and imagination separately. For instance,
it enables us to distinguish between the perceived and the imagined taste of an
apple. It also enables us to model the perception of the sequence 2, 5, 8, 11 and
the imagination of the next number 14.

The inspiration behind the two types of activity comes from the distinction
between (i) distal and proximal dendritic signal processing and (ii) inner and
outer senses [14].

Let N(μ,σ)(x) = exp{−(x − μ)2/σ2}. This is the Gaussian density function
with mean μ, standard deviation σ, and max value 1. Let A be a TNN with
sensor set S and let e : S × T → V be an environment. Then the real activity
r : D × T → V and imaginary activity i : D × T → V are defined as follows.

Definition 4 (Real activity). Let r(a, 0) = 0 and let r(a, t+ 1) =

– e(a, t) if a is labeled SENSOR
– min{r(a′, t) : (a′, a) ∈ R} if a is labeled MIN
– max{r(a′, t) : (a′, a) ∈ R} if a is labeled MAX
– average{r(a′, t) : (a′, a) ∈ R} if a is labeled AVERAGE
– r(a′, t) if a is labeled ACTUATOR and (a′, a) ∈ R
– N(μ,σ)(r(a

′, t)) if a is labeled SPACE(μ, σ) and (a′, a) ∈ R
– r(a′, t− n) if a is labeled DELAY(n) and (a′, a) ∈ R
– max {r(a′, t′) : t− n ≤ t′ ≤ t} if a is labeled REVERB(n) and (a′, a) ∈ R.

SPACE nodes are used for modeling spatial memory. They output the value 1 if
and only if the input is identical to a certain stored value μ. DELAY nodes and
REVERB nodes are used for modeling temporal memory. DELAY nodes delay
the signals before releasing them, whereas REVERB nodes make the signals
linger on (reverberate). The REVERB label was inspired by reverberation among
neuronal pools [14].
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1 2 3 4 5

MIN

SPACE

1 2 3 4 5

SPACE SPACE SPACE SPACE

Fig. 3. Snapshot modeling apple taste. The subgraphs 1-5 model sensory organs for
the five basic tastes sweetness, sourness, bitterness, saltiness and umami. For instance,
subgraph 1 could be the graph of Figure 2. The top node represents a combination of
memories of the basic tastes. This network can be used for detecting apple taste.

Definition 5 (Imaginary activity). First we define an auxiliary function p,
which will be used for keeping track of probabilities. Let p : D×T → V be defined
by p(b, 0) = 0 and

p(b, t+ 1) = p(b, t) +
r(b, t+ 1)− p(b, t)

t+ 1
.

Let i(a, 0) = 0 and i(a, t+ 1) =

– min(1,
∑{r(b, t) · p(b, t) : (a, b) ∈ R}) if b is labeled MIN, MAX, or AVER-

AGE.
– i(a, t) otherwise.

Note that imaginary activity is defined in terms of real activity in the past and
at present. Also note that imaginary and real activity propagate in opposite
directions. The real activity is“mirrored” back in the form of imaginary activity.
The definition of imaginary activity was inspired by (i) mirror neurons and
(ii)“two-way streets” in cortex [14].

2.4 Memory Structures

Now let us show how spatial and temporal memory can be modeled.

Definition 6 (Memory). A memory of a node a is a node b which is labeled
SPACE and satisfies R(a, b).

Memories can be used for recording and recalling previously perceived values.
For instance, the sweetness of a collection of apples can be recorded by a certain
memory node and represented by a normal distribution.

Definition 7 (Snapshot). Let Ω be a set of nodes. A snapshot of Ω is a
structure consisting of (i) a memory a′ of a, for each a ∈ Ω, (ii) a node b
labeled MIN, (iii) connections R(a′, b), for each a ∈ Ω.

An example of a snapshot is given in Figure 3.
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MIN

DELAY(2) DELAY(1)

æ p

DELAY(0)

l

Fig. 4. Episode modeling the spoken word [æpl]. The bottom nodes may either be
specialized sensors for the indicated phonemes or structures representing previously
learned phonemes. A similar structure could represent the written word ”APPLE” or
the fact ”6 · 8 = 48”.

MIN

REVERB(10) REVERB(10)

æpl Apple

Fig. 5. Network modeling the co-occurrence of the spoken work [æpl] and apple taste.
Here the node marked æpl could be the top node of Figure 4 and the node marked
Apple the top node of Figure 3. The MIN node is activated if æpl and Apple are
activated simultaneously modulo 10 time units. Note that real activity in [æpl] causes
imaginary activity in Apple and vice versa.

Definition 8 (Episode). Let a0, . . . , an be snapshots. An episode joining a0, . . . ,
an is a structure consisting of (i) nodes b0, . . . , bn labeled DELAY (n), . . . ,
DELAY (0), respectively, (ii) a node c labeled MIN, (iii) connections R(ai, bi), for
all 0 ≤ i ≤ n (iv) connections R(bi, c), for all 0 ≤ i ≤ n.

An example of an episode is given in Figure 4. REVERB nodes can be used
when the temporal conditions relate to time intervals, as in Figure 5. Note that
REVERB nodes can be modeled as a MAX of DELAY nodes.

3 Organisms

Now we shall define the notion of organism and give a basic algorithm for gen-
erating organisms.

3.1 Definition

Definition 9 (Organism). An organism is a sequence of TNNs (At)t∈T such
that

– A0 contains no nodes labeled SPACE, DELAY or REVERB.
– A0 is a substructure of Ai, for all i,
– if a ∈ Ai is labeled SENSOR, then a ∈ A0, for all i > 0.

A0 is called the genotype and the Ai are called phenotypes for i > 0.
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Let A0 be any TNN which does not contain any SPACE, DELAY or REVERB nodes.
Let At+1 be obtained from At as follows.

1. (Update probabilities) Let p′(a, t) be like p(a, t), with the difference that the ob-
servations starting at the time when a was created. Then update this function as
in Definition 5, mutatis mutandis.

2. (Make deletions) Let a1, . . . , ak be the nodes of At − A0 that satisfy p′(ai, t) < c.
Here c ∈ V is a fixed threshold value. Then delete each ai along with all of its
connections.

3. (Make additions) Proceed as follows:

(a) Case: No complete snapshot is active at t.
i. Subcase. All maximal nodes have memory nodes that are active at t. (Add

snapshot) Then add a complete snapshot by connecting all active SPACE
nodes to a MIN-node.

ii. Subcase (otherwise). Some maximal nodes lack memory nodes that are
active at t. Let a1, . . . , ak be all such nodes. (Add memories) Then add
memories b1, . . . , bk to a1, . . . , ak, respectively. Let the label of bi be
SPACE(r(ai, t), 0.25).

(b) Case (otherwise): A complete snapshot is active at t. Then do both of the
following.
i. (Update snapshots) Let b1, . . . , bk be the SPACE nodes that are active

at t and let ai be the unique node satisfying R(ai, bi). Suppose the label
of bi is SPACE(μi,t, σi,t). Then compute the updated parameters μi,t+1

and σi,t+1) by updating the old parameters with respect to the new data
points r(ai, t) by means of Hansen’s formula.

ii. (Add episodes) Suppose there is an episode, which is active at t and joins
the complete snapshots a1, . . . , an (where n ≤ 9). Then, unless it already
exists, add an episode joining a1, . . . , an, a.

Fig. 6. Algorithm for developing organisms automatically. The algorithm uses Hansen’s
formula [15] for computing the mean and standard deviation incrementally.

Organisms model biological neural networks that develop over time by adding
and deleting memory structures (learning and forgetting). Because of the two
last conditions of Definition 9, each organism has a fixed set of sensors. Therefore
the notion of environment extends to organisms in a straightforward manner.

3.2 Construction Algorithm

Next we shall give an algorithm for developing organisms automatically in a
given environment. First we need to introduce some auxiliary concepts: (i) A
node a is active at t if r(a, t) ≥ 0.95; (ii) a node a ∈ A0 is maximal if there
is no node b ∈ A0 such that (a, b) ∈ A0; (iii) a snapshot is complete if it joins
all maximal nodes (of A0). The algorithm is given in Figure 3.2. Here are some
remarks on the algorithm.
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1. The genotype A0 can be constructed, e.g., by modeling an existing biological
or artificial network. It is a tabula rasa: a neural structure that has not yet
formed any memories.

2. The step Make deletions serves the (productive) purpose of preserving mem-
ory structures that represent recurrent phenomena, while eliminating those
that represent non-repeating coincidences. It was inspired by the forgetting
mechanism of natural networks (”use them or lose them”), c.f. the decay
theory of synapses [16].

3. The steps Add snapshot and Add episode were inspired by the Hebbian
learning rule (”neurons that fire together wire together”) [14].

4. The numerical values appearing in the algorithm can be changed freely. In
particular this holds for the start value of standard deviation when only one
data-point is available (0.25) and the maximal length of episodes (10).

4 Concept Formation and Reasoning

In this section we analyze the TNN framework from the perspective of concept
formation and reasoning.

Concept Formation. The algorithm learns concepts from examples. This holds
for sub-symbolic concepts, such as the taste of an apple (cf. Figure 3), and for
symbolic concepts, such as the spoken word [æpl] (cf. Figure 4). Snapshots are
formed on the basis of one example by means of Add snapshot and updated on
the basis of similar examples by means of Snapshot update.

Concept Deletion. Concepts that are not active frequently enough are deleted
by the algorithm. Conversely, repetition will make the concepts stay longer.

Classification. Snapshots and episodes serve as classifiers. In principle, once
a pattern of stimuli has occurred and the corresponding snapshot or episode
has been formed, it will be recognized every time it is encountered in the fu-
ture. The robustness of these classifiers is determined by the values of σ of the
SPACE nodes, which are in turn determined by experience. Another factor that
contributes to robustness is the insensitivity of the functions MIN, MAX and
AVERAGE to permutations of the inputs.

Deductive Reasoning. A simple example of deductive reasoning is given in Figure
7, where 6 · 8 is rewritten to 48. A similar rewrite step occurs when 6 · 8 appears
as a subsequence of a complex expression (since real activity arises in the node
6 · 8 = 48 whenever the subsequence 6 · 8 becomes active). In general, deductive
reasoning, e.g. arithmetic computations and theorem-proving, can be carried out
in the TNN framework as a parallel rewrite process, based on rewrite rules that
have been learned previously.
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MIN

DELAY(3) DELAY(2)

* 8

DELAY(1)

=

DELAY(4)

6

DELAY(0)

48

Fig. 7. What is 8 · 6? Real activity 1.0 in the four leftmost bottom nodes leads to real
activity 0.8 in the top node. Imaginary activity then propagates back to all the bottom
nodes, including 48.

DELAY(1) DELAY(0)

2 3

DELAY(0)

4

DELAY(2)

1

MIN MIN

Fig. 8. What comes after 1,2? Suppose the organism has experienced both 1,2,3 and
1,2,4 before, the former more often than the latter. Then the sequence 1,2 will lead to
imaginary activity in 3 and to a lesser extent in 4.

Inductive Reasoning. A simple example of inductive reasoning is given in Figure
8, where the sequence 1,2 is being extrapolated. The same mechanism can be
used for interpolation, e.g. when reconstructing missing letters in words, both
unambiguously as in ZEB?A and ambiguously as in H?T.

Abductive Reasoning. Abductive reasoning (for inferring possible causes) is per-
formed via the interplay between real and imaginary activity. An example is
given in Figure 9.

MIN

REVERB(10) REVERB(0)

Lightning Thunder

Fig. 9. Thunder appears within 10 time units after Lightning. Real activity in Thunder
causes imaginary activity in Lightning and vice versa.

5 Conclusion

We presented a developmental model, which integrates concept formation and
basic deduction, induction, and abduction. A version of this model was imple-
mented in the context of an MSc project [17].
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Abstract. We consider extending the AIXI agent by using multiple (or
even a compact class of) priors. This has the benefit of weakening the
conditions on the true environment that we need to prove asymptotic op-
timality. Furthermore, it decreases the arbitrariness of picking the prior
or reference machine. We connect this to removing symmetry between
accepting and rejecting bets in the rationality axiomatization of AIXI
and replacing it with optimism. Optimism is often used to encourage
exploration in the more restrictive Markov Decision Process setting and
it alleviates the problem that AIXI (with geometric discounting) stops
exploring prematurely.

Keywords: AIXI, Reinforcement Learning, Optimism, Optimality.

1 Introduction

In this article, we aim to define agents that adapt to asymptotically act optimally
for as large a class of environments as possible. This task is fundamental for Ar-
tificial General Intelligence with many authors [LH07] using it as a definition of
intelligence. In [Hut05] the AIXI agent is defined as a Bayesian reinforcement
learning agent with particular attention being put on using the class of all com-
putable environments as the hypothesis class. This agent has some interesting
optimality properties. Besides maximizing expected utility with respect to the
a-priori distribution by design, it is also Pareto optimal and self-optimizing when
this is possible for the considered class. It was, however, shown in [Ors10] that
at least with computable horizons, AIXI is not guaranteed to be asymptotically
optimal for all computable (deterministic) environments. Furthermore, [LH11]
shows that no agent can be.

Here we use multiple priors (or more generally multiple a-priori environments)
and the principle of optimism to define more explorative extensions of the AIXI
agent with the aim of being able to prove asymptotic optimality under weaker
conditions on the true environment. In other words, the agent can adapt success-
fully to a larger class of environments. The more priors used the more explorative
the agent will be; indeed we can even define the agent for all priors though the
convergence results will not apply and the agent can end up having no preference
between any of the actions in any situation. The meaningful cases include having
a compact class of strictly positive weight sequences wν , ν ∈M for a countable

J. Bach, B. Goertzel, and M. Iklé (Eds.): AGI 2012, LNAI 7716, pp. 312–321, 2012.
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hypothesis class M. We can, for example, consider a sequence αν > 0 and the
set of mixtures with weights satisfying ων ≥ αν and

∑
ν wν = 1.

In Section 2, we discuss the rational betting theory that has recently been
used to derive AIXI [SH11a] and in Section 3, after introducing the reinforcement
learning agent setting, we describe how the betting theory leads to active agents.
Furthermore, in Section 2, we weaken the assumptions to introduce (in Section
3) our extended AIXI agent. In [SH11a], rationality axioms were presented that
lead to the AIXI agent. Here we are going to extend AIXI by breaking the
symmetry between accepting and rejecting bets in an optimistic fashion and as
a consequence get a multiple-prior model. In the active AI setting where decisions
affect the environment, the optimism makes the agent more explorative, which
improves its chances of finding an optimal policy. Optimism has previously been
used to encourage exploration in the more restrictive setting of Markov Decision
Processes [SLL09]. Here we study general countable classes of environments.

In Section 3.2, we present our main results on asymptotic optimality under two
conditions on how the a priori environment(s) relate to the true environment. If
the a-priori environment ξ dominates an environment ν in the sense that ξ(·) ≥
wνν(·), then we know from the Blackwell-Dubins theorem [BD62] that ξ will
almost surely merge with ν in total variation distance under the followed policy.
This is, however, not enough for achieving asymptotic optimality. We will say
that ξ is optimistic for ν, if the expected value of following an optimal policy in ξ
is always higher than it is in ν. If ξ is both dominating ν and optimistic for ν, then
almost surely AIXI asymptotically achieves optimality. In this article, we extend
the class of environments that we can prove optimality for by replacing ξ with
a compact class of a-priori environments Ξ and decisions are taken according to
the policy that maximizes the expected value for the environment inΞ that is the
most optimistic in the current situation. To guarantee asymptotic optimality we
only need to assume that the optimistic environment is also optimistic relative
the true environment. In a separate article [SH12] we remove those two conditions
and replace them with the condition that the true environment lies in the class
of a-priori environments, which then essentially serves as a hypothesis class.

2 Optimistic Rational Choice

In [SH11a, SH11b], AIXI was derived from rationality axioms inspired by the
traditional literature [NM44, Ram31, Sav54, deF37] on decision making under
uncertainty. Here we suggest replacing a symmetry condition between accepting
and rejecting bets with optimism. The new weaker condition says that if we
reject one side of a bet we must be prepared to accept the other side. The prin-
ciple of optimism results in a more explorative agent and leads to multiple-prior
models. Multiple-priors are also used in an approach sometimes called imprecise
probability [Wal00], though our work is distinguished from the imprecise prob-
ability approach by actually making a choice among the priors. Axiomatics of
multiple-prior models has been studied by [GS89, CMKO00]. These models can
be understood as quantifying the uncertainty in estimated probabilities by as-
signing a whole set (or range) of probabilities. In the passive prediction case when
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the decisions do not affect the environment, one often combines the multiple-
prior model with caution to achieve more risk averse decisions [CMKO00]. In
the active case, we need to take risk to generate experience that one can learn
successful behavior from and, therefore, optimism is appropriate.

2.1 Bets

The basic setting used in [SH11a] was inspired by the betting approach of
[Ram31, deF37]. In this setting we are about to observe an event from a fi-
nite (or countable) alphabet and we are offered a bet (contract) x = (x1, ..., xn)
where xi ∈ R is the reward received for the outcome i. We first introduce the
setting of [SH11a] and its main theorem for the finite case.

Definition 1 (Bet). Suppose that we are going to observe an event whose out-
come is represented by a symbol from an alphabet with m elements. A bet for
such an event is an element x = (x1, ..., xm) in R

m and xj is the reward received
if the outcome of the event is the j:th symbol.

Definition 2 (Decision Maker, Decision). A decision maker is a pair of
sets Z, Z̃ ⊂ R

m which defines exactly the bets that are acceptable Z and those
that are rejectable Z̃. In other words, a decision maker is a function from R

m to
{accepted, rejected, either, neither}. The function value is called the decision.

Next we present the axioms and representation theorem from [SH11a].

Definition 3 (Rationality). We say that the decision maker (Z, Z̃) is rational
if

1. Z ∪ Z̃ = R
m

2. x ∈ Z ⇐⇒ −x ∈ Z̃
3. x, y ∈ Z, λ, γ ≥ 0⇒ λx+ γy ∈ Z
4. ∀k xk > 0 ⇒ x ∈ Z \ Z̃
Theorem 1 (Existence of Probabilities, Sunehag&Hutter 2011). Given
a rational decision maker, there are numbers pi ≥ 0 that satisfy

{x |
∑

xipi > 0} ⊆ Z ⊆ {x |
∑

xipi ≥ 0}. (1)

Assuming
∑

i pi = 1 makes the numbers unique and we will use the notation
Pr(i) = pi.

