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Abstract Mathematical models of dispersal in biological systems are often written
in terms of partial differential equations (PDEs) which describe the time evo-
lution of population-level variables (concentrations, densities). A more detailed
modelling approach is given by individual-based (agent-based) models which
describe the behaviour of each organism. In recent years, an intermediate modelling
methodology—hybrid modelling—has been applied to a number of biological sys-
tems. These hybrid models couple an individual-based description of cells/animals
with a PDE-model of their environment. In this chapter, we overview hybrid models
in the literature with the focus on the mathematical challenges of this modelling
approach. The detailed analysis is presented using the example of chemotaxis,
where cells move according to extracellular chemicals that can be altered by the
cells themselves. In this case, individual-based models of cells are coupled with
PDEs for extracellular chemical signals. Travelling waves in these hybrid models are
investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis
models only develop a transient travelling wave.

1 Introduction

There are two fundamentally different approaches to the mathematical modelling
of systems of interacting individuals (cells, animals) in biology. If the number of
individuals is large, one often uses a continuum population-level approach, which
yields partial differential equations (PDEs) for the spatially-distributed densities
of individuals [39]. The advantage of PDE-based modelling is a well-developed
mathematical theory and a number of existing numerical solvers which can be used
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to efficiently simulate the system behaviour. However, continuum approximation
becomes inaccurate if smaller groups of individuals are studied, and agent-based
(individual-based) models become the method of choice [13, 50]. Examples can
be found in zoological applications, like behaviour of fish schools, bird flocks and
locust groups [10,51]. The individual behaviour of the agents is modelled as well as
the interaction (e.g. attraction or repulsion) between them [12]. A number of these
agents are then simulated on the computer and their collective behaviour is analysed.
This approach allows for a more detailed description of the individual behaviour and
does not discount various stochastic effects caused by a finite number of individuals.
On the other hand mathematical analysis is often hard to achieve and simulations
can be computationally intensive.

Another problem with purely agent-based models is that it is challenging to
incorporate influences the agents might have on their environment. This is important
whenever agents interact indirectly by modifying their (evolving) environment.
A classical example is modelling chemotaxis where individual cells modify (secrete,
consume) extracellular chemical signals which diffuse in the extracellular space
[14, 19]. In this case, a hybrid modelling framework that seeks to combine the
advantages of continuum and agent-based models is often used. The main idea
of this modelling approach is to describe some species as a continuum and some
species as a set of agents. For example, Schweitzer and Schimansky-Geier [46]
studied a system of “active” walkers (individuals) that can secrete and interact
through a (chemical) signal described by a reaction-diffusion PDE. One application
of their abstract framework included ants which lay a pheromone into the ground
to use it for their orientation. A more specific chemotactic example can be found
in Dallon and Othmer [14] who developed a hybrid model for chemotaxis of slime
mold Dictyostelium discoideum in which the cells are treated as individuals in a
continuum field of the chemoattractant which again evolves according to a reaction-
diffusion PDE. A similar hybrid modelling framework has also been applied to
chemotaxis of bacteria [15,55] and leukocytes [26]. The use of the hybrid approach
allows for faster simulations than the purely agent-based model which would treat
extracellular chemicals as another set of agents. Extracellular signalling molecules
are much smaller and more abundant than cells. This property is often used to justify
that extracellular chemicals can be described as a continuum [14].

The use of hybrid models is becoming more widespread especially with the
growing computational power that allows to consider more complex systems in
this manner, including modelling tumour growth [44] and forest dynamics [37].
In cancer biology, several hybrid cellular automaton models have been proposed in
the literature [45,47]. For example, Smallbone et al. [47] coupled a two-dimensional
cellular automaton model (describing cells) with continuum (PDE-based models) of
glucose, HC and oxygen concentrations, building on the previous work of Patel et al.
[44] and Alarcón et al. [3]. A similar hybrid approach has been used in a number of
other studies in cancer biology [5,24,42]. A hybrid forest model with trees modelled
as agents and a continuum approach used for oxygen and other atmospheric gases is
presented in [37]. In economical research hybrid models are used to estimate prices
in the petrol market [29] and in general markets with a non uniform spatial demand
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of products [30, 31]. In these models the demand is described as a continuous
function of space whereas the retailers are considered as agents.

The term hybrid modelling is sometimes applied for models which use both
individual-based and continuum description for the same physical quantity. For
example, a “hybrid” model for the spread of an epidemic disease is presented in
[9]. It initially considers infected individuals as agents, but switches to a continuum
model when the number of infected people in an area rises above a threshold.
Coupling reaction-diffusion models with a different level of detail in different parts
of the computational domain is presented in [17, 22]. “Hybrid” models of this type
are useful because they can lead to computational savings. However, in this chapter,
we will focus on hybrid models which describe some system components (e.g. cells
or animals) as individual agents and some components (e.g. external chemicals) as
continuum fields. The choice which description is used for each species is made
at the beginning and will not change during the course of the simulation. We will
summarise the progress in hybrid models which satisfy this definition, and clarify
some of the problems and difficulties that arise from their use.

The outline of this chapter is as follows. Section 2 will give a short overview
of the PDE-based and agent-based modelling approaches before the general mathe-
matical framework for hybrid models is introduced in Sect. 3. Hybrid models can be
considered as extensions of (purely) agent-based models. Therefore, their computer
implementation often forms an integral part of the model. We will discuss it in detail
in Sect. 4 where we describe the numerical simulation of hybrid models drawing
special attention to the different treatment of the continuum and the agent-based
subsystems as well as the problem of matching the two parts. In order to give a more
practical insight into the topic we will perform a case study of a hybrid chemotactic
model in Sect. 5. This case study will also be used to show some qualitative and
quantitative differences that can occur when using a hybrid model instead of the
corresponding continuum model.

2 Continuum vs. Agent-Based Models

Hybrid modelling is an intermediate approach between continuum (PDE-based)
models and agent-based models of systems of interacting individuals. In this section
we briefly review these common modelling approaches in mathematical terms. We
will make use of our notation later in Sect. 3 when hybrid models are considered.

Continuum (mean-field) models give rules for the evolution of the spatially
dependent concentration vector c � c.x; t/ where x 2 ˝ � R

m, m D 1; 2 or
3, and t is the simulation time. The components of the vector c can be densities
of individuals (cells, animals) and concentrations of extracellular signals. As the
concentration vector c can change both with position x and time t , a general
continuum model takes the form

@c
@t

D L .c; x; t/ x 2 ˝ ; (1)
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where L is an operator on c, which in most practical cases will be a differential
or integral operator. To uniquely describe the time evolution of (1), one also has to
specify suitable initial and boundary conditions.

