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Foreword

The study of biological populations is one of the oldest and most successful areas
in mathematical biology, dating back at least a century to the work of Vito Volterra,
the Italian mathematician equally famous for his contributions to the theory of
integral equations. Indeed, there are examples even earlier of the use of mathematics
in population biology, especially in demography and population growth; even
Fibonacci dabbled in this subject largely to illustrate how the sequence of numbers
that bears his name could arise easily in a population model. But Volterra’s foray
into mathematical ecology was an event of significance, because it demonstrated
not only how sophisticated mathematics could contribute to biology but also that
serious attention to biology could stimulate advances in mathematics. Both aspects
are illustrated in this volume, which provides further evidence of the irresistible
appeal of population problems for mathematicians.

Volterra’s investigations focused on the dynamics of well-mixed populations
and did not consider the spatial dimension, though his contributions to integral
equations would certainly have put him in a position to advance the subject of spatial
population biology. The first major efforts in that direction actually came from
population genetics, where Fisher, Haldane and Wright all made major contributions
in the 1930s and later. Fisher, in particular, was the first to note that the asymptotic
speed of propagation of an advantageous allele would be twice the square root of
the product of the intrinsic rate of increase and the diffusion coefficient, a result
profound enough once again to attract leading mathematicians to provide formal
analysis [10]. Indeed, attention to that rich problem has continued to be of interest
to mathematicians [2,4, 7], including those in this volume.

In ecology, the landmark paper was undoubtedly Skellam’s 1951 treatise [18],
which developed a broader framework for the consideration of spread, including
those in response to climate change, and furthermore addressed the problem of crit-
ical patch size for persistence. These topics have remained of continuing interest for
more than half a century, both for practical reasons [1] and because of their inherent
mathematical richness. Skellam’s framework allowed easily for the consideration
of long-distance transport and was followed by papers such as Mollison’s [12]
and later work [15, 20] that explicitly dealt further with long-distance movements.
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The consideration of spatial clines [9] and more general patterns [11], in addition to
the problems mentioned earlier, has spawned a rich mathematical literature and one
that has close contact with the biology [5, 13,16, 17].

As this volume provides evidence, problems in dispersal, movement and spatial
ecology continue to attract the attention of serious mathematicians and continue
to grow in ecological importance [19]. On the biological side, we have seen
the birth of a new sub-discipline called movement ecology [14]; and from many
directions, interest in anomalous diffusion has grown [3,21]. Conservation biology
has raised many new problems, including those associated with the design of
nature reserves, and the fascinating subject of collective motion has attracted the
attention of biologists, mathematicians and physicists alike [6, 21]. Substantive
mathematical problems remain, like the problem of scaling from the microscopic
to the macroscopic, marrying the Lagrangian and Eulerian perspectives [8]. All of
these issues are evident in the broad scope of the papers in this volume.

This collection is a welcome addition to the literature, illustrating once again
the mathematical richness that underlies the movement problems as well as the
ecological importance.

Princeton, New Jersey Simon Levin
May 26, 2012
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Preface

It has long been recognized that ecological dynamics is essentially spatial. Pop-
ulation aggregation that can be either self-organized or induced by heterogeneity
in the environment is a commonly observed phenomenon. Spatial patterning has a
variety of implications for biodiversity, harvesting, pest control, species extinction,
and nature conservation. Dispersal is the process that results in a coupling between
local populations and thus integrates them at a global level into an ecological entity.
The properties of the entity can be very different from the properties of its parts.
Thus it is important for us to know how to correctly interpret at the macroscopic
level behavior at the local level if we are to determine how the entity behaves.

The approaches to study dispersal can differ greatly in terms of their focus and
the level of detail involved. According to a commonly accepted definition, dispersal
is the movement of organisms away from their parent source. The primary focus of
dispersal is therefore on individual animal movement. Correspondingly, the focus
of research is on individual movement paths and the most detailed description of
dispersal should include all necessary information about the individual movement
pattern.

However, this comprehensive description of dispersal is neither always possible
nor always necessary. Once the state of the system is described by mean-field
variables, e.g., by the population densities, information about individuals is lost.
In fact, it is not required: Once the dispersal kernel is known, mathematical models
are capable of grasping essential features of the population dynamics. Biological
invasion is one example where application of population-level models has been
particularly successful. One of the advantages of the population models is that they
appear to be analytically more tractable than individual-based models allowing a
fuller classification of different types of behavior in parameter space.

The most interesting part of the story is probably the bridge between the two
“extremes.” How can we derive the equations of the spatiotemporal population
dynamics from the properties of the individual animal movement? Can we combine
the benefits of the two approaches? What pattern of individual movement is behind
a particular population dynamics model? One should recall here that population
models are usually obtained from empirical or heuristic arguments rather than

ix
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derived from first principles. Mathematical rigor is often lacking in this approach
and, as a result, the empirical models may have hidden pitfalls and caveats that are
difficult to identify. For example, implicitly assumptions may have been made that
are erroneous or inconsistent with each other.

The structure of this book follows the general logic of dispersal studies outlined
above. Part I (Chaps. 1-3) is concerned with individual animal movement. This
subject has been increasingly controversial, sometimes even resulting in rather
heated debates. Classical studies assumed that the individuals move around in a
diffusive manner, i.e., a random walk process known as Brownian motion where
the step length/size is described by a normal or exponential distribution effectively
suppressing long steps. However, over the last two decades there has been increasing
evidence that this might not always be the case. Indeed, field and laboratory data
often show a rate of decay in the step size distribution which is much slower than
exponential, e.g., as a power law. Correspondingly, stochastic processes such as
Levy flights and/or Levy walks were introduced to take into account the long jumps
in order to describe and analyze data on animal movement. However, the biological
relevance of the Levy statistics still remains a controversial issue as it is not always
clear whether it is a genuine pattern of the individual movement or an artifact of
data collection and processing. The chapters in Part I contribute to this discussion
and partially reflect this controversy by providing different points of view of the
subject.

Part II (Chaps. 4-8) considers how the properties of individual movement can
be scaled up to the population level. It starts with a review of mathematical
models of self-organized population patterning with an emphasis on interaction and
communication between the individuals (Chap. 4). Chapter 5 gives an overview
of hybrid approaches that attempt to incorporate individual-based description to
population-level models by considering movement of discrete objects (e.g., animals)
in a continuous environment, chemotaxis being used as a paradigm. A different type
of hybrid model is studied in Chap. 6 where foraging behavior is described as a
space- and time-continuous process but transition between consequent generations
(multiplication) is described as a time-discrete map.

The analysis of Chaps. 4-6 is mostly focused on self-organized behavior in a
homogeneous and isotropic environment. This assumption is relaxed in Chaps. 7
and 8. In particular, Chap. 7 considers population models when individual move-
ment is anisotropic, e.g., occurring in an environment with a directional bias. The
population dynamics of wolves in a forest with seismic lines is used as an instructive
example. Chapter 8 considers complex foraging behavior of zooplankton in a prey—
predator (e.g., phyto-zooplankton) system in a vertically stratified water column.
Interestingly, the behavioral response to stratification can result in a change of the
predator function response, so that the Holling type II response assumed in local
grazing gives way to type III after averaging over water column height.

Part III (Chaps. 9—13) considers dispersal and its implications on the level of
populations and communities. One of the main objectives here is to understand how
the population abundance, e.g., as quantified by the population density, changes in
space and time because of the interplay between dispersal and the local population
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dynamics. The two phenomena that are essentially attributed to this interplay are
biological invasion and population range shift (Chaps. 9 and 10). The properties
of dispersal may affect the rate of species spread significantly. For instance, it is
well known that fat-tailed dispersal can increase the invasion rate considerably. It
therefore becomes important to develop analytical approaches which allow us to
reveal the properties of the dispersal kernel (Chap. 9) and to better understand how
the population behavior depends on the kernel used.

Another major issue is population dynamics on a fragmented habitat. Dispersal
coupling results in the possibility of re-colonization of empty patches. Chapter 11
shows that the effect of re-colonization can be subtle and counterintuitive depending
on how much detail of the food web is taken into account.

With the spatiotemporal complexity of dispersal in mind, perhaps it is not
surprising that dispersal has not only ecological but also evolutionary implications.
Chapter 12 considers interaction between the processes going on different temporal
scales and concludes that dispersal coupled with non-local resource consumption
can be a crucial factor resulting in speciation.

Finally, Chap. 13 considers the implication of dispersal—regarded here as
diffusion—for the pest population size estimation commonly required in pest
control programs. Somewhat counterintuitively, it shows that a pest with a lower
diffusivity may be more difficult to monitor than a highly mobile one.

The idea of this book emerged and was eventually shaped into its final form
during a series of meetings, in particular at the conference Models in Population
Dynamics and Ecology 2010 (Leicester, September 1-3, 2010) and the MBI
Workshop: Ecology and Control of Invasive Species (Columbus, February 21-25,
2011). Obviously, considerable progress has been made over the last two decades in
understanding all aspects of dispersal, as can be traced from the references provided
with the chapters. Appreciation of the diversity of studies focused on or closely
related to dispersal led to the feeling that an account of the state of the art in this
field may be timely and useful. It is for the reader to decide whether this goal has
been achieved and how comprehensive is the account. Whichever is the case, we
hope that this book is going to be stimulating for future research.

Mark A. Lewis
Philip K. Maini
Sergei V. Petrovskii
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Stochastic Optimal Foraging Theory

Frederic Bartumeus, Ernesto P. Raposo, Gandhi M. Viswanathan,
and Marcos G.E. da Luz

Abstract We present here the core elements of a stochastic optimal foraging theory
(SOFT), essentially, a random search theory for ecologists. SOFT complements
classic optimal foraging theory (OFT) in that it assumes fully uninformed searchers
in an explicit space. Mathematically, the theory quantifies the time spent by a
random walker (the forager) on a spatial region delimited by absorbing boundaries
(the targets). The walker starts from a given initial position and has no previous
knowledge (nor the possibility to gain knowledge) on target/patch locations.
Averages on such process can describe the dynamics of an uninformed forager
looking for successive targets in a diverse and dynamical spatial environment. The
framework provides a means to advance in the study of search uncertainty and
animal information use in natural foraging systems.
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1 Introduction

Classic optimal foraging theory (OFT) assumes fully informed foragers. Hence,
animals can recognize a patch instantaneously, knowing in advance the expected
patch quality as well as the average travel time between patches [19]. Stephens
and Krebs (1986) called such conceptual framework the complete information
assumption [47,48].

Based on simple cases, theoreticians have addressed the problem of incomplete
information [47, 48], acknowledging the presence of environmental uncertainty in
foraging processes. The key questions are related to how animals obtain information
about the environment while foraging [1, 20, 21, 31, 34]. The use of information
to both discriminate the properties of a given patch and to figure out large-
scale environmental properties have been shown to modify patch-exploitation and
patch-leaving strategies [48]. Simple memory rules based on previous environment
exploration experiences [32] and potential acquaintance with the travel times
between patches [13, 14, 17,24] also impact on the foraging strategy.

Here we introduce a theoretical framework to study aspects of foraging processes
rooted on the assumption of complete lack of knowledge and with the virtue of
being spatially explicit (here we address the one-dimensional case). In its core
formulation, SOFT quantifies the distance traveled (or equivalently time spent) by a
random walker that starts moving from a given initial position within a spatial region
delimited by absorbing boundaries. Each time the walker reaches the boundaries, the
process starts all over again. Averages on the properties of many walks realizations
are aimed to reproduce the dynamics of a forager looking for successive targets
in a diverse and dynamical environment. This modeling approach differs from
classic theory in a very important point: it switches the patch-encounter problem of
foraging theory from the traveling salesman [1] to the random search optimization
problem [4, 16,49,51].

While useful as analytic simplifications, classic theoretical studies on foraging
usually lack the explicit inclusion of space and are not focused on the search
optimization problem, in which a forager with limited information explores a
landscape to find scarce cues [4, 16, 51]. In OFT patch locations are known in
advance and the goal is to find the shortest path connecting them. In SOFT, the
locations and travel distances between patches are unknown, and thus the task is to
determine an uninformed exploration strategy (which necessarily use some element
of randomness), maximizing the number of patch encounters [4,51]. Out of doubt,
the theory described here is at the far end of the spectrum that begins with the mean-
field and full-knowledge assumptions of classic OFT [19,47,48].

It does not escape to us that the assumption of a foraging animal as a “brainless”
random walker (i.e., with no internal states nor sensory or memory capabilities)
should be viewed as a first-order approximation to the actual dynamics. Hence it
does not represent the ultimate description of animal information use and movement
complexity. Nevertheless, memory-less models can be realistic when the searcher
looks for dynamic targets that move away from their original location on time
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scales shorter than typical revisiting times by the searcher. In any case, limiting
models are good starting points to think on complex problems and have an extraor-
dinary success in making general scientific predictions. Importantly, they play a
complementary role to biologically more specific models and shed light on different
aspects of movement phenomena [51]. In this chapter, we hope to demonstrate that
a spatially explicit random search theory can serve as the seed for more realistic
(yet still simple) models [15] to advance in the study of information use in natural
foraging systems. New ideas and results on random searching [2,9,29,41,49] clearly
show that random walk and diffusion theory [35,43,44,51] can better fit the concepts
of search and uncertainty in behavioral ecology. Routes to integrate both theories,
the classical OFT and the recent SOFT, will be needed in order to properly answer
questions about efficiency and uncertainty of animal foraging strategies [3,4,51].

2 Some Preliminary Assumptions of the Model

We begin by considering a random searcher looking for point-like target sites in
a one-dimensional (1D) search space. We consider a lattice of targets separated
by the distance A, i.e. the targets positions are x = jA, with j integer. Suppose,
initially, that the walker starts from a distance x to the closest target. The walker
thus searches for the two nearest (boundary) targets by taking steps of length ¢
from a probability density function (pdf) p(€), which is kept the same for all
steps. In Sects. 3—6, every time an encounter occurs the search resets and restarts
over again from the same distance x to the last target found. For example, if the
position of the n-th target found is, say, x = 10A, then the next starting point will
be 104 + xp or 10A — xo. In this sense, the search for any target is statistically
indistinguishable from the search for the very first target: in both cases, the closest
and farthest targets are, respectively, at initial distances xo and A — xy from the
searcher, and the pdf p(€) of step lengths is the same. Therefore, without loss of
generality we can restrict our analysis to the region 0 < x < A, with the targets
at x = 0 and x = A being the system absorbing boundaries. This is actually
possible since leaps over targets without detection are not allowed in this study.
For an interesting account of leapover statistics in the context of Lévy flights, see
[27]. As a consequence, in the present framework the overall search trajectory can
be viewed as the concatenated sum of partial paths between consecutive encounters.
In Sect.7, the constraint of always starting from the same distance xy to the last
target found is relaxed, and searches in landscapes with targets heterogeneously
distributed are considered (see below). In every case, averages over these partial
paths will describe a random search process in an environment whose global density
of targets is p ~ 1/(mean distance between targets) = 1/A.

As commented above, at each starting process to find a new target we may or may
not assume distinct initial positions of the searcher, xo. The analysis presented in
Sects. 3—6 assumes that the forager always restarts at a fixed xo = a. However, in the
most general case x( can be drawn from a pdf 7 (xp). By considering a distribution
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Fig. 1 Diagrams showing the two key initial conditions for the one-dimensional stochastic search
model: (a) symmetric (destructive), (b) asymmetric (non-destructive). We denote by xo = a the
forager starting position at each search (¢ = A/2 in the symmetric case and a r, + € in the
asymmetric case). r, denotes the forager’s perceptive range or radius of vision

of x( values, the relative distances from the initial position of the searcher to the
targets change at each search, thus describing an heterogeneous environment (but of
global density 1/A). In Sect. 7 we consider various pdfs 7 (x¢), so to address more
realistic foraging situations in which the search landscape presents several degrees
of heterogeneity.

In particular, for the case of fixed xo = a two limiting situations are considered
(see Fig. 1 and [23,49]). The symmetric (or destructive) condition (i.e. a = A/2)
represents the situation in which, having located and consumed a food item, there
are no other nearby food items available and the forager begins the next search
positioned far away and relatively equidistant, on average, from the two closest
food items (Fig. 1). The asymmetric (or non-destructive) condition represents the
situation where, having located a food item, other nearby items exist, hence the
forager begins the next search with a close and a faraway target (see Fig. 1). Non-
destructive foraging, with a once-visited item always available for future searches,
should be considered as the paradigmatic asymmetric condition. If the foraging
dynamics is non-destructive but environmental uncertainty exists (such that the
forager may repeatedly loose track of the items outside its perceptual range), it
will systematically reproduce the asymmetric condition at each restarted search.
Even though the idea of non-destructive stochastic search perfectly maps with the
asymmetric condition, caution must be taken with the destructive searches, which
can indeed accommodate both symmetric and asymmetric conditions, depending
on the landscape structure (see Sect.7). Importantly, in the context of foraging,
the previous definitions of destructive/non-destructive search [49] have led to some
misleading criticism [22,36].

In our model the pdf p(£) of step lengths £ is the same for each statistically
independent step of the walk. The normalization condition imposes

+o00
/ p(O)dt = 1. (1)

Notice that a “negative step length” just means that a step is taken to the left
(negative) direction. We study the case in which it is equiprobable for the walker to
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go either to the left or to the right, so that p(¢) = p(—¢). In addition, we consider
the minimum step length as £y, resulting in p(¢) = 0 for |¢| < £o. An important
quantity is the radius of vision r,, i.e. the walker’s perceptive range. Whenever its
distance to the nearest site is < r,, it goes straight to the target. Events of finding a
target actually lead to truncation of steps, as discussed below. In principle, £y and r,,
are independent parameters. However, in some of our calculations we set r, = £j.
Here we are interested in the scarcity regime of low-food density, A > r, and
A > £y, with the forager’s perception about the search landscape being limited.
Hence, searches with stochastic character arise naturally.

We define the efficiency 7 of the search walk as the ratio between the total number
of target sites found, Nound, and the total distance traveled by the walker, Li:

_ N; found

n= . (2)
Llot
By writing Lyt = Nround{(L), where (L) denotes the average distance traveled
between two successive target sites found, we obtain
! 3
n= -7
(L)

In the following, we work out a closed analytical expression for (L) for
any probability density p(£). Nevertheless, the focus of this contribution is on
asymptotically power-law Lévy distributions [33] of step lengths. In particular, we
focus on Lévy walk and not Lévy flight models. In the former models, jumps are
not instantaneous but a time interval related to a finite velocity to complete the jump
is involved (see Sect. 5).

3 Calculation of (L) and (|£])

We start by calculating the average distance (L) traversed by a walker starting at
a fixed position xo = a until reaching one of the borders located at x = 0 and
x = A.In the foraging process this quantity represents the distance traveled between
two successively found target sites. Due to the perceptive range of the forager, we
demand that r, < a < A — r,. Here we follow the general method developed by
Buldyrev et al. in [10, 11].

Let us consider a walker that finds either the boundary targetat x = Oor x = A
after n steps. The distance traveled in this walk is

Ly =) ltil, @)

i=1
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where |{;| denotes the length of the i-th step. Since the walker is not in free space,
the possibility of truncation of steps makes |¢;| dependent on the position x;_; from
which the step i starts. As a consequence, the last (n-th) step depends upon xy = a,
since x,—; depends on x,_», which, in turn, depends on x,,—3, and so on, all the way
down to x¢. Therefore, we must have L,, = L,(a) as well.

By averaging over all possible walks that finds a target after n steps, we find

n

(La)(@) =Y (1), ©)

i=1

Observe now that n can take any integer value, from 1 to co, meaning that the targets
atx = 0 orx = A can be found just at the first step or after an infinitely long number
of steps. We should also remark that the probability P, of finding a target after n
steps is not uniform, being, instead, dependent on n. Thus, when we average over
all possible walks with the same starting point xo = a in the interval of length A,
we must take into consideration the different weights of walks with distinct n’s, so
that

(L) =) Pu(Ly). 6)
n=1

The above equation implicity assumes the normalization condition Y oo, P, = 1,
so to assure that a target site, either at x = 0 or x = A, is always found at the end.
In this sense, we emphasize that (L) can be also interpreted as the average distance
traversed by the searcher in the first-passage-time problem to find a boundary target
at either x = 0 or x = A. We return to this point in Sect. 6.

In order to calculate P, we define p,(x,) as the pdf to find the walker between
x, and x, + dx, after n steps. Therefore, the probability that the walker has not yet
encountered any of the targets after n steps is given by

A—ry
pro = / P (). ™

Conversely, the complementary probability of finding any of the targets in some step
n’ >n 4+ 11is thus
Pn’zn+l = 1_P;Ot‘ (8)

As a consequence, the probability of finding a target precisely after n steps reads
Pn:|Pn/2n+l_Pn’Zn|:lP;OI_P;?Etllv (9)

which, by using (7) and dropping the subindexes in the dummy x, and x,_
variables of integration, leads to

A—ry
P, = / [onmt () — pu (0)]dx. (10)

y
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Note that p,—1(x) > p,(x), since the probability that the walker finds one of the
targets grows with increasing n. From (10), we thus interpret p,—; (x) — p,(x) as a
pdf to encounter a target precisely after n steps.

By combining this fact with (6), we find

o A—ry
-y  dxl (9= puONL) ) an

which can be conveniently broken into two sums:

A—ry A—ry
Z / At (¥) (L) () — Z / dxp (L)), (12)

The integration from r, to A — r, takes into account all possible starting points x
for the last n-th step. By changing the variable in the first sum, m = n — 1, and
adding the n = 0 null term to the second sum (note that, by definition, (L, =) = 0),
we obtain

A—ry A—ry
(L) [ dxp () Lont1) / dxpu()(La).  (13)

By using (5) above, we find

A—ry
Z / dpa ()11 (). (14)

To perform the integral (14), we need to work on p, (x) first. We note that, in
general,

A—ry
pi(x;) = / Pi—1(Xi—) p(xX; — Xxi—1)dx;—1, (15)

where we have recovered the subindexes to make explicit the positions of the walker
afteri and i — 1 steps, respectively x; and x;_;. The above expression sums over all
the possibilities of reaching the site x; from the site x;,_, by performing a step of
length |x; — x;—;| with probability p(x; — x;—;)dx;—;. By recursively applying (15)
down to the very first step, we find n integrals, associated to n — 1 steps, from xy up
to x,—, which denotes the starting point of the last n-th step:

A—ry A—r, [1—1
pn(xn) - / / |:l—[ P(x:+1 _xl)dxl] pO(XO) (16)

Since the initial position xy = a is fixed, with r, < a < A — r,, then from (16) for
n=1,
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A—ry
pi(xy) = / po(x0) p(x1 — xo)dxo = p(x1 — a). (17)

Above, po(xp) is the pdf to find the walker at zero time steps. Since its initial
position is a, then we have

po(x0) = 8(xo — a), (18)

where § denotes Dirac delta function.
Now, by substituting (16) into (14) we obtain

e A=ry A=ry A—r, [n—1
(L) = % [ p(xi —Xi)dXi:|p (x )}(Iﬁl)(xn)dxn,

(19)
where, once again, we have recovered the notation x — Xx, from (14). This

expression can be put in a much shorter form if one defines the following integral
operator [10, 11]:

A—ry
LZmum=1[ P = X)pu(¥)dx, 20)

so that, by comparing with (15), p1(x1) = [Zpo]l(x1), p2(x2) = [Zpi]l(x2) =
[Z[Z pol](x2) = [£?po](x2), and so on. Using this definition, we rewrite (19) as

0 A—ry
(=" / 12" 00] (o) (1€1) Cn) . 1)
n=0""

In formal analogy to Taylor’s series expansion, we write
o0
(7 =) pol(x) = Y 1L pol (), (22)
n=0

where .# denotes the unitary operator: [.#p](x) = p(x). Equation (21) thus
becomes

A—ry
= [ 1 =2 w1 ) (23)
which, with the use of (18), leads to [10,11]

(L)(a) = [(.Z — ) {(lt)](@). (24)
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This closed analytical expression is actually essential to determine the efficiency of
the search, according to (3).

Now, in order to deal with (24), we need to calculate the average (modulus)
length of a single step starting at xo = a in the interval of length A, (|£])(a). As
discussed, in the presence of target sites at x = 0 and x = A there is the possibility
of truncation of steps. Thus, the usual average in free space, (|{|) = f_ozo [l p)dL,
which does not depend on the starting position, must be replaced by

a—{y A—ry
(e (@) = / (@ — X)p(x —a)dx + / | —ap—ads
+@—ry) /rv px—a)dx+A—r,—a) - p(x —a)dx, (25)
—00 A—ry

valid for r, + £y < a < A —r, —¥£y. The meaning of this expression becomes clearer
if we make the change of variable £ = x — a is all above integrals, to obtain

—Ly A—ry—a
(el (@) = / € p(O)d e + / € p()d ¢

—(a—ry) o

(o]

—(a—ry)
+(a—r) / pdl+ (A—r,—a) p)dL. (26)

A—ry—a

The first two integrals represent flights to the left and to the right which are
not truncated by the encounter of a target. The third and fourth represent flights
truncated by the encounter of the targets, respectively, at x = 0 and x = A. In fact,
due to the perceptive range or radius of vision, these sites are detected as soon as the
walker reaches the respective positions x = r, and x = A — r,. In addition, since
p() = 0if |€]| < £y, then (|£])(a) is given only by the second, third and fourth (first,
third and fourth) integralsin the case r, <a <r, + by (A —r,— €y <a <A —r,).

4 Discrete Space Calculation

The exact formal expression (24) can be numerically solved through a spatial
discretization of the continuous range 0 < x < A. In order to accomplish it,
we consider positions x which are multiple of some discretization length Ax,
ie.x = jAx,withj =0,1,..., M and Ax much smaller than any relevant scale of
the problem (£, r,, A). In this case, the targets at x = 0 and x = A are respectively
associated with the indexes j = 0and j = M = A/Ax (M is the integer number
of intervals of length Ax in which the range 0 < x < A is subdivided). Similarly,
we define £y = moAx and r, = m, Ax, with m( and m, integers. The continuous
limit is recovered by taking Ax — 0 and M — oo, with A = M Ax fixed.
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Our first aim is to write (16) in the discrete space. First, the set of continuous

variables, {x¢, X1, ..., X,—1, X, }, denoting, respectively, the position of the searcher
after {0,1,...,n — 1,n} steps, must be replaced by the following set of discrete
indices: {io,i1,...,in—1,in}, Wwhere x,, = i, Ax. It thus follows that each integral

over a continuous space variable must be changed to a sum over the respective
discrete index. The probability p(x,,;+1—Xm,)dx,, of reaching the site x,,+; from the
site x,, by performing the (i,, + 1)-th step of length |x,,+1 — X;u| = |im+1 — im|Ax
should be replaced by the quantity a;,,_, i,, to be determined below. With these
considerations in mind, (16) can be discretized to

M—m,—1 M—m,—1
[onli, = Z Z iy gy Ay s -+ - - Qi iy iy g [P0)ig - (27)

i0=mr+l in_1=mr+l

We observe above that a;,, ;, = 0 and a;,, | ,, = @i,.i,,4,> SinCe the probabilities of
step lengths x,,+1 — X;;, and x,, — x,,,41 are the same. In addition, we have also taken
into account that the lower and upper limits of each integral, respectively x = r,
and x = A — r,, represent extreme positions which must not be considered in the
above discrete summation, since at either of these sites the walker already detects a
target and gets absorbed.

Notice that (27) has the structure of a sequence of matrix products. Indeed, we
can regard the quantities a,_; as the matrix elements [A]y ; of a symmetric matrix 4,
with null diagonal elements and dimension (M —2m, — 1) x (M —2m, — 1) [note
that M —2m, —1 = (M —m, —1) — (m, + 1) + 1]. Accordingly, [p,,];, denotes the
in-th element of the column vector p,, of dimension M — 2m, — 1. Equation (27)
can thus be written in the form

Im

M—m,—1
lonli, = Z [A"]i, i [Polio - (28)

io=m;+1
We further observe that, since the property fri_rv 8(x — a)dx = 1 becomes
Zﬁ/[:_n’f'r ’_;11 8ji, = 1 in the discrete limit, with the initial position index defined

as i, = a/Ax, then the Dirac delta relates to the Kronecker delta via

i
S(x —a) — ﬁ (29)
as
dx — AjAx = Ax. 30)

Observe now that by the same procedure (5) becomes, in the discrete limit,

oo M—m,—1

(L) =" > lealal(1€D)]i, Ax. 31)

n=0i,=m,+1
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In this sense, each element [(L)];, of the column vector (L) of dimension M —
2m, — 1 represents the average distance traversed by the walker starting at a discrete
position i, until reaching one of the borders. By substituting (28) above, we obtain

oo M—my—1 M—m,—1

L= Y Y A uleodi[(1€D];, Ax. (32)

n=0i,=m,+1 ip=m,+1

The assignment of the index i, appears explicitly in (32) by using (18) and (29).
Summing over iy and applying the symmetry property of matrix A we obtain

0o M—m,—1

L, =Y > A0 [, (33)

n=0i,=m,+1
Finally, by summing over n we get the discrete equivalent of (24):

M—m,—1

(02 A S (e Ve P (1)) 18 (34)

i=m,+1

where we have renamed the dummy index i, simply by i. I is the (M —2m, — 1) x
(M —2m, — 1) unity matrix and (/ — A)~" is the inverse of the matrix (I — A).

In (34) we observe that [(|£])]; is determined by first calculating (|€])(x) in
continuous space from (25) or (26), and next applying the discretization of the
parameters x, A, £y and r,, according to the previous prescription.

At last, we also need to determine the matrix elements [A]; ;. We observe that
[A]x,; is the discrete representation of the probability p(x — x’)dx’ of performing a
step of length between |x —x'| = |k — j|Ax and |[x — x| +dx" = (Jk—j|+1)Ax.
Therefore, by considering

|x—x'|+Ax

P(lx —x'| <] <|x—x'| + Ax) = / p)de, (35)
[x—x]
its discrete limit implies
(k=jl+DAx
My =M= [ p0dt kg (36)
—jlAx

and where [A]; ; = 0 and [A]x; = 0if |k — j| < mo due to the minimum step
length £y. After the matrix elements [A]; ; are calculated for a given pdf p({) of step
lengths, one must invert the matrix (/ — A) so to determine the average distance (L)
and the search efficiency 7, (34) and (2), respectively, for a searcher starting from
Xxo = a = i, Ax. In the following we provide explicit calculations for Lévy random
searchers.
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5 Lévy Random Searchers

In this section we explicit the calculations for a (power-law) Lévy pdf of step
lengths.

Our emphasis is on the the mentioned destructive and non-destructive cases,
respectively corresponding to set symmetric and asymmetric initial conditions and
identified with the starting positions xo = a = A/2and xo = a = r, + Ax, as
discussed.

For Lévy random walks in free space (i.e., with no a priori spatial truncations),
the pdf of step lengths reads

o ¢
p) = %%, (37)

where the theta function @ (|¢| — £y) = 0if |£| < £y and @(|¢| —£y) = 1 otherwise,
assures the minimum step length £,. From (1) the normalization constant is given by:

)
2

% ot a1 (38)

Actually, the power-law dependence of (37) represents the long-range asymptotical
limit of the complete family of Lévy stable distributions of index « = p—1 [43,44].
Moreover, as the second moment of pdf (37) diverges for 1 < p < 3, the central
limit theorem does not hold, and anomalous superduffisive dynamics takes place,
governed by the generalized central limit theorem. Indeed, Lévy walks and flights
in free space are related to a Hurst exponent [43,44] H > 1/2, whereas Brownian
behavior (diffusive walks with H = 1/2) emerges for u > 3. In particular, for
Lévy walks one finds H = 1 for 1 < p < 2, with ballistic dynamics emerging
as @ — 1 (the case u = 2 corresponds to the Cauchy distribution). For u < 1
the function (37) is not normalizable. Therefore, by varying the single parameter
w in (37) the whole range of search dynamics can be accessed (from Brownian to
superdiffusive and ballistic).

We emphasize that these results for faster-than-diffusive dynamics hold in free
space or, as in the present context, in the free part of the search path between
consecutive target encounters. As one considers the total path as a whole, the
truncation of steps by the finding of a statistically large number of target sites
generates an effective truncated Lévy distribution [30], with finite moments and
emergence of a crossover towards normal dynamics, as justified by the central limit
theorem. This issue is discussed in more detail in Sect. 6.

By substituting (37) and (38) into (26), we find, for r, + £y <a < A —r, — ¥y,

(I€[)(a) =

A—a=r) Ll=p [1 G )/ lo)* ™+

, 1l<u<3, 2,
2 22— w) [ ] =t

(39)
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and N
(eh@ = A=2=1)

Discrete space expressions associated with (39) and (40) are readily found by
following the prescription of Sect. 4:

T S Y05)) BEE )

(e, = Mo mAx

2
moAx (1 — p) (o — mr)/mO)z_M
Tom— |:1 —x :| l<u=<3,u#2, 41
and
(el = PO ZIIEE L PO in(o —m)fmo] =2, @)

Moreover, as we mentioned in Sect. 3 (see discussion right after (26)), the results
for the remaining intervals (r, <a <r,+¥€yand A —r, — €y <a < A —r,) can
be obtained straightforwardly. Indeed, we quote them below in the continuous and
discrete limits. For r, < a < r, + {o:

C@=n) |, b=, (A—a— )/t
@) = 520 4 20 eI ]y <z
43)
and ¢
Geh@ =S B @ —a ). k=2 @

and their discrete limits:

(to—m)Ax  moAx(1 — )

(e, = =2 o
« [1 4 (M = 1__'71;)/"10)2_“} Cl<p<3u#£2, (45

and

(1, = =I5 4 OB (M — o =) mo)]. =2, (40

ForA —r,—lp<a<A—r:

b — — Iy { 2—p
<wmn=§%ﬁ§&+ﬁg%%fL_
+((l—a1—_rvp)L/€o)2—u] e rni @)
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and
(le))(@) = Lo[1 + In([(A —a — 1)@ —r)]"?/E)], =2, (48)

and their discrete limits:

moAx (1 — p) [2 ((to —my)/mo)*™*

(1), = 22— 1) 1—pu

N (M — 1y —m,)/mg)*

] l<p<3pu#2 49
l—pn

and
(€] = moAx[l +In([(M =t = m,)(to = mp)]'?/mo)]. =2 (50)
These small intervals at the extremes of the search space generally only contribute

in an important way when small steps are very frequent, as it happens for © — 3.
Finally, the matrix A is determined by substituting (37) and (38) into (36), so that

1 1 1
e e ey e SR
with A;; :0andA,-j :Olfll —jl < my.

Substitution of the expressions for (|{|),, in the respective intervals into (34),
along with (51), leads to (L),, and, therefore, also to the efficiency 7, (3), in the
case of Lévy searches.

Figure 2a, b display the efficiency of the symmetric (destructive) (@ = A/2 or
tp = M/2) and asymmetric (non-destructive) (@ = r, + Ax or ¢y = m, + 1) cases,
respectively.

It is striking the agreement between the analytical Eqgs. (3) and (24) or (34)
and numerical results. Obtained from simulations which closely resemble the
features of the above search model. The optimal search strategy corresponds
to ballistic (u — 1) and superdiffusive (4 =~ 2) dynamics, for the symmetric
and asymmetric conditions respectively, in agreement with previous mathematical
approximations [49].

6 Search Diffusivity

One way to characterize the dynamics generated by the search is by determining
how the searcher’s root-mean-square (r.m.s.) distance R, defined as function of
averages of the forager’s position x,

R =[((Ax)))]"? = [(x*) — (0)}]'2, (52)
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Fig. 2 Search efficiency, n, versus (power-law) Lévy exponent, u, for both (a) symmetric
(destructive) and (b) asymmetric (non-destructive) initial conditions. In each case, the optimal
search strategy respectively corresponds to ballistic (w — 1) and superdiffusive (© ~ 2)
dynamics. Notice the striking agreement between the analytical Eqs. (3) and (24) or (34) and
numerical results. Simulation parameters: Ax = 02, r, = {, = 1, A = 103, a = 1/2
(symmetric) and a = 2r, (asymmetric)

depends on time #, number of steps N and number of targets found Ngyyng. The
asymptotic scaling relation,

R~1t" or R~N" or R~ N/ 4 (53)

implies normal (Brownian) diffusion for the diffusion exponent v = 1/2, superdif-
fusion with v > 1/2, and ballistic dynamics in the case of v = 1.

Due to the truncation of steps and the long-term prediction of the central limit
theorem (see Sects.3 and 5), we can anticipate that a crossover should occur
between two dynamical regimes during a Lévy random search. There is an initial
regime with superdiffusive character due to the Lévy pdf of single step lengths,
occurring up to the encounter of the first targets [50]. Then, it follows a subsequent
Brownian behavior for the overall search trajectory, which, as discussed, is viewed
as the concatenated sum of partial paths between consecutive encounters. Indeed,
the initial superdiffusive dynamics could not remain as such indefinitely, once the
truncated Lévy pdf presents well-defined (finite) first and second moments.

At this point we should also observe that if the typical time scale of the search
is smaller than the crossover time then the foraging process appears as effectively
superdiffusive [7].

In the following we discuss the dynamics of a Lévy random searcher in both
regimes, starting with the initial superdiffusive one.

6.1 Characterizing First-Passage-Time Diffusivity

As discussed in Sect. 3, since finding a target either at x = O or x = A is essentially a
mean first-passage-time problem [38], we can initially ask about the r.m.s. distance
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associated with the encounter events. In other words, we start by considering the
quantities (x) g and (x?) g, which represent the average positions x and x? over all
walks departing from xy = a and ending either at x = 0 or x = A by an encounter
event. In fact, by taking into account the radius of vision r,, the detection of targets
occurs at x = r, and x = A — r,, respectively, so that we can actually write

(x>fpt =nrpo+A—-nr)ps 54

and
(XMt = 72po + (A — 1) pa. (55)

Above, po(a) and p, (a) denote, respectively, the probabilities for a walker starting
at xo = a to find the target site at x = 0 or x = A. Notice that

po(a) + pa(a) =1, (56)

since an encounter always happens at the end of the process. By substituting (54)—
(56) into the expression

prl = [(-x2>fpl - (-’C)?p[]l/zs (57

we find the correspondent r.m.s. distance of the first time passage at positions x = 0
orx = A
Rep = (A = 2r)(popa)'"". (58)

It is clear now that the r.m.s. quantities R and Ry, are not the same. In particular,
there is no first-passage-time restriction in the calculation of R. Nevertheless, the
dynamics of these two quantities are interrelated. As we show below for Lévy
random searchers, the diffusion exponent v is essentially the same for random search
walkers restricted to the interval r, < x < A —r, and random walkers in free space,
for which [18,42]

1, l<pu<?2;
4—
b= (2“),2<M<3; (59)
! >3
2’ f=2

We should stress, however, that no search activity takes place in free space, due to
the absence of target sites.

The result of (58) still demands the knowledge of py and p; . For such calculation,
we consider initially a walker that starts at xo = a and reaches the site x = A after
n steps. Following the approach [10, 11] of the preceding sections, we write

A—ry
prn(@) = / ot (Cre )t P(E = A — 1y — o). (60)
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This expression can be understood as follows: first, p,,—; (x,—1)dx,—1 represents the
probability for the walker to be located in the interval [x, 1, x,—; +dx,—1) aftern—1
steps; since, up to this point, no target has been found yet, then r, < x,_; < A —r,.
Second, we also have to multiply the probability that the next (n-th) step will reach
the target at x = A and terminate the walk; so, P({ > A —r, — x,—1) gives the
probability that the n-th step has length £ > A — r, — x,,—1, and thus certainly finds
the target at x = A (recall that steps of length £ > A — r, — x,,—; end up truncated).
Finally, the integral above sums over all possible values of x,_;, consistently with
this reasoning.

Since all walks are statistically independent, the total probability of walks with
any number 7 of steps that start at xo = a and terminate at x = A is simply a sum
of p, , over all possibilities:

pi(@) =) pia(a), (61)
n=1

that is,
o A—ry
p@=> [ patdnaPEzi-n-xo). 6)
n=1

Now, by changing the variable m = n — 1, we obtain

S A=ry
p@=3 [ puoadn, Pz 0=~ ). ©3)

Note that the above equation is similar to (14). Thus, from the same procedure
detailed in Sect. 3, we find [10, 11]

pa)=[(F -L)'"PU=L—r,—a) (64)

We now take the discrete limit of (64) by following the general procedure
described in Sect. 4. First of all, as before, we set x = iAx, where i = m, +
1,...,M —m, — 1. Equation (64) thus becomes

Pryw = [(1 - A)_IPL()]s (65)

where, now, p; ,, and P,, are (M — 2m, — 1) x 1 column vectors.
To calculate P, in (65), we write in the continuous limit

[e.]

PU>A—ry—a)= / p(0)de, (66)

A—ry—a
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Fig. 3 R.m.s. distance related to first-passage-time diffusivity, Rfp, defined in (57), versus
average distance traveled by the searcher between consecutive encounters, (L), for both
(a) symmetric (destructive) and (b) asymmetric (non-destructive) initial conditions. Notice the
nice agreement between analytical (solid lines), Eq. (58), and numerical (symbols) results for all
values of j considered. Simulation parameters: Ax = 0.2, r, = £, = 1, A = 103, a = 1/2
(symmetric) and @ = 2r, (asymmetric). The diffusion exponents v(it), defined in (69), assume the
values shown in (70), in close agreement with the theoretical prediction [18,42] for Lévy walks in
free space, (59)

which, after integration, should go through the discretization process, leading to P,
as function of the discrete settings for a, A, r, and £y. Analogously to the example of
Lévy walks in Sect. 5, we obtain in the continuous and discrete limits, respectively,

L A=r,—a\ ™"

Pl>=A—r,—a)=-—— 67
€za-n-a =3 (27 ©7)

and )

1 (M —m, — Lo —

P, = E ( mOr ) s (68)
ifr,<a<A—r,—4y(orm, <o <M —m, —mg),and Pl >A—r,—a) =
P, = 1/2 otherwise. The same protocol can also be used to calculate po(a) (or

Do, in the discrete limit). However, we can always use (56), so that we actually
only need to calculate either p; or po.

In the short-term regime (i.e. first-passage-time diffusivity), we must also
comment on the possible validity of (58) to times (or number of steps) in which a
boundary target has not been reached yet. In fact, although the calculation described
in (54)—(58) explicitly refers to the encounter of extreme sites at x = 0 and x = A,
any two sites at positions r, < x; < @ anda < x; < A — r, can be assumed in the
mean first-passage-time formulation. Thus, one can actually “follow” the dynamics
of the searcher as it passes for the first time at positions x; or x,, apart each other by
a distance (x — x1). In particular, if the ratio between the initial and total distances,
(@ —x1)/(x2 — x1) = (@ —r,)/(A —2r,), is kept fixed, the evolution of Ry, with
the average distance traversed can be determined (see below).
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In Fig.3 we compare the prediction of (58) with results from numerical
simulation. By considering unity velocity for the Lévy searcher, the average time
to encounter a target is identical to the average distance traversed (L). Thus, we can
actually probe the asymptotic relation,

Repe ~ (L), (69)

for several distances (x, — x1), as discussed above. As Fig. 3 indicates, we have a
nice agreement between the analytical and numerical results. Importantly, just as in
the case of a Lévy walker in free space [18,42] (i.e. with no targets present, (59)), we
identify ballistic, superdiffusive and Brownian short-term regimes in the respective
ranges | < pu < 2,2 < pu < 3and p > 3, with (analytical and numerical) diffusion
exponents:

0.99, u = 1.5
0.85, u =2;
= 70
YTV 067, u=25: (70)
0.51, L = 3.5.

Observe that, in this case in which searches and encounters are actually being
performed, the effect of hitting the boundaries are more pronounced for intermediate
values of p. Indeed, for ¢ — 1 and u — 3 there is a fair agreement between the
values of v given by (59) and (70). On the other hand, for intermediate u = 2.5
the value of v above should be compared with that of the free-space Lévy walker,
v =0.75.

6.2 Characterizing Search Dynamics Diffusivity

The dynamics of the long-term regime (i.e., after the encounter of a large number of
targets, Niouna > 1) can be worked through a suitable random-walk mapping. We
describe below such approach for the asymmetric (non-destructive) case, in which
the walker starts from a fixed distance xo = a = r, + Ax to the closest target, with
Ax < r, < A. Generalization for any x is possible.

We start by recalling that the set of targets are placed at positions x = i A, where
i is an integer (negative, null or positive) number. If the searcher begins the non-
destructive walk at xo = a = r, + Ax, then it can find either the target at x = 0
or x = A. When the target at x = A is encountered, the forager can restart the
search walk fromx = A —r, — Ax or x = A + r, + Ax (in both cases, the
distance to the closest site at x = A remains a = r, + Ax; here we take any of
these two possibilities with 50 % probability). After, say, a sequence of Nggyna = 5
encounters, one possible set of visited targetsis {1, A,0,—A, —2A}. Notice that after
the first target (located at x = A) is found, the searcher returns to it in the next (i.e.
second) encounter, as allowed in the non-destructive case. By recalling that py and
p,. denote, respectively, the probabilities to find the closest and farthest targets, and
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taking into account the radius of vision r,, one generally has four possibilities after
the encounter of the first target at x = A:

1. Restarting from x = A + r, + Ax and detecting the closest site at x = A + r,
(with probability pgy/2).

2. Restarting from x = A + r, + Ax and detecting the distant site at x = 24 —r,
(with probability p;/2).

3. Restarting from x = A — r, — Ax and detecting the closest site at x = A — r,
(with probability pgy/2).

4. Restarting from x = A — r, — Ax and detecting the distant site at x = r, (with
probability p;/2).

These events correspond to respective displacements —Ax, (A —2r, — Ax), Ax and
—(A —2r, — Ax). In the limit A > r, > Aux, the generalization of this result for
the possibilities that follow after the encounter of any target leads to a map of the
search path onto a distinct random walk, which visits the sites x = i A with “steps”
of approximate length s = —A, 0 or A, drawn from the pdf

£(s) = pod(s) + %S(S N+ %a(s +2). 1)

Now, from the standard theory of random walks [39], with statistically independent
steps taken from a pdf of finite first and second moments such as (71), we write the
actual rm.s. distance after Nioung > 1 “steps” (i.e. Nrounda > 1 targets found) as

R = Nfi){lid (S2> - (5)2]1/2, Nfound > 17 (72)
where, by using (71), we find (s) = 0, reflecting the equiprobability to move left or
right after each encounter, and (s?) = p; A2, so that

R=2p)” N2 Niowna > 1. (73)
Note the presence of Brownian dynamics (diffusion exponent v = 1/2) in the long-
term regime, in agreement with the central limit theorem. In 2D or 3D, the rate
of convergence to the Brownian diffusive regime may be slower than in 1D. This
is so because higher spatial dimensions allow very large steps without encounter
truncations. However, if infinite steps would be rigorously allowed, the possibility
of non-convergence would exist, even in the long-run. Further analyses are needed
to elucidate the robustness of the 1D analysis presented in this section at higher
dimensional systems. Also important is to know up to which extent the 1D mapping
between random walk steps and target encounters is valid at higher dimensions.

In Fig.4 we compare the prediction of (73) with results from numerical simu-
lation, with a nice agreement displayed. It is also worth to note that, even though
the expected Brownian diffusion exponent, v = 1/2, arises for all values of u
considered, r.m.s. displacement values are larger for Lévy exponents u closer to the
ballistic (© — 1) strategy.
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Fig. 4 R.m.s. distance related to the search dynamics diffusivity, R, defined in (52), versus the
number of targets found, Ngound, for asymmetric (non-destructive) initial condition. Notice the nice
agreement between analytical (solid lines), (73), and numerical (symbols) results for all values of
considered, with Brownian diffusion exponent, v = 1/2, as predicted by the central limit theorem
(see inset). Simulation details: we let 10* searchers look for 10% targets each. The landscape was
configured with 100 targets interspersed by a distance A. The restarting distance to the last target
found is fixed, @ = r, + Ax. Simulation parameters: Ax = 0.2, r, = £, = 1 and A = 103

One last comment regards the connection of the r.m.s. distance, (73), written
as function of the number of targets found, with its time dependence. Indeed, as
expected from standard theory of random walks [39], both dependences should be
asymptotically described by the same diffusion exponent, as in (53). Indeed, this
fact can be justified since, on average, the number of targets found grows linearly
with time. Therefore, a Brownian search dynamics, R ~ 112 also emerges in the
long run.

7 Search in Heterogeneous Landscapes: Distributions
of Starting Points

Up to this point, no heterogeneity in the targets landscape has been taken into
account. In other words, in each search scenario considered (either asymetric or
symmetric), the forager has always restarted the search from the same departing
position xg = a. Though useful as limiting cases, these situations generally do not
correspond to actual search processes, which usually take place in environments
with distances to the last target found distributed according to some pdf. Therefore,
we now consider (see [37]) a random search model in which diverse degrees of
landscape heterogeneity are taken into account by introducing fluctuations in the
starting distances to target sites in a 1D search space, with absorbing boundaries
separated by the distance A. The targets’ positions remain fixed at the boundaries
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of the system. Fluctuations in the starting distances to the targets are introduced by
sampling the searcher’s departing position after each encounter from a pdf 7 (xo)
of initial positions xy. Importantly, 7(xy) also implies a distribution of starting
(a)symmetry conditions with respect to the relative distances between the searcher
and the boundary targets.

This approach allows the typification of landscapes that, on average, depress
or boost the presence of nearby targets in the search process. Diverse degrees of
landscape heterogeneity can thus be achieved through suitable choices of 7 (xg).

For example, a pdf providing a distribution of nearly symmetric conditions
can be assigned to a landscape with a high degree of homogeneity in the spatial
arrangement of targets. In this sense, as discussed in Sect. 2, the destructive search
represents the fully symmetric limiting situation, with the searcher’s starting loca-
tion always equidistant from all boundary targets. On the other hand, a distribution
7(xo) which generates a set of asymmetric conditions is related to a patchy or
aggregated landscape. Indeed, in a patchy landscape it is likely that a search process
starts with an asymmetric situation in which the distances to the nearest and farthest
targets are very dissimilar. Analogously, the non-destructive search corresponds to
the highest asymmetric case, in which at every starting search the distance to the
closest (farthest) target is minimum (maximum). Finally, a pdf 7 (x¢) giving rise to
an heterogeneous set of initial conditions (combining symmetric and asymmetric
situations) can be associated with heterogeneous landscapes of structure in between
the homogeneous and patchy cases.

More specifically, the limiting case corresponding to the destructive search can
be described by the pdf with fully symmetric initial condition,

m(xo) = 8(xo — A/2). (74)

This means that every destructive search starts exactly at half distance from the
boundary targets, just as considered in the previous sections. In this context, it
is possible to introduce fluctuations in xy by considering, e.g., a Poisson-like pdf
exponentially decaying with the distance to the point at the center of the search
space, xo = A/2:

7(x9) = Aexp[—(A/2 — x0)/], (75)

where r, < xo < A/2, A is the normalization constant and 7 (x¢) = (A — x¢) due
to the symmetry of the search space (see also below).
On the other hand, the highest asymmetric (non-destructive) limiting case is
represented by
7w (x0) = 8(xp — ry — Ax), (76)

so that every search starts from the point of minimum distance in which the nearest
target is undetectable, xo = r, + Ax, with Ax < r,, as also previously discussed.
Similarly, fluctuations in x regarding this case can be introduced by considering a
Poisson-like pdf decreasing with respect to the point xo = r,:

7(xo) = Bexp[—(xo — 1)/, 77
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where r, < xo < A/2, B is the normalization constant, and 7 (x¢) = 7 (A — x¢). In
(75) and (77), the parameter « controls the range and magnitude of the fluctuations.
Actually, the smaller the value of «, the less disperse are the fluctuations around
xo = A/2 and x¢ = r,, respectively.

