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Abstract Lévy walks first entered the biological literature when Shlesinger and
Klafter (Growth and Form, Martinus Nijhof Publishers, Amsterdam, 1986, pp 279–
283) proposed that they can be observed in the movement patterns of foraging
ants. The fractal and superdiffusive properties of Lévy walks can be advantageous
when searching for randomly and sparsely distributed resources, prompting the
suggestion that Lévy walks represent an evolutionary optimal searching strategy.
The suggestion is supported by a plethora of empirical studies which have revealed
that many organisms (a diverse range of marine predator, honeybees, Escherichia
coli) have movement patterns that can approximated by Lévy walks. Nonetheless,
Lévy walks with their strange fractal geometry appear alien to biology and their
relevance to biology has been hotly debated. Here I describe some of my own
recent contributions to Lévy walk research. This research has sought to identify
biologically plausible mechanisms by which organisms can execute Lévy walks and
to demonstrate that these movement patterns have a utility beyond the understanding
and prediction of optimal searching patterns. This work has made apparent that Lévy
walks do not stand outside of the now well-established correlated random walk
paradigm but are instead natural consequences of it. I also describe some recent
advances in Lévy walk search theory.
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1 Introduction

In 1828 the Scottish botanist Robert Brown reported that minuscule pollen particles
suspended in water have seemingly random movements. Einstein’s subsequent
1905–6 [29, 30] mathematical description of these random “Brownian” movement
patterns has been hugely successful and now lies at the heart of the “correlated
random walk paradigm”—the dominant conceptual framework for modelling
animal movement patterns [104]. Then just over two decades ago, physicists
suggested that some animals have Lévy walk movement patterns. Lévy walks,
named after the French mathematician Paul Lévy, arose in a purely mathematical
context in the first half of the last century [54]. Lévy walks first entered the
biological literature when [94] proposed that they can be observed in the movement
patterns of foraging ants. Lévy walks comprise clusters of short step lengths with
longer movements between them. This pattern is repeated across all scales with the
resultant clusters creating fractal patterns that have no characteristic scale and such
that the distribution of move lengths has an inverse power-law tail, pl.l/ � l��

where 1 < � < 3. Over much iteration, a Lévy walk will be distributed much further
from its starting position than a Brownian walk of the same length. The fractal and
“superdiffusive” properties of Lévy walks can be advantageous when searching
for randomly and sparsely distributed resources [108], prompting the suggestion
that Lévy walks represent an evolutionary optimal searching strategy [9, 11].
Nonetheless, Lévy walks with their strange fractal geometry appear alien to biology
and their relevance to biology has been hotly debated [18, 40, 101], Auger-Méthé et
al. (2011). It seemed to some that physicists and mathematicians had lost touch with
biology, and especially so after it became apparent that early empirical analyses of
the flight patterns of the wandering albatross [107] (Fig. 1), which had provided the
impetus for nearly two decades of research into Lévy walks, were flawed [27].

But the humble pollen has other tales to tell (which show that Lévy movements
are pertinent even in the simplest of situations). Occasionally, one of Robert Brown’s
pollen grains would have come into contact with the bottom of the dish. It is readily
seen that the distribution of straight-line distances between successive contact points
has an inverse-square power-law tail. The contact points thus form a “Lévy flight”
pattern with � D 2, a random jump process in which the distribution of jump lengths
has an inverse-square power-law tail. The distribution of time intervals between
consecutive contacts has an inverse power-law tail, p.t/ / t�3=2, by virtue of the
Sparre Andersen Theorem [99, 100]. Net horizontal displacements made in a time
interval, t , are Gaussian distributed with mean zero and variance �2 D 2D0t where
D0 is the bulk diffusivity. Taken together these two characteristics imply that the

distribution, of distances pl.l/ /
1R

0

e�l2=4D0t

4�D0t
t�3=2dt / l�2, between consecutive

contact points has an inverse-square power-law tail. Observations of the pollen
grains made at the bottom of the dish can therefore be modelled as Lévy flights
with � D 2 (Fig. 2). Analogous behaviour has been predicted for bulk-mediated
effective surface diffusion at liquid surfaces [20]. The Lévy flights have fractal
dimension D D � � 1 [95]. The key ingredients of a Lévy walk movement pattern,
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Fig. 1 Lévy walk research
owes much to the wandering
albatross. Early analyses of
flight pattern data were
flawed but fruitful and
continue to provoke and
inspire. Photograph courtesy
of Corbis

Fig. 2 The humble pollen does both the Brownian walk and the Lévy flight. Bracken pollen (left).
An example of a simulated Brownian walk representative of pollen movements within a fluid
(middle). An example of a Lévy flight representative of pollen movements across the bottom of
the Petridish. Photograph by Jon S. West, Rothamsted Research

a power-law distribution of move lengths and fractal scaling, are thus lurking within
Brownian walks and so are present within the correlated random walk paradigm,
despite qualms about the biological plausibility of such properties [13, 103]. Lévy
flights also abound once the pollen grains are liberated from watery confines and
are at the mercy of the wind [4, 79, 93]. Although these airborne movements are
clearly divorced from searching they are not without consequence as they result in
a patchy, fractal-like, spatial population structures very different from the structure
of a homogeneous front produced by Brownian movements [21, 53, 92, 112]. Here
I take up this theme and describe some of my own recent contributions to Lévy walk
research, made since my last review with Christopher Rhodes [85]. This research
has sought to identify biologically plausible mechanisms by which organisms can
execute Lévy walks and to demonstrate that these movement patterns have a utility
beyond the understanding and prediction of optimal searching patterns. This work
has made apparent that observations of Lévy walks do not stand outside of the
correlated random walk paradigm but are instead natural consequences of it. I also
describe some recent advances in Lévy walk search theory.

