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Abstract We present here the core elements of a stochastic optimal foraging theory
(SOFT), essentially, a random search theory for ecologists. SOFT complements
classic optimal foraging theory (OFT) in that it assumes fully uninformed searchers
in an explicit space. Mathematically, the theory quantifies the time spent by a
random walker (the forager) on a spatial region delimited by absorbing boundaries
(the targets). The walker starts from a given initial position and has no previous
knowledge (nor the possibility to gain knowledge) on target/patch locations.
Averages on such process can describe the dynamics of an uninformed forager
looking for successive targets in a diverse and dynamical spatial environment. The
framework provides a means to advance in the study of search uncertainty and
animal information use in natural foraging systems.
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1 Introduction

Classic optimal foraging theory (OFT) assumes fully informed foragers. Hence,
animals can recognize a patch instantaneously, knowing in advance the expected
patch quality as well as the average travel time between patches [19]. Stephens
and Krebs (1986) called such conceptual framework the complete information
assumption [47, 48].

Based on simple cases, theoreticians have addressed the problem of incomplete
information [47, 48], acknowledging the presence of environmental uncertainty in
foraging processes. The key questions are related to how animals obtain information
about the environment while foraging [1, 20, 21, 31, 34]. The use of information
to both discriminate the properties of a given patch and to figure out large-
scale environmental properties have been shown to modify patch-exploitation and
patch-leaving strategies [48]. Simple memory rules based on previous environment
exploration experiences [32] and potential acquaintance with the travel times
between patches [13, 14, 17, 24] also impact on the foraging strategy.

Here we introduce a theoretical framework to study aspects of foraging processes
rooted on the assumption of complete lack of knowledge and with the virtue of
being spatially explicit (here we address the one-dimensional case). In its core
formulation, SOFT quantifies the distance traveled (or equivalently time spent) by a
random walker that starts moving from a given initial position within a spatial region
delimited by absorbing boundaries. Each time the walker reaches the boundaries, the
process starts all over again. Averages on the properties of many walks realizations
are aimed to reproduce the dynamics of a forager looking for successive targets
in a diverse and dynamical environment. This modeling approach differs from
classic theory in a very important point: it switches the patch-encounter problem of
foraging theory from the traveling salesman [1] to the random search optimization
problem [4, 16, 49, 51].

While useful as analytic simplifications, classic theoretical studies on foraging
usually lack the explicit inclusion of space and are not focused on the search
optimization problem, in which a forager with limited information explores a
landscape to find scarce cues [4, 16, 51]. In OFT patch locations are known in
advance and the goal is to find the shortest path connecting them. In SOFT, the
locations and travel distances between patches are unknown, and thus the task is to
determine an uninformed exploration strategy (which necessarily use some element
of randomness), maximizing the number of patch encounters [4, 51]. Out of doubt,
the theory described here is at the far end of the spectrum that begins with the mean-
field and full-knowledge assumptions of classic OFT [19, 47, 48].

It does not escape to us that the assumption of a foraging animal as a “brainless”
random walker (i.e., with no internal states nor sensory or memory capabilities)
should be viewed as a first-order approximation to the actual dynamics. Hence it
does not represent the ultimate description of animal information use and movement
complexity. Nevertheless, memory-less models can be realistic when the searcher
looks for dynamic targets that move away from their original location on time
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scales shorter than typical revisiting times by the searcher. In any case, limiting
models are good starting points to think on complex problems and have an extraor-
dinary success in making general scientific predictions. Importantly, they play a
complementary role to biologically more specific models and shed light on different
aspects of movement phenomena [51]. In this chapter, we hope to demonstrate that
a spatially explicit random search theory can serve as the seed for more realistic
(yet still simple) models [15] to advance in the study of information use in natural
foraging systems. New ideas and results on random searching [2,9,29,41,49] clearly
show that random walk and diffusion theory [35,43,44,51] can better fit the concepts
of search and uncertainty in behavioral ecology. Routes to integrate both theories,
the classical OFT and the recent SOFT, will be needed in order to properly answer
questions about efficiency and uncertainty of animal foraging strategies [3, 4, 51].

2 Some Preliminary Assumptions of the Model

We begin by considering a random searcher looking for point-like target sites in
a one-dimensional (1D) search space. We consider a lattice of targets separated
by the distance �, i.e. the targets positions are x D j�, with j integer. Suppose,
initially, that the walker starts from a distance x0 to the closest target. The walker
thus searches for the two nearest (boundary) targets by taking steps of length `

from a probability density function (pdf) p.`/, which is kept the same for all
steps. In Sects. 3–6, every time an encounter occurs the search resets and restarts
over again from the same distance x0 to the last target found. For example, if the
position of the n-th target found is, say, x D 10�, then the next starting point will
be 10� C x0 or 10� � x0. In this sense, the search for any target is statistically
indistinguishable from the search for the very first target: in both cases, the closest
and farthest targets are, respectively, at initial distances x0 and � � x0 from the
searcher, and the pdf p.`/ of step lengths is the same. Therefore, without loss of
generality we can restrict our analysis to the region 0 � x � �, with the targets
at x D 0 and x D � being the system absorbing boundaries. This is actually
possible since leaps over targets without detection are not allowed in this study.
For an interesting account of leapover statistics in the context of Lévy flights, see
[27]. As a consequence, in the present framework the overall search trajectory can
be viewed as the concatenated sum of partial paths between consecutive encounters.
In Sect. 7, the constraint of always starting from the same distance x0 to the last
target found is relaxed, and searches in landscapes with targets heterogeneously
distributed are considered (see below). In every case, averages over these partial
paths will describe a random search process in an environment whose global density
of targets is � � 1=.mean distance between targets/ D 1=�.

As commented above, at each starting process to find a new target we may or may
not assume distinct initial positions of the searcher, x0. The analysis presented in
Sects. 3–6 assumes that the forager always restarts at a fixed x0 D a. However, in the
most general case x0 can be drawn from a pdf �.x0/. By considering a distribution
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Fig. 1 Diagrams showing the two key initial conditions for the one-dimensional stochastic search
model: (a) symmetric (destructive), (b) asymmetric (non-destructive). We denote by x0 D a the
forager starting position at each search (a D �=2 in the symmetric case and a rv C � in the
asymmetric case). rv denotes the forager’s perceptive range or radius of vision

of x0 values, the relative distances from the initial position of the searcher to the
targets change at each search, thus describing an heterogeneous environment (but of
global density 1=�). In Sect. 7 we consider various pdfs �.x0/, so to address more
realistic foraging situations in which the search landscape presents several degrees
of heterogeneity.

In particular, for the case of fixed x0 D a two limiting situations are considered
(see Fig. 1 and [23, 49]). The symmetric (or destructive) condition (i.e. a D �=2)
represents the situation in which, having located and consumed a food item, there
are no other nearby food items available and the forager begins the next search
positioned far away and relatively equidistant, on average, from the two closest
food items (Fig. 1). The asymmetric (or non-destructive) condition represents the
situation where, having located a food item, other nearby items exist, hence the
forager begins the next search with a close and a faraway target (see Fig. 1). Non-
destructive foraging, with a once-visited item always available for future searches,
should be considered as the paradigmatic asymmetric condition. If the foraging
dynamics is non-destructive but environmental uncertainty exists (such that the
forager may repeatedly loose track of the items outside its perceptual range), it
will systematically reproduce the asymmetric condition at each restarted search.
Even though the idea of non-destructive stochastic search perfectly maps with the
asymmetric condition, caution must be taken with the destructive searches, which
can indeed accommodate both symmetric and asymmetric conditions, depending
on the landscape structure (see Sect. 7). Importantly, in the context of foraging,
the previous definitions of destructive/non-destructive search [49] have led to some
misleading criticism [22, 36].