Example 1 (Keller-Segel model). Continuum modelling is used in many areas of
mathematical biology [39]. In chemotaxis modelling (which will be the subject of
Sect. 5), a classical example of (1) is the Keller-Segel model of chemotaxis [35].
Here, ˝ � R and the vector c has two components, i.e. c D Œc1; c2� D Œn; S� where
n � n.x; t/ is the density of cells and S � S.x; t/ is the concentration of the
chemoattractant. The evolution equation (1) is a coupled system of two PDEs for
n and S :

@n

@t
D Dn

@2n

@x2
� @

@x

�
n�.S/

@S

@x

�
; (2)

@S

@t
D DS

@2S

@x2
� k.S/n ; (3)

where Dn and DS are diffusion constants of cells and chemoattractant, respectively.
The strength of chemotaxis is controlled by chemotactic sensitivity �.S/ and
therefore by the concentration of substrate S which is consumed by cells with the
rate k.S/.

The applicability of continuum modelling depends on the number of particles in the
studied system. In Example 1, the interacting “particles” are unicellular microscopic
organisms (n) and molecules of chemical signal (S ). As there are often more
signalling molecules than cells, the validity of mean-field assumptions is dictated
by the number of cells in the system and the interaction between them [25]. If the
system only consists of a few cells, it is more accurate to use an individual-based
approach which is introduced in the next section.

2.1 Agent-Based Modelling

In contrary to the continuum models the so-called agent-based models treat
every particle as an individual that follows an inherent set of rules. This means
in particular that individual behaviour and interactions between different agents
account for the possibly complex behaviour of the system. Agent-based models are
commonly used for systems with a small number of individuals that follow non-
trivial behavioural rules, for example in modelling of collective animal behaviour
[12] or human crowds in panic situations [27]. While continuum models have a
well-developed mathematical theory, agent-based models are sometimes written as
computer routines which are difficult to theoretically analyse. The literature also
fails to agree on a general definition of an agent. In this chapter, we use a definition
which is slightly adapted from [54] and used in [23].
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Definition 1. An agent is a system that uses a fixed set of rules based on
communication with other agents and information about the environment in order
to change its internal state and fulfil its design objective.

This definition, however, is only a formal description, which now has to be put into a
more rigorous context. Following from Definition 1, the mathematical description of
an agent has to incorporate the behavioural rules of an agent as well as the possibility
of communication between them. Therefore, we assume a finite number N of agents
numbered from 1 to N . In general N can depend on time, taking into account
birth or death of agents. We define the current state of an agent by its internal
state variable yi .t/, i D 1; : : : ; N , which can describe its position, velocity and
internal memory. It is this internal state and its time evolution that describes the
rules of an agent. Since these agents represent different individuals, we assume that
other agents generally have no means to access all internal state variables. In order
to allow for communication between the agents, we define a set of external states
wi .t/, which are observable by other agents. The observable states wi .t/ of every
agent are in principle available to every other agent, which is ensured by creating the
set of external states X . The general agent-based model following these definitions
then takes the form

yi .t C �t/ D fi .yi .t/; t; �t; X / ; i D 1; : : : ; N ; (4)

wi .t/ D gi .yi .t// ; i D 1; : : : ; N ; (5)

X D fw1; : : : ; wN g : (6)

We can see that the evolution of yi is given by the function fi , which notably depends
on the time step �t . This general description can entail discretised versions of
ordinary differential equations (ODEs) as well as stochastic differential equations
(SDEs). Additionally, agent-based systems that only change discretely can be
written in the form (4)–(6).

We understand the external states of an agent merely as an observable representa-
tion of the internal states, which is why wi .t/ directly depends on yi .t/ through the
function gi . The distinction between observable and non-observable states is often
used to represent internal memories that cannot be perceived by other agents [23].

Example 2 (Animal behaviour). Agent-based models have been successfully used
for the modelling of collective animal behaviour [51]. Couzin et al. [12] showed
that a relatively simplistic model can yield complex collective behaviour and can be
used to model fish schools and bird flocks.

In this model, the internal states of an agent yi are defined to be its position
xi 2 R

m .m D 2; 3/ and its velocity vi 2 R
m. Since both the position and velocity

of an agent potentially influence the motion of other agents, both are observable and
hence wi D yi D Œxi ; vi � 2 R

2m, which means that gi D Id. The update rules fi ,
i D 1; : : : ; N , in this example are equivalent for each agent and incorporate the
different rules for the different zones in the model (zone of attraction, orientation
and repulsion).
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Example 3 (Chemotactic movement under a stationary signal). A simple agent-
based model for chemotaxis in one dimension can be written as follows [28]: the
internal state yi .t/ of an agent is defined as its current position in R. Additionally,
we assume that the signal S.x/ is fixed and there is no interaction between agents,
hence no observable states are required. All agents start at some initial position
y0;i 2 R and move according to the stochastic differential equation

dyi .t/ D �.S/
@S

@x
dt C

p
2Dn dW ; i D 1; : : : ; N ; (7)

where �.S/ is the chemotactic sensitivity function introduced in Example 1, Dn is
the diffusion constant of the bacteria and dW is the Wiener-process, also known as
Brownian motion [33]. We can discretise (7) to obtain an update rule equivalent to
(4) as follows

yi .t C �t/ D yi .t/ C �.S/
@S

@x
�t C

p
2Dn�t � ;

where � is a normally distributed random variable with zero mean and unit variance.
In the limit of infinitely many particles, this agent-based description is equivalent to
the PDE (2), which is written for the density of cells [49]. However, if we considered
a time-evolving signal which is consumed by cells as in Example 1, a purely agent-
based model would have to simulate the trajectories of all signal molecules. This
would be computational intensive and a hybrid model which combines agent-based
simulations with PDEs can then be used to optimize computational efficiency and
accuracy.

3 Hybrid Modelling: Theoretical Framework

Because of their hybrid nature the general framework for these models necessarily
combines the two frameworks presented in Sect. 2. We define a vector of continuous
variables c.x; t/ on a domain ˝ � R

m, m D 1; 2 or 3. The update rule for c is
again governed by an operator L , which now also depends on the current states of
the agents. The N agents are represented by their internal state variables yi .t/ and
their set of observable states wi .t/ defined in (5). To allow interactions between the
agents and the continuous variables c, the set of observable states X as defined in
(6) is used. The update rules for the system are

@c
@t

D L .c; x; t; X / ; x 2 ˝ ; (8)

yi .t C �t/ D fi .yi .t/; t; �t; X ; c/ ; i D 1; : : : ; N ; (9)



Hybrid Modelling of Individual Movement and Collective Behaviour 135

y1f1 g1 w1

yNfN gN

wN

c

Fig. 1 Concept of a hybrid
model. Arrows symbolise
direction of influence

where X is given in (6). In (8) we see that the agents can influence the continuous
variables c through the set of observable states X . Similarly, the behaviour of
the agents can be altered by the continuous variables, as the operator fi now also
depends on c. Figure 1 shows a graphical representation of the hybrid model. It
contains the N agents represented by the internal states yi on the left. Through the
function gi the observable states wi are generated which then influence the update of
the continuous variables c as well as the agents’ behaviour themselves. We, however,
encounter a problem in this definition, as the continuous variables are defined for
every time t , while the internal agent states are only defined for discrete times. To
overcome this problem we can consider (9) in the limit �t ! 0, where it takes the
general form of an SDE

dyi D f.1/
i .yi .t/; t; X ; c/ dt C f.2/

i .yi .t/; t; X ; c/ dW ;

where f.1/
i and f.2/

i respectively represent the stochastic and the deterministic part of
the SDE.