Axiom 1 in Definition 3 is really describing the setting rather than an assump-
tion. It says that we must always choose at least one of accept or reject. Axioms
3 − 4 were motivated as follows in [SH11a]. If x ∈ Z and λ ≥ 0 then we want
λx ∈ Z since it is simply a multiple of the same bet. We also want the sum of two
acceptable bets to be acceptable. If we are guaranteed to win money we accept
the bet and we are not prepared to reject it. Axiom 2 is a symmetry condition
between accepting and rejecting which we are going to break in the optimistic
setting. In the optimistic setting we will still demand that if we reject x we must
accept −x but not the other way around.
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2.2 Rational Optimism

We present four axioms for rational optimism. They state properties that the
set of accepted and the set of rejected bets must satisfy. The first two relate
to optimism. The first one says that if a bet is not rejected it is accepted. The
second says that if x is rejected then −x must be accepted. In other words, if we
reject one side of a bet we must accept the opposite. This was also argued for in
the first set of axioms in the previous setting but in the optimistic setting we do
not have the opposite direction. Namely we do not say that if x is accepted then
−x is rejected. The other two axioms are about rational rejection. If we reject
two bets x and y, we reject λx + γy if λ ≥ 0 and γ ≥ 0. The final axiom says
that if the reward is guaranteed to be strictly negative we reject the bet. If the
⇒ in Axiom 2 was instead an ⇐⇒ we would have the same axioms as before,
just slightly differently expressed.

Definition 4 (Rational Optimism). We say that the decision maker Z, Z̃ ⊂
R

m is a rational optimist if

1. x /∈ Z̃ ⇒ x ∈ Z
2. x ∈ Z̃ ⇒ −x /∈ Z̃
3. x, y ∈ Z̃ and λ, γ ≥ 0⇒ λx + γy ∈ Z̃
4. xk < 0 ∀k ⇒ x ∈ Z̃ \ Z
Theorem 2 (Existence of a set of probabilities). Given a rational optimist,
there is a set P of probability vectors (pi), that satisfy

{x | ∃(qi) ∈ P :
∑

xiqi > 0} ⊆ Z ⊆ {x | ∃(qi) ∈ P :
∑

xiqi ≥ 0}. (2)

One can always replace P with an extreme set the size of the alphabet.

Proof. Properties 2 and 3 tell us that the closure ¯̃Z of Z̃ is a (one sided) convex

cone. Let P = {(pi) ∈ R
m | ∑

pixi ≤ 0 ∀(xi) ∈ ¯̃Z}. Then, it follows from

convexity that ¯̃Z = {(xi) |
∑

xipi ≤ 0 ∀(pi) ∈ P}. Property 4 tells us that it
contains all the elements of only strictly negative coefficients and this implies
that for all (pi) ∈ P , pi ≥ 0 for all i. We can directly conclude that Z ⊆
{x | ∃(qi) ∈ P :

∑
xiqi ≥ 0} and furthermore, it follows from property 2 that

{x | ∑xipi > 0} ⊆ Z for all (pi) ∈ P . Normalizing to
∑

pi = 1 does not change
anything. Property 1 tells us that Z ⊆ {x | ∃(qi) ∈ P :

∑
xiqi ≥ 0}. ��

2.3 Making Choices

If we want to go from decisions on accepting or rejecting bets to a setting where
we choose between different bets xj , j = 1, 2, 3, ..., we define preferences by saying
that x is better or equal (as in equally good) than y if x− y ∈ Z̄ (the closure of
Z), while it is worse or equal if x−y is rejectable. For the first form of rationality
stated in Definition 3, the consequence is that one chooses the option with the
highest expected utility. If we instead consider optimistic rationality, and if there
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is (pi) ∈ P such that
∑

xipi ≥
∑

yiqi ∀(qi) ∈ P then
∑

pi(xi − yi) ≥ 0 and,
therefore, x− y ∈ Z̄. Therefore, if we choose the bet xj by

argmax
j

max
p∈P

∑
xj
ipi

we are guaranteed that this bet is preferable to all other bets but not necessarily
strictly so, even if maxp∈P

∑
xj
ipi is strictly larger than all competitors.

3 Intelligent Agents

We will consider an agent [RN10, Hut05] that interacts with an environment
through performing actions at from a finite set A and receives observations
ot from a finite set O and rewards rt from a finite set R ⊂ [0, 1]. Let H =
∪n(A×O×R)n be the set of histories and let ε be the empty history. A function
ν : H×A → O×R is called a deterministic environment. A function π : H → A
is called a (deterministic) policy or an agent. We define the value function V
based on geometric discounting by V π

ν (ht−1) =
∑∞

i=t γ
i−tri where the sequence

ri are the rewards achieved by following π from time step t onwards in the
environment ν after having seen ht−1.

Instead of viewing the environment as a functionH×A → O×R we can equiv-
alently write it as a function ν : H×A×O×R → {0, 1}where we write ν(o, r|h, a)
for the function value of (h, a, o, r). It equals zero if in the first formulation (h, a)
is not sent to (o, r) and 1 if it is. In the case of stochastic environments we in-
stead have a function ν : H× A× O ×R → [0, 1] such that

∑
o,r ν(o, r|h, a) =

1 ∀h, a. Furthermore, we define ν(ht|π) := ν(or1:t|π) := Πt
i=1ν(oiri|ai, hi−1)

where ai = π(hi−1). ν(·|π) is a probability measure over strings or sequences
as will be discussed in the next section and we can define ν(·|π, ht−1) by con-
ditioning ν(·|π) on ht−1. We define V π

ν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri and
V ∗
ν (ht−1) := maxπ V

π
ν (ht−1). Given a countable class of environments M and

strictly positive prior weights wν for all ν ∈ M, we define the a-priori environ-
ment ξ by letting ξ(·) =

∑
wνν(·) and the AIXI agent is defined by following

the policy
π∗ := argmax

π
V π
ξ (ε).

3.1 Rational Optimistic Sequential Decisions

There are some extensions to the results from Section 2 needed to reach the full
AI (generic reinforcement learning) case we have in mind, but the procedure
for doing this has already been outlined in [SH11a]. The first extension is to
reactive environments where the outcome is affected by the choice made. One
then chooses between different actions to take. It was concluded that it follows
from the rationality axioms that there is a probability (pji ) for the outcome i
given action j, and the action given a bet x = (xi) is chosen by

argmax
j

∑
xip

j
i .
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The extension to finitely many sequential decisions is simply about considering
the choice to be made to be a choice of policy π (previously j). The discounted
value

∑
rtγ

t achieved then plays the role of the bet xi and the decision on what
policy to follow is taken according to

argmax
π

V π
ξ

where ξ is the probabilistic a priori belief (the pji ) and V π
ξ =

∑
pji (

∑
ritγ

t) where

rit is the reward achieved at time t in outcome sequence i in an enumeration of
all the possible histories. The rational optimist takes the decision

π◦ := argmax
π

max
ξ∈Ξ

V π
ξ

for a set of beliefs (environments) Ξ (corresponds to P before) which we will
assume is compact in the metric topology of the total variation distance as in
[SH12].

3.2 Asymptotic Optimality

In this section we will first prove that AIXI is asymptotically optimal if its a-
priori environment ξ is both dominating the true environment μ in the sense
of ξ(·) ≥ cμ(·) and optimistic in the sense that V ∗

ξ (ht) ≥ V ∗
μ (ht) (for large

t). We extend this by replacing ξ with a compact (with respect to the total
variation distance) set Ξ and prove that we then only need there to be, for each
ht (for t large), some ξ ∈ Ξ such that V ∗

ξ (ht) ≥ V ∗
μ (ht). The first domination

property is most easily satisfied for ξ(·) = ∑
ν∈M wνν(·) with wν > 0 where M

is a countable class of environments with μ ∈ M. We are going to provide one
simple example for the first theorem to illustrate what it is saying in a simple
setting while after the second theorem we discuss the example that we really
have in mind. This example addresses the AIXI agent as it was introduced in
[Hut05] with a Solomonoff prior and the problem of defining a natural Universal
Turing Machine [Mül10].

Theorem 3. Suppose that ξ(·) ≥ cμ(·) for some c > 0 and μ is the true envi-
ronment. Also suppose that there almost surely is T1 < ∞ such that V ∗

ξ (ht) ≥
V ∗
μ (ht) ∀t ≥ T1. Suppose that the policy π∗ acts according to the AIXI agent

based on ξ in μ. Then there is almost surely, for every ε > 0, a time T < ∞
such that V π∗

μ (ht) ≥ V ∗
μ (ht)− ε ∀t ≥ T .

Proof. Due to the dominance we can (using the Blackwell-Dubins merging of
opinions theorem [BD62]) say that almost surely there is for every ε′ > 0, a
T < ∞ such that d(ξ(·|ht, π

∗), μ(·|ht, π
∗)) < ε where d is the total variation

distance. This implies that |V π∗
ξ (ht) − V π∗

μ (ht)| < ε′
1−γ := ε which means that,

if T ≥ T1, V
π∗
μ (ht) ≥ V ∗

ξ (ht)− ε ≥ V ∗
μ (ht)− ε. ��



318 P. Sunehag and M. Hutter

Example 1 (Line Environment). Consider an agent who, when given a class of
environments, will always choose its prior based on simplicity which is in ac-
cordance with Occam’s razor [Hut05]. First let us look at a class M of two
environments which both have six states s1, ..., s6 and two actions L (left) and
R (right). Action R changes sk to sk+1, L to sk−1. Also L in s1 or R in
s6 result in staying. We start at s1. Being at s1 yields a reward of 0, while
s2, s3, s4, s5 give reward −1 and the reward in s6 depends on the environment.
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In one of the environments ν1, this reward is −1 while in ν2 it is 1. Since ν2 is
not simpler than ν1 it will not have higher weight and if γ is only modestly high
we will not explore along the line despite that in ν2 it would be optimal to do
so. However, if we define another environment ν3 by letting the reward at s6 be
really high, then when including ν3 in the mixture, the agent will end up with
an a priori environment ξ that is optimistic for ν1 and ν2 and we can guarantee
optimality for any γ.

Note that the example above is only supposed to show how the optimism condi-
tion can be satisfied for a subclass of the class one has a prior over. It will almost
never be satisfied for the whole class. In the next theorem we prove that for the
extended agent with a class of priors, only one of them needs to be optimistic
at a time while we need all to be dominant.

Theorem 4. Suppose that Ξ is a compact set for the total variation topology
(maximized over all policies and histories) of a-priori environments such that
for each ξ ∈ Ξ there is cξ,μ > 0 such that ξ(·) ≥ cξ,μμ(·) where μ is the true
environment. Also suppose that there almost surely is T1 < ∞ such that for
t ≥ T1 there is ξ ∈ Ξ such that V ∗

ξ (ht) ≥ V ∗
μ (ht). Suppose that the policy π◦ acts

according to the rational optimistic agent based on Ξ in μ. Then there is almost
surely, for every ε > 0, a time T <∞ such that V π◦

μ (ht) ≥ V ∗
μ (ht)− ε ∀t ≥ T .

The theorem is proven by combining the proof technique from the previous the-
orem with the following lemma. We have made this lemma easier by formulating
it for time t = 0 (when the history is the empty string ε), though when proving
Theorem 4 it is used for a later time point when the environments in the class
have merged sufficiently in the sense of total variation diameter.

Lemma 1 (Optimism is nearly optimal). Suppose that an infinite history
h has been generated by running π◦ in the environment μ. Given ε > 0 there is
ε̃ > 0 such that V π◦

μ (ε) ≥ maxπ V
π
μ (ε)− ε if

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃ ∀t, ∀ν1, ν2 ∈ Ξ.

Proof. Let ν∗ht
be the environment in argmaxν maxπ V

π
ν (ht) that π◦ use to

choose the next action at+1 after experiencing ht. Define ν̂ by letting

ν̂(otrt|ht−1, a) = ν∗ht−1
(otrt|ht−1, a).
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We will show that this implies that V π◦
ν̂ ≥ maxν∈M,π V

π
ν where V π

ν denotes
V π
ν (ε). Let

ν̂s(otrt|ht−1, a) =

{
ν̂(otrt|ht−1, a) ∀ht−1, for t ≤ s

ν̂s(otrt|ht−1, a) = ν∗hs
(otrt|ht−1, a) ∀ht−1, for t > s.

ν̂1 equals ν∗ε at all time points and thus V π
ν̂1

= V π
ν∗
ε
. Let R̂ν

t be the expected accu-

mulated (discounted) reward (E
∑t

i=1 γ
i−1ri) when following π◦ in environment

ν up to time t.

max
π2:∞

V π◦
0:1π2:∞

ν̂2
= max

π1:∞
(R̂

ν∗
ε

1 + γEh1|ν∗
ε ,π

◦V π1:∞
ν∗
h1

(h1)) ≥

max
π1:∞

(R̂
ν∗
ε

1 + γEh1|ν∗
ε ,π

◦V π1:∞
ν∗
ε

(h1)) = max
π

V π
ν̂1

since maxπ V
π
ν∗
h1

(h1)) ≥ maxπ V
π
ν (h1)) ∀ν ∈M. In the same way,

max
πk:∞

V
π◦

0:k−1πk:∞
ν̂k

≥ max
πk−1:∞

V
π◦

0:k−2πk−1:∞
ν̂k−1

∀k

and it follows that V π◦
ν̂ ≥ maxπ,ν∈M V π

ν . To conclude the proof, we show that
if ε̃ is small enough, then

|V π◦
ν̂ − V π◦

μ | < ε (3)

where μ is the true environment. That (3) is true is shown by induction. ν̂1 ∈M
and, therefore, (3) holds with ν̂1 instead of ν̂ if ε̃ ≤ ε. ν̂k and ν̂k+1 are identical
for the first k time step so |V π◦

ν̂k
− V π◦

ν̂k+1
| < γkε̃. We conclude that

|V π◦
ν̂1 − V π◦

ν̂ | < ε̃

1− γ

and if ε̃+ ε̃
1−γ ≤ ε then (3) holds and the proof is complete. ��

Proof. of Theorem 4. Due to the compactness, there is almost surely for every
ε′, a T <∞ such that d(ξ(·|ht, π

◦), μ(·|ht, π
◦)) < ε ∀ξ ∈ Ξ ∀t ≥ T . This means

that |V π
ξ (ht)− V π

μ (ht)| < ε′
1−γ := ε ∀ξ ∈ Ξ. Applying Lemma 1 to the ξ that is

optimistic at time T proves the result.

Example 2. For any Universal Turing Machine (UTM) U the corresponding
Solomonoff distribution ξU , (see [LV93] for details) is dominant for any lower
semi-computable semi-measure over infinite sequences. [Hut05] extends these
constructions to the active case and defines (for each U) an environment that is
dominant for all lower semi-computable environments and defines the AIXI agent
based on it. The AIXI agent would have uniquely defined the most intelligent
agent according to the underlying sense of intelligence (maximizing expected
reward), if the choice of UTM was clear. Many have without success tried to
find a single “natural” Turing machine and there might in fact be no such ma-
chine [Mül10]. With the approach that we introduce in this article one can pick
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finitely many machines that one considers to be natural. Though this does not
fully resolve the issue of having to make arbitrary choices, it alleviates it by no
longer demanding a unique choice of UTM. We can consider an enumeration of
all UTMs Ui and let the agent Agentn be based on the first n machines. Agentn
has better guarantees than Agentm (in the sense of Theorem 4) if n > m. The
conclusion does, however, not carry through to a limiting case. Note, that if we
instead combine finitely many machines into one by letting the first few bits
represent a choice of machine, the resulting environment will not be optimistic
for all the environments that we achieve optimism for with the multiple-prior
approach.

4 Conclusions

We extended AIXI to a multiple-prior setting using the principle of optimism.
This decreases the arbitrariness of picking an a-priori environment or a reference
machine to base a Solomonoff prior on. Furthermore, we show that this leads to
asymptotic optimality guarantees for more environments. We also explain that
this extension is related to replacing symmetry with optimism in the recently
introduced axiomatization of AIXI.

In a separate article [SH12], we perform a different sort of analysis where it
is not assumed that all the environments in Ξ are dominating the true environ-
ment μ. The analysis, however, adds the assumption that the true environment
is a member of this class of environments. The a priori environments are then
naturally thought of as a hypothesis class rather than mixtures over some hy-
pothesis class. In this article we note, that there is no mathematical difference
between a class of environments that is considered a hypothesis class and one
that is considered a class of a priori environments. However, in the case where
we consider Ξ to be a hypothesis class, Ξ has to be very large to yield an agent
that is guaranteed asymptotic optimality for many environments (the environ-
ments in Ξ), while in the case when it represents a mixture over a hypothesis
class, a singleton Ξ (the AIXI case) is already a powerful agent. Another dis-
tinction is that in the case studied in [SH12], we need a mechanism for excluding
environments from the class as they become inconsistent with experience.

A practical agent that builds upon the ideas of this article and the companion
article [SH12], is a variation of a Bayesian reinforcement learning agent. A com-
mon way of implementing a practical Bayesian agent is that one samples several
environments from the posterior and then act for a period of time according to
what would give the highest expected value when averaging the expected value
over the sampled environments. Instead we here suggest acting optimistically
with respect to those sampled environments who are then, for a period of time,
basically treated as a restricted hypothesis class. In the MDP case this is close
to what the BOSS algorithm [ALL09] is doing.
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Abstract. We argue that emotions play a central role in human cognition. It is
therefore of interest to researchers with an aim to create artificial systems with
human-level intelligence (or indeed beyond) to consider the functions of emo-
tions in the human cognition whose complexity they aim to recreate. To this end,
we review here several functional roles of emotions in human cognition at dif-
ferent levels, for instance in behavioural regulation and reinforcement learning.
We discuss some of the neuroscientific and bodily underpinnings of emotions and
conclude with a discussion of possible approaches, including existing efforts, to
endow artificial systems with mechanisms providing some of the functions of
human emotions.