In the case that, instead of always departing from the same location after an
encounter, the searcher can restart from any initial position x¢ in the range r, <
Xo < A—r, chosen from a pdf 7 (xg), the fluctuating values of x( imply a distribution
w({L)) of (L)(xo) values. Therefore, the average distance traversed between two
successive target sites becomes

. (LYmax
) = / (Lyw((L))d (L), (78)

where (L)min and (L)max denote the minimum and maximum values of (L)(xo),
respectively. Notice that

-1

L) gy,

(L)+d(L)
wiLpdiL) = [ 7 (x})dxh = /(L) r(ap | 4422
0

KL).(L)+d(L)]

(79)

Above, the lower symbol in the first integral means that the integrand only
contributes to w({L)) if x; is associated with a value in the range [(L), (L) +d (L)).
Since searches starting at x, are statistically indistinguishable from searches starting
at A — xo (in both cases the closest and farthest targets are at distances x, and
A — x¢ from the starting point), the symmetry of the search space with respect to
the position x = A/2 implies (L)(x9) = (L)(A — x¢). As a consequence, any
given value of (L) can be always obtained for two distinct starting positions x,
one in each half of the search interval. By denoting these points as x;, = x4 and
)C(/) = X0,B, with r, < X0.4 < )k/2 and )k/2 < X0,B < A —r,, where X0.4 = A — X0,B>

we write
-1
+ | 7(xp)
X{=xX0,4

which, when substituted into (78), leads to

d(L)
dx;

d{L)

!
dx)

w((L))d(L) = (n(x())

—1
) d(L).
T 80

PR A—ry

A/2
( )Z/ (L) (x0,4)7 (x0,4)dx0.4 +/ (L)(x0.8)7(x0,8)dX0.B- (81)
ry A2

Next, by dropping the subindices A and B, we obtain

A—ry 22
D) = / (L) (xo) (o) dxo = 2 / (Lyxor(ro)dxo,  (82)
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where we have used that w(xo) = m(A — xp), from which the average efficiency
with a distribution of starting positions can be calculated:

N1
n= ((L>) , (83)
or explicitly [37], y
2
7=1/ (2 / <L>(xo)n(xo)dxo) . (84)

In order to analyze the effect of fluctuations in the starting distances, the
integral (84) must be evaluated. The detailed calculation of (L)(x¢) has been
described in Sects. 3 and 4 for any pdf p({) of step lengths, and in Sect. 5 for Lévy
searchers in particular. Nevertheless, no explicit analytic expression for (L})(xo),
(24), is known up to the present. This difficulty can be circumvented by successfully
performing a multiple regression, so that

Ny Nll

(L)(xo) = Y > ayjxju, (85)

i=0 j=0

as indicated by the nice adjustment shown in Fig. 5c, obtained with N, = 10 and
N,, = 8. Thus, the integral (84) can be done using (75) or (77) and (85). Results are
respectively displayed in Fig. 5a, b for several values of the parameter .

By considering fluctuations in the starting distances to faraway targets through
(75), we notice in Fig. 5a that the efficiency is qualitatively similar to that of the
fully symmetric condition, (74). Indeed, in both cases the maximum efficiency is
achieved as u — 1. For 1 < p < 3 the presence of fluctuations only slightly
improves the efficiency. These results indicate that ballistic strategies remain robust
to fluctuations in the distribution of faraway targets.

On the other hand, fluctuations in the starting distances to nearby targets, (77), are
shown in Fig. 5b to decrease considerably the search efficiency, in comparison to the
highest asymmetric case, (76). In this regime, since stronger fluctuations increase
the weight of starting positions far from the target at x = 0, the compromising
optimal Lévy strategy displays enhanced superdiffusion, observed in the location of
the maximum efficiency in Fig. 5b, which shifts from pqp ~ 2, for the delta pdf and
(77) with small ¢, towards (o — 1, for larger o (slower decaying m(xo)). Indeed,
both the pdf of (77) with a vanishing « and (76) are very acute at xo = r, + Ax.

As even larger values of o are considered, fluctuations in the starting distances
to the nearby target become non-local, and (77) approaches the o« — oo limiting
case of the uniform distribution, 7 (xg) = (A — 2rv)_l (see Fig. 5b). In this situation,
search paths departing from distinct xo are equally weighted in (84), so that the
dominant contribution to the integral (and to the average efficiency 77 as well) comes
from search walks starting at positions near xo = A/2. Since for these walks
the most efficient strategy is ballistic, a crossover from superdiffusive to ballistic
optimal searches emerges, induced by such strong fluctuations. Consequently, the
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Fig. 5 (a) Robustness of the ballistic optimal search strategy with respect to fluctuations in
the distances to faraway target sites. In the case of Lévy random searchers, the average search
efficiency 7, (84), is always highest for 1 — 1 (ballistic dynamics), for any value of the parameter
«a of the Poissonian fluctuations around the maximum allowed distance, xo = A/2, (75). Cases
with uniform and without any (§-function) fluctuation are also shown. Solid lines are a visual
guide. (b) Shift in the optimal search strategy towards an enhanced superdiffusive dynamical
regime, as landscapes with distinct degrees of heterogeneity are considered. For Lévy random
searchers (solid symbols), 7 is maximized for smaller opt(er) (faster diffusivity) in the case
of wider (larger-o) Poissonian fluctuations in the distances to nearby target sites, (77). Solid
lines are a visual guide. Empty symbols locate the maximum 7) obtained from the condition

S = popr.a) = 3<L)/3H|u=uopl = 0, with f(u., @) given by Eq. (86). (¢) Nice adjustment
of the average distance (L) traversed between consecutive findings by a Lévy random searcher
starting at position x(. Results were obtained by numerical discretization of (24) (solid lines)
and multiple regression (symbols), (85). (d) Determination of the optimal search strategy of Lévy
random searchers with Poissonian fluctuations in the distances to nearby targets, (77). The above
mentioned condition provides the optimal Lévy exponent, jiopt, associated with the strategy of
maximum average efficiency. Inset: since strategies with ;¢ < 1 are not allowed (non-normalizable
pdf of step lengths), the highest efficiency is always obtained for ¢ — 1 as fluctuations with
o > Qcross ~ 312.2 are considered, marking the onset of a regime dominated by ballistic optimal
search dynamics. We took A = 103 and r, = 1 in plots (a)—(d)
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efficiency curves for very large o (Fig. 5b) are remarkably similar to that of the fully
symmetric case (Fig. 5a).

We can quantify this crossover shift in f1op by defining a function ftop (@) that
identifies the location in the p-axis of the maximum in the efficiency 7, for each
curve in Fig. 5b with fixed «. We notice that eventually a compromising solution
with pop(0r) > 1 cannot be achieved, and an efficiency function 7 monotonically
decreasing with increasing p arises for & > ross. In this sense, the value oo
for which such crossover occurs marks the onset of a regime dominated by ballistic
optimal search strategies.

The value of oy for each « can be determined from the condition f(p =

Popts @) = O{L)/0pt|u=puop = O, so that, by considering (77), (84) and (85),

i . + i—k
E:[zyﬁki<(ﬂ”d_k_eﬂun(%) )]}’
LU —R

(86)

Ny Ny

fla) =243 "% a; jul ™!

i=0j=0

with A = {2a[exp(—r,/a) —exp(—A/(2a))]} . Solutions are displayed in Fig. 5d
and also in Fig.5b as empty symbols, locating the maximum of each efficiency
curve. In addition, the crossover value can be determined through f(u — 11,0 =
Qcross) = 0. In the case of the pdf (77), we obtain (Fig.5d) ocross =~ 312.2 for
A =103 and r, = I (regime A > r,).

We also note that the scale-dependent interplay between the target density and the
range of fluctuations implies a value of ooss Which is a function of A. For instance,
a larger A (i.e., a lower target density) leads to a larger o055 and a broader regime
in which superdiffusive Lévy searchers are optimal. In fact, the above qualitative
picture holds as long as low target densities are considered.

Moreover, since ballistic strategies lose efficiency in higher dimensional spaces
[40] (see Sect. 8), it might be possible that in 2D and 3D the crossover to ballistic
dynamics becomes considerably limited. In spite of this, enhanced superdiffusive
searches, with 1 < pop < 2, should still conceivably emerge due to fluctuations in
higher-dimensional heterogeneous landscapes.

From these results we conclude that, in the presence of Poissonian-distributed
fluctuating starting distances with o < o(oss, LEVY search strategies with faster
superdiffusive properties, i.e. 1 < pop < 2, represent optimal compromising
solutions. In this sense, as local fluctuations in nearby targets give rise to land-
scape heterogeneity, Lévy searches with enhanced superdiffusive dynamics actually
maximize the search efficiency in aggregate and patchy environments. On the other
hand, for strong enough fluctuations with @ > s, @ crossover to the ballistic
strategy emerges in order to access efficiently the faraway region where targets are
distributed.

A recent numerical study [23], looking at how different starting positions
in the target landscape modify optimal Lévy search strategies, found equivalent
results. Our more detailed analysis provides further mechanistic explanation linking
landscape features with optimal random search strategies.
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8 Discussion

Optimal foraging is one of the most extensively studied optimization theory in ecol-
ogy and evolutionary biology [25,26,28,46,48]. To fully develop a comprehensive
theory, it is necessary to understand separately (but not isolatedly) the contribution
and the evolutionary trade-offs of the different components of the foraging process
(e.g., search, taxis, patch exploitation, prey handling, digestion times). Indeed, the
foraging sequence [45,46] can be divided in: pre-encounter (search and taxis), and
post-encounter (pursuit, handling, digestion, and ingestion) events [8, 12,45].

The framework developed here is focused exclusively on the search component
of the foraging process. SOFT clearly illustrates that neither ballistic nor Lévy
strategies should be considered as universal [22, 36], since realistic fluctuations
in the targets distribution may induce switches between these two regimes. Most
importantly, SOFT shows which basic elements need to be accounted for to perform
efficient stochastic searches, and identifies why optimal solutions can change with
the environment conditions. In particular, the theory demonstrates that the quantities
(L) and (|£|) depend on the initial position of the searcher in the landscape (Sect. 3).
Indeed, the initial searcher-to-target distances are essential to determine the best
stochastic strategies (Sect. 7). When nearby and faraway targets exist, the trade-off
between either scanning the closeby targets or exploring new territory for faraway
ones needs to be efficiently solved. In such scenarios, stochastic laws governing
run and tumble movement patterns come into play and have a clear impact on the
search success, with Lévy-like features becoming beneficial [2, 5,49, 51]. On the
other hand, if such a trade-off does not exist, with all the targets being in average
faraway, tumbling is not necessary at all, and ballistic strategies emerge as optimal.

In the overall search process, the diffusive properties of the searcher (Sect. 6)
need to be considered both between targets (i.e. first passage times) and after
encounter dynamics (i.e. flight truncation and reorientation due to encounter).
Two regimes exist, a short-term superdiffusive optimal one, between encounters of
successive targets, and a long-term Gaussian diffusive one, which describes the sum
of the partial paths to find the targets. It is the balance between such diffusivities
that sets the conditions for the emergence of particular optimal strategies.

Our main results are expected to hold in larger dimensions [6,37,49]. Although
the random search problem in 1D is far from a mean field approximation, most
of the results are qualitatively valid in higher-dimensions [6]. Indeed, in 2D and
3D the finding of targets does occur with much lower probability: the extra spatial
directions yield a larger exploration space, thus smaller efficiencies. However, the
straight lines, during single search steps, are radial 1D locomotions, hence, many
of the properties observed in a 1D random search are kept at higher dimensions.
Moreover, note that the proliferation of directions to go in high dimensional systems,
can decrease the effect of fluctuations in target avaliability. In 2D and 3D systems,
the influence of 7 (xp) on optimal search strategies is expected to be qualitatively
similiar but weaker than in 1D systems. Being simple enough to allow a general and
complete analysis, the 1D case is thus very useful in establishing maximum limits
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for the influence of landscape spatio-temporal heterogeneities in random search
processes.

Further extensions of the theory should involve a better understanding of the
landscape structure contribution to the search efficiency [37] and to the build up of
the efficiency curves. In the latter case we can consider the encounter efficiency of
nearby and faraway targets separately in order to identify the different contribution
of each partial efficiency to the total efficiency. We believe that exciting theoretical
advances will be achieved by adequately scaling foraging processes in time and
space, seeking a fertile middle ground between the concepts derived from classic
OFT and the ones coming from the here presented Stochastic Optimal Foraging
Theory (SOFT).
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Lévy or Not? Analysing Positional Data
from Animal Movement Paths

Michael J. Plank, Marie Auger-Méthé, and Edward A. Codling

Abstract The Lévy walk hypothesis asserts that the optimal search strategy for a
forager under specific conditions is to make successive movement steps that have
uniformly random directions and lengths drawn from a probability distribution that
is heavy-tailed. This idea has generated a huge amount of interest, with numerous
studies providing empirical evidence in support of the hypothesis and others criticis-
ing some of the methods employed in these. The most common method for identi-
fying Lévy walk behaviour in movement data is to fit a set of candidate distributions
to the observed step lengths using maximum likelihood methods. Commonly used
candidate distributions are the exponential distribution and the power-law (Pareto)
distribution, both on an infinite and a finite (truncated) range. Data sets for which
the relative fit of a power-law distribution is better than that of an exponential are
typically classified as Lévy walks. However, the movement pattern of the Lévy walk
is similar to that of an animal that switches between two behavioural modes in
a composite correlated random walk (CCRW) movement process. Recent studies
have shown that standard approaches can misidentify the CCRW process as a Levy
walk. This misidentification can be due to the methods used to sample and process
the data, a failure to assess the absolute fit of the candidate distributions, or the
lack of a strong alternative model. In this chapter, we simulate a CCRW process
and show that including a composite exponential distribution in the set of candidate
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distributions can alleviate the problem of misidentification. However, in some cases
sampling and processing of the CCRW data can cause a power-law distribution to
have a better fit than a composite exponential. In such cases, the absolute goodness-
of-fit of the power-law distribution is typically poor, indicating that none of the
candidate distributions are a good model for the data. We discuss the relevance of
these results for the analysis of empirical movement data.

1 Introduction

1.1 Lévy Walks

The Lévy walk hypothesis, originally posed by Klafter et al. and Cole [19,34] and
subsequently by Viswanathan et al. [64], asserts that the optimal search strategy for
a forager with limited perceptive range and no prior knowledge of the distribution
of food in the environment is to move according to a Lévy walk (LW). This means
taking a series of steps of (uniformly) random direction and of length / drawn from
a probability distribution that is heavy-tailed, meaning that it does not have finite
variance [55]. The most commonly used such distribution is the Pareto distribution,
with probability density function

p(l) =CI™", 1> Lnin, (D
where 1 < p < 3 and C is a normalization constant given by C = (i — l)lgi;l.
Note that, in genral, there may also be steps of length / < Iy, but the distribution
of these step lengths is not important and it is the power-law tail described by (1)
that characterises a Lévy walk.

In foraging models, steps are truncated at points where the forager finds a food
item [64] and so the search strategy is sometimes referred to as a truncated Lévy
walk (TLW). Note that a ‘pure’ Lévy walk where steps are not truncated after
encounters is no more efficient as a search strategy than movement in a straight
line, as demonstrated in [10]. Similarly, almost all theoretical LW search models
rest on the assumption that each new search begins with a food item just outside the
perceptive range of the forager [64]. This can be thought of as representing a highly
patchy distribution of food. However, the advantage of any LW strategy is rapidly
diminished when each search begins with the nearest food item significantly further
away than the forager’s perceptive range [31,51].

The original Lévy hypothesis was motivated by the presence of heavy-tailed
power-law distributions in empirical movement data from plankton [34], fruit
flies [19] and albatrosses [64]. The Lévy walk hypothesis has since generated a
huge amount of interest, with numerous studies providing empirical evidence in
support of the hypothesis [1, 3, 6, 15, 20, 30, 40, 48, 53, 57], and others criticising
some of the methods employed in these [22-24, 56]. In tandem with the empirical
evidence, several studies have investigated the efficiency of Lévy walks in various
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theoretical search scenarios. For recent reviews of Lévy walks as models of animal
movement, see [31] and [67].

A key property of a non-truncated Lévy walk is that it is scale-free, meaning that
the sampling scale used by the observer should not affect the observed properties
[52]. In particular, a Lévy walk (LW) is known to be superdiffusive at all scales
[65, 66]. However, a truncated Lévy walk cannot be truly scale-free at all spatial
scales given the truncation inherent in the process when food items are encountered.
Similarly, when considering an environment of finite size or the upper limit to
the speed an animal can achieve, it is not possible to have arbitrarily large step
lengths as could (theoretically) be generated in both the pure LW and the TLW.
Hence the scale-free nature of Lévy walks is perhaps over-emphasised and looking
for scale-free characteristics in observed movement data may not be a reliable way
of detecting Lévy walk behaviour.

1.2 Correlated Random Walks and Composite Strategies

A more classical approach for modelling movement behaviour is the correlated
random walk (CRW), in which there is some directional persistence from one
step to the next [18,42]. In a CRW, step lengths are drawn from a distribution
with finite mean and variance, such as an exponential distribution. An important
property of such distributions is that they satisfy the conditions of the central limit
theorem, which implies that the random walk is diffusive in the long-term. Changes
in direction between successive steps are not uniformly distributed, but are drawn
from some circular distribution that is typically peaked about O, for example the
von Mises distribution [39]. The more concentrated this turning angle distribution
is about 0, the more directional persistence the CRW will have in the short term.

In contrast to a Lévy walk, a simple CRW is not scale-free and the sampling rate
used by the observer is known to have a significant effect on the apparent properties
of the movement pattern in a CRW [14, 16, 28]. Although CRWs are always
diffusive over sufficiently long timescale, they can appear superdiffusive over short
timescales, depending on the level of persistence in the movement [5,63,65]. In this
context, it should be noted that a TLW will also appear diffusive at large timescales
due to the truncation of long steps.

The basic CRW essentially assumes that movement is modelled as a stationary
process, meaning that the parameters governing the persistence in movement do
not change with time or space. However, many animals have been observed to
display intermittent behaviour, where the forager’s movements consist of a mixture
of movement strategies (possibly different types of CRWs) [7,32,35,37,41]. One
approach to modelling this behaviour is to use a composite random walk. This
is a random walk consisting of more than one distinct behavioural phase, e.g. an
extensive phase, in which the forager covers large distances with relatively little
turning, and an intensive phase, in which the forager searches a smaller area with
a more tortuous path. (Intensive searching is sometimes termed an area-restricted
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search [36].) A composite random walk model was first proposed as an alternative
to the Lévy walk strategy by Bénichou et al. [12, 13]. Benhamou [10] proposed
a composite two-phase random walk model for a forager searching for food in a
patchy food environment based on memory of encounters. In the first phase, termed
the intensive phase, the forager moves according to a Brownian random walk. If
after a predetermined amount of time (called the giving-up time) the forager has not
located a food item, it switches to a ballistic (straight line movement) strategy until
it finds a food item. It then reverts to the intensive strategy to begin the next search.
Benhamou [10] showed that this simple composite strategy can be more efficient
(i.e. the mean distance travelled between food items is lower) than a truncated Lévy
walk.

Reynolds [49, 50] subsequently showed that in certain contexts an even higher
efficiency could be obtained by switching to a TLW in the second phase of the
composite process, rather than to ballistic motion (which can be viewed as a
special case of a LW with ¢ — 1). Bartumeus and Levin [5] considered a “Lévy
modulated” correlated random walk (CRW), where random reorientations, which
break the short-term directional persistence of the CRW, occur after periods of
time drawn from a power-law distribution. It was shown that this can increase the
efficiency of the search strategy in certain contexts.

1.3 Determining Movement Processes
Jrom Observational Data

Given the current interest and the potential implications of Lévy walks being
observed in real animal movement data, it is important to be able to determine
robustly that: (i) the observed data set is well represented by a heavy-tailed
distribution, and (ii) that the movement mechanism giving rise to this observed
pattern is actually a LW process and not some other mechanism. It is the inter-
pretation and validity of these two points across a range of studies that had caused
much of the current controversy and discussion in the recent movement ecology
literature. For example, with respect to (i), [22, 24] and [23] have demonstrated
that many (but not all) of the recent studies that have reported LW behaviour in
animal movement data may have been flawed or have wrongly interpreted the data.
Similarly, with respect to (ii), a number of recent studies have shown that there
are variety of movement mechanisms far removed from a LW that can give rise to
heavy-tailed or scale-free characteristics in empirical observations of the movement
process [17,27,31,44,45,49]. Hence, although the the Lévy walk may be a suitable
phenomenological description for a wide variety of movement processes, it may
have limited relevance as an underlying mechanistic process in all but the simplest
of biological scenarios.
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2 Sampling and Processing of Movement Path Data

Standard techniques for analysing movement data are usually based on an arbitrary
(spatial or temporal) discretization of the observed movement path [8, 9, 14, 16,
33, 59]. This discretization may be due to experimental constraints (as discussed
in the next sections) or may be deliberate in order to determine how particular
path properties change at different scales [e.g. 16, 28]. By considering features
such as the distributions of turning angles and step lengths across the movement
path, it is possible to determine the most likely underlying behavioural process(es)
that generate the observed pattern, e.g. distinguishing taxis from kinesis [11, 18].
More sophisticated statistical techniques such as hidden Markov models (HMMs)
and state-space models (SSMs), as reviewed in [43], have recently been developed
to directly infer underlying behavioural processes and parameters from movement
data sets. In contrast, many of the recent studies that look for LW characteristics in
observed movement data are often based only on a simple analysis of the observed
step lengths where a power-law and exponential distribution are the only candidate
models considered in a maximum likelihood test [2,22,23].

2.1 Discrete Time Sampling

Animal foraging paths are often observed by recording the forager’s position at
equally spaced time intervals [e.g. 3,40, 48]. The distances between successive
positional fixes are then used to provide a sample of observed step lengths.
Much of the empirical evidence for the Lévy walk hypothesis stems from fitting
probability distributions to step length data obtained in this way and testing whether
a power-law distribution provides a better fit than other candidate distributions.
However, it is important to understand how the sampling rate imposed by the
observer may affect the data that is subsequently generated. In most empirical stud-
ies the aim is to collect data with as high a resolution as possible and this sampling
rate is, therefore, not imposed by choice but is due to experimental or technological
limitations, e.g. a limited number of signals per day from a GPS tracker.

In such studies, the forager’s path is sampled at discrete time points and this
imposes a sampling scale on the random walk. Although true LW are scale-invariant,
the question of whether truncated LW, composite CRW, or indeed other random
search models are invariant to the sampling scale used by the observer has received
relatively little attention. Reynolds [49] looked at the effect of subsampling a
LW and analysing the rediscretised data. However, this study only examined the
difference in the value of the exponent between the original step length distribution
and the distribution fitted to the rediscretised data. No comparison was made
between the power-law distribution and any other candidate distribution, nor was the
dependence on the sampling rate or the exponent of the underlying LW investigated.
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Studies on the scale-invariant properties of movement paths, in particular the
scaling of mean squared displacement with respect to time, have compared LW
to simple CRW observed over different time scales [5, 65], but have not looked at
composite CRW.

Plank and Codling [45] considered a composite CRW model in which the forager
has two behavioural phases: an extensive phase characterised by a high speed
and low tortuosity; and an intensive phase characterised by low speed and high
tortuosity. The forager’s position was recorded using a range of different sampling
frequencies. A power-law distribution and an exponential distribution were fitted
to the resulting data and the relative goodness-of-fit of these two distributions
compared. It was shown that the sampling scale can have a dramatic effect on
the observed data and that this standard fitting method can produce potentially
misleading results. At certain sampling scales, the composite CRW model (where
the original step length distribution is not heavy-tailed) can produce data for which
a power-law distribution fits better than an exponential distribution. This occurs
more frequently when there are significant differences between the movement
characteristics of the two phases. Plank and Codling [45] also simulated truncated
Lévy walks and found that, whilst less sensitive to sampling scale, these can produce
step length data for which an exponential distribution fits better than a power law.
Similarly, Codling and Plank [17] demonstrated how the use of different sampling
scales can cause the step length distribution in different types of movement data to fit
a power-law better than an exponential distribution. This applies particularly to data
from a set of CRWs with different levels of persistence or from a three-dimensional
CRW viewed in one dimension.

2.2 Identification of Turning Points

A further issue with movement path sampling is that the sampling points do not
necessarily correspond to actual turning or decision-making points in the underlying
movement process. The discretisation of the movement path and the subsequent
position of the turning points within the observed path is essentially an arbitrary
choice imposed by the observer [8, 14] and hence it is often difficult to interpret
true biological meaning from any subsequent analysis of the discretised path. To
overcome this issue, attempts have been made to identify turning events as points
where the forager undergoes a significant change of direction. There are many
different ways in which this can be done. The most common is based on the
method of [60] of splitting an observed path into a series of straight-line moves.
The direction is monitored at each sampling point and a turning event is registered
if the current direction deviates from the direction at the previous turning event
by more than a specified threshold angle. This is a “non-local” or “cumulative”
identification method as it allows a gradual accumulation of change in direction
to be eventually registered as a turning event (Fig. la). An alternative is to use
a “local” identification method, which only considers the change in direction
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Fig. 1 Diagram illustrating: (a) non-local turn identification; (b) local turn identification. Iden-
tified turning points are indicated by large solid circles. With non-local turn designation, turns
are identified when the cumulative change of direction from the previous turning event exceeds
some threshold angle 6. In contrast, local turning identifies turns when the angle between two
successive observed random walk steps exceeds some threshold angle 6. In this example a
threshold angle of 90° is used. A gradual change in movement direction is not identified as a
turning event using the local turn designation. Note that with both processing methods, small turns
are removed from the data set, while the number of observed steps decreases but the lengths of
these observed steps typically increase

between successive observations [17,53] (Fig. 1b). However, this method is sensitive
to the sampling scale imposed by the observer. For example, at a high-resolution
sampling scale, a local method may fail to identify large changes in direction if they
are spread over several observations. For this reason, we will focus primarily on the
non-local turn identification method in the rest of this chapter. The identification of
turning events can be thought of as a post-processing step on sub-sampled data
of the type considered by Turchin [58]. The straight-line distances between the
identified turning points become the new “step lengths” and these data can be
analysed using standard statistical methods. Reynolds and Frye [53] used a local
and a non-local turn identification method to infer movement mechanisms from
tracking data for honey bees. An alternative method for identifying turning points
was used by de Jager et al. [20]: the autocorrelation between movement directions
was monitored over a number of successive steps and once this autocorrelation
reduced below some pre-defined threshold level, a turning point was identified.
Results produced using this method are qualitatively similar to the non-local turn
identification described above.

Codling and Plank [17] considered the effect of turn identification on data from
a composite CRW model. The threshold angle used to identify turning events
is essentially arbitrary and the sensitivity of results to this parameter, as well
as to the sampling scale, was investigated. The results of [17] show that turn-
identification can alter the results of a relative goodness-of-fit test of the power-law
and exponential distributions. In some scenarios it was shown that the less sensitive
the turn identification method used (i.e. the larger the threshold angle for registering
a turn), the more likely the relative test is to favour a power-law distribution.

Note that processing of the movement data set to identify turning points using
any of the methods described above will typically remove a large number of small
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turns from the data set; these small turns are usually assumed to be noise or minor
directional corrections that do not correspond to a global reorientation event in the
movement path [e.g. 6]. However, this sort of processing will clearly produce a non-
uniform distribution of turning angles since small turning angles will have been
removed. In contrast, a theoretical LW or TLW should have a uniform distribution
of turning angles. However, as we show later, a true LW processed in the above
manner would also produce a non-uniform distribution of turning angles. Hence,
it remains unclear whether studies that identify a power-law distribution of step
lengths should be classified as Lévy walks if the turning angles are non-uniform;
there does not currently appear to be a robust method of using turning angle data to
help identify LW patterns in movement data.

3 Analysing Data from a Composite Correlated
Random Walk

In this section, we consider data generated using a composite CRW model and
post-processed using a range of sampling scales and threshold angles for turn
identification as described above. Motivated by the discussion in [2] and [46], our
aim is to determine whether a composite exponential distribution will fit the data
generated from a composite CRW better than a simple exponential or a power-law
distribution, given that the data is sampled and processed in a similar way to [45]
and [17]. In particular, we are interested to see if there are certain sampling and
processing scenarios where the generated data fits a power-law distribution better
(which may consequently be (mis)interpreted as the data having come from a Lévy
walk process).

We also examine the distribution of observed turning angles, i.e. the changes
in direction between successive sample points. This is motivated by the fact that
LW have a uniform distribution of turning angles, whereas CRW (or any movement
process incorporating directional persistence) have a turning angle distribution that
is peaked around zero. In principle, this theoretical difference in the turning angle
distribution could be used to distinguish LW from other movement processes and
we investigate the efficacy of turning angle tests.

3.1 The Composite Correlated Random Walk Model

We use the composite CRW model of [45], which consists of two phases (note that
other alternative models for a composite random walk are possible and we only
consider a very simple case here). Phase 1 (the intensive phase) is characterised by
small mean step length and a lack of directional persistence. Phase 2 (the extensive
phase) is characterised by high mean step length and high directional persistence.
At each step in phase i, the forager has a fixed probability pgwitch,; of switching to
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Table 1 Parameter values for composite CRW model

Parameter Phase 1 value Phase 2 value
Mean step length ] 1 10

Turning angle concentration « 0 50
Probability of switching phases pswitch 0.01 0.01

Step lengths / are drawn from an exponential distribution with mean I: p(/) = exp(—I/I). Turning
angles ¢ are drawn from a zero-centred von Mises distribution with concentration parameter «:
p(¢p) = Ce*s¢, where C is a normalization constant. All simulated random walks have a total
of Nrw = 1, 000 steps

the other phase. Thus the number of consecutive steps in phase i is geometrically
distributed with mean 1/ pgyicchi. The random walk is initialised in a statistically
stationary state with respect to the two phases, i.e. the forager starts in phase i with
probability pewitch,i / (Pswitch,i + Pswiteh, ;). The parameter values and step length and
turning angle distributions used in the simulations are given in Table 1.

In each case, Nrw steps of the composite CRW model were simulated, giving

positional data (x;, y;) fori = 0,..., Nrw. As in [17], these positional data were
first sampled with a fixed sampling time step §. This leads to a subsample of
positions (x;s,y;s) for j = 1,..., Nrw/8. This subsample was then subjected

to a turn identification algorithm with threshold angle 6y [see 17, for full details],
giving a sample of turning point locations. The cosine of the threshold angle 6, is
denoted by ¢o. Note that § = 1 corresponds to complete sampling (every step of
the random walk is recorded) and ¢y = 1 (equivalent to 8y = 0) corresponds to no
turn identification (every recorded location is defined to be a “turning point”). The
combination § = 1, ¢ = 1 is therefore a control case in which there is “perfect
information”. From the turning point location data, a sample of observed step
lengths d; and a sample of observed turning angles ¢; are constructed. An example
realisation of the composite CRW model and illustration of the effects of sampling
and turn identification are shown in Fig. 2.

3.2 Fitting a Composite Exponential Distribution

Auger-Méthé et al. [2] criticised the work of Plank and Codling [45] on the grounds
that a simple exponential distribution should not be expected to provide a good
fit to data from a process consisting of two distinct types of behaviour. Instead, it
was suggested that the absolute goodness-of-fit of candidate distributions should
be assessed, rather than simply conducting a relative test of two potentially poor
models. This is certainly true and this motivates us to fit a composite exponential
distribution to data generated from the composite CRW model of [45]. However,
because of subsampling and turn identification, the observed data may not always
be well described by a composite exponential distribution [46].
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Fig. 2 An example a
realisation of the composite 5
CRW model: (a) the actual
path (solid and dashed lines 0 1
indicate steps from the T T T T
extensive and intensive SET ! j 1
phases respectively); (b) the > ol 'f -
observed locations with a : !
sampling step of § = 5; -15 " |
(c) the identified turning :
points of the subsampled path 20 &\\j
shown in (b), using a o5
threshold turning angle
cosine of ¢y = 0.5. Parameter 5 o0 5 10 15 20 25 30 35
values for the composite X
CRW are as given in Table 1 b
5

except for the switching
probabilities pgwicn1 = 0.05
and psyitecnz = 0.4
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X

A composite exponential distribution is simply a combination of n exponential
distributions, each with its own parameter A; and its own probability weighting P;
(i =1,...,n), such that

Sp=t @)

i=1
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This is an example of a mixture model. A random deviate from the composite
distribution is simply a random deviate from the ith individual distribution with
probability p;. The composite distribution thus has probability density function
(PDF)

p(d) =" Pdie .

i=1

Since we are fitting data from a composite CRW model with two phases, we
consider a double exponential distribution (n = 2). This distribution has three
parameters: the parameter for each of the two exponential distributions, A; and A,,
and the proportion P; of step lengths that are drawn from the first exponential.
(The parameter P, is then determined by the constraint (2).) Note that the simple
exponential distribution and the power-law distribution each have just one fitted
parameter.

In the “perfect information” case (6 = 1 and ¢y = 1), the double exponential
distribution provides an exact fit to the composite CRW model. The parameters
A1 and A, correspond to the mean step lengths in the two phases (A; = 1/I;)
and the parameter P; corresponds to the proportion of steps that are in phase 1
(P1 = Pswitch.1/ (Pswitch.1 + Pswiteh.2))- When there is imperfect sampling, the double
exponential distribution will provide an imperfect fit and the fitted parameters will
deviate from the underlying random walk parameters.

The log-likelihood of a sample {d;, ..., dy} is

N
L=> In(p(d)). 3)

i=1

The maximum likelihood estimates for the three model parameters v = {11, A5, P}
are found by solving the three simultaneous equations

oL .
— =0, fori =1,2,3. (@)
8vi

These equations are highly nonlinear and must be solved numerically. This was
achieved using Newton’s method, taking care to ensure solutions satisfy A1, A, > 0
and 0 < P; < 1. Once the maximum likelihood values for the parameters have been
calculated, these are substituted into (3) to calculate the log-likelihood. The Akaike
information criterion (AIC) is then calculated according to

AIC = 2L 4 2K,

where K is the number of fitted parameters (K = 3 for the double exponential
distribution). The AIC therefore penalises the double exponential distribution
relative to the single exponential and power-law distributions in accordance with its
additional fitted parameters. The AIC was calculated for each of the three candidate
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models (power law, single exponential and double exponential) and these were used
to calculate the Akaike weights Wpow, Wexp1 and wexpz. The Akaike weights sum to 1
and the weight for a given model measures the likelihood of that model being the
best representation of the data out of the candidate models tested. In addition to the
relative test based on AIC, we also carried out a G-test [see for example 21, ch. 11]
to test the absolute goodness-of-fit of the preferred distribution, as advocated by
Auger-Méthé et al. [2].

Note that although the composite exponential distribution is a more accurate
representation of the composite CRW than the simple exponential distribution
often used as an alternative to the Lévy walk, it is not the full representation
of the composite CRW model used to simulate the data. While the behavioural
phases represented in the composite exponential distribution are independent of
one another, the behavioural phases of the composite CRW are related to one
another through the Markov switching probability, pswich. The full likelihood of
the composite CRW would be a hidden Markov model (HMM) incorporating the
Markovian dependencies between the behavioural phases. The composite exponen-
tial distribution, which is an independent mixture model, is the marginal distribution
of the HMM [68] and thus can be an appropriate approximation of the full likelihood
[62]. However, the AIC for the composite exponential distribution may differ
from that for the full HMM. This potential discrepancy in AIC requires further
investigation that is beyond the scope of this chapter. Here we will restrict ourselves
to verifying that the AIC will select the composite exponential over the power-law or
single exponential distributions for movement data produced by a composite CRW.

3.3 Testing Step Length Data

For each combination of sampling parameter values (§ and c¢¢), M = 200 replicate
random walks, each with Nrw = 1, 000 steps, were simulated. The Akaike weights
presented in this section were obtained by averaging the Akaike weight across the M
replicate simulations.

For all cases tested, the Akaike weight of the single exponential distribution wexp1
was always zero, indicating that this distribution is never the best fit of the three
distributions tested. From here on, we only consider the Akaike weights for the
double exponential and power-law distributions.

When there is no subsampling or turn identification (§ = 1 and ¢y = 1), the
Akaike weight for the double exponential distribution is always 1 (and the weight
for the power-law distribution is 0). The absolute goodness-of-fit of the double
exponential distribution is also good (G-test gives P >> 0.05). These results are
not surprising as, provided that the number of random walk steps is large enough so
that the two phases of the composite random walk both occur within the movement
path, the observed data will be drawn from a double exponential distribution. The
underlying random walk parameters are almost exactly recovered by the maximum
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Fig. 3 Survival function 1 — C(d), where C(d) is the cumulative distribution function, for
observed step length data (points) together with the best-fit power-law distribution (solid curve)
and double exponential distribution (dashed curve): (a) raw composite CRW data (6 = 1, ¢y = 1);
(b) subsampling but no turn identification (§ = 10, ¢y = 1); (¢) turn identification but no
subsampling (§ = 1, ¢p = 0.5); (d) subsampling and turn identification (§ = 10, ¢y = 0.5). In
(a), (b) and (d), the double exponential has the highest Akaike weight; in (c) the power-law has the
highest Akaike weight (u = 1.2). Parameter values as in Table 1; » = 1, 000 random walk steps

likelihood estimation (4) (i.e. P = 0.5, A1 = l/l_l and A, = 1/1_2). An example of
the step lengths and fitted distributions for § = 1 and ¢y = 1 is shown in Fig. 3a.
Figure 3b—d show examples of the observed step lengths and fitted distributions
for cases where there is either some subsampling of the forager’s location or some
turn identification (or both). In (b) and (d), where there is some subsampling,
the double exponential distribution fits better than the power law. However, in (c),
where there is turn identification but no subsampling, the power-law distribution
provides the better fit. This is due mainly to the existence of a small number of very
large step lengths (up to 10° times longer than the smallest observations), although

it is clear in this case that neither model provides a good absolute fit to the data
(G-test gives P < 1078 for both models).
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Fig. 4 Average Akaike weight for the double exponential distribution against sampling step size
8 and cosine of threshold turn identification angle c¢¢. Red areas indicate cases where the double
exponential distribution has the better fit (wexp> > 0.5); blue areas indicate cases where the power-
law distribution has the better fit (Wexp2 < 0.5)

Figure 4 shows the outcome of the AIC test (Akaike weight wexp> averaged
over m = 200 realisations of the random walk model) for the double exponential
distribution for a range of values of the sampling step size § and cosine of threshold
angle cp. For most combinations of these two sampling parameters, the double
exponential distribution is favoured over the power-law distribution (Wexp2 > 0.5).
However, as seen already in Fig.3, when the sampling step § is small (i.e. the
sampling frequency is high) and some degree of turn identification is used (cy < 1),
the power-law distribution is favoured (Wexp> < 0.5). This shows that, even when
fitting candidate distributions that are a good representation of the underlying
movement mechanism, the inclusion of a turn identification processing step can
make the results of a relative goodness-of-fit test misleading.

The absolute fit of the candidate models was also assessed using a G-test. In
cases where the double exponential distribution had a better fit than the power law,
the double exponential distribution was not rejected at the 1 % level (P > 0.01). In
all cases where the power-law has a better fit (blue areas of Fig.4), the power-law
was rejected at the 1 % level, indicating that neither distribution is a good model
for the observed data. It should be noted, however, that the results of the G-test are
sensitive to the sample size [46] and that if the sample size is sufficiently small, the
power-law model is not rejected. Furthermore, because turn identification reduces
the number of observed step lengths, this process tends to increase the likelihood
of a given candidate distribution providing an acceptable fit to a given movement
path.
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Table 2 Results of the Rayleigh test of uniformity for a composite CRW and LW subsampled and
processed to identify turning events

(d) Subsampling

Random walk (a) Control (b) Subsampling (¢) Turn ID and turn ID

Composite CRW R =0.510 R = 0.438 R =0.374 R =0.279
P=0 P =0 P=0 P =0

Lévy walk R = 0.001 R = 0.006 R = 0.400 R = 0.406
P =0.738 P =0.502 P=0 P=0

For uniformity we expect R = 0; the P value gives the probability that the generated turning angle
data comes from a uniform circular distribution. All values are given to three decimal places

3.4 Testing Uniformity of Turning Angles

To test for uniformity in the turning angles and to determine the effect that sampling
and processing of the observed data may have, we complete a Rayleigh test for
uniformity on the distribution of turning angles that is generated after sampling and
processing (turn identification). The Rayleigh test is the simplest possible test of
uniformity for circular data and is based on testing the mean resultant length, R, of
the set of angles. A uniform distribution of angles should have R ~ 0 and hence
the Rayleigh test considers the probability of a given R value being produced given
the size of the data set and the assumption of uniformity. For further details see [39]
and [61]; for our generated data we used the Rayleigh test that forms part of the
CircStats package in R [47].

We considered three different sampling and turn processing scenarios and
completed a Rayleigh test of uniformity for the generated turning angles from a
composite CRW, with parameter values as in Table 1, and a LW with u© = 2.25. In
each case, the data from M = 200 replicate random walk simulations, each with
Nrw = 1,000 random walk steps, were pooled into a single sample of NgwM =
200, 000 steps. The scenarios considered were: (a) no subsampling or turn process-
ing (control); (b) subsampling only with § = 10; (c) non-local turn identification
only with cosine threshold angle ¢y = 0.5; (d) both subsampling (§ = 10) and turn
identification (c¢y = 0.5). Although these choices of § and ¢y are arbitrary, the results
are not highly sensitive to variations in either of these parameters (Table 2).

The Rayleigh test demonstrates that the turning angles in a LW with or without
subsampling, but with no turn processing, (scenarios (a) and (b)) would not be
rejected as coming from a uniform distribution (P > 0.5 in both cases). However,
any form of turn processing will clearly remove small turns from the data set and
hence make the observed distribution of turn angles non-uniform. Hence, a LW
that is processed in this manner no longer appears to have a uniform distribution
of turning angles (scenarios ¢ and d have P ~ 0). In all scenarios, the composite
CRW has P ~ 0 and the assumption of uniformity of turning angles is rejected in
all cases. These results illustrate how data on turning angles would only be useful
to distinguish between a LW and a composite CRW if there is no turn identification
mechanism in the analysis of the data.
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4 Discussion

In this chapter, we have shown how the analysis of step-length data collected from
regular sampling of an animal’s movement path can be extended to include fitting a
composite exponential distribution. In the case of a composite random walk move-
ment process [e.g. 10,17,45], one would expect this to provide a better fit to the data
than a simple exponential distribution, which is commonly used as an alternative
candidate to the power-law distribution associated with a Lévy walk [23,31].

For the two-phase movement model considered here, the results show that a
double exponential distribution always provides a better fit to observed step length
data than a simple exponential. Furthermore, in most cases, the double exponential
provides a better fit than a power-law distribution. However, this method is not
foolproof and there are cases where the power-law fits better than the double
exponential distribution, despite the fact that the movement process is not a Lévy
walk. Of the scenarios considered here, the power-law has a better fit than the double
exponential when using a relatively high-resolution sampling scale (small sampling
time step) and performing turn identification. This is largely insensitive to the choice
of threshold angle. Nevertheless, the absolute fit of the power-law distribution in
these cases is poor, although if the sample size is small there may be insufficient
evidence to reject the power-law.

A related issue is that the weight that AIC gives to simplicity decreases as sample
size increases [25]. Therefore, the AIC comparison may be biased towards the
composite exponential (with three fitted parameters) and away from the power-
law (with one fitted parameter) for large sample sizes. Preliminary tests with
data generated from a LW nevertheless indicate that the power-law distribution
is correctly selected by the AIC test over the composite exponential. However, a
thorough investigation of the dependency of this bias on sample size is still needed.
The same applies to an investigation of the discrepancy between the AIC resulting
from composite exponential likelihood function (4) and that of the full hidden
Markov model of the composite CRW model.

Overall, the results presented in this chapter highlight the fact that commonly
used sampling and data processing techniques can have a significant impact on
the distribution of observed step lengths. The distribution that actually describes
the underlying random walk step lengths (the double exponential distribution in the
example considered here) may not provide a good fit to the observed data.

Not all movement data are collected by recording spatial locations at equally
spaced time intervals. For example, smart position or temperature-transmitting tags
(SPOT tags) function through radio transmissions and hence require the tag to have
contact with air to send data [38]. These tags are often used to track marine mam-
mals or marine predators [29, 54] and hence spatial location is only recorded when
the animal is at the surface. Consequently, it is likely that any data collected on the
movements of these animals have been sampled at irregular intervals that depend on
the frequency and distribution of times between surfacing for the particular species
of interest. Techniques based on continuous-time random walks may aid in the



Analysing Positional Data 49

analysis of this type of data set where the times between recordings are themselves
a stochastic process. In this chapter, we have only looked at the effect of regular
sampling and we have not considered irregular sampling. However, future studies
with irregularly sampled positional data should consider this point in more detail.

We have also shown how analysing turning angle data can help distinguish
between a Lévy walk, which has a uniform distribution of turning angles, and a
random walk with directional persistence, which has a turning angle distribution
peaked about zero. If an observed data set was closely approximated by a power-law
distribution of step lengths and a uniform distribution of turning angles, it would be
a convincing case for a Lévy walk. However, a turning angle test is not useful if a
turn identification method, which removes small turning angles, has been applied
to the data. In such a scenario, it would be possible for the original process to be a
Lévy walk, but for the uniformity of the turning angle distribution to have been lost
through turn identification.

A key feature of the Lévy walk hypothesis is that the animal is undergoing a
purely random search (rather than interacting with the environment or relying on
memory of encounters for example). In most biological scenarios this is unlikely
to be true and hence the Lévy walk is arguably more useful as a descriptive tool
for classifying particular types of movement process where both small and large
steps (intensive and extensive phases) occur, rather than as a true mechanistic model
for animal movement (although in very simple biological search scenarios it may
be more appropriate). If foragers are performing a random Lévy search (or any
other ‘purely random’ search), then one would expect bouts of intensive searching
to occur at random in the environment (corresponding to a typical sequence of
short steps in the LW). Conversely, if intensive searching behaviour is correlated
with resource-rich areas of the environment, this would suggest that the forager
is interacting with the environment. Unfortunately, most movement studies only
record the movement data of the animal(s) of interest and do not collect information
about the food distribution. However, if data on the occurrence of intensive
movement periods can be combined with information about the distribution of
resources then it may be possible to determine if the movement process really is
a Lévy walk, or whether the path is generated by a composite movement process
where the animal interacts with the environment [4,5,26].

Acknowledgements M.A.-M. thanks Drs. A. Derocher and M. A. Lewis and the Centre for
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Abstract Lévy walks first entered the biological literature when Shlesinger and
Klafter (Growth and Form, Martinus Nijhof Publishers, Amsterdam, 1986, pp 279—
283) proposed that they can be observed in the movement patterns of foraging
ants. The fractal and superdiffusive properties of Lévy walks can be advantageous
when searching for randomly and sparsely distributed resources, prompting the
suggestion that Lévy walks represent an evolutionary optimal searching strategy.
The suggestion is supported by a plethora of empirical studies which have revealed
that many organisms (a diverse range of marine predator, honeybees, Escherichia
coli) have movement patterns that can approximated by Lévy walks. Nonetheless,
Lévy walks with their strange fractal geometry appear alien to biology and their
relevance to biology has been hotly debated. Here I describe some of my own
recent contributions to Lévy walk research. This research has sought to identify
biologically plausible mechanisms by which organisms can execute Lévy walks and
to demonstrate that these movement patterns have a utility beyond the understanding
and prediction of optimal searching patterns. This work has made apparent that Lévy
walks do not stand outside of the now well-established correlated random walk
paradigm but are instead natural consequences of it. I also describe some recent
advances in Lévy walk search theory.
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1 Introduction

In 1828 the Scottish botanist Robert Brown reported that minuscule pollen particles
suspended in water have seemingly random movements. Einstein’s subsequent
1905-6 [29, 30] mathematical description of these random “Brownian” movement
patterns has been hugely successful and now lies at the heart of the “correlated
random walk paradigm”—the dominant conceptual framework for modelling
animal movement patterns [104]. Then just over two decades ago, physicists
suggested that some animals have Lévy walk movement patterns. Lévy walks,
named after the French mathematician Paul Lévy, arose in a purely mathematical
context in the first half of the last century [54]. Lévy walks first entered the
biological literature when [94] proposed that they can be observed in the movement
patterns of foraging ants. Lévy walks comprise clusters of short step lengths with
longer movements between them. This pattern is repeated across all scales with the
resultant clusters creating fractal patterns that have no characteristic scale and such
that the distribution of move lengths has an inverse power-law tail, p;(/) ~ [7#
where 1 < p < 3. Over much iteration, a Lévy walk will be distributed much further
from its starting position than a Brownian walk of the same length. The fractal and
“superdiffusive” properties of Lévy walks can be advantageous when searching
for randomly and sparsely distributed resources [108], prompting the suggestion
that Lévy walks represent an evolutionary optimal searching strategy [9, 11].
Nonetheless, Lévy walks with their strange fractal geometry appear alien to biology
and their relevance to biology has been hotly debated [18,40, 101], Auger-Méthé et
al. (2011). It seemed to some that physicists and mathematicians had lost touch with
biology, and especially so after it became apparent that early empirical analyses of
the flight patterns of the wandering albatross [107] (Fig. 1), which had provided the
impetus for nearly two decades of research into Lévy walks, were flawed [27].

But the humble pollen has other tales to tell (which show that Lévy movements
are pertinent even in the simplest of situations). Occasionally, one of Robert Brown’s
pollen grains would have come into contact with the bottom of the dish. It is readily
seen that the distribution of straight-line distances between successive contact points
has an inverse-square power-law tail. The contact points thus form a “Lévy flight”
pattern with & = 2, arandom jump process in which the distribution of jump lengths
has an inverse-square power-law tail. The distribution of time intervals between
consecutive contacts has an inverse power-law tail, p(¢) o< t=>/2, by virtue of the
Sparre Andersen Theorem [99, 100]. Net horizontal displacements made in a time
interval, 7, are Gaussian distributed with mean zero and variance o2 = 2D’t where
D’ is the bulk diffusivity. Taken together these two characteristics imply that the

o0
o—12/4D"t

distribution, of distances p;(I) o [ < —5—173/?dt o [72, between consecutive
0

contact points has an inverse-square power-law tail. Observations of the pollen
grains made at the bottom of the dish can therefore be modelled as Lévy flights
with u = 2 (Fig.2). Analogous behaviour has been predicted for bulk-mediated
effective surface diffusion at liquid surfaces [20]. The Lévy flights have fractal
dimension D = p — 1 [95]. The key ingredients of a Lévy walk movement pattern,



Beyond Optimal Searching: Recent Developments in the Modelling of Animal . . . 55

Fig. 1 Lévy walk research
owes much to the wandering
albatross. Early analyses of
flight pattern data were
flawed but fruitful and
continue to provoke and
inspire. Photograph courtesy
of Corbis

b £

Fig. 2 The humble pollen does both the Brownian walk and the Lévy flight. Bracken pollen (left).
An example of a simulated Brownian walk representative of pollen movements within a fluid
(middle). An example of a Lévy flight representative of pollen movements across the bottom of
the Petridish. Photograph by Jon S. West, Rothamsted Research

a power-law distribution of move lengths and fractal scaling, are thus lurking within
Brownian walks and so are present within the correlated random walk paradigm,
despite qualms about the biological plausibility of such properties [13, 103]. Lévy
flights also abound once the pollen grains are liberated from watery confines and
are at the mercy of the wind [4, 79, 93]. Although these airborne movements are
clearly divorced from searching they are not without consequence as they result in
a patchy, fractal-like, spatial population structures very different from the structure
of a homogeneous front produced by Brownian movements [21, 53,92, 112]. Here
I take up this theme and describe some of my own recent contributions to Lévy walk
research, made since my last review with Christopher Rhodes [85]. This research
has sought to identify biologically plausible mechanisms by which organisms can
execute Lévy walks and to demonstrate that these movement patterns have a utility
beyond the understanding and prediction of optimal searching patterns. This work
has made apparent that observations of Lévy walks do not stand outside of the
correlated random walk paradigm but are instead natural consequences of it. I also
describe some recent advances in Lévy walk search theory.