Example 4 (Hybrid cellular automaton model for carcinogenesis). In [47] Small-
bone et al. present a hybrid cellular automaton model for the formation of cancer.
This model uses reaction-diffusion equations to calculate the concentration of
oxygen, glucose and hydrogen ions in the environment of the cells. The concen-
trations of these chemicals therefore constitute the continuous variables c. Each
cell of the cellular automaton is represented by an agent with the internal state
yi 2 N defining which of the finite number of possible phenotypes the cell at this
position has (including the “phenotype” empty). As these phenotypes are observable
by neighbouring cells, we have wi D yi . This cellular automaton model has a
generation-based update rule, which means that the states yi are only updated once
every time step. The rules of the model then represent the probabilistic functions fi

in (4), where the change depends on the current phenotype, the neighbouring cells
and the concentrations of the considered chemicals at the cell position.

Example 5 (Hybrid model for chemotaxis of Dictyostelium discoideum). Dal-
lon and Othmer developed a hybrid model for the chemotaxis of Dictyostelium
discoideum [14] that combines individual cell movement with a continuous extra-
cellular concentration of cAMP modelled by a PDE. The internal states of the
agents are the position of the individual xi , as well as the variables representing
the intracellular processes. Only the position and one of the intracellular variables
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influence the external field and therefore form the observable states wi . The update
rules fi are given through ODEs for the internal dynamics and rules of motion for
the position.

3.1 A Position-Based Hybrid Model

So far, we have defined a general framework for a hybrid model that allows for
a great freedom in the choice of internal and external states of the agents. In the
next step we want to refine this framework for the more specific models used in
chemotaxis modelling [14, 18, 49]. In order to be able to interpret the agents as part
of a species situated inside the domain ˝ , we need to introduce the notion of an
agent’s position in ˝ . Moreover, we assume that all agents are equal for an external
observer except for their position, or in other words the set of observable states of
the agents wi .t/ is the position xi .t/ of the agents inside ˝ , i.e.

wi .t/ � xi .t/ :

This definition excludes Couzin et al. models for animal behaviour [12] as well
as cellular automaton models [47], but it is sufficient for the chemotaxis example
studied in Sect. 5.

Because of the agents’ similarity, we no longer need to define an abstract set X ,
but can instead define a density function %ı on ˝ through

%ı.x; t/ D
NX

iD1

ı .x � xi .t// ; x 2 ˝ : (10)

When discussing numerical simulations of hybrid models, we will see that this
definition of %ı is already a first step towards obtaining a continuous density function
for the agents. With this definition we can redefine the operator L , which governs
the behaviour of the continuous variables c and (1) reads as follows

@c
@t

D L .c; x; t; %ı/ :

For the evolution of the internal agent states yi we assume now that every agent can
only perceive information about the continuous variables c at its current position.
Hence, the operator fi no longer depends on c on the whole domain, but only on
c.xi / and the first spatial derivative in this point, i.e. fi , i D 1; : : : ; N , are functions
for all further considerations. Equation (9) therefore becomes

yi .t C �t/ D fi .yi ; t; �t; %ı; c.xi ; t/; rc.xi ; t// : (11)
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This special type of hybrid systems still allows for a wide range of flexibility and
can therefore be used to model a variety of different processes. In Sect. 5 we study
position-based models for chemotaxis in more depth.

3.2 Initial and Boundary Conditions

An important aspect of modelling is the incorporation of initial and boundary con-
ditions. Hybrid models necessarily combine the conditions from the two different
approaches. For the continuous variables one usually has an initial value c0.x/,
while for the agents an initial distribution of their position and internal states is
given, which is then used to generate each agents’ position at the beginning of the
simulation. In some applications the agents can be born during the course of the
simulation. In this case, we have to ensure the appropriate initialisation of its internal
variables.

A similar idea of independent conditions for the continuum and the agent-based
parts of the hybrid model is used for the boundary conditions. The values of the
continuous variables on the boundary usually have to satisfy an equation of the type

G .c; x; t/ D 0 ; x 2 @˝ ; (12)

where G is a general operator. In the most commonly used cases (12) enforces
certain values on c or its gradient on the boundary. For the agents the boundary
conditions are often given in a more descriptive manner. For example, agents can
leave the domain through one end and automatically reappear on the other end.
This periodic boundary condition implies that the number of agents in the system
is conserved. Periodic boundaries are widely used because of their simplicity and
because they effectively shape an infinite domain. Reactive boundaries absorb
agents with a probability p, while reflecting them with probability 1 � p [16]. If
p D 0, one often speaks of a reflecting boundary, while for p D 1 the condition is
called an absorbing boundary.

4 Hybrid Modelling: Numerical Implementation

For similar reasons as in purely agent-based models it is often very hard to obtain
analytic results for hybrid models. This increases the importance of numerical
simulations for gaining insight into the behaviour of the system. The mixture
of different modelling frameworks, however, renders the process of setting up a
numerical simulation non-trivial. Each part of the model has to be considered
differently and a way of matching the two parts has to be developed. In this section
we discuss a numerical framework and evaluate difficulties one has to overcome
when implementing a hybrid model.
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The general task for the numerical simulation of a hybrid model is to calculate
approximations for both c and yi at times tj D j�t , j D 1; 2; : : : given initial
data for each of these variables according to Sect. 3.2. We additionally assume that
the domain ˝ can (for the continuous part of the hybrid model) be adequately
represented by the points r1; : : : ; rL 2 ˝ , which means that we seek to compute
approximate values for c.tj ; rl /, j D 1; 2; : : :, l D 1; : : : ; L and yi .tj /, i D
1; : : : ; N . In order to simplify the notation, we introduce

C j D Œc.tj ; r1/; : : : ; c.tj ; rL/� j D 0; 1; : : : :

Due to the different characters of the continuous and the agent-based subsystems,
different approaches have to be used for their numerical solutions. For each of the
subsystems one tries to answer the question of how to get from tj to tj C1 still
guaranteeing an accurate approximation of the system. For the continuous variables
this means, we seek a solver that generates the values of C j C1 using the values
C 0; : : : ; C j and the current distribution of the agents %ı.�; tj / given by (10), which
can be symbolised as

n
C 0; : : : ; C j ; %ı.�; tj /

o
Ld7�! C j C1 : (13)

In (13) we introduced the operator Ld , which is a discretised version of the
continuous operator L used in (8). In the most common case, where L is a
differential operator, Ld could be a finite element or finite difference approximation
of L . Note that in (13) we have made the implicit assumption that the solver used
for (8) only takes the positions of the agents at time tj into account. For the agents
equation (11) is already given in a time-discrete way and can therefore be used
directly to update the internal states.