2 Underlying Mechanisms: The Key to Prediction
and Understanding

Following the seminal work of [108], Lévy walk research has been mainly focused
on establishing the conditions under which Lévy walks constitute an optimal
searching strategy, and on establishing statistically reliably means of identifying



56 A. Reynolds

such movement patterns in telemetry data [8,9,11,13,27,28,110]. Nonetheless, the
key to prediction and understanding of movement patterns lies in the elucidation
of mechanisms underlying the observed patterns [52]. “Without an understanding
of mechanisms, one must evaluate each new stress on each new system de novo,
without any scientific basis for extrapolation; with such an understanding, one has
the foundation for understanding” [52].

One of the simplest candidate mechanisms could give rise to Lévy walk
movement patterns in terrestrial ecotones such as riparian forests, dune systems or
rocky shores where strong environmental gradients force animals to forage within
a narrow strip [10]. This restriction would be realised by an animal with straight-
line movements, if each time it arrives at an edge of the strip it is “deflected” back
at a random angle, 0 < � < � drawn from the distribution p� D 1=� . The
horizontal distance travelled along the strip before encountering the opposing edge
is l D L tan � where L is the width of the strip. The probability density function of
l is determined by pld l D p� d� and so pl D 1

�
L

l2CL2 . These movement patterns
are a Lévy walk with � D 2. Random changes in direction at the edges of an
ecotone could thus have adaptive value, as � D 2 Lévy walk movement patterns
can be advantageous in random search scenarios [8, 86, 108]. Random scattering
from locations on the perimeter of broad two-dimensional landscapes (that do
not have strip-like geometries), on the other hand, does not result in Lévy walk
movement patterns. Nonetheless, two-dimensional Lévy walk movement patterns
with � < 2 would be produced if the random scattering occurred within the
landscape at markers (e.g. vegetation patches) that have a patchy fractal distribution
[38]; a scenario which pollen dispersal studies have made plausible [21,53,92,112].

I next describe four other biologically plausible mechanisms that can give rise to
two-dimensional observed Lévy walk movement patterns:

• Serial correlation
• Random reorientation at cues left by correlated random walkers
• By products of advantageous foraging behaviours
• Innate physiology

2.1 Serial Correlation

For many years the dominant conceptual framework for describing non-oriented
animal movements has been the correlated random walk (CRW) model in which an
individual’s trajectory through space is regarded as being made up of a sequence of
distinct, independent randomly-oriented “moves” [104]. It has long been recognized
that the transformation of the animal’s continuous movement path into a broken
line is necessarily arbitrary and that probability distributions of move lengths and
turning angles are model artefacts [104, and references therein]. Dunn and Brown
[26], and Alt [1, 2] were perhaps the first to address the problem. They formulated
“continuous-time” CRW models. In these models, velocities rather than positions
evolve as a Markovian process and are exponentially autocorrelated. Integration of
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the velocity process gives the position process. The approach pioneered by Dunn
and Brown [26], and by Alt [1, 2] has recently been developed by Johnson et al.
[46] who demonstrated its utility in an analysis of telemetry data for harbor seals
(Phoca vitulina) and northern fur seals (Callorhinus ursinus). Reynolds [75] showed
that velocity autocorrelation inevitable leads to Lévy walk movement patterns on
timescales less than the autocorrelation timescale.

Autocorrelation must be present in all movements but is not captured in discrete
correlated random walk modelling. Autocorrelation has been quantified in cell
motility studies [91, and references therein] but until recently it has received scant
attention in the literature on the movement patterns in “higher” animals. A notable
exception to this is the analysis by Johnson et al. [46] of seal telemetry data, where
it was reported that autocorrelation timescales are several hours long. Lévy walks
should be discernible over these timescales.

This advance has resonance with recent developments in the understanding of
spontaneous movement of HaCaT and NHDF cells (cells of the epidermis) made in
the absence of external guiding stimuli. These movements are well represented by
generalizations of the Langevin equation [91]. This modelling is phenomenological
as model components are inspired by fits to experimental data. Nonetheless, a
slight re-parameterization and re-interpretation of the model components leads to
the model of [59] which realises Lévy walks as Markovian stochastic processes
[76]. This suggests that spontaneous cell movement patterns can be approximated
by Lévy walks, as first proposed by Schuster and Levandowsky [89] and that
Lévy walks could be lurking under the skin! These movement patterns could have
adaptive value because cells of the epidermis form new tissue by locating and then
attaching on to one another—a random search scenario.

2.2 Random Reorientation at Cues Left by Correlated
Random Walkers

Traces of movement patterns in the form of odour trails can remain within the
landscape for some time. In addition to these unintentional and perhaps unavoidable
trails animals may also make deliberate scent marks. Mammalian scent marks
might, for instance, act as: a deterrent or a substitute for aggression to warn
conspecifics away from occupied territory; a sex attractant or stimulant; a system
for labeling the habitat for an animal’s own use in orientation or to maintain a sense
of familiarity with an area; an indicator of individual identity; an alarm signal to
conspecifics; and an indicator of population size [44].