1 Introduction

Any endeavour to construct machines with human-level intelligence (and beyond) can-
not proceed without considering, at least to some extent, our understanding of human
cognition and intelligence in the first place1. At a minimum, this is required to provide
an understanding of what “human-level intelligence” actually is but it may also facil-
itate insights into what particular mechanisms are either required or very desirable in
the creation of intelligent machines.

Given the wealth of recent evidence (e.g. Stapleton, 2011; Damasio, 2010;
Lowe and Ziemke, 2011; Ziemke and Lowe, 2009; Ziemke, 2008; Pessoa, 2008) that
emotion and cognition are closely intertwined, we argue that one such mechanism is
given by emotions. It is important to note at the outset that human emotions have
evolved to meet the specific requirements of the human body. Therefore, one cannot
simply “copy” features of human cognition into machines without considering what
effect the difference in embodiment might have (as also previously argued by Thill,
2011). Does the human body provide mechanisms that are essential for emotions yet
not realisable in machines? Do emotions provide functions that are simply irrelevant to
machines? There would be little point in building an emotional machine if this doesn’t
somehow result in a significant advantage. While it is clear that emotions (and affect)
play a central role in human cognition (see the above references), it is an open question

1 For the purposes of the present paper, we follow Thill (2011) and distinguish between intelli-
gence and cognition by defining intelligence as a metric of the cognitive abilities of an agent.
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whether a machine would require emotions to reach human-level intelligence. Further,
it is important to note that endowing machines with emotions may be a different issue
from endowing machines with the ability to recognise emotions, although both abilities
may be important for artificially intelligent agents.

In this paper, we review research on emotions from a perspective relevant to the
creation of artificially intelligent systems. We focus on functional aspects, highlighting
some of the most important hypothesised roles in human cognition and interaction. We
argue that, although the functions of emotions are built upon the features of human ex-
istence, implementing both equivalent artificial mechanisms and the ability to recognise
human emotions are desirable features in the design of artificial intelligent machines.

2 Functions of Emotions

Here, we define emotions as a functional subset of all affective phenomena. The exact
function of emotions remain a topic of debate in the literature. Briefly, three major
positions can be identified (Keltner and Gross, 1999):

1. Emotions have no functions
2. Emotions once served functions that are no longer necessarily appropriate
3. Emotions serve important functions now

Adherents of the first position generally see emotions not only as useless, but actually
as a nuisance, as “disorganising forces in human behaviour” (Keltner and Gross, 1999).
The second view essentially sets emotions on a par with the appendix but, in contrast
with the first position, does not necessarily imply that emotions are entirely useless.
Rather, it argues that whatever functions emotions serve today are not the reason emo-
tions evolved in the first place and are probably not very important.

However, both the above views are in conflict with a large body of recent research
which illustrates that emotions indeed have important roles in human cognition (Pessoa,
2008; Damasio, 2010; Lowe and Ziemke, 2011; Stapleton, 2011); as contended in the
third view. For the present purposes, we can distinguish between two functional cate-
gories: intrapersonal (those that relate to an individual agent) and interpersonal (those
that relate to interactions between two or more agents).

At perhaps the highest level of functional abstraction, emotions have been impli-
cated, above all, in modulating learning (LeDoux, 1996; Rolls, 1999) and in guiding
action selection and planning (Damasio, 2010; Frijda, 2010; Lowe and Ziemke, 2011).
At a lower level of abstraction, emotions have been repeatedly implicated in:

1. homeostatic regulation: both behaviourally and internally (Sterling, 2004);
2. ‘cognitive override’ in goal-directed behaviour (Oately and Johnson-Laird, 1987;

Rolls, 1999; Boureau and Dayan, 2010);
3. behavioural adaptation (e.g. Rolls, 1999) fundamentally concerned with the effects

of emotions on learning;
4. communication: the highly influential cross cultural studies of Darwin (1872) and

Ekman (2003) have suggested that expression of emotion is high on informational
content
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5. social transaction: emotional expression may generally provide a sort of social glue
during agent interactions (Griffiths and Scarantino, 2009).

Intrapersonally, emotions combine 1. to 3. of the above. However, interpersonally, social
interaction (4. and 5.) must also be seen as constrained or even motivated by goals
and basic homeostatic needs. This intrapersonal ’grounding’ is critical to understanding
to what extent, and how, social interaction provides a key role of emotions. The next
section is dedicated to discussing these functions in more detail.

2.1 Intrapersonal Functions

Homeostatic Regulation. Although the human body is very adaptive to the external
environment, it is also very sensitive to internal changes and can only function if internal
parameters (blood pressure, levels of minerals and vitamins and so on) are kept within a
very narrow range. This is ensured through homeostasis. Levenson (1999) reasons that
it may occasionally be worthwhile to temporarily override this ‘basal’ homeostasis. For
instance in a case of danger, it may be helpful to increase blood pressure, oxygen levels
in the muscles of the leg and adrenaline levels to ensure a quick getaway. Thus a func-
tion of some (but certainly not all) emotions may be to override homeostasis. Levenson
(1999) sees fear, anger and disgust as clear providers of such an ‘emergency’ function.
This perspective has been echoed according to the notion of allostasis (c.f. Sterling,
2004). In Sterling’s account, by overriding the (more or less) basic set points of ’es-
sential’ physiological control variables, the organism is empowered with a degree of
predictive regulation. Through transiently modulating the control variables’ sensitivity
regime, organisms are equipped with the metabolic resources to deal with emergency
situations characteristic of emotional activity (c.f. Damasio, 2010), even though a pro-
longed departure from the ‘normal’ state of the body is clearly noxious.

“Cognitive Override”. Levenson (1999) points out, that emotions are sometimes
thought to be a ‘disorganiser’ of rational thoughts. However, he argues, they can in
fact be understood as ‘organisers’. This view is reflected in the notion of emotions
serving as ‘alarms’ (Sloman, 2001) that “detect situations where rapid global redirect-
ing of processing is required”. The perspective of emotions as attention orienters and
biasers of action selection, as well as path search, is popular both in the fields of neu-
roscience and artificial intelligence (c.f. Simon, 1967; Oately and Johnson-Laird, 1987;
Frijda, 2010). Simon’s ‘interrupts’ and Oatley and Johnson-Laird’s ‘goal juncture’ redi-
rection postulation provide purported computational functions to emotions. Oately and
Johnson-Laird suggested that the “basic” emotions (‘sadness’, ‘happiness’, ‘disgust’,
‘anxiety’, ‘anger’2) are elicited following perceived junctures to a plan presently en-
acted. These emotions serve to reconfigure the plan according to the new (‘emergency’)
circumstances. In a weaker form, this can also manifest as a cognitive bias (Damasio,
2003).

Behavioural Adaptation. The above-mentioned functions of emotions as biasers, redi-
rectors or interrupts of ongoing behaviour can be understood from a neuroscientific per-

2 ‘Surprise’ was not considered a basic emotion.
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spective that evidences a strong link between behaviour selection and behavioural adap-
tation (learning). Rolls (1999), for example, has viewed emotions as being
triggered following detected ‘reinforcement contingencies’ in relation to learned
stimulus-reinforcer associations. These contingencies allude to violations of expecta-
tions concerning reward- or punishment-based returns. These violations concern: 1)
immediate consequences: direct contact with a rewarding or punishing stimuli (’hap-
piness’, and ’fear’, respectively); 2) anticipated consequences: unexpected presence
or omission of obstacles to rewarding or punishing stimuli (precipitating ‘anger’ and
‘relief’, respectively). In this manner, Rolls has emphasized the interdependence of
learning and biasing of action selection since emotion elicitation is triggered conse-
quent to learned stimulus-reinforcer expectations. Where Rolls emphasized the neu-
roanatomic substrate of the reward-punishment systems constitutive of emotions (the
interplay between orbitofrontal cortex and amygdala being key), Boureau and Dayan
(2010) focused on the brainstem neuromodulator implementations of such systems. The
implicated neuromodulators of dopamine and serotonin have been particularly linked to
‘opponent process’ reward and punishment based reinforcement learning. Their model,
similar to Rolls, has a two dimensional flavour that links behavioural selection with
adaptation. In this case, dopamine is suggested to encode for reward signals (utilized
for learning) and active behavioural responding while serotonin encodes for punishment
learning signals and inhibitory behavioural responding.

2.2 Interpersonal Functions

Emotion Expression as Communication. An essential question is to what extent emo-
tional expression is of ‘communicative’ value. Hauser (1996) puts it thus: “in a majority
of species, affective states are responsible for the production of communicative signals”.
However, communication implies an information exchange which implies that both ex-
pressor and perceiver gain some advantage from the communicative encounter.

An evolutionary mechanism of such communication (information exchange) has
been posited. Darwin’s (1872) ‘principle of antithesis’ proposed that emotional expres-
sions in animals and humans have become, over evolutionary time, disambiguated for
the purpose of communication: Orthogonal emotional states (e.g. fear vs anger) will
be similarly expressed in a contrary manner. He took the specific example of dogs ex-
pressing anger and submission. Keltner et al. (2003) also suggest that facial emotional
expressions may have evolved into disambiguated discrete forms for the benefit of com-
munication.

In the spirit of Darwin, Ekman (2003) has accumulated much cross cultural evidence
for the existence of unambiguously perceived “basic” emotions. His research indicates
that a function of emotion may indeed be for communicative purposes. However, it is
acknowledged that whereas perceptions of expressions may be universal, they may also
be deceptive regarding the underlying emotional state; for example, a social smile is
often hard to detect, by the untrained eye, relative to the ‘natural’, or ‘duchenne’ smile.

Emotion Expression as Social Exchange. A different perspective to the above
holds that emotion expression, more generically, provides a sort of social glue:
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It disambiguates the respective roles and needs of conspecifics though not necessarily
according to the equal benefit of all interacting parties.

The expressive component of emotion has been viewed by Griffiths and Scarantino
(2009) as linked more to a social transaction than to pure communication. Here, the
expression is not communicative in the sense of objectively expressing a cognitively
held belief or intention. Instead, emotion expression facilitates a social harmony. Grif-
fiths and Scarantino give the example of ‘guilt’, citing a study of Kroon (1988) in which
only 28 percent of experimental subjects reporting this emotion attributed to themselves
blame for the particular guilt-evoking event. In the social transaction view, guilt may
be seen as promoting ‘social engagement aimed at reconciliation’. This may provide
a net benefit to the interactants but may not be considered pure information exchange
benefitting all equally.

The means of communicative emotion expression may also be disputed. Perhaps
contrary to the hitherto purported role of disambiguation, Snowdon (2003) suggests
that for affect/emotion to have evolved a communicative function expression should
not be particularly stereotyped or elaborate. Emphasis should be rather placed largely
on perceivers discerning the relevance of expressions in a given context. He comments
“we should expect little plasticity in the production and usage of calls. At the same time
we can expect that it will be important to read signals accurately ... so plasticity in the
development of responding to signals might be useful”.

Camras (2011) has suggested that affective/emotional expression is developed ac-
cording to the learned association of coordinated (facial) motor primitives. In this view,
the expressed “basic” emotions as identified by Ekman may just be the products of early
developmental exposure. On this basis, disambiguated ‘antithetical’ emotional expres-
sions may even imply a shift in a perspective of the role of emotions in expression.
Rather than being for information exchange regarding objectively appraised events, the
primary role of expressing emotions is for manipulating the perceiver to the benefit of
the expressor’s bodily desires and needs.

3 Emotion Components for Artificial Systems

As we have seen in the above, human emotions are intrinsically tied to the requirements
and constraints of the body. By itself, this may be a strong indication that artificial
systems may never possess emotions in the human sense of the term. However, this
does not exclude the possibility of creating machine equivalents thereof; processes that
mimic the functionality of human emotions to the extent that this is relevant to an artifi-
cial agent (AA). In relation to the previous section, we now evaluate the extent to which
AAs may be imbued with emotions and what functional role this may serve, both for
the agent itself and for human-AA interactions.

3.1 The Role of the Embodiment

Loosely, we may understand embodiment in terms of the intrapersonal quality of the
AA: (1) what are the AA’s homeostatically regulated needs; (2) what are the AA’s goals
and how should it respond to goal junctures; and (3) how should the AA behaviourally
adapt to unanticipated change and when?
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In relation to 1, there is for instance no point in increasing the oxygen levels in the
leg muscles if the machine doesn’t have legs, or muscles for that matter. Nevertheless,
an AA may have what Ashby (1960) identified as ‘essential variables’ (EVs). EVs serve
as effective control variables that are required to operate within a homeostatic regime.
Examples of EVs include blood glucose levels in a human, battery level in a robot,
or perhaps system designer-specified performance variables in an AA. The AA is re-
quired to make a trade off so as to satisfy the set of concerns whilst not falling into
irrecoverable deficits. Avila-Garcı̀a and Cañamero (2005) have applied the idea of EVs
as homeostatic control variables to robots demonstrating the potential for ‘emotional’
agents to produce autonomous and sustainable behaviour.

In relation to 2 and 3, a system may have many goals or aims, and may utilize prin-
ciples of reinforcement learning in order to successfully arrive at them. Artificial sys-
tems that purport to explore emotional learning have often focused on neural circuitry
that qualitatively replicate neurobehavioural characteristic profiles of emotional activ-
ity (Armony, 2005; Balkenius et al., 2009; Lowe et al., 2009; Ziemke and Lowe, 2009;
Roesch et al., 2010). These systems are somewhat divorced from homeostatic concerns
though the reward-punishment systems that they model abstractly capture such intrap-
ersonal concerns. It is also unclear to what extent these non-homeostatically regulated
learning systems gain added value from being labelled “emotional”.

Nonetheless, one of the major aspects of an artificial system that can be said to be
intelligent in a general sense is the ability to perform a (general) range of tasks au-
tonomously and adaptively. Such a system will necessarily be confronted with multiple
possible actions at a given time. The system will therefore need the ability to select
amongst these actions. For this, homeostatic processes and mechanisms to regulate
them (as given by one function of emotions discussed here) might provide a signifi-
cant advantage. In addition, as discussed above, such processes may play an important
role in reinforcement learning mechanisms and may therefore be equally important for
an AA’s learning abilities.

3.2 Expressing and Recognising Emotions

One has to expect that an artificial system with human-level intelligence would need
to interact and communicate proficiently with humans, thus implying both a need to
be able to express emotions when relevant and to be able to recognise the emotions of
humans. It should of course be kept in mind that we refer to an expression of internal
states here; emotion expression may thus be of no value to artificial systems if they have
no internal states and no sensorimotor autonomy.

Assuming the existence of relevant internal states, the problem for ‘disembodied’
artificial systems is not the fact that computer hardware is not able to somehow con-
vey emotion-like states. After all, it would be relatively easy, for example, to make a
computer screen go red if the computer is angry or blue if it is sad. The problem rather
concerns believability: would a red computer screen still convey the emotion as effec-
tively as an angry face (robotic or human)? While machines may be able to express an
emotion, whomever it is directed at may fail to be moved by its message. Consequently,
the function of the expression is lost. Of course people could (and probably would) learn
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to recognise ‘computer emotions’, but emotional computers should be as forthcoming
to human expectations as possible in their design. In a first instance, this could well be
confined to artificial 3D models of a human face or entire body displayed on the screen,
which could then be animated. Much work using virtual characters of this type has been
undertaken based on these principles (c.f. Becker-Asano and Wachsmuth, 2010).

Perhaps the most famous emotionally expressive artificial system or agent is Kismet
developed at MIT by Breazeal (2003). This robot can be said to express disambiguated,
but hardwired, ‘basic’ emotions of Ekman (2003). Kismet, therefore, is not so much a
cognitive appraiser but an expressor of desires. Use of such a robot in human-robotic
interactions is functional insofar as the facial expressions of Kismet are readily rec-
ognizable to human interactants. Not only does Kismet express stereotyped emotions,
but is able to express according to: degree (e.g. across dimensions of ‘arousal’ and
‘valence’); internal drives and goals mediated by an abstact homeostatic system; to
cognitive appraisal of the social context; tone of voice.

As has been mentioned before, there are two sides to a communication. Thus an
emotional agent would not only have to be able to convey its emotions, it would also
have to be able to perceive the emotions of other persons. This is an area in which ma-
chines do rather well (see for instance work as far back as Picard, 1996, who describes
a number of ways in which a computer can accurately determine a person’s emotion).
The aforementioned Kismet is also able to use a visual recognition system to similarly
recognize such emotions in humans.

Nonetheless, a significant need for future research in expressing and recognising
emotions by AAs remains. Kismet, although it can be understood as expressive emo-
tional system, ultimately remains merely a robotic head. Producing a fully mobile robot
able to detect emotional states in itself and others not limited to facial expressions (e.g.
posture, gait) and elaborated social context (e.g. ‘transactional’, or involving aspects of
deception) promise significantly greater challenges to naturalize the emotional range
of an AA. Such challenges may need to be met in order to enable AAs to seamlessly
integrate into human environments. Grounding higher cognitive capacities according to
integrated and synchronized sensor-motoric and internal homeostatic activation patterns
might be requisite to such further development.

3.3 “Feeling” Emotions and Higher-Level Cognitive Functions

The state of the art concerning AAs’ higher level cognitive functions, whether they con-
cern appraisals of social/non-social events in relation to planning and action selection,
has thus far tended to neglect grounding such functionality in basic bodily requirements.
These requirements involve levels of internal monitoring, e.g. regarding essential vari-
ables, so as to prioritize behaviours that meet current needs and goals. Such monitoring,
however, also requires an apprehension of the social and bodily context of the present
– grabbing the last piece of cake at a formal meal in order to satisfy a glucose deficit
is a socially inappropriate act with potential long term detrimental consequences. The
artificial (and biological) agent is thus required to continuously evaluate the appro-
priateness and feasibility of selecting particular behaviours (and planning for such).
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Such monitoring requires the integration and synchronization of many different inputs,
external and internal to the agent, over many different timescales.

