
Chapter 3
Multivariate Extremes: A Conditional Quantile
Approach

Marie-Françoise Barme-Delcroix

3.1 Introduction

Ordering multivariate data can be done in various ways and many definitions have
been proposed by, e.g., Barnett (1976), Oja (1983), Maller (1990), Heffernan and
Tawn (2004), Falk and Reiss (2005); see also the contribution by Oja, Chap. 1.
Some papers of Einmahl and Mason (1992), Abdous and Theodorescu (1992), De
Haan and Huang (1995), Berlinet et al. (2001), Serfling (2002), and more recently
Hallin et al. (2010) develop the notion of multivariate quantiles. In the classical
scheme (cartesian coordinates), the multivariate variables are ordered coordinate by
coordinate—see for example Galambos (1987) and the references therein. And in
this way the maximum value thus obtained is not a sample point. A new notion
for the order statistics of a multivariate sample has been explored in Delcroix and
Jacob (1991) by using the isobar-surfaces, that is, the level surfaces of the con-
ditional distribution function of the radius given the angle. The sample is ordered
relatively to an increasing family of isobars and the maximum value of the sample
is the point of the sample belonging to the upper level isobar. This approach is more
geometric and the maximum value is a sample point. The definition depends only on
the conditional radial distribution. The first motivation was to describe the overall
shape of a multidimensional sample, Barme-Delcroix (1993), and has given a new
interest to the notion of stability, Geffroy (1958, 1961). By a unidimensional ap-
proach, some results have been stated in this multidimensional context such almost
sure stability and strong behaviour, Barme-Delcroix and Brito (2001), or limit laws,
Barme-Delcroix and Gather (2007). In Ivanková (2010), isobars are estimated by
non-parametric regression methods and used to evaluate the efficiency of selected
markets based on returns of their stock market indices.

This contribution is concerned with the theory of isobars. First, in the next section
we recall some definitions and notations which will be useful throughout this paper.
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In Sect. 3.3, as an introduction to the isobar-surfaces ordering, we give some results
about the weak stability of this kind of multivariate extremes. This notion appears,
as in the unidimensional case, strongly related to the notion of outlier-proneness or
outlier resistance, Barme-Delcroix and Gather (2002). In Sect. 3.4, we propose a
definition for the record times and record values of a multidimensional sequence of
random variables, based on this isobar-surfaces ordering. At last in Sect. 3.5, we
provide definitions of the stability for record values of multidimensional sequences
and study the resulting probabilistic properties. The idea behind the definition is to
describe the tendency of the record values to be near a given surface. We provide
then characterizations, in term of the distribution function, for stability properties of
the record values, as available in the univariate case, Resnick (1973a,b).

3.2 Preliminaries

Let X be an Rd -valued random variable defined on a probability space (Ω,A,P ).
Denote by ‖ · ‖ the Euclidean norm of Rd and by Sd−1 the unit sphere of Rd which
is endowed with the induced topology of Rd .

Suppose that the distribution of X has a continuous density function. If ‖X‖ �= 0,
define the pair (R,Θ) in R∗+ × Sd−1 by R = ‖X‖ and Θ = X

‖X‖ . For all θ , assume
the distribution of R given Θ = θ is defined by the continuous conditional distribu-
tion function,

Fθ(r) = P
{
R ≤ r | Θ = θ

}
. (3.1)

Denote by F−1
θ its generalized inverse.

Definition 3.1 For a given u, 0 < u < 1, the u-level isobar from the distribution of
(R,Θ) is defined by:

Sd−1 → R∗+,

θ → F−1
θ (u) = ρu(θ).

The corresponding surface is also called isobar. See Fig. 3.1.
We suppose that for u fixed, the mapping F−1

θ is continuous and strictly positive.
So, isobars are closed surfaces included in each other for increasing levels. For bi-
variate distributions, isobars are classical curves in polar coordinates. Very different
shapes of isobars can be considered according to the choice of the distribution.