In our model the pdf p.`/ of step lengths ` is the same for each statistically
independent step of the walk. The normalization condition imposes

Z C1

�1
p.`/d` D 1: (1)

Notice that a “negative step length” just means that a step is taken to the left
(negative) direction. We study the case in which it is equiprobable for the walker to
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go either to the left or to the right, so that p.`/ D p.�`/. In addition, we consider
the minimum step length as `0, resulting in p.`/ D 0 for j`j < `0. An important
quantity is the radius of vision rv, i.e. the walker’s perceptive range. Whenever its
distance to the nearest site is � rv, it goes straight to the target. Events of finding a
target actually lead to truncation of steps, as discussed below. In principle, `0 and rv

are independent parameters. However, in some of our calculations we set rv D `0.
Here we are interested in the scarcity regime of low-food density, � � rv and
� � `0, with the forager’s perception about the search landscape being limited.
Hence, searches with stochastic character arise naturally.

We define the efficiency � of the search walk as the ratio between the total number
of target sites found, Nfound, and the total distance traveled by the walker, Ltot:

� D Nfound

Ltot
: (2)

By writing Ltot D NfoundhLi, where hLi denotes the average distance traveled
between two successive target sites found, we obtain

� D 1

hLi : (3)

In the following, we work out a closed analytical expression for hLi for
any probability density p.`/. Nevertheless, the focus of this contribution is on
asymptotically power-law Lévy distributions [33] of step lengths. In particular, we
focus on Lévy walk and not Lévy flight models. In the former models, jumps are
not instantaneous but a time interval related to a finite velocity to complete the jump
is involved (see Sect. 5).

3 Calculation of hLi and hj`ji

We start by calculating the average distance hLi traversed by a walker starting at
a fixed position x0 D a until reaching one of the borders located at x D 0 and
x D �. In the foraging process this quantity represents the distance traveled between
two successively found target sites. Due to the perceptive range of the forager, we
demand that rv < a < � � rv. Here we follow the general method developed by
Buldyrev et al. in [10, 11].

Let us consider a walker that finds either the boundary target at x D 0 or x D �

after n steps. The distance traveled in this walk is

Ln D
nX

iD1

j`i j; (4)
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where j`i j denotes the length of the i -th step. Since the walker is not in free space,
the possibility of truncation of steps makes j`i j dependent on the position xi�1 from
which the step i starts. As a consequence, the last (n-th) step depends upon x0 D a,
since xn�1 depends on xn�2, which, in turn, depends on xn�3, and so on, all the way
down to x0. Therefore, we must have Ln D Ln.a/ as well.

By averaging over all possible walks that finds a target after n steps, we find

hLni.a/ D
nX

iD1

hj`i ji: (5)

Observe now that n can take any integer value, from 1 to 1, meaning that the targets
at x D 0 or x D � can be found just at the first step or after an infinitely long number
of steps. We should also remark that the probability Pn of finding a target after n

steps is not uniform, being, instead, dependent on n. Thus, when we average over
all possible walks with the same starting point x0 D a in the interval of length �,
we must take into consideration the different weights of walks with distinct n’s, so
that

hLi D
1X

nD1

PnhLni: (6)

The above equation implicity assumes the normalization condition
P1

nD1 Pn D 1,
so to assure that a target site, either at x D 0 or x D �, is always found at the end.
In this sense, we emphasize that hLi can be also interpreted as the average distance
traversed by the searcher in the first-passage-time problem to find a boundary target
at either x D 0 or x D �. We return to this point in Sect. 6.

In order to calculate Pn we define �n.xn/ as the pdf to find the walker between
xn and xn C dxn after n steps. Therefore, the probability that the walker has not yet
encountered any of the targets after n steps is given by

P not
n D

Z ��rv

rv

�n.xn/dxn: (7)

Conversely, the complementary probability of finding any of the targets in some step
n0 � n C 1 is thus

Pn0�nC1 D 1 � P not
n : (8)

As a consequence, the probability of finding a target precisely after n steps reads

Pn D jPn0�nC1 � Pn0�nj D jP not
n � P not

n�1j; (9)

which, by using (7) and dropping the subindexes in the dummy xn and xn�1

variables of integration, leads to

Pn D
Z ��rv

rv

Œ�n�1.x/ � �n.x/�dx: (10)
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Note that �n�1.x/ > �n.x/, since the probability that the walker finds one of the
targets grows with increasing n. From (10), we thus interpret �n�1.x/ � �n.x/ as a
pdf to encounter a target precisely after n steps.

By combining this fact with (6), we find

hLi D
1X

nD1

Z ��rv

rv

dxŒ�n�1.x/ � �n.x/�hLni.x/; (11)

which can be conveniently broken into two sums:

hLi D
1X

nD1

Z ��rv

rv

dx�n�1.x/hLni.x/ �
1X

nD1

Z ��rv

rv

dx�n.x/hLni.x/: (12)

The integration from rv to � � rv takes into account all possible starting points x

for the last n-th step. By changing the variable in the first sum, m D n � 1, and
adding the n D 0 null term to the second sum (note that, by definition, hLnD0i D 0),
we obtain

hLi D
1X

mD0

Z ��rv

rv

dx�m.x/hLmC1i �
1X

nD0

Z ��rv

rv

dx�n.x/hLni: (13)

By using (5) above, we find

hLi D
1X

nD0

Z ��rv

rv

dx�n.x/hj`ji.x/: (14)

To perform the integral (14), we need to work on �n.x/ first. We note that, in
general,

�i .xi / D
Z ��rv

rv

�i�1.xi�1/p.xi � xi�1/dxi�1; (15)

where we have recovered the subindexes to make explicit the positions of the walker
after i and i � 1 steps, respectively xi and xi�1. The above expression sums over all
the possibilities of reaching the site xi from the site xi�1, by performing a step of
length jxi � xi�1j with probability p.xi � xi�1/dxi�1. By recursively applying (15)
down to the very first step, we find n integrals, associated to n � 1 steps, from x0 up
to xn�1, which denotes the starting point of the last n-th step:

�n.xn/ D
Z ��rv

rv

: : :

Z ��rv

rv

"
n�1Y
iD0

p.xiC1 � xi /dxi

#
�0.x0/: (16)

Since the initial position x0 D a is fixed, with rv < a < � � rv, then from (16) for
n D 1,
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�1.x1/ D
Z ��rv

rv

�0.x0/p.x1 � x0/dx0 D p.x1 � a/: (17)

Above, �0.x0/ is the pdf to find the walker at zero time steps. Since its initial
position is a, then we have

�0.x0/ D ı.x0 � a/; (18)

where ı denotes Dirac delta function.
Now, by substituting (16) into (14) we obtain

hLi D
1X

nD0

Z ��rv

rv

( Z ��rv

rv

: : :

Z ��rv

rv

"
n�1Y
iD0

p.xiC1 � xi /dxi

#
�0.x0/

)
hj`ji.xn/dxn;

(19)

where, once again, we have recovered the notation x ! xn from (14). This
expression can be put in a much shorter form if one defines the following integral
operator [10, 11]:

ŒL �n�.x/ D
Z ��rv

rv

p.x � x0/�n.x0/dx0; (20)

so that, by comparing with (15), �1.x1/ D ŒL �0�.x1/, �2.x2/ D ŒL �1�.x2/ D
ŒL ŒL �0��.x2/ � ŒL 2�0�.x2/, and so on. Using this definition, we rewrite (19) as

hLi D
1X

nD0

Z ��rv

rv

ŒL n�0�.xn/hj`ji.xn/dxn: (21)

In formal analogy to Taylor’s series expansion, we write

Œ.I � L /�1�0�.x/ D
1X

nD0

ŒL n�0�.x/; (22)

where I denotes the unitary operator: ŒI ��.x/ D �.x/. Equation (21) thus
becomes

hLi D
Z ��rv

rv

Œ.I � L /�1�0�.xn/hj`ji.xn/dxn; (23)

which, with the use of (18), leads to [10, 11]

hLi.a/ D Œ.I � L /�1hj`ji�.a/: (24)
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This closed analytical expression is actually essential to determine the efficiency of
the search, according to (3).