As previously argued (Lowe and Ziemke, 2011), emotional feelings, or the neural-
dynamic substrate upon which they exist, may provide the means for such high level
monitoring. The “feeling” of emotion, rather than being merely epiphenomenal, may
provide a powerful way for learning and adapting to the outside world. Levenson (1999)
argues that what we ‘feel’ are essentially the sensations from the physiological changes
that accompany an emotion, like a particular heartbeat or breathing pattern. Damasio
(2010) suggests that neural maps of the body provide inputs into multimodal maps
- ‘zones of convergence’ - that integrate and synchronize external and internal acti-
vation patterns. Many candidates exist for sub-symbolically representing such infor-
mation in artificial systems, e.g. dynamic neural fields (cf. (Lowe and Ziemke, 2011),
self-organizing maps, hierarchical neural networks).

It has been mentioned above that one of the functions of “feeling” emotions may
be to make us aware of our emotional state. But the fact that we are able to realise
that we are in a certain state appears to presuppose a certain sense of self. Sloman
(2000) argues that, if one is truly experiencing emotions, then one finds it very hard to
ignore them. One cannot stop thinking about them and they may return at any point.
One is thus losing control over one’s thought processes. But one cannot lose what one
doesn’t have and thus Sloman reasons that we are both able to a) control our thought
processes and b) lose control over them. AAs, similarly imbued, would have systems
that note discrepancies in expected or desired states at different levels of homeostatic-
allostatic regulation, providing meta-levels of regulation in relation to a nested hierarchy
of embodied states (Damasio, 2003, 2010, c.f.). Signals from reward and punishment
systems, and their combined gestalt, for example, provide such information.

4 Conclusion

In the present paper, we have illustrated several functions of emotions in human cog-
nition, showing that emotions form a central part of (human) cognition. We posit that
an artificial intelligent agent cannot be expected to attain “human-like intelligence” if
it does not possess at least a subset of the functional abilities provided by emotions, for
instance concerning learning and adaption or behaviour selection. We have discussed
some of the mechanisms underlying human emotions as well as existing work in en-
dowing AAs with at least a rudimentary system providing emotional functionality. To
conclude, we suggest that further research into the functional contributions of emotions
to an (artificial) agent’s cognition (and therefore intelligence), including ways of pro-
viding these functions in non-human systems, will play an important role in the creation
of (generally) intelligent artificial systems.
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Abstract. Since decades Artificial Intelligence is striving for an understanding 
and the production of general intelligence. In an attempt to put the relevant is-
sues into a wider frame, the question shall be asked whether something could be 
learned from agents or situations characterized by an obvious lack of intelli-
gence, i.e. “stupidity”. The Ouroboros Model is a novel proposal for a biologi-
cally inspired cognitive architecture. It has earlier been proposed how the  
Ouroboros Model can shed light on selected cognitive functions including (hu-
man) reasoning, learning and emotions. In this short note, implications of the 
hypothesized structures, relations and processes shall be scrutinized with re-
spect to their possible value for illuminating stupidity and dullness, - and in the 
end again, natural and artificial general  intelligence.   

Keywords: Algorithm, Iterative, Recursive, Schema, Process, Consumption 
Analysis, Limits, Consistency, Intelligence, Stupidity. 

1 Introduction   

In a series of recent papers the Ouroboros Model has been introduced as an attempt to 
explain a wide range of findings pertaining to cognition and consciousness of natural 
and also artificial agents [1-4]. It has been suggested how within a single approach 
centered around a principal algorithmic process on a suitably structured memory one 
can explain human cognitive performance and also formulate prescriptions of how to 
arrive at comparable capabilities for artificial agents implemented in hard- or software 
following a similar self-steered evolutionary program.  

2 The Ouroboros Model in a Nutshell 

2.1 Action and Memory Structure 

Minds are seen as primarily data processing entities. The Ouroboros Model holds that 
memory entries are organized into (non-strict) hierarchies of schemata. Memory is 
made up of meaningful junks, combinations of features and concepts belonging to-
gether [1]. In brains, neural assemblies are permanently linked together when once 
co-activated in a specific manner. Later activation of a feature promotes the selected 
concept and leads to graded activation for each of the associated constituents, which 
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are usually active in the same context. Activation at a time of part of a schema biases 
the whole structure with all relevant slots and, in particular, empty slots, i.e. concur-
rently missing features. 

2.2 Principal Algorithmic Backbone 

At the core of the Ouroboros Model lies a self-referential recursive process with alter-
nating phases of data-acquisition and -evaluation. A monitor process termed 
'consumption analysis' is checking how well expectations triggered at one point in 
time fit with successive activations; three interweaved principal stages are identified: 

• ... anticipation,   
• action / perception,  
• evaluation,  
• anticipation, ...  

These steps are concatenated into a full repeating circle, and the activity continues at 
its former end, like the old alchemists' tail-devouring serpent called the Ouroboros. 

2.3 Consumption Analysis 

Any occurring, e.g. sensory, activation excites associated schemata. The one with the 
highest activation is selected first, and other, possibly also applicable, schemata are 
inhibited, suppressed. Taking the first selected schema and ensuing anticipations ac-
tive at that time as reference and basis, consumption analysis checks how successive 
input fits into this activated frame structure, i.e. how well lower level perceptual data 
are "consumed" by the chosen schema. Features are assigned to slots / attributes are 
'explained away' [5].  

If everything fits perfectly the process comes to a momentary partly standstill and 
continues with new input data. If discrepancies surface they have an even more im-
mediate impact on the following elicited actions [2]. Attention is directed to and by 
highlighted dissonances. The actual appropriateness of a schema can vary over a wide 
range. In any case, consumption analysis delivers a gradual measure for the goodness 
of fit between expectations and actual inputs, in sum, the acceptability of an interpre-
tation. Thresholds for this signal are set in terms of approval levels, depending in turn 
also on relevant experience in a context. There ensues a constraint and a trade-off: 
time is short, in the real world not everything can always be perfect, approximations 
and shortcuts often are good enough, and a wrong schema has to be abandoned at 
some point and another, new, conceptual frame is tried.  

New schemata are preferentially laid down for concepts and episodes which are 
marked by the output of consumption analysis as deviating significantly from expec-
tations derived from previous experience. Thus self-steered expansion and refinement 
over time guarantees the gradual and stepwise elaboration of useful hierarchically 
structured knowledge and behavior, especially in areas where the need surfaced [4]. 
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3 Stupidity 

Dozens of different definitions of intelligence have been suggested, and thus it is not 
immediately clear, with which one a model of general intelligence as outlined in the 
Ouroboros Model should comply [6]. This is the venture point for attempting to ap-
proach the issue from the other side, i.e. looking, what might be learned from situa-
tions or constellations, which are characterized by an apparent lack of intelligence, i.e. 
"stupidity". 

Inspired by careful observation of real human behavior, no formal account, e.g. of 
bounded rationality, is adopted here but the following provocative working definition 
of real stupidity is suggested: 

 
An agent will be called stupid, if he unwittingly works against his (important) goals 
and self-interest, not considering information, which is (easily) available. 

 

 

Fig. 1. A precursor of this figure was given in [3] with the caption “A lack in self-awareness 
can easily become costly to an agent in the real world” 
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Guided by the classical example as depicted in Fig. 1, some main characteristics of 
not so clever behavior can be identified and highlighted: 

• Stupidity basically is a feature ascribed to an actor by others observing his beha-
vior from the outside; we see the poor guy on the tree and his way of cutting is 
deemed to cause him a problem. 

• A stupid person is focusing on some minor detail while neglecting much more 
important aspects, which are directly relevant to the goals and the self-interests of 
the observed; holding fast to that twig certainly is not going to help for long. 

• To an outside observer this neglect is hard to understand as a more complete pic-
ture and fitting behavior appear to be obvious and easily available to the agent; the 
guy knows he is cutting the branch he is sitting on, he ought to realize that he is 
going to fall down and harm himself. Watching this is itself hurtful to the viewer.  

The observed points and more can be distilled from the examples of manifestly stupid 
(human) behaviors collected and analyzed over time by many authors [7,8,9]. As their 
first common point it shall be emphasized here that natural stupidity is a feature as-
cribed to an agent from the outside by another knowledgeable agent.  

The more the resulting effects of behavior run counter to the (assumed) intentions 
of the observed actor, the stronger the impression of his stupidity. The same holds 
true with respect to the availability of alternatives: the easier different behavior, which 
would lead to success, can be found and performed, the sillier one must be to neglect 
or discard that information.  

Stupidity is individual, and here also the border runs between simple innocent 
dumbness or blunt incapability and more sophisticated forms of stupidity. If an agent 
is charged beyond his capabilities, his behavior will not be optimum, but we would be 
much more willing to excuse his failure than if he could have managed if not too lazy 
or ignorant and arrogant. The same performance, which might be rated respectable for 
a student or novice, could fall under the rubric of stupid reaction if it came from a 
Nobel laureate in his claimed field of expertise.  

Quite general, being an accomplished expert in one restricted field does not neces-
sarily imply overarching intelligence. The Ouroboros Model stresses the ‘local’ nature 
of schemata and effective processes, and it identifies this at the same time as inherent 
constraint and principal limitation for performance.  

Sophistication is possible in countless directions; as one commonplace and impor-
tant example, an arrogant agent might be guided by a severely distorted self-
assessment and be wrongly convinced that he knows very well what to do, even ac-
tively rejecting any help. (“Pride and ignorance are akin” the proverb knows).  

Judging the motivation behind any non-trivial behavior from the outside is intrinsi-
cally difficult as it amounts to guessing some only personally accessible parts of the 
total frame relevant to the actor. Sometimes it thus might be hard to tell whether an 
act belongs to the category of stupidity or even obstruction and sabotage.  

As a preliminary summary one might say that in any variant of stupidity informa-
tion directly relevant to a behavior is mistakenly not taken into account in any appro-
priate and apparently obvious way. In terms of the Ouroboros Model this means that 
the applied schemata are a poor representation of the relevant features of reality or 
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that the processes working on the basis of these schemata are faulty, e.g. perceptions 
are distorted or discrepancies are ignored.  

4 General Intelligence  

In the light of the claimed characteristics of naturally occurring stupidity one is 
tempted to see a reason for the obvious difficulty for defining intelligence in an objec-
tive and unquestionable way in the non-existence of context-free intelligence. Some 
statements concerning intelligence, inverse to the above hypotheses referring to stu-
pidity, suggest themselves and seem intuitively right:  

• Intelligence is a label that humans grant to other (rational) agents.  
• An intelligent person (agent) takes into systematic account all conceivably relevant 

data, possibilities and circumstances, reaching with coherent and correct reasoning 
much beyond the directly obvious.  

• The more unexpected and sophisticated a decisive combination or insight is, the 
higher we appreciate the feat and the apparent cognitive skill.  

So, what would be an appropriate counterpart to Fig. 1? A modest attempt to provide 
one example is sketched in Fig. 2. 

 

Fig. 2. Clever is, who applies an understanding as wide as possible, chooses appropriate tools 
as available and accepts help from friends 
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Importantly, in contrast to the gist of what is usually understood as intelligence, the 
sketch of a definition as given in the caption of Fig. 2 does not mention success as a 
criterion for a person or an action to qualify as intelligent. Adaption and success, no 
doubt, in the long run are more often the consequences resulting from intelligent ra-
ther than from stupid actions but in an open and complex world there is no simple 
one-to-one correlation. There are cases, e.g. of limited resources, in which no measure 
of intelligence can guarantee a favorable outcome; and it might not even be possible 
in hindsight to judge. An agent might have failed and still, she might have acted as 
intelligent and efficient as possible at all. Many a success is the child of mere luck.  

Quite commonly, it is often not so clear, how to qualify an action or omission. In-
telligence and stupidity are individual also in the sense that different observers might 
arrive at contradicting conclusions referring to one and the same instance. On top of 
observers’ personal limitations principal restrictions due to bounded resources apply; 
this results in a grey scale comprising fundamental uncertainty.  

The idea that intelligence is to be attributed by judges in a particular situation is not 
new; it lies at the heart of Turing’s famous test [10]. The first chapter-title in his 
groundbreaking paper gives also a hint on how to achieve intelligence, and at the 
same time it names a limitation with the keyword of “imitation”. Observing others, 
remembering and copying their (successful) behavior certainly can help to avoid some 
mistakes; on the other hand, simple imitation lacks the features of novelty, under-
standing or creativity, of which at least the first two are most often considered  
hallmarks of intelligence. Teachers are familiar with the related distinction between 
learning something by rote and true comprehension.  

At a somewhat abstracted level, the cognitive skills of a person can be determined 
rather reliably and reproducibly. Interestingly, also the best available quantitative 
measure of general intelligence, i.e. the IQ of an individual as derived from his per-
formance in a series of well defined and validated tests, is relative; it refers in its  
definition to a comparison to an ensemble comprising many other persons.  

5 Intelligence According to the Ouroboros Model   

It is hypothesized by the Ouroboros Model that not only representational capacity, but 
the total potential mental processing power of an agent is ground-laid as well as li-
mited by structured knowledge. i.e. the number, complexity and elaboration of the 
concepts at her disposition [4].  

Differentiated schemata, their numbers of slots, the level of detail, the depth of hie-
rarchies, the degrees of connection and interdependence of the building blocks, and 
the width, i.e. the extent of main schemata and their total coverage from a bodily 
grounding level to the most abstract summits, determine what can be done or thought 
of efficiently. Sheer performance at a single point in time arises as a result of the op-
timum interplay between these structured data and the effective and systematic execu-
tion of the processing steps, in particular, self-referential consumption analysis.  

Most important, efficient (long-term and working-) memory is seen as a mandatory 
prerequisite of intelligence. Understanding working memory as temporary common 
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activation and binding of current input with material laid down in long term storage 
makes this proposal consistent with vast evidence, which indicates that working 
memory capacity is a valid predictor of general intelligence [11.12].   

The pursuit of consistency as the fundamental basis for rational behavior and the 
efficient self-steering by consumption analysis entails a principal difficulty for diffe-
rentiating between cunningness and foolishness or dullness [4]. If something is 
marked as strongly discordant with hitherto experience, it might be because it is novel 
and brilliant, or, it might simply be wrong, even stupid. Only the intelligent (!) em-
bedding of the issue in question in the widest possible frame and taking into account 
all conceivably relevant information can offer a chance of meaningful and fair  
assessment. Stupidity can sometimes be temptingly simple and beautiful, while 
thoughtful elaborations, often tedious, might be deterrent.  

Appraisal of any elaborate and complex behavior cannot be collapsed onto one sin-
gle scale running between stupid and intelligent; there are much more dimensions to 
this topic than can be indicated with a few opposites. As just one example, a related 
distinction could be between rational and irrational. In the light of the Ouroboros 
Model, rational behavior takes all relevant information into account in a systematic 
manner, it can be comprehended in detail, and it necessarily entails consequent and 
traceable reasoning. Irrational actions cannot be fully understood by a spectator, at 
least not on the basis of the knowledge applicable for him at that point in time. Crea-
tivity would in this frame still lie somewhere in an orthogonal direction emphasizing 
the feature of unprecedentedness while relaxing requirements for stringency, “useful-
ness” and “grounding”.  

6 Conclusions 

The Ouroboros Model holds that intelligence is conceded by a spectator to an actor 
whenever the actor consistently brings to bear all information considered to be really 
relevant by the spectator.  

There is nothing like absolute stupidity or intelligence, no such observer-
independent objective entities do exist. Whether a behavior is called clever or silly 
depends on the contexts prevalent for the involved agents at that particular time in 
question. The employed frames of reference can make a decisive difference.  

Both figures in this paper are misleading; no adequate picture of stupidity or intel-
ligence can be drawn in black and white. Any qualification of cognitive performance 
is possible only in a wider context admitting the agents, (self-) involved as actors and 
observers. The described mandatory inclusion of a human (even consciousness-) 
component into definitions of intelligence and stupidity can explain why so far no 
consensus has been reached among researchers on the essential abstract characteris-
tics or a unique definition of intelligence.  

The actual result of an action cannot righteously be taken as touchstone for the in-
telligence leading to that outcome. The situation is a little like looking into a mirror: 
the distinction between up and down is easy as well-defined by an outside reference; 
judging intelligence versus stupidity, alas, corresponds more to telling left from right.  
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Self-reflecting, we emphasize as one defining feature of stupidity a deficiency in con-
sidering all relevant (in principal available) information, which is judged as essential 
for success by an observer. This evaluating instance need not necessarily be a differ-
ent person; it can be the actor himself reflecting on his own behavior at some earlier 
point in time.  

A special case worth while mentioning in this respect are situations and behavioral 
options for which short-term benefits to an actor entail long-term disaster [9]. It cer-
tainly is a sign of stupidity, if the temporal dimension is not carefully paid heed to, 
and, for example, an action is judged as ingenious because it had turned out a success, 
- it is well possible that at the time of taking the corresponding decision, this particu-
lar behavior could only have been condemned as stupid; - the same is also possible 
the other way round.  

In a setting of intended collaboration, stupidity of an actor can still easily be topped 
by an observer, - if he clearly displays that he considers the first one stupid.  

The Ouroboros Model stresses the indispensability of orderly processes and it high-
lights the preeminent importance of exploiting a knowledge base as vast as ever  
possible. There is no contradiction to efficiently employing well-tuned short cuts and 
heuristics [13]; - the latter can be seen as a means of taking the dimension of time 
and, in particular, time-limitations in a natural and dangerous world, into due account.  

A strong link between intelligence and consciousness has been proposed, see Fig. 
1, and it has been argued that at a certain level of intelligence consciousness emerges 
naturally, even inevitably [3,14].  

The Ouroboros Model claims to offer a self-consistent and self-relational consis-
tent approach for understanding and avoiding stupidity in natural and artificial agents 
and for fostering the self-steered growth of intelligence. The general advice for guard-
ing against stupidity that could be drawn from it might best be summarized in a plea 
for aiming at all-embracing consistency in the widest possibly and applicable frame.  
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be concealed that the author is indebted to certain individuals for providing a wealth 
of inspiration.  

In enjoyable contrast, responding to encouraging questions and suggestions posed 
by unknown reviewers was a true pleasure.  