Let En = (X1, . . . ,Xn) be a sample of independent random variables with the
same distribution as X. For each 1 ≤ i ≤ n there is almost surely a unique isobar
from the distribution of R given Θ = θ which contains (Ri,Θi). We define the
maximum value in En as the point X∗

n = (R∗
n,Θ∗

n) which corresponds to the upper
level isobar. So, FΘ∗

n
(R∗

n) = max1≤i≤n Ui , with Ui = FΘi
(Ri).

We call X∗
n the isobar-maximum of X1, . . . ,Xn; see Fig. 3.2.
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Fig. 3.1 u-level isobar

Fig. 3.2 Isobar-maximum

Definition 3.2 The maximum value in X1, . . . ,Xn is defined as the point X∗
n which

belongs to the upper level surface, i.e., the surface which has a level equal to
max

1≤i≤n
Ui .

The multivariate sample X1, . . . ,Xn is then ordered according to the increas-
ing levels, U1,n ≤ · · · ≤ Un,n, of the corresponding isobar surfaces, following the
classical notation for the order statistics of unidimensional samples, and the corre-
sponding order statistics are denoted by

X∗
1,n = (

R∗
1,n,Θ

∗
1,n

)
, . . . , X∗

n,n = (
R∗

n,Θ∗
n

) = X∗
n. (3.2)

Obviously, we are not able to find this maximum value of a sample from an
unknown distribution, whereas it can be done with the farthest point from the origin
or with the fictitious point having the largest coordinates of the sample. However,
this kind of extreme value and, more generally, the extreme values obtained by orde-
ring the sample according to the levels, hold more information on the conditional
distributions tails and allow a statistic survey of the isobars.1

We are well aware that the above definition depends on the underlying distribu-
tion and in contexts with just a given data set, it cannot be applied when the data

1A paper concerning the estimation of isobars is in progress, Barme-Delcroix and Brito (2011).
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generating distribution is not known. This is usually a deficiency but in this con-
tribution, where we want to check if a given distribution is suitable for modeling a
data structure, we are able to use this natural notion of ordering since we suppose
that the distribution is known.

Remark 1 Note that the maximum value is a sample point and is defined intrin-
sically, only with the underlying distribution, taking into account the shape of the
distribution.

Remark 2 Since for all θ and for all 0 ≤ r ≤ 1, P(FΘ(R) ≤ r | Θ = θ) =
Fθ(F

−1
θ (r)) = r , the variables Ui = FΘi

(Ri) are independent and uniformly dis-
tributed over [0,1].

Remark 3 We could imagine a more general way to order the sample. For example,
by considering an increasing sequence of Borelians, according to a criterion to de-
fine, and not necessarily related to the Euclidean norm. But it is not the purpose of
this contribution.

Remark 4 The definition depends of the choice of the origin and the equations of
isobars change and then the ordering completely changes if we change the origin.
For a given data set one can estimate the origin by using the barycenter of the sample
points. But for many practical situations the origin is given in a natural way (for
instance, consider a rescue center and the accidents all around).

3.3 Weak Stability of Multivariate Extremes
and Outlier-Resistance

In Barme-Delcroix and Gather (2002), we have given a framework and definitions of
the terms outlier-proneness and outlier-resistance of multivariate distributions based
on our definition of multivariate extreme values. As for the univariate case, Green
(1976), Gather and Rauhut (1990), we have classified the multivariate distributions
w.r.t. their outlier-resistance and proneness. Characterizations have been provided
in terms of the distribution functions. Let us recall the main results. We start with
defining the weak stability of the extremes. It has been shown in Delcroix and Jacob
(1991) that the conditional distribution of R∗

n given Θ∗
n is Fn

θ , hence the distributions
of (R∗

n,Θ∗
n) and (R,Θ) have the same set of isobars which led to the following

definition of the weak stability (or stability in probability) of the sequence (X∗
n)n.