Now, in order to deal with (24), we need to calculate the average (modulus)
length of a single step starting at x0 D a in the interval of length �, hj`ji.a/. As
discussed, in the presence of target sites at x D 0 and x D � there is the possibility
of truncation of steps. Thus, the usual average in free space, hj`ji D R1

�1 j`jp.`/d`,
which does not depend on the starting position, must be replaced by

hj`ji.a/ D
Z a�`0

rv

.a � x/p.x � a/dx C
Z ��rv

aC`0

.x � a/p.x � a/dx

C .a � rv/

Z rv

�1
p.x � a/dx C .� � rv � a/

Z 1

��rv

p.x � a/dx; (25)

valid for rv C`0 � a � �� rv �`0. The meaning of this expression becomes clearer
if we make the change of variable ` D x � a is all above integrals, to obtain

hj`ji.a/ D
Z �`0

�.a�rv/

j`jp.`/d` C
Z ��rv�a

`0

j`jp.`/d`

C.a � rv/

Z �.a�rv/

�1
p.`/d` C .� � rv � a/

Z 1

��rv�a

p.`/d`: (26)

The first two integrals represent flights to the left and to the right which are
not truncated by the encounter of a target. The third and fourth represent flights
truncated by the encounter of the targets, respectively, at x D 0 and x D �. In fact,
due to the perceptive range or radius of vision, these sites are detected as soon as the
walker reaches the respective positions x D rv and x D � � rv. In addition, since
p.`/ D 0 if j`j < `0, then hj`ji.a/ is given only by the second, third and fourth (first,
third and fourth) integrals in the case rv < a � rv C `0 .� � rv � `0 � a < � � rv/.

4 Discrete Space Calculation

The exact formal expression (24) can be numerically solved through a spatial
discretization of the continuous range 0 � x � �. In order to accomplish it,
we consider positions x which are multiple of some discretization length �x,
i.e. x D j�x, with j D 0; 1; : : : ; M and �x much smaller than any relevant scale of
the problem (`0, rv, �). In this case, the targets at x D 0 and x D � are respectively
associated with the indexes j D 0 and j D M D �=�x (M is the integer number
of intervals of length �x in which the range 0 � x � � is subdivided). Similarly,
we define `0 D m0�x and rv D mr�x, with m0 and mr integers. The continuous
limit is recovered by taking �x ! 0 and M ! 1, with � D M�x fixed.
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Our first aim is to write (16) in the discrete space. First, the set of continuous
variables, fx0; x1; : : : ; xn�1; xng, denoting, respectively, the position of the searcher
after f0; 1; : : : ; n � 1; ng steps, must be replaced by the following set of discrete
indices: fi0; i1; : : : ; in�1; ing, where xm D im�x. It thus follows that each integral
over a continuous space variable must be changed to a sum over the respective
discrete index. The probability p.xmC1�xm/dxm of reaching the site xmC1 from the
site xm by performing the .im C 1/-th step of length jxmC1 � xmj D jimC1 � imj�x

should be replaced by the quantity aimC1;im , to be determined below. With these
considerations in mind, (16) can be discretized to

Œ�n�in D
M�mr �1X
i0Dmr C1

: : :

M�mr �1X
in�1Dmr C1

ain;in�1ain�1;in�2 : : : ai2;i1ai1;i0 Œ�0�i0 : (27)

We observe above that aim;im D 0 and aimC1;im D aim;imC1
, since the probabilities of

step lengths xmC1 �xm and xm �xmC1 are the same. In addition, we have also taken
into account that the lower and upper limits of each integral, respectively x D rv

and x D � � rv, represent extreme positions which must not be considered in the
above discrete summation, since at either of these sites the walker already detects a
target and gets absorbed.

Notice that (27) has the structure of a sequence of matrix products. Indeed, we
can regard the quantities ak;j as the matrix elements ŒA�k;j of a symmetric matrix A,
with null diagonal elements and dimension .M � 2mr � 1/ � .M � 2mr � 1/ [note
that M �2mr �1 D .M �mr �1/� .mr C1/C1]. Accordingly, Œ�m�im denotes the
im-th element of the column vector �m of dimension M � 2mr � 1. Equation (27)
can thus be written in the form

Œ�n�in D
M�mr �1X
i0Dmr C1

ŒAn�in;i0 Œ�0�i0 : (28)

We further observe that, since the property
R ��rv

rv
ı.x � a/dx D 1 becomesPM�mr �1

j DmrC1 ıj;ia D 1 in the discrete limit, with the initial position index defined
as ia D a=�x, then the Dirac delta relates to the Kronecker delta via

ı.x � a/ ! ıj;ia

�x
; (29)

as
dx ! �j�x D �x: (30)

Observe now that by the same procedure (5) becomes, in the discrete limit,

ŒhLi�ia D
1X

nD0

M�mr �1X
inDmr C1

Œ�n�in Œhj`ji�in�x: (31)
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In this sense, each element ŒhLi�ia of the column vector hLi of dimension M �
2mr �1 represents the average distance traversed by the walker starting at a discrete
position ia until reaching one of the borders. By substituting (28) above, we obtain

ŒhLi�ia D
1X

nD0

M�mr �1X
inDmr C1

M�mr �1X
i0Dmr C1

ŒAn�in;i0 Œ�0�i0 Œhj`ji�in�x: (32)

The assignment of the index ia appears explicitly in (32) by using (18) and (29).
Summing over i0 and applying the symmetry property of matrix A we obtain

ŒhLi�ia D
1X

nD0

M�mr �1X
inDmr C1

ŒAn�ia;in Œhj`ji�in : (33)

Finally, by summing over n we get the discrete equivalent of (24):

ŒhLi�ia D
M�mr �1X
iDmr C1

Œ.I � A/�1�ia;i Œhj`ji�i ; (34)

where we have renamed the dummy index in simply by i . I is the .M � 2mr � 1/ �
.M � 2mr � 1/ unity matrix and .I � A/�1 is the inverse of the matrix .I � A/.

In (34) we observe that Œhj`ji�i is determined by first calculating hj`ji.x/ in
continuous space from (25) or (26), and next applying the discretization of the
parameters x, �, `0 and rv, according to the previous prescription.

At last, we also need to determine the matrix elements ŒA�k;j . We observe that
ŒA�k;j is the discrete representation of the probability p.x � x0/dx0 of performing a
step of length between jx �x0j D jk �j j�x and jx �x0jCdx0 D .jk �j jC1/�x.
Therefore, by considering

P.jx � x0j < j`j < jx � x0j C �x/ D
Z jx�x0jC�x

jx�x0j
p.`/d`; (35)

its discrete limit implies

ŒA�k;j D ŒA�j;k D
Z .jk�j jC1/�x

jk�j j�x

p.`/d`; k 6D j; (36)

and where ŒA�j;j D 0 and ŒA�k;j D 0 if jk � j j < m0 due to the minimum step
length `0. After the matrix elements ŒA�k;j are calculated for a given pdf p.`/ of step
lengths, one must invert the matrix .I �A/ so to determine the average distance hLi
and the search efficiency �, (34) and (2), respectively, for a searcher starting from
x0 D a D ia�x. In the following we provide explicit calculations for Lévy random
searchers.
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5 Lévy Random Searchers

In this section we explicit the calculations for a (power-law) Lévy pdf of step
lengths.