The introduction of this general scheme raises some immediate problems, which
we will discuss in the remainder of this section. The first difficulty are the differing
spatial resolutions for the two subsystems, which we address in Sect. 4.1. Other
problems like time stepping, choices of solvers and the influence of stochastic
effects are presented in Sect. 4.2.

4.1 Spatial Matching in Numerical Simulations

A spatial matching between the continuous variables and the agents is required dur-
ing a numerical simulation of a hybrid system, because different spatial resolutions
are applied. The agents can be positioned at an arbitrary point inside the domain ˝ ,
while the data for c is only calculated at the points rl . This triggers a two-way
matching problem, as one has to generate estimates for the agent distribution at the
points rl as well as for the continuous variables c everywhere inside ˝ .
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First, let us consider estimating the agent density distribution throughout ˝ and
especially at the points rl , which is necessary for the update relation (13). So the
general mapping we are trying to achieve is

%ı.x/ D
NX

iD1

ı.x � xi/
�7�! %.x/ 2 C 0.˝/ :

The requirements for the estimated density function %.x/ can alter for different
applications, but here we require it to be at least a continuous function in ˝ . One
way to achieve such a mapping is the so-called kernel density estimation [52]. In
general the kernel density estimation can be used to estimate the probability density
function of a random process, if one has been given a number of realisations of
this process. The name stems from the use of a kernel K.x/, which is typically a
continuous, symmetric and normalised function. Let us for simplicity assume a one
dimensional random process, in which case these conditions take the form

K.x/ 2 C 0.R/; K.�x/ D K.x/;

Z
R

K.x/dx D 1 : (14)

Additionally, K.x/ is often required to be non-negative in order to generate a non-
negative estimate. Most commonly used kernels include a Gaussian kernel and a
piecewise linear kernel with compact support. In practice a scaled version of K is
used, which leads to the introduction of a bandwidth parameter h. We define

Kh.x/ D 1

h
K

�x

h

�
;

which still satisfies the conditions (14). With given positions x1; : : : ; xN , an estimate
of the probability density function is then given by

%.x/ D
NX

iD1

Kh.x � xi / D Kh.x/ � %ı.x/ : (15)

Figure 2 shows an example of a kernel density estimation for 100 normally
distributed random variables using a Gaussian kernel with different bandwidths h.
In Fig. 2a we can see that the choice of a very small h leads to a highly oscillating
estimate, while a very big h can lead to the estimate being too wide as shown in
Fig. 2c. An optimal choice for the parameter h and the kernel itself always depends
on the nature of the problem and the number of samples N .

The second spatial matching problem that occurs when simulating a combined
continuous and agent-based system is the need to estimate the values of the contin-
uous variables (and possibly their derivatives) at an arbitrary position inside ˝ . The
operator we are looking for can be symbolised through

.r1; c.r1// ; : : : ; .rL; c.rL//
�7�! Oc.x/ 2 C 0.˝/ :
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Fig. 2 Kernel density estimate for N D 100 agents, which are placed according to a normal
distribution with different bandwidths h. Crosses along the x-axis represent the agents, the dashed
line is the underlying Gaussian probability density function and the solid line is the generated
estimate according to (15)

Though similar to the operator � , we here have the advantage that we know
the positions of the points r1; : : : ; rL beforehand and that we know they give an
adequate representation of the domain ˝ . With this additional information, one can
argue that the problem at hand represents an interpolation problem from the grid
points rl onto the whole domain ˝ . This result allows for the use of approaches from
the well-studied fields of interpolation and approximation theory [53]. In some cases
the interpolation regime is already implicitly incorporated in the numerical solution
of the update equation for the continuous variables, for example if one chooses to
use a finite element approach.

Example 6 (Numerical realisation of Example 5). In Example 5 we presented a
hybrid model for chemotaxis of slime mold Dictyostelium discoideum developed
by Dallon and Othmer [14]. To generate a discretised operator Ld they used
the particle-in-cell method [41]. For the kernel density estimation � they use a
piecewise linear kernel and for the interpolation operator � a fifth order spline
interpolation was employed.

4.2 Other Aspects of Numerical Simulations

The spatial matching between the two parts is the biggest additional challenge
posed by the use of a hybrid model. Here, we discuss some other problems that
occur during this process. The first problem is the choice of a solver both for the
continuous variables and for the internal states of the agents. One can choose from
a wide range of standard approaches for both problems. The way the two parts
are interwoven, however, sets some restrictions. It is, for example, almost always
impossible to use a fully implicit solver for both parts, especially if the functions
fi for the internal agent states contain random variables. Additionally, one has to
consider the accuracy of the different solvers and should ideally try to match these to
prevent unnecessary computational effort that does not lead to more accurate results.
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The discrete nature of the agent-based parts automatically introduces stochastic
effects into the system. Various examples of these effects will be discussed in Sect. 5.
It is important to consider these effects when choosing the time stepping and the
spatial resolution for the simulation. In particular, these choices will depend on the
number of agents in the system. It is generally possible to allow different time steps
for different parts of the system, for example the agents could be simulated with a
finer time stepping than the continuous variables or vice-versa. For each part of the
system the time steps have to be chosen in a way that ensures an accurate solution
depending on the spatial resolution and the solver that is used. In Sect. 5 we study
one application area of hybrid systems in more detail and analyse the effect of some
of these choices on the system.

5 Case Study: Hybrid Modelling of Chemotaxis

In Sect. 3 we introduced a general framework for hybrid models that combine agent-
based models with mean-field equations and we now concentrate on one application
area for hybrid modelling: cell migration. In particular we focus on the movement of
cells induced by gradients in the concentration of extracellular chemicals, a process
that is known as chemotaxis. Chemotaxis is one of the main forms of cell migration
and is used in a variety of cells, including bacteria cells [8]. Hybrid models of
chemotaxis have been successfully used in the literature [14, 15, 26, 55].