Definition 3.3 The sequence (X∗
n)n = ((R∗

n,Θ∗
n))n of the isobar-maxima is called

stable in probability if and only if there is a sequence (gn)n of isobars satisfying

R∗
n − gn

(
Θ∗

n

) P→ 0. (3.3)
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Fig. 3.3 Isobar containing an arbitrarily point x1 = (1, θ1)

Following Geffroy (1958), we will see in this section that it is possible to choose

gn(θ) = F−1
θ (1 − 1

n
). Examples are given after Theorem 3.2.

We suppose now that Fθ is one-to-one. It is convenient to fix arbitrarily a point
x1 = (1, θ1), θ1 in Sd−1. For every point x = (r, θ1) , there is a unique surface
g(θ, r), θ in Sd−1, containing x, which has a level denoted by u(r) and which is
given by

g(θ, r) = ρu(r)(θ) = Fθ
−1(Fθ1(r)

)
. (3.4)

Note that g(θ1, r) = r ; see Fig. 3.3. Moreover, the mapping r → u(r) from R∗+
into R∗+ is increasing and one-to-one.

The following conditions (H) and (K) will be needed.
(H) There exist 0 < α ≤ β < ∞ such that for all θ in Sd−1 and for all r > 0:

α ≤ ∂g

∂r
(θ, r) ≤ β.

(K) For all ε > 0, there exists η > 0 such that for all r > 0:

sup
θ

{
g(θ, r + η) − g(θ, r − η)

}
< ε.

Clearly, (H) implies (K).

Remark 5 Condition (H) entails a regularity property of the isobars following from
the mean value theorem:

For all β0 > 0, there exists η = β0
α
β

> 0 and for all r > 0, there exist two isobars

hβ0(θ, r) = g(θ, r + β0
β

) and h̃β0(θ, r) = g(θ, r − β0
β

) such that for all θ ,

g(θ, r) − β0 < h̃β0(θ, r) < g(θ, r) − η < g(θ, r) + η < hβ0(θ, r) < g(θ, r) + β0.

Note that η does not depend on r .

For all i ≥ 1, let Wi be the intersection of the half axis
−→
0θ1 containing the

point x1 = (1, θ1) and the isobar-surface containing Xi ; Wi = F−1
θ1

(FΘi
(Ri)). See
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Fig. 3.4 The order statistics
of the real sample
W1, . . . ,Wn

Fig. 3.4. In fact, (Wn)n is a sequence of i.i.d. variables from the distribution Fθ1 . As
usual W1,n ≤ · · · ≤ Wn−1,n ≤ Wn,n denotes the corresponding order statistics for the
sample (W1, . . . ,Wn). Let gn,n denote the isobar containing X∗

n = Xn,n and Wn,n,
and gn−1,n the isobar containing Xn−1,n and Wn−1,n.

The next theorem ensures that the concept of ordering multivariate data according
to the isobar surfaces yields analogous results to the univariate case, Barme-Delcroix
and Gather (2002).

Theorem 3.1

1. Under condition (K) the sequence (X∗
n)n is stable in probability if (Wn,n)n is

stable in probability.
2. Under condition (H) the sequence (Wn,n)n is stable in probability if and only if

(X∗
n)n is stable in probability.

3. Consider for some fixed integer 1 ≤ α ≤ n the sequence (Xn−α+1,n)n, this being
defined by ordering the sample according to increasing levels by

X1,n, . . . ,Xn−α+1,n, . . . ,Xn,n = X∗
n.

Let (H) be satisfied. Then (X∗
n)n is stable in probability if and only if (Xn−α+1,n)n

is stable in probability.

As an application of the weak stability of extreme values of multivariate samples
we can now define the notion of Absolute Outlier-Resistance. Recall that Green
(1976) called a univariate distribution F absolutely outlier-resistant if for all ε > 0:

lim
n→+∞P(Wn,n − Wn−1,n > ε) = 0,

where W1,n ≤ · · · ≤ Wn−1,n ≤ Wn,n are the usual univariate order statistics of
W1, . . . ,Wn, distributed identically according to F .