Our emphasis is on the the mentioned destructive and non-destructive cases,
respectively corresponding to set symmetric and asymmetric initial conditions and
identified with the starting positions x0 D a D �=2 and x0 D a D rv C �x, as
discussed.

For Lévy random walks in free space (i.e., with no a priori spatial truncations),
the pdf of step lengths reads

p.`/ D A
	.j`j � `0/

j`j
 ; (37)

where the theta function 	.j`j � `0/ D 0 if j`j < `0 and 	.j`j � `0/ D 1 otherwise,
assures the minimum step length `0. From (1) the normalization constant is given by:

A D .
 � 1/

2
`


�1
0 ; 
 > 1: (38)

Actually, the power-law dependence of (37) represents the long-range asymptotical
limit of the complete family of Lévy stable distributions of index ˛ D 
�1 [43,44].
Moreover, as the second moment of pdf (37) diverges for 1 < 
 � 3, the central
limit theorem does not hold, and anomalous superduffisive dynamics takes place,
governed by the generalized central limit theorem. Indeed, Lévy walks and flights
in free space are related to a Hurst exponent [43, 44] H > 1=2, whereas Brownian
behavior (diffusive walks with H D 1=2) emerges for 
 > 3. In particular, for
Lévy walks one finds H D 1 for 1 < 
 � 2, with ballistic dynamics emerging
as 
 ! 1 (the case 
 D 2 corresponds to the Cauchy distribution). For 
 � 1

the function (37) is not normalizable. Therefore, by varying the single parameter

 in (37) the whole range of search dynamics can be accessed (from Brownian to
superdiffusive and ballistic).

We emphasize that these results for faster-than-diffusive dynamics hold in free
space or, as in the present context, in the free part of the search path between
consecutive target encounters. As one considers the total path as a whole, the
truncation of steps by the finding of a statistically large number of target sites
generates an effective truncated Lévy distribution [30], with finite moments and
emergence of a crossover towards normal dynamics, as justified by the central limit
theorem. This issue is discussed in more detail in Sect. 6.

By substituting (37) and (38) into (26), we find, for rv C `0 � a � � � rv � `0,

hj`ji.a/ D .� � a � rv/

2
C `0.1 � 
/

2.2 � 
/

�
1 C ..a � rv/=`0/

2�


1 � 


�
; 1 < 
 � 3; 
 6D 2;

(39)
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and

hj`ji.a/ D .� � a � rv/

2
C `0

2
Œ1 C ln..a � rv/=`0//� ; 
 D 2: (40)

Discrete space expressions associated with (39) and (40) are readily found by
following the prescription of Sect. 4:

hj`ji�0 D .M � �0 � mr/�x

2

C m0�x.1 � 
/

2.2 � 
/

�
1 C ..�0 � mr/=m0/

2�


1 � 


�
; 1 < 
 � 3; 
 6D 2; (41)

and

hj`ji�0 D .M � �0 � mr/�x

2
C m0�x

2
Œ1 C ln..�0 � mr/=m0//� ; 
 D 2: (42)

Moreover, as we mentioned in Sect. 3 (see discussion right after (26)), the results
for the remaining intervals (rv < a � rv C `0 and � � rv � `0 � a < � � rv) can
be obtained straightforwardly. Indeed, we quote them below in the continuous and
discrete limits. For rv < a � rv C `0:

hj`ji.a/ D .a � rv/

2
C `0.1 � 
/

2.2 � 
/

�
1 C ..� � a � rv/=`0/

2�


1 � 


�
; 1 < 
 � 3; 
 6D 2;

(43)
and

hj`ji.a/ D .a � rv/

2
C `0

2
Œ1 C ln..� � a � rv/=`0//� ; 
 D 2; (44)

and their discrete limits:

hj`ji�0 D .�0 � mr/�x

2
C m0�x.1 � 
/

2.2 � 
/

�
�
1 C ..M � �0 � mr/=m0/

2�


1 � 


�
; 1 < 
 � 3; 
 6D 2; (45)

and

hj`ji�0 D .�0 � mr/�x

2
C m0�x

2
Œ1 C ln..M � �0 � mr/=m0//� ; 
 D 2: (46)

For � � rv � `0 � a < � � rv:

hj`ji.a/ D `0.1 � 
/

2.2 � 
/

�
2 C ..a � rv/=`0/

2�


1 � 


C ..� � a � rv/=`0/
2�


1 � 


�
; 1 < 
 � 3; 
 6D 2; (47)
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and
hj`ji.a/ D `0Œ1 C ln.Œ.� � a � rv/.a � rv/�

1=2=`0/�; 
 D 2; (48)

and their discrete limits:

hj`ji�0 D m0�x.1 � 
/

2.2 � 
/

�
2 C ..�0 � mr/=m0/

2�


1 � 


C ..M � �0 � mr/=m0/
2�


1 � 


�
; 1 < 
 � 3; 
 6D 2; (49)

and

hj`ji�0 D m0�xŒ1 C ln.Œ.M � �0 � mr/.�0 � mr/�
1=2=m0/�; 
 D 2: (50)

These small intervals at the extremes of the search space generally only contribute
in an important way when small steps are very frequent, as it happens for 
 ! 3.

Finally, the matrix A is determined by substituting (37) and (38) into (36), so that

Aij D Aj i D 1

2

�
1

ji � j j
�1
� 1

.ji � j j C 1/
�1

�
; i 6D j; 1 < 
 � 3; (51)

with Aii D 0 and Aij D 0 if ji � j j < m0.
Substitution of the expressions for hj`ji�0 in the respective intervals into (34),

along with (51), leads to hLi�0 and, therefore, also to the efficiency �, (3), in the
case of Lévy searches.

Figure 2a, b display the efficiency of the symmetric (destructive) (a D �=2 or
�0 D M=2) and asymmetric (non-destructive) (a D rv C �x or �0 D mr C 1) cases,
respectively.

It is striking the agreement between the analytical Eqs. (3) and (24) or (34)
and numerical results. Obtained from simulations which closely resemble the
features of the above search model. The optimal search strategy corresponds
to ballistic (
 ! 1) and superdiffusive (
 	 2) dynamics, for the symmetric
and asymmetric conditions respectively, in agreement with previous mathematical
approximations [49].

6 Search Diffusivity

One way to characterize the dynamics generated by the search is by determining
how the searcher’s root-mean-square (r.m.s.) distance R, defined as function of
averages of the forager’s position x,

R � Œh.�x/2i�1=2 D Œhx2i � hxi2�1=2; (52)
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Fig. 2 Search efficiency, �, versus (power-law) Lévy exponent, 
, for both (a) symmetric
(destructive) and (b) asymmetric (non-destructive) initial conditions. In each case, the optimal
search strategy respectively corresponds to ballistic (
 ! 1) and superdiffusive (
 � 2)
dynamics. Notice the striking agreement between the analytical Eqs. (3) and (24) or (34) and
numerical results. Simulation parameters: �x D 0:2, rv D `0 D 1, � D 103, a D �=2

(symmetric) and a D 2rv (asymmetric)

depends on time t , number of steps N and number of targets found Nfound. The
asymptotic scaling relation,

R � t� or R � N � or R � N �
found; (53)

implies normal (Brownian) diffusion for the diffusion exponent � D 1=2, superdif-
fusion with � > 1=2, and ballistic dynamics in the case of � D 1.