Reynolds [77] noted that the odour trails left behind by correlated random
walkers will be fractal with fractal dimension D D 1:33, illustrating once again
that fractal scaling is a property of Brownian motion. By disrupting the movements
of other animals these odours can result in reorientation. The locations at which
these changes in the direction of travel occur will therefore be fractal. Odour-
cued reorientation is therefore expected to give rise to movement patterns that
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can be approximated by Lévy walks since the turning points in a Lévy walk
have fractal dimension D D � � 1. With the aid of numerical simulations [77]
showed that animals which randomly reorient whenever they encounter the odour
trail of a Brownian walker but otherwise move in straight-lines because of “direc-
tional persistence” will, indeed, have � D 2:33 Lévy walk movement patterns.
These movement patterns are advantageous when searching for sparsely distributed
resources without prior knowledge of resource locations or when information
obtained during the search is difficult to process so that deterministic search rules
cannot be used [8,86,108]. Consequently there will be strong selection pressures for
the aforementioned reorientation process when resources are sparsely distributed
within unpredictable environments inhabited by correlated random walkers. The
presence of correlated random walkers may therefore drive the evolution of Lévy
walks when the fitness advantage exceeds the environmental noise. Stochasticity in
the form of random reorientations upon encountering odour cues could therefore
have adaptive value when sensorial or cognitive animal skills do not override the
need for randomness.

In this picture the emergence of Lévy walks from within the correlated random
walk paradigm is dependent upon just three simple and well established ingredients:
(1) landscapes are inhabited by animals that have CRW movement patterns and
either intentionally or unintentionally leave behind odour trails; (2) some other
animals also trace out near-straight line paths through the landscape; (3) but after
encountering an odour trail abruptly change their direction of travel.

2.3 Lévy Walks as by Products of Advantageous Foraging
Behaviours

The flight patterns of foraging bumblebees are of considerable interest because these
bees, with a specialized worker caste, do nothing but forage uninterrupted for long
periods of time (Fig. 3). They are not distracted by sex or territorial defence and
have few predators [33]. They are therefore ideal for testing the clear-cut outcomes
of predictive mathematical models of foraging. And this has led to a long running
debate about whether bumblebees forage optimally within patches, and whether it
matters [34, and references therein], This debate has been enriched by the possibility
that bumblebees are executing optimal Lévy flight searching patterns when foraging
within patches [27]; an analysis based on Heinrich’s [33] classic observational
study of bumblebee (Bombus terricola) movements (distances and turning angles)
at clover (Trifolium repens) patches.

Bumblebees foraging within a flower patch tend to approach the nearest flower
but then often depart without landing or probing it, if it has been visited previously;
unvisited flowers are not rejected in this manner. Reynolds [73] replicated this forag-
ing behaviour in numerical simulations. Lévy walk patterns with � � 2 were found
to be an inconsequential emergent property of a bumblebees’ foraging behaviour
and, in this case, are not part of an innate, evolved optimal searching strategy.
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Fig. 3 Bumblebees are ideal
for testing the clear-cut
outcomes of predictive
mathematical models of
foraging. Their foraging
flights are consistent with
Lévy searching theory but
they are not necessarily Lévy
searching. Photograph
courtesy of Corbis

The results thereby provide a vivid demonstration that the key to understanding the
biological, ecological and evolutionary consequences of any movement pattern lies
in the elucidation of underlying mechanisms [52]. The significance of a particular
movement patterns can, in fact, vary markedly even across closely related species
and perhaps even within the same organisms under different scenarios. Honeybees
(Apis mellifera), for example, unlike foraging bumblebees, do seem to execute Lévy
flights as part of an innate, evolved searching strategy, at least when searching for
their hive and when searching after a known food resource has become depleted
[83, 84, 87].

Lévy walk patterns with � � 2 are also known to be an emergent property
of predators that use chemotaxis (odour gradient following) to locate randomly
and sparsely distributed prey items [71]. Chemotaxis also provides good solutions
to the “travelling salesman problem” often minimising the total distance travelled
between prey items and so often minimising the energetic costs of foraging [80].
Taken together these findings suggest that � � 2 Lévy walk patterns are a
frequent emergent property of advantageous searching when searchers have some
information about target locations (i.e. when the position of the nearest potential
food source is known or when predators can detect the presence of odours emanating
from distant food sources). This intriguing possibility complements the widely
held view that Lévy walk processes are symptomatic of advantageous searching
when searchers have little or no knowledge of target locations, and provides a
new perspective on the ongoing debate about whether Lévy walks are patterns
or processes [13, 68]. Much of this debate is a rerun of earlier deliberations
about what “randomness” actually means in the context of random walks [104].
Turchin [104] remarked “that even if animals were perfect automaton we might still
choose to model such behaviour stochastically because we might not have perfect
knowledge of the deterministic rules driving these animals or, if we did, because
including them would require very accurate representation of all environmental
“micro-cues”. Randomness is thus a modelling convention which is useful when
deterministic modelling is impractical or even unhelpful.” The approach termed
“behavioural minimalism” [55] is directly analogous to thermodynamic theory in
which the essentially unpredictable motion of individual molecules is described
probabilistically. The underlying philosophy is not that the finer detail does not
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exist, but that it is irrelevant for producing the observed patterns [52]. That is, the
collective behaviour of large numbers of automaton may be indistinguishable (at the
scale of the population) from that of random walkers.

2.4 Innate Physiology

Over recent years there has been an accumulation of evidence that many animal
behaviours are characterised by common scale-invariant patterns of switching
between two contrasting activities over a period of time. This is evidenced in mam-
malian wake–sleep patterns [15, 56, 57], in the intermittent stop–start locomotion
of Drosophila fruit flies [60], and in even the nest building behaviours of Large
White x Landrace gilts (a species of the wild boar Sus scrofa) [35]. Reynolds [81]
showed that these dynamics can be modelled by a stochastic variant of Barabási’s
model [6] for bursts and heavy tails in human dynamics. The new model captures a
tension between two competing and conflicting activities. The durations of one type
of activity are distributed according to an inverse-square power-law, mirroring the
ubiquity of inverse-square power-law scaling seen in empirical data. The durations
of the second type of activity follow exponential distributions with characteristic
time-scales that depend on species and metabolic rates. This again is a common
feature of animal behaviour. In contrast to animal dynamics, “bursty” human
dynamics, are characterised by power-law distributions with scaling exponents
close to -1 and -3/2. The model may account for some occurrence of Lévy walk
movement patterns where an animal is resolving a tension between two competing
and conflicting actions: moving in a straight line and turning. And in this regard
Lévy walks are no stranger than sleep–wake patterns, stop–start locomotion, and
nesting building where construction competes with the need for vigilance.