The first notion of chemotaxis goes back to the late nineteenth century, when
Engelmann and Pfeffer detected the process. In the late 1960s it was Adler [1, 2]
who performed experiments with the bacteria E. coli that helped understanding
and quantifying the process and that were later used as comparison for the early
mathematical models. Adler placed a colony of E. coli at one end of a long thin pipe
that was filled with oxygen and an additional energy source. Through the process of
chemotaxis the colony started to move with a constant speed away from the closed
end forming a narrow band of bacteria. The band was visible to the naked eye and
Adler was able to measure the speed with which it moved forward.

In the 1970s the first mathematical descriptions of chemotaxis were formulated,
with the Keller-Segel model, which we will discuss in Sect. 5.1, as one of the early
breakthroughs. A review of the impact this first model had on the modelling of
chemotaxis is given in [32]. Section 5.2 will introduce a hybrid version of this
model, which we will further investigate and analyse in Sect. 5.3.

5.1 The Keller-Segel Model

As mentioned above, Keller and Segel developed the first mathematical model to
describe the process of chemotaxis in 1971 [35]. The original model considers both
the bacteria and the chemotactic substrate in a continuum limit, which therefore
results in a coupled system of two PDEs. The original form of the system only
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Fig. 3 Travelling wave solution of the Keller-Segel model (16) and (17) for different values of the
parameter �, where 	 D 2

considers one spatial dimension and gives a way to compute the concentration of
bacteria denoted by n.x; t/ and the concentration of substrate S.x; t/ through the
PDEs (2) and (3), introduced in Example 1. In (2) we can see that the behaviour of
the bacteria is governed by two independent effects and therefore takes the form of
a general advection-diffusion equation. The diffusion of the bacteria occurs with
the diffusion constant Dn, while the advection is governed by the chemotactic
sensitivity �.S/. The substrate, as seen in (3), diffuses with the diffusion constant
DS and is consumed by the bacteria with a consumption rate k.S/ that depends on
the concentration of substrate itself.

In a follow-up to the paper [35], Keller and Segel showed that under certain
conditions the developed system of partial differential equations yields travelling
wave solutions [36]. In particular they were able to proof that travelling wave
solutions can only exist if �.S/ has a singularity at some critical value Scrit . For
reasons of simplicity they concentrated on the simplest such functions �.S/ D 	

S

with the critical concentration at Scrit D 0. In their analysis Keller and Segel made
some additional assumptions for the various parameter values and simplified (2) and
(3) to the nondimensionalised PDEs

@n

@t
D �

@

@x

�
@n

@x
� n

	

S

@S

@x

�
; (16)

@S

@t
D �n : (17)

The nondimensionalised system is set up for x 2 Œ0; 1� with an initial value
of S.x; 0/ D 1 and no-flow boundary conditions. As initial distribution of the
agents we choose n.x; 0/ D ı.x/, which corresponds to the initial state of Adler’s
experiments where all bacteria were inserted at one end of the tube. We consider
reflective boundary conditions for the bacteria at x D 0 and x D 1.

In order to investigate the influence of the two dimensionless parameters � and
	 on the travelling wave, Figs. 3 and 4 show the concentration of n and S at t D 0:5
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Fig. 4 Travelling wave solution of the Keller-Segel model for different values of the parameter 	,
where � D 1=30

for various values of � and 	. In Fig. 3 we can see that the parameter � influences
the width of the wave while leaving its general shape untouched. Increasing � leads
to a wider wave and a decrease in the maximum of n. Accordingly, the gradient in
S is higher for the narrower bands caused by smaller values of �. As can be seen in
Fig. 4, the parameter 	 influences the general shape of the wave. In the case 	 D 2

the travelling band of bacteria is symmetric, while a 	 bigger than two leads to a
wave that is steeper in the front (right) and falls slowly in the back (left) of the
wave. Choosing 	 smaller than two causes an opposite effect with the wave being
bent backwards.

5.2 Hybrid Models of Chemotaxis

One of the assumptions made by Keller and Segel in their original model is to
consider the bacteria as a continuum rather than explicitly describe their individual
behaviour. For systems that do not satisfy this assumption hybrid chemotaxis models
have been developed in the literature [14,15,26,55]. In this section we present three
of them. The bacteria are modelled as agents with varying numbers of internal states
and their position xi 2 ˝ , as the only observable state. All three models consider
the substrate in a continuum limit and the PDE (17) takes the role of (8) in our
description of the hybrid modelling framework.

Model I

The first approach to design a hybrid version of the Keller-Segel model, is to
interpret the evolution equation for n as a Fokker-Planck equation for a number
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of randomly moving particles similarly to the idea presented in Example 3. The
movement of each of the agents is described by the stochastic differential equation

dxi D �
	

S.xi /

@S.xi /

@x
dt C p

2�dW : (18)

The parameters used in (18) correspond to the ones in the dimensionless Keller-
Segel equations (16) and (17). This particle-based description of (16) shows one of
the weaknesses in the original Keller-Segel model. According to (18) an agent can
theoretically jump any given distance in one time step, implying that some of them
can move with a speed that is not achievable for bacteria.

A hybrid model which uses (18) for computation of cell trajectories is analysed
in [40]. They use perturbation theory and methods from statistical physics to
investigate the non-mean-field-behaviour of a hybrid model where cells produce a
chemoattractant that diffuses and degrades on its own. Another approach to analyse
a chemotaxis model similar to (18) is presented in [49]. Here, an individual-based
description is used for both cells and chemical signal. Then macroscopic PDEs
(similar to (2) and (3)) are derived in the limit of infinitely many individuals for
appropriately rescaled interactions between individuals.

Model II

Driven by weaknesses of the first model, a different type of random walk, known as
velocity-jump process, seems a more realistic choice for the bacterial behaviour.
The motion of bacteria E. coli consists of two phases [8]. During a run-phase
the bacterium moves with a constant speed straight into a chosen direction. This
run lasts for a randomly distributed time before the bacterium enters the tumble-
phase in which it chooses a new direction randomly [7]. As we are considering
a one-dimensional model, there are only two possible directions of motion: to
the left and to the right. A right-moving agent continues to the right for a time
that is given by an exponentially distributed random variable before it switches its
direction. In order to incorporate the bias of bacteria towards higher concentrations
of chemoattractants, Othmer et al. [43] introduced a biased velocity-jump process.
In this biased random walk the duration for the run phase depends on information
gathered at the current position of the individual. In particular, the model in [43]
allows the agents to directly measure the gradient of the substrate concentration at
their current position. The run-phase then tends to be longer, if the concentration
increases in the current direction of motion, while for a decreasing signal, the
turning probability is increased.