References 

1. Thomsen, K.: The Ouroboros Model in the light of venerable criteria. Neurocomputing 74, 
121–128 (2010) 

2. Thomsen, K.: The Ouroboros Model, Selected Facets. In: Hernández, C., et al. (eds.) From 
Brains to Systems, pp. 239–250. Springer, Heidelberg (2011) 

3. Thomsen, K.: Consciousness for the Ouroboros Model. Journal for Machine Conscious-
ness 3, 163–175 (2011) 

4. Thomsen, K.: Knowledge as a Basis and a Constraint for the Performance of the Ourobo-
ros Model. Presented at a Workshop at ZiF in Bielefeld, October 29-31 (2009) 



340 K. Thomsen 

 

5. Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends in 
Cognitive Science 10, 301–308 (2006) 

6. Legg, S., Hutter, M.: A Collection of Definitions of Intelligence. In: Proceedings of the 
2007 Conference on Advances in Artificial General Intelligence: Concepts, Architects and 
Algorithms (2007) 

7. Geyer, H.: Über die Dummheit. VMA-Verlag Wiesbaden (1954) 
8. Van Boxsel, M.: Die Enzyklopädie der Dummheit. Eichborn AG, Frankfurt am Main 

(2001) 
9. Welles, J.F.: Understanding Stupidity. Mount Pleasant Press, NY (1995) 

10. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950) 
11. Ericsson, K.A., Kintsch, W.: Longt-term working memory. Psychological Review 102, 

211–245 (1995) 
12. Oberauer, K., Süss, H.-M., Wilhelm, O., Wittmann, W.W.: Which working memory func-

tions predict intelligence? Intelligence 36, 641–652 (2008) 
13. Gigerenzer, G., Todd, P.M., ABC Research Group (eds.): Simple heuristics that make us 

smart. Oxford University Press, New York (1999) 
14. Sanz, R., López, I., Rodríguez, M., Hernandéz, C.: Principles for consciousness in inte-

grated cognitive control. Neural Networks 20, 938–946 (2007) 



On Ensemble Techniques

for AIXI Approximation

Joel Veness1, Peter Sunehag2, and Marcus Hutter2

1 University of Alberta
2 Australian National University

veness@cs.ualberta.ca, {peter.sunehag,marcus.hutter}@anu.edu.au

Abstract One of the key challenges in AIXI approximation is model
class approximation - i.e. how to meaningfully approximate Solomonoff
Induction without requiring an infeasible amount of computation? This
paper advocates a bottom-up approach to this problem, by describing a
number of principled ensemble techniques for approximate AIXI agents.
Each technique works by efficiently combining a set of existing environ-
ment models into a single, more powerful model. These techniques have
the potential to play an important role in future AIXI approximations.

1 Introduction

In statistical data compression, one modeling approach used by many high per-
formance programs is to use an ensemble method to combine the predictions
of multiple statistical models (Mattern, 2012). Each model is typically tailored
towards a particular kind of structure that occurs in popular file types. By spe-
cifying a number of specialized models, as well as one or more general-purpose
models, excellent compression performance can be obtained across a variety of
file types. This approach is taken by the powerful PAQ family (Mahoney, 2005)
of data compressors, which currently obtain the best compression performance
across many well-known benchmarks.

Within reinforcement learning (Sutton and Barto, 1998), some efforts
(Veness et al., 2010, 2011) have recently been made towards approximating AIXI
(Hutter, 2005), an optimality notion for general reinforcement learning agents.
Impressively, these agents have been shown to be able to learn, from scratch, to
play TicTacToe, Pacman, Kuhn Poker, and other simple games by trial and error
alone – even the rules of each game were not communicated to the agent. The
mathematical framework used in these works can be considered a natural gen-
eralization of the statistical data compression setting to reinforcement learning.
The distinguishing feature of this setting is an extra source of side information
– namely, the history of actions chosen by some control algorithm – which is in-
corporated into a sequential, probabilistic framework. Inspired by the success of
ensemble methods within data compression, the goal of this paper is to explore
a number of principled techniques for combining one or more probabilistic mod-
els within reinforcement learning. We restrict our attention to that of universal
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methods, i.e. methods that provide competitive theoretical guarantees with re-
spect to an interesting class of candidate environments. Our contribution is to
survey some general techniques from Bayesian statistics, online learning and on-
line convex programming and show how they can be used to define a variety of
principled ensemble techniques for information theoretic agents.

2 Background

We now describe our probabilistic agent setting. A more detailed overview of this
framework can be found in the work of Hutter (2005) and Veness et al. (2011).

Notation. A string x1x2 . . . xn of length n is denoted by x1:n. The prefix x1:j

of x1:n, j ≤ n, is denoted by x≤j or x<j+1. The notation generalises to blocks
of symbols: e.g. ax1:n denotes a1x1a2x2 . . . anxn and ax<j denotes the string
a1x1a2x2 . . . aj−1xj−1. The empty string is denoted by ε. The concatenation of
two strings s and r is denoted by sr. The finite action, observation, and reward
spaces are denoted by A,O, and R respectively. Also, X denotes the joint per-
ception space O ×R.

The following definition states that the environment takes the form of a prob-
ability distribution over possible observation-reward sequences conditioned on
actions taken by the agent.

Definition 1. An environment ρ is a sequence of parametrized probability mass
functions {ρ0, ρ1, ρ2, . . . }, where ρn : An → Density (Xn), that satisfies

∀a1:n∀x<n : ρn−1(x<n | a<n) =
∑

xn∈X
ρn(x1:n | a1:n). (1)

In the base case, we have ρ0(ε | ε) = 1.

Equation (1), called the chronological condition by Hutter (2005), captures the
natural constraint that action an has no effect on earlier perceptions x<n. For
convenience, we drop the index n in ρn from here onwards. Now, given an en-
vironment ρ, we define the predictive probability

ρ(xn | ax<nan) := ρ(x1:n | a1:n)/ρ(x<n | a<n) (2)

∀a1:n∀x1:n such that ρ(x<n | a<n) > 0. It now follows that

ρ(x1:n | a1:n) = ρ(x1 | a1)ρ(x2 | ax1a2) · · · ρ(xn | ax<nan). (3)

Definition 1 is used in two distinct ways. The first is to describe the true envir-
onment, which is typically not known by the agent. The second is to describe an
agent’s subjective model of the environment. This model is usually adaptive, and
will often only be an approximation to the true environment. To make the dis-
tinction clear, we will refer to an agent’s environment model when talking about
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the agent’s model of the environment. Additionally, we introduce the notion of
an ε-positive environment model. This is defined as an environment model ρ
satisfying ρ(xn | ax<nan) ≥ ε for some real ε > 0, for all n ∈ N, for all x1:n ∈ Xn

and for all a1:n ∈ An. From here onwards we assume all environment models are
ε-positive.

Redundancy. We will also introduce a notion of regret, redundancy, which we
will later use to analyze the performance of our ensemble techniques. This is
defined as

− log2 μ(x1:n | a1:n)− min
ρ∈M

− log2 ρ(x1:n | a1:n)

for an arbitrary environment model μ, with respect to some class M of envir-
onment models. Our typical goal will be to show that the redundancy grows
o(n). Informally, such a result implies that the average performance of μ will
eventually match that of the best model in M as n gets large.

3 Ensemble Techniques

This section discusses a number of principled ways to construct an enriched en-
vironment model from two or more existing environment models. A competitive
analysis is given for each method, which justifies their usage in various situations.

3.1 Weighting / Model Averaging

A straightforward way to construct an adaptive environment model that can
perform nearly as well as any single model from a finite set of candidate envir-
onment models is to use Bayesian Model Averaging (also known as weighting).

Definition 2. Given a finite set of environment models M := {ρ1, ρ2, . . . } and
a prior weight wρ

0 > 0 for each ρ ∈ M such that
∑

ρ∈M wρ
0 = 1, the mixture

environment model is ξ(x1:n | a1:n) :=
∑

ρ∈M
wρ

0ρ(x1:n | a1:n).

The above can easily be shown (for example, see Proposition 1 in the work of
Veness et al. (2011)) to define a valid environment model. Because of this, we
can simply use

ξ(xn | ax<nan) = ξ(x1:n | a1:n) / ξ(x<n | a<n) (4)

to predict the next observation reward pair. Equation (4) can also be expressed
in terms of a convex combination of model predictions, with each model weighted
by its posterior probability. Formally,

ξ(xn | ax<nan) =

∑
ρ∈M

wρ
0ρ(x1:n | a1:n)∑

ρ∈M
wρ

0ρ(x<n | a<n)
=

∑
ρ∈M

wρ
n−1ρ(xn | ax<nan),
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where the posterior weight wρ
n−1 for environment model ρ is given by

wρ
n−1 :=

wρ
0ρ(x<n | a<n)∑

ν∈M
wν

0ν(x<n | a<n)
. (5)

This method is justified whenever there exists a model ρ∗ ∈ M that predicts
well, since

− log2 ξ(x1:n | a1:n) = − log2
∑
ρ∈M

wρ
0ρ(x1:n | a1:n) ≤ − log2 w

ρ∗
0 −log2 ρ

∗(x1:n | a1:n), (6)

which implies that we suffer constant redundancy when using ξ in place of ρ∗.

Algorithm. The weights specified by Equation (5) can be maintained in O(|M|)
time and space by using the identity ρ(x1:n | a1:n) = ρ(x<n | a<n)ρ(xn | ax<na)
to incrementally maintain the probability of the data under each environment
model. Note however that in some special cases, more efficient techniques exist
with time complexity sublinear in |M|. One example is Context Tree Weight-
ing (Willems et al., 1995), which was used as the basis for our previous AIXI
approximations (Veness et al., 2010, 2011).

3.2 Switching / Tracking

While weighting provides an easy way to combine models, as an ensemble method
it is somewhat limited in that it only guarantees performance in terms of the best
single model in M. It is easy to imagine situations where this would be insuffi-
cient in practice. Instead, one could consider weighting over sequences of models
chosen from a fixed base class M. Variants of this fundamental idea have been
considered numerous times in the literature, for example by Volf and Willems
(1998); Herbster and Warmuth (1998) and Erven et al. (2008). We now show
how these ideas can be cast into our probabilistic agent setting, by describing an
adaptation of the FixedShare algorithm (Herbster and Warmuth, 1998). We
also provide a short competitive analysis.

Definition 3. Given a finite set M = {ρ1, . . . , ρN}, N > 1, of environment
models and a switching sequence α = α2α3 . . . ∈ [0, 1]∞, for all n ∈ N, for all
x1:n ∈ Xn, the switching environment model with respect to M and α is defined
as

τα(x1:n | a1:n) :=
∑

i1:n∈In(M)

wα(i1:n)

n∏
k=1

ρik(xk | ax<kak) (7)

where In(M) := {1, 2, . . . , N}n and the prior over model sequences is recursively
defined by

wα(i1:n) :=

⎧⎪⎨
⎪⎩

1 if i1:n = ε
1
N

if n = 1

wα(i<n)×
(
(1− αn)I[in = in−1] +

αn
N−1

I[in �= in−1]
)

otherwise,
(8)
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Algorithm 1. SwitchMixture - τα(x1:n | a1:n)

Require: A finite model class M = {ρ1, . . . , ρN} such that N > 1
Require: A weight vector (w1, . . . , wN ) ∈ R

N , with wi =
1
N

for 1 ≤ i ≤ N
Require: A switching sequence α2, α3, . . . , αn

1: r ← 1
2: for i = 1 to n do

3: r ←
N∑

j=1

wjρj(xi | ax<iai)

4: k ← (1− αi+1)N − 1

5: for j = 1 to N do
6: wj ← 1

N−1
[αi+1r + kwjρj(xi | ax<iai)]

7: end for
8: end for
9: return r

Now, using the same argument to bound − log2 τα(x1:n | a1:n) as we did in Equa-
tion 6, we see that the inequality

− log2 τα(x1:n | a1:n) ≤ − log2 wα(i1:n)− log2 ρi1:n(x1:n | a1:n) (9)

holds for any sequence of models i1:n ∈ In(M), where ρi1:n(x1:n | a1:n) denotes
the product

∏n
k=1 ρik(xk | ax<kak) of the sequence of conditional probabilities

defined by i1:n. Next, we state an upper bound on − log2 wα(i1:n) that holds for
any sequence of model indices.

Lemma 1. Given a base model class M and a decaying switch rate αt :=
1
t for

t ∈ N,
− log2 wα(i1:n) ≤ (m(i1:n) + 1) (log2 |M|+ log2 n) ,

for all i1:n ∈ In(M), where m(i1:n) :=
∑n

k=2 I[ik �= ik−1] denotes the number of
switches in i1:n.

Proof. See the work of Veness et al. (2012).

Combining Equation 9 with Lemma 1 gives the following bound.

Theorem 1. Given a base model class M and switch rate αt :=
1
t for t ∈ N,

for all n ∈ N, for all i1:n ∈ In(M),

− log2 τα(x1:n | a1:n) ≤ (m(i1:n) + 1) [log2 |M|+ log2 n]− log2 ρi1:n(x1:n | a1:n).

Thus if there exists an environment model ρi1:n with m(i1:n)" n that predicts
well, then τα will also predict well. In the case where the best sequence of models
satisfies m(i1:n) = 0, Theorem 1 gives an extra cost of log2 n bits compared to
a uniform weighting. Assuming both bounds are tight, log2 n can be thought of
as the cost of using switching in situations where weighting would have been
sufficient.
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Algorithm. A direct computation of Equation 7 is intractable. For example,
given a history ax1:n and a model class M, the sum in Equation 7 would re-
quire |M|n additions. Fortunately, the structured nature of the model sequence
weights wα(i1:n) can be exploited to derive Algorithm 1. The same argument
used to derive the correctness of this procedure for the sequence prediction set-
ting (Veness et al., 2012) can be easily generalised to our agent setting. As-
suming that every conditional probability can be computed in constant time,
Algorithm 1 runs in Θ(n|M|) time and uses only Θ(|M|) space. Furthermore,
only Θ(|M|) work is required to process each new symbol.

3.3 Convex Mixing

This next section introduces convex mixing, a technique which, unlike weighting
or switching, can sometimes be expected to perform better than any single model
or sequences thereof from some base class of environment models M. The key
insight is to consider arbitrary convex combinations of the individual model
predictions at each time step. More formally, given a set of base environment
modelsM, consider the product of an arbitrary sequence of convex combinations
of the conditional probabilities determined by each environment model.

Definition 4. Given a finite set of ε-positive environment models M and a
sequence of weights λ := {λ1, λ2, . . . }, where each λi := { λρ

i }ρ∈M such that
λρ
i ∈ R, λρ

i ≥ 0 and
∑

ρ∈M λρ
i = 1 for i ∈ N, the convex environment model with

respect to λ is defined as

νλ(x1:n | a1:n) :=
n∏

i=1

∑
ρ∈M

λρ
i ρ(xi | ax<iai). (10)

The above can easily be seen to define a valid chronological measure.

Proposition 1. A convex environment model is an environment model.

Proof. As each environment model ρ ∈M is ε-positive, every conditional probab-
ility ρ(xk | ax<kak) is well defined. Therefore we just need to check that Equation
(1) is satisfied. Now, ∀a1:n ∈ An and ∀x<n ∈ Xn−1 observe that

∑
xn∈X

νλ(x1:n | a1:n) =
∑

xn∈X

n∏
i=1

∑
ρ∈M

λρ
i ρ(xi | ax<iai)

= νλ(x<n | a<n)
∑

xn∈X

∑
ρ∈M

λρ
n ρ(xn | ax<nan)

= νλ(x<n | a<n)
∑
ρ∈M

λρ
n

∑
xn∈X

ρ(xn | ax<nan)

= νλ(x<n | a<n)
∑
ρ∈M

λρ
n

= νλ(x<n | a<n),
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Algorithm 2. ConvexMixture - νλ(x1:n|a1:n)

Require: A history ax1:n ∈ (A× X )n, n ∈ N

Require: An initial weight vector λ1 ∈ Δ|M|−1

Require: A sequence η1, η2, . . . , ηn, of positive, real-valued step sizes

1: r ← 1
2: for i = 1 to n do
3: r ← r ×∑

ρ∈M λρ
i ρ(xi | ax<iai)

4: λi+1 = SimplexProject(λi − ηi∇�i(λi ; xi))
5: end for
6: return r

which is what we need. The first three steps follow from Equation (10) and stand-
ard calculations, the fourth step follows from Equation (2), and the final step
follows since

∑
ρ∈M λρ

n = 1 by definition.

Adaptive Convex Mixing. We will now show how to apply the framework of
online convex programming (Zinkevich, 2003; Hazan, 2006) to dynamically (i.e.

as a function of ax1:n) produce a sequence of weights λ̂ whose redundancy

− log2 νλ̂(x1:n | a1:n)− min
λ∗∈Δ|M|−1

⎧⎨
⎩− log2

n∏
i=1

∑
ρ∈M

λρ
∗ρ(xi | ax<iai)

⎫⎬
⎭ (11)

grows O(
√
n) with respect to the best set of constant weights in Δ|M|−1, for all

n ∈ N and for all x1:n ∈ Xn, where Δk denotes the standard k-simplex. This
can be considered as an alternative to weighting over the probability simplex,
which will invariably require more restrictive assumptions on the environment
model in order to gain computational tractability.

To begin with, we require a sequence of history dependent convex loss func-
tions. These can be obtained by noticing that

− log2 νλ(x1:n | a1:n) =
n∑

i=1

− log2
∑
ρ∈M

λρ
i ρ(xi | ax<iai),

which lets us naturally define the loss function at time n ∈ N to be

�n(λn ; ax1:n) := − log2
∑
ρ∈M

λρ
n ρ(xn | ax<nan).

The next proposition shows us that this class of loss functions is convex.

Proposition 2. ∀n ∈ N, ∀ax1:n ∈ (A×X )n, �n(· ; ax1:n) is convex.