2 Underlying Mechanisms: The Key to Prediction
and Understanding

Following the seminal work of [108], Lévy walk research has been mainly focused
on establishing the conditions under which Lévy walks constitute an optimal
searching strategy, and on establishing statistically reliably means of identifying
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such movement patterns in telemetry data [8,9,11,13,27,28,110]. Nonetheless, the
key to prediction and understanding of movement patterns lies in the elucidation
of mechanisms underlying the observed patterns [52]. “Without an understanding
of mechanisms, one must evaluate each new stress on each new system de novo,
without any scientific basis for extrapolation; with such an understanding, one has
the foundation for understanding” [52].

One of the simplest candidate mechanisms could give rise to Lévy walk
movement patterns in terrestrial ecotones such as riparian forests, dune systems or
rocky shores where strong environmental gradients force animals to forage within
a narrow strip [10]. This restriction would be realised by an animal with straight-
line movements, if each time it arrives at an edge of the strip it is “deflected” back
at a random angle, 0 < 6 < m drawn from the distribution pg = 1/m. The
horizontal distance travelled along the strip before encountering the opposing edge
is / = L tan 6 where L is the width of the strip. The probability density function of
[ is determined by p;dl = pgd6 and so p; = %IZ—I—LLZ These movement patterns
are a Lévy walk with 4 = 2. Random changes in direction at the edges of an
ecotone could thus have adaptive value, as ¢ = 2 Lévy walk movement patterns
can be advantageous in random search scenarios [8, 86, 108]. Random scattering
from locations on the perimeter of broad two-dimensional landscapes (that do
not have strip-like geometries), on the other hand, does not result in Lévy walk
movement patterns. Nonetheless, two-dimensional Lévy walk movement patterns
with £ < 2 would be produced if the random scattering occurred within the
landscape at markers (e.g. vegetation patches) that have a patchy fractal distribution
[38]; a scenario which pollen dispersal studies have made plausible [21,53,92,112].

I next describe four other biologically plausible mechanisms that can give rise to
two-dimensional observed Lévy walk movement patterns:

 Serial correlation

* Random reorientation at cues left by correlated random walkers
* By products of advantageous foraging behaviours

 Innate physiology

2.1 Serial Correlation

For many years the dominant conceptual framework for describing non-oriented
animal movements has been the correlated random walk (CRW) model in which an
individual’s trajectory through space is regarded as being made up of a sequence of
distinct, independent randomly-oriented “moves” [104]. It has long been recognized
that the transformation of the animal’s continuous movement path into a broken
line is necessarily arbitrary and that probability distributions of move lengths and
turning angles are model artefacts [104, and references therein]. Dunn and Brown
[26], and Alt [1,2] were perhaps the first to address the problem. They formulated
“continuous-time” CRW models. In these models, velocities rather than positions
evolve as a Markovian process and are exponentially autocorrelated. Integration of
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the velocity process gives the position process. The approach pioneered by Dunn
and Brown [26], and by Alt [1, 2] has recently been developed by Johnson et al.
[46] who demonstrated its utility in an analysis of telemetry data for harbor seals
(Phoca vitulina) and northern fur seals (Callorhinus ursinus). Reynolds [75] showed
that velocity autocorrelation inevitable leads to Lévy walk movement patterns on
timescales less than the autocorrelation timescale.

Autocorrelation must be present in all movements but is not captured in discrete
correlated random walk modelling. Autocorrelation has been quantified in cell
motility studies [91, and references therein] but until recently it has received scant
attention in the literature on the movement patterns in “higher” animals. A notable
exception to this is the analysis by Johnson et al. [46] of seal telemetry data, where
it was reported that autocorrelation timescales are several hours long. Lévy walks
should be discernible over these timescales.

This advance has resonance with recent developments in the understanding of
spontaneous movement of HaCaT and NHDF cells (cells of the epidermis) made in
the absence of external guiding stimuli. These movements are well represented by
generalizations of the Langevin equation [91]. This modelling is phenomenological
as model components are inspired by fits to experimental data. Nonetheless, a
slight re-parameterization and re-interpretation of the model components leads to
the model of [59] which realises Lévy walks as Markovian stochastic processes
[76]. This suggests that spontaneous cell movement patterns can be approximated
by Lévy walks, as first proposed by Schuster and Levandowsky [89] and that
Lévy walks could be lurking under the skin! These movement patterns could have
adaptive value because cells of the epidermis form new tissue by locating and then
attaching on to one another—a random search scenario.

2.2 Random Reorientation at Cues Left by Correlated
Random Walkers

Traces of movement patterns in the form of odour trails can remain within the
landscape for some time. In addition to these unintentional and perhaps unavoidable
trails animals may also make deliberate scent marks. Mammalian scent marks
might, for instance, act as: a deterrent or a substitute for aggression to warn
conspecifics away from occupied territory; a sex attractant or stimulant; a system
for labeling the habitat for an animal’s own use in orientation or to maintain a sense
of familiarity with an area; an indicator of individual identity; an alarm signal to
conspecifics; and an indicator of population size [44].

Reynolds [77] noted that the odour trails left behind by correlated random
walkers will be fractal with fractal dimension D = 1.33, illustrating once again
that fractal scaling is a property of Brownian motion. By disrupting the movements
of other animals these odours can result in reorientation. The locations at which
these changes in the direction of travel occur will therefore be fractal. Odour-
cued reorientation is therefore expected to give rise to movement patterns that
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can be approximated by Lévy walks since the turning points in a Lévy walk
have fractal dimension D = u — 1. With the aid of numerical simulations [77]
showed that animals which randomly reorient whenever they encounter the odour
trail of a Brownian walker but otherwise move in straight-lines because of “direc-
tional persistence” will, indeed, have ¢ = 2.33 Lévy walk movement patterns.
These movement patterns are advantageous when searching for sparsely distributed
resources without prior knowledge of resource locations or when information
obtained during the search is difficult to process so that deterministic search rules
cannot be used [8,86, 108]. Consequently there will be strong selection pressures for
the aforementioned reorientation process when resources are sparsely distributed
within unpredictable environments inhabited by correlated random walkers. The
presence of correlated random walkers may therefore drive the evolution of Lévy
walks when the fitness advantage exceeds the environmental noise. Stochasticity in
the form of random reorientations upon encountering odour cues could therefore
have adaptive value when sensorial or cognitive animal skills do not override the
need for randomness.

In this picture the emergence of Lévy walks from within the correlated random
walk paradigm is dependent upon just three simple and well established ingredients:
(1) landscapes are inhabited by animals that have CRW movement patterns and
either intentionally or unintentionally leave behind odour trails; (2) some other
animals also trace out near-straight line paths through the landscape; (3) but after
encountering an odour trail abruptly change their direction of travel.

2.3 Lévy Walks as by Products of Advantageous Foraging
Behaviours

The flight patterns of foraging bumblebees are of considerable interest because these
bees, with a specialized worker caste, do nothing but forage uninterrupted for long
periods of time (Fig.3). They are not distracted by sex or territorial defence and
have few predators [33]. They are therefore ideal for testing the clear-cut outcomes
of predictive mathematical models of foraging. And this has led to a long running
debate about whether bumblebees forage optimally within patches, and whether it
matters [34, and references therein], This debate has been enriched by the possibility
that bumblebees are executing optimal Lévy flight searching patterns when foraging
within patches [27]; an analysis based on Heinrich’s [33] classic observational
study of bumblebee (Bombus terricola) movements (distances and turning angles)
at clover (Trifolium repens) patches.

Bumblebees foraging within a flower patch tend to approach the nearest flower
but then often depart without landing or probing it, if it has been visited previously;
unvisited flowers are not rejected in this manner. Reynolds [73] replicated this forag-
ing behaviour in numerical simulations. Lévy walk patterns with ¢t ~ 2 were found
to be an inconsequential emergent property of a bumblebees’ foraging behaviour
and, in this case, are not part of an innate, evolved optimal searching strategy.
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Fig. 3 Bumblebees are ideal ’!-
for testing the clear-cut
outcomes of predictive
mathematical models of
foraging. Their foraging
flights are consistent with
Lévy searching theory but
they are not necessarily Lévy
searching. Photograph
courtesy of Corbis

The results thereby provide a vivid demonstration that the key to understanding the
biological, ecological and evolutionary consequences of any movement pattern lies
in the elucidation of underlying mechanisms [52]. The significance of a particular
movement patterns can, in fact, vary markedly even across closely related species
and perhaps even within the same organisms under different scenarios. Honeybees
(Apis mellifera), for example, unlike foraging bumblebees, do seem to execute Lévy
flights as part of an innate, evolved searching strategy, at least when searching for
their hive and when searching after a known food resource has become depleted
[83,84,87].

Lévy walk patterns with  a 2 are also known to be an emergent property
of predators that use chemotaxis (odour gradient following) to locate randomly
and sparsely distributed prey items [71]. Chemotaxis also provides good solutions
to the “travelling salesman problem” often minimising the total distance travelled
between prey items and so often minimising the energetic costs of foraging [80].
Taken together these findings suggest that u =~ 2 Lévy walk patterns are a
frequent emergent property of advantageous searching when searchers have some
information about target locations (i.e. when the position of the nearest potential
food source is known or when predators can detect the presence of odours emanating
from distant food sources). This intriguing possibility complements the widely
held view that Lévy walk processes are symptomatic of advantageous searching
when searchers have little or no knowledge of target locations, and provides a
new perspective on the ongoing debate about whether Lévy walks are patterns
or processes [13, 68]. Much of this debate is a rerun of earlier deliberations
about what “randomness” actually means in the context of random walks [104].
Turchin [104] remarked “that even if animals were perfect automaton we might still
choose to model such behaviour stochastically because we might not have perfect
knowledge of the deterministic rules driving these animals or, if we did, because
including them would require very accurate representation of all environmental
“micro-cues”’. Randomness is thus a modelling convention which is useful when
deterministic modelling is impractical or even unhelpful.” The approach termed
“behavioural minimalism” [55] is directly analogous to thermodynamic theory in
which the essentially unpredictable motion of individual molecules is described
probabilistically. The underlying philosophy is not that the finer detail does not
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exist, but that it is irrelevant for producing the observed patterns [52]. That is, the
collective behaviour of large numbers of automaton may be indistinguishable (at the
scale of the population) from that of random walkers.

2.4 Innate Physiology

Over recent years there has been an accumulation of evidence that many animal
behaviours are characterised by common scale-invariant patterns of switching
between two contrasting activities over a period of time. This is evidenced in mam-
malian wake—sleep patterns [15, 56, 57], in the intermittent stop—start locomotion
of Drosophila fruit flies [60], and in even the nest building behaviours of Large
White x Landrace gilts (a species of the wild boar Sus scrofa) [35]. Reynolds [81]
showed that these dynamics can be modelled by a stochastic variant of Barabasi’s
model [6] for bursts and heavy tails in human dynamics. The new model captures a
tension between two competing and conflicting activities. The durations of one type
of activity are distributed according to an inverse-square power-law, mirroring the
ubiquity of inverse-square power-law scaling seen in empirical data. The durations
of the second type of activity follow exponential distributions with characteristic
time-scales that depend on species and metabolic rates. This again is a common
feature of animal behaviour. In contrast to animal dynamics, “bursty” human
dynamics, are characterised by power-law distributions with scaling exponents
close to -1 and -3/2. The model may account for some occurrence of Lévy walk
movement patterns where an animal is resolving a tension between two competing
and conflicting actions: moving in a straight line and turning. And in this regard
Lévy walks are no stranger than sleep—wake patterns, stop—start locomotion, and
nesting building where construction competes with the need for vigilance.

3 Translating Observations Taken at Small Spatiotemporal
Scales into Expected Patterns at Greater Scales

Translating observations taken at small spatial and temporal scales into expected
patterns at greater scales is a major challenge in spatial ecology [48]. The ability
to scale up from observational scales is of crucial importance when assessing
the potential effects of landscape heterogeneity and changes in behaviour, and in
applying traditional behavioural ecology to landscape-level ecological problems
[55]. To scale from limited observations to the landscape, we must understand
how to aggregate and simplify, retaining essential information without getting
encumbered by unnecessary detail. In principle this can and has been achieved
by associating different modes of movement with different parameterizations of a
single CRW model [32,45,46,61,62,66,67]. Depending on the diffusivity (mode),
K, a CRW model could, for instance, produce either long straight movements,
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random meanderings, or more circuitous movements. Difficulties arise when the
available observational data are not sufficient to parameterize accurately the prob-
ability distribution function of the modes, p(K). In these cases the principle of
scientific objectivity dictates that we be maximally uncommitted about what we do
not know concerning the distribution p(K). The most conservative, non-committal
p(K) that is consistent with the data (e.g. with estimates for the mean value of
K) is obtained by maximising Shannon’s differential entropy [41-43]. Any other
distribution would assume more information than is known from the data. In this
context, Shannon’s differential entropy, H = — [ p(K) log, p(K)dK, is a measure
K

of the average surprise of seeing an animal in a particular movement mode, K, given
a distribution of modes p(K). A highly improbable outcome is very surprising. If
there are two movement modes, K; and K>, then the entropy is zero when there
is no uncertainty, i.e. when p(K;) = 1 and p(K;) = 0 or when p(K;) = 0
and p(K,) = 1. It is maximized when p(K;) = p(K;) = 1/2 as there is less
uncertainty when p(K;) # p(K>) because then one or other of the modes is more
likely to be seen.

Reynolds [82] showed that truncated @ = 2 Lévy walk movement patterns
are the most conservative, maximally non-committal model of movement patterns
beyond the scale of data collection when (a) CRW models embody observed
movement patterns and (b) minimal or partial information/assumptions about
landscape and behavioural heterogeneity are in the form of reliable estimates for
the lower order moments of diffusivity (e.g. when given estimates for the mean
diffusivity, or the mean and variance of the diffusivity). Lévy walks therefore
provide a robust, universal scaling-law which describes how movement patterns
change across scale, and which has the potential to become a valuable modelling
tool when scaling up from limited observational data in order to assess the likely
effects of landscape heterogeneity and changes in behaviour. Reynolds’ [82] result
also indicates that with landscape and behavioural heterogeneity, the unusual thing
is not truncated Lévy walk movement patterns but their absence. In fact, large-scale,
Gaussian, diffusive movement patterns, if they arise at all, would be an emergent
phenomenon, not a mathematically self-evident state from which any deviation is
a worrisome anomaly. Standard methods in spatial ecology do, however, consider
Gaussian statistics and diffusion as two basic ingredients of animal movement at the
long-time limit [14, 65].

4 Enlarging the Framework of Lévy Walk Search Theory

The foregoing as illustrated that a diverse range of processes can give rise to
Lévy walk movement patterns. Some of these processes are not selected for,
thus illustrating that Lévy walk movement patterns may have utility beyond the
understanding and prediction of optimal searching patterns. Other processes (e.g.
random reorientation at cues left by correlated random walkers) will only operate if
there are selection pressures for of Lévy walks.
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The association of Lévy walks with optimal searching can be traced back to
the theoretical and computational work of [108] which produced an idealised
model of Lévy walk searching. In this model a searcher moves on a straight-line
towards the nearest target if this target lies within the “direct perceptual range”,
r; otherwise it chooses a direction at random and a distance, [, drawn from a
power-law distribution, P(/) = (u— 1)r*~'I7# for I > r and P(l) = 0 for
| < r. The searcher then moves incrementally towards the new location whilst
constantly seeking for targets within a radius, r. If no target is detected, it stops after
traversing the distance / and chooses a new direction and a new distance; otherwise
it proceeds to the target. Viswanathan et al. [108] showed that © = 2 Lévy walks are
an optimal Lévy walk searching strategy for the location of randomly and sparsely
distributed targets that can be repeatedly revisited because they are not depleted
or rejected once visited. Lévy walks with ¢ < 2 are nearly equally effective and
outperform their i > 2 counterparts when searching “destructively” in either two-
or three-dimensional arenas [8,86]. From a mathematical perspective the difference
between non-destructive and destructive searching lies in the specification of the
initial conditions for the search. In a non-destructive search each new search
begins close to a previously visited target but distant from many other targets. In
a destructive search, each new search begins from a location that is distant from the
surviving targets. Reynolds [78] and then James et al. [40] noticed that the optimal
Lévy walk search strategy can be extremely sensitive to the initial conditions.
The advantages that Lévy walks have over ballistic movements in random search
scenarios are greatly reduced or removed if searches do not begin in the immediate
vicinity of a target. James et al. [40] suggested that this sensitivity shows that
the optimality of Lévy walk search is not as robust as previously thought thereby
creating the impression that Lévy walk searches are optimal in just a few special
circumstances. For two-dimensional searches this sensitivity stems, in part, from the
use of point targets in numerical simulations and is less pronounced when targets
are large compared with the perceptual range of the forager (Fig. 4), or are patchily
distributed. Previously, it had been suggested wrongly that target size does not affect
the optimality of searching patterns [39]. Nonetheless, this revised understanding
leaves open the specification of biologically-realistic initial conditions for Lévy
walk searches. In the next sections I show how the ambiguity in the specification
of the initial conditions for a Lévy walk search can be resolved and argue that Lévy
walk searches can be optimal when searching under the risk of predation [78]. I
also show that Lévy walks searches are expected to be optimal when searching for
prey that can occasionally evade capture [86], and when searching is intermittent
such that bouts of active searching alternate with relocation bouts during which
prey cannot be detected [70, 58]. This strand of research enlarges the framework
of Lévy search theory, and may provide a new insights into the movement patterns
of a diverse range of marine predator (basking shark Cetorhinus maximus, Atlantic
cod Gadus morhua, bigeyed tuna Thunnus obesus, leatherback turtles Dermochelys
coriacea, and Magellanic penguins Spheniscus magellanicus) and Escherichia coli
which can be modelled as Lévy walks with u ~ 2 [37,49, 96, 102]. It is, however,
important to acknowledge from the outset that foragers may show plasticity and
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a, b

Fig. 4 Simulation data for the searching efficiencies, 7, of non-destructive foragers with Lévy
walks movement patterns as a function of the Lévy exponent p. The searching efficiency is taken
to be the reciprocal of the mean distance travelled before encountering a target. In other words, it
is the mean number of targets located during a search divided by the total length of the search. The
two-dimensional square search arena with side length L = 1000 arbitrary space units contains
50,000 stationary point-sized targets. The perceptual range of the searchers is r = 0.1 space
unit. Data ensemble averaged over 5,000 realisations are shown for (a) random and uniformly
distributed targets and for (b) for patchily distributed targets. Each patch contains 10,000 targets
that are uniformly distributed within non-overlapping circles of diameter 100 arbitrary space units.
Patches were randomly and uniformly distributed within the search arena. Data are shown for the
cases when each new search begins r(black), 5r(red) and 50r(green) from the last target to be
located

change strategies depending on circumstances (as illustrated in Fig.5) and that
trade-offs might prevent a universal solution [12].

4.1 Balancing the Demands of Foraging and Safety
Jrom Predation

Benhamou [13] and then Plank and James [68] devised a composite Brownian
walk model for the location of patchily distributed targets that once visited become
temporally unavailable either because they have become depleted or because of the
increased risk of predation. In this model searchers travel out from the origin of
their search in a straight line until they encounter a target and then proceed to search
destructively within the patch that contains this target using Brownian movements,
i.e. using an area restricted search. If a target is not located within a prescribed
time, the “giving up time” then the searcher switches back to the original straight-
line motion. Benhamou [13] showed that his composite Brownian walk model is
more efficient than any Lévy walk that is not responsive to conditions found in the
search. Reynolds [71, 72] subsequently pointed out that the composite Brownian
walk model can, in fact, be interpreted as being an “adaptive” or responsive Lévy
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Fig. 5 Optimality hanging in the balance. The presence of a gentle breeze could be sufficient
to switch the optimal searching strategy from a ballistic walk to a Lévy walk. Simulation data
(unpublished) is shown for the efficiency, 1, of Lévy walk searches as a function of the Lévy
exponent . The searching efficiency is the mean number of prey items encountered per unit
distance travelled. The search arena, a square with side length L, contains 10° prey items that
are randomly and uniformly distributed. Prey are consumed once detected. The perceptual range
of the predator r = 10~*L arbitrary space units. Data are shown for the cases when prey can be
detected equally well when approached from any direction (open circle) and only when approached
from an upwind location (filled circle) because unbeknown to the predator, prey flee from olfactory
cues produced by predators

walk search. This correspondence arises because straight-line movements between
targets correspond to truncated u — 1 Lévy walks. Benhamou [13] and Plank and
James [68] have therefore demonstrated that an adaptive Lévy walk is better than
any non-adaptive Lévy walk when searching destructively in patchy environments.
Moreover, predictions from the composite Brownian walk are entirely consistent
with standard Lévy walk search theory; this predicts that straight-line movements
are advantageous when searching destructively for sparsely distributed patches
whilst Brownian movements are optimal for within-patch searching [108].

Reynolds [74] then developed a new class of adaptive Lévy walk searching model
which encompassed composite Brownian models as a special case. In these models,
bouts of Lévy walk searching alternate with bouts of more intensive Brownian walk
searching. As with the composite Brownian model switching from extensive to
intensive searching is prompted by the detection of a target and switching back
to extensive searching arises if a target is not located after travelling a distance
equal to the giving-up time. The model reconciles Lévy walk search theory with the
ubiquity of two modes of searching by predators and with their switching searching
model immediately after finding a prey [50]. This model reduces to the “composite
Brownian walk” model when o — 1. It should be noted that the model presupposes
that the prey are patchily distributed and that the predator perhaps through past
experience is aware of this. The models are thus fundamentally different from non-
adaptive Lévy walk search models [108] where it is assumed that animals have no
prior knowledge of the target distribution.

Prey capture does not always trigger an area restricted search [111]. This is
probably because decisions to modify behaviour after prey capture are dependent
on many parameters, including the presence of other predators, the state of the
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forager, the cost of catching the prey, the quality of the prey patch, or predation risks.
Adaptive Lévy walk searching models have been used to examine the trade-offs
between searching efficiency and safety from predation [78]. Only if the benefits of
advantageous foraging outweigh these costs can there be strong selection pressures
for Lévy walk movement patterns. In the absence of predation the giving-up time
can be chosen to maximise foraging efficiency and in this case the searching
efficiency of adaptive Lévy walks is no better than that of composite Brownian
walks. But when foraging under the risk of predation this unconstrained optimal
may not be realised because a forager must trade off food harvesting with safety
[17]. When the realised giving-up distance is much shorter than the unconstrained
optimal one, Lévy walks with u & 2 are advantageous. This finding has resonance
with that of [109] who argued that convoluted movement patterns confer greater
fitness than straight-line paths because they reduce the risk of predation. Straight-
line paths present the most efficient means of searching for prey while also exposing
the forager to maximum predation risk. Animals that manage to trade-off food and
safety by vigilance to predators while feeding from a food patch can remain within
the patch for long times and are not be expected to have Lévy walk movement
patterns. Animals that use little vigilance and manage risk via time allocation by
demanding a higher feeding rate to compensate for a higher risk of predation may
have Lévy walk movement patterns. And so despite having fundamentally different
properties, Lévy walks and composite Brownian walks can compete a priori as
possible models of foraging movements. Lévy walks are expected in tritrophic
systems and where intra-guild predation (a ubiquitous interaction, differing from
competition or predation, defined as killing and eating among potential competitors)
operates.

4.2 Red Queen Dynamics

The co-evolution of predators and their prey can lead to situations in which neither
improves its fitness because both populations co-adapt to each other [25, 106]. In
these evolutionary arms races, improvements in the ability of a predator to detect
and capture prey (e.g., heightened sensitivity to chemical, mechanical or visual
signals, stronger attack reactions) are matched by compensating improvements in
the ability of prey to evade detection and capture (e.g. crypsis, feigning death, strong
jumps, sudden increase of size, confounding signals). These “Red Queen” type
of dynamics [105] preclude the possibility of a perfect searching/capture process.
Reynolds and Bartumeus [86] showed that © ~ 2 Lévy walks can be optimal
when searching destructively if targets occasionally evade detection and/or capture.
Searches for escapees begin close to escaped prey but distant from other prey—
a scenario mirroring “non-destructive” foraging which favours u ~ 2 Lévy walk
searching. This suggests that accounting for the co-evolutionary arms races at the
predator—prey detection/reaction scales can explain to some extent the pt ~ 2 Lévy
walks searching patterns at larger scales.
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Fig. 6 Simulation data for the searching efficiencies, 7, of non-destructive foragers with Lévy
walks movement patterns as a function of the Lévy exponent p. The searching efficiency is taken
to be the reciprocal of the mean distance travelled before encountering a target. In other words, it is
the mean number of targets located during a search divided by the total length of the search. Fifty
thousand stationary targets were randomly and uniformly within a two-dimensional square search
arena with side length L = 1000 arbitrary space units. The perceptual range of the searchers is
r = 0.1 space unit. Data are shown for (a) non-intermittent (i.e. standard) Lévy walk searching
and (b) intermittent Lévy walk searching where targets can be only detected using relatively
short moves with length / < 100r. Data are shown for the cases when each new search begins
r(black), 5r(red) and 100r (green) from the last target to be located. Similar results (not shown)
were obtained for patchily distributed targets

4.3 Intermittent Searches

The movements of many foragers (e.g. planktivorous fish, ground-foraging birds,
and lizards) are intermittent with pauses or bouts of relatively slow movements last-
ing from milliseconds to minutes [51, 63]. This intermittency can have a variety of
energetic benefits. Endurance can also be improved by partial recovery from fatigue.
Perceptual benefits can arise because pauses increase the capacity of the sensory
systems to detect relevant stimuli. Several processes, including velocity blur, relative
motion detection, foveation, attention and interference between sensory systems
could be involved [51]. Searching could therefore be salutatory such that “scanning”
phases during which prey can be detected alternate with “relocation” phases during
which prey cannot be detected. This trait can be incorporated into Lévy walk
searching models by associating the short moves (I < /y) with the scanning phases
whilst longer moves are associated with the relocation phases. Intermittent Lévy
walks with 4 ~ 2 are an optimal search strategy for both destructive and non-
destructive foragers [58, 70]. In other words, this strategy is robustly optimally with
respect to the initial conditions of the search, and so markedly different from non-
intermittent Lévy walk searching which are extremely sensitive to initial conditions
[78] (Fig. 6).

Here following [108] the searching efficiency is taken to be the reciprocal of the
mean distance travelled before encountering a targets, i.e., it is the mean number of
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targets located during a search divided by the total length of the search. Foragers that
minimize the average distance travelled between targets will therefore maximize
their expected energy gain when energy expenditure increases linearly with distance
travelled. The energy costs of intermittent locomotion are, however, more complex
and the energy expended in accelerations and decelerations can be more than offset
by a variety of energetic benefits and by recovery from fatigue [51, and references
therein], Fish such as cod and Pollack can, for instance, save energy by “burst-
coasting swimming” as the drag while coasting with the body straight is only
about one third of the drag while swimming. The energetic costs of intermittent
locomotion warrant further investigation because they could favour . # 2 Lévy
walk movement patterns for some taxa.

4.4 Optimizing the Encounter Rate in Biological Interactions

Encounter rates set bounds on prey-consumption, the risk of predation, the likeli-
hood of mate-location and the spread of infectious diseases and so play a crucial
role in population dynamics. To date, however, there have not been any reported
studies on the relative merits of Lévy walk search strategies for the location of
mobile targets in two-search arenas.

James et al. [39] reported that ballistic movements outperform Lévy walks and
Brownian walks when searching randomly and destructively for mobile prey in
one-dimensional environments, thereby overturning the previous analysis of [7].
Data (previously unpublished but comparable to that reported on by [10]) from
numerical simulations of destructive searching in two-dimensional arenas show that
Lévy walks with u < 2 are equally effective and outperform Lévy walks with
M1 > 2 when predators move with speeds that are faster than or comparable to
that of their prey (Fig. 7a—c). Maximal encounter rates are then largely insensitive
to the movement pattern of the prey. This is not surprising and entirely consistent
with numerical simulations of destructive searching for immobile targets [8, 86]. It
is evident from Fig. 7a—c that the prey cannot adapt their movement patterns so as
to reduce the likelihood of predation. This suggests that prey movement patterns
are determined by their foraging and mating-location requirements and not by the
costs of predation. Predator movement patterns do, of course, become irrelevant
when predators move much more slowly than their prey (Fig. 7d). A “sit-and-wait”
strategy and a Brownian search are then just as effective as a Lévy walk search. It is
thus possible for Brownian searches to have evolved naturally as one search strategy.
Nonetheless, Lévy searches are more versatile and outperform Brownian walks
when (if) searching for slowly moving prey (Fig. 7a—c) in addition to fast moving
ones. This leads to the expectation that Lévy searches are predominant in generalist
predators whilst Brownian and correlated random walk searching is likely in some
specialist predators with a narrow prey range. Note also that ballistic movements are
predictable, making the forager more vulnerable to predation (Fig. 8).
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Fig. 7 Simulation data for the mean encounter rates, 1, for predators with Lévy walks movement
patterns as a function of the Lévy exponent, . Predators search within a two-dimensional square
arena with size 1,000x1,000 arbitrary space units containing ten prey. The encounter rate is
the average number of prey items encountered per unit distance travelled. Data are shown for
predators that move ten times faster than their prey (1.0 and 0.1 space units in unit time) (a), for
predators that move two times faster than their prey (1.0 and 0.5 space units in unit time)
(b), for predators that move at the same speed as their prey (1.0 space units in unit time) (¢) and
for predators that move ten times slower than their prey (0.1 and 1.0 space units in unit time)
(d). In all cases the perceptual range r = 1 space unit and predators travel for a time of 10° time
units. Encounter rates for each case were obtained by ensemble averaging for 500 realizations of
the initial prey distribution. Simulation data are shown for prey with Brownian walk (© = 3)
(filled circle), u = 2 Lévy walk (open circle) and ballistic (filled square) movement patterns. Prey
are deleted once encountered. To maintain a constant density of prey, each deleted prey is replaced
by a new prey placed at a randomly selected location within the search arena. Analogous results
(not shown) have been obtained for prey at lower densities (square arena with size 1,000 x 1,000
arbitrary space units containing 5, 2 and 1 prey) and for searching within three-dimensions (cube
arena with size 100 X 100 x 100 arbitrary space units containing ten prey)

5 Some Closing Remarks and Some Open Questions
5.1 Opening the Lévy Gates

The research reported on here has shown that Lévy walks do not stand outside of
the correlated random walk paradigm [104] but rather are natural consequences of
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Fig. 8 Still fishing for answers. There is strong evidence for Lévy walks in the swimming patterns
of the Magellanic penguin (Spheniscus magellanicus) and other marine predators [96] and these
appear to be associated with foraging. The idealised Lévy walk searching model of [108] suggest
that these movement patterns are an optimal foraging strategy. Much subsequent work paints a
more complicated picture. Photo courtesy of Corbis

it and that the utility of Lévy walk models extends well beyond the description of
search behaviours.

The apparent strangeness of Lévy walks was shown to be innocuous. After
all, a pollen grain does both the Brownian and the Lévy walk. The seemingly
peculiar fractal properties of Lévy walks are also seen in Brownian walks [77].
Power-law scaling, the hallmark of Lévy walks, is necessarily present in continuous-
time correlated random walks that take explicit account of serial correlations
[75]. And when correlated random walks represent accurately observed movement
patterns, Lévy walks are the most conservative model of movements at larger
scales [82]. This strand of research is also bridging between the separate disciplines
of animal movement patterns and plant disease epidemiology. This is generating
new perspectives and questions at the interface between these two disciplines and
thereby contributing to the emergence of a new synthesis that transcends traditional
boundaries. Other work [31,98] is bridging the gap between the separate disciplines
of animal and human movement patterns.

The research has also extended the reach of Lévy walk search theory to
encompass the predator—prey co-evolutionary arms race [86], dynamic adaption
to conditions found along the search [72, 74, 78], and physiological constraints
[58, 70]. Taken together this research suggests that © ~ 2 Lévy walk searches
represent an evolutionarily stable strategy in changing or dynamic environments
[97]. This warrants further investigation because it would reveal the extent of
selection pressures for u ~ 2 Lévy walk movement patterns.

5.2 Lévy Walks in Collective Motions: How the Blind Could
Lead the Blind

Collective movement behaviour is seen in almost every taxa and is arousing con-
siderable amongst behavioural ecologists as well as physicists and mathematicians
[5, 16, 19, 22, 23]. On focus of attention has been group decision making. In a
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seminal study, using idealised mathematical models, Couzin et al. [23] showed
how information about the location of a food source or a migration route can be
transferred within groups both without signalling and when group members do not
which individuals, if any, have pertinent information. This work has demonstrated
how a few individuals (approximately 5%) within honeybee swarms can guide the
group to a new nest site [90] and how relatively few informed individuals within fish
schools can influence the foraging behaviours of the group [69].

This leaves open the question of whether effective leadership and decision-
making can arise when no individual in the group has pertinent information about
the location of resources, i.e. the question of whether Lévy walks movement patterns
can arise in groups from social interactions. Lévy walks patterns of movement in
groups can, as in individuals, be advantageous in random search scenarios [88].

Preliminary considerations in this direction have shown that Lévy walks could
be an emergent property of collective movements ranging from “swarming” where
there is no parallel alignment among members, as in often seen in insects, particular
the Diptera, through to the high parallel movements displayed in some fish shoals.
This investigation has drawn also out further connections between Brownian and
Lévy walks.

Consider an idealised model of collective movements in which there is one
“leader” and a “follower”. The leader moves in a straight line, changing its direction
of travel only when one of the followers comes within its immediate vicinity
(collision avoidance). The follower keeps pace with the leader but has small random
(Brownian) movements in the two directions orthogonal to the leaders’ direction
of travel. It can be shown (unpublished report) that the leader and so the pair are
following a u = 3/2 Lévy walk. Truncated Lévy walks result when the follower
cannot meander to arbitrarily long distances from the leader but instead remains
within a “zone of attraction” that enforces group cohesion. These findings are
broadly consistent with telemetry data for midges (Anarete pritchardi Kim) flying
within swarms [64]. Okubo and Chiang [64] reported that midge flights may be
classified into two distinct patterns; one is a “wide” pattern, the other is a “tight”
pattern. In a wide pattern, the insect exhibits a relatively long, straight or slightly
curved path that might be regarded as a free flight. After a straight path the insect
shifts its motion from one direction to another. In the tight pattern, insects exhibit a
relatively short, zigzag flight that might be regarded as random motion. How these
different patterns are related to the behaviour of swarming midges is still unknown.

Similarly Lévy walk movement patterns with u = 1+ N/2 are predicted to arise
in highly parallel groups consisting of one leader and N followers that keep pace
with the leader whilst making one-dimensional random movements (traverse to the
current direction of travel of the leader). The finding may explain the presence of
Lévy walk movement patterns in some fish that forage in shoals [96]. The empirical
observations are recovered if leaders are responsive to just two of their followers.
Here it is worth noting that leaders and followers have been identified in shoals [69].

Intrinsic variability in the mobility of individuals within a group may therefore
have adaptive value and Lévy walk movement patterns could be an overlooked
benefit of group living. This warrants further investigation.
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5.3 Mathematical Challenges

A more formidable challenge is to develop an analytical theory of Lévy walk
searching that is applicable for two- and three-dimensions. This would serve to
validate numerical codes and facilitate an examination of searching in regimes that
are currently inaccessible to computation, e.g. at the threshold of starvation where
targets are in very dilute concentration and so detected very infrequently. It remains
to seen whether “mean field theories” of the kind developed by Viswanathan et al.
[108] for one-dimensional searches can reproduce faithfully simulation data for two-
and three-dimension searches.

The employment of entropy maximization in movement patterns also warrants
further investigation because it offers new unexplored means for quantifying the
information content of correlated random walk and Lévy walk models, and for
establishing new connections between these models. The simplest of correlated
random walk models can, for instance, be construed as being the most conservative,
maximally non-committal models of animal movement patterns given only the
arithmetic mean move length. This is simply because maximisation of Shannon
entropy yields an exponential distribution of move lengths [24]. The arithmetic
move length is a potentially meaningful characteristic of a movement pattern if
the move lengths do not show a tendency to grow during the time course of a
movement pattern. When move lengths do tend to grow then the geometric (or
logarithmic) average move length can be useful. The geometric average of a set of

1/N N
N moves with lengths {/;}is | = (i‘vll li) = exp (% > In li) = exp ({Inl))
i= i=1
where (In!) is the logarithmic average. Maximisation of Shannon’s entropy, subject
to the condition that probabilities furnish the observed geometric average move
length, gives a Pareto distribution of move lengths, p(/) = (u — 1)a*~'I=* where
u=1-= m is the well known Hill’s (maximum likelihood) estimate [36]
for a power-law exponent [47]. Geometric constraints per se are not new [47]
but until now had not appeared in movement ecology literature. Models utilizing
move length distributions other than the Pareto or exponential distributions are
less conservative if move lengths are characterized solely in terms of either the
arithmetic or geometric average; a minimal requirement for any reasonable model of
animal movement pattern. The Akaike information criterion which following [27]
is now used widely to distinguish objectively between power-law and exponential
distributions can, in this application, be interpreted as determining the relative
appropriateness of the arithmetic and geometric averages as characterisations of
the typical move length. This is because the Akaike weight for a power-law (i.e.
weight of evidence in favour of a power-law) is determined by the logarithmic
average whilst the Akaike weight for an exponential is determined by the arithmetic
average. A bridge between the Lévy walk and correlated random walk models is
formed if move lengths are simultaneously characterised in terms of arithmetic and
geometric average move lengths (as would be the case if individuals occasionally
switched between executing Lévy and correlated random walks or at the population
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level if Lévy walkers co-exist alongside correlated random walkers). In this case,
maximisation of Shannon’s entropy leads to a gamma distribution of length moves.
This distribution has a power-law like core and an exponential tail, and was recently
found to characterise accurately the flight patterns of the wandering albatross
[27]. The wandering albatross may therefore bridge the apparent divide correlated
random walks and Lévy walks. It seems that as with the humble pollen, Lévy walk
research can still learn much from the wandering albatross.
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Part I1
From Individuals to Populations



The Mathematical Analysis of Biological
Aggregation and Dispersal: Progress,
Problems and Perspectives

Hans G. Othmer and Chuan Xue

Abstract Motile organisms alter their movement in response to signals in their
environment for a variety of reasons, such as to find food or mates or to escape
danger. In populations of individuals this often this leads to large-scale pattern
formation in the form of coherent movement or localized aggregates of individuals,
and an important question is how the individual-level decisions are translated into
population-level behavior. Mathematical models are frequently developed for a
population-level description, and while these are often phenomenological, it is
important to understand how individual-level properties can be correctly embedded
in the population-level models. We discuss several classes of models that are used
to describe individual movement and indicate how they can be translated into
population-level models.

1 Introduction

The central topic of this chapter is the process of aggregation of biological
organisms, which occurs in systems that range in scale from single-celled organisms
such as the bacterium E. coli, to flocks of birds, schools of fish, and herds of
ungulates. Aggregation is a broad term, which we use to mean a self-induced spatial
localization of motile individuals that results from direct or indirect communication
between them and produces a local density of individuals higher than would
be observed under random motion. Depending on the organisms involved, more
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Fig. 1 The general steps involved in generating the response to an external signal

specific terms may be used: swarming in insects, flocking in birds, schooling in
fishes and herding in mammals—but all refer to the same underlying process. In
some aggregates there is large scale organization, such as alignment in fish schools,
which undoubtedly involves at least nearest-neighbor interactions, whereas in other
aggregates, such as the bacterial aggregates discussed later, there is no coherence
to the motion even though there may be indirect interaction between individuals via
the external medium. Whatever the scale or type of aggregation, locomotion—which
we define to be self-induced movement that results from active forces generated by
the individual—is an essential process in aggregation, but of course it also plays a
role in numerous other contexts, including searching for food, mates or shelter. For
example cell locomotion, either individually or collectively as tissues, is essential
for early development, angiogenesis, tissue regeneration, the immune response, and
wound healing in multicellular organisms, and plays a very deleterious role in cancer
metastasis in humans. Directed locomotion, as opposed to random wandering,
usually involves several steps (i) the detection and transduction of external signals,
be they visual, chemical, mechanical, or of other types, (ii) integration of the signals
into an internal signal, (iii) the control of the internal neural, biochemical and
mechanical responses that lead to force generation and directed movement, and
(iv) perhaps relay of the signal. A schematic of the sub-processes involved is shown
in Fig. 1.

A detailed description of locomotion of higher organisms such as birds or
fishes is extremely complex, and simpler descriptions are used for understanding
aggregation. A starting point is to treat individuals as points and attempt to
understand the collective behavior of an aggregate based on postulated interactions
between individuals or between individuals and an external field, either imposed
or generated by the population. In this framework the problem is mathematically
similar to the study of interacting molecular species, and techniques established in
that context can be carried over to biological problems. Because single cells are the
simplest systems capable of self-locomotion, the description of cellular motion can
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be more complete in models of aggregation, but the principles that emerge from
the analysis of cellular motion apply at higher levels as well. Thus several concrete
examples of cell-level aggregation will be described in detail later.

Many single-celled organisms use flagella or cilia to swim, and the best studied
example of this is E. coli. As we show later, much can be learned about ‘run-and-
tumble’ organisms such as E. coli without a detailed description of the mechanical
forces, but in eukaryotes forces play a more central role. There are two basic modes
of movement used by eukaryotic cells that lack cilia or flagella—mesenchymal
and amoeboid [10]. The former, which can be characterized as ‘crawling’ in
fibroblasts or ‘gliding’ in keratocytes, involves the extension of finger-like filopodia
or pseudopodia and/or broad flat lamellipodia, whose protrusion is driven by actin
polymerization at the leading edge. This mode dominates in cells such as fibroblasts
when moving on a 2D substrate. In the amoeboid mode, which does not rely on
strong adhesion, cells are more rounded and employ shape changes to move—in
effect ‘jostling through the crowd’ or ‘swimming’. Recent experiments have shown
that numerous eukaryotic cell types display enormous plasticity in locomotion
in that they sense the mechanical properties of their environment and adjust the
balance between the modes accordingly by altering the balance between parallel
signal transduction pathways [85]. Thus pure crawling and pure swimming are the
extremes on a continuum of locomotion strategies for eukaryotic cells, but many
cells can sense their environment and use the most efficient strategy in a given
context. Significant progress has been made in going beyond the point particle
description in such systems (cf. [90] and references therein).

Some basic questions that arise in studying aggregation, either from the experi-
mental or mathematical standpoint, are as follows.

e At what level of detail must individuals be described to explain the observed
phenomena?

* What is the coarsest or highest-level description of the forces involved that
suffices?

* What is the nature of the signal that is used to initiate aggregation? Is the signal
externally-imposed, as for example, when bacteria move up the gradient of a
desirable substance, is the signal relayed from individual to individual, and what
is the range of the signal?

* What determines the size of an aggregate and how does it depend on the nature
and range of the signal?

* When aggregates move coherently, by which we mean they locally adjust their
speed and direction to those of their neighbors, the latter perhaps weighted in
decreasing importance with distance, what is the time scale on which coherence
is achieved beginning from an incoherent state, and how does the type of signal
and its range affect this time.

There is a huge literature on the subject of aggregation, orientation and align-
ment, and other chapters in this volume will cover other aspects (see the chapters
by Hillen and Painter and by Franz and Erban). Recent papers that discuss some of
the topics treated herein are given in [6, 14,21, 67, 94, 95]. Classic texts related
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to the topics herein include [9, 69]. We have two main objectives here: (i) to
summarize some of the recent work on the derivation of macroscopic equations such
as the Patlak-Keller-Segel chemotaxis equations from individual-based descriptions,
and (ii) to illustrate the use of the macroscopic equations that result in cellular
aggregation.

The classical taxis problem began with phenomenological equations in which a
biased drift term was added to a diffusion equation to describe the movement of
individuals in response to an imposed or self-generated signal [52], although a more
fundamental approach along the lines described later was initiated earlier by Patlak
[80], and the resulting taxis equation is called the PKS equation. To describe it more
precisely, let £2 C R” be a compact domain with smooth boundary, let n be the
‘particle’ density, and let S be the ‘signal’ density. The first of the following pair
is the PKS equation, and the second describes the self-generated signal field, when
applicable.

ng,=V-(Vh—=nVe(S)) =V-(Vn—ny(S)VS), (1)
S; = DAS + f(n,S). 2)

The first rigorous derivation of the coupled equations beginning with an interacting
particle system is due to Stevens [89]. A review of the major developments from
1970 to about 2003 can be found in [45], and a ‘user’s guide’ to these and other
taxis equations can be found in [42]. The quantity y = @s(n, S, x,...) is called the
chemotactic sensitivity, and u, = y(S)VS is called the chemotactic velocity, and
the fundamental problem we address is how knowledge of the internal dynamics
governing signal transduction and response is reflected in these quantities. We
develop the machinery for addressing this and describe some success for simple
organisms such as E. coli, and partial success for eukaryotic cells.

2 An Overview of Population-Level Descriptions

2.1 A Summary of the Levels of Description

We begin by summarizing classical approaches to the transition from equations of
motion for individuals to population level distribution functions. The material in
this section is standard and widely-discussed, but it is useful to remind the reader of
some of the underlying assumptions. To understand the broad picture before delving
into the details, we regard the particles or individuals as structureless, but we admit
the possibility that they can exert forces and allow for external forces as well. We
first consider point particles, and thus describe their motion by Newton’s law. For
later purposes we include an evolution equation for the internal state of the particles,
but at present we do not include coupling of the latter to the movement. The general
case of forcing on both position and velocity leads to the differential equations
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dx; = v;dt + dX;, 3)
m;dv; = F;dt + dV;, 4

dy

-5 = G s ¥y 7t . 5

T (x.v.y.1) ®)

Here (x,v) € R",n = 1,2, 3 are the positions and velocities, and y € R* charac-
terizes the internal state. If the imposed forces X and V are deterministic forces
they can be written as dX; = X;dt, and similarly for dV, and (3) and (4) are the
standard Newton equations for particles. When X and V are random forces these
are stochastic differential equations, the integral forms of which are interpreted in
the Ito sense [4, 13].

The two major types of random forcing processes that are widely used are
Brownian motion and compound Poisson processes. Both Brownian motion and
the Poisson process are examples of a more general class of random processes
called Lévy processes [2,86], which are stochastic processes that have independent,
stationary increments, are stochastically continuous, i.e., for any € > 0, Pr{|X; 4+ —
X;| > €} > 0ast — 0, and have sample paths that are right-continuous and
have left limits. Brownian motion and Poisson processes differ in that the former
have continuous sample paths whereas Poisson processes have discontinuities at
the jump. Lévy processes with fat-tailed distributions will arise in Sect. 3.4 in the
context of anomalous diffusion.

The formal differentials that appear in (3) and (4) are assumed to be white noise,
which is a wide-sense stationary random process in which the component functions
dX; have zero mean and are uncorrelated, i.e.,

(dX; (1)) =0, (6)
(dX; (1), dXi (1)) = 028(11 — 1a). (7

Gaussian white noise is the generalized derivative of a single-variable Wiener
process, i.e., of Brownian motion [4, 36].

As used here, a Poisson forcing function is a compound Poisson process, which
can be thought of as a train of jumps distributed in time according to a Poisson law.

Thus
N(t)

Xi(t) =Y YeH(t — ), (8)
k=1

where the amplitudes Y; are independent random variables, H is the step function,
and N(¢) is a homogeneous Poisson counting process with parameter A that
counts the number of jumps in [0, f], assuming that N(0) = 0 with certainty.
A generalization of this allows coupling between the amplitudes of the impulses
and their temporal occurrence, and can be defined by a random measure M (dt,dY)
that gives the number of jumps in ((¢,¢ 4+ dt) x (y, y + dy)). The derivative of the
forcing, which is called Poisson white noise, is thus a train of impulses that arrive
at the jump times of the underlying Poisson process.
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N(t)

dX, (1) = ) Yid(r — 1r), ©)

k=1

Later we allow the Poisson parameter to depend on external fields or on the internal
state of individuals.

The simplest problem arises when there are no inter-particle interactions, and the
forces stem from interactions with the environment. One example is the original
Einstein model of a heavy particle in a bath that receives Gaussian-distributed
momentum impulses from the surrounding bath [27]. In Einstein’s formulation this
leads to the diffusion equation for the position of the particle, and the probability to
find a walker at x € R, having started at the origin at = 0, is

1
P(x,t) = m e—x2/4Dt’ (10)

for (x,¢) € R x R™. In the next section we discuss descriptions that account for
both velocity and position.

When there are impulsive forces, rather than Gaussian forces on the position
in (3) we obtain the familiar random walk, in which there are instantaneous changes
in position at random times. These are called space-jump processes [73], and later
we show that the probability density for such a process satisfies the renewal equation

P(x,t|O):<13(t)8(x)+/0/an&(t—t)T(x,y)P(y,rlO)dydt. (11)

Here P(x,]0) is the conditional probability that a walker who begins at the origin
at time zero is in the interval (x, X + dx) at time t, ¢ (¢) is the density for the waiting
time distribution, @(t) is the complementary cumulative distribution function
associated with ¢ (¢), and T (x,y) is the redistribution kernel for the jump process.
In Sect.3.2 we show that this also leads to diffusion equations in certain limits,
which reflects the fact that under mild conditions on the distribution of jump sizes
the compound Poisson process approaches Brownian motion in the limit A — oo.

If we admit impulsive forces on the velocity in (4) then we arrive at the second
major type of jump-driven movement, which is called a velocity jump process [73].
As described in detail later, the motion consists of a sequence of “runs” separated by
re-orientations, during which a new velocity is chosen instantaneously. If we assume
that the velocity changes are the result of a Poisson process of intensity A, then in
the absence of other forces we show later that we obtain the evolution equation

0
a—l; +Vy-vp+V,-Fp=-Ap+ A/ Tv,V)p(x,v,t)dv. (12)

A similar equation to describe the random movement of bacteria was first derived
by Stroock [91].
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2.2 The Fokker-Planck and Smoluchowski Equations

A generalization of the Einstein description of Brownian motion involves both
velocity-dependent interaction of the particle with a fluid environment, and diffusion
in velocity space. This is based on (3) and (4), in which we assume that the forcing
on position is zero, the random forcing on velocity is Gaussian white noise, and
we allow velocity-dependent frictional forces. In the standard notation of statistical
physics, we write

dx; = v;dt, (13)
mdv = —movde + Fdt + 2emks TdW(1), (14)

where ¢ is the friction coefficient, kp is Boltzmann’s constant and T is the
temperature. This description is predicated on the assumption that the fluid particles
are much lighter than the Brownian particle, and as a result, that the fluid motion
relaxes on a much shorter time scale than the motion of the particle. Thus the
hydrodynamic forces appear both via the deterministic friction force and the random
forces, which are assumed to be Gaussian. If the assumption on the relaxation time
of the fluid variables is not applicable the process is no longer Markovian, and a
non-Markovian generalization of (14) has been derived [11].