The turning frequency 
 is therefore adjusted according to the current movement
direction, the value and the gradient of S . To represent the direction of motion, the
velocity vi .t/ D ˙s is introduced, where s denotes the constant speed. In terms
of the hybrid modelling framework introduced in Sect. 3, the internal variable is
yi D Œxi ; vi �. The agent-based description of the bacteria can be written in the form
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xi .t C �t/ D xi .t/ C vi .t/�t ;

vi .t C �t/ D
� � vi .t/ with probability 
˙�t

vi .t/ otherwise
;

where


˙ D 
0 � 	s

2S

@S

@x
:

In a continuum limit this velocity-jump process is equivalent to the hyperbolic
chemotaxis equation [21]

1

2
0

@2n

@t
C @n

@t
D s2

2
0

@

@x

�
@n

@x
� n

	

S

@S

@x

�
; (19)

where n is the concentration of bacteria. This shows that changing the type
of random-walk used for the agents can influence the corresponding continuum
equation. Nevertheless (19) can be used to adjust the parameters of the agent-
based model to match the parameters of the Keller-Segel model, as the large time
behaviour of (19) is given by the classical chemotaxis equation (16), where we have
� D s2=.2
0/ [34]. Lui et al. [38] showed that coupling the hyperbolic chemotaxis
equation (19) with (3) for the substrate also yields travelling wave solutions similar
to the original Keller-Segel system. An investigation of this case for a more general
dependence of the turning frequency is given in [56].

Model III

More accurate descriptions of the individual behaviour of bacteria incorporate
the sensing and processing of extracellular signals [6, 48]. Hybrid models with
descriptions of these intracellular processes have been used by Dallon and Othmer
[14] as well as Xue et al. [57]. Erban and Othmer [18, 19] used an agent with a
toy version of the internal dynamics that includes two main features of the sensing
process: a fast excitation and a slower adaptation. We will use a simple model with
one additional internal variable zi that acts as a memory and allows the agent to
identify increasing or decreasing signal concentrations [18]. The model is based
on a velocity-jump process with a turning frequency 
, which depends on zi . This
internal variable is chosen to follow the value of a sensing function g.S/ with the
adaptation time ta. Thus, the model can be written in the hybrid form presented in
Sect. 3, using yi D Œxi ; vi ; zi � as follows:

xi .t C �t/ D xi .t/ C vi .t/�t ;

vi .t C �t/ D
� � vi .t/ with probability 
�t ;

vi .t/ otherwise ;
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Fig. 5 Numerical simulation of the hybrid Keller-Segel model with internal dynamics (Model III).
Parameters are N D 104 , ta D 1=
0 D 1:5 � 10�3, s D 133:33, g.S/ D 4:5 � 10�3 log.S/,
�t D 10�4. (a) Distribution of agents at time 0:5 (solid line) and the results given by the Keller-
Segel model (16) and (17) (dashed line, which is almost indistinguishable from the solid line).
(b) Histogram of agent positions in subinterval Œ0; 0:2�

zi .t C �t/ D zi .t/ C g.S.xi .t/// � zi .t/

ta
�t ;

where


 D 
0 C zi � S.xi/ :

In the limit �t ! 0 and N ! 1 this process can be described by the chemotaxis
equation

@n

@t
D s2

2
0

@

@x

�
@n

@x
� 2ta

1 C 2
0ta

dg

dS

@S

@x

�
; (20)

provided that t is large (t � 1=
0) and the gradient of S is shallow [18].
Choices for the parameters of this model can be made by matching (20) with the
classical chemotaxis equation (2), which especially indicates that g is given through
dg=dS 	 �.S/.

In Fig. 5a a simulation of the hybrid model of type III is shown. Simulations
of the other two models were also performed, with results almost identical to the
one seen in Fig. 5a. We simulate N D 104 agents with the dimensionless model
parameters ta D 1=
0 D 1:5 
 10�3, s D 133:33, g.S/ D 4:5 
 10�3 log.S/

and �t D 10�4. These parameters were chosen in such a way that they match
the global parameters � D 1=30 and 	 D 2 used for the classical Keller-Segel
model. On a first impression, it looks as though the resulting agent distribution at
t D 0:5 matches the predicted concentration of the Keller-Segel system well except
for some stochastic effects. In Fig. 5b, however, we show the agent distribution in
the region behind the travelling band. Further analysis of this region showed that
here the extracellular signal is completely exploited. Some agents are left in this
zone and undergo an unbiased random walk without a chemotactic signal to guide
them. This means that these agents do not necessarily manage to catch up with the
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travelling wave again but instead stay in the exploited region. In the remainder of
this section, we study this effect, which we refer to as dropout in more detail. We
will show that it significantly influences the system dynamics for large times.

5.3 Analysis of the Dropout

In Fig. 5b we saw that the hybrid model, in contrast to the original Keller-Segel
model, creates a region behind the wave where the substrate is completely exploited.
The main assumptions for a mean-field approach are violated in this region, namely
the number of bacteria and the concentration of extracellular material are very small,
which renders a continuum approach here not applicable [25]. Stochastic effects due
to the small number of bacteria then lead to the complete exploitation of S , which
causes the dropout of some of the agents. These agents can no longer sense any
gradient in extracellular substrate and are therefore moving completely randomly,
which makes it very unlikely for them to become part of the travelling band again.
Due to the constant loss of agents, the velocity and the height of the wave will
decrease as the wave moves along. Note that a complete exploitation in these models
is only possible under the assumption that S does not diffuse, which was made
by Keller and Segel and is incorporated in the PDE (17). The dropout effect is
interesting for us, because it shows a qualitative difference between the hybrid
model and the original Keller-Segel model, as the hybrid model only yields transient
travelling wave solutions. In this section we create measures for this dropout in order
to get an estimate of the number of lost agents from the simulations. We will then
move on to analyse the effect of some system parameters on the dropout. Finally,
some theoretical results about the loss of agents are presented and compared to
numerical results.

Dropout Measures

In order to be able to quantify the dropout of agents from the travelling wave,
we need to investigate certain conditions that render an agent as dropped out.
A condition of this form allows us to define an index set � .t/ that contains the
agents who are currently part of the wave.

