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Abstract The invasion of alien and displacement of indigenous species is a crucial
ecological and economical problem of even increasing significance. Measures
to control and perhaps to stop and reverse such invasive processes are urgently
needed. Mathematical models are a suitable tool to preview the impact of control
measures before utilizing them in nature. Here, a reaction-diffusion model is used
to describe the competition and dispersal of invasive and native species. Not only
the environment is changing but also growth, harvesting and dispersal of the two
competitors vary in space and time. Extreme events such as fires or landslides or
any other processes yielding bare re-invadable ground lead to temporary extinction
of both species at a randomly chosen time and spatial range. The spatiotemporal
dimension of these extreme fragmentation events, the ratio of the dispersal rates of
the competing species as well as the selective removal of the invader turn out to be
the crucial driving forces of the system dynamics. Finally, the controlling effect of
a targeted infection of the invasive species with a specific pathogen is studied in an
eco-epidemiological competition-diffusion model.
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1 Introduction

The negative econo-ecological effects of bioinvasions including the spread of infec-
tious diseases [8,36] have led to a remarkable push of bioinvasion science. Not only
an increasing number of laboratory and field studies but also the rapid development
of theoretical methods to describe bioinvasions and their control could be noticed
during recent years, cf. [17, 31, 39, 50]. Mathematical and computational methods
are meanwhile recognized tools to investigate the dynamics of invasions, both
supplementary to and initiating field studies as well as control measures. Related
summaries and overview publications are for instance [7, 18, 26, 32, 35, 38, 41] as
well as [43].

Here, to model the invasion of alien species such as weeds and their competition
with indigenous plants, the textbook model of Lotka–Volterra type with diffusion is
used. Carrying capacities are not explicitly defined. Growth, selective harvesting of
the invading weed as well as spatial spread undergo seasonal cycles. Furthermore,
extreme events such as fires or landslides or any other processes yielding bare
re-invadable ground lead to temporary extinction of both species at a randomly
chosen time and spatial range. In a previous paper [27], it has been shown that,
without seasonal cycles of the mentioned parameters, the frequency and spatial
dimension of these extreme fragmentation events, the ratio of the dispersal rates
of the competing species as well as the efficiency of selective removal of the invader
turn out to be the crucial driving forces of the system dynamics. In the first part of the
present paper, the robustness of these results against those seasonal cycles is studied.

Furthermore, in the second part, the targeted infection of the invader with a
specific pathogen is considered as biological control measure. There are applications
of biological methods of bioinvasion control for more than half a century and it has
been a changeful history of magnificent successes and risky failures [1,11,16,20,30,
51]. Ecological and epidemiological models are known since more than 200 years.
But it is only about 25 years ago that first attempts to merge these models have been
published, cf. [2, 12, 14, 15] as well as [47]. In this paper, the invading model weed
will be controlled by a frequency-dependently transmitted fungus infection.

2 A Competition-Diffusion Model with Annual Cycles
and Random Extreme Events

For the description of the spatiotemporal invasion of a resident population by a
competing alien, the Lotka–Volterra competition-diffusion model is used, i.e.,

@Ni .x; t/

@t
D ri Ni � Ni

2X

j D1

cij Nj C Di �Ni I i D 1; 2 ; (1)
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where N1 and N2 are resident and invader densities at position x D fx1; x2g and time
t respectively. Carrying capacities will not explicitly be introduced because they
can suppress a higher variety of solutions and rather appear as emergent property
of the system [13, 22, 23]. The r’s stand for the growth rates that can be thought as
superposition of biomass generation and loss rates b1; b2 and m1; m2 respectively as
well as density-dependent harvesting h1; h2, i.e.,

ri D bi � mi � hi D r�
i � hi I i D 1; 2 : (2)

The c’s are the inter- and intraspecific competition coefficients and the D’s the
diffusivities. � D @2=@x2

1 C @2=@x2
2 is the Laplacian for the considered horizontal

processes.

2.1 Existence and Stability Ranges of Spatially Uniform
Stationary Solutions

There are the four stationary solutions with their stability ranges:

1. .0; 0/ always unstable ,

2.

�
r1

c11

; 0

�
stable for

r2

r1

<
c22

c12

;
r2

r1

<
c21

c11

,

3.

�
0;

r2

c22

�
stable for

r2

r1

>
c22

c12

;
r2

r1

>
c21

c11

,

4.