The stochastic differential equations are equivalent, under the Gaussian assump-
tion, to a partial differential equation for the conditional probability density
p(x,v,t|x', v/, t'), namely,

0 F kgT
—p+Vx-Vp+Vv-((—§V+—)p)= ks
ot m m

Vy - Vyp. (15)

This is commonly called the Fokker-Planck-Kramers-Klein equation [100], or
simply the Fokker-Planck equation, although the latter is used for a much broader
class of equations [18, 36, 50]. This is a mixed-type equation that describes drift-
diffusion in the velocity component and drift in x due to the external force. If the
latter vanishes it reduces to pure drift-diffusion in velocity space. The equation has
also been formally generalized to describe the motion of multiple Brownian particles
by incorporating an integral operator on the right-hand side to account for particle-
particle interactions [63].

If the friction coefficient { is large, one may intuitively expect that the velocity
relaxes on a time scale &'(¢™"), and then (14) reduces to an algebraic equation that
can be used to replace the velocity in (13). The result is the Smoluchowski equation

d
on _ DVX'(Vxn—

oy Fn) (16)

kgT

for the number density n(x,t) = f pdv, where the diffusion coefficient is defined
by the Einstein relation
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_ ksT
¢

Clearly this has the form of the PKS equation (1) for a suitable choice of the force.
However, the reduction as described is formal, since the full equation is a singularly-
perturbed hyperbolic equation, and (16) only describes the outer solution [100].
Smoluchowski equations have been widely used in the studies of aggregation, but
the limitations are frequently not appreciated. Similar issues arise in the diffusion
approximation of velocity-jump processes described in Sect. 4, and we will return
to them there.

D

2.3 Interacting Particles, Liouville’s Equation
and Reduced Descriptions

Next we suppose that there are no external forces — only inter-particle forces.
Newton’s second law for the system reads

dx
— =V
dt
17
Mdv F(x) a7
_— = X
dt
where x = (X1,Xp, - ,Xy) is the vector of positions, v = (vi,---,vy), F =
(Fy,--- ,Fy), and M is the diagonal matrix with M;; = m;. Note that we assume

here that F; does not depend on the velocity of any particle, nor does it depend
explicitly on time. Velocity-dependence introduces dissipation and substantially
changes the BBGKY hierarchy developed later. Thus there is no built-in friction-like
force such as arises when an individual interacts with the background environment,
nor is there a force for alignment, with the result that it may be difficult to obtain
alignment of individuals for such models. This is in contrast to the force

Fi(r;) = Z¢(|rij|)(vi -v;), (18)
J

used in the Cucker-Smale model [22], where ¢(s) is a monotone decreasing
function. We assume hereafter that force between i and j depends only on their
separation, i.e.,

Fi(x;) =Fi(@x;)=F@....,r;i1, ii41,...Tin),

where r;; = |X; — X, |. Furthermore, we assume that the particles are identical, and
that the forces are conservative. Then there is a potential @ such that

Fi(rij) = —Vx @,
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and we assume that @ can be written as the sum of pairwise interaction potentials

N
@ = Z o(ri;).

i<j

While (17) can be solved locally for N (in fact global solutions exist when @
is the Newtonian potential and N > 2, as long as there are no collisions [97]), a
less detailed description of the system for large N can be gotten by finding the joint
probability Py (X1,X2,...XyN, Vi,...Vy,t) = Py(X,Vv,t) that particle i has posi-
tion x; and velocity v;. Denote the solution of (17) subject to x(0) = x,,v(0) = v,
as (x,v) = (x(Xo, Vo, 1), ¥ (Xy, Vo, 1)), which defines a unique curve in the
6N-dimension phase space for suitable F;, and implies that

PN(Xs Vvt) = Hij\;] 8 (Xi - Xi(XOsVOsZ)) HiN:I 8 (Vi - I/i(Xavvtht)) .

Thus if we specify an initial condition with certainty then the probability distribution
at any later time is concentrated at one point. Now suppose that we run the
‘experiment’ many times or that we consider a large number of copies of the system.
Given a distribution of initial conditions, P, is no longer concentrated at a point or a
finite number of points, but since there is no dissipation, the evolution of P, follows
from the Reynolds transport theorem [3]. Thus the N-particle distribution function
evolves according to

P F
TN v VePy +

—-VyPy =0, 19
o - N (19)

which is called Liouville’s equation. This is formally equivalent to Newton’s
equations and thus equally intractable for large numbers of particles, but one can
derive equations for reduced or marginal distribution functions, defined as

Pi(xi,...X,Vq,...V;,t) = / Py(x,v,0)dX;41...dXydvVis1...dvy.

Liouville’s equation can be written

0Py = YNoira 9 9 5
ot +k§ Vi Vi Py _; - [a_x,“/’(“f) e T a ) W} P, =0 (20)
ii<j

and more compactly as

P
B_IN + %yPy =0. 1)

By integrating over N — [ particles one obtains the evolution equation for the
[-particle distribution function [16]
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I
afi 0 Fil+1
—+ 4N Z—Z / Sir1(Xp, o Xpp 1, Vi Vi 1) A X 1 1d V4

av;

ot P m
(22)
where Do)
QLr;
F = —— Y
/ aX,'
is the force between particles i and j. These equations for/ = 1,--- , N are called

the BBGKY hierarchy. Clearly the system is not closed unless / = N, because for
any [ < N one must know P;4; to solve (22). Thus we seem once again to have
come full circle; the only self-contained equation is Liouville’s equation and it is
equivalent to Newton’s equations.

Of particular use in this context are the evolution equations for the one- and two-
particle number density functions.

P, ad Fia

— + 4P =—— —= Py(x1,X2, V1, V2)dXod Vs. (23)
ot avy m
oP 9 Z 9 7
_2_,_321)2:_/ =2 T T8 p)dxsdvy (24)
ot avy m avy m

As noted previously, when there are no collisions Liouville’s equation has a
smooth global solution for suitable potentials—it is the collisions that lead to
Boltzmann’s equation. When only binary interactions are involved, i.e., in the dilute
limit, the two-particle distribution function factors and the equation for the single-
particle distribution reduces to Boltzmann’s equation [12]. Convergence of solutions
of the BBGKY solution hierarchy to a smooth solution of a kinetic equation for
a single particle distribution function is still an unresolved problem for general
particle-particle interactions. A very accessible discussion of this, and in particular
of the Boltzmann-Grad continuum limit N — 0o, 02 — 0 No? = constant, is given
in Cercignani et al. [17]. More complete treatments of mathematical techniques for
kinetic equations are given in [16, 17,60, 83]. Application of the BBGKY hierarchy
to derive reduced descriptions for flocking problems is widely-used [15, 38], but
the use of idealized kinetic models frequently fails to capture some essential
characteristics of animal movement [47].

3 Simple and Reinforced Random Walks in Space

3.1 The Pearson Random Walk

Consider a random jump process on R" in which the walker executes a sequence of
jumps of negligible duration, driven by Poisson forcing x. This is called a random
walk, and the earliest analyses of these processes apparently dates to Bachelier
[5] around 1900, in the context of his analysis of financial time series. However
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Fig. 2 Three steps in a
Pearson walk of fixed
step-length

NIz

the term ‘random walk’ was apparently coined by Pearson [81], who proposed the
following problem.

A man starts from the point O and walks £ yards in a straight line; he then turns
through any angle whatever and walks another £ yards in a second straight line. He
repeats this process n times. I require the probability that after n stretches he is at a
distance between r and r + §r from his starting point O.

The solution to this problem had previously been obtained by Rayleigh [84] in a
study of the superposition of sound waves. Later we will see that this walk fits into
a more general framework that incorporates a waiting time distribution and a jump
size distribution, but for now we treat the simple 2D walk shown in Fig. 2. Let P, (r)
be the probability that a walker who begins at the origin is in the interval (r,r + dr)
at the nth step, and T'(p) be the probability of taking a step of length |p| in the direc-
tion p/|p|. If the steps are uncorrelated then P, (r) satisfies the renewal equation

Paae) = [ T)P = p)d. 5)
R
In the Pearson walk the angular distribution is uniform on the circle of radius £ and
thus 5ol —0)
p j—
T(p) = ————,
() 0l

and for this kernel the probability at the n + 1st step is simply the average of
the probabilities at the previous step over the circle of radius £ centered at r. The
solution of (25) is

P(r) = % /O ” T (k) Jo(kr)kdk, (26)

where r = |r| [7,55], and in the limit # — oo this reduces to

1 2 2
P,(r) ~ —¢ et (27)

The result sought by Pearson is just 277 times this, i.e.,

2r _o, 2
P"(r)Nn_ﬂe it
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which is Rayleigh’s result. In an historical coincidence, Einstein’s seminal paper
[27] on Brownian motion also appeared in 1905, and the parallel between (10)
and (27) for the discrete Pearson walk is evident. An isotropic diffusion equation
is also derived from the Pearson walk in the chapter by Hillen and Painter, using
different notation.

A variation of the 2D Pearson-Rayleigh random walk in which the steps are
random vectors of exponential length and uniform orientation was considered in
[33]. It is shown there that imposing a constraint of a fixed total length on a walk
leads to a number of interesting results. For instance, by taking exactly three steps
the probability distribution is uniform in the disc of radius /, while for fewer steps
the distribution is concentrated near the boundary and for more it is concentrated
near the origin.

3.2 The General Evolution Equation for Space-Jump
or Kangaroo Processes

We generalize the simple random walk as follows. Suppose that the waiting times
between successive jumps are independent and identically distributed. Let .7 be the
waiting time between jumps and let ¢ (¢) be the probability density function (PDF)
for the waiting time distribution (WTD). If a jump has occurred at = 0 then

¢(t) =Pr{t < 7 <t +dt}.

The cumulative distribution function for the waiting times is @(t) =
fot ¢(s)ds = Pr{.7 < t} and the complementary cumulative distribution function
is ¢3(Z) = Pr{J >t} = 1 — &(t). If the jumps are exponentially distributed then
&(t) = 1 —e ™, and ¢(t) = Ae™, and this is the only smooth distribution for
which the jump process is Markovian ([31], p. 458).

In general the jumps in space may depend on the waiting time, and conversely,
the WTD may depend on the size of the preceding jump, but to make the
analysis tractable, we assume that the spatial redistribution that occurs at jumps
is independent of the WTD. Let T'(x,y) be the PDF for a jump from y to X, i.e.,
given that a jump occurs at 7;,

T(x,y)dx = Prix < X(T;/") < x+dx |X(T)) =y}, (28)

where the superscripts £ denote limits from the right and left, respectively. If the
underlying medium is spatially non-homogeneous and anisotropic, the transition
probability depends on x and y separately, while in a homogeneous medium
T(x,y) = T(x—y), where T is the unconditional probability of a jump of length
|x — y|. In either case, T is a probability kernel if and only if [, T(x,y) dx = 1.
We further assume that 7 is a smooth function and that for any fixed y the first two
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x- moments of 7' are finite, though they depend on y unless the system is spatially
homogeneous. Later we comment on the effect of infinite moments.

Let P(x,t]|0)dx be the probability that a jumper which begins at the origin at
t = 0is in the interval (x,x + dx) at time ¢. It was shown in [73] that P(x,]0)
satisfies the renewal equation

P(x,t|0):f13(t)8(x)+/0 /anﬁ(t—t)T(x,y)P(y,rlO)dydt. (29)

Many of the standard jump processes can be recovered from this general result
by particular choices of ¢ and T'. For instance, if ¢(¢z) = §(t — ty) then @(¢) =
H(ty —t), where H(-) is the Heaviside function, and (29) reduces to

P@.110) = Hito =030 + (1= H=0] [ T3Pt =10/0)dy.

This is the governing equation for a discrete time, continuous space process in which
jumps occur at intervals of #y. If in addition the support of 7" is concentrated on the
points of a lattice Z" C R”, then

P(X,‘,I|O) = H(Z()—I)Sio—f- [1 —H(Zo—l)]ZT}jP(Xj,l —lo|0).
J

where §;¢ is the Kronecker delta, and x; is a lattice point. This can be written in the
more conventional Chapman-Kolmogorov form as follows.

Pio(n+1) =3, T;j Pjo(n) n=1

If the WTD is exponential, one obtains the continuous time random walk
oP
E(x,th) = —AP(x,t|0) + A T(x,y)P(y,t|0)dy. (30)
RH
and if in addition the support of the kernel 7'(x,y) is a lattice then

oP
7 (0,110) = =AP(x;,110) + 2 3 | T P(x;,7[0). (31
i

One can cast the latter into the form of a master equation for a countable state
Markov process by applying the condition on 7 that guarantees conservation of
walkers to obtain

P
o (0,110) = =23 Ty P(xi,210) + 4 Y Ty P(x;,1[0). (32)
i J
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A generalization of this that allows for other non-exponential WTDs takes the form

JoP !
00 = [ a0 | =T P10 + Y7 Px;.10) | dr. 63
i J

and of course one can couple the jump probabilities with the WTD [53].

There is a large literature on the various special cases. For instance, the
continuous-time random walk (CTRW) dates at least back to Irwin [48] and has
been extensively developed for birth-death processes [40] and on lattices [54,66,98].
The general form (29) was first derived in [73].

3.3 The Evolution of Spatial Moments for General Kernels

To determine how the evolution of the spatial moments in time depends on the
waiting time distribution, we assume that the medium is one-dimensional and
spatially homogeneous—the generalization to n dimension is straightforward. Let

+o00
(x"(0)) = /_ x"P(x,t]0) dx

+oo pt ptoo
= / / / X"T(x —y)p(t — 1) P(y,7|0)dy dt dx. (34)
—00 0 J—oo

Denote by
+o00
my = / ka(x) dx

(o]

the k-th moment about zero of the jump length distribution—then as shown in [73]

(x"(1)) = [0 Z(Z)mm(z—r)(x"—k(r))da (35)
k=0

and thus the Laplace transform of the k-th moment is given by
n n—1
$(s) n mpy
X = m X — + 1.
n 1— ¢ (S) kzzjl k kAn—k s

In particular the first two moments are

_m QS(S)
Y0 ="77755
Xa(s) = (2m1X1 () + %) % (36)



The Mathematical Analysis of Biological Aggregation and Dispersal: Progress, . . . 93

The two most widely-used waiting time distributions are the exponential distri-
bution and the gamma distribution. Suppose in either case that m; = 0, since a
non-zero first moment simply adds a drift. Then for the exponential WTD one finds
that ¢(s) = A/(s + A) and that (x2(t)) = maAt. If ¢ is a gamma WTD with
parameters (2, 1), then ¢ (1) = A%te™, ¢(s) = A2/(s + 1)?, and

! A2 A 1
(Xz(l» = m2/0 g—l (m) dt = mTZ {l — ﬁ(l —E_ZM) . (37)

In general the asymptotic behavior of the moments can be gotten by applying
limit theorems for Laplace transforms [99]. If we denote the kth moment of the
WTD as M} and suppose that m; = 0, then the leading terms in an asymptotic
expansion of X;(s) are

my M2—2M12 2
Xo= 2 4 (222000 ) 54 6y |
2 Mlsz[ +( o )T

Therefore, by (i) applying the limit result that lims—.¢ f(s) = lim, F(¢), and
(i) using the fact that

r
L@ = L) for p >0,
sP
one sees that if the mean waiting time M, is finite, then the mean-squared
displacement for large ¢ is given by

20)) ~ 2
(x=(1)) Mlt.

Thus so far as the mean-squared displacement is concerned, any jump process for
which the jump distribution has a finite variance and the WTD has a finite mean
behaves like a diffusion process with diffusion coefficient D = m,/(2M;) for
large t.

To make the connection with the PDE descriptions of motion more explicit,
consider first the case of an exponential WTD, and suppose that the jump kernel
is spatially homogeneous. If

_ b(x—yl-0)

T(x—y) i

’

where w, = 272 /I (3) is the surface measure of the unit sphere in R", one finds
that

P

= = AP L1 = P(x0)],
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where P is the average of P over the surface of a sphere of radius £ centered at x.
Expansion of P about x leads, in the diffusion limit A — oo, £ — 0, 102 /2n= D, to

P
— = DV*P, 38
o (38)
provided that all higher-order derivatives are bounded. The Pearson walk described
earlier falls into this class.

A similar conclusion holds for more general kernels, written in 1D for simplicity,
of the form

|x — |

~ 1
Tx—y)=-T ).
(=3 = ;T2 0
Then
2 2
8_P =X E/ To(r,£)rdr a—P—f-)L Z_/ To(r, O)r?dr 8_P+ o?). (39)
ot R ox 2 R 0x2

Therefore if the first moment of 7 is &'(€) for £ — 0, if the second moment of
Ty tends to a constant, and if all higher moments are bounded, then in the diffusion
limit we obtain a diffusion equation with drift. The diffusion coefficient is given by

02 2
D = A?}E)%/R To(r,O)r-dr (40)

and the drift coefficient is given by

62 . T()(r,e)
B = AE%E}})/R 7 rdr. 41

The latter vanishes if the kernel is symmetric.

3.4 The Effects of Long Waits or Large Jumps

The fact that any jump process with a WTD that has a finite first moment and a
jump distribution having a finite second moment evolves like a standard Brownian
motion for large ¢ is simply a reflection of the central limit theorem applied to the
sum of the IID steps taken in the walk [51]. When the large-time limit of the mean-
square displacement grows either sub- or super-linearly the process is said to exhibit
anomalous diffusion. For example, if

(x*(0)) ~ ytP
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for B # 1 and t — oo, it is called subdiffusion if B < 1 and superdiffusion if 8 > 1
[65]. Subdiffusion occurs when particles spread slowly, whether because they rest
or are trapped for a long time, and in particular, if the mean waiting time between
jumps is infinite. For example, if m; = 0, then from (36)

2 _ —1 <Z_5(5)
) =mz (29).

Therefore, if ¢(s) ~1/s? for p€ (0,1) and s — 0, then (x2(t)) ~ mst?
for t — oo, i.e., movement is asymptotically subdiffusive. As another example,
consider

1

H=—.
o) (141)?
which is a well-defined distribution, but for which M), = oo for all k > 1. The
transform of ¢ is

P(s) = (% - Si(s)) coss + Ci(s)sins

where Si and Ci are the sine and cosine integral functions [20]. From the asymptotic
expansion of the integrals one finds that

(x*(1)) ~ logt,

and thus the process is subdiffusive.

The superdiffusive case arises when the walk is highly persistent in time, for
example, if the walker never changes direction, or for walks having a fat-tailed
jump distribution. The simplest example of the first case arises when the walker
never turns, which leads to a wave equation for which the mean square displacement
scales as ¢2. More generally this arises if ¢(s) ~ I'(3)/(s> + I'(3)) for s — 0. An
application to bacteria that exhibit long runs is discussed in [64].

The latter case arises when the variance of the jump distribution diverges and
the central limit theorem does not apply. The motion corresponds to a Lévy flight,
which leads to alternate localized meandering punctuated by occasional long steps.
A comparison of a Lévy flight for the jump distribution

- o
Tx)=A,—————
0= Ay
for u = 1.5 with Brownian motion is shown in Fig. 3. The applicability of Lévy
flights as a description of animal movement is discussed in [26].



96 H.G. Othmer and C. Xue

Fig. 3 An example of
Brownian motion (lower left)
in the X-Y plane, and a Lévy
walk (upper right)

(From [65])

3.5 Biased Jumps Dependent on Gradients or
Internal Dynamics

Several generalizations of the preceding examples are possible. The WTD for the
jump process can depend on time or on the density of individuals, the redistribution
kernel may depend on the local density or a local average of the density, and of
course the WTD and jump distributions need not be independent. Examples of the
latter case include introduction of a resting phase in which the resting time depends
on the preceding jump length, or alternatively, the WTD distribution may depend
directly on the jump length. It is known that a resting phase with Poisson driven
entry and exits simply rescales the diffusion coefficient in simple random walks
[46,98].
If the waiting time distribution depends on the number density » and ¢, then

t
G(n.1) = An(x,1),1)e” Jornoxods,
and the renewal equation for the number density is now the nonlinear equation
H(X, Z) — e—f(i A(n(x,s).s)ds F(X)

t "l —T
+ / / An(x,t — 1)t —1)e Jo AN T vyn(y, 1) dydr.
0 R

For suitable choices of the dependence on the density this can describe either
aggregation or dispersal. Dispersal at high densities would obtain if A(n,-) is an
increasing function of n, in which case the mean waiting time between jumps is a
decreasing function n. On the other hand, density-dependent aggregation could be
modeled using a A that decreases with n, in which case the waiting time between
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jumps increases with the density. A different approach in which the parameters
depend on internal state variables will be discussed later.

The kernel 7" may also depend on external fields such as the concentration of an
attractant and on the internal state of the organism, and one expects this dependence
to be reflected in the resulting limit equations. This will be discussed in greater detail
in the context of velocity-jump processes, but here we briefly illustrate the issue for
space-jump processes.

Letx = x& andy = y», where & and 5 are the directions of x of y. For a fixed y,
the average x after a jump is defined as

i:/T(x,y)xdx:/T(x,y)Sx” dx dw,.

The angle between & and 5 measures the tendency for the next jump to remain
aligned with 5. Therefore we define an index of directional persistence as

wd = (57 77)? (4‘2)

and clearly ¥4 € [—1, +1]. If the step lengths are fixed at A, as in the Pearson walk,
and if the turning probability depends only on the cone angle

O(x,y) = cos™' ({£.1))

between y and x, then 7'(x,y) has the form

§(x—yl—4)

T(x,y) = o n(Oxy)

for any n > 2 and a normalized distribution /.
To illustrate how external fields can be incorporated we write

T(Xv y) = 7:0(-)C - y) + Tl(xs y),

and we suppose that the drift in T, vanishes, that the bias kernel 7} has compact
support and vanishing first moment, and that

/ Ti(x,y) P(y)dy = / (y—x)-F(S(y)P(y)dy.
R" Bs(x)

Here S is a specified field, F is a vector-valued function of S, and Bs(x) is a ball
of radius 8, the sensing radius, centered at x. For example, let F = —yV .S, define
y — X = p, and expand around x; then one finds that
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/Rn Ti(x,y) P(y)dy = =y [VSX)VP(x) + P(x)VVS(x)]: » )ppdp (43)

= —yV,8* [VS(X)VP(x) + P(X)VVS(x)]: 8 (44)

where n
Vi = Jﬂ/r(z +1)

is the volume of B; in n dimensions, and § is the unit second rank isotropic tensor
[71]. Thus the n-dimensional extension of the drift-free version of (39) to include
the bias given above reads

oP
57 = DAP —x(VS-VP + PV-V5), (45)

which is a form of the chemotaxis equation discussed later.

3.6 Aggregation in Reinforced Random Walks

The rigorous analysis of random walks is more complicated when particle inter-
actions, either direct or indirect, are taken into account (cf. [68, 88, 89]). As will
be discussed later, E. coli releases a diffusible attractant, whereas myxobacteria
gliding on a slime trail react to their own contribution to these trails and to the
contributions of the other bacteria [101]. There is a growing mathematical literature
on what are called reinforced random walks that began with the work of Davis [24];
arecentreview can be found in [82]. Here we sketch the approach developed in [72],
where the particle motion is governed by a jump process and the walkers modify the
transition probabilities on intervals for subsequent transitions of an interval.

Davis [24] considered a reinforced random walk for a single particle in one
dimension. Initially there is a weight w’, on each interval (i,i + 1), i € Z which
is equal to wY.! If at time n an interval has been crossed by the particle exactly k
times, its weight will be

k
i _ .0 '
wn—wn-i-g aj,
—

where a; > 0, j = 1,..., k. Furthermore, the transition probabilities are given by
Wi
P(xit1 =n+1lx; =n) = —"———.
wh +w,

'In this section the weight w may be equivalent to the signal S used earlier, or some function of it.
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Davis’ main theorem asserts that localization of the particle will occur if the weight
on the intervals grows rapidly enough with each crossing, as summarized in the
following. Let x; be the particle position at the i th step, let X = {x;,i > 0}, and let

s} n -1
and q&(a)zZ(l—f—Zai) .

n=1 i=1

Theorem 1.  Suppose that w0 = 1. Then

(i) If p(a) = oo then X is recurrent.
(ii) If ¢(a) < oo then X has finite range and there are random integers n and 1
suchthatx; € m,n+1) if i > 1.

Here recurrent means that every integer is visited infinitely often a.s., i.e., the walker
does not become trapped. From this it follows that if a; = constant, for instance,
which corresponds to linear growth of the weight, then X is recurrent almost surely,
whereas if the growth is superlinear then the particle oscillates between two random
integers almost surely after some random elapsed time. Since the result deals with
a single particle it does not directly address the aggregation problem, but it does
suggest that if the particles interact only through the modification of the transition
probability there may be aggregation if this modification is strong enough.

This theorem motivated the following development, in which we begin with a
master equation for a continuous-time, discrete-space random walk. and postulate
a generalized form of (31) in which the transition rates depend on the density of a
control or modulator species that modulates the transition rates [72]. We restrict
attention to one-step jumps, although it is easy, using the framework given earlier,
to apply this to general graphs, but one may not obtain diffusion equations in the
continuum limit.

Suppose that the conditional probability p,(¢) that a walker is at n € Z at time ¢,
conditioned on the fact that it begins at n = 0 at ¥ = 0, evolves according to the
continuous time master equation

apy
ot

= T W) puai + T s(W) Pt — (W) + (W) pa. (46)

Here 9;* () are the transition probabilities per unit time for a one-step jump to
n+ 1, and (I (W) + F-(W))~! is the mean waiting time at the nth site. We
assume throughout that these are nonnegative and suitably smooth functions of their
arguments. The vector W is given by

W= (W12, W s W 172,00 s Wo, Wij2, 0 0). (47)
Note that the density of the control species w is defined on the embedded lattice

of half the step size. The evolution of w will be considered later; for now we
assume that the distribution of w is given. Clearly a time- and p-independent spatial
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distribution of w can model a heterogeneous environment, but this static situation is
not treated here.

As (46) is written, the transition probabilities can depend on the entire state and
on the entire distribution of the control species. Since there is no explicit dependence
on the previous state the jump process may appear to be Markovian, but if the
evolution of w, depends on p,, then there is an implicit history dependence, and
the space jump process by itself is not Markovian. However, if one enlarges the
state space by appending w one obtains a Markov process in this new state space.

Three distinct types of models are developed and analyzed in [72], which differ
in the dependence of the transition rates on w; (i) strictly local models, (ii) barrier
models, and (iii) gradient models. In the first of these the transition rates are based
on local information, so that 9 = 7 (wy), and to s1mp11fy the analysis we
assume that the jumps are symmetric, i.e., that J+ =9~ = 7. 1In this case (46)
reduces to

0pn
ot

= c9,\.(prl—lsWn—l)pn—l + é(pn+lvwn+l)pn+l —zvé(Pn,Wn)Pn-

If we assume that there is a scaling of the transition rates such that T =27 , and
that the formal diffusion limit

lim Ah? = constant = D
h—0
A—>00

exists, we obtain the nonlinear diffusion equation

2

) 9
P _ D5 (T (w)p). (48)

At

The second type is one called a barrier model, for which there are two sub-cases,
depending on whether or not the transition rates are re-normalized. In the first case
one assumes that Zi(W) = 7 (Wu+1/2), Which leads to the equation

ap
— =DV -(ZVp).
I (ZVp)

If one re-normalizes the transition rates so that
MIFW) + T (W) = constant = A,

then after some analysis one finds that in the diffusion limit this leads to

bp D[ D p
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Table 1 Dependence of the response on the sensing mechanism

Type of Taxis Chemotactic Type of
sensing velocity sensitivity taxis
1. Local —DVZ7 —DJ’(w) Negative

it 7/(w) >0

2. Barrier without 0 0 None
re-normalization

3. Barrier with DVing D (InZ (w))’ Positive
re-normalization if 7/(w) >0
4. Nearest neighbor with 2DVinT 2D (Ing (w))’ Positive
re-normalization it 7/(w) >0
5. Gradient without 2DBVzt 2DB7’ (w) Positive
re-normalization if B’ (w) >0
6. Gradient with D 4 Vz D b ' (w) Positive
o o

re-normalization if Bz’ (w) >0

For later comparison with velocity jump processes we define the chemotactic
velocity and sensitivity as

9 9
y=D(nT), u=-D>1Inp+D(InTw) . (50)
dx ox

Thus the taxis is positive if 7’(w) > 0. The simplest form of w-dependence is to
assume that 7 (w) = o + Bw, and we use this form later in examples.

The last type of sensing leads to the gradient-based, or look-ahead model, for
which T, = & + B(z(wy) — Twa—1) and Ty = & + B(x(wa) — T(was1),
a > 0, and again there are two cases, depending on whether or not the rates
are re-normalized. The chemotactic velocities and sensitivities for these and the
preceding cases are summarized in Table 1.

Of course we also have to specify the local dynamics for the evolution of w, and
here we use the general form

aw pw
_ = + yr
ot 1+ Aw K+p

—uw = R(p,w) (51)

in the examples shown in Fig. 4. For all cases we set D = 0.36, and in the first panel
we show the solution of (49) and (51) fora =y, = u =0and 8 = 1,1 = 107,
The second panel is as in the first, but with A = 0, and in the third panel a more
complicated transition rate is used (cf. [72]). One sees in that figure that both the
dependence of the transition rates on the local modulator w, and the dynamics of w
itself, play an important role in the dynamics of the system. In the first panel the
solution stabilizes at some smooth distribution, in the second panel the solution
blows up in finite time (around t = 9.3—this assertion is supported by analysis of
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a ‘ b
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Fig. 4 The density profiles from three examples of the local dynamics. Reproduced from [72],
copyright 1997 Society for Industrial and Applied Mathematics

the Fourier components—see [72]) and in the third panel the solution ultimately
collapses, in a very interesting step-wise fashion that is not understood at present.

The analysis of reinforced random walks presented in [72] can be generalized in
many directions. For example, consider the re-normalized transition rates

5 Wnt1/2
TEw) = —2=1= 52
") Wint1/2 + Wn—1/2 ©2)

These can be regarded as the discrete version of the continuous forms
L w(s)ds
Toa [ pxth

FA wds]

1 prx
Fp) = sl w(s)ds'
) %fx_tlh w(s)ds

X

f“'(w
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The continuous version implies that the walker averages over the interval (x, x + /)
or (x — h, x) to determine the transition rate. Of course one can incorporate a more
general kernel. For example, one might use

[ 22 = x)2e O™ w(y) dy

.\ _
) = S (e T () dy

which assigns the maximum weight to x £ 1/A. More generally, we may simply
assume that

[ K(y —x,h) w(y) dy
[ K(y—x.h)yw(y)dy + [ K(x —y. hyw(y) dy

oo K(x =y, h) w(y) dy
[E Ky —x.myw(y) dy + [* K(x — y.hyw(y) dy

T (w(x)) =

T~ (w(x)) =

for a suitable kernel K. To recover (52) we choose

h
K(y—x.n)=58(p—-x—7).

4 Velocity Jump Processes and Taxis Equations

As described in Sect.2, the velocity-jump (VIJ) process is predicated on the
assumption that particles make instantaneous jumps in velocity space, rather than in
physical space [73]. By comparing the underlying basis of the FPKK equation with
that of the Smoluchowski equation, one should expect that the VJ process gives rise
to evolution equations that depend jointly on physical- and velocity-space operators.
Just as the FPKK equation leads to the Smoluchowski equation in certain regimes, it
is known that the long-time asymptotics of VJ processes lead to diffusion processes
in space under suitable scalings of space and time [1,41,77]. In this section we define
the general VJ process and summarize results on diffusion limits of this process. In
the last subsections we describe the application of this process to two classes of
biological organisms—swimming bacteria and crawling cells.

4.1 The General Velocity-Jump Process

We shall work directly with the differential equation form of the conservation
equation for a phase space density function that depends only on the position,
velocity, time and some intracellular variables. In essence the resulting equation
is the analog of the Liouville equation (19) with an additional term to account for
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the gain or loss of particles at a point in phase space due to the underlying jump
process. Throughout we focus on the evolution of a smooth density function, and
do not address the question of how to connect this to limiting forms of the empirical
density for an N -particle system.

Let p(x,Vv,y,t) be the density function for individuals in a 2n + m-dimensional
phase space with coordinates (X, v, y), where x € R" is the position of an individual,
v € R”" is its velocity, and y is the set of intracellular state variables involved in cell
movement. The evolution of p is governed by the equation

O Ve () + Yy (Bp) + V- (Gp) = 7, (53)

where F denotes an external, velocity-independent force acting on the individuals,
f is the rate of change of the internal variable y, and % is the rate of change of p
due to birth/death processes, a jump process that generates random changes of
velocity, etc. Normally cell proliferation is independent of the velocity, and the rate
of proliferation can be approximated by r (n) p, where r (n) is the density-dependent
growth rate, but here we only include random velocity changes. In addition
we assume that cells are sufficiently separated and neglect cell-cell mechanical
interactions.

The jump process for velocity changes is the direct analog of the stochastic
process underlying space jumps. Initially we suppose that the waiting time between
jumps and the changes in velocity are independent, and that the WTD is exponential.
As aresult, the turning can be described by two quantities, the turning rate A, and the
turning kernel 7'(v, v'), which defines the probability of a change in velocity from
v to v, given that a reorientation occurs. 7' (v, v') is non-negative and normalized so
that [ T'(v,v')dv = 1, and at present we assume that it is independent of time and
space. In light of the foregoing assumptions, (53) becomes

)
a—l;+Vx-(vp)+Vv-(Fp)+Vy-(fp) =-Ap +A/T(V,V’)p(x,v’,t)dv’, (54)

and the underlying stochastic process is called a velocity jump process. For most
purposes one does not need the distribution p, but only its first few velocity
moments. The first three are the observable density of individuals n(x,t), the
momentum, and the momentum flux.

n(x,t) = /p(x,v,y,t)dvdy, jx. 1) = /p(x,v,y, t)vdvdy

P= /p(x,v,y,t)vvdvdy.

The momentum j defines the average velocity u = j/n. Integration of (54) over

(v,y) leads to

9
3—':+vx-nu=0. (55)
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When A is independent of y, multiplication of (54) by v and integration over (v, y)
yields

B(SIU) +V-P—Fn=-Anu+ A / T(v, V/)Vp(X, V/,y, ) dV’dde, (56)

These are not closed, except in a special case noted later, due to the presence of the
momentum flux tensor P and the integral term on the right. Until stated otherwise,
we assume that F = 0.

It is observed experimentally that the movement of cells often exhibits directional
persistence, and as a result, the turning kernel depends on the angle 6 between the
previous velocity v/ and the new direction v [8, 39, 59, 62]. Let s denote the cell
speed, and e, denote the direction of the velocity, then, v = se,. For a fixed v/, the
average velocity v after reorientation is defined as

V:/T(V,v’)vdv:/T(V,v’)s”evdsdw,,

and the average speed is

EE/T(V,V’) v dv= /T(V,V’)s" ds dw,.
As in the space-jump framework, we characterize persistence via an index of
directional persistence, defined as

e /

Vo= e[-1,+1], (57)
Ss

which measures the tendency of the motion to persist in a given direction e,. Of
particular interest is the case in which the speed does not change with reorientation
and the turning probability depends only on 6. Then T (v, v') has the form

T(v,V)=h(0(v.V)) (58)
for any n > 2. For such T, V4 is independent of v/ and
vV =1yav, (59)

where

_ 2 /5 h(B)cosb db forn =2
| 27 f;" h(0) cosOsin6 db forn = 3.
Observations of the movement of Dictyostelium discoideum (Dd) amoeba yield

Ya =~ 0.7 [39], whereas the three-dimensional bacterial random walk data in [8]
show ¥, ~ 0.33.

Va (60)
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External signals enter either through a direct effect on the turning rate A and the
turning kernel 7', or indirectly via internal variables y that reflect the external signal
and in turn influence A and/or T'. The first case arises when experimental results are
used to directly estimate parameters in the equation [32], but the latter approach is
more fundamental. The reduction of (54) to the macroscopic chemotaxis equations
for the first case is done in [41, 70], and second case is done in [28-30, 104, 105].
In [104], external forces are also included. We summarize some of the important
aspects of the reduction in the following sections.

4.2 The Telegraph Process

A simple example will illustrate both the reduction of the jump process to a diffusion
process, and how the parameters of the jump process have to be controlled so as to
produce aggregation. Suppose that the walkers are confined to the real line R, that
the speeds s* to the right and left may depend on position, and that direction is
reversed at random instants governed by Poisson processes of intensity A*. Let p*
denote the density of walkers moving to the right and left, respectively. Then the
conservation equations for these densities are”

ot dtph)

— —A+ + A~ -,
o1 ox oA
(61)
ap~ s p7) + o+ - =
PP gt
o1 x P P

Letn = pT + p~ be the macroscopic density and note that the flux j is (s*p* —
s~ p7); then (61) can be written in the alternative form

on n aj 0
a o ox
(62)
9 . Lo6stpt)y o _d(sTp)
o T ox T dx B

(sJr + s_)(—/XerJr +A7p).

To illustrate the essence of aggregation and taxis in this simple context, we ask how
the walkers should modify their behavior so as to produce a nonuniform distribution
in space at steady-state, and we consider three cases.

2These equations are the restriction of (54) to one-space dimension only when the speeds sT are
constant, and in that case the moment equations close at the second level for constant A [73]. We
consider the more general case for illustrative purposes.
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Case I: Constant and equal turning rates and speeds, A\* = 1~ = A, and
sT(x) =57 (x) = 50

By combining the two equations at (62) we obtain the classical telegrapher’s
equation
9’n on 9’n
— 4 2h o = 52—,
9z T T a2
and by formally taking the limit Ay — 00,5 — oo with s2/A¢ = 2D constant
in (63), one obtains the diffusion equation. However the limiting procedure can be
made more precise by considering the exact solution of (63), which is

(63)

e—)»ot

A A
n(x.t) = { — ( (x —s1) + 8(x + st) + TO [IO(A) + 70t11(/1)i|) + no |x| < st,

no |x| > st.

Here Iy and I; are modified Bessel functions of the first kind. By applying the
asymptotic expansions

et 1 et 1
Iy(z) = +0|-), Ii(z) = +0\-), as z — oo,
0@ V2mz (z) 1@ 21z (Z)
one finds that

xZ

n(x,r) = ,6_4_Dt +ng+eMOE),  § = (x/s0)

T

From this one sees that the telegraph process reduces to a diffusion process on space
scales that are small compared with the ballistic scale s¢. This fact was known to
Einstein and this process has since been studied by many [34,37,49,73,92].

If we define 1 = €2t and & = ex, where € is a small parameter, then (63)
reduces to
%n on %n
2 2
o T T e ©4)

In these coordinates x/(st) = €£/(st) and the diffusion regime only requires that
&/(st) < 0(1). In the limit € — O the exact solution can be used to show that (64)
again reduces to the diffusion equation, both formally and rigorously (for # bounded
away from zero). However this shows that the approximation of the telegraph
process by a diffusion process hinges on the appropriate relation between the space
and time scales, not necessarily on the limit of speed and turning rate tending to
infinity. In any case, it is clear that the spatial distribution of n is asymptotically
constant, and thus there is no localization of walkers. Imposing no-flux boundary
conditions on a finite interval does not change this conclusion.
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Case II: Constant and equal turning rate AT = A~ = M, distinct speed

sT(x) # 57 ()

By assuming that the flux j at infinity vanishes, and solving for the steady state
solutions of (61), one finds that

LSt —sT
T
sT—s~
pe = [FOEO]
s (x

where the constant p*(0) is the cell density moving to the right at x = 0, which
is determined from the conservation of total particle number. From this we see that,
(a) aggregation can occur when the speed of the cell depends on the spatial location,
i.e., sT are not constants, (b) the distributions for the right-moving cells and the
left-moving cells differ if s*(x) # s7(x), and (c) if sT = s, both left- and
right-moving cells aggregate at points of low speed. This is somewhat similar to
the scenario of traffic flow—when the road becomes narrower, cars slow down, and
traffic jams may form.

Case III: Distinct turning rates A*(x) # A~ (x), constant and equal speeds
sT=s5"=1s

We write N N
A AT AT —AT
aE=A T — Aot A,
2 2
then the density-flux form (62) becomes
on  dj
— 4+ 2L =0,
ot Ox
(65)
i ,0n
- — = —2Agj — 2sAn.
or T ax 0] = 2shan
When A is constant this reduces to
9%n on 0% 0
— — =5"— —2s—(An). 66
g TG =5 g T e () (66)

We call this a hyperbolic aggregation or taxis equation, and we will see later how
this emerges in general. The difference of the turning rate produces a drift in the
dynamical evolution equal to u, = sA;/A¢. This is similar to what is observed in a
1D space-jump process when the probability of right and left jumps differ.
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The steady-state solution of (65) is

n(x) = noexp{—f /Oxxl(s)ds} ,

and again there may be a non-constant solution, which is a result of the difference
in turning of cells.

We see from the simple 1D process that non-uniform cell distributions can arise
when either the cell speeds are different or the turning rates are different, and these
two cases correspond to what are called chemotaxis and chemokinesis, resp.
In particular, in case 4.2 cells aggregate where their speed is lowest, which is the case
when amoeboid cells reach the peak of a potential attractant, while in case 4.2 cells
aggregate most strongly when the turning rate deviation A; returns to zero, which
happens when run-and-tumble cells adapt to the signal gradient.

4.3 Reduction of the VJ Process to a Diffusion Process

In general, in higher space dimensions equations (55) and (56) do not specify
n and u as they stand, for they involve the second v moment of p and the as yet
unspecified kernel T'(v, v'). We call the process unbiased when the turning rate and
kernel depend only on v and v/, and biased when external fields or internal state
variables are included. Note that an unbiased kernel does not mean that reorientation
is isotropic. We assume hereafter that A is independent of the velocity, and we
write (54) for the unbiased process as

0
gp(x, v.t)+v-Vpx,v,t) = —Ap(x,v,1) + )L/ To(v,V)p(x, V., 0)dV = Lpx,v,1).
v
(67)
We consider the spatial domain £2 = R”, and we suppose that the velocities lie in a
compact set V' C R” that is symmetric with respect to the origin.
To state some of the results from [41], we let J#~ denote the cone of nonnegative

functions in L2(V'), and for fixed (x, ¢) define an integral operator .7 and its adjoint
T* by

fp:/T(v,v/)p(x,v/,t)dv’, ﬂ*p:/ TV, v)px,v,0)dv. (68)
v v

We impose the following conditions on the kernel and the integral operator:

(TH TW.v)=0, [, T(v.V)dv=1, and [, [, T*(v,v)dVvdv < co.
(T2) There are functions ug, ¢, and ¥ € H withup # 0 and ¢, ¥ # 0 a.e. such
that for all (v,v') € V xV

u(MP(V) = TV, v) < u(MY (). (69)
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(T3) [Ty < 1, where (1)* is the orthogonal complement in L?(V) of the
span of 1.
(T4) [, T(v.v)dv = 1.

Then the turning operator .4 p(x, v, t) acts in L?(V'), and has the following spectral
properties [41].

Theorem 2. Assume (T1)—(T4), then the following hold.

1. 0is a simple eigenvalue of £, and the corresponding eigenfunction is ¢ (v) = 1.
2. There is a decomposition L*>(V) = (1) @ (1)%, and, for all € (1)+,

/V VLAY <~V sy where = A(1— | Tye).  (T0)

3. All nonzero eigenvalues [ satisfy —2A < Re u < —u, < 0, and to within scalar
multiples there is no other positive eigenfunction.

4. Ll =< 24

5. % restricted to (1)* € L*(V) has an inverse F with norm

1
- Iy yn < o (71)

If for example the turning kernel 7' (v, v’) is symmetric, then the constant
given in (70) is the negative of the second eigenvalue of the turning operator .%5.
This defines a time scale for relaxation of the reorientation process, and in particular,
if 1 is not a simple eigenvalue of .7, the streaming character of the transport process
dominates, and we can no longer expect to obtain a diffusion limit.

Under the preceding assumptions the parabolic scaling T = €%t and £ = ex,
where € is a small dimensionless parameter, leads to a diffusion approximation of
the transport equation [41]. In these variables we have

a
eza—p—i-ev'VEp:—/\p—i—A/ T(v,V)p&, v, 1)dV. (72)
T v

where the subscript on V, which we drop hereafter, indicates differentiation with
respect to the scaled space variable. The right-hand side of (72) is &'(1) compared
with the left-hand side, whatever the magnitude of p, and this leads to a diffusion
equation for the lowest order term pg of an outer expansion, which we write as

k
pE.v,1) =) pi€,v, 1) + i, v.7). (73)
i=0

An approximation result for any order in € that provides a bound on the difference
between the solution of the transport equation and an expansion derived from the
solution of the associated parabolic diffusion equation has also been proven.
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Theorem 3. [41] Assume (T1)—(T4) and the Hilbert expansion (73), where pg
solves the parabolic limit equation

0
PV DVp) =0 p60 = [ pEvoav. a9
v
with diffusion tensor
1
D = ——/ v.Fvdv. (75)
w Jy

In addition, the higher order corrections are given by
p1 = ZF(v-Vpy), p2 = F(pox +V-VFv-Vp),

where ¥ is the pseudoinverse defined in Theorem 2 and v = |V|. Then, for each
© > 0, there exists a constant C > 0 such that for each ¥/e* <t < oo and each
x € R"

[p(x,..1) — ga(ex, -,€2t)||L2(V) <Cé.?

and the constant C depends on ,,V, D, and 9.

In general, the approximate solution depends only on the solution of the limiting
parabolic equation, and, therefore, it cannot be uniformly valid in time (cf. [41]).
When the speed is constant and the outgoing directions are uniformly distributed on
Sl #F = -2~ and

One can prove in general that the diffusion tensor is positive definite, and one can
also derive necessary and sufficient conditions for it to be a scalar multiple of 1.
Since the reduction depends critically on the existence of the parabolic scaling,
we give an example of how it is determined. Let L be a characteristic scale
associated with the macroscopic evolution, for instance, the size of the domain on
which an experiment is done. Define the dimensionless velocity, space and time

variables
A X
u= - 8 = — T=—,
s L o

where s is a characteristic speed and o is as yet undetermined. Then
1dp s
|

oot Z) u-V'p=—ip+ /\/ T, u)pE v, 1)du,

3In [41] this estimate appears with the L2-norm squared, but it is clear from the proof that there
should be no square.
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We estimate a diffusion coefficient as the product of the characteristic speed times
the average distance traveled between velocity jumps, which gives D ~ &(s?/1),
and a characteristic drift time
L?>  L°A L
‘E”/\/—:_, T T = —,

DIFF D SZ DRIFT s
A characteristic speed for bacteria such as E. coli is 10-20 /s, and A~' ~ &(1)s.
On a length scale of 1 mm tpg;er ~ 50-100s and 7 ~ 2,500 — 10*s. Therefore,
in this example we have tz,y ~ (1) on the dimensional scale, and

TpriFT ™~ 0(1/6)7 Tpirr ™~ 0(1/62)
where € ~ ¢(1072). Then
Trun = A KL Torirr K Tpirr

and the scaled equation results for 0 = 7.

When biases are introduced their magnitude relative to the base turning rate is
critical. We write the kernel with bias as T'(v,V/, p(-)), and if, for example, we
assume the bias is linear in a signal gradient, then

T(v.V.p() =To(v.V) + k(v-Vp)(v'- Vp).

One finds that
2 2 2 -1
D¢.7) = > (I + ﬂKVpr (I — g/(Vpr) ) ,
Aon n n

and as expected, there is no drift or taxis in this case.
On the other hand, if the perturbation is &'(¢), and linear in the gradient, then one

finds that

3
—;O — V- (DVpo— o),
T

where the drift or chemotactic velocity is given by

A
u. = ——OffvfoTl(V,V/)dV/dV-
w

Here Fy denotes the pseudo inverse defined by the kernel 7p. If O has the particular
form
Q1 = kl(V/, S)V

then
2

1(p) = k(p)=—.
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The unbiased process The biased process

- I

Fig. 5 The movement of a particle driven by a VJ process, in the absence (leff) and presence
(right) of an external bias

and the lowest-order approximation is the solution of

9 5?
Z=v (—Vpo - PoX(P)VP) :
T n

4.4 The Role of Internal Dynamics

The most widely-studied examples of organisms whose motion can be described as
a velocity jump process are the flagellated bacteria, the most-studied of which is
E. coli. E. coli generates the force needed for swimming by rotating flagella
embedded in the cell membrane, and thus the swimming speed is fixed by the
hydrodynamic loading, and can be taken to be essentially constant in a specified
medium. To search for food or escape an unfavorable environment, E. coli alternates
two basic behavioral modes, swimming in a more or less straight line called a run,
and a highly erratic motion called tumbling, the purpose of which is to reorient
the cell. Run times are typically much longer than the time spent tumbling, and
when bacteria move in a favorable direction (i.e., either in the direction of foodstuffs
or away from harmful substances) the run times are increased further. Conversely,
when bacteria move in an unfavorable direction the run length decreases and the
relative frequency of tumbling increases. The distribution of new directions is not
uniform on the unit sphere, but has a bias in the direction of the preceding run. The
effect of alternating these two modes of behavior, and in particular, of increasing
the run length when moving in a favorable direction, is that a bacterium executes
a three-dimensional random walk with drift in a favorable direction when observed
on a sufficiently long time scale [9, 56] (cf. Fig.5).

To illustrate the main points involved in the inclusion of internal dynamics in
macroscopic equations, we begin with a simple example based on E. coli, and
assume that there is no interaction between cells. This is a reasonable assumption,
since typical bacterial densities are of the order of 10%/ml and individual bacteria
have a volume per cell of order wum3—thus the volume fraction is &'(107%).
Therefore we can consider either the probability of a single walker being at a given
position with a given velocity at time 7, or the density of walkers, and we choose the
latter here.
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New technology has led to extensive experimental data at the cell and molecular
level, and as a result, more complete descriptions of inter- and intracellular signal
transduction are possible for use in population-level models of E. coli. Detailed
models of the full signal transduction network exist [87,102], but simplified cartoon
models that capture the essential dynamics involved in aggregation and patterning
have been used in recent studies [28, 29, 104]. By neglecting body forces and cell
growth, the transport equation for the cell density becomes

Ip

o TV (vp)+ V- (fp) = —A(y)p + / ATV, V., y)p(x,V.,y, t)dv, (76)
v

where y = (1, y2)7. The vector ys encodes the excitation and adaptation response

of cells to external signals, and A(y) describes the motor response. The vector y

evolves according to

dyi _ G(Sx.1) — (1 +)2)

dt t, D
dy  G(S(x,0)) —»
dr ta ’ (78)

where G(S) models signal detection via surface receptors and #, and #, specify
the excitation and adaptation time scales, with 7, << #,. A complete quantitative
understanding of how different parameters at the cell level influence the population
dynamics involves the incorporation the entire signal transduction of bacteria, but
the cartoon description can predict biological aggregations and traveling bands
of bacteria (cf. Fig.6). Other intracellular variables, such as the metabolic state,
can also be included in the transport equation, and this allows for a description
of nutrient dependent cell growth. The existence of traveling wave solutions in
the transport equations when coupled with the signal evolution equations was
established in [106]. Further analysis on the comparison of the traveling waves
obtained from the classical Keller-Segel equations are presented in the chapter by
Frantz and Erban.