3 Translating Observations Taken at Small Spatiotemporal
Scales into Expected Patterns at Greater Scales

Translating observations taken at small spatial and temporal scales into expected
patterns at greater scales is a major challenge in spatial ecology [48]. The ability
to scale up from observational scales is of crucial importance when assessing
the potential effects of landscape heterogeneity and changes in behaviour, and in
applying traditional behavioural ecology to landscape-level ecological problems
[55]. To scale from limited observations to the landscape, we must understand
how to aggregate and simplify, retaining essential information without getting
encumbered by unnecessary detail. In principle this can and has been achieved
by associating different modes of movement with different parameterizations of a
single CRW model [32, 45, 46, 61, 62, 66, 67]. Depending on the diffusivity (mode),
K , a CRW model could, for instance, produce either long straight movements,
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random meanderings, or more circuitous movements. Difficulties arise when the
available observational data are not sufficient to parameterize accurately the prob-
ability distribution function of the modes, p.K/. In these cases the principle of
scientific objectivity dictates that we be maximally uncommitted about what we do
not know concerning the distribution p.K/. The most conservative, non-committal
p.K/ that is consistent with the data (e.g. with estimates for the mean value of
K/ is obtained by maximising Shannon’s differential entropy [41–43]. Any other
distribution would assume more information than is known from the data. In this
context, Shannon’s differential entropy, H D � R

K

p.K/ loge p.K/dK , is a measure

of the average surprise of seeing an animal in a particular movement mode, K , given
a distribution of modes p.K/. A highly improbable outcome is very surprising. If
there are two movement modes, K1 and K2, then the entropy is zero when there
is no uncertainty, i.e. when p.K1/ D 1 and p.K2/ D 0 or when p.K1/ D 0

and p.K2/ D 1. It is maximized when p.K1/ D p.K2/ D 1=2 as there is less
uncertainty when p.K1/ ¤ p.K2/ because then one or other of the modes is more
likely to be seen.

Reynolds [82] showed that truncated � D 2 Lévy walk movement patterns
are the most conservative, maximally non-committal model of movement patterns
beyond the scale of data collection when (a) CRW models embody observed
movement patterns and (b) minimal or partial information/assumptions about
landscape and behavioural heterogeneity are in the form of reliable estimates for
the lower order moments of diffusivity (e.g. when given estimates for the mean
diffusivity, or the mean and variance of the diffusivity). Lévy walks therefore
provide a robust, universal scaling-law which describes how movement patterns
change across scale, and which has the potential to become a valuable modelling
tool when scaling up from limited observational data in order to assess the likely
effects of landscape heterogeneity and changes in behaviour. Reynolds’ [82] result
also indicates that with landscape and behavioural heterogeneity, the unusual thing
is not truncated Lévy walk movement patterns but their absence. In fact, large-scale,
Gaussian, diffusive movement patterns, if they arise at all, would be an emergent
phenomenon, not a mathematically self-evident state from which any deviation is
a worrisome anomaly. Standard methods in spatial ecology do, however, consider
Gaussian statistics and diffusion as two basic ingredients of animal movement at the
long-time limit [14, 65].

4 Enlarging the Framework of Lévy Walk Search Theory

The foregoing as illustrated that a diverse range of processes can give rise to
Lévy walk movement patterns. Some of these processes are not selected for,
thus illustrating that Lévy walk movement patterns may have utility beyond the
understanding and prediction of optimal searching patterns. Other processes (e.g.
random reorientation at cues left by correlated random walkers) will only operate if
there are selection pressures for of Lévy walks.
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The association of Lévy walks with optimal searching can be traced back to
the theoretical and computational work of [108] which produced an idealised
model of Lévy walk searching. In this model a searcher moves on a straight-line
towards the nearest target if this target lies within the “direct perceptual range”,
r; otherwise it chooses a direction at random and a distance, l , drawn from a
power-law distribution, P.l/ D .� � 1/r��1l�� for l � r and P.l/ D 0 for
l < r . The searcher then moves incrementally towards the new location whilst
constantly seeking for targets within a radius, r . If no target is detected, it stops after
traversing the distance l and chooses a new direction and a new distance; otherwise
it proceeds to the target. Viswanathan et al. [108] showed that � D 2 Lévy walks are
an optimal Lévy walk searching strategy for the location of randomly and sparsely
distributed targets that can be repeatedly revisited because they are not depleted
or rejected once visited. Lévy walks with � < 2 are nearly equally effective and
outperform their � > 2 counterparts when searching “destructively” in either two-
or three-dimensional arenas [8,86]. From a mathematical perspective the difference
between non-destructive and destructive searching lies in the specification of the
initial conditions for the search. In a non-destructive search each new search
begins close to a previously visited target but distant from many other targets. In
a destructive search, each new search begins from a location that is distant from the
surviving targets. Reynolds [78] and then James et al. [40] noticed that the optimal
Lévy walk search strategy can be extremely sensitive to the initial conditions.
The advantages that Lévy walks have over ballistic movements in random search
scenarios are greatly reduced or removed if searches do not begin in the immediate
vicinity of a target. James et al. [40] suggested that this sensitivity shows that
the optimality of Lévy walk search is not as robust as previously thought thereby
creating the impression that Lévy walk searches are optimal in just a few special
circumstances. For two-dimensional searches this sensitivity stems, in part, from the
use of point targets in numerical simulations and is less pronounced when targets
are large compared with the perceptual range of the forager (Fig. 4), or are patchily
distributed. Previously, it had been suggested wrongly that target size does not affect
the optimality of searching patterns [39]. Nonetheless, this revised understanding
leaves open the specification of biologically-realistic initial conditions for Lévy
walk searches. In the next sections I show how the ambiguity in the specification
of the initial conditions for a Lévy walk search can be resolved and argue that Lévy
walk searches can be optimal when searching under the risk of predation [78]. I
also show that Lévy walks searches are expected to be optimal when searching for
prey that can occasionally evade capture [86], and when searching is intermittent
such that bouts of active searching alternate with relocation bouts during which
prey cannot be detected [70, 58]. This strand of research enlarges the framework
of Lévy search theory, and may provide a new insights into the movement patterns
of a diverse range of marine predator (basking shark Cetorhinus maximus, Atlantic
cod Gadus morhua, bigeyed tuna Thunnus obesus, leatherback turtles Dermochelys
coriacea, and Magellanic penguins Spheniscus magellanicus) and Escherichia coli
which can be modelled as Lévy walks with � � 2 [37, 49, 96, 102]. It is, however,
important to acknowledge from the outset that foragers may show plasticity and
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Fig. 4 Simulation data for the searching efficiencies, �, of non-destructive foragers with Lévy
walks movement patterns as a function of the Lévy exponent �. The searching efficiency is taken
to be the reciprocal of the mean distance travelled before encountering a target. In other words, it
is the mean number of targets located during a search divided by the total length of the search. The
two-dimensional square search arena with side length L D 1000 arbitrary space units contains
50,000 stationary point-sized targets. The perceptual range of the searchers is r D 0:1 space
unit. Data ensemble averaged over 5,000 realisations are shown for (a) random and uniformly
distributed targets and for (b) for patchily distributed targets. Each patch contains 10,000 targets
that are uniformly distributed within non-overlapping circles of diameter 100 arbitrary space units.
Patches were randomly and uniformly distributed within the search arena. Data are shown for the
cases when each new search begins r.black/; 5r.red/ and 50r.green/ from the last target to be
located