�
r1c22 � r2c12

c11c22 � c12c21

;
r2c11 � r1c21

c11c22 � c12c21

�
stable for

c22

c12

>
r2

r1

>
c21

c11

,

2./3. Bistability of extinction states (2,3) for
c22

c12

<
r2

r1

<
c21

c11

.

In the extinction states (2.,3.), the surviving population k is at its emergent carrying
capacity rk=ckk . Later on, the bistability range of both extinction states from the last
row is used for modelling strong competition in time and space.

2.2 Annual Cycles of Growth, Harvesting and Diffusion

The growth processes undergo an annual cycle approximated by a cosine

r�
i .t/ D r�

i;min C 1

2

�
r�

i;max � r�
i;min

� �
1 C cos

�
2�

a
t

��
I i D 1; 2: (3)

where r�
i;max and r�

i;min are the corresponding summer and winter extrema.
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Only the invading species is harvested from spring to autumn, usually through
manual removal, i.e., h1 D 0 and h2 � 0. Harvesting is not possible instantaneously
on the whole managed field of size L � L. The search for the weed starts at one
of the field boundaries, say at fx1 2 Œ0; L� , x2 D 0g. Once a weed patch is found,
harvesting begins in x2 direction on a stripe of size w�L where w is the width of the
patch that is removed within time ıt . Then, the search continues and after arriving
at the other side of the field, fx1 2 Œ0; L� , x2 D Lg, it perhaps restarts at the initially
chosen boundary. If the search is assumed always in direction of x2, this procedure
is modelled through

h�
2 .x2; t/ D h2 g.x2; t/ �

�
� C cos

�
2�

a
t

��
; (4)

where �Œ:� is the Heaviside function and for g.x2; t/ applies

if
Z L

0

N2.x1; x20; t0/dx1 > 0

then g.x2; t/ D 1 for x2 2 Œx20; x20 C w� and t 2 Œt0; t0 C ıt� (5)

else g.x2; t/ D 0 :

The reduced mobility from late autumn to early spring is considered by a
corresponding seasonality of the diffusivities

D�
i .t/ D Di �

�
� C cos

�
2�

a
t

��
I i D 1; 2: (6)

2.3 Random Extreme Events and Assisted Long-Distance
Transport

As in the previous paper [27], extreme events such as fires or landslides or any other
occurrence yielding bare re-invadable ground lead to temporary extinction of both
species. It is assumed that these events may randomly take place within certain time
intervals and spatial ranges throughout the year.

Furthermore, wind-born or however assisted long-distance transport of seeds is
considered in the spring-summer season, cf. (6). At random times raised and trans-
ported seeds settle down at a randomly chosen location and form small population
patches of random size having in mind typical dispersal distance kernels [6, 33].
If the location falls into a hostile zone the patches have to fight the surrounding
enemies. This type of transport has also been called stratified diffusion [42].

The modelling and simulation of the above mentioned random processes is not
equation- but rather rule-based similar to formerly developed models of rule-based
fish school motion coupled to equation-based resource dynamics [25].
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Fig. 1 Initial condition, cf. text

2.4 Numerical Simulations I

As in the previous work [27], the initial conditions have been arbitrarily chosen and
are the same for all runs in this section. Because weed patchiness is rather generic
e.g. in crops [5,49,54,55], a number of (red) initial invader patches at their emerging
carrying capacities of different size has been distributed in a certain artificial way
on the habitat of the (green) native species, cf. Fig. 1. At the top, the (teal) initial
harvested stripe can be identified. Zero-flux boundary conditions have been applied.

One expected result is that initial invader patches smaller than a certain critical
size will be immediately recaptured by the native species. This spatial critical size
problem in spatially two- and three-dimensional systems with multiple steady states
is known from nucleation theory [9,10,24,34]. Though it is necessary to be stronger
or fitter, it is not sufficient to win the competition. One must also have occupied a
sufficiently large spatial range.

It is assumed that landslips may randomly take place within intervals of 20 time
units and clear areas of up to 50 � 50 spatial units of a total of 200 � 200. The time-
lag and the size of the landslips are control parameters of the system, the shorter the
interval and the greater the spatial dimension the stronger the landslide’s impact on
the spatiotemporal competition of natives and invaders.