Macroscopic equations can be derived from the above multiscale models using
perturbation methods and moment closure techniques, and this has been carried out
successfully for the cartoon description above. The macroscopic equation

on 52 bs*t

2 _y. Vn — G'(S(x.t a VS|, 79

ot [Nko " (Ge.0) NAo(1 + Aoty)(1 + Aote)n } 7
with b = —%| yi=0 and N as the space dimension was derived in 1D first in

[29], and extended to 3D in [28]. The major assumption used there and in earlier
papers is that the signal gradient is shallow: G'(S)VS - v ~ O(€) sec™! and
t,A0 ~ O(1), which results in a clear separation of the microscopic time scales
from the macroscopic transport and diffusion time scales. Other assumptions include
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Fig. 6 Simulated E. coli patterns by a cell-based model. (a) Network formation from an uniform
cell lawn; (b) Aggregate formation from the network; (c¢) Traveling wave formation from a single
inoculum in the center. Adapted from [74] with permission

time-independent signals S = S(x), a linear turning rate A = Ao — by; and no
directional persistence. From this equation one sees that if cells adapt instantly,
i.e.,if z, = 0, then the taxis term vanishes and the population simply diffuses. In this
case no aggregates will form, which is consistent with experimental observations.

New moment closure methods were developed in [104] to account for time
dependent signals S = S(x,?) and nonlinear dependence of the turning rate on
internal variables via A = Ao — by; + az y12 — ---. In the general case considered
there, the shallow gradient assumption becomes /{’—OG/ S)VS-v+ %—f) ~ O(e)s™h.
As before, the implication of this assumption is the separability of microscopic and
macroscopic time scales. The same equation (79) results from the derivation, with
the directional persistence appearing as a scaling of the turning rates by a factor of
1/(1—=14). The method also applies for any finite system of internal dynamics f(y)
in polynomial form.

Chemotaxis equations in the presence of multiple signals and external forces
were also derived in [104] in the context of bacterial chemotaxis. In general cells
have multiple receptor types and thus can respond to many different signals. How
a cell integrates these different signals and responds properly depends on the cell
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Model Experiment

-3

Fig. 7 Streams in a growing Proteus mirabilis colony. Reproduced from [107] with permission

type and is not known in general. However in bacteria different signaling pathways
share the same network downstream of the receptors, and therefore different signals
are integrated at the signal processing step. In this case, the function G is generally
a function of all signals, G = G(S1, S2,- -+, Sm), and the macroscopic equation for
cell density becomes

on G G
— =V.|D,Vn— Vv vk —VS ),
P |: n— yon (851 Si+---+ 3s.. S, )] (80)
where
§2
Dy = —7——,
NAo(1 —va)
and
bs?t,
Xo

N2o(1 + Ao(1 = Yra)ta) (1 + Ao(1 — Ya)te)

Other systems may involve separate transduction pathways for different signals,
which will lead to different chemotactic sensitivities for different signals. Examples
of how this affects pattern formation are given in [75].

When there are external forces that act on cells, then F # 0 in 53, and additional
terms appear in the chemotaxis equations. For example, when E. coli swims
the flagella rotate counterclockwise when viewed from behind, and under typical
conditions the Reynolds number is very small. As a result, the motion is both force
and torque free, and thus the cell body must rotate clockwise. When cells swim
close to a surface there is an imbalance in the viscous force between the top and
bottom of the cell, which produces a clockwise swimming bias when viewed from
above [25]. When this bias is incorporated into a cell-based model of aggregation,
it leads to spiral density patterns as shown in Fig.7 [107]. This was treated as
a velocity-dependent force in a continuum description derived from the transport
equations (54), and this led to the macroscopic chemotaxis equation
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Fig. 8 (a) The positions of 10 randomly chosen cells from Fig. 7, each position recorded every
30s by a blue dot. (b) the macroscopic drift given by (79) yields a qualitative explanation of the
spirals. Reproduced from [107] with permission

?)_’Z =V (D,Vn—G'(S)n (xoVS + Bo(VS)1)) (81)

in two space dimensions [104]. Here (VS)* = (3,,S5, —0,,5)7 is a vector orthogo-
nal to VS, and the diffusion coefficient and the chemotactic sensitivities, assuming
fast excitation, are as follows:

SZ
Dn = 203 ’
20(1 = ya) + W—O%i)
b= Y5 ol = Ya) Ro(1 = Ya) + 1) — @] .
B =y + P + DR =) + )|
i wob(1 = Ya)s*(2Ao(1 = Ya) + 1)
0

T 2((o(1— ) + D2+ )R — Y + )

The parameter wy measures the swimming bias, while v is the index of directional
persistence. Notice that the swimming bias decreases the diffusion coefficient and
the chemotactic sensitivity yo, and introduces a drift or a second taxis-like term
in the direction orthogonal to the signal gradient. Since the force is not velocity-
independent here, the moment analysis had to be modified accordingly. The method
developed in [104] can be used to incorporate the effect of more general imposed
forces as well.

Equation (81) leads to an heuristic explanation of the handedness of the spirals
shown in Fig. 7. This is illustrated in Fig. 8, where the traces of 10 cells are shown in
(a), and the path of an individual cell is shown in (b). At # = t; the blue cell detects a
signal gradient (red arrow) roughly in the 1 o’clock direction, but according to (81)
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its average drift is in the direction of the blue arrow, due to the combined effects
of the attractant gradient and the swimming bias. This balance is repeated at each
successive time point, with the result that the cell approaches the signal source (the
red dot) along an inward-spiraling, counterclockwise path as shown in (a).

As remarked earlier, (79) was derived for shallow signal gradients, i.e., H =
f—OG/(S)(VS v+ %) ~ O(e) s with e = 5/(LAg) ~ 1072, It remains to be
determined whether the chemotaxis equation or its variant forms gives an accurate
representation of the population dynamics for bacterial chemotaxis under large
spatial or temporal signal gradients. This hinges on how the macroscopic quantities
relate to microscopic parameters, and, if the PKS equation fails under certain
conditions, what macroscopic equation can be derived. For an ultra-small signal
gradient, H < 0(g?) s™!, the chemotactic response of the population provides a
small perturbation, via higher order terms, of the cell density, which evolves accord-
ing to a diffusion process with D,, = s2/(N Ao) [103]. For large signal gradients
(H > 0(1)s™") the macroscopic equation should include the nonlinear effects of
the gradients in the macroscopic drift, for otherwise the linear approximation may
predict a chemotactic velocity that exceeds the cell speed, which is unrealistic
since there are no cell-cell or hydrodynamic interactions in the model. In this case
the microscopic time scale and macroscopic time scales may overlap, and new
techniques are needed to derive macroscopic equations.

In any case, the dependence of the diffusion coefficient D and the chemotactic
velocity u, on H can be obtained by stochastic simulations. Given different levels
of H, 10* stochastic simulations are performed with the same initial conditions.
The turning rate is given by A = A¢(1 — 4f"‘yl‘). The positions of the cell are
recorded every half minute, and the data was analyzed to obtain the diffusion rate
and the macroscopic drift. Figure 9 compares the diffusion rate and the macroscopic
drift inferred from the stochastic simulations of the 2D cell-based model with the
predictions from the macroscopic equation (79). It is shown that the macroscopic
description gives a good approximation for H ~ ¢'(¢€)s™!, but the nonlinearity in
the cell-based model for H ~ ¢(1)s™! can not be captured by the macroscopic
equation with its linear dependence of H. More specificly, from the stochastic
simulations, we see that the cell-based model reveals saturation in the macroscopic
velocity, and gradient-dependent diffusion rates.

4.5 Macroscopic Descriptions of Eukaryotic Cell Movement

Many single-celled organisms such as E. coli use flagella or cilia to swim, but
eukaryotic cells that lack such structures use one of two basic modes of movement—
mesenchymal and amoeboid [10]. The former can be characterized as ‘crawling’
and involves the extension of structures whose protrusion is driven by actin
polymerization at the leading edge. This mode dominates in cells such as fibroblasts
when moving on a 2D substrate. In the amoeboid mode cells are more rounded
and employ shape changes to move—in effect ‘jostling through the crowd’ or
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Fig. 9 A comparison of the cell-based and the macroscopic predictions of the chemotactic velocity
and the diffusion coefficients in 2D. Here D, and D, are the diffusion coefficients perpendicular
to and parallel to the signal gradient, resp., and Dy, is the cross diffusion coefficient. The left
column is obtained with no swimming bias, and the right column is obtained with ¢, = 0.04rx.

Reproduced from [107] with permission



120 H.G. Othmer and C. Xue

‘swimming’. Leukocytes use this mode for movement through the extracellular
matrix in the absence of adhesion sites [57]. Moreover, it has been shown that
numerous cell types can sense the mechanical properties of their environment and
adjust the balance between the modes appropriately [85]. Thus pure crawling and
pure swimming are the extremes on a continuum of locomotion strategies, but many
cells can choose the most effective strategy in a given context.

While ‘run-and-tumble’ organisms such as E. coli use temporal sensing to
modulate their motile behavior, the motile program of eukaryotic cells such as Dd
or leukocytes is more complicated. These cells are large enough to detect gradients
in extracellular chemical and mechanical signals over the length of the cell, and
can amplify small differences in the extracellular signal over the cell into large end-
to-end intracellular differences that control the motile machinery [19, 78]. Given
that these cells use spatial sensing, an individual-based model that incorporates
direction sensing and movement cannot treat cells as points, but must allow for
spatial variations in the finite cell volume (or area in 2D). Recent experiments
show that cells in a steady gradient can polarize in the direction of the gradient
without extending pseudopods [78], and thus must rely entirely on differences in
the signal across the cell body for orientation. Analysis of a model for the cAMP
relay pathway in Dd shows that a cell experiences a significant difference in the
front-to-back ratio of cAMP when a neighboring cell begins to signal [23], which
demonstrates that sufficient end-to-end differences for reliable orientation can be
generated for typical extracellular signals; everything needed is that the direction-
sensing pathways respond at least as fast as the cAMP pathway.

In addition to the fact that eukaryotes use spatial differences to measure
signals, another major difference with ‘run-and-tumble’ swimmers lies in the force-
generation machinery that drives the motion of eukaryotic cells. In the ‘run-and-
tumble’ description of bacterial motion we assumed that jumps were instantaneous,
which led to the velocity jump process. Furthermore, the reduction to a diffusion
process can still be carried through if there is a finite lifetime in the tumble state,
as long as the transitions are generated by a Poisson process [70]. In contrast, the
directional changes in eukaryotic cells are much slower and depend directly on the
signal location, and thus this has to be included in the model. This has been done
at the single cell level, using a model for intracellular cAMP dynamics, and treating
the cells as deformable viscoelastic ellipsoids that exert forces on the substrate and
one another. This more complex model also produces realistic aggregation patterns
[76], but there is a large gap between realistic, single-cell models and continuum
descriptions. Thus far only relatively simple cell-based models have been used for
the derivation of macroscopic descriptions.

One approach is to start with a Smoluchowski equation, and to postulate a
relationship between the force and the chemotactic gradient. If one assumes that the
motive force exerted by a cell is a function of the attractant concentration, one can
compute the difference between the force at the leading and trailing edges, and then
by a mean-value argument obtain a linear relation between this difference and the
chemotactic gradient [79]. In this approach the chemotactic sensitivity is related to
the rate of change of the force with attractant concentration. Support for this comes
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from experiments which show that as many pseudopods are produced down-gradient
as up, but those up-gradient are more successful in generating cell movement [93].
However, Dd and perhaps other cells, adapt to the signal, and simplified models
cannot capture this effectively [43]. Thus a different approach that incorporates
signal transduction and internal dynamics is needed.

In [23,30], a cell is described as a disk (n = 2) oraball (n = 3) B, = {§ €
R"| || & ||< o}, and the model is formulated in terms of the position of its center
x € R%, its velocity v € R”, its internal state functionsy : B, — R% and its
membrane state functions z : 9B, — R%2. Denote by y = (y,z) € Y the combined
internal and membrane state, where Y is, in general, an infinite-dimensional Banach
space.

The internal state and the acceleration are assumed to evolve according to

dy _

Y _ua.s). 83
” y.5) (83)
d

d—: — Z(x,V,5), (84)

where 4 : Y x S — Y is a mapping between Banach spaces and .% : R" x R" x
Y — R” is the force per unit mass on the centroid. Thus the acceleration depends
on the internal state. In this formulation the combined internal state y includes
quantities that depend on the spatial location in the cell or on the membrane, and
which may, for example, satisfy a reaction-diffusion equation such as

9
a—f = DAy +1(y). in B,, (85)
B(y,z) =0, in 0B,. (86)

Thus the boundary condition for y depends on the membrane state functions z,
perhaps to reflect binding or other processes such as scaffold formation. The
boundary variables in turn evolve according to the equation

% =g(z,5), in 0B, &7
ot

where S is the external signal, and this could also incorporate diffusion on the
boundary by suitably altering the equation.

Given the complexity of the single cell description, it is a formidable task
to derive macroscopic equations for populations of eukaryotic cells. A simple
model of the form (83-84) for a single cell was analyzed in [30]. This model
captures the essential features of cell movement in response to traveling waves
of chemoattractant. Moreover, in that context there is a mapping & : Y — RF,
k < oo, satisfying .7 (x,v,¥) = F(x,v, Z(y)) where F : R” xR” x R¥ — R" such
that a closed evolution equation for the variable Z = Z?(y) can be derived. Then the
cellular random walk written in terms of (X, v, ¥) can be equivalently formulated



122 H.G. Othmer and C. Xue

in terms of the finite-dimensional state variables (X, v, Z). In particular, one can
formulate an equation for the probability distribution p(x, v, Z) (cf. (76) written for
p(X,v,y) in the bacterial case). Asymptotic analysis of this transport equation leads
to a system of macroscopic hyperbolic equations that accurately reflect the dynamics
of the full system, but it is not known if that system can in turn be reduced to a PKS
equation [30]. Other approaches have been used, e.g., generalized PKS equations
have been derived beginning with a cellular Potts model [61], but the internal state
plays no role in these formulations.

5 Discussion

How cells or organisms move about in space in response to signals, and how they
coordinate their movement and form stationary or dynamic patterns is an important
question in many biological processes, including embryonic development, cancer
progression, wound healing and biofilm formation. These phenomena have been
modeled in two ways in the literature. Firstly, there are continuum models based
on phenomenological descriptions that lead to convection-diffusion equations such
as the chemotaxis equation [42] for the evolution of the macroscopic cell density
n = n(x,t). However, new experimental technology has advanced our knowledge
on how cells detect, transduce, respond to, and propagate external stimuli, and this
has led to the second approach, in which detailed cell-based models of collective cell
movement towards chemical or mechanical signals [23,90,96,107] are incorporated.
However, due to the complexity of intracellular dynamics and the large number
of cells that are often involved, cell-based models are computationally expensive,
and new techniques are needed to embed cell-level knowledge into macroscopic
equations. This is a difficult problem, comparable to deriving the macroscopic
rheological properties of a complex fluid such as the cytosol from knowledge of
the molecular interactions, and thus not surprisingly, progress has been slow.

Here we have reviewed recent progress on deriving chemotaxis equations from
space jump processes and velocity jump processes. When swimming bacteria such
as E. coli move independently towards chemical signals, their movement can be
described as independent velocity jump processes. When cells are well separated
and the signal gradient is sufficiently small, chemotaxis equations are derived from
the moment equations of the transport equation that describes the evolution of the
cell in phase space [28-30, 41, 70, 104]. When the signal gradient is large, 1D
stochastic simulations of a cell-based model show that the movement of cells is more
persistent and cells run up the gradient with very little turning. Therefore statistically
the diffusion rate decreases to zero, and the macroscopic velocity increases to
the maximum cell speed, as the signal gradient increases. This shows that under
extremely large signal gradients, the macroscopic equations for cells movement are
more of a hyperbolic type, and also reflects the fact that the low-order moments
in the internal dynamics cannot capture the strongly nonlinear dependence of the
turning rate on the signal. This is similar to what is observed in eukaryotic cells,
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which suppress random movement in the presence of strong chemotactic signals.
However in 2D stochastic simulations, bacteria moving roughly orthogonal to the
signal gradient still run and tumble, and this leads to diffusion coefficients that do
not approach zero, in contrast with the 1D case.

There are many open problems in this area, a few of which are listed below.

* A more complete analysis of the time scales and how they depend on the external
signal and the internal dynamics is needed. For example, the second eigenvalue of
the turning operator controls the rate at which the diffusion regime is approached,
but little has been done to obtain better estimates of the second eigenvalue based
on properties of the turning kernel.

e The formulation of VJ processes herein is based on the assumption that the
velocity jumps are generated by a Poisson process, but there is some evidence
mentioned earlier [64] that bacteria show abnormally long run lengths that are
inconsistent with this assumption. In general the non-streaming component of
the transport equation (54) is simply the time derivative of the stochastic process
generating the jumps, which may change depending on the signal strength, and
the use of other waiting time distributions in the VJ process should be explored.

* To date most derivations of macroscopic equations from a microscopic model
have ignored density effects, but these are important in examples of bacterial
movement and related problems. Most analyses of density effects begin with
continuum descriptions and add forces due to active motile particles [44,58], but
a more fundamental approach is needed.

* In many situations, cell-cell contact and contact-induced signaling is important
for collective movement. To describe this one must include cell-cell mechanical
interaction terms in F, and cell-cell contact signaling terms in the internal dynam-
ics. A suitable starting point for this may be to add the evolution of internal
dynamics to the (X, v) evolution described by the Fokker-Planck-Kramers-Klein
equation (15).

e As an adjunct to this, continuum-level descriptions of tissue movement based
on microscopic models, should be formulated [35], but there are many difficult
homogenization issues that arise here.

* The derivation of macroscopic equations for systems when the finite-dimensional
reduction &2 : Y — RF is not possible is an open problem. In fact the entire
formulation as a transport equation breaks down, and a new approach is needed.
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Hybrid Modelling of Individual Movement
and Collective Behaviour

Benjamin Franz and Radek Erban

Abstract Mathematical models of dispersal in biological systems are often written
in terms of partial differential equations (PDEs) which describe the time evo-
lution of population-level variables (concentrations, densities). A more detailed
modelling approach is given by individual-based (agent-based) models which
describe the behaviour of each organism. In recent years, an intermediate modelling
methodology—hybrid modelling—has been applied to a number of biological sys-
tems. These hybrid models couple an individual-based description of cells/animals
with a PDE-model of their environment. In this chapter, we overview hybrid models
in the literature with the focus on the mathematical challenges of this modelling
approach. The detailed analysis is presented using the example of chemotaxis,
where cells move according to extracellular chemicals that can be altered by the
cells themselves. In this case, individual-based models of cells are coupled with
PDEs for extracellular chemical signals. Travelling waves in these hybrid models are
investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis
models only develop a transient travelling wave.

1 Introduction

There are two fundamentally different approaches to the mathematical modelling
of systems of interacting individuals (cells, animals) in biology. If the number of
individuals is large, one often uses a continuum population-level approach, which
yields partial differential equations (PDEs) for the spatially-distributed densities
of individuals [39]. The advantage of PDE-based modelling is a well-developed
mathematical theory and a number of existing numerical solvers which can be used
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to efficiently simulate the system behaviour. However, continuum approximation
becomes inaccurate if smaller groups of individuals are studied, and agent-based
(individual-based) models become the method of choice [13, 50]. Examples can
be found in zoological applications, like behaviour of fish schools, bird flocks and
locust groups [10,51]. The individual behaviour of the agents is modelled as well as
the interaction (e.g. attraction or repulsion) between them [12]. A number of these
agents are then simulated on the computer and their collective behaviour is analysed.
This approach allows for a more detailed description of the individual behaviour and
does not discount various stochastic effects caused by a finite number of individuals.
On the other hand mathematical analysis is often hard to achieve and simulations
can be computationally intensive.

Another problem with purely agent-based models is that it is challenging to
incorporate influences the agents might have on their environment. This is important
whenever agents interact indirectly by modifying their (evolving) environment.
A classical example is modelling chemotaxis where individual cells modify (secrete,
consume) extracellular chemical signals which diffuse in the extracellular space
[14, 19]. In this case, a hybrid modelling framework that seeks to combine the
advantages of continuum and agent-based models is often used. The main idea
of this modelling approach is to describe some species as a continuum and some
species as a set of agents. For example, Schweitzer and Schimansky-Geier [46]
studied a system of “active” walkers (individuals) that can secrete and interact
through a (chemical) signal described by a reaction-diffusion PDE. One application
of their abstract framework included ants which lay a pheromone into the ground
to use it for their orientation. A more specific chemotactic example can be found
in Dallon and Othmer [14] who developed a hybrid model for chemotaxis of slime
mold Dictyostelium discoideum in which the cells are treated as individuals in a
continuum field of the chemoattractant which again evolves according to a reaction-
diffusion PDE. A similar hybrid modelling framework has also been applied to
chemotaxis of bacteria [15,55] and leukocytes [26]. The use of the hybrid approach
allows for faster simulations than the purely agent-based model which would treat
extracellular chemicals as another set of agents. Extracellular signalling molecules
are much smaller and more abundant than cells. This property is often used to justify
that extracellular chemicals can be described as a continuum [14].

The use of hybrid models is becoming more widespread especially with the
growing computational power that allows to consider more complex systems in
this manner, including modelling tumour growth [44] and forest dynamics [37].
In cancer biology, several hybrid cellular automaton models have been proposed in
the literature [45,47]. For example, Smallbone et al. [47] coupled a two-dimensional
cellular automaton model (describing cells) with continuum (PDE-based models) of
glucose, H' and oxygen concentrations, building on the previous work of Patel et al.
[44] and Alarcén et al. [3]. A similar hybrid approach has been used in a number of
other studies in cancer biology [5,24,42]. A hybrid forest model with trees modelled
as agents and a continuum approach used for oxygen and other atmospheric gases is
presented in [37]. In economical research hybrid models are used to estimate prices
in the petrol market [29] and in general markets with a non uniform spatial demand
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of products [30, 31]. In these models the demand is described as a continuous
function of space whereas the retailers are considered as agents.

The term hybrid modelling is sometimes applied for models which use both
individual-based and continuum description for the same physical quantity. For
example, a “hybrid” model for the spread of an epidemic disease is presented in
[9]. It initially considers infected individuals as agents, but switches to a continuum
model when the number of infected people in an area rises above a threshold.
Coupling reaction-diffusion models with a different level of detail in different parts
of the computational domain is presented in [17,22]. “Hybrid” models of this type
are useful because they can lead to computational savings. However, in this chapter,
we will focus on hybrid models which describe some system components (e.g. cells
or animals) as individual agents and some components (e.g. external chemicals) as
continuum fields. The choice which description is used for each species is made
at the beginning and will not change during the course of the simulation. We will
summarise the progress in hybrid models which satisfy this definition, and clarify
some of the problems and difficulties that arise from their use.

The outline of this chapter is as follows. Section 2 will give a short overview
of the PDE-based and agent-based modelling approaches before the general mathe-
matical framework for hybrid models is introduced in Sect. 3. Hybrid models can be
considered as extensions of (purely) agent-based models. Therefore, their computer
implementation often forms an integral part of the model. We will discuss it in detail
in Sect.4 where we describe the numerical simulation of hybrid models drawing
special attention to the different treatment of the continuum and the agent-based
subsystems as well as the problem of matching the two parts. In order to give a more
practical insight into the topic we will perform a case study of a hybrid chemotactic
model in Sect.5. This case study will also be used to show some qualitative and
quantitative differences that can occur when using a hybrid model instead of the
corresponding continuum model.

2  Continuum vs. Agent-Based Models

Hybrid modelling is an intermediate approach between continuum (PDE-based)
models and agent-based models of systems of interacting individuals. In this section
we briefly review these common modelling approaches in mathematical terms. We
will make use of our notation later in Sect. 3 when hybrid models are considered.

Continuum (mean-field) models give rules for the evolution of the spatially
dependent concentration vector ¢ = ¢(x,7) where x € 2 C R", m = 1,2 or
3, and ¢ is the simulation time. The components of the vector ¢ can be densities
of individuals (cells, animals) and concentrations of extracellular signals. As the
concentration vector ¢ can change both with position x and time #, a general
continuum model takes the form

%:.,Sf(c,x,t) X €S2, (D)
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where . is an operator on ¢, which in most practical cases will be a differential
or integral operator. To uniquely describe the time evolution of (1), one also has to
specify suitable initial and boundary conditions.

Example 1 (Keller-Segel model). Continuum modelling is used in many areas of
mathematical biology [39]. In chemotaxis modelling (which will be the subject of
Sect.5), a classical example of (1) is the Keller-Segel model of chemotaxis [35].
Here, £2 C R and the vector ¢ has two components, i.e. ¢ = [c1, ¢2] = [n, S] where
n = n(x,t) is the density of cells and S = S(x,¢) is the concentration of the
chemoattractant. The evolution equation (1) is a coupled system of two PDEs for

nand S:
on 9’n ad aS
Ly L e A 2
o1 o ox (”X( )ax) @
S 9%S
i DSW—k(S)’% (3

where D, and Dy are diffusion constants of cells and chemoattractant, respectively.
The strength of chemotaxis is controlled by chemotactic sensitivity x(S) and
therefore by the concentration of substrate S which is consumed by cells with the
rate k(S).

The applicability of continuum modelling depends on the number of particles in the
studied system. In Example 1, the interacting “particles” are unicellular microscopic
organisms (1) and molecules of chemical signal (S). As there are often more
signalling molecules than cells, the validity of mean-field assumptions is dictated
by the number of cells in the system and the interaction between them [25]. If the
system only consists of a few cells, it is more accurate to use an individual-based
approach which is introduced in the next section.

2.1 Agent-Based Modelling

In contrary to the continuum models the so-called agent-based models treat
every particle as an individual that follows an inherent set of rules. This means
in particular that individual behaviour and interactions between different agents
account for the possibly complex behaviour of the system. Agent-based models are
commonly used for systems with a small number of individuals that follow non-
trivial behavioural rules, for example in modelling of collective animal behaviour
[12] or human crowds in panic situations [27]. While continuum models have a
well-developed mathematical theory, agent-based models are sometimes written as
computer routines which are difficult to theoretically analyse. The literature also
fails to agree on a general definition of an agent. In this chapter, we use a definition
which is slightly adapted from [54] and used in [23].
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Definition 1. An agent is a system that uses a fixed set of rules based on
communication with other agents and information about the environment in order
to change its internal state and fulfil its design objective.

This definition, however, is only a formal description, which now has to be putinto a
more rigorous context. Following from Definition 1, the mathematical description of
an agent has to incorporate the behavioural rules of an agent as well as the possibility
of communication between them. Therefore, we assume a finite number N of agents
numbered from 1 to N. In general N can depend on time, taking into account
birth or death of agents. We define the current state of an agent by its internal
state variable y;(¢), i = 1,..., N, which can describe its position, velocity and
internal memory. It is this internal state and its time evolution that describes the
rules of an agent. Since these agents represent different individuals, we assume that
other agents generally have no means to access all internal state variables. In order
to allow for communication between the agents, we define a set of external states
w; (¢), which are observable by other agents. The observable states w;(¢) of every
agent are in principle available to every other agent, which is ensured by creating the
set of external states 2. The general agent-based model following these definitions
then takes the form

yi(t + At) = £ (yi (1)1, At, '), i=1,....,N, )
w; (1) = gi(yi (1)), i=1,...,N, (5)
%Z{Wl,...,WN}. (6)

We can see that the evolution of y; is given by the function f;, which notably depends
on the time step Af. This general description can entail discretised versions of
ordinary differential equations (ODEs) as well as stochastic differential equations
(SDEs). Additionally, agent-based systems that only change discretely can be
written in the form (4)—(6).

We understand the external states of an agent merely as an observable representa-
tion of the internal states, which is why w; (¢) directly depends on y; (¢) through the
function g;. The distinction between observable and non-observable states is often
used to represent internal memories that cannot be perceived by other agents [23].

Example 2 (Animal behaviour). Agent-based models have been successfully used
for the modelling of collective animal behaviour [51]. Couzin et al. [12] showed
that a relatively simplistic model can yield complex collective behaviour and can be
used to model fish schools and bird flocks.

In this model, the internal states of an agent y; are defined to be its position
x; € R” (m = 2,3) and its velocity v; € R™. Since both the position and velocity
of an agent potentially influence the motion of other agents, both are observable and
hence w; = y; = [x;,v;] € R¥", which means that g; = Id. The update rules f;,
i = 1,..., N, in this example are equivalent for each agent and incorporate the
different rules for the different zones in the model (zone of attraction, orientation
and repulsion).
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Example 3 (Chemotactic movement under a stationary signal). A simple agent-
based model for chemotaxis in one dimension can be written as follows [28]: the
internal state y;(¢) of an agent is defined as its current position in R. Additionally,
we assume that the signal S(x) is fixed and there is no interaction between agents,
hence no observable states are required. All agents start at some initial position
vo.; € R and move according to the stochastic differential equation

as
dyi(t):)((S)a—dt+\/2D,,dW, i=1,....N, @)
X

where x(S) is the chemotactic sensitivity function introduced in Example 1, D,, is
the diffusion constant of the bacteria and dW is the Wiener-process, also known as
Brownian motion [33]. We can discretise (7) to obtain an update rule equivalent to
(4) as follows

aS
it + At) = y;i (1) + X(S)am + V2D, At &,

where £ is a normally distributed random variable with zero mean and unit variance.
In the limit of infinitely many particles, this agent-based description is equivalent to
the PDE (2), which is written for the density of cells [49]. However, if we considered
a time-evolving signal which is consumed by cells as in Example 1, a purely agent-
based model would have to simulate the trajectories of all signal molecules. This
would be computational intensive and a hybrid model which combines agent-based
simulations with PDEs can then be used to optimize computational efficiency and
accuracy.

3 Hybrid Modelling: Theoretical Framework

Because of their hybrid nature the general framework for these models necessarily
combines the two frameworks presented in Sect. 2. We define a vector of continuous
variables ¢(x,7) on a domain £2 C R”, m = 1,2 or 3. The update rule for ¢ is
again governed by an operator ., which now also depends on the current states of
the agents. The N agents are represented by their internal state variables y; (¢) and
their set of observable states w; (¢) defined in (5). To allow interactions between the
agents and the continuous variables ¢, the set of observable states 2~ as defined in
(6) is used. The update rules for the system are

9
3—::$(c,x,t,%), xeQ, ®)

yi(Z+AI):t'i(yi([)slvAtsf%-sc)v iZI,...,N, (9)
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Fig. 1 Concept of a hybrid

model. Arrows symbolise “
direction of influence v 6 @

y

where 2" is given in (6). In (8) we see that the agents can influence the continuous
variables ¢ through the set of observable states 2. Similarly, the behaviour of
the agents can be altered by the continuous variables, as the operator f; now also
depends on c. Figure 1 shows a graphical representation of the hybrid model. It
contains the N agents represented by the internal states y; on the left. Through the
function g; the observable states w; are generated which then influence the update of
the continuous variables ¢ as well as the agents’ behaviour themselves. We, however,
encounter a problem in this definition, as the continuous variables are defined for
every time 7, while the internal agent states are only defined for discrete times. To
overcome this problem we can consider (9) in the limit At — 0, where it takes the
general form of an SDE

dy; = £ (yi (1), 1, 27, ) dr + £ (yi (1), 1, 27, ¢) AW ,

where ffl) and ffz) respectively represent the stochastic and the deterministic part of
the SDE.

Example 4 (Hybrid cellular automaton model for carcinogenesis). In [47] Small-
bone et al. present a hybrid cellular automaton model for the formation of cancer.
This model uses reaction-diffusion equations to calculate the concentration of
oxygen, glucose and hydrogen ions in the environment of the cells. The concen-
trations of these chemicals therefore constitute the continuous variables ¢. Each
cell of the cellular automaton is represented by an agent with the internal state
yi € N defining which of the finite number of possible phenotypes the cell at this
position has (including the “phenotype” empty). As these phenotypes are observable
by neighbouring cells, we have w; = y;. This cellular automaton model has a
generation-based update rule, which means that the states y; are only updated once
every time step. The rules of the model then represent the probabilistic functions f;
in (4), where the change depends on the current phenotype, the neighbouring cells
and the concentrations of the considered chemicals at the cell position.

Example 5 (Hybrid model for chemotaxis of Dictyostelium discoideum). Dal-
lon and Othmer developed a hybrid model for the chemotaxis of Dictyostelium
discoideum [14] that combines individual cell movement with a continuous extra-
cellular concentration of cAMP modelled by a PDE. The internal states of the
agents are the position of the individual x;, as well as the variables representing
the intracellular processes. Only the position and one of the intracellular variables
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influence the external field and therefore form the observable states w;. The update
rules f; are given through ODEs for the internal dynamics and rules of motion for
the position.

3.1 A Position-Based Hybrid Model

So far, we have defined a general framework for a hybrid model that allows for
a great freedom in the choice of internal and external states of the agents. In the
next step we want to refine this framework for the more specific models used in
chemotaxis modelling [14, 18,49]. In order to be able to interpret the agents as part
of a species situated inside the domain §2, we need to introduce the notion of an
agent’s position in §£2. Moreover, we assume that all agents are equal for an external
observer except for their position, or in other words the set of observable states of
the agents w; (¢) is the position x; () of the agents inside 2, i.e.

wi (1) = xi (1) .

This definition excludes Couzin et al. models for animal behaviour [12] as well
as cellular automaton models [47], but it is sufficient for the chemotaxis example
studied in Sect. 5.

Because of the agents’ similarity, we no longer need to define an abstract set 2",
but can instead define a density function g5 on 2 through

N
os(x.1) =Y S(x—xi(1)) . Xx€R. (10)

i=1

When discussing numerical simulations of hybrid models, we will see that this
definition of ;s is already a first step towards obtaining a continuous density function
for the agents. With this definition we can redefine the operator .#, which governs
the behaviour of the continuous variables ¢ and (1) reads as follows

dc

5 = Z(c,x,t,05) .

For the evolution of the internal agent states y; we assume now that every agent can
only perceive information about the continuous variables ¢ at its current position.
Hence, the operator f; no longer depends on ¢ on the whole domain, but only on
¢(x;) and the first spatial derivative in this point,i.e. f;,i = 1,..., N, are functions
for all further considerations. Equation (9) therefore becomes

yi(t + A1) =1 (yi. t, At, 05.¢(x;, 1), Ve(x;, 1)) . (11)
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This special type of hybrid systems still allows for a wide range of flexibility and
can therefore be used to model a variety of different processes. In Sect. 5 we study
position-based models for chemotaxis in more depth.

3.2 Initial and Boundary Conditions

An important aspect of modelling is the incorporation of initial and boundary con-
ditions. Hybrid models necessarily combine the conditions from the two different
approaches. For the continuous variables one usually has an initial value ¢y(x),
while for the agents an initial distribution of their position and internal states is
given, which is then used to generate each agents’ position at the beginning of the
simulation. In some applications the agents can be born during the course of the
simulation. In this case, we have to ensure the appropriate initialisation of its internal
variables.

A similar idea of independent conditions for the continuum and the agent-based
parts of the hybrid model is used for the boundary conditions. The values of the
continuous variables on the boundary usually have to satisfy an equation of the type

Y(c,x,t) =0, X €082, (12)

where ¢ is a general operator. In the most commonly used cases (12) enforces
certain values on ¢ or its gradient on the boundary. For the agents the boundary
conditions are often given in a more descriptive manner. For example, agents can
leave the domain through one end and automatically reappear on the other end.
This periodic boundary condition implies that the number of agents in the system
is conserved. Periodic boundaries are widely used because of their simplicity and
because they effectively shape an infinite domain. Reactive boundaries absorb
agents with a probability p, while reflecting them with probability 1 — p [16]. If
p = 0, one often speaks of a reflecting boundary, while for p = 1 the condition is
called an absorbing boundary.

4 Hybrid Modelling: Numerical Implementation

For similar reasons as in purely agent-based models it is often very hard to obtain
analytic results for hybrid models. This increases the importance of numerical
simulations for gaining insight into the behaviour of the system. The mixture
of different modelling frameworks, however, renders the process of setting up a
numerical simulation non-trivial. Each part of the model has to be considered
differently and a way of matching the two parts has to be developed. In this section
we discuss a numerical framework and evaluate difficulties one has to overcome
when implementing a hybrid model.
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The general task for the numerical simulation of a hybrid model is to calculate
approximations for both ¢ and y; at times 1; = jAf, j = 1,2,... given initial
data for each of these variables according to Sect. 3.2. We additionally assume that
the domain §2 can (for the continuous part of the hybrid model) be adequately

represented by the points ry,...,r; € £2, which means that we seek to compute
approximate values for ¢(¢;,r;), j = 1,2,...,1 = 1,...,L and y;(¢;), i =
1,..., N.In order to simplify the notation, we introduce

Qj:[c(tj,rl),...,c(tj,rL)] j=0,1,....

Due to the different characters of the continuous and the agent-based subsystems,
different approaches have to be used for their numerical solutions. For each of the
subsystems one fries to answer the question of how to get from f; to #;4 still
guaranteeing an accurate approximation of the system. For the continuous variables
this means, we seek a solver that generates the values of C; , using the values
Cy.....C; and the current distribution of the agents o;(-.7;) given by (10), which
can be symbolised as

<,
{go, ...,gj,gg(-,zj)} = Coy (13)

In (13) we introduced the operator ., which is a discretised version of the
continuous operator . used in (8). In the most common case, where . is a
differential operator, .Z; could be a finite element or finite difference approximation
of .Z. Note that in (13) we have made the implicit assumption that the solver used
for (8) only takes the positions of the agents at time ¢; into account. For the agents
equation (11) is already given in a time-discrete way and can therefore be used
directly to update the internal states.

The introduction of this general scheme raises some immediate problems, which
we will discuss in the remainder of this section. The first difficulty are the differing
spatial resolutions for the two subsystems, which we address in Sect.4.1. Other
problems like time stepping, choices of solvers and the influence of stochastic
effects are presented in Sect. 4.2.

4.1 Spatial Matching in Numerical Simulations

A spatial matching between the continuous variables and the agents is required dur-
ing a numerical simulation of a hybrid system, because different spatial resolutions
are applied. The agents can be positioned at an arbitrary point inside the domain §2,
while the data for ¢ is only calculated at the points r;. This triggers a two-way
matching problem, as one has to generate estimates for the agent distribution at the
points r; as well as for the continuous variables ¢ everywhere inside 2.
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First, let us consider estimating the agent density distribution throughout £2 and
especially at the points r;, which is necessary for the update relation (13). So the
general mapping we are trying to achieve is

N
00 =Y 8(x—x) r o) €C'(Q).

i=1

The requirements for the estimated density function o(x) can alter for different
applications, but here we require it to be at least a continuous function in £2. One
way to achieve such a mapping is the so-called kernel density estimation [52]. In
general the kernel density estimation can be used to estimate the probability density
function of a random process, if one has been given a number of realisations of
this process. The name stems from the use of a kernel K(x), which is typically a
continuous, symmetric and normalised function. Let us for simplicity assume a one
dimensional random process, in which case these conditions take the form

K(x) e C°(R), K(—x) = K(x), / K(x)dx =1. (14)
R

Additionally, K(x) is often required to be non-negative in order to generate a non-
negative estimate. Most commonly used kernels include a Gaussian kernel and a
piecewise linear kernel with compact support. In practice a scaled version of K is
used, which leads to the introduction of a bandwidth parameter 4. We define

1 X
Kn(x) = ~ K (—) :
n(x) ; A
which still satisfies the conditions (14). With given positions xi, ..., Xy, an estimate

of the probability density function is then given by

N
o(x) =Y Ki(x —xi) = Kn(x) * 05(x) . (15)

i=1

Figure 2 shows an example of a kernel density estimation for 100 normally
distributed random variables using a Gaussian kernel with different bandwidths /.
In Fig.2a we can see that the choice of a very small & leads to a highly oscillating
estimate, while a very big / can lead to the estimate being too wide as shown in
Fig.2c. An optimal choice for the parameter / and the kernel itself always depends
on the nature of the problem and the number of samples N.

The second spatial matching problem that occurs when simulating a combined
continuous and agent-based system is the need to estimate the values of the contin-
uous variables (and possibly their derivatives) at an arbitrary position inside §2. The
operator we are looking for can be symbolised through

(r1,e(r) . ... (rL,e(rn)) > &(x) € CUR).
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Fig. 2 Kernel density estimate for N = 100 agents, which are placed according to a normal

distribution with different bandwidths . Crosses along the x-axis represent the agents, the dashed
line is the underlying Gaussian probability density function and the solid line is the generated
estimate according to (15)

Though similar to the operator ¥, we here have the advantage that we know
the positions of the points ry, ..., r; beforehand and that we know they give an
adequate representation of the domain £2. With this additional information, one can
argue that the problem at hand represents an interpolation problem from the grid
points r; onto the whole domain §2. This result allows for the use of approaches from
the well-studied fields of interpolation and approximation theory [53]. In some cases
the interpolation regime is already implicitly incorporated in the numerical solution
of the update equation for the continuous variables, for example if one chooses to
use a finite element approach.

Example 6 (Numerical realisation of Example 5). In Example 5 we presented a
hybrid model for chemotaxis of slime mold Dictyostelium discoideum developed
by Dallon and Othmer [14]. To generate a discretised operator .Z; they used
the particle-in-cell method [41]. For the kernel density estimation ¥ they use a
piecewise linear kernel and for the interpolation operator ® a fifth order spline
interpolation was employed.

4.2 Other Aspects of Numerical Simulations

The spatial matching between the two parts is the biggest additional challenge
posed by the use of a hybrid model. Here, we discuss some other problems that
occur during this process. The first problem is the choice of a solver both for the
continuous variables and for the internal states of the agents. One can choose from
a wide range of standard approaches for both problems. The way the two parts
are interwoven, however, sets some restrictions. It is, for example, almost always
impossible to use a fully implicit solver for both parts, especially if the functions
f; for the internal agent states contain random variables. Additionally, one has to
consider the accuracy of the different solvers and should ideally try to match these to
prevent unnecessary computational effort that does not lead to more accurate results.
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The discrete nature of the agent-based parts automatically introduces stochastic
effects into the system. Various examples of these effects will be discussed in Sect. 5.
It is important to consider these effects when choosing the time stepping and the
spatial resolution for the simulation. In particular, these choices will depend on the
number of agents in the system. It is generally possible to allow different time steps
for different parts of the system, for example the agents could be simulated with a
finer time stepping than the continuous variables or vice-versa. For each part of the
system the time steps have to be chosen in a way that ensures an accurate solution
depending on the spatial resolution and the solver that is used. In Sect.5 we study
one application area of hybrid systems in more detail and analyse the effect of some
of these choices on the system.

5 Case Study: Hybrid Modelling of Chemotaxis

In Sect. 3 we introduced a general framework for hybrid models that combine agent-
based models with mean-field equations and we now concentrate on one application
area for hybrid modelling: cell migration. In particular we focus on the movement of
cells induced by gradients in the concentration of extracellular chemicals, a process
that is known as chemotaxis. Chemotaxis is one of the main forms of cell migration
and is used in a variety of cells, including bacteria cells [8]. Hybrid models of
chemotaxis have been successfully used in the literature [14, 15,26, 55].

The first notion of chemotaxis goes back to the late nineteenth century, when
Engelmann and Pfeffer detected the process. In the late 1960s it was Adler [1, 2]
who performed experiments with the bacteria E. coli that helped understanding
and quantifying the process and that were later used as comparison for the early
mathematical models. Adler placed a colony of E. coli at one end of a long thin pipe
that was filled with oxygen and an additional energy source. Through the process of
chemotaxis the colony started to move with a constant speed away from the closed
end forming a narrow band of bacteria. The band was visible to the naked eye and
Adler was able to measure the speed with which it moved forward.

In the 1970s the first mathematical descriptions of chemotaxis were formulated,
with the Keller-Segel model, which we will discuss in Sect. 5.1, as one of the early
breakthroughs. A review of the impact this first model had on the modelling of
chemotaxis is given in [32]. Section 5.2 will introduce a hybrid version of this
model, which we will further investigate and analyse in Sect. 5.3.

5.1 The Keller-Segel Model

As mentioned above, Keller and Segel developed the first mathematical model to
describe the process of chemotaxis in 1971 [35]. The original model considers both
the bacteria and the chemotactic substrate in a continuum limit, which therefore
results in a coupled system of two PDEs. The original form of the system only
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Fig. 3 Travelling wave solution of the Keller-Segel model (16) and (17) for different values of the
parameter u, where k = 2

considers one spatial dimension and gives a way to compute the concentration of
bacteria denoted by n(x,¢) and the concentration of substrate S(x, ) through the
PDEs (2) and (3), introduced in Example 1. In (2) we can see that the behaviour of
the bacteria is governed by two independent effects and therefore takes the form of
a general advection-diffusion equation. The diffusion of the bacteria occurs with
the diffusion constant D,, while the advection is governed by the chemotactic
sensitivity y(S). The substrate, as seen in (3), diffuses with the diffusion constant
Dy and is consumed by the bacteria with a consumption rate k(.S) that depends on
the concentration of substrate itself.

In a follow-up to the paper [35], Keller and Segel showed that under certain
conditions the developed system of partial differential equations yields travelling
wave solutions [36]. In particular they were able to proof that travelling wave
solutions can only exist if y(S) has a singularity at some critical value S.,;,. For
reasons of simplicity they concentrated on the simplest such functions y(S) = %
with the critical concentration at S.,;; = 0. In their analysis Keller and Segel made
some additional assumptions for the various parameter values and simplified (2) and
(3) to the nondimensionalised PDEs

on d (on Kk 0S8

PTG (a‘%a)’ (16)
d2S

5= (17)

The nondimensionalised system is set up for x € [0, 1] with an initial value
of S(x,0) = 1 and no-flow boundary conditions. As initial distribution of the
agents we choose n(x,0) = §(x), which corresponds to the initial state of Adler’s
experiments where all bacteria were inserted at one end of the tube. We consider
reflective boundary conditions for the bacteria at x = 0 and x = 1.

In order to investigate the influence of the two dimensionless parameters p and
k on the travelling wave, Figs. 3 and 4 show the concentration of #n and S atr = 0.5
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Fig. 4 Travelling wave solution of the Keller-Segel model for different values of the parameter «,
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for various values of u and k. In Fig. 3 we can see that the parameter p influences
the width of the wave while leaving its general shape untouched. Increasing w leads
to a wider wave and a decrease in the maximum of n. Accordingly, the gradient in
S is higher for the narrower bands caused by smaller values of 1. As can be seen in
Fig. 4, the parameter « influences the general shape of the wave. In the case k = 2
the travelling band of bacteria is symmetric, while a « bigger than two leads to a
wave that is steeper in the front (right) and falls slowly in the back (left) of the
wave. Choosing « smaller than two causes an opposite effect with the wave being
bent backwards.

5.2 Hybrid Models of Chemotaxis

One of the assumptions made by Keller and Segel in their original model is to
consider the bacteria as a continuum rather than explicitly describe their individual
behaviour. For systems that do not satisfy this assumption hybrid chemotaxis models
have been developed in the literature [14, 15,26,55]. In this section we present three
of them. The bacteria are modelled as agents with varying numbers of internal states
and their position x; € £2, as the only observable state. All three models consider
the substrate in a continuum limit and the PDE (17) takes the role of (8) in our
description of the hybrid modelling framework.

Model 1

The first approach to design a hybrid version of the Keller-Segel model, is to
interpret the evolution equation for n as a Fokker-Planck equation for a number
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of randomly moving particles similarly to the idea presented in Example 3. The
movement of each of the agents is described by the stochastic differential equation

Kk 0S(x;)
S(x;) ox

dx; = dt + /2udw . (18)

The parameters used in (18) correspond to the ones in the dimensionless Keller-
Segel equations (16) and (17). This particle-based description of (16) shows one of
the weaknesses in the original Keller-Segel model. According to (18) an agent can
theoretically jump any given distance in one time step, implying that some of them
can move with a speed that is not achievable for bacteria.

A hybrid model which uses (18) for computation of cell trajectories is analysed
in [40]. They use perturbation theory and methods from statistical physics to
investigate the non-mean-field-behaviour of a hybrid model where cells produce a
chemoattractant that diffuses and degrades on its own. Another approach to analyse
a chemotaxis model similar to (18) is presented in [49]. Here, an individual-based
description is used for both cells and chemical signal. Then macroscopic PDEs
(similar to (2) and (3)) are derived in the limit of infinitely many individuals for
appropriately rescaled interactions between individuals.

Model I1

Driven by weaknesses of the first model, a different type of random walk, known as
velocity-jump process, seems a more realistic choice for the bacterial behaviour.
The motion of bacteria E. coli consists of two phases [8]. During a run-phase
the bacterium moves with a constant speed straight into a chosen direction. This
run lasts for a randomly distributed time before the bacterium enters the tumble-
phase in which it chooses a new direction randomly [7]. As we are considering
a one-dimensional model, there are only two possible directions of motion: to
the left and to the right. A right-moving agent continues to the right for a time
that is given by an exponentially distributed random variable before it switches its
direction. In order to incorporate the bias of bacteria towards higher concentrations
of chemoattractants, Othmer et al. [43] introduced a biased velocity-jump process.
In this biased random walk the duration for the run phase depends on information
gathered at the current position of the individual. In particular, the model in [43]
allows the agents to directly measure the gradient of the substrate concentration at
their current position. The run-phase then tends to be longer, if the concentration
increases in the current direction of motion, while for a decreasing signal, the
turning probability is increased.

The turning frequency A is therefore adjusted according to the current movement
direction, the value and the gradient of S. To represent the direction of motion, the
velocity v;(t) = =s is introduced, where s denotes the constant speed. In terms
of the hybrid modelling framework introduced in Sect. 3, the internal variable is
yi = [x;,v;]. The agent-based description of the bacteria can be written in the form
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xi(t + At) = x;(t) + vi () At

— v;(t) with probability A% At

i (¢ At) = .
vilt + A1) v; () otherwise

where
o+ ©~ 3_5' .
28 dx
In a continuum limit this velocity-jump process is equivalent to the hyperbolic
chemotaxis equation [21]

At =2

1 n  on s2 9 (on Kk dS
, (19)

200 T 2xgox \ox 'S ox
where n is the concentration of bacteria. This shows that changing the type
of random-walk used for the agents can influence the corresponding continuum
equation. Nevertheless (19) can be used to adjust the parameters of the agent-
based model to match the parameters of the Keller-Segel model, as the large time
behaviour of (19) is given by the classical chemotaxis equation (16), where we have
w = s%/(2Ao) [34]. Lui et al. [38] showed that coupling the hyperbolic chemotaxis
equation (19) with (3) for the substrate also yields travelling wave solutions similar
to the original Keller-Segel system. An investigation of this case for a more general
dependence of the turning frequency is given in [56].

Model 111

More accurate descriptions of the individual behaviour of bacteria incorporate
the sensing and processing of extracellular signals [6, 48]. Hybrid models with
descriptions of these intracellular processes have been used by Dallon and Othmer
[14] as well as Xue et al. [57]. Erban and Othmer [18, 19] used an agent with a
toy version of the internal dynamics that includes two main features of the sensing
process: a fast excitation and a slower adaptation. We will use a simple model with
one additional internal variable z; that acts as a memory and allows the agent to
identify increasing or decreasing signal concentrations [18]. The model is based
on a velocity-jump process with a turning frequency A, which depends on z;. This
internal variable is chosen to follow the value of a sensing function g(S) with the
adaptation time #,. Thus, the model can be written in the hybrid form presented in
Sect. 3, using y; = [x;, v;, z;] as follows:

xi(t + Ar) = x;(t) + v; () At

— v;(t) with probability A At ,

i (¢ At) = .
vilt + A1) v; (t) otherwise,
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Fig. 5 Numerical simulation of the hybrid Keller-Segel model with internal dynamics (Model III).
Parameters are N = 10*, ¢, = 1/1o = 1.5 x 1073, s = 133.33, g(S) = 4.5 x 103 log(S),
At = 10™*. (a) Distribution of agents at time 0.5 (solid line) and the results given by the Keller-
Segel model (16) and (17) (dashed line, which is almost indistinguishable from the solid line).
(b) Histogram of agent positions in subinterval [0, 0.2]

S0 =)

zi(t+ At) =z (¢) + y

where
A=Ao+z —S(x).