change strategies depending on circumstances (as illustrated in Fig. 5) and that
trade-offs might prevent a universal solution [12].

4.1 Balancing the Demands of Foraging and Safety
from Predation

Benhamou [13] and then Plank and James [68] devised a composite Brownian
walk model for the location of patchily distributed targets that once visited become
temporally unavailable either because they have become depleted or because of the
increased risk of predation. In this model searchers travel out from the origin of
their search in a straight line until they encounter a target and then proceed to search
destructively within the patch that contains this target using Brownian movements,
i.e. using an area restricted search. If a target is not located within a prescribed
time, the “giving up time” then the searcher switches back to the original straight-
line motion. Benhamou [13] showed that his composite Brownian walk model is
more efficient than any Lévy walk that is not responsive to conditions found in the
search. Reynolds [71, 72] subsequently pointed out that the composite Brownian
walk model can, in fact, be interpreted as being an “adaptive” or responsive Lévy
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Fig. 5 Optimality hanging in the balance. The presence of a gentle breeze could be sufficient
to switch the optimal searching strategy from a ballistic walk to a Lévy walk. Simulation data
(unpublished) is shown for the efficiency, �, of Lévy walk searches as a function of the Lévy
exponent �. The searching efficiency is the mean number of prey items encountered per unit
distance travelled. The search arena, a square with side length L, contains 105 prey items that
are randomly and uniformly distributed. Prey are consumed once detected. The perceptual range
of the predator r D 10�4L arbitrary space units. Data are shown for the cases when prey can be
detected equally well when approached from any direction (open circle) and only when approached
from an upwind location (filled circle) because unbeknown to the predator, prey flee from olfactory
cues produced by predators

walk search. This correspondence arises because straight-line movements between
targets correspond to truncated � ! 1 Lévy walks. Benhamou [13] and Plank and
James [68] have therefore demonstrated that an adaptive Lévy walk is better than
any non-adaptive Lévy walk when searching destructively in patchy environments.
Moreover, predictions from the composite Brownian walk are entirely consistent
with standard Lévy walk search theory; this predicts that straight-line movements
are advantageous when searching destructively for sparsely distributed patches
whilst Brownian movements are optimal for within-patch searching [108].

Reynolds [74] then developed a new class of adaptive Lévy walk searching model
which encompassed composite Brownian models as a special case. In these models,
bouts of Lévy walk searching alternate with bouts of more intensive Brownian walk
searching. As with the composite Brownian model switching from extensive to
intensive searching is prompted by the detection of a target and switching back
to extensive searching arises if a target is not located after travelling a distance
equal to the giving-up time. The model reconciles Lévy walk search theory with the
ubiquity of two modes of searching by predators and with their switching searching
model immediately after finding a prey [50]. This model reduces to the “composite
Brownian walk” model when � ! 1. It should be noted that the model presupposes
that the prey are patchily distributed and that the predator perhaps through past
experience is aware of this. The models are thus fundamentally different from non-
adaptive Lévy walk search models [108] where it is assumed that animals have no
prior knowledge of the target distribution.