Time is measured in days, space in meters. Hence, denoting the plant’s dry
weight by dw, the N ’s are given in kg dw m�2, the r’s and h’s in d �1, the c’s in
kg dw�1 m2 d�1 and the D’s in m2 d�1. � is a dimensionless quantity. The following
parameter values have been used:

r�
1;max D 1:0 ; r�

1;min D 0:3 ; r�
2;max D 1:0 ; r�

2;min D 0:35 ;

c11 D 1:0 ; c12 D 1:3 ; c21 D 1:2 ; c22 D 1:0 ; (7)

� D 0:2 ; h1 D 0:0 ; h2 D 0:35 ; D2 D 22:5 ; L D 3000:0 ; w D 60:0 :

The competition coefficients of both species have been raised away from the
critical value of unity. The invader is assumed to be the stronger competitor,
following the enemy release hypothesis [21].
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t=100 500 900 1300 1900

Fig. 2 Sample simulation 1: Parameters as given in (7), D1 D D2. Black spots have been cleared
due to eradicating extreme event
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Fig. 3 Results of 15 simulation runs: slow but continuous invasion of the resident’s area

At first, it is assumed that both species have the same diffusivities. It is seen that
the competitive advantage of the alien leads to a slow but continuous displacement
of the resident, cf. Fig. 2. As to be expected, the long-distance transport does not help
either of the species because landing in the hostile environment inevitably leads to
extinction because the formed patches are not larger than the required critical size.

The results of 15 simulations with different seeds of the random number
generator [28] are collected in Fig. 3. Compared to the results for a constant
environment, the periodicities in the selected parameters slow down the invasion.
However, finally the invading weed wins.

The outcome immediately changes when the resident is twice as fast as the
alien. The disadvantage in direct contact competition still exists, however, the
higher mobility becomes the essential advantage over the intruder. An illustration
is presented in Figs. 4 and 5. In a constant environment the resident needed a four
times higher mobility to overcome the invader.

It can be preliminary summarized that the more realistic periodically changing
environment stabilizes the resident’s living conditions and reduces the invasibility.
However, from qualitative point of view, a higher mobility remains a crucial
competitive edge.
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t=100 300 500 700 1100

Fig. 4 Sample simulation 2: Parameters as given in (7), D1 D 2D2. Black spots have been cleared
due to eradicating extreme event
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Fig. 5 Results of 15 simulation runs: rapid reversal and extinction of invasion

3 A Competition-Diffusion Model with Infected Invader

A specific infection of the invading population can be used as biocontrol measure
to stop and reverse the invasion, cf. [16, 20, 30, 37]. To model this, the invader
population is split into susceptibles S and infecteds I ,

N2 D S C I:

The model of the local dynamics then reads

dN1

dt
D r1N1 � c11N

2
1 � c12N1.S C I /; (8)

dS

dt
D rS S � c22S.S C I / � c21N1S � �

SI

.S C I /k
; (9)

dI

dt
D rI I � c22I.S C I / � c21N1I C �

SI

.S C I /k
� �I ; (10)
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where � is the transmission coefficient of the disease and � the disease-induced
higher mortality rate of the infecteds. The exponent k allows to describe mass-
action type (k D 0) and frequency-dependent transmission (k D 1) of the disease
respectively [2, 29]. For k D 0, disease-induced oscillations have been found
[45, 48]. A difference in the growth rates of susceptibles rS and infecteds rI with
0 � rI < rS has been taken into account. In general, one should also not expect
that the competition intensities of susceptibles and infecteds are the same. However,
for demonstrating the effect of the invader infection this rough model structure is
sufficient.

3.1 Local Dynamics with Infection

For convenience, the model of the local dynamics is not analysed in terms of N1,
S and I but rather in N1, i and N2 where i is the prevalence, i.e., the infected
fraction of the total invader population N2 [19],

i D I

S C I
D I

N2

with 0 � i � 1 :

Having in mind that
di

dt
D 1

N2

�
dI

dt
� i

dN2

dt

�
; (11)

it follows

dN1

dt
D r1N1 � c11N

2
1 � c12N1N2 ; (12)

di

dt
D �

rI � rS C �N 1�k
2 � �

�
.1 � i/i ; (13)

dN2

dt
D ŒrS.1 � i/ C rI i � N2 � c21N1N2 � c22N 2

2 � �iN2 : (14)