In the limit A+ — 0 and N — oo this process can be described by the chemotaxis
equation
2

a_n - s_i (a_n _ —2t" d_ga_S) , (20)

dt 200 dx \ dx 1+ 2Apt, dS 9Ix
provided that ¢ is large (r > 1/Mo) and the gradient of S is shallow [18].
Choices for the parameters of this model can be made by matching (20) with the
classical chemotaxis equation (2), which especially indicates that g is given through
dg/dS ~ x(S).

In Fig.5a a simulation of the hybrid model of type III is shown. Simulations
of the other two models were also performed, with results almost identical to the
one seen in Fig.5a. We simulate N = 10* agents with the dimensionless model
parameters t, = 1/Ao = 1.5 x 1073, s = 133.33, g(S) = 4.5 x 103 log(S)
and At = 107*. These parameters were chosen in such a way that they match
the global parameters & = 1/30 and k = 2 used for the classical Keller-Segel
model. On a first impression, it looks as though the resulting agent distribution at
t = 0.5 matches the predicted concentration of the Keller-Segel system well except
for some stochastic effects. In Fig. 5b, however, we show the agent distribution in
the region behind the travelling band. Further analysis of this region showed that
here the extracellular signal is completely exploited. Some agents are left in this
zone and undergo an unbiased random walk without a chemotactic signal to guide
them. This means that these agents do not necessarily manage to catch up with the
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travelling wave again but instead stay in the exploited region. In the remainder of
this section, we study this effect, which we refer to as dropout in more detail. We
will show that it significantly influences the system dynamics for large times.

5.3 Analysis of the Dropout

In Fig. 5b we saw that the hybrid model, in contrast to the original Keller-Segel
model, creates a region behind the wave where the substrate is completely exploited.
The main assumptions for a mean-field approach are violated in this region, namely
the number of bacteria and the concentration of extracellular material are very small,
which renders a continuum approach here not applicable [25]. Stochastic effects due
to the small number of bacteria then lead to the complete exploitation of S, which
causes the dropout of some of the agents. These agents can no longer sense any
gradient in extracellular substrate and are therefore moving completely randomly,
which makes it very unlikely for them to become part of the travelling band again.
Due to the constant loss of agents, the velocity and the height of the wave will
decrease as the wave moves along. Note that a complete exploitation in these models
is only possible under the assumption that S does not diffuse, which was made
by Keller and Segel and is incorporated in the PDE (17). The dropout effect is
interesting for us, because it shows a qualitative difference between the hybrid
model and the original Keller-Segel model, as the hybrid model only yields transient
travelling wave solutions. In this section we create measures for this dropout in order
to get an estimate of the number of lost agents from the simulations. We will then
move on to analyse the effect of some system parameters on the dropout. Finally,
some theoretical results about the loss of agents are presented and compared to
numerical results.

Dropout Measures

In order to be able to quantify the dropout of agents from the travelling wave,
we need to investigate certain conditions that render an agent as dropped out.
A condition of this form allows us to define an index set I'(¢) that contains the
agents who are currently part of the wave.

However, before defining and comparing different conditions for the dropout,
we investigate some global statistical values of the agent set. The first measure to
indicate the fact that agents have dropped out is the position of the centre of the wave
¢(t). From [36] we know that the theoretical wave speed of the nondimensionalised
Keller-Segel system is 1 and therefore the predicted position of the centre of the
wave is ¢, r(t) = t. In comparison to that the actual position of the wave can be
measured from the agents’ positions via

1 N
ci(t) == 3 xi(0). 1)

i=1
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Fig. 6 Simulation results of the variance and dropout for short times, where the same parameter
values as in Fig.5 are used. (a) Variance o (¢) estimated from the simulation (solid line) and
variance of the stationary wave given by the mean-field model o, (dashed line). (b) Dropout
given by (25): d(t;0.1) (dash-dotted line), d(t;0.15) (solid line), d,(t;0.2) (dotted line) and
d,(t) (dashed line)

The problem with this option is that it includes dropped out agents for the calculation
of the wave centre, which can bias the calculation. To overcome this problem, a
second option for finding the centre of the wave is given through

er(t) = l;—l > xi), (22)

ier

which implies that the found centre position depends on the choice for the index
set I". For short times ¢ (¢) and c,(¢) give similar results, but will differ for large
times. Using this wave centre c¢;(¢), we can calculate the variance of the agent
positions as an indicator for the width of the wave and therefore for the dropout.
In Fig. 6a this variance is compared to the variance of the travelling wave solution
found by Keller and Segel, whichis 0,,y = (7 w)?/3. Initially the measured variance
increases linearly towards the theoretical value, which is caused by the start of the
agents on the boundary x = 0. After the wave is fully developed, the variance starts
to rise over the theoretical value, which indicates a significantly wider wave and
therefore dropout of agents.

With these statistical values for the agent set we have now different options to
define an agent as dropped out from the wave and therefore to define the index
set I". The first option is to allow an agent to have a certain distance r from the
centre of the wave. Agents with a distance bigger than r are therefore considered to
be dropped out. Hence,

Nn=n@r)=4{ie{l,...,N}|x;(t) > ci1(t) —r}. (23)

Because of the non-finite support of the travelling wave solution for the original
Keller-Segel system, the measure defined in (23) is strongly dependent on r, which
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makes the choice of r important. One should choose r in a way that the solution
of the original Keller-Segel model only predicts a very small number of dropout
agents. One way to pick r is to use a multiple of the theoretical standard deviation
of the wave.

A second option of defining an agent as dropped out is to use the observation that
S is exploited behind the wave. An agent is then considered to be dropped out of
the wave if the value of S at its current position is 0. Thus,

D=0 =1{iell,....N}|S(xi(t)) =0} . 24)

Using the sets 1] and 1> we can now define 2 dropout measures d;(¢; r) and d,(t)
by

1 1
dit:r) =1-IN@]. and  dy(t) =1- D). (25)

Figure 6b shows plots of the behaviour of d,(¢;r) and d,(t). We can see that after
the initial period of adjustment due to the start on the boundary x = 0, all measures
have an increasing trend with some fluctuations around it. The measure d;(¢; 0.15)
matches well with d; (), but has less fluctuations.

Large Time Behaviour

In this section we investigate the large time behaviour of the travelling wave in the
hybrid chemotaxis Model III. We study the behaviour of the bacteria and the signal
in the half-line [0, co]. For large times the definitions ¢;(¢) and ¢,(¢) given by (21)
and (22) differ significantly because many agents drop behind the wave. Therefore,
¢, (1) is more meaningful to describe the centre of the wave in this case. However,
as ¢,(t) depends on I, we can no longer use I" = I to find the agents that have
dropped out, because I} depends on the definition of the centre of the wave. We
therefore use d,(¢) given by (25) as measure for the dropout in the analysis of large
time behaviour, where we are particularly interested in the slowing down of the
wave. Hence, we define the velocity of the wave v(¢) through

ex(t + AT) — ox(t)

V) = AT

(26)
where AT is chosen to be much larger than Af in order to minimise the fluctuations
in v(t). We simulate N = 10* agents with the same parameters as before. The
results of one simulation are shown in Fig. 7. We see that after # = 50 about 40 %
of the agents have dropped out from the wave. The predicted slowing down of the
wave is demonstrated in Fig. 7b, where we plot v(¢) as a function of time. We use
AT = 0.1 in the definition (26). As the velocity shrinks with the number of agents
in the wave, we have v(¢) & 1 — d,(¢), which is also demonstrated in Fig. 7b.
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Fig. 7 Dropout and velocity of the travelling wave for large time, where the same parameter values
as in Fig. 5 are used. (a) Dropout d,(7) given by (25). (b) Velocity of the wave v(¢) given by (26)
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Fig. 8 Dropout d;(0.5;0.15) given by (25) as a function of (a) N and (b) Ax. In each figure we
show results given by individual simulations (crosses), average values of d;(0.5;0.15) estimated
from simulations (circles) and linear fits explained in the text (dashed-line)

Dropout in Dependence on N and Ax

In the next step we use the derived measure (25) in order to analyse the influence
of certain system parameters on the dropout. In particular, we are interested in the
dependence of the dropout on the number of agents N and the gridsize Ax. The
variation of the number of agents N in the system is a way of comparing the hybrid
with the continuum model. One would expect that the dropout goes to 0 as N goes
to infinity. On the other hand the Ax dependence is a problem of the hybrid model,
as one would ideally want the dropout to be independent of the chosen grid. We
performed a number of simulations for various values of N (200 simulations for
each value) and Ax (100 simulations for each value) and in each case measured the
value of d;(0.5; 0.15). The results are plotted in Fig. 8. In Fig. 8a we plot the average
values of d;(0.5;0.15) estimated from simulations as circles. The best linear fit in
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the double logarithmic plot, shown as the dashed line, has a gradient of —0.53, which
indicates that d; ~ 1/+/N. This relationship can be explained through the central
limit theorem, which predicts that the noise in the system should shrink with v/ .

The plot in Fig. 8b shows a more complicated dependence. For larger values of
Ax the dashed line with gradient —1 can be fitted indicating that a finer grid leads
to an increase in dropout, which seems slightly surprising at first glance, as one
expects a finer grid to allow for a more accurate representation of the original PDE.
This effect can, however, be explained by the lower number of agents per gridpoint
and therefore the higher noise expected at each gridpoint. As Ax decreases the
dropout seems to level off, meaning that the choice of a finer grid at this point
does not influence the dropout drastically. Bearing in mind that we ideally wanted
the dropout to be independent of Ax, this levelling off effect seems to indicate the
region of choice for Ax in order to get an accurate solution.

Theoretical Analysis

More theoretical insight into the dropout effect can be obtained by considering a
simplified system, where the concentration of extracellular material S is a given
function that does not change over time. A natural choice for the function S(x) is
the travelling wave solution found by Keller and Segel [36]. Using the knowledge
of the exploited region behind the wave, we can adjust this function slightly to allow
for the analysis of the dropout effect. We therefore define S to be equal to 0 for x
smaller than some critical position x, and to take the form of the travelling wave
solution everywhere else. In this section we will use k = 2, thus we put

— =1 N
N P

To be able to use a time-independent function for S we have to make adjustments to
the movement of the agents, as they would otherwise follow the increasing gradient
towards the right of the real axis. Therefore, we subtract the expected wave speed
of 1 from the movement velocity of the agents in order to keep them in a position
that is realistic for the travelling wave. In other words, we use a coordinate system
that moves with the travelling wave solution. For example, for an agent of Model I
the evolution equation becomes

2 dS()C,)
dx; = “1)dt + 2udw
Y (“S(x,-) dx ) TV

With the help of this simplified system we can now make further analytic and
simulative investigations into the effect of different x, on the quantity of the dropout.
If an agent enters the exploited region x < x., two behaviours are considered.
In the first case, the agent would be considered dropped out and is absorbed by
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Fig. 9 Dropout d;(0.5;0.15) defined by (25) as a function of x, for static signal given by (27)
where the same parameter values as in Fig.5 are used. In each figure we show average values
of d(0.5;0.15) estimated from 100 simulations (circles). (a) Simulations where no comeback
from x = x, is allowed. The dashed line is a result of the theoretic analysis given by (30).
(b) Simulations where dropout agents can return. The dashed line is 50 % of the dropout predicted
by (30)

the boundary, so that it has no chance of becoming part of the wave again. The
second case allows the agent to randomly move around in the exploited area and
therefore allows the agent to enter the non-exploited region again. For both cases we
performed 100 simulations for each of the considered values of x, and measured the
value of d;(0.5;0.15) as defined before, this time using 0 as the mean position. The
average values of d;(0.5;0.15) estimated from the simulations are shown in Fig.9
as circles. To analyse the case of an absorbing boundary at x = x, we consider the
system in the limit N — oo, which is described by the following equation (compare
to (16))

on  dn d (on 2dS 28)
o ox Mox '

- ax 'Sdx
The boundary condition on the left-hand boundary can be written in the form

n(x.) = 0. Further conditions for x — co can be introduced. We look for a separable
solution of the form

n(x,t) = exp(—At)M(x),
where A is a positive constant. Plugging this ansatz into (28) leads to
/

S !
uM" + M —2u (M?) +AM =0, (29)

where primes denote derivatives with respect to x. For the ODE (29) a non-negative
solution is sought that satisfies M (x,) = 0 and M(x) — 0 as x — oo. The general
solution for (29) is
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2Apuexp (XS;F—J) + Q2An —1—y)exp (xlz”L—MV)

(e (3) 1)
2Apexp (xi‘—xj) + Q2Apn—1+y)exp (xI;TV)
(e (2) +)

where y = ,/4Apn + 1. The integration constants C; and C, have to be chosen
to satisfy the boundary conditions. Because of the nature of (29) as an eigenvalue
problem, only the quotient C;/C, can be determined uniquely, which also means
that the condition M(x) — 0 as x — oo is satisfied for all values C;,C, € R.
Taking a closer look at the limit x — oo, we can see that the direction of the
approach changes in dependence of A, in particular, a non-negative solution can
only be obtained for A smaller than a critical value A, (x.). This critical value A.(x.)
is achieved for the case where C;/C, turns out to be 0. Applying the left-hand
boundary condition M (x.) = 0 for this case yields to the unique value A.(x.) given

through
1 Xe xe\\ 2 P
Ac(xe) = ——exp|—— | |1 +exp| —— =-=5'"(x").
I I H

This value A (x.) can now be used to get a predicted value of the dropout dpeq (X, t)
via

M()C) = C1

_C2

dpred(xer 1) = 1 — exp(A(x.)1) . (30)

The function dpea(xc,0.5) is plotted as the dashed line in Fig.9a. We can see
that it matches well with the simulation results. The slight overestimation given
by dprea(xc,0.5) can be explained through the time it takes before the first agents
start reaching the critical position x, from the starting position at x = 0. For the
situation with comeback, we choose a value A = al.(x.) to predict the dropout,
where « is a constant. Matching this with the simulation results as shown in Fig. 9b
we found that o & 0.5, which indicates that about 50 % of agents come back into the
wave after they have dropped out. This effect could be modelled by using a reactive
boundary [16] instead of the free diffusion zone behind the wave.

6 Discussion

In this chapter, we reviewed the advances that have been made in the field of hybrid
modelling of collective behaviour. Hybrid models combine agent-based models with
mean-field concentration models and allow a more accurate description of certain
systems than the general mean-field approach. Compared to purely agent-based
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models hybrid models have the advantage of a reduced computational complexity
and a wider range of applicability. As hybrid models explicitly consider individual
behaviour as well as interactions between individuals, stochastic effects are incor-
porated which can alter the behaviour from that of the corresponding continuum
model. This became especially clear during the studies of hybrid chemotaxis models
in Sect. 5. We showed that the hybrid models do not produce a travelling wave in
the classical sense, as agents are dropping out behind the wave. This effect leads to
a decrease in the number of agents in the wave, which also slows down the wave,
as demonstrated in Fig. 7. We also discussed some of the problems and difficulties
related to the use of hybrid models. In particular the spatial matching between the
discrete agents and the continuous variables has to be considered. We showed in
Fig. 8 that the choice of the gridsize can have a significant effect on the behaviour
of hybrid models and has to be handled with care.

Throughout this chapter, we mainly focused on hybrid models which include
agents with internal variables. These models are particularly useful whenever indi-
viduals describe living cells (e.g. Model III introduced in Sect. 5.2) where internal
variables model important intracellular processes. In particular, the mathematical
framework (8) and (9) covers a rich class of complex biological systems. One
disadvantage of models with internal dynamics is that they are more complicated
to analyse [20]. In the case of models without internal variables (e.g. Model I
introduced in Sect.5.2), one can apply approaches which were developed for
analysis of many-particle systems in statistical physics. Perturbation methods and
closure approximations have been used for analysis of variants of Model I in
the literature [25, 40]. Kinetic and hydrodynamic descriptions of hybrid models
based on velocity jump processes without internal dynamics are derived in [11].
Mathematical analysis becomes more challenging whenever cells are not described
as pointwise objects. For example, the cellular Potts model is a lattice-based
approach which takes into account the finite size of biological cells. Using Kramers-
Moyal expansion, Alber et al. [4] derived a continuous macroscopic description of a
two-dimensional cellular Potts model. Models of cells which take into account both
the finite size and internal variables are even more difficult to analyse. A continuum
model for chemotaxis of disk-like cells with internal variables was derived for
stationary signals in [20]. Analysis of a hybrid model of the finite-sized cells with
internal dynamics remains an open problem.
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From Individual Movement Rules to Population
Level Patterns: The Case of Central-Place
Foragers

Hsin-Hua Wei and Frithjof Lutscher

Abstract We consider a model for the dynamics of a consumer-resource population
where the foraging behavior of the central-place forager is explicitly modeled
as a random walk. The model consists of a discrete map between generations
and a partial differential equation within a season. We determine analytically the
conditions under which the consumer can stay in the system. We then explore
numerically how different assumptions on the foraging strategy affect the stability of
the coexistence equilibrium. We find a number of ways in which foraging behavior
destabilizes the coexistence equilibrium and leads to population cycles. We also find
an instability resembling a flip bifurcation even though the model has compensatory
dynamics. This modeling framework can serve in the future to explore the evolution
of foraging strategies, thereby complementing previous ecological theory of central-
place foraging.

1 Introduction

The question of how individuals move in space to forage, traditionally, falls into the
field of behavioral ecology. Foraging strategies are optimized to maximize resource
intake, but the dynamics on the population level are usually not considered. Models
for population dynamics, on the other hand, focus on birth, and survival while
keeping behavioral aspects at a minimum [9]. In some sense, this dichotomy results
from the different time scales involved, with foraging happening on a faster time
scale than population growth and survival. However, when evolutionary aspects of
foraging behavior are considered, the dynamics of populations need to be included
[4]. The goal of this study is to develop and analyze population dynamic models
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that explicitly include the spatial foraging behavior of individuals, specifically for
central-place foragers.

Central-place foragers are individuals who have a place from which they depart
and to which they must return after a foraging bout [14, 16]. This central place
can be a nest where offspring need to be fed or a refuge where predation pressure
is relieved. Many species are central-place foragers, for example, ants with their
colonies; many birds, in particular sea birds; many cave-dwelling species such
as crickets and bats; mammals with their den site. Central-place foraging theory
considers optimal foraging strategies based on maximizing fitness, i.e., food intake
or rate of delivery to the central place. It is often assumed that individuals have
full, or at least partial, knowledge of the size or quality and distance of resource
items, and there is no re-stocking of resources. The optimal strategy then is to order
resource items according to their energy content per time necessary to acquire the
resource. Some predictions of this theory include that individuals should concentrate
their foraging efforts near the central place and should consider far-away items only
if they are large [5]. This optimization process does not consider the dynamics of a
population over multiple generations.

Models for population dynamics between generations focus on birth and death
of individuals. These processes may depend on age structure, interaction with
conspecifics, with competitors or with predators, but behavioral aspects of foraging
are kept at a minimum. For example, some of the simplest models for the dynamics
of a single species collapse foraging behavior into a single parameter that describes
the amount of “clumping” of the species on the locations of their resource. A robust
prediction of these models is that increased clumping enhances the stability of the
positive population equilibrium; population cycles are less likely. The mechanism
of this stabilizing effect is that as more individuals concentrate on few resource
patches, most mortality occurs there, whereas the few individuals in low-density
patches buffer the population against cycles [9].

The number of studies linking behavioral aspects of central-place foraging with
population dynamics is fairly limited. Some consider the impact of central-place
foragers on the community surrounding the central place (e.g. [2]). Some considered
effects on the population itself, for example on resource division between foragers
[8], or on nestling survival [20]. Only recently was the effect of foraging strategies
on the stability of the corresponding consumer-resource system considered [6].
The authors there used spatial distributions to describe foraging locations, and
then considered a population-level optimization scheme to adjust the distribution
to the resources in a given year. Some of these spatial distributions were based on
random-walk models for individual movement. It was found that stability of the
consumer-resource equilibrium sensitively depends on the spatial distribution of the
consumer and, hence, on foraging behavior.

The present study takes the connection between individual movement behavior
and population dynamics one step further by including more complex behavior into
the random walks that generate the foraging distribution. It is, thus, possible to
examine the effect of each aspect of foraging behavior on the population dynamic
patterns such as stability versus population cycles.
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In the next section, we formulate our model in two steps: first the population
dynamic processes of growth, reproduction, and survival are formulated in a
discrete-time system. Then the foraging process is modeled as a random walk in
continuous time and space as a partial differential equation. This framework is quite
general; we give three particular functions that can describe the choice of foraging
locations, and we consider their impact on the system. More specifically, we
consider the cases that individuals make their choice based on resource availability
alone; on resource availability and travel time; or on resource availability and
density of other foragers. In Sect.3 we briefly consider persistence conditions of
the consumer population. We find simple analytical rules. In Sect. 4 we explore how
the different foraging rules affect the stability of the population equilibrium. We
conclude with a discussion of the patterns that emerge and suggestions as to where
this modeling framework can be applied.

2 Model Derivation

The model consists of two parts: the discrete map for the consumer and resource
density from one generation to the next, and the continuous description of individual
movement to the foraging location within a season. In a non-spatial setting, a similar
approach of between and within season dynamics was used by Geritz and Kisdi [7]
to give mechanistic interpretations of depensatory and overcompensatory population
maps.

2.1 Population Dynamics

We begin with a consumer-resource model in discrete time, where we denote the
resource and consumer densities in generation n by F,, C,, respectively. We assume
for simplicity that the resource grows before the consumer emerges to forage, see
[3] for a more general model. We denote by G the growth of the resource and by
P the probability that a given resource is consumed. Then the equations between
generations are

Fot1 = G(F)(1 = P(Cy)),

1

Cn+1 = SCn + bG(Fn)P(Cn) ( )

The parameter b is the conversion coefficient from resource to consumer biomass.
The survival probability of consumers from one generation to the next is denoted
by s. For s = 0,b = 1 we obtain a standard host parasitoid model [12]. The
dynamics of this non-spatial model have been analyzed for a variety of growth
functions and capture probabilities [10], though typically with s = 0. In general,
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the survival probability could depend on the amount of acquired resources, i.e.,
s = s(G(F)P(C)). Here, we include the case of constant s > 0 since adult
survival is often much slower to decrease than reproductive success when food is
scarce [1]. We limit ourselves to the Beverton-Holt growth function and the negative
exponential capture probability, i.e.,

rF

G(F)= . P(€)=1-exp(-aC). )

I
All parameters are assumed positive, and r > 1. The dynamics of (1), (2) allow for
three scenarios: the consumer may become extinct while the resource approaches its
carrying capacity E; consumer and resource may stably coexist; or stable consumer-
resource cycles can be observed [19].

Next, we introduce the spatial variable X, and write F,(X) for the spatial
distribution of the resource in generation n. We assume that the central place of
the consumer is located at X = 0. We write the spatial distribution of foragers in
generation n as the product C, K, (X) of the total number of consumers C,, with a
probability density of their locations K,(X). In particular, K, is a non-negative
function whose integral over the entire space is one. In reality, consumers will
only forage in some suitable region, §2, for example an island or otherwise limited
habitat patch. If consumers leave this patch, then the integral of K, over §£2 may
be less than unity. For simplicity, we will consider the one-dimensional interval
2 = [-L/2,L/2], corresponding to a patch of length L with the central place
in the middle of the patch. We assume that individuals who forage inside the patch
return to the central place whereas the ones who leave the region do not return. Then
the spatial model reads

Fy1(X) = G(F)(1 = P(C, K, (X)),

3
Cpiy1 = s1,C, +b/ G(Fn(X))P(CnKn(X))dx’ @
2

where I, = [, K,(X)dx < 1 denotes the percentage of foragers returning to
the central place. We call the functions K, the foraging kernels in analogy with
dispersal kernels that describe the movement of individuals between two generations
[13]. In (3) we have assumed that the dispersal of the resource between generations
is negligibly small compared to the foraging area of the consumer. A variety of
alternative assumptions about consumer mortality during foraging and outside of §2
were discussed by Fagan et al., as was the case that resource redistribution occurs on
the same scale as consumer foraging [6]. Only the model details change, the overall
approach is the same.

When K, = K =1/|§2]| is constant in space and between generations, and if Fj
is constant in space, then model (3) is equivalent to the non-spatial model (1).
The assumption of spatially constant K implies that individuals search equally
throughout the domain. In contrast, optimal foraging theory for central-place
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foragers states that individuals should concentrate their search efforts near the
central place [2]. Such a concentrated effort near the central place could be described
by a spatial distribution K that is peaked near zero, for example the Gaussian
or Laplace distribution, as was done in [6]. Then, however, the resource near
the central place becomes more and more depleted over time, so that individuals
should concentrate their efforts further away. Fagan et al. used a population-level
optimization scheme to model changes in foraging locations in response to resource
availability [6]. Here, we use individual-based movement rules to let consumers
adjust to resource distribution in every generation. We introduce a random walk
model with appropriate foraging rules in the next section.

2.2 Individual Movement

In this section, we model individual movement to the foraging location by a partial
differential equation, similar to the approach in [13,17]. We assume that individuals
move randomly across the landscape after they emerge from the central location, and
they settle at a location with a given rate A. The distribution of settling locations
will then be the foraging kernel K. The equations for mobile (x) and settled (v)
individuals are

2
u_ Da—“2 —Au,  u(0,X) = 8(X),
ot X
4
dv

m = Au, v(0,X) =0,
where the Dirac delta for the initial condition indicates that each individual begins
the foraging process at the central location. Formally, the foraging kernel is given by

T
K(X) = (T, X) = /0 Au(t, X)dt. (5)

The time that the movement process takes is denoted by 7. If movement happens
on a fast time scale, we can assume T = oo, which we will do from here on. If
individuals change their movement behavior at the boundary of the patch, then
the equation for u has to be supplied with appropriate boundary conditions. For
example, if we assume that the boundary is hostile so that individuals at the
boundary are removed and never return, then the condition is

u(t,x) =0 for x € 082. (6)
When the settling rate is a constant, independent of all external influences, and

the domain §2 is the entire real line, then the resulting foraging kernel is the double-
exponential or Laplace kernel [13]
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Fig. 1 Foraging kernels with resource-dependent settling rate (8). Left: The resource profile is the
constant one and the resulting kernel is the Laplace kernel. Right: The resource profile is a parabola
and the resulting kernels have peaks away from the central place. The (scaled) diffusion coefficient
is D = 0.01 and the maximal settling rate is « = 10

K(X) = %\/A/D exp (—\/A/D|X|). %)

If the boundary of a finite patch is permeable for individuals to some degree, then
the resulting kernels can be obtained as some infinite series [18]. The effect of the
Laplace and other kernels, fixed in time, on the dynamics of system (3) has been
studied in [6]. The interesting part here is, of course, to let the settling rate A depend
on various factors, such as resource density, forager density, or time. We consider
several possibilities here. We illustrate the effect of each set of assumptions with
two scenarios: (i) spatially constant resource distribution and (ii) resources depleted
near the central place. In Sect. 4 we study how the different assumptions affect the
dynamics of the entire system.

2.2.1 Resource-Dependent Settling

We begin with the assumption that the settling rate is an increasing bounded function
of resource density. We choose Hill’s function

oaFY

®)

The parameter o denotes the maximum settling rate, § is the half-saturation
constant, and y controls the steepness of the curve. For y = 1, the curve is concave
down, for y > 1 the curve is sigmoidal. For spatially constant resource distribution,
this settling rate is constant, and hence the resulting kernel is a Laplace kernel. When
the resource at the central place is depleted, however, then no individuals settle there,
so that the resulting foraging kernel has two maxima away from the central place,
see Fig. 1. For all simulations in this section, we chose the simple quadratic function
F(x) = 4x? on [~1/2,1/2] as a hypothetical resource distribution, depleted near
the central place. We found that with this function, we can capture all phenomena
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Fig. 2 Foraging kernels with time-dependent settling rate (8). Left: The resource profile is the
constant one and the resulting kernel is similar to the Laplace kernel. Right: The resource profile is
a parabola and the resulting kernels have peaks away from the central place. The (scaled) diffusion
coefficient is D = 0.01 and the maximal settling rate is « = 10, and § = 2

that we found in the simulations of the full consumer-resource system, see also
Fig.4 in [6] for typical steady state distributions of the resource.

The effect of the various parameters on the resulting distributions are indicated
in the figure as well. We did calculate the mean absolute distance moved and the
variance in move length, and we found that both are increasing functions of the half
saturation constant, 8, and the shape parameter, y, and decreasing functions of the
maximum settling rate o, (plots not shown).

2.2.2 Time-Dependent Settling

The longer an individual moves before consuming resources, the more energy it
spends. Hence, as time goes on, an individual should be more likely to settle and
forage even if resources are not optimal. We modify the previous case by replacing
F with (1 + wt)F, where @ > 0 indicates how fast a forager accepts low-density
resource locations. Hence, the settling rate is

a[(l1 + wt)F)Y

Aiime(F. 1) = A(1 + 00) F) = B +[(1 + wt)F]”

©))

Increasing the parameter w gives shorter travel distances and a smaller variance
of the foraging kernel for both, a spatially constant and spatially varying resource
distribution F. The profiles are given in Fig. 2. The mean absolute distance moved
and the variance in move length are decreasing functions of w, (plot not shown).

2.2.3 Prospect-Dependent Settling

In the final example, we assume that an individual settles at a location depending
on its prospective return. We use the ratio of resource availability to previously
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Fig. 3 Foraging kernels with prospect-dependent settling rate (8). Left: The resource profile is the
constant one and the resulting kernel clearly differs from the Laplace kernel, at least for small .
Right: The resource profile is a parabola and the resulting kernels have peaks away from the central
place. The (scaled) diffusion coefficient is D = 0.01 and the maximal settling rate is « = 10, and

B=2

settled individuals (F/v) as a measure for prospective return. In other words, even
if resource density is high the individual might choose to not settle there if there are
already many settled individuals foraging. We set

a(§F/v)”

B+ GF/)T (10)

Aprospect = A(EF/v) =

Here, £ > 0 indicates how strongly the moving individuals react to their expected
return. We observe that the settling rate defined here has the unrealistic property that
Aprospect = o wherever v = 0, independent of the resource density F. Therefore, we
slightly modify the rate and replace v with v + € for some small value of €. (In all
simulations, we used € = 0.01.)

The effects of £ on the resulting forager distribution is depicted in Fig.3.
Increasing £ clearly decreases the distance moved and the variance of the foraging
kernel, (plots not shown).

2.2.4 Nondimensionalization

Before we close this section, we non-dimensionalize the model by setting F,, =
Ef,,C, =a/Lc,, X = Lx. then the equations read

_ rfn(x)
Jat1(x) = 50050 exp(—cnkn(x))),
(11)

B At
Cpt1 = sl,c, + b/1/2 g (r — 1)fn( )[1 —eXp(—ann(x))]dX,
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where now b = bE /a and k(x) = LK(Lx). The diffusion coefficient in (4) scales
by L?, the parameters f in (8) and £ in (10) scale with E. In all the simulations, we
choose hostile boundary conditions at x = +1/2. We write b instead of b when no
confusion can arise.

3 Effects of Movement Rules on Persistence

We begin our analysis with the question of whether or not the consumer can persist.
Hence, we linearize at the resource-only steady state (F*(X),0) and check the
stability condition. After linearizing (3) the equation for the consumers decouples
and in its dimensional form reads

Coy1 = (sln + b/G(F*(X))K,,(X)dX) C,. (12)

If there is no consumer, then the resource is homogeneously distributed throughout
the domain, i.e., F* is independent of X. In addition, since it is a steady state for
the resource, we have G(F*) = F™*. Hence, the condition for (F*(X),0) to be
unstable so that the consumer can persist in the system is

[(JK(X)dX > bF*—_’_S, or /_l/zk(x)dx > m (13)

in the dimensional and non-dimensional form, respectively. This persistence con-
dition differs slightly from the one found in [6] since we included the loss of
consumers into the survival term here.

The effects of movement rules on persistence is fairly easy to see, since we only
need to consider the case of spatially constant resource distribution. The resource-
dependent settling rate (8) becomes a constant that increases with o and decreases
with B7. The integral in (13) therefore also increases with o and decreases with B7.
For the time-dependent settling rate, persistence is more likely with increasing @
and in the prospect-dependent rate, persistence is more likely with increasing £.

The persistence condition for the consumer is fairly easy to determine. Since
the resource distribution at the resource-only steady state is constant in space, the
invasion condition of the consumer reduces to knowing the value of the integral
(13). In the next section, we assume that parameters are such that the consumer
can persist, and we ask how movement rules affect the shape and stability of the
coexistence steady state.
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Fig. 4 Bifurcation diagram for the non-spatial consumer resource model in the r-b plane. The line
indicates a Neimark Sacker bifurcation that separates stable coexistence (to the leff) from invariant
loops (to the right). The thick line corresponds to s = 0.5, the thinner line to s = 0.2. The region
labeled “stable steady state” includes the region where the consumer is extinct and the resource is
at its stable equilibrium

4 Effects of Movement Rules on Stability

In this section we assume that the consumer can persist, and we ask whether the
resulting consumer-resource system shows stable coexistence or cyclic behavior. For
the purpose of comparison, we begin with the non-spatial model, or, equivalently,
with a spatial model where dispersal is uniform in the domain. The three remaining
parameters in the model are 7, b, and s. The bifurcation diagram in the r-b plane
for different values of s is given in Fig. 4. Roughly, these results can be summarized
by saying that increasing the values of b and s may destabilize the system and lead
to cycles whereas increasing r tends to stabilize the coexistence state. For spatially
varying but temporally fixed kernels, some of these relationships may change. For
example, Fagan et al. showed that with a fixed kernel invariant loops may appear
for some intermediate range of s-values (using a top-hat kernel) or only for small
values of s (using a Laplace kernel) [6] .

In the case that movement behavior depends on resource density, we now
investigate how the various parameters affect stability.

4.1 Resource-Dependent Settling

We begin with the model where individuals choose their foraging site according to
resource density as in the settling rate (8). In our extensive numerical simulations of
the full spatial system, we found essentially three different behaviors with resource
and consumer coexisting. There could be a stable steady state, invariant loops, or
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Fig. 6 Snapshots of the forager distribution at the two stages of a ‘switch’ in the consumer-
resource system with resource dependent settling rate (8). The dynamics alter between these two
states. The parameters are s = 0.5, =3.5,r =8, =10, =02,y =1, D = 0.01

‘switches’. The changes in the consumer foraging locations over the course of a
typical solution are depicted in Fig. 5. From any nonzero initial condition, solutions
have stabilized at the invariant loop after around 800 generations. We begin our
observations at = 970, when foragers are concentrated near the central place. Six
generations later, the resources near the central place are depleted so that consumers
concentrate away from the central place. As consumers successively deplete the
resources near the central place, the peaks of forager density move away from the
central place for several generations. At = 994, however, resources near the central
place have recovered enough to attract consumers there. After several generations
of foragers concentrated near the central place and the cycle starts over (through
t = 1,000 until # = 1,006) .

In the case of a ‘switch’, the forager distribution switches between two states
as does the resource distribution, but the number of consumers remains relatively
constant. An example is given in Fig. 6. We found that such patterns only occurred
for high resource growth rate and high settling rate. Consumers locally deplete the
resource in one year to such a low level that the probability of settling there the next
year is significantly decreased. Then the resource grows back to very high levels



170 H.-H. Wei and F. Lutscher

|
> 0.9 > 12 1
B 08 3 i i
: o 5 ||
g o7 3 b
E 0.6 o 08 . i
£ i
§ 05 3 06 -
0.4 5
o [e]
[&]
03 S 04
02 02
o 1 2 3 4 5 & 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

Y i

Fig. 7 Orbit diagrams and bifurcations for the resource-dependent settling rate. Left: Cycles
appear as y increases, for § = 0.2. Right: Intermediate values of § give rise to cycles for y = 2.
In both plots the other parameters are s = 0.5, b = 3,r = 3, = 10, D = 0.01

during the season when the consumer density is low. Because of the high maximum
settling rate, consumers settle quickly and closely together as soon as there is a
sufficiently high resource density. This mechanism leeds to the alternating, in space
and time, high-low density pattern near the central place in Fig. 6.

The different behaviors that we observed are very similar to a Neimark-Sacker
bifurcation (in the case of cycles) and a flip bifurcation (in the case of ‘switches’)
for finite dimensional maps. However, the spatial system that we study is not finite
dimensional. Its analytical study is even more complicated by the fact that the
equation for the resource has no ‘smoothing’ effect, so that the spectrum of the
linearized operator is not necessarily a point spectrum. Introducing dispersal of
the resource will make the eigenvalue problem well posed [6]. Alternatively, we
use numerical simulations here to study the stability of the coexistence state. At
each time step, we used a central difference scheme to solve the partial differential
equation of consumer movement in MATLAB. We present orbit diagrams, in which
we plot the consumer density, c¢,, for 50 generations after the initial transients
have died out; typically after 2,000 generations. Because we need to solve a partial
differential equation in each time step, numerical solutions require a good amount
of computing power. For that reason, we have a fairly coarse discretization of
parameter space. A detailed study of phenomena such as phase-locking, that can
be found in discrete maps, is beyond the scope of this work.

We find the following behaviors. With respect to the population dynamics
parameters, the behavior is qualitatively quite similar to the non-spatial case and
the orbit diagrams are not shown. Increasing the conversion coefficient, b, or the
survival rate, s, can destabilize the coexistence state and lead to cycles. Increasing
the resource growth rate, r, can stabilize cycles. In contrast to the non-spatial
situation, increasing r even further can destabilize the steady state again and lead to
a ‘switch’ as described above.

For the movement parameters, a number of different bifurcations can occur.
Increasing the shape parameter y in the settling rate (8) can destabilize the steady
state and lead to population cycles. Cycles can also occur for intermediate ranges of
the half-saturation rate, 8, see Fig. 7.
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Fig. 8 Orbit diagrams and bifurcations with respect to «. Left: Cycles appear as « increases, cycle
amplitude and mean decreases for large enough «. Parameters are s = 0.5, b = 4, r = 3,
B = 0.1,y = 1, D = 0.01. Right: Another bifurcation can destabilize the steady state and lead
to ‘switches’ for large values of @. Here: b = 2,y = 2, and the other parameters are as in the
other plot

The behavior with respect to the maximum settling rate, o, depends on the other
parameters. Typically, the coexistence state is stable for small enough o and loses
stability to population cycles as « increases. This behavior is similar and related to
the bifurcations with respect to the conversion coefficient, b. In both cases, higher
values mean higher consumer growth rates. However, while the value of » does not
affect the resource density in a given year, the value of o does since more resource
is consumed. Consequently, the amplitude and the mean of these population cycles
tend to decrease for large «, see Fig. 8. In some cases, the orbits may disappear
altogether and the coexistence state is stable for high o (plots not shown). In some
cases, there can be another bifurcation, similar to a flip bifurcation, and a ‘switch’
pattern can result, see Fig. 8.

4.2 Time-Dependent Settling

We now consider the behavior of the system with the time-dependent settling
rate (9). The orbit diagram in Fig.9 shows that increasing the parameter @ can
destabilize the coexistence state and trigger the occurrence of invariant loops. For
any given value of w, the dynamic behavior with respect to the other parameters
is qualitatively similar to the previous case of resource-dependent settling. We do
not present other orbit diagrams here. We do, however, point out that the foraging
distribution over the course of one cycle is much more concentrated near the central
place than was the case for the resource-dependent settling (see the right plot in
Fig.9). As time increases, individuals tend to settle even at lower resource density
so that they can obtain at least some resources. This increasing (in time) settling rate
leads to a narrowly peaked distribution.
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Fig. 9 Orbit diagram and forager distribution for the time-dependent settling rate. Left: As the
parameter o increases, a stable coexistence state can be destabilized and invariant loops can occur.
Right: The distribution of foragers over the course of a cycle is much more narrowly peaked around
the central place than was the case with resource-dependent settling. Parameters are: s = 0.5,
r=23>b=235a = 10,8 = 0.2, y = 2 for the orbit diagram. When y = 1, then the
onset of cycles occurs for larger values of @. The foraging distributions are plotted with the same
parameters, except y = l and w = 15
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Fig. 10 Orbit diagram and forager distribution for the prospect-dependent settling rate. Left: As
the parameter £ increases, a stable coexistence state can be destabilized and invariant loops can
occur. Right: The distribution of foragers over the course of a cycle is much more narrowly peaked
around the central place than was the case with resource-dependent settling. Parameters are: s =
0.5,r =3,b =33, a =10,8 = 0.2, y = 1 for the orbit diagram. The foraging distributions
are plotted with the same parameters and £ = 16

4.3 Prospect-Dependent Settling

The results for prospect-dependent settling are quite similar to the case of time-
dependent settling. For fixed &, the qualitative behavior of the system is the same as
in the case of resource-dependent settling. As a function of £, the coexistence state
can be destabilized for increasing £. Similarly to the time-dependent settling rate,
the forager distribution tends to be more narrowly peaked around the central place.
The results are illustrated in Fig. 10.
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5 Discussion

Foraging theory typically considers a single individual and maximizes fitness. It
assumes that the individual has knowledge of available resource items, and it largely
ignores population dynamic aspects. Conversely, population dynamic models do
not usually include foraging behavior. The main goal of this study was to develop
and analyze a mathematical model for population dynamics, based on individual
movement rules for central-place foragers. This framework allowed us to explore
and elucidate the effect of different foraging strategies on the stability of the
population, and, vice versa, the effect of population dynamics on spatial patterns in
the resource via individual-based movement rules. All these movement rules were
local in the sense that an individual decides at each step whether to settle and forage
or to move and in which direction. We did not assume that the individual has prior
knowledge over available resources.

We found that population dynamics parameters in the spatial model have similar
effects on the stability of a population as in the non-spatial model. We also found
that movement rules can have a significant effect on population dynamics. The most
interesting observations are probably that sometimes intermediate parameter values
can destabilize a steady state and lead to oscillations, and secondly that the system
might exhibit two-cycles (reminiscent of flip bifurcations in overcompensatory
dynamics, see [10]) even though the dynamics here are compensatory.

One of the classical results about stability of populations was that increased
clumping of the consumer on resource patches increases stability of the steady state
[9]. Instability there, under the assumption of constant resource, results in a flip-
bifurcation and the appearance of stable two-cycles in the population. We do not
have a parameter of clumping in our model; aggregation at certain spatial locations
rather emerges as a result of a situation-specific selection of foraging sites. We
can interpret a decreased variance in distance moved as increased clumping, see
Sect.2.2.1. Aggregation on the resource, which is dynamic in our model, causes
a decrease in available resource at that location in the next year. We observe
that increasing y decreases the variance of distance moved, but also increases the
likelihood of population cycles (Fig.7). A similar pattern emerges for @ (Fig.9).
Hence, we find quite different behavior than the simple models that abstract much
of the foraging process.

Our work also advances the theory and ideas for mechanistic models of
dispersal processes and their resulting kernels as in [13, 15, 18]. In particular, we
found mechanistic underpinnings for distributions that are quite different from the
commonly used Gaussian or Laplace distributions. We claim that resource and
prospect dependent settling should be quite likely and need to be incorporated into
future models in spatial ecology. The situation of central-place foragers, where all
individuals emerge from the same location, facilitates this inclusion of mechanisms.
The challenge for the future is to incorporate such density-dependent movement
and settling behavior into other models where foragers or dispersers are spatially
distributed to begin with. The modeling framework will not be either discrete or
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continuous, but rather a hybrid of the two as we used here or, in a non-spatial setting,
Geritz and Kisdi earlier [7].

We want to highlight two directions for future research that naturally extend
our work. First, there are a number of analytical questions to be asked. For
example, the question of a rigorous stability analysis of the coexistence state,
potentially under the assumption of (small) resource dispersal; an exploration of
the dynamics with overcompensatory resource growth; investigation of phenomena
such as phase-locking; or the inclusion of resource dependent movement into
the partial-differential equation, similar to prey-taxis [11]. The second topic for
future exploration is to use our modeling framework to return to the question of
optimal central-place foraging and consider the evolutionary dynamics of certain
movement-related parameters. One would adopt the viewpoint of adaptive dynamics
[4] and produce pairwise invasibility plots to find evolutionary stable states. This
process will lead to insight about evolutionary mechanisms of population cycles. In
particular, some of the predictions of classical foraging theory can now be explored
in connection with their population dynamic consequences.
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Transport and Anisotropic Diffusion Models
for Movement in Oriented Habitats

Thomas Hillen and Kevin J. Painter

Abstract A common feature of many living organisms is the ability to move
and navigate in heterogeneous environments. While models for spatial spread of
populations are often based on the diffusion equation, here we aim to advertise the
use of transport models; in particular in cases where data from individual tracking
are available. Rather than developing a full general theory of transport models, we
focus on the specific case of animal movement in oriented habitats. The orientations
can be given by magnetic cues, elevation profiles, food sources, or disturbances such
as seismic lines or roads. In this case we are able to present and contrast the three
most common scaling limits, (i) the parabolic scaling, (ii) the hyperbolic scaling,
and (iii) the moment closure method. We clearly state the underlying assumptions
and guide the reader to an understanding of which scaling method is used in what
kind of situations. One interesting result is that the macroscopic drift velocity is
given by the mean direction of the underlying linear features, and the diffusion
is given by the variance-covariance matrix of the underlying oriented habitat. We
illustrate our findings with specific applications to wolf movement in habitats with
seismic lines.
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1 Introduction

1.1 Biological Motivation

Successful navigation through a complicated and evolving environment is a funda-
mental task carried out by an enormous range of organisms. Migration paths can be
staggering in their length and intricacy: at the microscopic scale, nematode worms
can determine the shortest path through the intricate maze-like structure of the soil to
locate plant roots [38] while at the macroscopic scale salmon return from the ocean
upstream through bifurcating rivers and streams to spawn at their original birth site
[25]. Selecting a path requires the detection, processing and integration of a myriad
of cues drawn from the surrounding environment. In many instances the intrinsic
orientation of the environment provides a valuable navigational aid. The earth’s
magnetic field provides one such example: species such as turtles and whales use
an inbuilt compass to navigate to breeding or feeding grounds [25], while butterflies
and other insects fly up slopes to local peaks in a mate locating strategy known as
“hilltopping” [36]. Pigeons [24] and cane toads [6] have been shown to fly or hop
in the direction of roads, while caribou and wolves move along the seismic lines cut
into forests by oil exploration companies [29]. An aligned environment also plays
a fundamental role in the migration of individual cells: many cell types, including
immune cells, fibroblasts and certain types of cancer cells migrate in alignment with
the fibre network constituting the surrounding extracellular matrix (ECM).

The above examples provide the motivation for the present paper where we focus
on mathematical models for movement in oriented habitats and their scaling limits.
The aim is to clarify some of the tools of the trade, allowing the reader to adapt the
methods to any given specific situation, such as those outlined above. In the case of
the present paper we shall use cell movement in collagen tissues to derive the model
equations, before demonstrating their adaption to wolf movement on seismic lines
and the motion of organisms in a stream. We note that these should be considered
illustrative examples rather than indepth studies, although we note that a detailed
application to glioma growth will be covered in a forthcoming paper [35].

1.2 Mathematical Modelling

Transport models (often referred to as kinetic models) form a powerful tool in
the analysis and modelling of animal and cell movement. Modern experimental
methods allow us to track an individual’s movement in intricate detail, whether
by GPS tracking of mammals [29, 39] or through confocal microscopy of cells in
tissues [13, 14]. The wealth of data generated can be employed to extract precise
information on mean travel speeds, velocities, the distribution of turning angles, the
“choice” of new velocities amongst others. Within this context the transport model
fits naturally, relying on particle speed and turning distributions as key inputs.
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Transport models have a long history in continuum mechanics. For example,
the theory of dilute gases is entirely based on the kinetic Boltzmann equation
of interacting gas particles [8]. Over the last few decades this theory has been
transferred to the modelling of living entities, with the obvious advantage of
shipping previously developed methodologies with it [4,9, 18,32,33,37]. However,
wholesale removal from the shelf of continuum mechanics is inadvisable: methods
must be carefully adjusted to reflect the biological situation.

A highly utilized tool in the study of transport models is a consideration of
scaling limits, thus allowing approximation to a reduced (and typically simpler)
model such as a diffusion- or drift-dominated partial differential equation. A
variety of scaling limits have been considered, found under the general headings
of parabolic limit, diffusion limit, hyperbolic limit, Chapman-Enskog expansions,
Hilbert expansions, and moment closures [9, 10, 16, 18] (with, most likely, many
further terminologies dispersed throughout the literature).

In the hope that we can make transport equations more broadly accessible for
ecological and cellular processes, in this chapter we explore such systems as a means
of modelling migration. We will open the following section with a presentation of
the transport equation approach, as well as a specific formulation that incorporates
guided movement due to a fixed and oriented environment. This relatively simple
model will be used to motivate and illustrate the various scalings. Here, with our
attention fixed on ecological applications, we restrict attention to the three most
commonly used methods: (i) the parabolic scaling, (ii) the hyperbolic scaling, and
(iii) the moment closure. We will not attempt to present the most abstract and general
theory, rather we focus on a nontrivial and interesting case which retains enough
simplicity to directly apply each of the scaling limits above. In particular, we will
attempt to answer the following questions:

 Is there a better method among those three methods?

* How and when do we employ hyperbolic scaling, parabolic scaling or moment
closure?

* What are the specific assumptions behind these three methods and how do they
differ?

* In which cases do these scalings lead to the same results?