Due to the truncation of steps and the long-term prediction of the central limit
theorem (see Sects. 3 and 5), we can anticipate that a crossover should occur
between two dynamical regimes during a Lévy random search. There is an initial
regime with superdiffusive character due to the Lévy pdf of single step lengths,
occurring up to the encounter of the first targets [50]. Then, it follows a subsequent
Brownian behavior for the overall search trajectory, which, as discussed, is viewed
as the concatenated sum of partial paths between consecutive encounters. Indeed,
the initial superdiffusive dynamics could not remain as such indefinitely, once the
truncated Lévy pdf presents well-defined (finite) first and second moments.

At this point we should also observe that if the typical time scale of the search
is smaller than the crossover time then the foraging process appears as effectively
superdiffusive [7].

In the following we discuss the dynamics of a Lévy random searcher in both
regimes, starting with the initial superdiffusive one.

6.1 Characterizing First-Passage-Time Diffusivity

As discussed in Sect. 3, since finding a target either at x D 0 or x D � is essentially a
mean first-passage-time problem [38], we can initially ask about the r.m.s. distance
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associated with the encounter events. In other words, we start by considering the
quantities hxifpt and hx2ifpt, which represent the average positions x and x2 over all
walks departing from x0 D a and ending either at x D 0 or x D � by an encounter
event. In fact, by taking into account the radius of vision rv, the detection of targets
occurs at x D rv and x D � � rv, respectively, so that we can actually write

hxifpt D rvp0 C .� � rv/p� (54)

and
hx2ifpt D r2

v p0 C .� � rv/
2p�: (55)

Above, p0.a/ and p�.a/ denote, respectively, the probabilities for a walker starting
at x0 D a to find the target site at x D 0 or x D �. Notice that

p0.a/ C p�.a/ D 1; (56)

since an encounter always happens at the end of the process. By substituting (54)–
(56) into the expression

Rfpt D Œhx2ifpt � hxi2
fpt�

1=2; (57)

we find the correspondent r.m.s. distance of the first time passage at positions x D 0

or x D �:
Rfpt D .� � 2rv/.p0p�/1=2: (58)

It is clear now that the r.m.s. quantities R and Rfpt are not the same. In particular,
there is no first-passage-time restriction in the calculation of R. Nevertheless, the
dynamics of these two quantities are interrelated. As we show below for Lévy
random searchers, the diffusion exponent � is essentially the same for random search
walkers restricted to the interval rv < x < � � rv and random walkers in free space,
for which [18, 42]

� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1; 1 < 
 < 2I
.4 � 
/

2
; 2 < 
 < 3I

1

2
; 
 > 3:

(59)

We should stress, however, that no search activity takes place in free space, due to
the absence of target sites.

The result of (58) still demands the knowledge of p0 and p�. For such calculation,
we consider initially a walker that starts at x0 D a and reaches the site x D � after
n steps. Following the approach [10, 11] of the preceding sections, we write

p�;n.a/ D
Z ��rv

rv

�n�1.xn�1/dxn�1P.` � � � rv � xn�1/: (60)



Stochastic Optimal Foraging Theory 19

This expression can be understood as follows: first, �n�1.xn�1/dxn�1 represents the
probability for the walker to be located in the interval Œxn�1; xn�1Cdxn�1/ after n�1

steps; since, up to this point, no target has been found yet, then rv < xn�1 < � � rv.
Second, we also have to multiply the probability that the next (n-th) step will reach
the target at x D � and terminate the walk; so, P.` � � � rv � xn�1/ gives the
probability that the n-th step has length ` � � � rv � xn�1, and thus certainly finds
the target at x D � (recall that steps of length ` > � � rv � xn�1 end up truncated).
Finally, the integral above sums over all possible values of xn�1, consistently with
this reasoning.

Since all walks are statistically independent, the total probability of walks with
any number n of steps that start at x0 D a and terminate at x D � is simply a sum
of p�;n over all possibilities:

p�.a/ D
1X

nD1

p�;n.a/; (61)

that is,

p�.a/ D
1X

nD1

Z ��rv

rv

�n�1.xn�1/dxn�1P.` � � � rv � xn�1/: (62)

Now, by changing the variable m D n � 1, we obtain

p�.a/ D
1X

mD0

Z ��rv

rv

�m.xm/dxmP.` � � � rv � xm/: (63)

Note that the above equation is similar to (14). Thus, from the same procedure
detailed in Sect. 3, we find [10, 11]

p�.a/ D Œ.I � L /�1P.` � � � rv � a/�: (64)

We now take the discrete limit of (64) by following the general procedure
described in Sect. 4. First of all, as before, we set x D i�x, where i D mr C
1; : : : ; M � mr � 1. Equation (64) thus becomes

p�;�0 D Œ.I � A/�1P�0 �; (65)

where, now, p�;�0 and P�0 are .M � 2mr � 1/ � 1 column vectors.
To calculate P�0 in (65), we write in the continuous limit

P.` � � � rv � a/ D
Z 1

��rv�a

p.`/d`; (66)
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Fig. 3 R.m.s. distance related to first-passage-time diffusivity, Rfpt, defined in (57), versus
average distance traveled by the searcher between consecutive encounters, hLi, for both
(a) symmetric (destructive) and (b) asymmetric (non-destructive) initial conditions. Notice the
nice agreement between analytical (solid lines), Eq. (58), and numerical (symbols) results for all
values of 
 considered. Simulation parameters: �x D 0:2, rv D `0 D 1, � D 103, a D �=2

(symmetric) and a D 2rv (asymmetric). The diffusion exponents �.
/, defined in (69), assume the
values shown in (70), in close agreement with the theoretical prediction [18, 42] for Lévy walks in
free space, (59)

which, after integration, should go through the discretization process, leading to P�0

as function of the discrete settings for a, �, rv and `0. Analogously to the example of
Lévy walks in Sect. 5, we obtain in the continuous and discrete limits, respectively,

P.` � � � rv � a/ D 1

2

�
� � rv � a

`0

�1�


(67)

and

P�0 D 1

2

�
M � mr � �0

m0

�1�


; (68)

if rv < a � � � rv � `0 (or mr < �0 � M � mr � m0), and P.` � � � rv � a/ D
P�0 D 1=2 otherwise. The same protocol can also be used to calculate p0.a/ (or
p0;�0 in the discrete limit). However, we can always use (56), so that we actually
only need to calculate either p� or p0.

In the short-term regime (i.e. first-passage-time diffusivity), we must also
comment on the possible validity of (58) to times (or number of steps) in which a
boundary target has not been reached yet. In fact, although the calculation described
in (54)–(58) explicitly refers to the encounter of extreme sites at x D 0 and x D �,
any two sites at positions rv < x1 < a and a < x2 < � � rv can be assumed in the
mean first-passage-time formulation. Thus, one can actually “follow” the dynamics
of the searcher as it passes for the first time at positions x1 or x2, apart each other by
a distance .x2 � x1/. In particular, if the ratio between the initial and total distances,
.a � x1/=.x2 � x1/ D .a � rv/=.� � 2rv/, is kept fixed, the evolution of Rfpt with
the average distance traversed can be determined (see below).
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In Fig. 3 we compare the prediction of (58) with results from numerical
simulation. By considering unity velocity for the Lévy searcher, the average time
to encounter a target is identical to the average distance traversed hLi. Thus, we can
actually probe the asymptotic relation,

Rfpt � hLi�; (69)

for several distances .x2 � x1/, as discussed above. As Fig. 3 indicates, we have a
nice agreement between the analytical and numerical results. Importantly, just as in
the case of a Lévy walker in free space [18,42] (i.e. with no targets present, (59)), we
identify ballistic, superdiffusive and Brownian short-term regimes in the respective
ranges 1 < 
 < 2, 2 < 
 < 3 and 
 > 3, with (analytical and numerical) diffusion
exponents:

� D

8̂
<̂
ˆ̂:

0:99; 
 D 1:5;
0:85; 
 D 2;
0:67; 
 D 2:5;
0:51; 
 D 3:5.