Prey capture does not always trigger an area restricted search [111]. This is
probably because decisions to modify behaviour after prey capture are dependent
on many parameters, including the presence of other predators, the state of the
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forager, the cost of catching the prey, the quality of the prey patch, or predation risks.
Adaptive Lévy walk searching models have been used to examine the trade-offs
between searching efficiency and safety from predation [78]. Only if the benefits of
advantageous foraging outweigh these costs can there be strong selection pressures
for Lévy walk movement patterns. In the absence of predation the giving-up time
can be chosen to maximise foraging efficiency and in this case the searching
efficiency of adaptive Lévy walks is no better than that of composite Brownian
walks. But when foraging under the risk of predation this unconstrained optimal
may not be realised because a forager must trade off food harvesting with safety
[17]. When the realised giving-up distance is much shorter than the unconstrained
optimal one, Lévy walks with � � 2 are advantageous. This finding has resonance
with that of [109] who argued that convoluted movement patterns confer greater
fitness than straight-line paths because they reduce the risk of predation. Straight-
line paths present the most efficient means of searching for prey while also exposing
the forager to maximum predation risk. Animals that manage to trade-off food and
safety by vigilance to predators while feeding from a food patch can remain within
the patch for long times and are not be expected to have Lévy walk movement
patterns. Animals that use little vigilance and manage risk via time allocation by
demanding a higher feeding rate to compensate for a higher risk of predation may
have Lévy walk movement patterns. And so despite having fundamentally different
properties, Lévy walks and composite Brownian walks can compete a priori as
possible models of foraging movements. Lévy walks are expected in tritrophic
systems and where intra-guild predation (a ubiquitous interaction, differing from
competition or predation, defined as killing and eating among potential competitors)
operates.

4.2 Red Queen Dynamics

The co-evolution of predators and their prey can lead to situations in which neither
improves its fitness because both populations co-adapt to each other [25, 106]. In
these evolutionary arms races, improvements in the ability of a predator to detect
and capture prey (e.g., heightened sensitivity to chemical, mechanical or visual
signals, stronger attack reactions) are matched by compensating improvements in
the ability of prey to evade detection and capture (e.g. crypsis, feigning death, strong
jumps, sudden increase of size, confounding signals). These “Red Queen” type
of dynamics [105] preclude the possibility of a perfect searching/capture process.
Reynolds and Bartumeus [86] showed that � � 2 Lévy walks can be optimal
when searching destructively if targets occasionally evade detection and/or capture.
Searches for escapees begin close to escaped prey but distant from other prey—
a scenario mirroring “non-destructive” foraging which favours � � 2 Lévy walk
searching. This suggests that accounting for the co-evolutionary arms races at the
predator–prey detection/reaction scales can explain to some extent the � � 2 Lévy
walks searching patterns at larger scales.
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Fig. 6 Simulation data for the searching efficiencies, �, of non-destructive foragers with Lévy
walks movement patterns as a function of the Lévy exponent �. The searching efficiency is taken
to be the reciprocal of the mean distance travelled before encountering a target. In other words, it is
the mean number of targets located during a search divided by the total length of the search. Fifty
thousand stationary targets were randomly and uniformly within a two-dimensional square search
arena with side length L D 1000 arbitrary space units. The perceptual range of the searchers is
r D 0:1 space unit. Data are shown for (a) non-intermittent (i.e. standard) Lévy walk searching
and (b) intermittent Lévy walk searching where targets can be only detected using relatively
short moves with length l < 100r . Data are shown for the cases when each new search begins
r.black/; 5r.red/ and 100r.green/ from the last target to be located. Similar results (not shown)
were obtained for patchily distributed targets

4.3 Intermittent Searches

The movements of many foragers (e.g. planktivorous fish, ground-foraging birds,
and lizards) are intermittent with pauses or bouts of relatively slow movements last-
ing from milliseconds to minutes [51, 63]. This intermittency can have a variety of
energetic benefits. Endurance can also be improved by partial recovery from fatigue.
Perceptual benefits can arise because pauses increase the capacity of the sensory
systems to detect relevant stimuli. Several processes, including velocity blur, relative
motion detection, foveation, attention and interference between sensory systems
could be involved [51]. Searching could therefore be salutatory such that “scanning”
phases during which prey can be detected alternate with “relocation” phases during
which prey cannot be detected. This trait can be incorporated into Lévy walk
searching models by associating the short moves .l < l0/ with the scanning phases
whilst longer moves are associated with the relocation phases. Intermittent Lévy
walks with � � 2 are an optimal search strategy for both destructive and non-
destructive foragers [58,70]. In other words, this strategy is robustly optimally with
respect to the initial conditions of the search, and so markedly different from non-
intermittent Lévy walk searching which are extremely sensitive to initial conditions
[78] (Fig. 6).

Here following [108] the searching efficiency is taken to be the reciprocal of the
mean distance travelled before encountering a targets, i.e., it is the mean number of
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targets located during a search divided by the total length of the search. Foragers that
minimize the average distance travelled between targets will therefore maximize
their expected energy gain when energy expenditure increases linearly with distance
travelled. The energy costs of intermittent locomotion are, however, more complex
and the energy expended in accelerations and decelerations can be more than offset
by a variety of energetic benefits and by recovery from fatigue [51, and references
therein], Fish such as cod and Pollack can, for instance, save energy by “burst-
coasting swimming” as the drag while coasting with the body straight is only
about one third of the drag while swimming. The energetic costs of intermittent
locomotion warrant further investigation because they could favour � ¤ 2 Lévy
walk movement patterns for some taxa.

4.4 Optimizing the Encounter Rate in Biological Interactions

Encounter rates set bounds on prey-consumption, the risk of predation, the likeli-
hood of mate-location and the spread of infectious diseases and so play a crucial
role in population dynamics. To date, however, there have not been any reported
studies on the relative merits of Lévy walk search strategies for the location of
mobile targets in two-search arenas.