Proof. Denote gn(λ) :=
∑

ρ∈M λρ
n ρ(xn | ax<nan) and h(x) := − log2(x). First

observe that as a linear function, gn is concave. Also, note that the extended-
value extension of h, defined by

h̃(x) =

{− log2 x if x ∈ (0,∞],
∞ otherwise



348 J. Veness, P. Sunehag, and M. Hutter

Algorithm 3. SimplexProject(w)

Require: A vector w = (w1, . . . , wd) ∈ R
d for d ≥ 2

1: i = 1, s = −1
2: y ← SortDescending(w1, . . . , wd)

3: loop
4: s = s+ yi
5: r = s/i
6: if i = d or r ≥ yi−1 then
7: t ← r
8: break loop
9: end if
10: i ← i+ 1
11: end loop

12: for i = 1 to d do
13: wi ← max(0, wi − t)
14: end for

15: return w

is non-increasing on R. Therefore, since h is convex, it follows (see Section 3.2.4
of (Boyd and Vandenberghe, 2004)) that for all n ∈ N, �n(·, ax1:n) is convex.

The gradient ∇�n(λn ; ax1:n) of the loss with respect to λn can now be determ-
ined by repeatedly using the identity

∂�n
∂λρ

n
=

−ρ(xn | ax<nan)

ln 2
∑

ν∈M λν
n ν(xn | ax<nan)

,

for all ρ ∈ M, to construct the relevant |M|-dimensional column vector. Note
that due to the ε-positive assumption, we can bound each coefficient in the
gradient by∣∣∣∣ −ρ(xn | ax<nan)

ln 2
∑

ν∈M λν
n ν(xn | ax<nan)

∣∣∣∣ ≤ 1

ln 2
∑

ν∈M λν
nε

=
1

ε ln 2
,

which implies that

‖∇�n(λn ; ax1:n)‖2 ≤
√
|M| 1

ε ln 2
. (12)

Theoretical Analysis. Since we have cast our problem into the framework of
online convex programming, the argument of Zinkevich (2003) can be used to
state a redundancy bound for convex environment models. This analysis assumes
the existence of a known upper bound G := sup1≤i≤n ||∇li(λi; ax1:i)||2 on the
l2-norm of the gradients as well as on the diameter D := maxc1,c2∈C ‖c1 − c2‖2
of the convex set (the simplex for us) that we perform the optimization over.
The result, formulated by Hazan (2006) in Theorem 2.1 (page 12), says that by
setting ηi =

D
G
√
i
, the cumulative regret after n steps is bounded by 3GD

√
n.
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Theorem 2. Using Algorithm 2 with a step size of ηi =
ε ln 2√

i
for 1 ≤ i ≤ n,

max
λ∗∈Δ|M|−1

⎧⎨
⎩log2

n∏
i=1

∑
ρ∈M

λρ
∗ρ(xi | ax<iai)

⎫⎬
⎭− log2 νλ̂(x1:n | a1:n) ≤ 3|M|√n

ε ln 2

Proof. The result follows by using Proposition 2, the fact that the diameter D of
Δ|M|−1 is

√|M|, the bound (12) that gives us G and the theorem by Zinkevich
(2003) as formulated by Hazan (2006) in Theorem 2.1.

Algorithm. Algorithm 2 shows how to efficiently compute a convex mixture en-
vironment. It uses the notation λi to compactly denote the vector (λρ1

i , . . . λ
ρ|M|
i )

formed from the weights of each environment model in M at time i. The
subroutine SimplexProject projects an arbitrary vector in R

|M| onto the
closest (in terms of Euclidean Distance) point inside the probability simplex
Δ|M|−1. The pseudocode for this routine, derived from the technique presented
by Chen and Ye (2011), is given in Algorithm 3; it runs in O(|M| log |M|) time.
The SortDescending subroutine in Algorithm 3 returns a vector y whose
components y1, . . . , yd are a permutation of the components of the input vec-
tor satisfying y1 ≥ y2 · · · ≥ yd. The overall complexity of the algorithm (not
including the cost of running the models in M) is O(n|M| log |M|), and can be
computed incrementally using O(|M| log |M|) time to process each percept.

3.4 A Second Order Method

Additionally, we can exploit a stronger property of our class of loss functions to
describe a more computationally demanding algorithm with better redundancy
behaviour. To do this, we begin by showing that our class of loss functions is
α-exp-concave. Recall that a function f is said to be α-exp-concave for a real
α > 0 if the function exp{−αf(·)} is concave.

Proposition 3. ∀n ∈ N, ∀ax1:n ∈ (A×X )n, �n(· ; ax1:n) is 1-exp-concave.

Proof. ∀n ∈ N, ∀ax1:n ∈ (A×X )n, observe that

exp{−α �n(λn ; ax1:n)} =
⎛
⎝∑

ρ∈M
λρ
n ρ(xn | ax<nan)

⎞
⎠

α

.

Thus when α = 1, exp{−α �n(· ; ax1:n)} is a convex combination of conditional
probabilities, which is a concave function. Hence �n(· ; ax1:n) is 1-exp-concave.

This property, along with our previous upper bound on the Euclidean norm
of the gradient of the loss, permits us to use the second order OnlineNew-
tonStep method of Hazan et al. (2006) in place of Algorithm 2. The resultant
method would enjoy a guaranteed redundancy of O(log n), at the cost of a more
complicated implementation whose space complexity is O(|M|2), and whose per
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time-step complexity is O(|M|2) plus the cost of solving a convex quadratic
program to compute a generalized projection onto the probability simplex. We
defer a more thorough empirical comparison between these two approaches to
future work.

4 Conclusion

This paper has described a number of principled ensemble techniques for univer-
sal reinforcement learning agents. Each technique works by efficiently combining
a set of existing environment models into a single, more powerful model. We ex-
pect these techniques to play an important role in future AIXI approximations.
For example, the MC-AIXI agent could be extended by using these techniques
to combine multiple instantiations of FAC-CTW, with each instantiation us-
ing a different notion of context as per Section 9.3 of the work of Veness et al.
(2011).
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Abstract. AGI systems should be able to manage its motivations or
goals that are persistent, spontaneous, mutually restricting, and changing
over time. A mechanism for handles this kind of goals is introduced and
discussed.

1 Properties of Goals in AGI Systems

In a broad sense, all AI systems are “goal-oriented”, in that every activity in it
serves certain purpose. Researchers have been using notions like “motivation”,
“drive”, “need”, “goal”, “task”, and “intention” to indicate this teleological as-
pect of the system. In this paper, they are all called “goals”, since the differences
among these notions are not significant for this discussion. No matter what we
call it, a process in such a system points to a certain destination, and it is
against this destination that the system’s progress and success are evaluated.
In this broad sense, we do not require every goal to be explicitly represented or
consciously known to the system.

In the context of AGI, some related topics have been discussed from different
perspectives [1–4], though there are still many issues to be resolved. In this
paper, we do not focus on the content of goals in AGI systems, like [1, 3], but on
the general properties of goals, as well as on how they should be managed in the
system. In AI, existing works are summarized in [5–7], though the situation is
more or less different in the context of AGI, with the stressing on the versatility
and unity of the system.

In the following we will discuss several questions:

– Can the system achieves its goals one after another? If not, when to switch
the effort from one goal to another?

– Can the co-existing goals be assumed to be compatible with each other? If
not, how to handle their conflicts?

– Can the goals change over time? If yes, why and how?
– Can the system produce its own goals? If yes, will it be out of control?

Before discussing these questions in the AGI context, let us consider the classi-
cal case of a computation process in a Turing Machine [8]. In this situation, the
unique “goal” of the process is specified by the final states of the machine, which
are predetermined, constant, and reachable. A traditional computer system typ-
ically has multiple running programs at any given moment, and each of which
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corresponds to such a goal-guided process. Usually these processes are mutually
compatible, in the sense that one does not prevent another to be reached. From
time to time, there are processes start, while some others stop, so the “current
goals” change, though remains a subset of all the possible goals of the system,
which correspond to the programs in the system. All these goals are given be
the designers and users of the system, so no goal really comes from the system
itself. Since this situation is very simple, it is unnecessary to be described using
fancy words like “goal” or “motivation”.

However, the situation is not so simple for AGI systems. In the following let
us discuss the four questions raised previously one by one.

Transient vs. Persistent
The goals in traditional computer systems are transient, in the sense that each of
them only exists for a relatively short time, from its creation to its satisfaction,
corresponding to the beginning and ending of a computational process. Even
when a program is repeatedly executed, the corresponding goal is usually not
explicitly related to its previous occurrence.

Many AI systems also specify their goals in this way, that is, as “states satis-
fying particular conditions” [9], where the process stop and the system is reset
to its initial state with respect to this process. The most typical examples are
the systems doing state-space search, such as GPS [10].

On the contrary, in AGI systems, many (though not all) goals will be per-
sistent, in the sense that once created, such a goal may last in the lifetime of
the system. Examples of persistent goals can be found everywhere in the human
mind, and many of them are also clearly desirable or inevitable in AGI systems,
such as “be self-protective” and “to acquire resources” [1, 11].

This type of goals cannot be treated as final states where process stops. For
one reason, such a “state” may never be actually reached, but serves merely as
the direction for the system to move. Furthermore, even if it is achieved at a
given moment, the system should not consider it done and does not think about
it anymore, but has to prevent the achievement from being destroyed by future
events.

For the above reasons, the system cannot treat a persistent goal as the ending
point of a process, but a destination to be approached or a status to be preserved,
and to decide when to stop the process by some other criteria, such as the
quality of the obtained result (such as a “satisfying threshold”) or the cost of
the processing (such as an “expense budget”).

Now we see that an optimization problem fall into this category, as far as
the system cannot prove whether a given candidate answer is optimal or not.
In AI, many learning techniques have this nature, such as genetic algorithm
[12] and reinforcement learning [13]. In such a system, the goal is to optimize
a measurement (“fitness”, “reward”, or “utility”), and the processing typically
stops before all possibilities have been tried. If there is a fixed threshold, then the
persistent goal is converted into a transient goal, by treating all states above the
threshold as final states. However, this is not the only option. The persistence
nature will be handled better if such a goal is pursued using an anytime algorithm
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[14] and let the stop decision be made in a context-sensitive way, or the pursuing
of the goal may never stop, though become dormant from time to time.

Compatible vs. Restricting
Generally speaking, all interesting systems have multiples goals, since a non-
trivial goal is almost always achieved though the achieving of its subgoals or
derived goals. Even so, in traditional systems it is usually more fruitful to con-
sider a single goal at a time. This is valid, because in the terminology of graph
theory, the goals in such a system can be considered as a “forest”, consisting
of trees where the predecessor-successor relation between nodes represents the
supergoal-subgoal relation between goals. Normally, the top-level, or root, goals
in disjoint trees are mutually compatible, in the sense that the achieving of one
does not prevent another from being achieved, otherwise the goals cannot coexist
in the same system.

In many systems, each goal-tree can be represented by its root, because

1. The subgoals are recursively created as means to achieve the root goal;

2. As far as the goal-derivation process is designed correctly, the effects of the
subgoal should be implied by the effects of the root goal;

3. The duration in which each subgoal exists is a sub-interval of the duration
in which the root goal exist.

For these reasons, to analyze the goals of such a system, it usually suffices to
only consider the top-level goals. Their subgoals may cause some issues, such as
one may have another as a prerequisite, or the two may compete for a piece of
resource, but these issues usually can be resolved by careful scheduling.

For AGI systems, however, this is not the case anymore. Even if the compati-
bility of the top-level goals can still be assumed (actually even this assumption is
shaky), it definitely cannot be assumed for the subgoals derived from them. This
is the case because a realistic AGI system is not omniscient, and at the same time
has to deal with goals for which it has uncertain and incomplete information.
Consequently, the goal derivation is only based on the system’s current beliefs,
which are not absolutely true. For example, if the system beliefs that event E1

implies event E2, then when the latter becomes a goal, the former may be de-
rived as another goal. However, this situation is different from the above classical
supergoal-subgoal relation, because E1 and E2 may turn out to be irrelevant, or
even contradictory, to each other.

When the goals involved are persistent, the situation become even more com-
plicated, because the existing period of a “subgoal” may be beyond that of the
“supergoal” from which it was derived. Though it may sound irrational, there is
an explanation for an adaptive system to do so, since a goal derived for one rea-
son may be valuable for another purpose, or for similar purposes in the future,
so becomes desirable for its own sake. It should not sound too strange to us, be-
cause many human motivations initially appear as means to achieve other ends.
Psychologist Allport called this phenomenon “functional autonomy of motives”
[15], and it can also explain many Freudian notions, such as “compensation”
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and “sublimation”. It has been argued that in an adaptive system working with
insufficient knowledge and resources, such a phenomenon is inevitable [16].

It means that in such a system though goal H is derived as a way to achieve
goal G, the former nevertheless may gradually gain independence. For this rea-
son, the traditional “supergoal-subgoal” relation cannot be assumed anymore
between an original goal and a derived goal. The relation between the two may
only be historical, rather than logical.

As a result, the goals in an AGI system should be considered as mutually
restricting, in the sense that the achieving of one sometimes does prevent another
from being achieved, or at least makes it more difficult. To handle that requires
the goal management mechanism to prioritize the existing goals for resource
allocation, as well as to resolve their conflicts in action selection.

Constant vs. Variable
There are several reasons to assume that in an AGI system the goals may change
from time to time: the environment changes, the system’s internal needs change
(such as its energy reserves), and as discussed above, the overall goal complex of
the system evolves as new goals are derived, even when the original goal remains
the same.

Due to the resource restriction, an AGI system usually cannot take all of its
existing goals into consideration at every moment. Instead, it has to focus on
different goals at different moments. As a result, even though the system in its
whole lifetime has many goals, at a moment usually only a small number of
them are in effect in determining which action to take. These “effective goals”
are what matters when the system’s behavior is predicted or explained, not the
dormant goals, though the latter do exist in the system, and some may have
higher levels of significance in the system’s lifetime.

If we take the goal complex of an AGI system as a whole, we should assume
that it changes as the system runs, and the change is not circular, nor does it
converge to a stable state — a system may never have identical goal-states in its
lifetime, and that is arguably the case for a human being. On the other hand,
the change is not pure random, or can be specified according to a probability
distribution, because there will be new goals generated, which cannot be logically
reduced into the previous goals.

For these reasons, it is not proper to assume that an AGI system always
chooses or evaluates its actions according to a constant goal, no matter how
that goal is specified or interpreted.

Mandatory vs. Spontaneous
Many authors have expressed the opinion that a truly intelligent system should
be “autonomous” [4–6, 17] or “self-motivated” [2], though what that exactly
means differ from author to author. Intuitively speaking, the consensus is that
such a system should behave according to goals of its own choice or creation.

Some people consider this expectation impossible or even self-contradictory.
After all, an AI system is designed, directly or indirectly, by human designers,
who, among other things, specifies the system’s (initial) goals. In this situation,
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how can the system have any goal that is not created, directly or indirectly, by
its designer?

Actually we have answered this question. Previously, it has be explained that
for an adaptive systems, even though all of its initial goals are specified by its
designer as part of the system’s initial state, the same cannot be said about
the derived goals, which are decided by both the initial goals and the beliefs of
the system. When the beliefs are learned from the system’s experience, the goal
complex of the system does not only depend on its initial design (its nature), but
also on its experience (its nurture). When the system’s experience is complicated
enough, especially when it is not folly controlled by a tutor, the system may have
goals that cannot be fairly attributed to anyone but the system itself.

Such a system still have mandatory goals that are either built-in by its de-
signer, or imposed-upon by a user via its user interface. But at the same time, the
system derives new goals recursively from the existing goals, and some of them
can be considered as spontaneous, in the sense that they are not destined by the
system’s design, but mostly come out of the system’s idiosyncratic history. Due
to the functional autonomy phenomenon, these goals are not logically related
to the initial goals, though they are derived from the latter. As the system gets
more and more experience, it becomes more and more autonomous, in the sense
that its behaviors are more and more oriented to its own goals.

2 Motivation Management in NARS

As a concrete example of systems with goals that are persistent, mutually re-
stricting, variable, and spontaneous, in the following we will introduce the rep-
resentation and processing of motivations in NARS.

NARS is an AGI built in the framework of a reasoning system, based on the
theory that “intelligence” is the ability of adaptation with insufficient knowledge
and resources [16, 18]. This paper only describes the motivation management,
plus the directly related aspects, of the system.

As many other systems, NARS can be analyzed at more than one level of
description, where some “motivations” or “goals” can be recognized. For exam-
ple, obviously every program consisting of NARS can be seen as goal-oriented,
where the “goal” can be as simple as adding two numbers together. However,
to analyze the system at such a level does not tell us much about its overall
behaviors. Therefore, in the following we treat NARS as a whole, to see that
type of “tasks” it can carry out.

Every task in NARS has a statement as its content, which is a sentence of a
formal language whose grammar and semantics are accurately specified [16, 18].
There are three types of task defined in NARS:

Judgment : In a judgment, the statement represents a conceptual relation ex-
perienced by the system, with a truth-value indicating the evidential support
the statement gets. A truth-value consists of a frequency in [0, 1], which is
the ratio of positive evidence among available evidence, and a confidence in
(0, 1), which is the ratio of currently available evidence among all available
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evidence at a moment in the near future. Since the system is always open to
new evidence, a confidence value can never reach is upper bound 1.0.

Goal : In a goal, the statement represents a conceptual relation to be established
by changing the environment or the system itself. A goal has a desire-value
attached, which is a variant of truth-value, indicating the evidential support
for the statement to be desired by the system.

Question: In a question, the statement represents a conceptual relation whose
truth-value or desire-value needs to be determined. A question may contain
variables to be instantiated, corresponding to the wh-questions in a natural
language.

To manage the resource competition among the tasks, in NARS each task is
given a priority-value to indicate its relative priority in resource allocation at
the moment.

Therefore, the task in NARS corresponds to what we call “motivation” or
“goal” in general discussions, while the goal in NARS corresponds to a specific
type of it. The other two types are distinguished from it, since they are processed
differently in NARS, a reasoning system.

The tasks in NARS have two origins: input or derived, where the former are
assigned to the system by its designer or user, while the latter are generated
by the inference rules from the former (directly or indirectly) according to the
beliefs of the system.

Input tasks can be either implanted into the system as part of its initial state,
or assigned to the system through the user interface. As a general-purpose sys-
tem, NARS can accept input tasks of any content, as far as they are expressible
in its representation language, which allows arbitrary conceptual relations. The
designer and users of the system can also assign priority-values to input tasks
to influence the system’s resource allocation.