However, before defining and comparing different conditions for the dropout,
we investigate some global statistical values of the agent set. The first measure to
indicate the fact that agents have dropped out is the position of the centre of the wave
c.t/. From [36] we know that the theoretical wave speed of the nondimensionalised
Keller-Segel system is 1 and therefore the predicted position of the centre of the
wave is cmf .t/ D t . In comparison to that the actual position of the wave can be
measured from the agents’ positions via

c1.t/ D 1

N

NX
iD1

xi .t/ : (21)
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Fig. 6 Simulation results of the variance and dropout for short times, where the same parameter
values as in Fig. 5 are used. (a) Variance �.t/ estimated from the simulation (solid line) and
variance of the stationary wave given by the mean-field model �mf (dashed line). (b) Dropout
given by (25): d1.t I 0:1/ (dash-dotted line), d1.t I 0:15/ (solid line), d1.t I 0:2/ (dotted line) and
d2.t/ (dashed line)

The problem with this option is that it includes dropped out agents for the calculation
of the wave centre, which can bias the calculation. To overcome this problem, a
second option for finding the centre of the wave is given through

c2.t/ D 1

j� j
X
i2�

xi .t/ ; (22)

which implies that the found centre position depends on the choice for the index
set � . For short times c1.t/ and c2.t/ give similar results, but will differ for large
times. Using this wave centre c1.t/, we can calculate the variance of the agent
positions as an indicator for the width of the wave and therefore for the dropout.
In Fig. 6a this variance is compared to the variance of the travelling wave solution
found by Keller and Segel, which is �mf D .�/2=3. Initially the measured variance
increases linearly towards the theoretical value, which is caused by the start of the
agents on the boundary x D 0. After the wave is fully developed, the variance starts
to rise over the theoretical value, which indicates a significantly wider wave and
therefore dropout of agents.

With these statistical values for the agent set we have now different options to
define an agent as dropped out from the wave and therefore to define the index
set � . The first option is to allow an agent to have a certain distance r from the
centre of the wave. Agents with a distance bigger than r are therefore considered to
be dropped out. Hence,

�1 � �1.t I r/ D fi 2 f1; : : : ; N g j xi .t/ � c1.t/ � rg : (23)

Because of the non-finite support of the travelling wave solution for the original
Keller-Segel system, the measure defined in (23) is strongly dependent on r , which
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makes the choice of r important. One should choose r in a way that the solution
of the original Keller-Segel model only predicts a very small number of dropout
agents. One way to pick r is to use a multiple of the theoretical standard deviation
of the wave.

A second option of defining an agent as dropped out is to use the observation that
S is exploited behind the wave. An agent is then considered to be dropped out of
the wave if the value of S at its current position is 0. Thus,

�2 � �2.t/ D fi 2 f1; : : : ; N g j S.xi.t// D 0g : (24)

Using the sets �1 and �2 we can now define 2 dropout measures d1.t I r/ and d2.t/

by

d1.t I r/ D 1 � 1

N
j�1.t I r/j ; and d2.t/ D 1 � 1

N
j�2.t/j : (25)

Figure 6b shows plots of the behaviour of d1.t I r/ and d2.t/. We can see that after
the initial period of adjustment due to the start on the boundary x D 0, all measures
have an increasing trend with some fluctuations around it. The measure d1.t I 0:15/

matches well with d2.t/, but has less fluctuations.

Large Time Behaviour

In this section we investigate the large time behaviour of the travelling wave in the
hybrid chemotaxis Model III. We study the behaviour of the bacteria and the signal
in the half-line Œ0; 1�. For large times the definitions c1.t/ and c2.t/ given by (21)
and (22) differ significantly because many agents drop behind the wave. Therefore,
c2.t/ is more meaningful to describe the centre of the wave in this case. However,
as c2.t/ depends on � , we can no longer use � � �1 to find the agents that have
dropped out, because �1 depends on the definition of the centre of the wave. We
therefore use d2.t/ given by (25) as measure for the dropout in the analysis of large
time behaviour, where we are particularly interested in the slowing down of the
wave. Hence, we define the velocity of the wave v.t/ through

v.t/ D c2.t C �T / � c2.t/

�T
; (26)

where �T is chosen to be much larger than �t in order to minimise the fluctuations
in v.t/. We simulate N D 104 agents with the same parameters as before. The
results of one simulation are shown in Fig. 7. We see that after t D 50 about 40 %
of the agents have dropped out from the wave. The predicted slowing down of the
wave is demonstrated in Fig. 7b, where we plot v.t/ as a function of time. We use
�T D 0:1 in the definition (26). As the velocity shrinks with the number of agents
in the wave, we have v.t/ � 1 � d2.t/, which is also demonstrated in Fig. 7b.
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Fig. 7 Dropout and velocity of the travelling wave for large time, where the same parameter values
as in Fig. 5 are used. (a) Dropout d2.t/ given by (25). (b) Velocity of the wave v.t / given by (26)
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Fig. 8 Dropout d1.0:5I 0:15/ given by (25) as a function of (a) N and (b) �x. In each figure we
show results given by individual simulations (crosses), average values of d1.0:5I 0:15/ estimated
from simulations (circles) and linear fits explained in the text (dashed-line)

Dropout in Dependence on N and �x

In the next step we use the derived measure (25) in order to analyse the influence
of certain system parameters on the dropout. In particular, we are interested in the
dependence of the dropout on the number of agents N and the gridsize �x. The
variation of the number of agents N in the system is a way of comparing the hybrid
with the continuum model. One would expect that the dropout goes to 0 as N goes
to infinity. On the other hand the �x dependence is a problem of the hybrid model,
as one would ideally want the dropout to be independent of the chosen grid. We
performed a number of simulations for various values of N (200 simulations for
each value) and �x (100 simulations for each value) and in each case measured the
value of d1.0:5I 0:15/. The results are plotted in Fig. 8. In Fig. 8a we plot the average
values of d1.0:5I 0:15/ estimated from simulations as circles. The best linear fit in
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the double logarithmic plot, shown as the dashed line, has a gradient of �0:53, which
indicates that d1 	 1=

p
N . This relationship can be explained through the central

limit theorem, which predicts that the noise in the system should shrink with
p

N .
The plot in Fig. 8b shows a more complicated dependence. For larger values of

�x the dashed line with gradient �1 can be fitted indicating that a finer grid leads
to an increase in dropout, which seems slightly surprising at first glance, as one
expects a finer grid to allow for a more accurate representation of the original PDE.
This effect can, however, be explained by the lower number of agents per gridpoint
and therefore the higher noise expected at each gridpoint. As �x decreases the
dropout seems to level off, meaning that the choice of a finer grid at this point
does not influence the dropout drastically. Bearing in mind that we ideally wanted
the dropout to be independent of �x, this levelling off effect seems to indicate the
region of choice for �x in order to get an accurate solution.