A prominent example of the control of a weed by a fungal disease is the fight
against the yellow starthistle in the United States [44, 52, 53]. In phytopathology,
the transmission of especially fungal diseases is described with standard incidence
[46]. A corresponding model of the invasion of a fungal disease over a vineyard has
been investigated by [4]. Further on, only the standard incidence is considered, i.e.,
k D 1. More details of the fungus disease cycle like latent and infectious periods
and corresponding compartments [40] are neglected because this is out of scope
of the present work. The reduction to the above formulated S � I model (9,10) is
sufficient to find the effect of the infection on the invasion.
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It is readily seen that the sign of the first factor in (13) determines the dynamics
of the system, it reads for k D 1

rI � rS C � � � Q 0 : (15)

• If it is less than zero, the prevalence approaches zero, i.e., the infecteds go extinct
and one obtains a standard Lotka–Volterra system with r2 D rS .

• If the factor is greater than zero, the prevalence approaches unity, i.e, the
susceptibles go extinct and one obtains a standard Lotka–Volterra system with
r2 D rI � �.

• Finally, if it is equal to zero, the prevalence will remain at its initial value i D i0,
and one finds a standard Lotka–Volterra system with r2 D rS � �i0.

Hence, any of the cases results in a standard Lotka–Volterra system and the table of
the stability properties of Sect. 2.1 can be simply adopted.

3.2 Spatiotemporal Dynamics with Infection

For modelling the dynamics in time and space, one has to come back to (8)–(10)
and to add the diffusion terms, i.e.,

@N1

@t
D r1N1 � c11N 2

1 � c12N1.S C I / C D1�N1; (16)

@S

@t
D rSS � c22S.S C I / � c21N1S � �

SI

S C I
C DS�S ; (17)

@I

@t
D .rI � �/I � c22I.S C I / � c21N1I C �

SI

S C I
C DI �I : (18)

The mechanisms of diffusion of infected and healthy plants are quite different
because the spread of spores also has to be taken into account. However, the
most simple Fickian formulation has been chosen for simplicity. The differences
have been considered by different numerical values. The seasonality of system
parameters is omitted here because the role of the infection should not be masked.

3.3 Numerical Simulations II

For the numerical simulations of system (16)–(18) a slightly different initial
condition is used without qualitatively changing the outcomes. Again, Neumann
zero-flux boundary conditions are applied. Initially, the infection is absent. It is
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t=100 750 1200 1750 2500

Fig. 6 Sample simulation 3: Parameters as given in (19). Black spots have been cleared due to
eradicating extreme event. The repelling of the invasion after introducing the infection at t D
1; 200 is obvious
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Fig. 7 Presentation of one sample run, also showing the sharp decline of invasion after infecting
the invader at t D 1200

rather selectively introduced after the invading weed has overtaken a significant
portion of the model area, cf. Fig. 6 below.

The following parameter values have been used:

r1 D 1:0 ; rS D 1:0 ; rI D 0:8 ; � D 0:405 ; � D 0:2 ;

c11 D 1:0 ; c12 D 1:3 ; c21 D 1:2 ; c22 D 1:0 ; (19)

D1 D 45:0 ; DS D 22:5 ; DI D 45:0 ; L D 3000:0 :

The clear model result is that a targeted infection of the invading weed is
a reliable strategy to win the fight against the bioinvasion. It is robust against
different ratios of diffusivities as well as periodicities of growth and dispersal such
as described in Sect. 2 if the random perturbations are alike (Fig. 7).
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4 Concluding Remarks

As in constant environments, in the bistable parameter range, population patches
of subcritical size disappear as expected from nucleation theory. The driving force
of the competition process remains the temporary erosion in combination with a
sufficiently effective harvesting of the invader and different mobilities of the species.
However, the latter effect of different mobilities is tempered in the periodically
changing environment. But still, even a strongly competitive alien has no chance
to invade if the mobility of the indigenous species is sufficiently high.

It has turned out that the most efficient biological control measure is the specific
partial infection of the invading population. In laboratory and field studies, however,
it has been found that it can be hard to find such a specific agent, cf. [3]. Forthcoming
work has to clear the role of non-symmetric competition of susceptible and infected
alien species among themselves as well as with the native species. Also the impact
of seasonality of system parameters including the infection rate has to be studied.
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