9>>=
>>;

(70)

Observe that, in this case in which searches and encounters are actually being
performed, the effect of hitting the boundaries are more pronounced for intermediate
values of 
. Indeed, for 
 ! 1 and 
 ! 3 there is a fair agreement between the
values of � given by (59) and (70). On the other hand, for intermediate 
 D 2:5

the value of � above should be compared with that of the free-space Lévy walker,
� D 0:75.

6.2 Characterizing Search Dynamics Diffusivity

The dynamics of the long-term regime (i.e., after the encounter of a large number of
targets, Nfound � 1) can be worked through a suitable random-walk mapping. We
describe below such approach for the asymmetric (non-destructive) case, in which
the walker starts from a fixed distance x0 D a D rv C �x to the closest target, with
�x 
 rv 
 �. Generalization for any x0 is possible.

We start by recalling that the set of targets are placed at positions x D i�, where
i is an integer (negative, null or positive) number. If the searcher begins the non-
destructive walk at x0 D a D rv C �x, then it can find either the target at x D 0

or x D �. When the target at x D � is encountered, the forager can restart the
search walk from x D � � rv � �x or x D � C rv C �x (in both cases, the
distance to the closest site at x D � remains a D rv C �x; here we take any of
these two possibilities with 50 % probability). After, say, a sequence of Nfound D 5

encounters, one possible set of visited targets is f�; �; 0; ��; �2�g. Notice that after
the first target (located at x D �) is found, the searcher returns to it in the next (i.e.
second) encounter, as allowed in the non-destructive case. By recalling that p0 and
p� denote, respectively, the probabilities to find the closest and farthest targets, and



22 F. Bartumeus et al.

taking into account the radius of vision rv, one generally has four possibilities after
the encounter of the first target at x D �:

1. Restarting from x D � C rv C �x and detecting the closest site at x D � C rv

(with probability p0=2).
2. Restarting from x D � C rv C �x and detecting the distant site at x D 2� � rv

(with probability p�=2).
3. Restarting from x D � � rv � �x and detecting the closest site at x D � � rv

(with probability p0=2).
4. Restarting from x D � � rv � �x and detecting the distant site at x D rv (with

probability p�=2).

These events correspond to respective displacements ��x, .��2rv ��x/, �x and
�.� � 2rv � �x/. In the limit � � rv � �x, the generalization of this result for
the possibilities that follow after the encounter of any target leads to a map of the
search path onto a distinct random walk, which visits the sites x D i� with “steps”
of approximate length s D ��, 0 or �, drawn from the pdf

.s/ D p0ı.s/ C p�

2
ı.s � �/ C p�

2
ı.s C �/: (71)

Now, from the standard theory of random walks [39], with statistically independent
steps taken from a pdf of finite first and second moments such as (71), we write the
actual r.m.s. distance after Nfound � 1 “steps” (i.e. Nfound � 1 targets found) as

R D N
1=2

foundŒhs2i � hsi2�1=2; Nfound � 1; (72)

where, by using (71), we find hsi D 0, reflecting the equiprobability to move left or
right after each encounter, and hs2i D p��2, so that

R D �p
1=2

� N
1=2

found; Nfound � 1: (73)

Note the presence of Brownian dynamics (diffusion exponent � D 1=2) in the long-
term regime, in agreement with the central limit theorem. In 2D or 3D, the rate
of convergence to the Brownian diffusive regime may be slower than in 1D. This
is so because higher spatial dimensions allow very large steps without encounter
truncations. However, if infinite steps would be rigorously allowed, the possibility
of non-convergence would exist, even in the long-run. Further analyses are needed
to elucidate the robustness of the 1D analysis presented in this section at higher
dimensional systems. Also important is to know up to which extent the 1D mapping
between random walk steps and target encounters is valid at higher dimensions.

In Fig. 4 we compare the prediction of (73) with results from numerical simu-
lation, with a nice agreement displayed. It is also worth to note that, even though
the expected Brownian diffusion exponent, � D 1=2, arises for all values of 


considered, r.m.s. displacement values are larger for Lévy exponents 
 closer to the
ballistic (
 ! 1) strategy.
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Fig. 4 R.m.s. distance related to the search dynamics diffusivity, R, defined in (52), versus the
number of targets found, Nfound, for asymmetric (non-destructive) initial condition. Notice the nice
agreement between analytical (solid lines), (73), and numerical (symbols) results for all values of 


considered, with Brownian diffusion exponent, � D 1=2, as predicted by the central limit theorem
(see inset). Simulation details: we let 104 searchers look for 103 targets each. The landscape was
configured with 100 targets interspersed by a distance �. The restarting distance to the last target
found is fixed, a D rv C �x. Simulation parameters: �x D 0:2, rv D `0 D 1 and � D 103

One last comment regards the connection of the r.m.s. distance, (73), written
as function of the number of targets found, with its time dependence. Indeed, as
expected from standard theory of random walks [39], both dependences should be
asymptotically described by the same diffusion exponent, as in (53). Indeed, this
fact can be justified since, on average, the number of targets found grows linearly
with time. Therefore, a Brownian search dynamics, R � t1=2, also emerges in the
long run.

7 Search in Heterogeneous Landscapes: Distributions
of Starting Points

Up to this point, no heterogeneity in the targets landscape has been taken into
account. In other words, in each search scenario considered (either asymetric or
symmetric), the forager has always restarted the search from the same departing
position x0 D a. Though useful as limiting cases, these situations generally do not
correspond to actual search processes, which usually take place in environments
with distances to the last target found distributed according to some pdf. Therefore,
we now consider (see [37]) a random search model in which diverse degrees of
landscape heterogeneity are taken into account by introducing fluctuations in the
starting distances to target sites in a 1D search space, with absorbing boundaries
separated by the distance �. The targets’ positions remain fixed at the boundaries
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of the system. Fluctuations in the starting distances to the targets are introduced by
sampling the searcher’s departing position after each encounter from a pdf �.x0/

of initial positions x0. Importantly, �.x0/ also implies a distribution of starting
(a)symmetry conditions with respect to the relative distances between the searcher
and the boundary targets.

This approach allows the typification of landscapes that, on average, depress
or boost the presence of nearby targets in the search process. Diverse degrees of
landscape heterogeneity can thus be achieved through suitable choices of �.x0/.

For example, a pdf providing a distribution of nearly symmetric conditions
can be assigned to a landscape with a high degree of homogeneity in the spatial
arrangement of targets. In this sense, as discussed in Sect. 2, the destructive search
represents the fully symmetric limiting situation, with the searcher’s starting loca-
tion always equidistant from all boundary targets. On the other hand, a distribution
�.x0/ which generates a set of asymmetric conditions is related to a patchy or
aggregated landscape. Indeed, in a patchy landscape it is likely that a search process
starts with an asymmetric situation in which the distances to the nearest and farthest
targets are very dissimilar. Analogously, the non-destructive search corresponds to
the highest asymmetric case, in which at every starting search the distance to the
closest (farthest) target is minimum (maximum). Finally, a pdf �.x0/ giving rise to
an heterogeneous set of initial conditions (combining symmetric and asymmetric
situations) can be associated with heterogeneous landscapes of structure in between
the homogeneous and patchy cases.