While all methods have been discussed individually, as far as we are aware there
has not been a study which directly compares these methods in the ecological
context. We find that each of the methods (i), (ii) and (iii) have their own range
of applicability and there are situations when one is favourable over the other. As it
turns out, the parabolic limit (i) plays a central role, as special cases of (ii) and (iii)
both lead back to (i). To illustrate the findings and methodologies in a transparent
manner we will explore some simple case studies and consider specific applications,
including the movement of wolves and caribou along seismic lines in Western
Canada. Finally, we will provide a brief discussion of the findings.
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2 Transport Equations

The application of transport equations to biological processes grew from seminal
work of the 1980s (see [1,33]) as an approach for modelling biological movement,
whether by cells or organisms. Transport equations typically refer to mathematical
models in which the particles of interest are structured by their position in space,
time and velocity. Here we will use p(¢, x, v) to describe the population density of
cells/organisms at time ¢t > 0, location x € £2 C R” and velocityv € V C R". We
will generally consider an unbounded spatial domain £2 = R” to avoid specifying
boundary conditions and, given that we consider biological movement, the set of
possible velocities V' is taken to be compact. It is worth noting that this is a key
distinction from the kinetic theory of gas molecules, where V' = R”" permits (at
least theoretically) individual molecules to acquire infinite momentum. Here we
shall typically consider V' = [sy, s2] X S*1 with 0 < 51 < 55 < o0.
The time evolution of p(t, x, v) is described by the transport equation

pi(t,x,v)+v-Vpt,x,v) =ZLp, x,v), (1)

where the index ¢ denotes the partial time derivative and .Z is the turning operator:
a mathematical representation for modelling the velocity changes of the particles.
In many instances .Z could be described by a nonlinear interaction operator
incorporating changes in velocity due to interactions between individuals. For
example, the coherence of a fish school is maintained through an individual altering
velocity in response to that of an immediate neighbour, while certain populations of
cells migrate as a cohort by forming strong adhesive bonds with their neighbours.
Here we will ignore such scenarios, thus allowing us to focus our attention on the
simpler case of linear operators .Z.
Typically, .Z is defined via an integral operator representation

LoW) = —p) + /V T(eov)p()dV | @)

where the first term on the right hand side gives the rate at which particles switch
away from velocity v and the second term denotes the switching into velocity v
from all other velocities. The parameter u is the turning rate, with 1/p the mean
run time between individual turns. The kernel 7'(x,v,V") denotes the probability
density of switching velocity from V' to v, given that a turn occurs at location x.
The mathematical properties of 7" set the stage for much of the theory that follows
and it is certainly possible to set down a general theory for transport equations (see
for example [7, 18, 23, 37]). However, the resulting burden of advanced functional
analysis would overwhelm the aims of the present paper. Rather, we focus on a
simple yet non-trivial case which allows us to present the scaling methods in a
transparent manner. Specifically, we restrict to the case in which the turning operator
does not depend on the incoming velocity v':
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T(x,v,v) =q(x,v)

where ¢ satisfies ¢ > 0. This assumption limits the applicability, since animals as
well as cells have a tendency to maintain a particular direction (persistence) such
that the incoming and outgoing velocities show a strong correlation. Here we ignore
this form of persistence, and we assume that the dominating directional cue is given
by the oriented environment. As mentioned already, a general treatment is possible,
but it would deter from our purpose to present the theory in a relatively transparent
way.

2.1 Movement in an Oriented Environment

Here we present a dedicated and simple model based on the transport equation (1)
with turning operator (2) to describe movement in an oriented environment. We
follow the modelling approach developed by Hillen [17] and extended in [34]
to describe contact-guided movement of cells within a network, for example
an extracellular matrix (ECM) predominantly composed of collagen fibres. We
motivate the model by briefly describing its derivation in relation to cell movement,
as in the above articles, while noting that the model itself is quite general and can
easily be adapted to model the movement of organisms in an oriented landscape, as
shown in later sections.

The ECM imparts orienteering cues to cells through their tendency to follow
fibres, a process known as contact guidance [12, 15]. More generally, contact
guidance describes the oriented motility response of cells to anisotropy in the
environment, whether it arises from collagen fibres, muscle fibres, neuronal axons,
arteries and so forth. Contact guidance is believed to play important roles in tissue
development, homeostasis and repair, from patterning of the pectoral fin bud of the
teleost embryo [43] to immune cell guidance [41,42] and fibroblast-mediated tissue
repair following injury [15]. Particular interest in contact-guided migration of cells
further stems from its influence in directing the pathways of invasive cancer cells
[13,14].

Following the approach in [17] and [34], we represent the oriented structure of
the environment by defining a directional distribution g (x, 8) for # € S"~!, with
g > 0and fsn—l G(x,0)d8 = 1.1In the case of cell migration, the fibres along which
cells migrate do not provide a particular direction to movement (i.e. there is no
“up” or “down” a collagen fibre) and in such instances we would assume symmetry
G(x,—0) = G(x,0) for all § € S"~!. For more on distinct forms for the directional
distribution, see below.

To model contact-guided migration, we assume that cells choose their new
direction according to the given fibre network, hence ¢(x,v) ~ §(x,V), where
v = v/||v|| denotes the corresponding unit vector. Note that this assumes that cells
only take guidance information from the directional distribution: there is no explicit
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component for random migration or orientation to chemical signalling cues built
directly into the turning operator, although these can be built into the directional
distribution as we demonstrate later. Since ¢ is a probability distribution on V', and
G a probability distribution on S"~!, we need to scale appropriately:

7 B 1een _ on
q(x,v) = _q(x,v)’ with o = / G(x,v)dv = "(f% si) forsy <
w v s” fors; =52 = s.

For this choice of turning kernel, (2) simplifies to

Lo0) = p@x)G — o). with §:= /V o).

We make one final simplification, which is to assume individuals have a fixed

speed s, i.e. V = sS"~!. While the extension to V' = [s1,s2] x S"~! is trivial, it

introduces some cumbersome integration constants that blur the analytical details.
To summarise, the transport model we study in this paper is given by

pi(t,x,v) +v-Vp(t,x,v) = pu(q(x,v)p(t,x) — p(t,x,v)) 3)

on R" x s§"~!, where ¢(x, v) is the direction distribution that represents the external
network structure.

It is worth noting that different cell types adopt distinct migration strategies,
with correspondingly variable degrees of interaction with the surrounding network.
For individually migrating cells the two principle migration strategies are amoeboid
and mesenchymal. While the former is characterised by fleeting contact between
cells and the ECM, and correspondingly minimal distortion of the network [42],
the latter involves extensive structural modification of the ECM via a processes of
cell-mediated proteolytic degradation. Consequently the stand-alone equation (3)
is more appropriately a model for amoeboid rather than mesenchymal migration.
The latter would require augmentation of (3) with an evolution equation for
varying g (¢, x, v) due to cell-matrix interactions: while such extensions have been
extensively considered in detail in [17] and [34], we do not consider this further
here.

As mentioned earlier, while originally developed in the context of cell migration
the above transport equation can easily be adapted to ecological applications. For
example, to model the population movements of hilltopping butterflies we would
reinterpret p as the density of butterflies, ¢ as a spatially varying directional
distribution with a maximum corresponding to the local direction of increasing
slope, with parameters s and p for butterfly speed and frequency of turns to be
estimated from tracking of individual flights.
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2.2 Environmental Distributions

Representing anisotropy of the environment through the directional distribution ¢
provides the means to describe a wide range of oriented landscapes. Here we briefly
consider some potential forms for g.

Strictly-Aligned Environments

A strictly aligned environment with local direction y € S"~! can be modelled by
choosing the singular g-distribution:

1
q(x,v) = ;&)(ﬁ -7).

The above effectively forces an individual to choose y as a movement direction
following a turn. A full mathematical solution theory of (3) for such g requires a
notion of measure valued solutions, which was developed in [20]. We discuss this
case in connection to applications in Sect.7.3.

Regularly-Aligned Environments

For many landscapes, while oriented structures provide a directional cue, the
individuals will typically move over a wide range of directions. For example,
while wolves preferentially follow the seismic lines cut into forested areas they
also move off the lines and into surrounding forest. Similarly, butterflies do not
take the steepest route during hilltopping, rather their flight pattern fluctuates [36].
Such behaviours can be accounted for by allowing g to take the form of a regular
probability distribution over V.
In summary, we assume that ¢ has the general form

g(x,.) e L2(V), q(x,v) >0, /q(x,v)dv =1. 4)
|4

With the above assumptions in place it is noteworthy to mention two statistical
quantities later revealed to be of importance, the expectation and the variance-
covariance matrix:

Ey(x) = /Vvq(x,v)dv, Vy(x) = /V(V—Eq(x))(v—Eq(x))Tq(x,v)dv.

The product v’ denotes the dyade product of two vectors and it defines a matrix.
Other authors prefer to use tensorial notation such as wl =vy®v[9,10].
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Furthermore, we consider potential restrictions on ¢ that could result from
distinct forms of environmental anisotropy. While information provided by mag-
netic cues, the sun and ocean currents could provide a unidirectional movement
cue, topographical information in the form of roads, seismic lines and collagen
fibres may only provide bidirectional anisotropy, i.e. animals or cells choose both
directions with equal probability. In this latter case, we would assume symmetry
of ¢,

q(-xa —V) = q(x, V).

A direct consequence of this symmetry is

E, =0 and V,(x) =/vaq(x,v)dv.
14

3 The Parabolic Scaling

In this and the following two sections we discuss the three principal scalings:
(i) parabolic scaling, (ii) hyperbolic scaling and (iii) moment closure. We will show
that each of the methods have their own range of applicability, and that there are
situations when one is favourable over the other. With the aim of making this
methodology broadly accessible, we aim for transparent presentation by revealing
all steps in the analysis, noting that such details are often omitted in the literature.
To illustrate the structuring of what follows, the graphic (Fig.1) outlines the
relationships between the scalings as they will be discussed in this manuscript. The
parabolic limit (i) is found to play a pivotal role, as special cases of (ii) and of
(iii) both lead back to (i). For readers less motivated by the technical aspects of what
follows, we would like to note that each section is concluded with a summarising
box and a comparison between the scalings is presented in Sect. 6.

3.1 Motivation of the Parabolic Limit

As illustrated in Fig. 1, the parabolic limit marks a full-stop for scaling in our
analyses, with all paths eventually leading to it. Given its obvious and considerable
importance to the modelling community, we therefore discuss this case first. Two
ways to motivate the parabolic limit are (a) an appropriate scaling of space and time,
and (b) large turning rates and large speeds of the particles. These two approaches
are, in fact, equivalent, as we next illustrate.

E. coli bacteria on a petri-dish display an average turning rate of i ~ 1/s and an
average speed of s ~ 1072 mm/s (see [18]), whereas durations for experiments that
investigate population level dynamics are typically of the order of hours or days.
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transport equation

kinetic model
moment closure

balance equations for hyperbolic

mass, momentum and energy scaling

parabolic
fast momem scaling
relaxation

hyperbolic limit
drift—diffusion equation

diffusion
dominated

Fig. 1 Relations between the scalings and limit equations as discussed in the text

parabolic limit
diffusion equation

Taking a unit U = 10,000s (~3h), the turning rate and speed on this timescale
become

1
w=10"— and s= 102@.
Hence, introducing a small parameter
e=1072,

we have
w=0(@E2), and s=0(@").

By writing 4 = ¢2fi and s = £~'§ we obtain the equation
pe+e'50-Vp=eTfilqp - p).

where, for v € V, we write s6 = v with 0 € "1, Removing the ~’s on the scaled
parameters and rearranging we obtain

&pi+ev-Vp=plgp—p). (5)
Alternatively, we can simply introduce macroscopic time and space scales
%t

T =¢gt, £ =ex

and rescale model (3) accordingly to obtain

& p. +ev-Vep = u(qp — p). ©6)
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Formally, (5) and (6) are identical, though we note that we shall employ the second
formulation with the new time and space coordinates (z, §).

3.2 Parabolic Limit in an Oriented Landscape

We first study the properties of the turning operator defined on L2(V):

L) = pug(x,v)¢ —9).

The kernel of . is given by the linear space (g(x,.)). Hence we work in the
weighted Lebesgue space L;,l (V) where the inner product of a function f with ¢
is given by

dv -
/V e /V Foydv = F.

On the complement set, (¢)*, we can define a pseudo-inverse by solving the

resolvent equation. Given a function i € (g)* we solve for ¢ € (g)* such that

Lo = (N

Since ¢, ¥ € (q)*, we have ¢ = ¥ = 0 and the resolvent equation (7) reduces to

1
¢ =—1. (®)
i

where the pseudo-inverse appears as multiplication with —u ™.

To analyse the scaled equation (6) we take the scaled coordinates (7, £) and make
aregular expansion in &, called a Hilbert expansion:

p(‘L’, é,V) = pO(ts és V) + 5]71(1', 5, V) + 82[72(1', é,V) + h.o.t.

Substituting into (6) and comparing orders of magnitude of ¢:

&% The terms of leading order are . py(z, £, v) = 0 which implies

po(t,€,v) = q(§,v) po(z, §).
o gl: The terms of order one are
(V-v)po=ZLp:.

This equation can be solved on {g), if the right hand side satisfies the solvability
condition (V - v) po € (g)*. This condition reads
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dv .
qEv)

Crucially, this term is only equal to zero for arbitrary py when we impose the
following extra condition on g:

/ (V - V)g(E.v) polr. £.7) v. / wg(E.v) dv polr. &),
Vv Vv

E, = / vq(&,v)dv = 0. 9)
14
We can then solve for the first order term and find
1
pi(z.§,v) = —;V v po(t,€,v).

+ ¢2: The second order terms are
poc+v-Vpr=ZLp.
From assumption (4) it follows that [, Z¢(v)dv = 0 for all ¢ € L;,l. Hence

we integrate the above equation and use index notation for summation over
repeated indices:

0= /V(po,f +v-Vppdv,
_ 1 _
= e / - V)T ) (ol g (E.v)) dv,
— por— %a,-aj ( /V V) dv polc. s)) .

This last equation can be written as a diffusion equation for the macroscopic

density po(z, §):
Poc(7,§) = VV(D(§) po(z,§)). (10)

with a macroscopic diffusion tensor

D(§) = ! / wlq (&, v)dv. (11)
©wJy

Since we assumed E; = 01in (9), we find that the diffusion tensor for the particles
is given by the variance-covariance matrix of the underlying fibre network:

DE) = V).
W
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With ¢ assumed to be non-singular, the variance-covariance matrix V, (and hence
the diffusion tensor D) is positive definite and symmetric and (11) is uniformly
parabolic.

We summarise this limit in the following result:

The Parabolic Scaling. In addition to (4) we make the following assump-
tions:

(A1)
E, = / vq(x,v)dv = 0. (12)
14
(A2) There exists a small parameter ¢ > 0 such that either
n= 8_2/1, s =g 15,
or
T = &, & =ex,

where [i, §, T, £ are of order one.

Let p(z, &, v) be a solution of the scaled kinetic equation

& p. +ev-Vep = u(gp — p). (13)

Then the leading order term p, of a regular expansion p = po + ep; +
e2py + ... satisfies

pO(T’ g’ V) = 130(‘[’ S)CI(S, V),

where po(z, &) is solution of the parabolic limit equation

Pox (7. §) = VV(D(§) po(r.§)) (14)

with diffusion tensor

D(§) = lf wlq (&, v)dv. (15)
nJy

4 The Hyperbolic Scaling

The parabolic limit of the previous section considered macroscopic time and space
scales, where time is scaled quadratically in ¢ and space linearly. For the parabolic
limit to work it was necessary to specify £, = 0, with a diffusion equation arising.
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In the hyperbolic scaling we will observe that [E, corresponds to a drift term, which
dominates when nonzero, and that in the hyperbolic limit we derive both a drift term
and a diffusion correction.! For that, we assume that macroscopic time and space
scales are both linear in ¢, i.e.

o=c¢t, &=¢x.
Under this rescaling, the transport equation (1) becomes
eps +e(v-V)p=ZLp. (16)

Again, we use the operator properties of . on the space L;,l (V) and split the
solution into two parts (the Chapman-Enskog expansion):

p(0,€,v) = p(0,£)q(E,v) + ep™(0,€,v) (17)

d
with /Vpl(o,é,v)q(é,v)wvv)=/VpJ‘(a,§,v)dv=0.

Substituting the expansion (17) into (16) gives:

ePoq + &2 py +e(v-V)(pq) + (v V)pt = Z (pq + ep™)
=eZpt. (18)

Integrating (18) over V' and dividing by ¢ yields

p,,+v-(/vquvp+s/vpldv)=o, (19)

/p,fdvzi/pJ‘dvzo.
v do Jy

Once again, the expectation of ¢ appears

where we used

ﬁg+V-(]Eqﬁ+8/va‘dv)=O, (20)
v
and to leading order this is the drift-dominated model

Po + V- (Eyp) =0, 21

where the drift velocity is given by the expectation of ¢.

I'This section is an adaptation of Sect.4.1.3 from [17]. Tt was inspired by Dolak and Schmeiser
[11] who apply this scaling to chemotactic movement and, while their results do not directly apply
here, the methods are the same.
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We determine the next order correction term by constructing an approximation
to p. From (20) we obtain j,, substitute into (18) and divide by &:

ZLpt =—qV- (Eqﬁ + 8/ vpLdv) +ept + (v-V)(pq) +e(v-V)pt
14
= (- V)(Pq) =4V - (Egp) + O(e). (22)
Hence to leading order we have:

ZLpt~qv—E)-Vp+ (v-Vqg—qV-Ey)p. (23)

L

To apply the pseudo-inverse of . on (g)—, we must check the solvability condition

/Zplqﬂszpldv,
v q v

~ Vﬁ-/(q(v—IEq)dv+ﬁ/(v-Vq—qV-Eq)dv,
v v

=Vp-(E, —Ey) + pV-(E, —E,),

=0.

Hence we can apply the pseudo-inverse of . and find
1 1 = =
P :\v,—;(q(v—IE,,)-Vp+(v-Vq—qV-Eq)p). (24)
Substituting (24) into (20) we obtain
po + 0, (E] p)
=29, (/ i [q(vi —Edi p + (V'oiq — qBiE;)ﬁ]dv)
M v
& .o . _
=—0; / v (V' —E)qdvdip
M v

+£3j ([/ vj(via,-q—q/ v/iaiqdv’)dv]ﬁ).
H 14 14

The two integrals inside the square brackets can be written as
/ v (Vg —q / Vidiq dv)dy
v v

:/vaiaiqdv—/vjqdv/v/iaiqdv/
v v v
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= /(vj — BV digdvy
1%
= /(V—Eq)v-quv,
1%
Hence we obtain

€
Do+ V- -(Eyp) = EV/ v(v—Eq)quv'Vﬁ
14

+£v- ((/V(V—E,,)(v-vq)dv)p). (25)

We define the diffusion tensor D as before, i.e. as a multiple of the variance-
covariance matrix of ¢:

1 1
D(x) := ;V,, = ;/V(V—Eq)(v—Eq)Tq(x,v)dv. (26)

We collect two properties of D:

/ W — Eg) (& v)dv = / (v —Ep)(v — E)Tq(6.v)dv = uD(E).
Vv Vv
and

VV(Dp) = 8:9;(D" p)

1 o .
= 0;0; (—/ v (v —Eé)qdvﬁ)
HJy

1 . . o .
= —0; (—/v’ajEé qdvﬁ—}—/v’(v’ —E;)d;q dvp
7

—i—/v’(vj —]Eé)qdvajﬁ)

1
=—-V. (—/vdivKquﬁ+/V(V—Eq)~quv13
n

+/V(V—Eq)qdv'Vp)

Then, with (25), we arrive at the limit equation with correction term

1
Po+ V- (Egp) =eV(V(DE)P) + ;Eqw -Ey)p). (27)
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Equivalently, we can use the moments of ¢ to write the limit equation as
_ _ 3 _ _
Po + V- (Eyp) = ;V(V(Vq(é)m +E((V-Eg)p)- (28)

Critically, if E; ~ O (as in the parabolic case) we obtain the same diffusion term
as for the parabolic scaling in (14). In fact, for E, = 0 we can simply rescale the
hyperbolic limit equation (28) by 7 = ¢o to obtain an identical limit to (14).

The Hyperbolic Scaling. Further to (4) we make the following assumptions:

(B1)
o = et, & = ex,

where o, £ are of order one.

Let p(o, €, v) be a solution of the scaled kinetic equation

&ps +&v-Vep = u(gp — p). (29)

Then the solution p can be splitinto p = pg + ep*, where the leading order
term p (o, £) is approximated by the solution of the drift-diffusion equation

Po+ V- (Byp) = EV(V(Vq(S)ﬁ) +Ey(V-E)F).  (30)

From the construction it is expected that the approximation should be second order
in &, although to our knowledge this has not yet been shown.

S The Moment Approach

Moment closure provides a third way to derive macroscopic equations from the
transport model (1). As in the previous cases, it was first developed in a physical
context to describe the dynamics of fluids and gases and we will therefore adopt the
physical definitions within the present biological context. The principle players are
mass, momentum and energy, with the goal of defining model equations for these
quantities.’

2This section is an adaptation from [10].
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Given a particle distribution p(z, x, v), the mass is defined as

ﬁ(l,x):[/p(t,x,v)dv,

the momentum as
p(t, x)U(t, x) ::/vp(t,x,v)dv,
14

and the internal energy by

E(Z,x):/V|V—U(t,x)|2p(t,x,v)dv.

The momentum implicitly defines the ensemble (or macroscopic) velocity

1
U(I,X) = m/‘/vp(t,x,v)dv.

The energy is the trace of the pressure tensor

P(t,x) = /V(v —U(t, x)(v=U@t,x) p(t,x,v)dv,

in the sense that
E(t, x) =t P, x).

In a physical context mass, momentum and energy have vey precise meanings
yet applied to biology we must consider carefully their appropriate biological
reinterpretation. The total mass, p, and ensemble velocity, U, correspond directly
to their physical quantities, describing respectively the total density of individuals
and their average velocity. The momentum pU is somewhat different, since cells
and animals generally cannot be regarded as hard spheres and hence pU is not
the physical momentum an ensemble of cells would generate if it hits an object,
for example. The biological momentum can simply be regarded as the average
particle flux, i.e. the total density, p, multiplied by the mean velocity, U. The
energy is the trace of the full pressure tensor and direct interpretations of either
pressure or tensor are hard to find. We can, instead, consider these from a statistical
perspective. The ratio p/ p is a probability density with respect to the velocity, with
U/ p the expectation and P/ p the variance-covariance matrix. Consequently, U/ p
gives the mean velocity and P/ p gives information on the breadth of the distribution
p/ p- The variance-covariance tensor P/ p is symmetric, but can be anisotropic
and allowing greater spread in one direction than others. The energy E/p is the
(magnitude of the) variance with / E/ p the standard deviation.

We need one more variable which, in the physical context, corresponds to the
energy flux:

O(t,x) = /V lv—U(t, x)]*(v—U(t,x)) p(t, x,v)dv.
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The vector Q is a trace of a full third order moment, with magnitude dominated by
cells not moving with the mean velocity and direction given by the mean direction
of the outliers, relative to the ensemble velocity U .

In a similar way, we can also define the ensemble pressure tensor of the system

Po(t, x) = / U(t,x)U(t, x)T p(t.x,v)dv = p(t, x)U(t, x)U(t, x)T
v
and the ensemble energy flux

Qo(t, x) :/VUZ(t,x)U(t,x)p(t,x,v)dv: p(t,x)U?(t, x)U(t, x).

Next, we will derive differential equations for the macroscopic quantities
mass, p, momentum, pU, and energy, E. To obtain the mass conservation equation,
we simply integrate (3) over V' to obtain

pi(x,t) + V- (pt,x)U(t,x)) =0. 31

The momentum equation is derived through multiplication of (3) by v and integrat-
ing (omitting space, time and v dependencies for clarity):

/vp,fdv+/v(v-V)pdvzu/quvﬁ—u/vpdv,
14 14 14 14

(pU), +V'/Vvapdv= pwpEy — upU . (32)
The pressure tensor can be written as
P= /V(V—U)(V—U)Tp dv,
= /vap dv—/Uva dv—/vUTp dv—i—/UUTp dv,
= /WT,; dv—puurT, (33)
We use this expression in (32) and obtain the momentum equation

(PU) + V- (pUUT) = =VP + pu(pE, — pU). (34)

For the energy equation, we multiply (3) by v and integrate:
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/vzp,dv+/v2(v-V)pdv=,u/vzqdvﬁ—u/vzp dv,
E,+V~/vv2pdv:,u/vzqdvﬁ—pLE. (35)

We study the two integral terms in (35) separately. To obtain an expression for
[ w?p, we study the heat flux Q:

0= [W-vPe-vipav.
— /vvzpdv—/szpdv—/2(vU)vpdv
+/2(vU)Updv+/Uzvpdv—/UzUpdv,
:/vvzpdv—UE—ZU'/vapdv—f-ZU'(ﬁUUT),
= /vvzpdv—UE—ZU -, (36)

where we used (33) in the last equality.
To obtain the second order g term, we compute

trv, = /(vi —E;)(v,- —E,i)g dv,
14

= /viviqdv - / VEgigdv — /E;viqdv + /E;Eqiqdv,
= /vzqdv -E;. (37)
Hence the energy equation (35) becomes
E,f+V-(EU):—VQ—2V-(U~]P’)+u(trVq+E$—E). (38)

The equations for mass, p, momentum, pU, and energy, E, are given by (31), (34),
(38) respectively. However, this system is not closed, due to the inclusion of the
higher order moments P and Q. To resolve this, we can attempt a derivation of
differential equations for these higher moments, although in doing so even higher
order moments will appear: if fact, the sequence of moment equations is unending
and we face a moment closure problem. Thus, we must find a mechanism for
estimating the higher order moments in order to close the system of equations (31),
(34), (38). Two standard ways of finding a moment closure are through (1) the
equilibrium distribution and (2) entropy maximisation. Here we focus on the first
method, noting that details of the entropy method can be found elsewhere (e.g. [16]).
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5.1 Moment Closure

The principal assumption here is that the system is close to equilibrium and that
the higher order moments are dominated by this equilibrium. Earlier, we computed
ker Z = (q). Hence the equilibrium distribution has the form

Ppe(t,x,v) = p(t,x)q(x,v).
For this distribution, we can explicitly compute the moments:

¢ Mass,
putt.0) = [ 50990 = 50.3):
¢ Momentum,

Bet, ) UL (1, %) = / V(. X)) dy = (. )E, (x):

¢ Pressure tensor,

P.(t,x) = /(v -E)v— Eq)Tﬁ(t, x)g(x,v)dv = p(t,x)V,(x); (39)
* Energy flow,

0.(t.x) = / WPyt X)g(eV)dy = p(t.x)T, (). (40)

where we introduce the third order moment of ¢
Ty(x) = / Vg (x,v)dv.

These formulae reveal that at equilibrium all momentum is carried by the ensemble,
which is moving in the mean network direction [E,, and that all energy and pressure
is produced by the variance-covariance matrix of the underlying distribution. The
above expressions for the pressure tensor and energy flux are employed to close
system (31), (34), (38) for mass, momentum, and energy. We should stress that here
we are making an approximation and that even though we retain the equality sign
p, U, E are approximations to the exact p, U, E values.

Moment Closure. In addition to (4) we assume that

(C1) the macroscopic quantities P and Q are given by their equilibrium
distributions (39), (40).
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Then the mass p, the momentum pU and the energy E are approximated by
the solution of the closed system:

P+ V(pU)=0 (41)

(PU) + V- (pUUT) = =V(pV,) + w(pE, — pU) (42)
E,+ V- (EU) = =V(pTy) —2V- (U - (pVy))

+u(tr V, + E2 — E) (43)

We note that for the closed system (41)-(43), the first two equations are
independent of the energy E. Hence, (43) decouples and we can study the first two
equations (41) and (42) independently.

5.2 Fast Flux Relaxation

The derivatives on the left hand side of (41)—(43) all have characteristic form d,¢ +
V - (U¢), termed the directional derivative of ¢ in the direction of the flow U (also
known as the material derivative or characteristic derivative). As a special case we
assume that the flux relaxes quickly to its equilibrium, i.e. we set

0=-V(pVy + n(pE, — pU),

which we can solve for pU to give
_ I, _
pU = —;V(qu) + pE,.
Using this expression in (41) yields the drift-diffusion equation

1
pr + V(ﬁEq) = ﬁvv(ﬁvq)‘ (44)

Fast Flux Relaxation. In addition to (4) we assume that:

(C1) The macroscopic quantities P and Q are given by the equilibrium
distributions as in (39), (40);
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(C2) The momentum pU relaxes fast to its equilibrium.

Then the total mass p(z, x) is approximated by the solution of the drift-
diffusion limit equation

1
P+ V(pEy) = ;VV(ﬁVq). (45)

6 Comparison Between Scalings

In this section we will summarise the various scaling methods and compare and
contrast our findings. First we will focus on the forms of the limit equations them-
selves, with an explanation of the relationships between them, before proceeding to
examine their underlying assumptions. For convenience of comparison, we unify the
notation by setting u = p = po and specifying a generic time coordinate ¢ (noting
that ¢ had been rescaled to t for the derivation of the parabolic and hyperbolic
limits).

6.1 Relationships Between Limit Equations

The three scaling approaches resulted in the following four limit equations:

* Parabolic scaling (PS),
1
u = —=VV(©Vyu); (PS)
I

* Hyperbolic scaling (HS),
u + V- (Egu) =0; (HS)
* Hyperbolic scaling with correction terms (HC),
w + V- (Eyu) = EVV(un) + 2v (B (V- E)u): (HC)
¢ Moment closure (MC),

uy + V(Equ) = %VV(un). (MC)
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Clearly the above equations reveal significant overlap. For example, moment closure
(MC) is a combination of the parabolic (PS) and hyperbolic scaling (HS), containing
both diffusion and drift terms. Consequently, we refer to the parabolic scaling as
the diffusion-dominated case, with the hyperbolic scaling the drift-dominated case.
More formally, the relationships between the limiting equations can be grouped into
the following lemma.

Lemma 1. We summarise the relationships into five scenarios.

1. (Diffusion-dominated) In the case B, = 0 all three approaches (PS), (HC),
(MC) lead to the parabolic limit (PS), while (HS) is trivial.

2. (Diffusion-dominated) If[E, ~ O(g?), then equations (HC) and (MC) coincide
with the parabolic limit (PS) to order e.

3. (Drift-diffusion limit) If E, ~ O(e) equation (HC) is identical to (MC) to
leading order (assuming a suitable scaling of time in (HC)).

4. (Drift-dominated) If V, ~ O(e), then (MC) coincides with the hyperbolic
scaling (HS) to leading order.

5. (Drift-dominated) If 1 ~ O(¢™"), then (MC) once again coincides with (HS) to
leading order.

6.2 Assumptions Behind Limit Equations

Having explored the relationships behind the limit equations, we next consider their
underlying assumptions.

(Parabolic) Here the expectation £, = 0 and there exists a small parameter
& > 0 such that either T = 8zt,§ = &x, where 7 and £ are both of order one, or
w=¢g2ji,s = ¢ !5, where fi and § are both of order one.

(Hyperbolic) There exists a small parameter ¢ > 0 such that 0 = ¢t,§ = ex,
where ¢ and £ are both of order one.

(Moments) The higher moments P and Q are given by the equilibrium distribu-
tion and the momentum pU relaxes quickly.

While an all-encompassing interpretation of these assumptions is somewhat diffi-
cult, we provide the following intuitive scenarios. In the following section, these
distinctions will be illuminated further through specific applications.

(Parabolic) The time scale is one in which particles are fast and turn frequently,
with movement close to a Brownian random movement. The environment
provides no specific directional cue (or, at least, a relatively weak directional cue)
and hence E; ~ 0 (i.e. movement up or down a given direction is effectively
equal). Directional bias could be included through possible anisotropy of the
variance-covariance tensor V, of the underlying medium.
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(Hyperbolic) Once again, time and space scales are chosen such that particles
are fast and turn often. But now the movement has a very clear directional
component, [, # 0 and the drift component dominates.

(Moments) Here it is assumed that the pressure tensor is close to the pressure
tensor of the equilibrium. Effectively, the system as a whole is near to equilib-
rium with subsequently small differential pressure terms. This implies that the
population density p is “somewhat” closely aligned with the underlying tissue.

We note that all three methods lead to an anisotropic diffusion equation of the
form
U =VV(DU) (46)

i.e. the diffusion tensor lies inside the two derivatives. In the literature, anisotropic
diffusion is usually associated with an equation in divergence form,

V, = V(DVV). (47)

This second form is derived from material physics, where the material flux is
taken to be proportional to the gradient VV with proportionality factor D. As
we also discuss in Sect.7.1.3 below, the above two models are quite different. If
D is positive definite, (47) obeys the maximum principle and solutions converge
to homogeneous steady states (on bounded domains with zero-flux boundary
conditions, for example). In contrast, equation (46) does not have a maximum
principle and, as we see later, spatial patterns can evolve.

When deriving diffusion equations from stochastic processes, both of the above
versions (46) and (47) can be generated. For example, Othmer and Stevens [32]
present a careful analysis that reveals how different assumptions for an individual’s
local response to the environment results in distinct macroscopic models, including
the above two forms. Here we have shown how a model of type (46) arises very
naturally. It is certainly possible that a distinct set of assumptions to those used in
this paper could also give rise to a model of type (47), however we do not take this
further at present.

7 Examples and Applications

During the last few sections we have established a toolkit for generating distinct
macroscopic equations, originating from the same transport model for movement of
an individual (whether cell or organism) in an oriented environment. In this section
we demonstrate these findings through a combination of examples and some specific
applications.
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7.1 Bidirectional and Nondirectional Environments

Here we consider environments in which the orientational cues do not provide a
single direction to the biased movement. Examples range from the movement of
wolves along seismic lines, hikers along footpaths, animals along roads or cells
along collagen fibres: i.e., while there is a tendency to move with the alignment of
the environment, there is no specific “up” or “down”. As previously specified, we
model this by assuming symmetry in g:

q(x,—v) = q(x,v) s

with the direct consequence
E, =0 and V,(x)= / wlq(x,v)dv.
v

In relation to the above scaling methods, item (1) of Lemma 1 applies: we have no
drift term and all methods lead (eventually) to the diffusion limit

pr =V(VD(x)p), (48)

where D(x) = ﬁVq (x) is an anisotropic diffusion tensor.

7.1.1 Isotropic Diffusion: The Pearson Walk

We illustrate the above with the simplest version of a transport process as expressed
by (3) in a completely uniform directional field (i.e. we have a nondirectional
environment): the Pearson walk. Individuals are assumed to move with a constant
speed s (V = sS"™!) and the underlying directional field is uniform:

sl—n

1
gOev) = o =
VI~ s

Again, g is symmetric and hence [, = 0. The variance is computed as

sl—n s2 |Sn—1| s2
VvV, = T dv = 2 n—l/ Td = I 1 27 ,
q /VV q(v) v ISn_lls s _— Yy ao ISn_ll n n n n

where [, denotes the identity matrix.



202 T. Hillen and K.J. Painter

Hence, the drift component will be zero and the diffusion is isotropic with
diffusion constant®

7.1.2 Anisotropic Diffusion Example

We present a specific example together with some simulations of the transport model
and its diffusive limit. Specifically, we consider a migrating population within a
simple rectangular landscape (set to be of dimensions [—10, 10] x [—10, 10]) with an
oriented section centring on the origin. The orientational field strength is assumed to
reduce with distance, effectively becoming isotropic in the periphery. See Fig. 2a—d
for a representation of this environment.

For the directional distribution ¢ we consider the bimodal von Mises distribution:

q(x,0) = (X7 4 &7k (49)

47{10(]{)

where § € S' defines the movement direction of the population and y € S!
defines the dominating alignment of the local environment. 7, denotes the modified
Bessel function of first kind of order n. Note that the von Mises distribution is the
analogue of a normal distribution on a circle. The parameter k defines the strength
of anisotropy and is termed the parameter of concentration. The above bimodal
von Mises distribution clearly has two local maxima, one for # = y and one for
6 = —y [3]. For k — 0 it converges to a uniform distribution (i.e. isotropic), while
for k — oo it converges to a sum of two point measures in directions y and —y.

To represent an environment in which anisotropy varies in the manner described,
we assume k(x) decays exponentially with distance from the origin

k(x) = koe "M,

where, in this example, we set kg = 10 and r = 0.25. This leads to high anisotropy
in the centre of the domain and almost no directional bias in the periphery.
Generally, y could vary in space (for example, as in a curving road) however here
we set it constant and in the direction of the diagonal, y(x) = (1/+/2,1/+/2).
Figure 2a represents the environmental anisotropy for the central portion of the
field, with the orientation and size of k represented by the direction and length
of the individual line segments. For the three field positions indicated we plot the
corresponding bimodal von Mises distributions in Fig. 2b—d.

3A general formula for directional moments, such as [ yy”dy = |S"~!|/n 1, can be found in
[16].
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Fig. 2 Population heterogeneity arising due to bidirectional orientation of the environment.
(a)—(d) representation of the imposed anisotropy, with (a) representing strength of anisotropy
k (length of line segments) and alignment in the field (figure truncated at &5 to aid clarity of
presentation) and (b)—(d) plotting the corresponding distribution (49) at each point indicated, as a
function of 8 = (cos ¢, sin¢) for ¢ € [0,27). Note that two dominating and equal orientations
arise corresponding to y = =(+/2/2,+/2/2). (e)~(g) Simulation of the transport model (3)
under the imposed ¢, showing the predicted macroscopic cell density p at time t = 50 for
@s=01pu=0015®s=1u=1(gs =10, u = 100. (h) Simulation of the parabolic
limit (51) at the same time ¢ = 50 with s/ = 1 and the diffusion tensor as computed from (50).
For details of the numerical implementations we refer to the Appendix

We first simulate the original transport model by substituting the above k and y
into (49) and solving (3). For details of the numerical methods used throughout
this section, we refer to the Appendix. We assume the population is initially
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homogeneous and unaligned, with p(x,v,0) = constant and p(x,0) = 1. To
limit the impact from boundaries we impose periodic boundary conditions along
edges. In Fig. 2e—g we plot the macroscopic cell density p(x,¢) at ¢ = 50 for three
distinct speeds, s, and turning rate, u: () s = 0.1,u = 0.01; () s = 1, u = 1;
(g) s = 10,u = 100. Note that the parabolic limit corresponds to the limiting
scenario in which s — oo, i — oo with s?/u constant and we can therefore
expect (g) to most accurately reflect the solution to the parabolic model. The
simulations reveal the impact of the environmental anisotropy on the population.
Far from the origin the population is almost uniformly distributed. Nearer the centre
a heterogeneous population distribution arises due to movement into the aligned
region with subsequent transport in the direction of alignment. The bidirectional
movement in this region results in symmetry in the population distribution, with
a “dumbbell-like” pattern arising composed from regions of higher and lower
density. The aggregations develop due to transport along the aligned region where
they accumulate in the peripheral, isotropic regions. Notice that there is no taxis or
adhesion involved in these aggregations; the patterns result solely from the geometry
of the underlying network.

We next determine the corresponding drift (E,) and diffusion (V) for the macro-
scopic equations by finding the moments of the bimodal von Mises distribution.
Such computations are usually quite involved and require multiple trigonometric
integrals (see [28]), however in the Appendix we present an alternative method
based on the divergence theorem. Specifically, we find

E,(x) =0,
(LK), | bk
Vo) =3 (1 Io(k<x)>)ﬂz+ Lkx)'? 0)

Thus, as expected for the bidirectional case, the drift term disappears while
diffusion generates a tensor composed from an isotropic (I,-term) and non-isotropic
component (yy”-term). Consequently, the macroscopic version of the transport
equation simulated above is the anisotropic diffusion equation

2
b= %V(Wq(x)ﬁ), (51)

where the heterogeneous and anisotropic diffusion tensor is given by (50) using the
choices for y and k(x) above that define our direction distribution. Simulations are
shown in Fig. 2h for a simulation of (51) with s2/u = 1, with p(x,¢) plotted at
t = 50. Notably, the population distribution quantitatively matches the output from
the transport model under the simulated parabolic limit scaling of s and u.
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7.1.3 Steady States

The above simulations suggest a capacity of the model to generate inhomogeneous
steady states, at first a little surprising for a pure diffusion model. Closer scrutiny
of (51) reveals how these patterns could arise as we demonstrate through the one-
dimensional example. Consider the following distinct models for movement of a
population within an interval:

u = (D(x)uy)y (52)

and
ur = (D(x)u)xx (53)

with homogeneous Neumann conditions assumed at the boundaries. Equation (53)
can be expanded into u; = (D'(x)u + D(x)uy),, revealing an additional advective
term with advective velocity D’ in comparison to (52). To determine the impact of
this extra term we examine steady states for (52) and (53).

At steady state, (52) leads to (D(x)uy)y = 0 which, after integrating and
applying the boundary conditions, yields D(x)u, = 0. This implies u, = 0 and
u(x) is constant at steady state. This is what we expect for a pure diffusion process.
Steady states for (53), on the other hand, satisfy (D(x)u),xx = 0 and hence we find
(D(x)u)x = 0. Thus, D(x)u = ¢ (constant) and

u(x) = #x)

For spatially varying D(x), (53) clearly allows nonuniform steady states, with the
corresponding u(x) being high or low in small or large diffusion regions, respec-
tively. The additional advective term lies at the heart of this nontrivial steady state.

7.1.4 Application to Seismic Line Following

Having confirmed that the diffusion model (51) can accurately capture predicted
behaviour of the original transport model, at least under relevant scalings, we now
apply the method to tackle a specific ecological problem: wolf movement in certain
habitats. The model as discussed is particularly useful for describing the movements
of populations in environments containing linear features such as roads, rivers,
valleys, or seismic lines. Work by McKenzie and others [28, 29] determined the
movement patterns of wolves in a typical Western Canadian habitat, consisting of
boreal forest cut by seismic lines. Seismic lines are clear-cut straight lines (with a
width of about 5 m) used by oil exploration companies for testing of oil reservoirs.
Typical densities are approximately 3.8 km of lines on 1 km? and both wolves and
ungulates (such as caribou) use these lines to move and forage, leading to significant
impact on predator prey-interactions.



206 T. Hillen and K.J. Painter

To describe the movement of wolves in such a habitat, McKenzie used GPS data
generated from four individual wolves and estimated parameters for a diffusion-
advection model, dividing the habitat into three areas: (i) seismic lines, (ii) near
seismic lines (less or equal 50 m), and (iii) far from seismic lines (larger than 50 m).
Wolves demonstrated preferred movement along lines, while occasionally leaving
lines to reenter forest. In particular, wolf movement data on seismic lines supported
a fit to the directional distribution given by the bimodal von Mises distribution (49),
where y(x) € S! now describes the direction of the seismic line and 8 € S! the
movement direction of the wolves.

To model this scenario we consider the parabolic limit of an underlying transport
model in which wolf direction varies according to being on or off a seismic line.
With no up or down information provided by the seismic line, we therefore have
a bidirectional local environment and can expect the density of wolves, w(x, 1), to
follow the anisotropic diffusion equation

2
Wy = %V(Vqu), (54)

where the anisotropic diffusion tensor V, is given by (50), y(x) will correspond to
the direction of a seismic line while k(x) varies according to a position on or off a
seismic line.

To illustrate the applicability, consider for the moment a coordinate system
aligned with a seismic line, i.e. y = e;. Here we can directly compute the diffusion

tensor: | o
2
1+ )
v, =| 2 ( Io(k)

1 L(k)
© 3 (1 B m(k))

The term I,(k)/Iy(k) enhances the mobility along a seismic line and reduces
mobility in perpendicular direction. Moreover, for k — oo (corresponding to an
increasing strength of anisotropy), I>(k)/Io(k) — 1 and the above diffusion tensor
collapses to one-dimensional diffusion along the seismic line.

Away from the seismic lines wolves show no clear tendency to migrate towards
or away from seismic lines [28]. Effectively, away from the lines we set k(x) = 0 in
the bimodal von Mises distribution (49) and we obtain the isotropic diffusion tensor:

1

Vi = E]Iz' (55)

Using these ideas, we next simulate the expected population distribution for
wolves in a typical habitat containing seismic lines. The aerial photograph in
Fig.3a is of a Northern Alberta landscape in winter, demonstrating a woodland
habitat criss-crossed with a combination of roads (thicker lines) and seismic lines
(thinner lines). This image was digitised into a binary map, Fig.3b, showing
areas of seismic lines (or roads) (white) and away from seismic lines (black).
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Fig. 3 Wolf distribution in anisotropic environments. (a) Aerial photograph of a Northern Alberta
(Canada) landscape, showing criss-crossing seismic lines and roads. (b) Binary map created from
(a) with lines marked as white. (¢) Blow-up of boxed region in (b), showing detail of the anisotropic
diffusion tensor automatically generated from the image in (b). (d—f) Numerical simulation of (54)
for a uniform distribution w(x, 0) = 1, using the computed diffusion tensor generated from (b) and
setting s2/p = 1. Wolf density w(x, t) is plotted at times (d) ¢ = 0, (e) t = 1 and (f) ¢t = 10.
(g—i). Numerical simulation for w(x,0) = 1006~ —xel’ (where x. marks the domain centre),
showing w(x, ) at times (g) t = 0, (h) t = 1 and (i) t = 5. Note that the simulated domain is
a little larger than that plotted, with the surrounding zone assumed isotropic and implemented to
reduce the impact of boundary conditions (note that this has negligible impact on the qualitative
results presented). For details of the numerical implementation we refer to the Appendix

An automated processing of this image was applied to calculate the orientation at
a point specified as seismic line, with this orientation determining the vector field
y(x) used to compute the anisotropic diffusion tensor (50). In Fig. 3¢ this anisotropy
is represented for a small square section indicated by the boxed area in 3b, with the
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long axes at each point representing the direction (and strength) of the alignment.
We set k = 2.5 for points marked as on a seismic line and k = 0 for points marked
as off a seismic line. To limit the impact from boundary conditions we remark that
the digitised region in B was buffered with a perimeter of isotropic diffusion.

Preliminary simulations for the distribution of wolves, w, are shown for two ini-
tial conditions: a uniform distribution w(x,0) = 1 in Fig. 3d—f and a 2D Gaussian-
type distribution centered in the field for Fig.3g—i, w(x,0) = 100e~F=x", In
the former we observe the emergence of a spatially variable wolf population from
homogeneity, with a clear tendency of the population to accumulate and move
preferentially along the lines, shown at times (d) t = 0,(e)# = 1 and (f) # = 10. The
diffusion from the concentrated initial distribution further reveals this preferential
spread, with wolves clearly dispersing more rapidly along the lines than through
the surrounding lines; here, wolf distribution is shown at (g) t = 0, (h) # = 1 and
it =>5.

7.2 Unidirectional Environments

In many cases an environmental cue can provide a specific direction, as in the
magnetic fields used by migrating turtles and whales, the slope of the ground for
hilltopping butterflies, the movement of organisms towards food sources or the
current of a river. To include such cues we can remove the symmetry assumption
for g imposed in the bidirectional case.

To examine how this impacts on the scaling limit we consider the specific
example of attraction to a food supply. We let F'(x) denote a given food distribution,
with x € R2, and assume that individuals more or less accurately identify the
direction of the food source (e.g. by smelling) and move towards maxima of F.
We therefore consider the unit vector that describes the orientation of the field to be
given by

() = VF(x)
P T IVE@I

Since orientation of individuals is rarely perfect (i.e. movement will not be directly
in the direction of the food) we take a (unimodal) von Mises distribution about the
gradient of F:
1

G(x,0) = ————ek7. 56

q(x.0) = —— o) (56)
The above defines a direction distribution in which individuals align and migrate
in the direction of the source. Note that varying degree of alignment could also
be incorporated, for example through allowing k to depend on the size of F or
IV F(x)||. To determine the macroscopic terms we again compute the moments of
the distribution (see Appendix):
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I, (k)
Iy(k)

1 Iz(k)) L(k) (ll(k))z r
Vo==(1- L + - vy . (58)
‘T2 ( Io®)) > " \Tok) ~ \To(k)
Notably, the drift term [E; is now nonzero and in the direction of V F'(x), whereas the
diffusion term has two components: an isotropic part and an oriented nonisotropic

part, which is proportional to V F(x)V F(x)”. The resulting macroscopic equation
is therefore of the form of an anisotropic drift-diffusion equation

E,(x) = i (57)

2
S
e +sV(E;p) = ;V(Vqu)- (59)

It is worth noting two limiting scenarios. For the parameter of concentration k
becoming small (i.e. the food source provides a weak orientational cue), then

limE, =0 IimV, = -1,
k—0 k—0 2

and we obtain uniform isotropic diffusion and no accumulation at the food source.
For the parameter of concentration k becoming large (i.e. the food source provides
a strong orientational cue), then

lim E, =y lim V, =0,
k—o00 k—>o00

and hence we obtain the pure drift equation in which cells move directly towards
the food source with speed s.

7.2.1 Anisotropic Diffusion-Drift Example

To illustrate how unidirectional environments impact on patterning, we present
a scenario analogous to the example of Sect.7.1.2. Specifically, we consider a
population in a landscape with a unidirectional patch in the centre of the domain.
We assume the above von Mises distribution (56) with the main orientation along
the diagonal y = (1/+/2,1/4/2)7,

1
) = — kI
9. 0) = 3T ¢

Once again k(x) is assumed to decay exponentially from the centre to the periphery
of the domain, with

k(x) = koe "M .

Here we set kg = 5and r = 1.0.
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We again perform a direct simulation of the original transport model (3) with
the above choice for g and solving subject to the same initial and boundary
conditions as for the example of Sect.7.1.2. As we observe in Fig. 4e, the directed
patch significantly impacts on the subsequent distribution of the population.
Rapid transportation through the oriented region results in a markedly decreased
population density within this region. This generates a large “plume”-like structure
adjacent to this region.

We simulate the corresponding anisotropic diffusion-drift equation. For the above
von Mises distribution we compute the heterogeneous drift and diffusion terms
from (57) and (58) respectively and substitute these into (59). Simulations show an
excellent quantitative match with the transport model, Fig. 4f, once again confirming
the validity of the macroscopic scaling process.

7.2.2 Relation to Haptotaxis and Chemotaxis

As a brief remark we note that unidirectional environments can be reinterpreted in
terms of modelling haptotaxis (directed migration of cells in response to regions
of high adhesivity in the ECM), chemotaxis (directed movement in response to
chemical gradients) and other forms of gradient following. Haptotaxis and chemo-
taxis are typically modelled by an advective type term in PDE models (e.g. see
[2,19,22,27,31]), with cell velocity proportional to the adhesion/chemical gradient.

The present work provides new motivation for such models. For example, we
assume F(x) describes the ECM adhesivity field surrounding a cell and take the von
Mises distribution (56) to describe oriented movement towards higher adhesion, i.e.
we take ¢ to be given by

-.VF
g(v) = Ssqvrp (Il v VFG) )

1
2lo(k) 7 ( VI IVE®]

Furthermore, we let the speed s depend on the strength of the gradient, s(||V F(x)]|).
Since E; # 0, the parabolic limit does not apply and we employ instead the
hyperbolic scaling. Drift subsequently dominates with diffusion of lower order and
the corresponding macroscopic model becomes (to leading order)

s(IVFE])

2nl(k)V -
w207 (g

VFu) =0.

The field F could also be reinterpreted to describe other forms of tactic migration.

7.3 Singular Distributions

The theories above have been derived for regular measures ¢ € L2 only and,
while it is possible to extend some of the results to singular measures (see for
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Fig. 4 Population heterogeneity arising due to unidirectional orientation of the environment.
(a)—(d) representation of the imposed anisotropy, with (a) representing strength of anisotropy k
(length of line segments) and the directional alignment of the field (figure truncated at £3 to
aid clarity of presentation) and (b)—(d) plotting the corresponding distribution (56) at each point
indicated, plotted as a function of 8 = (cos ¢, sin¢) for ¢ € [0,27). Note that the dominating
orientation corresponds to y = («/5/ 2, «/5/ 2). (e) Simulation of the transport model (3) under
the imposed ¢, showing the predicted macroscopic cell density p at time t = 50 for s = 10 and
= 100. (f) Simulation of the diffusion-drift limit (59), using s = 10 and s?/;# = 1 and plotted
at ¢ = 50, with the diffusion tensor computed from (58) and the drift term calculated according to
(57). For details of the numerical implementation we refer to the Appendix

example [7,20]), the mathematical overhead becomes enormous; here we simply
apply the formal limit equations in good faith. Singular measures, however can play
an important role either in describing certain oriented fields or representing a limit
scenario for previously considered cases.

7.3.1 Strictly Bidirectional: Degenerate Diffusion
If we consider the earlier bimodal von Mises distribution (49) and let k — oo we

converge to two point measures in directions y and —y. Such distributions could be
considered as completely aligned and bidirectional networks. Specifically, we let



212 T. Hillen and K.J. Painter

400) = 5 G0 ) + 5000

and find
E,=0 and V,=yy". (60)

Thus, there is zero drift and diffusion is given by a rank-one tensor V, i.e. diffusion

occurs only along the y/ — y axis. The corresponding diffusion tensor D = %Vq is
degenerate and not elliptic, hence the general solution theory for parabolic equations
does not apply. In a forthcoming paper we develop methods that allows us to
describe very weak solutions for such degenerate problems [21].