NARS runs by repeating a working cycle, each time on a selected task, which
can be either input or derived. What is done to a task depends on its type:

Judgment : A judgment contains new information to be absorbed. The system
uses it to revise the previous belief on the content to form a updated belief,
to solve the pending goals or questions, and to spontaneously derive its
implications using other beliefs. Unlike an ordinary database or knowledge
base, NARS does not simply insert new knowledge into a storage, and let it
wait there passively for future queries; instead, it actively revises and updates
the system’s beliefs, as well as makes predictions about future situation. This
process recursively derives new judgments as tasks.

Goal : When a goal is under processing, the system first checks its content
against the reality to see whether somehow the request has already been
satisfied. If not, the next step is to check whether there is an executable
operation that will directly satisfy the request. If neither is the case, the sys-
tem will use its beliefs to derive new candidate goals as means to achieve the
current goal. A candidate goal will not be directly pursued, but is used to ad-
just the desire-value of the corresponding statement. After the adjustment,
if the desire-value of the statement is high enough, and the system believes
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that there is a way to achieve it, a corresponding goal will be generated, and
pursued side-by-side with its “parent” goal.

Question: When a question is under processing, the system keeps looking for
the answer that is the current best (in terms of truth-value and simplicity). If
the question is an input task, such answers are reported to corresponding user
as soon as they are found. In the meanwhile, derived questions are recursively
produced by using the inference rules backwards, so that an answer to the
derived, or “child”, question will produce an answer to the “parent” question.
As a result, an input question may obtain multiple answers, each of which
is better than the previous ones (as evaluated by the system), similar to the
performance of an anytime algorithm [14].

For a task, its processing may contain any number of working cycles, depend-
ing on how many time it is selected for processing, which is proportional to its
priority-value. Though an input task comes with a given priority-value, the sys-
tem can adjust it according to the result of processing. For a derived task, its
priority-value is initially determined and later adjusted by the system according
to several factors. Overall, the priority-value of a task represents its urgency,
plausibility to be achieved, and relevance to the current situation. Managed by
a forgetting mechanism, all priority-values decay gradually, and tasks with the
lowest priority-values will be removed when the storage space is in short supply.

Now we can see why the tasks in NARS have the properties listed previously:

– A task is persistent, since its processing rarely stops at its “logical end” —
except in trivial situations, the system cannot exhaust all implications for a
judgment task, nor can it find a perfect solution for a task which is a goal
or a question. Instead, each time a task is processed, it is partially achieved,
so its priority-value is deceased. When a task stops being processed, it is
because its priority-value is too low, not because it has been fully achieved.
How long a task lives depends on many factors.

– Tasks are mutually restricting because there is no requirement for the input
tasks to be logically consistent in what they want the system to do. Further-
more, the task derivation is carried out according to the system’s beliefs at
the moment, which may be wrong. Finally, even compatible tasks compete
with each other for the system’s limited resources, so the achieving of one
may cause another to be ignored temporarily or permanently.

– The overall task complex is variable because new (input and derived) tasks
are added constantly to the system, while some old tasks get forgot gradually.
Also, due to resource restriction, only a small part of the task complex is
effective at a given moment, and controls the system’s behaviors. Which task
is in this active region changes from time to time.

– Certain tasks are spontaneous in the sense that they are only historically and
remotely related to input tasks, and owe their existence mostly to the sys-
tem’s experience. Therefore, they should be considered as the system’s own
tasks. As the system runs, it tends to become more and more autonomous
and self-motivated.
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3 Implication and Discussion

The above analysis shows that unlike the situation in ordinary computer systems
and “narrow AI” systems, motivation management in an AGI system is more
similar to the situation in the human mind. This is a natural consequence of the
requirement of being general-purpose and working in realistic environments.

On one hand, an AGI system should not be considered as a problem-solving
system that processes its goals one by one, as in BDI agents [19]. On the other
hand, it should not be considered as guided by a constant ultimate goal, from
which all the other motivations are logically derived as subgoals.

From a pure mathematical point of view, it is possible to refer to the whole
goal complex or motivational mechanism as a single “goal” (like talking about
the resultant of several forces in different directions), which changes from time
to time, as the guidance of the system. However, to actually design or analyze an
AGI system in this way is very difficult, if not impossible, and it is much easier
and more clear to explicitly identify the individual factors, which may come and
go from time to time, and compete with each other on what the system should
think and do at each moment. For this reason, it is not a good idea for an AGI
system to be designed in the frameworks where a single goal is assumed, such
as evolutionary learning, program search, or reinforcement learning, despite of
their other advantages [20, 21].

The major conclusion argued in this paper is that an AGI system should al-
ways maintain a goal structure (or whatever it is called) which contains multiple
goals that are separately specified, with the properties that

– Some of the goals are accurately specified, and can be fully achieved, while
some others are vaguely specified and only partially achievable, but never-
theless have impact on the system’s decisions.

– The goals may conflict with each other on what the system should do at a
moment, and cannot be achieved all together. Very often the system has to
make compromises among the goals.

– Due to the restriction in computational resources, the system cannot take
all existing goals into account when making each decision, and nor can it
keep a complete record of the goal derivation history.

– The designers and users are responsible for the input goals of an AGI sys-
tem, from which all the other goals are derived, according to the system’s
experience. There is no guarantee that the derived goals will be logically
consistent with the input goals, except in highly simplified situations.

One area that is closely related to goal management is AI ethics. The previous
discussions focused on the goal the designers assign to an AGI system (“super
goal” or “final goal”), with the implicit assumption that such a goal will decide
the consequences caused by the A(G)I systems. However, the above analysis
shows that though the input goals are indeed important, they are not the dom-
inating factor that decides the broad impact of AI to human society. Since no
AGI system can be omniscient and omnipotent, to be “general-purpose” means
such a system has to handle problems for which its knowledge and resources are
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insufficient [16, 18], and one direct consequence is that its actions may produce
unanticipated results. This consequence, plus the previous conclusion that the
effective goal for an action may be inconsistent with the input goals, will render
many of the previous suggestions mostly irrelevant to AI ethics.

For example, Yudkowsky’s “Friendly AI” agenda is based on the assumption
that “a true AI might remain knowably stable in its goals, even after carrying out
a large number of self-modifications” [22]. The problem about this assumption is
that unless we are talking about an axiomatic system with unlimited resources,
we cannot assume the system can accurately know the consequence of its actions.
Furthermore, as argued previously, the goals in an intelligent system inevitable
change as its experience grows, which is not necessarily a bad thing — after
all, our “human nature” gradually grows out of, and deviates from, our “animal
nature”, at both the species level and the individual level.

Omohundro argued that no matter what input goals are given to an AGI
system, it usually will derive some common “basic drives”, including “be self-
protective” and “to acquire resources” [1], which leads some people to worry
that such a system will become unethical. According to our previous analysis,
the producing of these goals are indeed very likely, but it is only half of the
story. A system with a resource-acquisition goal does not necessarily attempts
to achieve it at all cost, without considering its other goals. Again, consider the
human beings — everyone has some goals that can become dangerous (either
to oneself or to the others) if pursued at all costs. The proper solution, both to
human ethics and to AGI ethics, is to prevent this kind of goal from becoming
dominant, rather than from being formed.

A similar analysis can be applied to the “the instrumental convergence thesis”
of Bostrom [11]: though it is reasonable to assume the generation of certain “in-
termediary goals”, there is no enough reason to believe that they will converge,
independent of the system’s experience. The problem comes from the belief that
a “superintelligence” would be “more likely to achieve her final goals” [11]. Even
though it is possible for an AGI to have more computational power and more
experience than human beings, that does not make it omniscient and omnipo-
tent. As argued in detail in [16], an AGI will still be bounded by insufficient
knowledge and resources, which means it cannot realize all of its goals.

In summary, “intelligence” and “autonomy” are arguably two sides of the
same coin. Therefore, the motivational mechanism in AGI systems will have
properties that are more similar to those of the human beings than those of
the traditional computer systems. Some of these properties are desired, while
some others provide challenges to AGI research. None of the challenges has been
proved unsolvable, though they demand novel ideas and approaches.
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Abstract. The author argues that an artificial general intelligence (AGI) system 
capable of adapting to various domains autonomously must have the ability to 
develop domain-specific frames within a practical amount of time; however, 
current AI technologies are insufficient to achieve this. Frames are knowledge 
representations which consist of sets of variables.  In the frame generation pro-
cedure, a significant subprocedure, that of frame candidate generation by varia-
ble assimilation, has not yet been realized because of the huge hypothesis space. 
Representations that can express various relationships among variables in the 
system can assist in developing this subprocedure, but no such representations 
have heretofore been known. Through intimate collaboration with neuroscien-
tists, the author searched for clues for such representations in the neuroscience 
field. Then, the author examined neuroscientific research results to conclude the 
following: (A) hippocampal formation (HCF) is in charge of frame generation, 
and (B) distribution equivalent groups (DEGs) are the representations used by 
HCF for expressing variable relationships. (B) is based on two findings on 
HCF, namely the phase precession phenomenon and configural association 
theory.  The author used binary-variable assumption to estimate that DEGs ex-
hibit sufficient diversity.  Having determined the brain region responsible for a 
critical function necessary to realize AGI and information representation for 
that function, this paper offers a foundation for further research into the algo-
rithms used in brain.  These results can contribute to the realization of an AGI. 

Keywords: computational theory, relationship equivalence, neocortex, variable 
assimilation, frame problem, hippocampus, relation index, neuroscience.  

1 Introduction 

In general, empirical intelligence is based on comparisons of multiple cases (instance/ 
row) within a “frame.”  A frame is a well-known declarative knowledge representa-
tion; each frame is composed of a frame name and a variable set (including labels for 
the variables) in which each variable has a value that matches a case.  As M. Minsky 
stated [1], human knowledge is thought to be composed of multiple frames which 
exist within the brain.  As for the current state of artificial intelligence (AI) and ma-
chine learning, human beings must design a frame or frame candidates. For example, 
data analysts use programming languages to define arrays of variables and/or classes 
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as frames. Model selection techniques often chose likely frames from a set of frame 
candidates (FCs).  Tremendous efforts have been made to design various frames in 
every field; today, domain-specific AI systems can surpass humans in ability.   

However, in order to create an artificial general intelligence (AGI), a system must 
be able to generate domain-specific frames autonomously.   Frame generation tech-
niques implemented by selecting a part of a given frame are presently available.  For 
example, feature selection techniques choose useful variables and clustering tech-
niques extract sets of cases as new concepts.  Moreover, techniques such as 
COBWEB [2] and situation decomposition [3] extract concepts by selecting both 
variables and cases simultaneously.  However, these techniques only extract parts of 
human-designed frames.  Thus, we cannot expect creative prediction ability achieved 
using these techniques to exceed the frame designers' vision. In this paper, I detail a 
first step toward autonomous frame generation technology beyond this limitation. 

2 Computational Theory for Frame Generation 

From the above-mentioned background information, it can be surmised that the ability 
to combine different types of knowledge autonomously is necessary for an AGI.  
Thus, this section contains an explanation of a computational theory for generating 
new frames by combining multiple frames together.  Here, the equivalence of rela-
tionships among variables will play an important role in the practical implementation. 

2.1 Frame Generation by Variable Assimilation 

There are two kinds of processes to join two frames: the process that assimilates the 
cases between the frames and the process that assimilates the variables (left side of 
Fig. 1).  In the former process, case assimilations are mediated by the variables 
shared by both frames (‘D’ in Fig. 1).  Such operations are often used for databases. 

By contrast, the latter process generates new frames by joining different cases 
through assimilating variables (hereinafter, “variable assimilation”).   Because this 
function is related to the frame problem1, little progress has been seen in research on 
this subject.  The variable assimilation ability is related to high-level intelligences 
that are well developed in humans, such as analogy, creativity and mimicry.  In con-
sideration of this, the heretofore unachieved frame generation ability based on varia-
ble assimilation is probably an essential element for creating an AGI.  Therefore, a 
new computational theory to achieve such a function is highly desirable. 

On the other hand, some abilities related to variable assimilation have been already 
realized to a considerable extent because variable assimilation can sometimes be de-
fined as spatial coordinate transformation.  For example, many animals can transform 
from egocentric coordinates to allocentric coordinates for navigation and/or homing.  
Another example is that visual object recognition systems have the ability to trans-
form input images via operations such as translation, rotation and zoom. 

                                                           
1 This is a famous fundamental problem for AI; it is caused by the limitless increases in cost for 

choosing the variables required to perform a target task in an open environment. 
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2.2 Relationships Index Supports Frame Candidate (FC) Generation 

Because pieces of knowledge in different domains are joined by using a symbolic 
relationship structure in analogy processes [5], I assumed that combining two sub-
spaces which share some kind of equivalent relationship was likely to be a successful 
approach for generating a frame by variable assimilation.  Here, “subspace” refers to 
a partial space composed of subsets of variables and “dimensionality” refers to the 
number of variables in those subsets. 

In the example shown in Fig. 1, two subspaces with three variables extracted from 
two different frames, one containing variables B, A and C and the other containing 
variables E, G and F, are joined together. Here, the relationship between variables B 
and A and that between E and G are equivalent, as well as the relationship between A 
and C and that between G and F.  I call the presence of such secondary relationships 
“relationship equivalence.” Based on the relationship equivalence shown in this ex-
ample, FCs can be generated by assimilating variable B to E, A to G, and C to F.   

I denote the total number of variables within a system  (including multiple frames) 
by N and the total number of all available d-dimensional subspaces, each of which 
contains a unique combination of d variables chosen from all variables, by SN(d), so 
SN(d) = NCd.  Thus, the maximum number of paired frames which can be generated is 

NCd× NCd; this limit is a combination of the subspaces.  In order to create a practical 
algorithm against the O(N2d) hypothesis space, I needed a technique for drastically 
reducing the search space. 

To focus on the heretofore unachieved computational function, I divided the frame 
generation procedure into two sequential subprocedures.  The first subprocedure, 
which is for frame candidate (FC) generation, enumerates likely candidates at a prac-
tical calculation cost.  The second subprocedure, which is for frame verification, 
selects and improves frames.  Because the number of FCs is assumed to be appro-
priately limited by the former subprocedure, the latter subprocedure can be realized 
by conventional technology.  In the latter subprocedure, criteria such as the mutual 
information and situation decomposition criteria [3] can be used for evaluating the 
appropriateness of frames.  In the FC generation subprocedure, to enumerate more 
FCs which can pass the following verification subprocedure, an equivalent relation-
ship among two combined subspaces of an FC should be considered more appropriate 
as a frame.  A relationships index, which categorizes diverse, appropriate subspaces, 
will help improve the efficiency of FC generation.    

This proposed computational theory for frame generation will lead to the develop-
ment of flexible intelligence technologies and promote the realization of an AGI.  
The dominant problem is the implementation of an FC generation function because 
the huge hypothesis space prevents a practical algorithm for implementing this func-
tion from being developed.  An index of appropriate relationships among variables 
will assist in the development of an FC generation subprocedure.  However, the re-
presentation of these relationships is not yet clear. 
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Fig. 1. A variable assimilation (VA) process and its neural network model for frame generation 
Variables from both frames are matched up with using relational structure in VA process 

In the brain, many frame generation abilities are thought to be nonverbal.   For 
example, the spatial coordinate transformation ability (Subsection 2.1) is common to 
many animals that do not speak any language.  It is also known that subconscious 
intuition and spatial reasoning play important roles in the thinking ability of humans 
[4].  Research has been conducted on relationship equivalence.  The structural map-
ping theory explains analogies as transferring knowledge from the base field to the 
target field based on the relationship equivalence among symbolic objects [5].  Neur-
al network models can autonomously discover the relationships among variables from 
verbal clues [6].  However, these studies are based on symbolic relationships; they 
cannot explain how to represent nonverbal relationships in the brain. 

3 Which Brain Region Handles Frame Generation? 

As mentioned in Subsection 2.1, the brain most likely flexibly generates frames by 
variable assimilation, but computer systems can presently do little in this regard. 
Through close collaboration with neuroscientists, such as the fMRI study on human 
intuition [7], I searched for clues to create the representations and algorithms for such 
heretofore unachievable functions for computers [8]. 

3.1 Frames Are Accumulated on the Neocortex and Activated 

To gather clues about FC generation function from the brain, I desired to identify the 
brain regions that are responsible for this function.   However, since it was difficult 
to directly specify that region, I instead examined the brain region responsible for 
accumulating and activating frames.  The neocortex is the most likely candidate  
region for the following four reasons; no other proper candidates have been found.  
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1. Neural circuits of uniform structure can process general information. 
The neocortex exhibits a uniform structure over a broad area, including the motor, 
sensory and association areas2, yet has a general ability to process information in 
diverse ways depending on the domain and modality.  Therefore, this region ap-
pears suited to accumulating and activating the frames obtained from experience. 

2. Parallel switches are required for neural circuits to process frames. 
As shown on the right-hand side of Fig. 1, a schematic neural network that can 
generate frames necessitates a network that allows for switching in parallel among 
input variables3 from different inputs.  Support for the possibility that the neocor-
tex is using frames can be found in the fact that it is capable of creating neural 
networks that switch inputs to local circuits by top-down attention [9]. 

3. The neocortex is a brain region that is particularly well developed in humans.  
Mammals, especially humans, have particularly well-developed general intelli-
gence.  Therefore, there is a high possibility that the neocortex, which is also par-
ticularly well developed in humans, supports general intelligence. 

4.  The information integration function of the neocortex is also suitable for frames. 
 The neocortex is thought to have evolved to provide a multi-modal information 
integration function that brings together auditory, olfactory and tactile input, which 
is required for mammals to accurately identify external objects in the dark. The 
function to select the relevant variables required for reasoning through the use of 
frames is essential for achieving effective integration of information. 

3.2 Hippocampal Formation (HCF) Works as the Frame Generator 

If the neocortex is the brain region that accumulates and activates frames, it is natural 
to consider the possibility that frames are also generated within the neocortex.  
However, I contend that the neocortex is incapable of generating FCs for the reasons 
to follow in this section.  Instead, I believe that hippocampal formation (HCF) is the 
most probable candidate responsible for generating frames. 