More specifically, the limiting case corresponding to the destructive search can
be described by the pdf with fully symmetric initial condition,

�.x0/ D ı.x0 � �=2/: (74)

This means that every destructive search starts exactly at half distance from the
boundary targets, just as considered in the previous sections. In this context, it
is possible to introduce fluctuations in x0 by considering, e.g., a Poisson-like pdf
exponentially decaying with the distance to the point at the center of the search
space, x0 D �=2:

�.x0/ D A expŒ�.�=2 � x0/=˛�; (75)

where rv < x0 � �=2, A is the normalization constant and �.x0/ D �.� � x0/ due
to the symmetry of the search space (see also below).

On the other hand, the highest asymmetric (non-destructive) limiting case is
represented by

�.x0/ D ı.x0 � rv � �x/; (76)

so that every search starts from the point of minimum distance in which the nearest
target is undetectable, x0 D rv C �x, with �x 
 rv, as also previously discussed.
Similarly, fluctuations in x0 regarding this case can be introduced by considering a
Poisson-like pdf decreasing with respect to the point x0 D rv:

�.x0/ D B expŒ�.x0 � rv/=˛�; (77)
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where rv < x0 � �=2, B is the normalization constant, and �.x0/ D �.� � x0/. In
(75) and (77), the parameter ˛ controls the range and magnitude of the fluctuations.
Actually, the smaller the value of ˛, the less disperse are the fluctuations around
x0 D �=2 and x0 D rv, respectively.

In the case that, instead of always departing from the same location after an
encounter, the searcher can restart from any initial position x0 in the range rv <

x0 < ��rv chosen from a pdf �.x0/, the fluctuating values of x0 imply a distribution
w.hLi/ of hLi.x0/ values. Therefore, the average distance traversed between two
successive target sites becomes

hLi D
Z hLimax

hLimin

hLiw.hLi/d hLi; (78)

where hLimin and hLimax denote the minimum and maximum values of hLi.x0/,
respectively. Notice that

w.hLi/d hLi D
Z

ŒhLi;hLiCdhLi�
�.x0

0/dx0
0 D

Z hLiCdhLi

hLi
�.x0

0/

ˇ̌
ˇ̌d hLi

dx0
0

ˇ̌
ˇ̌�1

d hLi:
(79)

Above, the lower symbol in the first integral means that the integrand only
contributes to w.hLi/ if x0

0 is associated with a value in the range ŒhLi; hLiCd hLi/.
Since searches starting at x0 are statistically indistinguishable from searches starting
at � � x0 (in both cases the closest and farthest targets are at distances x0 and
� � x0 from the starting point), the symmetry of the search space with respect to
the position x D �=2 implies hLi.x0/ D hLi.� � x0/. As a consequence, any
given value of hLi can be always obtained for two distinct starting positions x0,
one in each half of the search interval. By denoting these points as x0

0 D x0;A and
x0

0 D x0;B , with rv < x0;A < �=2 and �=2 < x0;B < � � rv, where x0;A D � � x0;B ,
we write

w.hLi/d hLi D
2
4
 

�.x0
0/

ˇ̌
ˇ̌d hLi

dx0
0

ˇ̌
ˇ̌�1
!

x0

0Dx0;A

C
 

�.x0
0/

ˇ̌
ˇ̌d hLi

dx0
0

ˇ̌
ˇ̌�1
!

x0

0Dx0;B

3
5d hLi;

(80)

which, when substituted into (78), leads to

hLi D
Z �=2

rv

hLi.x0;A/�.x0;A/dx0;A C
Z ��rv

�=2

hLi.x0;B/�.x0;B/dx0;B : (81)

Next, by dropping the subindices A and B , we obtain

hLi D
Z ��rv

rv

hLi.x0/�.x0/dx0 D 2

Z �=2

rv

hLi.x0/�.x0/dx0; (82)
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where we have used that �.x0/ D �.� � x0/, from which the average efficiency
with a distribution of starting positions can be calculated:

� D
�
hLi

��1

; (83)

or explicitly [37],

� D 1=

 
2

Z �=2

rv

hLi.x0/�.x0/dx0

!
: (84)

In order to analyze the effect of fluctuations in the starting distances, the
integral (84) must be evaluated. The detailed calculation of hLi.x0/ has been
described in Sects. 3 and 4 for any pdf p.`/ of step lengths, and in Sect. 5 for Lévy
searchers in particular. Nevertheless, no explicit analytic expression for hLi.x0/,
(24), is known up to the present. This difficulty can be circumvented by successfully
performing a multiple regression, so that

hLi.x0/ D
NxX
iD0

N
X
j D0

aij xi
0
j ; (85)

as indicated by the nice adjustment shown in Fig. 5c, obtained with Nx D 10 and
N
 D 8. Thus, the integral (84) can be done using (75) or (77) and (85). Results are
respectively displayed in Fig. 5a, b for several values of the parameter ˛.

By considering fluctuations in the starting distances to faraway targets through
(75), we notice in Fig. 5a that the efficiency is qualitatively similar to that of the
fully symmetric condition, (74). Indeed, in both cases the maximum efficiency is
achieved as 
 ! 1. For 1 < 
 < 3 the presence of fluctuations only slightly
improves the efficiency. These results indicate that ballistic strategies remain robust
to fluctuations in the distribution of faraway targets.

On the other hand, fluctuations in the starting distances to nearby targets, (77), are
shown in Fig. 5b to decrease considerably the search efficiency, in comparison to the
highest asymmetric case, (76). In this regime, since stronger fluctuations increase
the weight of starting positions far from the target at x D 0, the compromising
optimal Lévy strategy displays enhanced superdiffusion, observed in the location of
the maximum efficiency in Fig. 5b, which shifts from 
opt 	 2, for the delta pdf and
(77) with small ˛, towards 
opt ! 1, for larger ˛ (slower decaying �.x0/). Indeed,
both the pdf of (77) with a vanishing ˛ and (76) are very acute at x0 D rv C �x.

As even larger values of ˛ are considered, fluctuations in the starting distances
to the nearby target become non-local, and (77) approaches the ˛ ! 1 limiting
case of the uniform distribution, �.x0/ D .��2rv/

�1 (see Fig. 5b). In this situation,
search paths departing from distinct x0 are equally weighted in (84), so that the
dominant contribution to the integral (and to the average efficiency � as well) comes
from search walks starting at positions near x0 D �=2. Since for these walks
the most efficient strategy is ballistic, a crossover from superdiffusive to ballistic
optimal searches emerges, induced by such strong fluctuations. Consequently, the
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Fig. 5 (a) Robustness of the ballistic optimal search strategy with respect to fluctuations in
the distances to faraway target sites. In the case of Lévy random searchers, the average search
efficiency �, (84), is always highest for 
 ! 1 (ballistic dynamics), for any value of the parameter
˛ of the Poissonian fluctuations around the maximum allowed distance, x0 D �=2, (75). Cases
with uniform and without any (ı-function) fluctuation are also shown. Solid lines are a visual
guide. (b) Shift in the optimal search strategy towards an enhanced superdiffusive dynamical
regime, as landscapes with distinct degrees of heterogeneity are considered. For Lévy random
searchers (solid symbols), � is maximized for smaller 
opt.˛/ (faster diffusivity) in the case
of wider (larger-˛) Poissonian fluctuations in the distances to nearby target sites, (77). Solid
lines are a visual guide. Empty symbols locate the maximum � obtained from the condition
f .
 D 
opt; ˛/ D @hLi=@
j
D
opt D 0, with f .
; ˛/ given by Eq. (86). (c) Nice adjustment
of the average distance hLi traversed between consecutive findings by a Lévy random searcher
starting at position x0. Results were obtained by numerical discretization of (24) (solid lines)
and multiple regression (symbols), (85). (d) Determination of the optimal search strategy of Lévy
random searchers with Poissonian fluctuations in the distances to nearby targets, (77). The above
mentioned condition provides the optimal Lévy exponent, 
opt, associated with the strategy of
maximum average efficiency. Inset: since strategies with 
 � 1 are not allowed (non-normalizable
pdf of step lengths), the highest efficiency is always obtained for 
 ! 1 as fluctuations with
˛ > ˛cross � 312:2 are considered, marking the onset of a regime dominated by ballistic optimal
search dynamics. We took � D 103 and rv D 1 in plots (a)–(d)
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efficiency curves for very large ˛ (Fig. 5b) are remarkably similar to that of the fully
symmetric case (Fig. 5a).