Theoretical Analysis

More theoretical insight into the dropout effect can be obtained by considering a
simplified system, where the concentration of extracellular material S is a given
function that does not change over time. A natural choice for the function S.x/ is
the travelling wave solution found by Keller and Segel [36]. Using the knowledge
of the exploited region behind the wave, we can adjust this function slightly to allow
for the analysis of the dropout effect. We therefore define S to be equal to 0 for x

smaller than some critical position xc and to take the form of the travelling wave
solution everywhere else. In this section we will use 	 D 2, thus we put

S.x/ D
�

.1 C exp.�x=�//�1 ; x � xc ;

0; x < xc :
(27)

To be able to use a time-independent function for S we have to make adjustments to
the movement of the agents, as they would otherwise follow the increasing gradient
towards the right of the real axis. Therefore, we subtract the expected wave speed
of 1 from the movement velocity of the agents in order to keep them in a position
that is realistic for the travelling wave. In other words, we use a coordinate system
that moves with the travelling wave solution. For example, for an agent of Model I
the evolution equation becomes

dxi D
�

�
2

S.xi /

dS.xi/

dx
� 1

�
dt C p

2�dW :

With the help of this simplified system we can now make further analytic and
simulative investigations into the effect of different xc on the quantity of the dropout.
If an agent enters the exploited region x < xc , two behaviours are considered.
In the first case, the agent would be considered dropped out and is absorbed by
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Fig. 9 Dropout d1.0:5I 0:15/ defined by (25) as a function of xc for static signal given by (27)
where the same parameter values as in Fig. 5 are used. In each figure we show average values
of d1.0:5I 0:15/ estimated from 100 simulations (circles). (a) Simulations where no comeback
from x D xc is allowed. The dashed line is a result of the theoretic analysis given by (30).
(b) Simulations where dropout agents can return. The dashed line is 50 % of the dropout predicted
by (30)

the boundary, so that it has no chance of becoming part of the wave again. The
second case allows the agent to randomly move around in the exploited area and
therefore allows the agent to enter the non-exploited region again. For both cases we
performed 100 simulations for each of the considered values of xc and measured the
value of d1.0:5I 0:15/ as defined before, this time using 0 as the mean position. The
average values of d1.0:5I 0:15/ estimated from the simulations are shown in Fig. 9
as circles. To analyse the case of an absorbing boundary at x D xc we consider the
system in the limit N ! 1, which is described by the following equation (compare
to (16))

@n

@t
� @n

@x
D �

@

@x

�
@n

@x
� n

2

S

dS

dx

�
: (28)

The boundary condition on the left-hand boundary can be written in the form
n.xc/ D 0. Further conditions for x ! 1 can be introduced. We look for a separable
solution of the form

n.x; t/ D exp.�
t/M.x/ ;

where 
 is a positive constant. Plugging this ansatz into (28) leads to

�M 00 C M 0 � 2�

�
M

S 0

S

�0
C 
M D 0 ; (29)

where primes denote derivatives with respect to x. For the ODE (29) a non-negative
solution is sought that satisfies M.xc/ D 0 and M.x/ ! 0 as x ! 1. The general
solution for (29) is
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where � D p
4
� C 1. The integration constants C1 and C2 have to be chosen

to satisfy the boundary conditions. Because of the nature of (29) as an eigenvalue
problem, only the quotient C1=C2 can be determined uniquely, which also means
that the condition M.x/ ! 0 as x ! 1 is satisfied for all values C1; C2 2 R.
Taking a closer look at the limit x ! 1, we can see that the direction of the
approach changes in dependence of 
, in particular, a non-negative solution can
only be obtained for 
 smaller than a critical value 
c.xc/. This critical value 
c.xc/

is achieved for the case where C1=C2 turns out to be 0. Applying the left-hand
boundary condition M.xc/ D 0 for this case yields to the unique value 
c.xc/ given
through


c.xc/ D � 1

�
exp

�
�xc

�

� �
1 C exp

�
�xc

�

���2

D �S 0.xC
c / :

This value 
c.xc/ can now be used to get a predicted value of the dropout dpred.xc; t/

via
dpred.xc; t/ D 1 � exp.
.xc/t/ : (30)

The function dpred.xc; 0:5/ is plotted as the dashed line in Fig. 9a. We can see
that it matches well with the simulation results. The slight overestimation given
by dpred.xc; 0:5/ can be explained through the time it takes before the first agents
start reaching the critical position xc from the starting position at x D 0. For the
situation with comeback, we choose a value 
 D ˛
c.xc/ to predict the dropout,
where ˛ is a constant. Matching this with the simulation results as shown in Fig. 9b
we found that ˛ � 0:5, which indicates that about 50 % of agents come back into the
wave after they have dropped out. This effect could be modelled by using a reactive
boundary [16] instead of the free diffusion zone behind the wave.

6 Discussion

In this chapter, we reviewed the advances that have been made in the field of hybrid
modelling of collective behaviour. Hybrid models combine agent-based models with
mean-field concentration models and allow a more accurate description of certain
systems than the general mean-field approach. Compared to purely agent-based
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models hybrid models have the advantage of a reduced computational complexity
and a wider range of applicability. As hybrid models explicitly consider individual
behaviour as well as interactions between individuals, stochastic effects are incor-
porated which can alter the behaviour from that of the corresponding continuum
model. This became especially clear during the studies of hybrid chemotaxis models
in Sect. 5. We showed that the hybrid models do not produce a travelling wave in
the classical sense, as agents are dropping out behind the wave. This effect leads to
a decrease in the number of agents in the wave, which also slows down the wave,
as demonstrated in Fig. 7. We also discussed some of the problems and difficulties
related to the use of hybrid models. In particular the spatial matching between the
discrete agents and the continuous variables has to be considered. We showed in
Fig. 8 that the choice of the gridsize can have a significant effect on the behaviour
of hybrid models and has to be handled with care.

Throughout this chapter, we mainly focused on hybrid models which include
agents with internal variables. These models are particularly useful whenever indi-
viduals describe living cells (e.g. Model III introduced in Sect. 5.2) where internal
variables model important intracellular processes. In particular, the mathematical
framework (8) and (9) covers a rich class of complex biological systems. One
disadvantage of models with internal dynamics is that they are more complicated
to analyse [20]. In the case of models without internal variables (e.g. Model I
introduced in Sect. 5.2), one can apply approaches which were developed for
analysis of many-particle systems in statistical physics. Perturbation methods and
closure approximations have been used for analysis of variants of Model I in
the literature [25, 40]. Kinetic and hydrodynamic descriptions of hybrid models
based on velocity jump processes without internal dynamics are derived in [11].
Mathematical analysis becomes more challenging whenever cells are not described
as pointwise objects. For example, the cellular Potts model is a lattice-based
approach which takes into account the finite size of biological cells. Using Kramers-
Moyal expansion, Alber et al. [4] derived a continuous macroscopic description of a
two-dimensional cellular Potts model. Models of cells which take into account both
the finite size and internal variables are even more difficult to analyse. A continuum
model for chemotaxis of disk-like cells with internal variables was derived for
stationary signals in [20]. Analysis of a hybrid model of the finite-sized cells with
internal dynamics remains an open problem.
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