James et al. [39] reported that ballistic movements outperform Lévy walks and
Brownian walks when searching randomly and destructively for mobile prey in
one-dimensional environments, thereby overturning the previous analysis of [7].
Data (previously unpublished but comparable to that reported on by [10]) from
numerical simulations of destructive searching in two-dimensional arenas show that
Lévy walks with � � 2 are equally effective and outperform Lévy walks with
� > 2 when predators move with speeds that are faster than or comparable to
that of their prey (Fig. 7a–c). Maximal encounter rates are then largely insensitive
to the movement pattern of the prey. This is not surprising and entirely consistent
with numerical simulations of destructive searching for immobile targets [8, 86]. It
is evident from Fig. 7a–c that the prey cannot adapt their movement patterns so as
to reduce the likelihood of predation. This suggests that prey movement patterns
are determined by their foraging and mating-location requirements and not by the
costs of predation. Predator movement patterns do, of course, become irrelevant
when predators move much more slowly than their prey (Fig. 7d). A “sit-and-wait”
strategy and a Brownian search are then just as effective as a Lévy walk search. It is
thus possible for Brownian searches to have evolved naturally as one search strategy.
Nonetheless, Lévy searches are more versatile and outperform Brownian walks
when (if) searching for slowly moving prey (Fig. 7a–c) in addition to fast moving
ones. This leads to the expectation that Lévy searches are predominant in generalist
predators whilst Brownian and correlated random walk searching is likely in some
specialist predators with a narrow prey range. Note also that ballistic movements are
predictable, making the forager more vulnerable to predation (Fig. 8).
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Fig. 7 Simulation data for the mean encounter rates, �, for predators with Lévy walks movement
patterns as a function of the Lévy exponent, �. Predators search within a two-dimensional square
arena with size 1,000�1,000 arbitrary space units containing ten prey. The encounter rate is
the average number of prey items encountered per unit distance travelled. Data are shown for
predators that move ten times faster than their prey (1.0 and 0.1 space units in unit time) (a), for
predators that move two times faster than their prey (1.0 and 0.5 space units in unit time)
(b), for predators that move at the same speed as their prey (1.0 space units in unit time) (c) and
for predators that move ten times slower than their prey (0.1 and 1.0 space units in unit time)
(d). In all cases the perceptual range r D 1 space unit and predators travel for a time of 105 time
units. Encounter rates for each case were obtained by ensemble averaging for 500 realizations of
the initial prey distribution. Simulation data are shown for prey with Brownian walk .� D 3/

(filled circle), � D 2 Lévy walk (open circle) and ballistic (filled square) movement patterns. Prey
are deleted once encountered. To maintain a constant density of prey, each deleted prey is replaced
by a new prey placed at a randomly selected location within the search arena. Analogous results
(not shown) have been obtained for prey at lower densities (square arena with size 1; 000 � 1; 000

arbitrary space units containing 5, 2 and 1 prey) and for searching within three-dimensions (cube
arena with size 100 � 100 � 100 arbitrary space units containing ten prey)

5 Some Closing Remarks and Some Open Questions

5.1 Opening the Lévy Gates

The research reported on here has shown that Lévy walks do not stand outside of
the correlated random walk paradigm [104] but rather are natural consequences of
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Fig. 8 Still fishing for answers. There is strong evidence for Lévy walks in the swimming patterns
of the Magellanic penguin (Spheniscus magellanicus) and other marine predators [96] and these
appear to be associated with foraging. The idealised Lévy walk searching model of [108] suggest
that these movement patterns are an optimal foraging strategy. Much subsequent work paints a
more complicated picture. Photo courtesy of Corbis

it and that the utility of Lévy walk models extends well beyond the description of
search behaviours.

The apparent strangeness of Lévy walks was shown to be innocuous. After
all, a pollen grain does both the Brownian and the Lévy walk. The seemingly
peculiar fractal properties of Lévy walks are also seen in Brownian walks [77].
Power-law scaling, the hallmark of Lévy walks, is necessarily present in continuous-
time correlated random walks that take explicit account of serial correlations
[75]. And when correlated random walks represent accurately observed movement
patterns, Lévy walks are the most conservative model of movements at larger
scales [82]. This strand of research is also bridging between the separate disciplines
of animal movement patterns and plant disease epidemiology. This is generating
new perspectives and questions at the interface between these two disciplines and
thereby contributing to the emergence of a new synthesis that transcends traditional
boundaries. Other work [31,98] is bridging the gap between the separate disciplines
of animal and human movement patterns.

The research has also extended the reach of Lévy walk search theory to
encompass the predator–prey co-evolutionary arms race [86], dynamic adaption
to conditions found along the search [72, 74, 78], and physiological constraints
[58, 70]. Taken together this research suggests that � � 2 Lévy walk searches
represent an evolutionarily stable strategy in changing or dynamic environments
[97]. This warrants further investigation because it would reveal the extent of
selection pressures for � � 2 Lévy walk movement patterns.

5.2 Lévy Walks in Collective Motions: How the Blind Could
Lead the Blind

Collective movement behaviour is seen in almost every taxa and is arousing con-
siderable amongst behavioural ecologists as well as physicists and mathematicians
[5, 16, 19, 22, 23]. On focus of attention has been group decision making. In a
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seminal study, using idealised mathematical models, Couzin et al. [23] showed
how information about the location of a food source or a migration route can be
transferred within groups both without signalling and when group members do not
which individuals, if any, have pertinent information. This work has demonstrated
how a few individuals (approximately 5%) within honeybee swarms can guide the
group to a new nest site [90] and how relatively few informed individuals within fish
schools can influence the foraging behaviours of the group [69].

This leaves open the question of whether effective leadership and decision-
making can arise when no individual in the group has pertinent information about
the location of resources, i.e. the question of whether Lévy walks movement patterns
can arise in groups from social interactions. Lévy walks patterns of movement in
groups can, as in individuals, be advantageous in random search scenarios [88].