We can quantify this crossover shift in 
opt by defining a function 
opt.˛/ that
identifies the location in the 
-axis of the maximum in the efficiency �, for each
curve in Fig. 5b with fixed ˛. We notice that eventually a compromising solution
with 
opt.˛/ > 1 cannot be achieved, and an efficiency function � monotonically
decreasing with increasing 
 arises for ˛ > ˛cross. In this sense, the value ˛cross

for which such crossover occurs marks the onset of a regime dominated by ballistic
optimal search strategies.

The value of 
opt for each ˛ can be determined from the condition f .
 D

opt; ˛/ D @hLi=@
j
D
opt D 0, so that, by considering (77), (84) and (85),

f .
; ˛/ D 2A

NxX
iD0

N
X
j D0

aij j
j �1

(
iX

kD0

"
i Š˛kC1

.i � k/Š

 
e�˛rv ri�k

v � e�˛�=2

�
�

2

�i�k
!#)

;

(86)

with A D f2˛Œexp.�rv=˛/ � exp.��=.2˛//�g�1. Solutions are displayed in Fig. 5d
and also in Fig. 5b as empty symbols, locating the maximum of each efficiency
curve. In addition, the crossover value can be determined through f .
 ! 1C; ˛ D
˛cross/ D 0. In the case of the pdf (77), we obtain (Fig. 5d) ˛cross 	 312:2 for
� D 103 and rv D 1 (regime � � rv).

We also note that the scale-dependent interplay between the target density and the
range of fluctuations implies a value of ˛cross which is a function of �. For instance,
a larger � (i.e., a lower target density) leads to a larger ˛cross and a broader regime
in which superdiffusive Lévy searchers are optimal. In fact, the above qualitative
picture holds as long as low target densities are considered.

Moreover, since ballistic strategies lose efficiency in higher dimensional spaces
[40] (see Sect. 8), it might be possible that in 2D and 3D the crossover to ballistic
dynamics becomes considerably limited. In spite of this, enhanced superdiffusive
searches, with 1 < 
opt < 2, should still conceivably emerge due to fluctuations in
higher-dimensional heterogeneous landscapes.

From these results we conclude that, in the presence of Poissonian-distributed
fluctuating starting distances with ˛ � ˛cross, Lévy search strategies with faster
superdiffusive properties, i.e. 1 < 
opt . 2, represent optimal compromising
solutions. In this sense, as local fluctuations in nearby targets give rise to land-
scape heterogeneity, Lévy searches with enhanced superdiffusive dynamics actually
maximize the search efficiency in aggregate and patchy environments. On the other
hand, for strong enough fluctuations with ˛ > ˛cross, a crossover to the ballistic
strategy emerges in order to access efficiently the faraway region where targets are
distributed.

A recent numerical study [23], looking at how different starting positions
in the target landscape modify optimal Lévy search strategies, found equivalent
results. Our more detailed analysis provides further mechanistic explanation linking
landscape features with optimal random search strategies.
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8 Discussion

Optimal foraging is one of the most extensively studied optimization theory in ecol-
ogy and evolutionary biology [25, 26, 28, 46, 48]. To fully develop a comprehensive
theory, it is necessary to understand separately (but not isolatedly) the contribution
and the evolutionary trade-offs of the different components of the foraging process
(e.g., search, taxis, patch exploitation, prey handling, digestion times). Indeed, the
foraging sequence [45, 46] can be divided in: pre-encounter (search and taxis), and
post-encounter (pursuit, handling, digestion, and ingestion) events [8, 12, 45].

The framework developed here is focused exclusively on the search component
of the foraging process. SOFT clearly illustrates that neither ballistic nor Lévy
strategies should be considered as universal [22, 36], since realistic fluctuations
in the targets distribution may induce switches between these two regimes. Most
importantly, SOFT shows which basic elements need to be accounted for to perform
efficient stochastic searches, and identifies why optimal solutions can change with
the environment conditions. In particular, the theory demonstrates that the quantities
hLi and hj`ji depend on the initial position of the searcher in the landscape (Sect. 3).
Indeed, the initial searcher-to-target distances are essential to determine the best
stochastic strategies (Sect. 7). When nearby and faraway targets exist, the trade-off
between either scanning the closeby targets or exploring new territory for faraway
ones needs to be efficiently solved. In such scenarios, stochastic laws governing
run and tumble movement patterns come into play and have a clear impact on the
search success, with Lévy-like features becoming beneficial [2, 5, 49, 51]. On the
other hand, if such a trade-off does not exist, with all the targets being in average
faraway, tumbling is not necessary at all, and ballistic strategies emerge as optimal.

In the overall search process, the diffusive properties of the searcher (Sect. 6)
need to be considered both between targets (i.e. first passage times) and after
encounter dynamics (i.e. flight truncation and reorientation due to encounter).
Two regimes exist, a short-term superdiffusive optimal one, between encounters of
successive targets, and a long-term Gaussian diffusive one, which describes the sum
of the partial paths to find the targets. It is the balance between such diffusivities
that sets the conditions for the emergence of particular optimal strategies.

Our main results are expected to hold in larger dimensions [6, 37, 49]. Although
the random search problem in 1D is far from a mean field approximation, most
of the results are qualitatively valid in higher-dimensions [6]. Indeed, in 2D and
3D the finding of targets does occur with much lower probability: the extra spatial
directions yield a larger exploration space, thus smaller efficiencies. However, the
straight lines, during single search steps, are radial 1D locomotions, hence, many
of the properties observed in a 1D random search are kept at higher dimensions.
Moreover, note that the proliferation of directions to go in high dimensional systems,
can decrease the effect of fluctuations in target avaliability. In 2D and 3D systems,
the influence of �.x0/ on optimal search strategies is expected to be qualitatively
similiar but weaker than in 1D systems. Being simple enough to allow a general and
complete analysis, the 1D case is thus very useful in establishing maximum limits
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for the influence of landscape spatio-temporal heterogeneities in random search
processes.

Further extensions of the theory should involve a better understanding of the
landscape structure contribution to the search efficiency [37] and to the build up of
the efficiency curves. In the latter case we can consider the encounter efficiency of
nearby and faraway targets separately in order to identify the different contribution
of each partial efficiency to the total efficiency. We believe that exciting theoretical
advances will be achieved by adequately scaling foraging processes in time and
space, seeking a fertile middle ground between the concepts derived from classic
OFT and the ones coming from the here presented Stochastic Optimal Foraging
Theory (SOFT).
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3. F. Bartumeus, Lévy processes in animal movement: an evolutionary hypothesis. Fractals 15,
151–162 (2007)

4. F. Bartumeus, J. Catalan, Optimal search behavior and classic foraging theory. J. Phys. A:
Math. Theor. 42, 434002 (2009)

5. F. Bartumeus, S.A. Levin, Fractal intermittence in locomotion: linking animal behavior to
statistical patterns of search. Proc. Natl. Acad. Sci. USA 105, 19072–19077 (2008)

6. F. Bartumeus, P. Fernández, M.G.E. da Luz, J. Catalan, R.V. Solé, S.A. Levin, Superdiffusion
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