Frame generation requires a function to globally integrate the distributed know-
ledge accumulated locally in individual areas of the neocortex.  As already men-
tioned in Section 2, FC generation requires a function for comparing and categorizing 
the relationships among variables.  If the neocortex has such a function, there must 
be suitable representations sufficiently diverse to categorize at least 4×1012 relation-
ships across different areas of the neocortex4.  Firing synchronization of neuron pop-
ulations is a known mechanism for transmitting information directly across different 
areas of the neocortex; however, the amount of information that can be transmitted by 
this mechanism is far too small to express the relationships among microscopic neural 
                                                           
2 The neocortex has a functionally differentiated six-layer structure and a column structure. Its 

basic architecture is the same in all mammals. 
3 Variables can potentially be associated to various substances such as neurons, minicolumns, 

hyper-columns and cell assemblies in neural networks within the brain. 
4 Even if each variable is assumed to be a hyper column that is a large unit in the neocortex, 

there are about 2×106 variables in the human neocortex [12].  Thus, the number of relation-
ships between two variables numbers 4×1012. 
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activities.  Therefore, the neocortex lacks representations sufficient to categorize 
neural activity relationships across different areas, so it cannot generate FCs by itself 
through such representations. 

If the neocortex has no function for generating frames by assimilating the variables 
dispersed through relationship equivalence, HCF is the only plausible candidate capa-
ble of having such a function for the following four reasons: 

1. HCFs receive projections from a wide area of the neocortex. 
Because HCFs receive information from a wide area of the neocortex through the 
entorhinal cortex (EC) [10], they can compare distributed variables on the neocor-
tex to generate frames. 

2. HCFs memorize experiences before the neocortex. 
First, memories obtained from the external environment as experience are stored in 
HCFs.  Later, they are gradually transported to the neocortex over a period of sev-
eral months (in the case of humans) [11].  Therefore, the frame representations in 
the neocortex are likely to be generated in HCFs. 

3. HCFs act together with the frame-executable circuit. 
Because HCFs act in collaboration with the EC they presumably can execute a 
frame function like the neocortex.  Therefore, HCFs can use memories seamlessly 
while transporting such memories to the neocortex. 

4. HCFs contain a local circuit for signal exchange. 
In the subregion of HCFs (dentate gyrus and CA3), single-layer neurons form a 
circuit-like crossbar matrix [13].  These circuits are suited for switching global in-
puts and outputs and are probably appropriate for searching for FCs. 

Then, HCFs are thought to be responsible for generating various pieces of knowledge 
as frames and for using these frames in collaboration with ECs.  In addition, frames 
are transported to the neocortex over time.   These assumptions are consistent with 
one explanation of the function of HCFs, the relational theory [14]. 

4 Distribution Equivalent Groups (DEGs) Represent 
Relationships 

In the above arguments, I explained that in order to realize an AGI, a computational 
theory for generating frames by variable assimilation is a promising approach.  I also 
contended that the neural circuits of HCFs and the ECs provide clues for designing 
the representations and algorithms necessary for this theory.  The most serious prob-
lem is how to deal with the huge hypothesis spaces in the process of generating FCs.  
To overcome this obstacle, the approach of developing an algorithm which uses the 
relationships among variables is promising.  Using clues from findings on HCFs, in 
this section I discuss probable candidates for representations that express the relation-
ships among variables.  
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4.1 DEGs as Particular Representations for HCFs 

The long history of research on HCFs provides an ample amount of valuable experi-
mental findings as well as theoretical hypotheses. The following two HCF-specific 
findings are significant in restricting representation of relationships. 

First, there is the theta phase precession phenomenon, in which an approximately 5 
Hz theta rhythm is generated in HCFs of an animal moving around an experimental 
field and discrete case sequences, which contain from seven to twelve cases, appear  
in the theta phase in a time-compressed manner [15].  Secondly, according to the 
configural association theory [16], which explains the functional role of HCFs, HCFs 
associate combinations (complexes) of stimuli rather than individual stimuli with the 
meaning of behaviors.  Although an animal suffering from lesions on its HCFs can 
form simple associative memories between stimuli, it cannot perform tasks by memo-
rizing a number of stimuli all together (e.g., a transverse patterning problem).  These 
particular characteristics of HCFs lead me to assume that each relationship representa-
tion is likely to be a set of about ten cases in a multi-dimensional subspace. 

Here, I define a Distribution Equivalent Group (DEG), which consists of about ten 
cases set in a multidimensional subspace in consideration of variable exchange sym-
metry.  This symmetry means that if two distributions are identical when exchanging 
variables within the subspace, then they belong to same DEG.  After all, DEGs are 
thought to be the representation used by HCFs for variable relationships. 

4.2 Binary Variable DEGs for Estimation 

In order to estimate the number of DEGs, I assumed a binary variable {0, 1} and 
composed lattices as a set of cells as shown in Fig. 2-A.  Cells which contain cases 
are shaded red.  All binary lattice patterns for low dimensional (d = 1 or 2) DEGs are 
shown in Fig. 2-B.  Here, the number of cells within a binary lattice is denoted by v, 
the number of distribution patterns by r, and the number of DEGs by e.  The degree 
of degeneration resulting from symmetry is shown to the right of each lattice.  Binary 
lattices featuring the same number of case-containing cells are presented in the same 
row, with the total number of distribution patterns indicated at the end of each row. 

As shown in the figure, when the subspace dimensionality equals one (d = 1), then 
the number of cells equals two (v = 2), and there is no reduction due to symmetry 
since there are no variables that can be exchanged; therefore, the number of DEGs is 
four (e = 4).  When the subspace dimensionality equals two (d = 2), then the number 
of cells is four (v = 4), and the degree of reduction is two for the binary lattice in the 
middle of the second row due to the degeneration of different patterns by variable 
exchange.  In this example, the total number of DEGs is twelve (e = 12). 

4.3 Representation Diversity of DEGs as Relationships among Variables 

As stated in Subsection 2.2, to implement an FC generation function on a computer, 
pairs of subspaces sharing equivalent relationships must be chosen from high-
dimensional data.  Assuming this function is performed in the HCF, the number of  
d-dimensional DEGs (e) used to categorize relationships must exhibit diversity on the 
same order as the total number of subspaces (SN(d)).  
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Fig. 3. Profiles of 4d- DEGs; A: Normalized mutual information (NMI) and mean activity of 
each DEG, B: Number of DEGs over the specified NMI value depending on the mean activity 

information (NMI) is estimated for every pattern of DEGs.  Here, the NMI value is 
calculated by taking log base 2 and dividing by d-1 (Fig. 2-A); each cell is assumed to 
contain either one or zero cases.  Because the information encoding of HCFs is 
thought to be sparse, I also calculated the mean activity6 of each pattern. 

NMI has a peak value of 1, which is obtainable only when the mean activity level is 
0.5; the value decreases to 0 toward both ends as shown in Fig. 3-A.  Fig. 3-B shows 
the frequencies of NMI that exceed certain values.  From these figures, one can see that 
DEGs are densely distributed around a mean activity level of 0.5.  There were only 203 
DEG patterns with a highly predictable NMI of 0.5 or more.  There were no DEGs 
whose NMI value was 0.35 or more and mean activity was 0.3 or lower.  

If similar natures can be assumed for DEGs of higher dimensionality, we can con-
jecture regarding the next discussion.  Although neural activity is sparse overall, 
these results suggest that relationships of variables are likely to be represented by 
locally active neuron groups such as cell assemblies7. 

5 Conclusions 

Though the autonomous generation of domain-specific frame representations seems to 
be an indispensable function for realizing an AGI system, no technology exists to 
implement such a function. In designing a frame generation function, a subprocedure 
that is difficult to implement is the enumeration of frame candidates from the huge 
hypothesis space at a practical calculation cost. Assuming these candidate frames are 
generated by the cases-join process using variable assimilation, an index of represen-
tations that can express various relationships among variables will play an important 

                                                           
6 Mean activity refers to the mean of activity across all cases in one DEG pattern.  Here, case 

activity refers to the rate of variables whose value is 1 for a single arbitrary case. 
7 Cell assembly is a diffuse structure comprising cells in the cortex and diencephalon; it is capable 

of acting briefly as a closed system and delivering facilitation to other such systems [17]. 
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role in this subprocedure.   Sufficient scientific evidence exists to show that the neo-
cortex is the region responsible for accumulating and activating frames.  HCF is 
thought to be the region responsible for generating frames before they are transported 
to the neocortex.  I conjectured that the information representation unique to HCF 
corresponds to the representations for relationships among variables.  These repre-
sentations are DEGs, each of which is a set of about ten cases in a multi-dimensional 
subspace that considers variable exchange symmetry. For simplicity, I used binary 
variable DEGs for estimating the diversity of representation, and my results showed 
such an approach exhibits sufficient diversity to categorize all combinations of sub-
spaces within HCF.  It has been suggested that DEGs are represented by active neu-
ron groups such as cell assemblies.  

Consequently, DEGs are a plausible candidate representation of the relationship 
among variables for a frame generation function; its algorithm can be studied based 
on this hypothesis in the future. 
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Fuzzy-Probabilistic Logic for Common Sense

King-Yin Yan

Abstract. P(Z) logic offers a new way to reason about vagueness (ie
fuzziness), that treats fuzziness as degrees, distinct from probabilities.
One then applies probability distributions over fuzziness. This approach
is different from both classical fuzzy logic [26] and possibility theory [1].
P(Z) logic is specially designed for common-sense reasoning.

1 Main Idea

Vagueness is pervasive in common-sense reasoning. A calculus of degrees al-
lows common-sense statements to be rendered into formal logic and be reasoned
about computationally, thus fulfilling a need in logic-based AGI (artificial gen-
eral intelligence) systems [5]. It is widely believed that a general-purpose un-
certainty calculus should somehow combine the ideas in probability theory and
those in fuzzy logic; The current approach is not ground-breaking, but rather
an intuitive, simple and practical solution based on well-established probability
theory over continuous degrees. We acknowledge that it has not been empirically
tested.

A more detailed exposition of our AGI theory is [25]. The logic described
here deals with propositions, assigning truth values consisting of 2 components:
Z = fuzzy, P = probabilistic. We will also refer to B = binary logic, which is
subsumed by P(Z).

1.1 Prior Research

The theory presented here is a synthesis of old ideas that have been expressed
in the literature on fuzzy logic [26] [14] [15] and vagueness, in particular the
so-called degree theory [20] [2] [8] [6] [21] [22].

1.2 What Is Fuzziness?

The central idea is to treat vagueness as degrees, which are distinct from proba-
bilities. A fuzzy value, z ∈ [0, 1] represents a degree of something. The degree z
itself is not really “fuzzy” and is unnatural for use in common sense reasoning.
For example, it would be ridiculous for an exact fuzzy value of 0.7 to imply
that Mary’s height is exactly 1.7m and not 1.70000001m. To better capture
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the essence of fuzziness, it makes intuitive sense to distribute probabilities over
degrees.1

Once we conceptualize vagueness in this manner, the calculus for reasoning
with vagueness follows rather routinely.

Any physical quantity (eg age, height) in [0,∞) can be translated into a degree
∈ [0, 1] via sigmoidal transformations such as:

Z(x) = e− ln 2 · (x/ξ)2 (1)

where ξ is the point of neutrality for that specific quantity, ie the point at which
z = 0.5 (for example Fig 1 is the case for young). Note that the ratio (x/ξ)
makes z dimensionless.

Fig. 1. Neutral point

Reference Classes: A tall building and a tall person should not be compared
by the same scale. For each reference class there would be a characteristic ξ, but
it is the job of the logic to decide which ξ to use, whereas this paper focuses on
the calculus of propositional truth-values.

The common-sense interpretation of numerical Z values is shown in Table 1.

1 Note that P(Z) is different from Fuzzy Random Variables (FRV) [11]. P(Z) values are
probability distributions over [0,1], ie, simple random variables; whereas FRVs are
probability distributions over fuzzy sets which are themselves membership functions
from some arbitrary domains to [0,1]. In other words, FRVs explicitly manage trans-
formations such as Eqn (1), whereas our approach simply distributes probabilities
over [0,1] and thus is easier to use.

Another alternative is to use interval fuzzy values, but their inference mechanisms
tend to be more complicated (see eg [9]), and the fuzzy intervals tend to diverge to
[0,1] very quickly during inference.
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Table 1.

z interpretation

1.0 definitely or extremely
0.9 very
0.7-0.8 moderately
0.6 slightly

0.5 neutral

0.4 slightly not
0.3-0.2 moderately not
0.1 very not
0.0 definitely not

2 P: Probabilistic Logic

A variety of probabilistic logics have been proposed, but the most popular ap-
proach seems to be “Bayesian logic” (eg [4] [7]).2

In an AGI, when we describe some probabilistic relations, we get a network
of probabilistic conditionals. For instance, we may say:

– If a burglary occurs without an earthquake, the alarm will sound with 0.94
chance

– If the alarm sounds, Mary will call with 0.9 chance
– etc etc..

then voila, we already have a Bayesian network (BN). Such BNs can be generated
on-the-fly upon each user query. This technique is known as KBMC (knowledge-
based model construction) [24] and has become standard for lifting propositional
probabilistic logics to first-order. Once we have the BN we can use belief prop-
agation to find the truth value of the propositional variable we want.

2.1 Conditionals

At the heart of logical reasoning is the implication operator, often called the
“arrow”. In Bayesian networks, nodes represent random variables and links rep-
resent probabilistic conditionals of the form P (x|y). Probabilistic condition-
als correspond to implications (x ← y) in classical logic3. P(Z) logic is the

2 This view is explained in the “AIMA” textbook [19], 2nd ed, in §14.6. Several other
ways to lift probabilistic reasoning to first-order settings are briefly described in
the textbook [12] §9.3.7. They include, but not exhaustively: [18]’s Markov Logic
Networks which is based on Markov random fields instead of Bayesian networks; and
Loopy Logic which is based on [16]’s belief propagation algorithm; [3]’s Probabilistic
Relational Models; and [10]’s Bayesian Logic Programs. Relatedly, [17] developed
a Stochastic Lambda Calculus, and [13] provides a way to perform probabilistic
reasoning within classical higher-order logic.

3 This correspondence is not exact. Indeed, the relation between implications and
conditionals is controversial and has resulted in variants of probabilistic logics. Our
view is that classical implication should be replaced by probabilistic conditionals.
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extension of Bayesian logic where random variables can take continuous values
in [0,1].

Referring to the commutative diagram (Fig 2), which shows the relation be-
tween the 4 types of truth values (B, P(B), Z, and P(Z)) and their logical op-
erators. When going from B to P, we replace classical implication (y → x) with
the Bayesian network link (y � x). When going from P(B) to P(Z), we will also
give up the classical connectives (x∨ y and x∧ y). The top-right corner requires
us to invent a new set of fuzzy-probabilistic operators, a technical issue we won’t
go into here.

Fig. 2. The inner square shows the 4 types of truth values, the outer square their
logical operations

3 P(Z): Probability Distributions over Fuzziness

The logical operators in pure Z logic include ∧ = min, ∨ = max, and ¬ = 1−z. It
is a direct consequence of negation as 1−z that 0.5 is neutral and 0.0 represents
the opposite of a concept.

P(Z) logic is the combination of Z with P. Each P(Z) value is a probability
distribution over [0,1] (for example Fig 3). All distributions are restricted to be
beta distributions, represented by their means and variances (μ, σ2). The beta
distribution is chosen because it is the most well-studied continuous distribution
over [0, 1], and can be represented by just 2 parameters. With this choice we
cannot represent multi-modal distributions, but it seems to be an adequate “first
approximation”.
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Fig. 3. An example P(Z) distribution

Fig. 4. Shapes of beta distributions

Fig. 5. A concept with binary character
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The beta distribution is very versatile and can represent common sense con-
cepts with “fuzzy”, “unary”, and “binary” characters (Fig 4). For example, com-
mon sense says that a person is either dead or alive, but upon closer examination
we may discover a continuous spectrum (Fig 5).

“Java girl” Paradox: For example, a boy may judge a girl’s desirability
based on traits like “good looks”, “personality”, “intelligence”:

desirable← trait1 ∧ trait2 ∧ trait3 ∧ etc...
but imagine a girl who scores 0.9 in the top traits but is also 0.9 “good at Java”;
she would be even more desirable, but ∧ in fuzzy logic would still give a value
of 0.9, counter-intuitively. A solution could be based on taking into account the
variance of the P(Z) distributions, as shown in Fig 6, where we know with more
specificity and higher overall certainty that girl A is more desirable.

Fig. 6. Same mean, different variance

4 Fuzzy Modifiers

Fuzzy modifiers are introduced to handle natural-language hedges such as “mod-
erately”, “very”, “extremely”. They can be any smooth function Γ : [0, 1] →
[0, 1], such as those in Figure 7.

Fig. 7. Fuzzy modifiers
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5 Inference

All formulas in P(Z) logic has this general syntax:
H � B1, B2, B3, ...

where H is the head and Bi is the body (which may be empty). Some P(Z)
logic operators, with numerical parameters, will determine the CPT (conditional
probability table) of P (H |Bi).

As an example, the inference rule for z0 � z1 ∨ z2 is:
μ0 ≈ max(μ1, μ2)

v0 ≈
{
v1 : μ1 > μ2

v2 : μ2 > μ1

and the rule for ∧ is similar. The rule for negation (z0 � ¬z1) is simply:
μ0 = 1− μ1, v0 = v1

These rules are obtained by considering the result z0, a random variable, as a
function of other random variables (the operands). Some of the formulas are
obtained by simple infinitesimal analysis, others by empirical computations.

Fig 8 shows the behavior of max(f1, f2) against f1 and f2. The distribution of
f0 seems to “eat up” the probability masses of f1 and f2, whichever comes from
the right first, until it is “full” (reaches 1) . Therefore the mean of f0 is not much
different from the max of the means of f1 and f2, resulting in the approximate
rule above. Note that there is in general a slight right-shift for max, this Δμ
may be included in a more accurate version...

Fig. 8. Example PDFs of z0 := z1 ∨ z2

Acknowledgments. Abram Demski and Anna Nachesa advised me on the
probabilistic aspects. I am also indebted to Pei Wang [23] and Ben Goertzel [5]
for their seminal ideas.
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