7.3.2 Strictly Unidirectional: Relation to ODEs

For the corresponding unimodal von Mises distribution (56) with k — oo we obtain
a singular distribution. This defines a strictly aligned unidirectional field and, as
described in [17], there is a striking relation between these limit equations and the
theory of ordinary differential equations (ODE).

The solution of the autonomous differential equation

x(@) = f(x(0) (61)

in the domain R” is given by the solution semigroup @(¢, xo) which describes orbits
that are tangential to the vector field f(x). In our notation here, we assume that this
vector field f(x) € V defines a given direction at each point in R" and define

q(x,v) =8rxn(v), (62)
where § y denotes the point measure with mass in f € V. In this case we find
E,(x) = f(x), and V,=0.

This is a clearly drift-dominated situation and the hyperbolic scaling is appropriate.
Item (4) of Lemma 1 applies and we obtain the limit equation

u + V(f(x)u) = 0.
This hyperbolic PDE has the characteristics
x(1) = f(x(1)),

which is the ODE from above. Hence typical movement paths of particles in an
environment given by a singular measure (62) are orbits of the corresponding ODE.
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7.4 Lifein a Stream

An example that amalgamates various cases above (nondirectional, unidirectional
and singular) is the movement of living organisms in a stream (which, for conve-
nience, is assumed to be two dimensional).

Movement can be split into two principal contributions: (i) transport due to
the current, and (ii) active movement by the individuals. For transport due to the
current we let y(x) denote the direction of the stream (assumed quasi-constant
over the timescale of interest), and let q1(6) = 6, (x)(0) define the stream current.
We augment this transport with a degree of turbulence, expressed via the random
movement contribution g, (8) = |S"~!|71.

For the active movement we assume individuals are biased towards a given food
source . VF()

SRS 3 €O N - YY)
PO=mnwt M TS R
where F(x) describes the distribution of food inside the stream. To simplify
computations, we assume individuals have a preferred speed s, i.e. V = sS"!,
Hence, ¢ is a convex combination of the above effects:

g(x.v) = 5" (191 (D) + 02q2(P) + a3g3 (D)) |
where @y + oo + a3 = l,ando; > Ofori = 1,...,3.,and v = v/|v| denotes the

unit vector in direction of v.
In this case, the macroscopic drift component is given by

E;, = ary(x) + saz2xli (k) (x).

Drift arises as the interplay between transport due to the stream y (x) and movement
towards the food source I"(x). The diffusion term is given by

57 | a3 I (k) I (k) Lik))
Dx)=—|=L+—=|(1- I - reorx)’
) Iz {2 3 ( Io(k)) 2T\ T (lo(k)) (r
derived from a combination of random movement and the imperfect response to the

food source. We note that more detailed modelling of river ecosystems and species
survival has been undertaken by Lutscher et al. [26].

8 Discussion

The principal aims of this paper have been to demonstrate the effectiveness of
transport equations as a method for modelling cell or animal movement, to explain
and summarise the various scaling limits that allow their approximation to distinct
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macroscopic models, and to consider a few pertinent ecological applications, such
as wolf movement on seismic lines, attraction to a food source and movement in
rivers.

The transport model is a natural model for movement, relying as it does on
experimentally measurable data such as speeds and turning rates for its key inputs.
While it is certainly possible to study the transport model directly, both the analytical
and numerical overheads can be costly. For example, the numerical solution of
the simple (and assumed 2D) transport model given by (3) requires discretisation
not only over space, but also orientation; extensions to relevant scenarios such as
3D, variable speeds or more intricate turning functions would significantly add to
the computational time. Simplifying to the relatively straightforward macroscopic
model, which still possesses details of the underlying microscopic processes in its
macroscopic parameters, allows far faster numerical computation while opening the
vault to a wealth of analytical tools.

Typically the scaling methods considered here (parabolic scaling, hyperbolic
scaling, and moment closure) are studied separately and it can be difficult for
unfamiliar readers to determine why one method is chosen over another. By
focussing on a specific formulation of a transport model, originally developed to
describe cell movement in network tissues, we could transparently derive the various
limiting equations and expose the assumptions that underlie them.

Responding to a question posed during the introduction, it would be bold to
categorically state a “best” method and instead models must be treated on a case
by case basis. Succinctly, it comes down to the relative size of drift and diffusion
terms: when the model is drift-dominated, as occurs for environments with a strong
cue in a specific direction, the hyperbolic approximation applies; when the model is
diffusion-dominated, as for environments with either nondirectional or bidirectional
orientation, the parabolic limit is appropriate; if the two effects are of a similar order
then either the moment closure or the hyperbolic model with corrections provide the
most appropriate approximation.

It is worth noting that the clarity of the analysis here is a direct product of the
simplicity of our transport model. Full analyses for more general kinetic equations
can become highly technical and fill entire textbooks (for example, see [8] for
diluted gases or [5, 37] for biological applications). With the aim of illuminating
the various scaling limits we have made a number of convenient assumptions and it
is worth describing some of the limiting factors here, and their potential importance
for biological applications.

* We have not considered time-varying habitats. In many instances, the envi-
ronment can change considerably on the timescale of movement, either inde-
pendently (for example, the changing position of the sun or alterations in
wind strength) or through direct modification by the migrating population (e.g.
formation of pheromone trails by ants or restructuring the ECM by cells). The
addition of 7-dependence in the orientation function ¢ adds a significant level of
complexity and, while the scaling limits do apply, they require detailed analysis
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and consideration on a case by case basis. For details of such analyses in the
context of mesenchymal cell migration we refer to [17].

 In this paper, the environment has been assumed to only impact on the turning
of individuals, not on their speed. While it is trivial to extend the original
transport model to incorporate more general speed dependencies, the subsequent
computations to calculate the scaling limits are often complex and obscure their
basic features. We note that in the context of taxes above, we have given one
simple example on how to perform scaling for nonconstant speeds.

* Appropriate boundary conditions on bounded domains require special attention.
For example in the case of the seismic lines above, what would be meaningful
boundary conditions on and off the seismic lines for both the original transport
model and the subsequent macroscopic limits? We circumnavigated this issue in
the simulations by buffering the simulated region with a surrounding isotropic
region and using periodic boundary conditions, however other conditions could
certainly be considered. For example, zero-flux boundary conditions could be
one relevent choice, as assumed in [29].

e More complicated formulations for the turning kernel T'(x,v,v') and non-
constant turning rates w(t, x, p,v) arise naturally in many applications. Obvi-
ously, any such choice should be tailored according to the application under
analysis, however the ensuing calculations can become highly intricate. One
important yet complicated case is the incorporation of interactions between
individuals. For example, the patterns formed by many migrating populations,
from bird flocks to wildebeest, are highly structured through the response of an
individual to the movement of a neighbour.

» The simple model here has neglected aspects such as a resting phase (individuals
are assumed to move continuously) or population kinetics. For example,
modelling the impact of seismic lines on the predator-prey dynamics of wolves
and caribou would require an extension of the model to include a separate caribou
population and appropriate predator-prey interactions. Again, while tailoring the
original transport model to include such extensions is relatively straightforward,
the subsequent calculation of scaling limits would require treatment on a case by
case basis.

* On a technical side, in our theorems we have typically used the notion “is
approximated by” to denote the formal limit considerations. Rigorously, to
refer to an approximation property would require proof of convergence in an
appropriate function space and we have completely omitted these issues from
these studies.

Migration, whether cellular or animal, clearly is immensely relevant to a plethora
of crucial biological and ecological processes. Distinct methods offer different
advantages, allowing multiple windows through which the underlying mechanisms
can be observed. In this paper, our aim has been to concentrate on the transport (and
associated macroscopic) equations, with the key aim of shedding illumination on
this useful modelling approach.
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Appendix
9 Moments of von Mises Distributions

The appendix is used to present an alternative method for computing moments
of a von Mises distribution. Usually, moments are computed through explicit
trigonometric integrations (see e.g. [3, 28, 30]) however here we instead apply the
divergence theorem. While this method is easily generalised to arbitrary space
dimensions, explicit integration becomes increasingly cumbersome with increases
in the space dimension.

Given a unit vector y € S"!, we first study the (unimodal) von Mises
distribution

ek (63)

In the main text it is noted that the moments employ Bessel functions and we
begin by collecting a few of their properties. If J,(x) denote the Bessel functions of
first kind, then

Iy (x) == (=) 7" Ju(ix)

denotes the Bessel function of first kind with purely imaginary argument, or the
modified Bessel functions. For these we have the relation

1 2
I, (k) = — / cos(ng)e* < ?dg . (64)
2 0

Two further important relations include the differential recurrence

d n n

() = 2 () (65)

x

for n > 0, and the recurrence relation

2
Jo1(x) = 7”1,1 (x) = Ju1 (). (66)

9.1 Unimodal von Mises Distribution

To compute the total mass of the (unimodal) von Mises distribution (63) we denote
the angle between 6 and y by ¢:

1 2
0 = k cos ¢ =1
[ a0 = s [ kestag =1

where we used (64).
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To compute the expectation, we note

2 ly(k)E, = / 1 ekt
S

:/ div, 7dv,

B (0)

:/ kye"7dv,
B (0)

1 p27
:ky// e rdrdg
o Jo
1

= ky/ 2rrly(rk)dr ,
0

1
= 27tky/ rly(rk)dr .
0

To solve the last integral, we use (65) and write

rio(ri) = T L )i = G,
Then ! Y 1)
/0 FIo(rkydr = =ik = —ili0) = 1. (67)
and we find 1)
q = 1ok Y. (63)

The variance-covariance matrix is given by
v, = / O —E)v—E)"q(0)do = / 06" q(0)do — E,E] .
st st

To find the second moment of ¢ we consider two test vectors a, b € R? and employ
index notation for automatic summation over repeated indices

utsra [ 067q@)d0 b= [ ao'bj6le s
St sl

= / 0' (a;b; 67 ' 7)db
sl

0 .
= —(a;bjy/ e 1ydv
/Bl(m v )
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=/ aibiek”"’dv+/ a;(v-b)ky; e 7dv
B1(0) B (0)

=a-b rdy + ka - yb- ve " dv (69)
B1(0) B1(0)
The first integral in (69) can be solved directly

I (k
/ k”’dv—/ / e rdrde —/ 2rrlo(rk)dr = 2 ‘( ),
B1(0) st 0

where we used (64) and (67) in the penultimate and ultimate step respectively. Using
(64) we can transform the second integral from (69) as follows:

1 1
/ vek" 7 dy :/ / roe™ % rdrd6 :/ r2 | 0e™7dp
B1(0) 0 Jst 0 st

1
= 27[)// r21,(rk)dr, (70)
0

where we used (68) in the last step.

Now we use the differential recurrence relation (65) to write

PI (k) =~ k) Ty ) = L )ik =

1d ,. .
2 dx —EE(r J1(irk)).

Continuing from (70) we find

kv ! 1d Iz(k)
ve"Vdv = —27ry ——(r Ji(irk))dr = 2ryJh(ik) = 2wy 3
B1(0)

(71)
Substituting all the integrals back into (69)

11(") L p )
a.yZny b=
2o 2o k)
1 I (k) le(k))
=al|- L + b
(km(k)z " o)

Finally, we use the identity (66) for n = 1 to replace

1hk) 1 (1 3 Iz(k))
Io(k)

/ 6074(0)d0 b = a-b

k In(k)y 2

and the second moment is given by
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T _1 Lk ( r 1
/Sl 097 4(0)d0 = 31+ 75 (yy 2112). (72)

Together with the formula for the expectation (68) we find

vV, = ; 06" q(0)d6 — E,E]
L)1 L)\ ¢
RERATS (W - Eﬂz) - (Io(k)) vy 7
1, bk Lk (LK) g
=3 (1 - Io(k)) b (10(k) - (Io(k)) )W ' i

Clearly, if the parameter of concentration k becomes small (i.e. kK — 0) thenE, — 0
andV, — %]Iz.

9.2 Bimodal von Mises Distribution

Computations for the bimodal von Mises distribution

q(8) = (€77 +e707)

47‘[]0(]()

are very similar. Since the bimodal von Mises distribution is symmetric (or
undirected) we have E, = 0 and V, = [6067¢(0)d6. We apply formula (72)
for each of the components eX?7 and e ¥ separately and sum. We find

1(1 Iz(k))]lz bk,

U e ) e

10 Numerical Methods

10.1 Simulations of Transport Model

Simulations of the transport model (3) were performed with a Method of
Lines (MOL) approach, in which space and velocity are discretised into a
high-dimensional system of time-dependent ODEs (the MOL-ODEs). For the
transport equations presented, the rectangular spatial domain (of dimensions
L, x L)) was discretised into a uniform mesh of 201 by 201 points, while
velocity v = s(cosa, sina) (for ¢ € [0,27)) was discretised into 100 uniformly
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spaced orientations with a fixed speed s. Spatial terms for particle movement
were approximated in conservative form using a third-order upwinding scheme,
augmented by flux-limiting to maintain positivity. The resulting MOL-ODEs were
integrated in time using the ROWMAP stiff systems integrator [40], with a fixed
absolute and relative error tolerance of 107, Similar approaches to those above
were employed in [34].

10.2  Simulations of Macroscopic Models

Simulations of both the anisotropic diffusion (51) and anisotropic drift-diffusion
(59) model were performed with a similar MOL approach. The anisotropic diffusion
term was factored into diffusive and convective terms and solved in conservative
form, applying a central difference scheme for the former and first order upwinding
for the latter. The additional drift terms in the drift-diffusion model were also solved
with first order upwinding and the resulting MOL-ODEs were integrated in time
using ROWMAP with error tolerances of 10", For the two simulations in Figs. 2
and 4 we used 201 by 201 mesh points for the spatial discretisation, while for the
simulations in Fig.3 we use 500 by 500 mesh points. We note that simulations
with finer spatial discretisations and smaller tolerances demonstrated no appreciable
quantitative difference.
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Incorporating Complex Foraging
of Zooplankton in Models: Role of Micro-
and Mesoscale Processes in Macroscale Patterns

Andrew Yu. Morozov

Abstract There is a growing understanding that population models describing
trophic interactions should benefit from the increasing knowledge of the complex
foraging behavior of individuals constituting those populations. A notable example
is the modelling of planktonic food chains where the foraging behavior of herbiv-
orous zooplankton is often complicated and involves active vertical displacement
(migration) in the water column with the aim of optimizing the fitness under
constantly varying environmental conditions such as distribution of predators,
location of food, temperature gradient, oxygen concentration, etc. Vertical migration
of zooplankton takes place on different time and space scales ranging from seconds
and centimeters to months and the size of the whole euphotic zone. Taking into
account active foraging behavior of zooplankton would alter theoretical predic-
tions obtained with earlier plankton models where such behavior has often been
ignored—especially in the mean-field models which operate with integrated species
biomasses/densities. In this paper, I revisit two important aspects of incorporating
patterns of active zooplankton feeding in models, based on recent progress in
field observations and experiments. Firstly, I investigate how complex foraging
movement of herbivores in the column can alter the shape of the zooplankton
functional response on different spatial and temporal scales—in particular, I scale
up the local functional response to macroscales (the whole euphotic zone) and show
the emergence of a sigmoid functional response (Holling type III) on the macroscale
based on a non-sigmoid local response on microscales. Secondly, I theoretically
investigate the role of intra-population variability of the feeding behavior of
grazers (implying physiological and behavioral structuring of a population) in the
persistence of the whole population under predation pressure. I show that structuring
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of the population according to feeding behavior would enhance the population
persistence in a eutrophic environment thus preventing species extinction.

1 Introduction

It has been well recognized in ecology that spatial heterogeneity is a crucial factor
shaping population dynamics and affecting species persistence ([8,51, 66, 88]). The
growth of a population often takes place in a highly heterogeneous environment
characterized by a pronounced variation in the species fitness. In the case organisms
have the ability to actively move within a large part of the habitat they can adjust
their spatial location to improve their living conditions by acquiring more food,
escaping from natural enemies, etc. An important ecological example of such
behaviour is the active vertical migration of herbivorous zooplankton in the water
column in lakes and the ocean. Although in the horizontal direction the active dis-
placement of plankters is seriously impeded by a pronounced turbulence ([1,36,68]),
mesozoopolankton such as copepods can quickly adjust their vertical location and
find the optimal depth within the entire euphotic zone (i.e. the zone where the light
intensity is enough to make possible photosynthesis of phytoplankton) depending
on the given distribution of predators and food conditions, as well as abiotic factors
as temperature, salinity, etc. [10, 37,53, 60, 65, 90]. Since copepods constitute the
main source of food for small pelagic fish (the upper trophic level) and can also
control the primary production via intensive grazing, their correct description in
models is becoming of crucial importance when simulating the biochemical cycles,
sustainable fishery management, toxic plankton blooms, marine biodiversity, etc.
Moreover, excluding patterns of active foraging behavior of grazers can be some-
what of a bottleneck in improving the predictive power of plankton models [14,65].

Active vertical displacement of herbivorous zooplankton in the column takes
place on different time and space scales (see Fig. 1). On microscales (seconds and
dozens of centimeters, up to 1-2 m) zooplankton show active foraging behaviour by
performing small foraging jumps and accumulating in micropatches of high food
density [30,70,113]. On the intermediate time and space scales (1-3 h and dozens of
meters), organisms perform short-term exchanges between surface layers which are
rich in food (phytoplankton) and deeper layers, which contain less food but are safer
from predators [65,77,95]. On a daily time scale zooplankton can show regular diel
vertical migration where the organisms ascend to upper (surface) layers for feeding
at night and stay in deep layers during the day time. It is believed that this strategy
allows herbivores to escape from visual predators [10,60,90] and/or because of the
energy gain in deeper waters due to low temperature [49, 72]. Finally, zooplankton
exhibit variations in movement behavior on a longer time scale (varying from
several weeks to months) which is related to the ontogenetic plankton cycles where
zooplankters can even leave the limits of the euphotic zone and descend to deeper
layers [91,117].
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Fig. 1 Active foraging behavior of herbivorous zooplankton in the ocean and deep lakes over
different spatial and temporal scales. For details and the literature references see the text

There exist a large number of publications concerning the modelling of active
vertical migration of zooplankton. Most of these publications, however, provide
models of the regular diel vertical migration (DVMs) taking place on the scale
of the whole euphotic zone. In particular, it has been shown that such migrations
can be an optimal strategy for the persistence of a population under the threat of
predation by visual predators [39, 49, 57,67, 107]. On the other hand, there also
exist a high number of theoretical works on zooplankton movement on microscales
([3,33,45,105,106, 114]). Such works usually model the movement of zooplankton
on microscales as a fractional random walk ([9, 23, 105, 106]) and even as a
Levy flight ([3, 120]) and are justified by experimental material on zooplankton
movement recorded by cameras [30,70, 113]. Regrettably though, foraging behavior
of zooplankton herbivores on the intermediate time and space scales is studied much
less both regarding observation/experimental and modelling works.

An important reason for the lack of studies on intermediate time and space
scales is that the active vertical movement of grazers at intermediate scales is
often non-synchronized: in other words, exchange of the individuals between the
horizontal layers in the column can take places without alteration of the profile of
the population as a whole [21, 65, 77]. Such non-synchronized vertical migration is
rather hard to investigate in vivo since this would require labelling and tracking a
large number of small-size organisms in a highly turbulent environment. Another
important reason for the mentioned lack of knowledge is rather coarse methods of
sampling. As a result, the existence of any fine structure of plankton layers is often
overlooked. This concerns, for example, the so-called thin plankton layers with a
characteristic vertical width up to few meters but having plankton densities several
orders higher than outside the layers [22, 52]. There is an opinion that foraging of
zooplankton in these high density food patches can be crucial for the survival of
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grazers [13, 64, 82] since the food density outside the patches is often below the
feeding threshold of zooplankton (i.e. the minimal concentration of food required
below which grazing does not occur). Interestingly, the thin layers of zooplankton
and these of algae sometimes do not overlap, resulting in complex foraging jumps
of zooplankters into the food layer and back [54, 64, 65].

There is a growing body of evidence that the active foraging of zooplankton
on different scales should be incorporated into plankton models (e.g. [14, 65]).
However, each ecological model is a simplification of reality and it is impossible for
it to encompass all details on the movement of individuals. On the other hand, quite
often we simply do not need to describe the individual behavior on a microscale,
when, for example, we are interested in the functioning of the whole plankton
community. As such, the problem of transition between the modelling scales arises:
processes taking place on a finer scale should be implicitly incorporated into a model
operating on a larger scale [2,17,32,59]. As a result, the model on a larger scale can
be considered as a mean-field model operating with the average characteristics (e.g.
the mean species densities, food concentration, etc.). An interesting and practically
relevant problem is how to implicitly include active foraging behavior of individual
zooplankters on a smaller time and spatial scale (i.e. without using a fine spatial and
time resolution as well as a detailed description of interaction between organisms)
into a coarse-scale plankton model.

In this paper, I shall address two issues related to including active foraging
behavior of zooplankton in models and scaling them up. Firstly, I will consider the
zooplankton functional response on different spatial and temporal scales and I will
show that the shape of the emerging global functional response of a community can
be substantially altered from to the local response of a single individual. Secondly,
I shall model the role of intra-population variability in the feeding behavior of
grazers in the persistence of the whole population under predation pressure. I find
that structuring of the population according to feeding behavior can enhance the
population persistence in eutrophic environments (characterized by a high nutrient
load) thus preventing species extinction.

The paper is organized as follows. In Sect.2, I compare the Eulerian and the
Lagrangian approaches in the modelling of herbivorous zooplankton. In Sect. 3,
I provide two general definitions of the zooplankton functional response based
on the Eulerian and the Lagrangian frameworks, and discuss their applicability.
Then I demonstrate the emergence of Holling type III (sigmoid) global functional
response from a non-sigmoid local response. Section 4 is devoted to the modelling of
the role of behavioral structuring on the survival of a population of grazers. Finally,
in Sect. 5, I provide a general discussion on the incorporation of foraging behavior
in plankton models and consider possible applications of our results for some other
(non-planktonic) ecosystems.
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2 The Lagrangian vs. the Eulerian Approach
in the Modelling of Zooplankton Dynamics

When modelling zooplankton dynamics in the water column, a critical issue is to
choose an adequate modelling framework. In ecological modelling there exist the
two main approaches: the Eulerian and the Lagrangian frameworks. According
to the Eulerian approach, the distribution of organisms in space is regarded as
continuous and is described in terms of the population density. The Lagrangian
models are known as well as individual-based models (IBMs) where each individual
(or a homogeneous group of individuals or super-individual) is explicitly modelled
as a discrete entity [46,47, 104]. Thus each individual/group is described by a
set of variables (e.g. age, filtration rate, size, nutrition condition, etc.), and the
behavior of an organism/group is governed by a set of prescribed rules. The
dynamics at the population level emerges as a result of interactions of a huge
number of individuals and their environment [4, 15,63,65]. Note that currently there
is a tendency in the literature to implement the IBM framework when modelling
zooplankton.

Each of the two modelling approaches has its advantages and disadvantages.
A general discussion and comparison between the two approaches in theoretical
ecology and, in particular, in plankton modelling, should be a matter of separate
discussion (e.g. [46, 121]). An advantage of IBMs is the possibility of a more
detailed description of the behavioral aspects of organisms as well as heterogeneity
of physiological traits within populations. Thus, the central idea is obtaining the
population dynamics from the first principals, i.e., by describing the life and feeding
cycles in all possible mechanical details. The Lagrangian approach allows us to
include complex movement of animals more easily than the Eulerian approach,
especially when the movement of each individual is not synchronized in space and
time. An important example is the unsynchronized vertical migration of zooplankton
characterized by a constant short-term exchange of organisms between the surface
and deeper layers, with only little change in the vertical profile of zooplankton
as a whole [21, 65, 77]—the Lagrangian-based framework allows us to model the
situation when the grazing of a zooplankter is not just a function of the ambient food
any more, but is a reflection of the physiological condition of the organism [65].

Implementation of the Lagrangian approach has some disadvantages, however.
An important shortcoming of IBMs is that we are not able to describe the behavior
of a zooplankter on the individual level in full detail—this behaviour is still poorly
understood. A typical IBM depends on a large number of un-measurable parameters,
and in such a situation, including or omitting some features in feeding strategy
on a microscale (individual level) can result in a large error on a macroscale
(population level). As a result, the central idea of IBMs—to obtain emergent
population dynamics from first principles—becomes seriously undermined. It is to
be noted that the number of herbivorous zooplankters in the water column is usually
rather large (>10°~10* inds. per square meter) and this would require a large number
of state variables describing all the organisms, incoming a large computational cost.
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The problem becomes practically unsolvable when we are interested in modelling
the dynamics of a planktonic metapopulation inhabiting an area with a horizontal
dimension of dozens of kilometers (or considering the regional scale). In this case,
the classical density-based approach can be more natural.

Interestingly, as it has been shown in theoretical ecology, the complex behaviour
of animals on an individual level can be included on the population level via density
dependant models based on the Fokker-Planck formalism [18, 40, 44, 119]. Note
however, that the resultant equations can differ from the classical reaction-diffusion-
advection type equations (e.g. [119]). On the other hand, there also exist standard
techniques for incorporating a non-heterogeneous life trait distribution within a
population of grazers, as well as the age structure of the population in density-based
models ([69], see also Sect.4 of this paper). In particular, complex interactions
between Daphnia spp. and phytoplankton can be successfully described based on
physiologically structured models ([29] and the references therein). Finally, the
feeding cycles of zooplankton, including periods of active grazing and digestion, can
be incorporated into simple density-based models ([76,77]). In this paper, I shall use
the density-based (Eulerian) approach when modelling interactions in planktonic
communities; however, when suggesting a general definition of the zooplankton
functional response (Sect. 3.1), I shall discuss implementation of both the Eulerian-
based and the Lagrangian-based frameworks.

3 Modelling and Scaling the Zooplankton Functional
Response

In theoretical ecology the functional response of a predator/grazer was initially
defined as the specific consumption rate of food by an individual per unit of time
[56, 110]. Later on, it was well recognized that such a definition depends on the
time and space scales under consideration [20, 32, 75, 99]. In plankton ecology
the importance of spatial and temporal scales in feeding is less well recognized,
for instance, than in terrestrial ecology. Conventionally, a zooplankton functional
response is determined based on experimental feeding of organisms in microcosms.
Tremendous amounts of literature exist on this topic showing that the feeding rate
of a zooplankter in laboratory settings can be well described by a certain function of
food which is referred to as a functional response ([38, 101] for a review). However,
the direct interpretation of microcosm plankton experiments in ecosystem models
on a larger scale is tricky and not always possible (e.g. [79]). This is mostly related
to the two following aspects. Firstly, the environment in which species interactions
take place is highly heterogeneous, thus the question of correct averaging arises.
Secondly, the foraging cycles of grazers imply periods of active consumption and
periods of rest (digestion) and those periods are often characterized by different food
densities [21,65]. As a result, grazing and digestion can be separated in space. Thus,
the conventional definition of the functional response, based on the assumption of a
homogeneous small-sized (laboratory) environment needs to be refined.
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3.1 Defining the Zooplankton Functional Response
in Real Ecosystems

The existence of the zooplankton functional response on different temporal and
spatial scales is a fundamental issue for modelling and to address this issue one
should provide a rigorous definition of such a response. Below I suggest two
definitions based on the Eulerian and Lagrangian frameworks.

(i) The Eulerian-based definition. Consider a certain domain ¥ which is a part
of an n-dimensional habitat (n = 1,2, 3). We are interested in the amount of
food E7y that individuals belonging to the given species consumed within this
domain during the observation time 7. The E7y quantity can be re-written as

Ery = (E(t))rw = M(Z)M/ =F(Z)rw, (1)
(Z)rw

where E(¢) is the instantaneous rate of food consumption and Z(¢) is the
instantaneous biomass of predators in the domain ¥. Thus, to compute the total
consumption of food in ¥ over time 7 by the predators one needs to multiply
the biomass (Z7y) the predators and the quantity F, which is mathematically
a functional (i.e. a function of functions) since its value depends on the spatial
distributions of species. The () symbol denotes averaging

We shall define F as a functional response of predators in the case where the
consumption of food can be described as

Ery =F({P)rw. {(Z)rw)(Z)rw , (2)

up to the necessary degree of accuracy required for a given model. In other words,
we require that F should be a function of the total amount of food (P )7y, ( in the
domain. The size of the domain ¥ and the period of time T in the above definitions
depend on the modelling purposes. In the limiting case, when the volume of ¥
and T tend to zero, we obtain the “local” functional response F = F (P(7), 7),
i.e. consumption of grazers in a given space point at a given moment time. The
concept of the local functional response is implemented in most PDE-based models
in oceanography [48,89]. In the other limiting case ¥ represents the whole euphotic
water column and 7 is approximately equal to one day and the conventional
modelling framework at those scales is the “classical” mean field plankton models
([31,34]).

(i1)) The Lagrangian-based definition. According to the Lagrangian framework, we
do not consider a fixed spatial domain. Instead, we follow the trajectories of the
individuals though their paths. Thus, for the consumption rate of N individuals
we obtain
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N N

B
E = e;(t = — ei(t =F-Z, 3
T ;u))r NB;,())T i 3)
where B is the average biomass of an individual; Z is the total biomass of N
zooplankters; ei is the instantaneous consumption rate of individual i and the symbol
() now denotes averaging of the consumption rate along the path of a zooplankter.
We can define the functional response F) in the case the consumption rate of
the whole population can be computed (up to the necessary degree of accuracy) as
the product between zooplankton biomass and the average food concentration in the
habitat, i.e.

Enr = F(P)r.{(Z)r)-Z, “4)

Unlike the Eulerian approach, the Lagrangian-based functional response is a
function of the food density averaged over the layers where organisms mostly graze.
The use of (4) requires the knowledge of individual paths of zooplankters and their
grazing rates along those paths. One of the techniques for computing foraging paths
uses individual-based modelling (IBM).

The question of applicability of the above definitions (2) and (4) is a matter of
much discussion in the literature. For instance, it has been frequently observed that
the local Eulerian-based functional response does not exist at all in natural plankton
communities. In other words, very often there is no apparent correlation between the
ambient food density and the ingestion rate of copepods [11,25,77,112,116]. This
is not only the result of pronounced environmental noise but is due to the fact that
the locations of the active food consumption and those of the rest can be different.
For instance, a large density of zooplankton in layers with poor nutrition conditions
can be explained by the fact that organisms migrate to those layers for digestion or
to avoid predators [25, 65].

Note that the Lagrangian-based definition (4) can provide a better fit to the
field data than the Euler-based definition, which can be seen from the following
illustrative example based on feeding data on Calanus spp. in situ (the Central
Barents Sea, 2003-2005). All details regarding the collection of material and
methods can be found in [79]. Figure 2a shows the local functional response based
on the Eulerian framework (the ingestion rates are plotted against the ambient food
density), whereas Fig. 2b represents the functional response based on the Lagrangian
definition constructed using the same data set.

To construct the Lagrangian-based response, we need to know the exact depths
where the organisms are grazing for food before collection. Although we normally
ignore those depths, we can try to reconstruct Lagrangian-based response by
proceeding in the following way. Zooplankton samples were collected in three
separate layers (0-20; 20-50; 50-100m) and at each depth we considered the
ingestion rate averaged over all individuals. I used the assumption that the ingestion
rate of an individual is an increasing function of food density. Based on this
assumption, I compared ingestion rates /; and I; 41 (i = 1, 2) in each pair of
adjacent layers with the average chlorophyll densities P; and P;y, respectively.
In the case where I; < I;11, but P; > P;;; I suggested that organisms caught in
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Fig. 2 Functional responses of herbivorous copepods (Calanus Finmarchicus, CIV, Central
Barents Sea, 2003-2005) measured in situ. (a) Local functional response constructed based on the
Eulerian framework, i.e. ingestion rates are plotted against the ambient food density. (b) Local
functional response constructed based on the Lagrangian framework, i.e., ingestion rates are
plotted against the food densities, where organisms were feeding the last time before capture.
(¢) Local functional response constructed considering only the actively feeding zooplankton. The
fitting curves are obtained based on nonlinear regression (LSM), using the Monod curve as fitting
functions. For details on constructing the functional responses see the text
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layer i + 1, in fact, consumed their food in layer i. In this case, I considered that
I; 4 corresponds to the density P;. Alternatively, for I; > Iy, but P; < Piy
I suggested that the actual consumption by organisms caught in layer i was in layer
i 4+ 1,1i.e. that /; corresponds to P; 4. Moreover, in the case where the ratio 1,1/ 1;
was close to unity, but P; was substantially larger than P; 4, I considered that the
actual grazing of the organisms caught in layer i + 1 took place in layer i. The field
observation shows (see [79] for details) that P, > P; for each station and, thus it
is easy to prove that the above described algorithm allows to assign /; to P; in a
unique way. In other words, we assumed that the rate of food consumption was close
to linear at low chlorophyll densities (up to P = 4-5 mg/m? Chl a). The biological
justification for the above assumptions is to avoid anomalously large ingestion rates
in layers with small food density. Overall, I should emphasize that such a simplified
method can give us only estimates of the actual 12 locations (stations) of grazing.
We performed the statistical treatment of both functional responses in Fig. 2 based
on the least square method (LSM) using the Monod curve as a fitting function, which
gives R? = 0.46 for Fig. 1a and R?> = 0.78 for Fig. 2b. Based on the comparison of
R? as well on the fact Fig. 2b shows less scattering of points from the fitting curve,
one can conclude that the Lagragian framework would provide a better description
of zooplankton functional response than the Euler framework.

Finally, when constructing the zooplankton functional response one can take into
account only those consumers which are currently grazing the food and exclude
those ones which are digesting food at the moment. I shall refer to those grazing
individual as the actively feeding zooplankton. When computing the grazing impact
of a zooplankton population, one needs to take into account the contribution of
only those feeders. A major problem, however, is that it is almost impossible to
distinguish between actively feeding and resting animals when collecting samples
[21]. Despite this fact, we can try to reconstruct such a response based on the data
set from Fig.2a. Here I used the hypothesis that in the case where I; < [; 4,
but P, > P4y or I; > I;4, but P, < P;4; I ignored those points. In other
words, I ignored anomalously large ingestion rates in layers with small food density
suggesting that those organisms do not feed in those layers but digest food. The
resultant graph is presented in Fig. 2c showing a local functional response of with
less scattering of points than Fig.2a with R> = 0.80 (the fitting curve was the
Monod function). The approach using the functional response based on the actively
feeding zooplankton can be considered as a mixture of the Euler-based and the
Lagrangian-based approaches and will be used in the next section.

3.2 Emergence of a Sigmoid (Holling Type I1I) Overall
Zooplankton Functional Response

A number of plankton models ignore the explicit vertical resolution and consider the
species densities averaged over the column. To describe the grazing of herbivorous,
one needs to consider an overall/global functional response in the entire euphotic
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zone, i.e. to scale up the local/microscale functional response. Interestingly, the
overall functional response can be of different Holling classification type compared
to the local response and this is a result of the active foraging behavior of
zooplankton (I show this below). In particular, an accelerating overall functional
response (Holling type III) can emerge from a non-sigmoid (Holling type I or II)
local responses.

The overall functional response of zooplankton in the column can be constructed
based on the definition (2), where the domain ¥ includes the whole euphotic
zone. However, to avoid the situation shown in Fig.2a, I shall take into account
only the actively feeding zooplankton and denote the vertical distribution of such
zooplankters by Z,(h), where / is the depth. Note that the profile of Z, (%) can be
rather different from that of Z (k) which is the total (bulk) zooplankton density since
the latter includes also individuals which are currently not feeding (e.g. digesting)
[25, 76, 77]. Let us suppose that the instantaneous consumption of the actively
feeding zooplankton can be described via the local functional response f(P), where
P is the local density of food (phytoplankton). The overall functional response will
be defined as

1 H
F = Zo_H/o F(P(h), ) Z(h)dh (5)

where Zj is the total amount of zooplankton, H is the total depth of the euphotic
zone where phytoplankton can grow.

The actual distribution of the actively grazing feeders in the column is a matter
of much discussion in the literature [11, 25,77, 116]. In this work, I shall assume
that the distribution of the actively feeding zooplankton in the water column is an
ideal free distribution. Some field evidence of an ideal free distribution of grazing
zooplankton can be found in [43,61, 80]. In the simplest case, one can suggest that
the distribution of feeders follows the distribution of food

P(h)

Zy(h) = m < Zoa , (6)

where (P) is the spatial mean density of the phytoplankton; Zpa gives the total
amount of actively foraging animals. Note that one can also take into account
possible interference between grazers in the column which can be parameterized by

PH(h)
Z,(h) = W - Zoa , (7)

where p is a parameter describing the strength of interference of grazers. Some
theoretical background for parameterization (7) can be found in [83] (see also
[62, 111] for other possible parameterizations). In particular, & > 1 means a
larger degree of interference of predators compared to the “classical” ideal free
distribution; the situation with ;. < 1 would signify a lesser degree of competition
among the foragers in patches with high food density. Note that some field
observations and experimental studies in plankton towers show that the ideal free
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distribution provides a suitable approximation of real profile patterns of the actively
feeding zooplankton [26, 53,61, 80]. I do not take into account a possible time lag
between the changes in profile of chlorophyll and the response of zooplankton to
such changes. A large delay in response of zooplankton to changes of chlorophyll
profiles would not be realistic in real ecosystems since changing in the vertical
profile of phytoplankton takes from some days to a week while the active vertical
displacement of zooplankton within a 100 m layer takes 6-10h [10,21,90].

The dynamics of phytoplankton in the water column is described by the following
partial differential equation

P *p

h P
o :Dm+ro-exp(—kh—y/0 P(h)dh)P(l—E)—Zu-f(P), 8)

where the first term in (8) gives the random vertical displacement of phytoplankton
due to turbulent diffusion in the column; the second describes the algal growth and
the last term stands for the local grazing. The coefficient r( is the maximal per
capita algal growth, which depends on the availability of nutrients; the exponential
multiplier describes the light attenuation due to absorption by water and because of
self-shading; f(P) is the local functional response of herbivores, K is the carrying
capacity taking into account mutual interference of algae. To parameterize the local
functional response, I use the “classical” hyperbolic (Monod) parametrization [42]

aP

JPY=17p

. (€))

where a and b are the coefficients with an obvious meaning. Note that this
type of response has been found for most herbivorous zooplankton in laboratory
experiments ([27, 50, 55, 58] see also Fig.2b,c). I assume that the total amount of
zooplankton in the water column Z, = const on the considered time scale. I also
neglect the diel regular vertical migrations which would highly affect the ideal free
distributions (6) and (7). I consider (8) with the zero-flux boundary conditions. To
obtain a continuous range of (P), one needs to vary a control model parameter.
I have chosen ry as the control parameter. This would allow the modelling of
the occurrence of an algal bloom arising as a response to an increase of water
temperature, light intensity, etc. [115].

Figure 3 shows the overall functional responses as functions of the average
amount of phytoplankton (P) calculated for the local response of Holling type
IT with a large half-saturation constant (1/6 > 1) (a) and with a small half-
saturation constant (b). The functional responses are constructed for different
intensities of interference of grazers . I consider realistic model parameters
from the literature [7, 31, 50, 101] giving 0.5 < r < 21/d; 001 < a <
0.3 d/(pgCl™); 0.005 < b < 0.2 ugCl™'; 0.005 < A < 0.151/m; 0.0005 <
y < 0.0051/(mpgCl™!); D = Im?/d. The local responses are shown by dashed
lines. One can clearly see from the graphs the emergence of a sigmoid overall
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Fig. 3 Overall/global zooplankton functional responses of the zooplankton population in the
entire euphotic zone constructed for varying degree of strength p of grazer interference. The curves
1-4 correspond to 0 = 0.8; u = I; u = 1.2; u = 1.35, respectively. (a) Overall functional
responses obtained for Holling type I (linear) local response; (b) Overall functional responses
obtained for Holling type I local response (b = 0.06). In both figures the overall response is shown
by bold curves; local functional responses are depicted by dashed lines. The other parameters are
D=1m?/d,a=0.1d/pgCl™"; H =100m; Zo, = 1 pgCl™!

functional response (Holling type III) from the local non-sigmoid (Holling type
II or I) response having a concave downward part. Such an alteration of types
of responses requires a small saturation in the grazing rate and a small degree of
grazers’ interference (1 > p).

The self-accelerating behavior of the overall functional response shown in Fig. 3
can be proven analytically as well. In Appendix A I demonstrate that in the case
the diffusion term is small compared to the local growth rate and the grazing
term, the overall functional response can be approximated by (21), which, however,
results in a rather cumbersome explicit expression (21) is obtained for the a linear
local functional response). This expression can be simplified depending on the
magnitudes of A, u (see Appendix A). In the simplest case (no interference of
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grazers, it = 1) the overall functional response is given by (26)—(28). By taking
into account the first three terms in the Taylor expansion for F'({P)) and obtain

1+ exp(AH) (P)+ yH?(P)> = 1+exp(AH) I7E 2(P)3)

F((P)) ~ al(m 6 24exp(AH)—1

(10)

Based on (10) one can prove that F’(P) — PF(P) > 0, which is the stability
condition for predator-prey interactions in a eutrophic environment [87].

It is possible to come up with a simple (but not mathematically strict) explanation
of the observed emergence of Holling type III functional response. Figure 4a shows
the vertical distribution profiles of distribution of actively feeding zooplankton
(plotting the ratio Z,(h)/ Z,; the vertical distribution of phytoplankton is the same)
constructed, for the sake of simplicity, for & = 1 (no interference of grazers). An
increase in the total amount of phytoplankton (P) leads to a sharper gradient of
algal distribution (because of algal self-shading). The distribution of grazers Z, (h)
follows that of the food and it results in a larger proportion of zooplankton feeding in
food-rich layers, thus increasing the total consumption rate. Note that the emergence
of an overall sigmoid functional response due to the above mechanism is possible in
the case of a pronounced depth (deep waters), but is impossible for small H since
the distribution of plankton becomes more homogeneous and, thus, closer to the
local response.

The interference between the grazers (increase in @) would impede the above
alteration between the types of responses. This can be obtained directly from
expression (27) for F({P)) found in Appendix A for A = 0. Differentiation of
those expressions shows that F'(P) — PF(P) < 0 for large u, thus not satisfying
the stability condition [87]. However, the impact of interference of the grazers can
be better understood directly from Fig. 4b where the distribution of actively feeding
grazers (the ratio Z,(h)/Zo, is shown for the same total amount of phytoplankton
in the system ((P) = 4 ugCI™!). One can see that the competition between the
grazers results in homogenization of the vertical distribution of active grazers, thus
the local functional response is approached. Interestingly, the overall functional
response can be even slightly smaller than the local one (see Fig. 3b) despite the fact
that a substantial part of the active feeders are located in food-rich surface layers.

It is important to stress here that the emergence of a Holling type III overall
response due to active food searching behaviour of grazers has observational
background. In particular, it was found that zooplankton species which exhibit non-
sigmoid functional response under laboratory conditions show a different overall
functional response in real ecosystems [76, 79]. In particular, increasing the total
amount of phytoplankton in the system can result in displacement of zooplankton
towards surface layers of high food concentration, with feeding taking place mostly
in those layers (see [5,79].
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Fig. 4 (a) Mechanism of emergence of a sigmoid zooplankton functional response. Stationary
vertical distributions of actively feeding grazers (Z,(h)/Z,) are shown for different total amounts
of food (P) (u = 1, no interference of grazers). An increase in {P) results in a sharper gradient
of food distribution, the feeders follow the distribution of food and move for feeding to food-rich
surface layers. The spatial distribution of phytoplankton is proportional to that of zooplankton and
is not shown in the figure. (b) The influence of interference of grazers on the consumption rate.
Vertical profiles of actively feeding grazers are shown for the same total amount of phytoplankton
({P) = 4 g C1™") for different s1. Enhancing the competition of grazing (increasing /1) results in
a more pronounced homogeneity in vertical distribution

4 The Role of Intra-population Variability of Zooplankton
in Population Persistence

In this section I address another important issue related to the active feeding
behavior of zooplankton in the water column: the within-population variability of
grazers and its role in the population survival and persistence.
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4.1 Describing the Intra-population Variability
of Zooplankton Grazers

An important intrinsic property of any real population is that individuals forming
this population often differ from each other: organisms have various sizes, different
ability to move, and, finally, they can have different personal behaviour (e.g.
preference for staying in risky or safe environment, aggressiveness, etc.). There
exist a large number of theoretical works considering dynamics of such structured
populations ([24, 29, 69, 73, 74, 97, 118]). It has been shown that taking into
account intra-population difference would seriously alter modelling outcomes. A
proper review on models of structured populations and a comparison with their
unstructured analogues should be done elsewhere. In most previous publications,
however, the authors have considered population structuring with respect to the
age or size of individuals or due to some physiological traits. Less studied are
population which are structured according to different behavior of individuals (but
see [96]). In this section I shall construct a simple model combining physiological
and behavioural structuring of a population of grazers regulated by top predation
(carnivorous zooplankton or planktivorous fish).

Zooplankters are known to show a large interindividual variability in their
feeding patterns [92, 93, 108]. Figure 5 demonstrates a large variability in the
consumption rates of individual zooplankters (Calanus spp.) obtained in laboratory
(data provided by prof. E. Arashkevich and colleagues). In the figure, the individual
consumption rates of copepods are plotted for different temperatures but for the
same food density. One can see a large deviation in the consumption rates of
the grazers which can be as large as one order of magnitude. Another important
observation is that most of the individuals conserve their consumption character-
istics/traits for different environmental conditions (various temperatures), i.e. their
ability of consuming food at high, intermediate or low rates (see Fig. 5b). Thus, the
whole population can be described as physiologically structured. Interestingly,
the pronounced difference in food consumption does not seem to be related to
the variation in the individual sizes of organisms which were close to each others
(not shown result). Note also that zooplankters also show a large interindividual
variability in their swimming rates which could result in a large variation in the rate
of food consumption [108].

The observed individual differences in the consumption and swimming rates
of grazers could eventually result in an intra-population difference in foraging
behaviour. Indeed, zooplankton herbivores often migrate to the upper layers with
higher food abundance despite the predation risk [10, 65, 90]. Often the grazers
implement the eat and run strategy which consists in quickly filling the gut and
leaving the risky environment [95]. Since the ability of filling guts can substantially
vary from individual to individual, the individuals with high ingestion rate can leave
the surface layers faster than the others, thus spending more time outside the risky
environment [26, 107]. As such, variation in physiological traits within a zooplank-
ton population can translate itself into different foraging strategies/behaviour and,
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Fig. 5 Individual ingestion rates (mg Chl a/ind./day) of copepods Calanus spp. measured in the
laboratory under different feeding conditions (different temperatures). Each curve describes the
ingestion rate of a single individual. (a) The absolute values of ingestion rates. (b) Normalized
ingestion rates compared to the mean value for the given temperature. Red and blue curves
correspond to individuals with ingestion rates lying, respectively, above and below the population
mean value. Green curves describe individuals with highly variable ingestion rates which can be
both above and below the mean value. One curve crossing zero is depicted in red since it shows
a persistent behavior very close to the mean values. Absence of points for certain individuals can
be explained by the fact that the organisms are suggested to be depressed in those experiments and
simply did not consume food. The data have been obtained by Prof. E. Arashkevich and colleagues

as a result, into segregation of organisms in space. A similar scenario of segregation
of grazers within the same population has been found by Fossheim and Primicerio
[37], where different copepodite developmental stages were separated in the column
in the presence of top predators (fish). Note that similar differentiation in behaviour
due to differences in physiological traits has been found for other non-planktonic
species, such as fish [12,19], octopuses [71] and some mammals [100]. In particular,
it was reported in a population of salmon that the interindividual variability in
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Fig. 6 Schematic diagram explaining construction of physiologically structured model (11)—(12)
of trophic interactions between herbivorous zooplankton and their predator (carnivorous zooplank-
ton and/or planktivourous fish). Predation on zooplankton by visual predators takes place mostly
in the surface layers (the risky environment) which is also characterized by high food abundance
(high density of phytoplankton P). Deeper layers provide a better refuge from the predators but
are less abundant in phytoplankton. Zooplankton individuals within a population are divided into
cohorts Z;, which are characterized by different growth rates, location of feeding in the column
and the time spent in the risky environment

willingness to take predation risk near the surface could result in structuring of the
patterns of vertical migration behaviour in the water column [35].

In this paper, I suggest a generic model showing the potential role of intra-
population variability in the life traits and behaviour of the herbivorous zooplankton
in persistence and stability. Schematically, the model is depicted in Fig. 6. The food
density (phytoplankton) increases in the layers towards the surface. At the same
time, the efficiency of visual predators is higher near the surface, thus there is a
trade-off between food density and the mortality due to predation risk. In the model,
the zooplankton population Z is divided into n cohorts/groups (Z;) with different
behaviour. In particular, cohorts Z; vary with respect to the amount time spent
feeding in surface layers with high predation risk as well as in the depth of feeding.
Thus, the mortality rate of zooplankton, which in the model is due to predation,
becomes cohort-dependant. I consider that different cohorts can exhibit different
growth rates due to the variation of time spent in food-rich layers.

The trophic interactions between the grazers and their predator (carnivorous
zooplankton or planktivorous fish) are described via the following differential
equations

dZ;

W:ZWinij_gi(Zi)Bv (1)
j

dB

E:B 2:(0&'(21')_‘3 ’ (12)
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where Z; and B are biomass of the zooplankton in cohort i (i = 1,n) and the
predator, respectively. The sum in (11) describes the growth rate of Z; due to the
reproduction of all cohorts; the contribution of cohort j to the growth rate of cohort
i is described by the weight w;;. I further call coefficients w;; the demographic
factors which I consider to be density independent. I require that the sum of the
demographic factors w;; over all cohorts should be equal to unity.

One would expect that w;; > wj;, i.e. the offspring of each cohort mostly
belong to the same cohort. However, I do not formally impose such a restriction
by considering as well the possibility of w;; ~ w;;. In this paper, I assume that the
demographic factors are at genetic equilibrium, i.e. the demographic factors do not
change in time (cf. [16]). The coefficient R; describes the overall per capita growth
rate of cohort j. For the sake of simplicity I consider that all R; are constant, i.e. no
intraspecific competition. Such an assumption allows to model plankton dynamics
in euphotic environments.

The parameters describing the predators of zooplankton are: the functional
response g;(Z;), which is different for different cohorts; w is the food utilization
coefficient and A is the mortality rate of the predator. For the sake of simplicity, I
consider the functional response g; with saturation of Holling type II given by the
Monod parametrization

Zi
J a

where b is the coefficient characterizing the saturation of predation at high densities
of Z;. The coefficients a;, which are proportional to the attack rates, are different for
different zooplankton cohorts. I suggest that ai are larger for those cohorts where the
individuals intentionally stay longer in more risky part of the habitat (surface layers)
with higher predation pressure. When including the effects of saturation, I take
into account the fact that the actual amount of zooplankton which is available for
predation in surface layers should be multiplied by certain weights. Those weights
would model the relative duration of the zooplankton cohorts stay in the more risky
environment, thus they should be a function of the predator attack rate. I suggest
that such weights are proportional to the attack rates, since the relative difference
in a; characterizes the relative time spent in surface layers; a denotes in (13) the
average values of a; . I should note that our findings r