Preliminary considerations in this direction have shown that Lévy walks could
be an emergent property of collective movements ranging from “swarming” where
there is no parallel alignment among members, as in often seen in insects, particular
the Diptera, through to the high parallel movements displayed in some fish shoals.
This investigation has drawn also out further connections between Brownian and
Lévy walks.

Consider an idealised model of collective movements in which there is one
“leader” and a “follower”. The leader moves in a straight line, changing its direction
of travel only when one of the followers comes within its immediate vicinity
(collision avoidance). The follower keeps pace with the leader but has small random
(Brownian) movements in the two directions orthogonal to the leaders’ direction
of travel. It can be shown (unpublished report) that the leader and so the pair are
following a � D 3=2 Lévy walk. Truncated Lévy walks result when the follower
cannot meander to arbitrarily long distances from the leader but instead remains
within a “zone of attraction” that enforces group cohesion. These findings are
broadly consistent with telemetry data for midges (Anarete pritchardi Kim) flying
within swarms [64]. Okubo and Chiang [64] reported that midge flights may be
classified into two distinct patterns; one is a “wide” pattern, the other is a “tight”
pattern. In a wide pattern, the insect exhibits a relatively long, straight or slightly
curved path that might be regarded as a free flight. After a straight path the insect
shifts its motion from one direction to another. In the tight pattern, insects exhibit a
relatively short, zigzag flight that might be regarded as random motion. How these
different patterns are related to the behaviour of swarming midges is still unknown.

Similarly Lévy walk movement patterns with � D 1CN=2 are predicted to arise
in highly parallel groups consisting of one leader and N followers that keep pace
with the leader whilst making one-dimensional random movements (traverse to the
current direction of travel of the leader). The finding may explain the presence of
Lévy walk movement patterns in some fish that forage in shoals [96]. The empirical
observations are recovered if leaders are responsive to just two of their followers.
Here it is worth noting that leaders and followers have been identified in shoals [69].

Intrinsic variability in the mobility of individuals within a group may therefore
have adaptive value and Lévy walk movement patterns could be an overlooked
benefit of group living. This warrants further investigation.
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5.3 Mathematical Challenges

A more formidable challenge is to develop an analytical theory of Lévy walk
searching that is applicable for two- and three-dimensions. This would serve to
validate numerical codes and facilitate an examination of searching in regimes that
are currently inaccessible to computation, e.g. at the threshold of starvation where
targets are in very dilute concentration and so detected very infrequently. It remains
to seen whether “mean field theories” of the kind developed by Viswanathan et al.
[108] for one-dimensional searches can reproduce faithfully simulation data for two-
and three-dimension searches.

The employment of entropy maximization in movement patterns also warrants
further investigation because it offers new unexplored means for quantifying the
information content of correlated random walk and Lévy walk models, and for
establishing new connections between these models. The simplest of correlated
random walk models can, for instance, be construed as being the most conservative,
maximally non-committal models of animal movement patterns given only the
arithmetic mean move length. This is simply because maximisation of Shannon
entropy yields an exponential distribution of move lengths [24]. The arithmetic
move length is a potentially meaningful characteristic of a movement pattern if
the move lengths do not show a tendency to grow during the time course of a
movement pattern. When move lengths do tend to grow then the geometric (or
logarithmic) average move length can be useful. The geometric average of a set of
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where hln li is the logarithmic average. Maximisation of Shannon’s entropy, subject
to the condition that probabilities furnish the observed geometric average move
length, gives a Pareto distribution of move lengths, p.l/ D .� � 1/a��1l�� where
� D 1 � 1

ln a�hln li is the well known Hill’s (maximum likelihood) estimate [36]
for a power-law exponent [47]. Geometric constraints per se are not new [47]
but until now had not appeared in movement ecology literature. Models utilizing
move length distributions other than the Pareto or exponential distributions are
less conservative if move lengths are characterized solely in terms of either the
arithmetic or geometric average; a minimal requirement for any reasonable model of
animal movement pattern. The Akaike information criterion which following [27]
is now used widely to distinguish objectively between power-law and exponential
distributions can, in this application, be interpreted as determining the relative
appropriateness of the arithmetic and geometric averages as characterisations of
the typical move length. This is because the Akaike weight for a power-law (i.e.
weight of evidence in favour of a power-law) is determined by the logarithmic
average whilst the Akaike weight for an exponential is determined by the arithmetic
average. A bridge between the Lévy walk and correlated random walk models is
formed if move lengths are simultaneously characterised in terms of arithmetic and
geometric average move lengths (as would be the case if individuals occasionally
switched between executing Lévy and correlated random walks or at the population
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level if Lévy walkers co-exist alongside correlated random walkers). In this case,
maximisation of Shannon’s entropy leads to a gamma distribution of length moves.
This distribution has a power-law like core and an exponential tail, and was recently
found to characterise accurately the flight patterns of the wandering albatross
[27]. The wandering albatross may therefore bridge the apparent divide correlated
random walks and Lévy walks. It seems that as with the humble pollen, Lévy walk
research can still learn much from the wandering albatross.
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misidentification of Lévy and non-Lévy movement patterns: comment. Ecology 92, 1699–
1701 (2011)

4. F.C.W. AusterlitzDick, C. Dutech, E.K. Klein, S. Oddou-Muratorio, P.E. Smouse, V.L. Sork,
Using genetic markers to estimate the pollen dispersal curve. Mol. Ecol. 13, 937–945 (2004)

5. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,
A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Interaction ruling animal
collective behavior depends on topological rather than metric distance: Evidence from a field
study. Proc. Natl. Acad. Sci. 105, 1232–1237 (2008)

6. A.L. Barabasi, The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211
(2005)

7. F. Bartumeus, J. Catalan, U.L. Fulco, M.L. Lyra, G.M. Viswanathan, Optimizing the
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