Following Green (1976), we can now propose the definition of multivariate Ab-
solute Outlier-Resistant distributions.
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Definition 3.4 The distribution of the multivariate r.v. (R,Θ) is absolutely outlier-
resistant (AOR), if and only if for all θ :

gn,n(θ) − gn−1,n(θ)
P→ 0. (3.5)

For a real sample W1, . . . ,Wn it has been shown in Geffroy (1958) and Gnedenko

(1943), that (Wn,n)n is stable in probability if and only if Wn,n − Wn−1,n
P→ 0. The

following theorem, Barme-Delcroix and Gather (2002), gives an analogous result
and a characterization of weak stability by the tail behaviour of the underlying dis-
tribution. Let F̄θ = 1 − Fθ .

Theorem 3.2 Let condition (H) be satisfied. All the following statements are equiv-
alent:

1. The distribution of (R,Θ) is AOR.
2. (X∗

n)n is stable in probability.
3. For every fixed integer 1 ≤ α ≤ n, (Xn−α+1,n)n is stable in probability.
4. There exists θ1 such that limx→+∞ F̄θ1(x)/F̄θ1(x − h) = 0, for all h > 0.
5. For all θ , limx→+∞ F̄θ1(x)/F̄θ1(x − h) = 0, for all h > 0.

6. Wn,n − Wn−1,n
P→ 0.

7. (Wn,n)n is stable in probability.
8. For all θ , the distribution Fθ is AOR.
9. There exists θ1 such that the distribution Fθ1 is AOR.

Other characterizations can be found in Barme-Delcroix and Gather (2002).

Example 1 In the first example, Fθ(r) = (1 − e−α(θ)rm
)1{r>0}, where m > 0, and α

is a continuous strictly positive function over [0,2π] such that α(0) = α(2π). For
a fixed θ1 and for every r > 0, the u(r)-level isobar g(θ, r) is defined, according
to (3.4), by

g(θ, r) =
(

α(θ1)

α(θ)

)1/m

r,

so that (H) is fulfilled. Theorem 3.2(5) shows that (X∗
n)n is stable in probability if

and only if m > 1.

Example 2 For a bivariate Gaussian centered distribution with covariance matrix(
σ 2 0
0 τ 2

)
, we have g(θ, r) = rφ(θ) with φ(θ) = 1√

2σ
( cos2θ

2σ 2 + sin2θ

2τ 2 )
−1
2 and the iso-

bars are the density contours. Note that condition (H) is satisfied. For σ = τ = 1
the distribution is spherically symmetric and the isobars are circles. Hence, in this
particular case, the ordering of the sample is the ordering of the norms of the sample
points. In this example, Fθ(r) = 1 − exp(−r2φ(θ)). Following Theorem 3.2(5) we
conclude that the distribution is AOR.

Similarly, we can define outlier-prone multivariate distributions, that is distribu-
tions such that there exist observations far apart from the main group of the data.
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Definition 3.5 The distribution of (R,Θ) is called absolutely outlier-prone, (AOP),
if and only if for all θ there exist ε > 0, δ > 0 and an integer nθ , such that for all θ

and for all n ≥ nθ :

P
(
gn,n(θ) − gn,n−1(θ) > ε

)
> δ. (3.6)

That is, for all θ , the distribution Fθ is AOP.

Theorem 3.3 Let condition (H) be satisfied. All the following statements are equiv-
alent:

1. The distribution of (R,Θ) is AOP.
2. For all θ , there exist α > 0, β > 0 such that for all x

F̄θ (x + β)

F̄θ (x)
≥ α.

3. There exist θ0, α0 > 0 and β0 > 0 such that for all x

F̄θ0(x + β0)

F̄θ0(x)
≥ α0.

4. There exists θ0 such that Fθ0 is AOP.

See Barme-Delcroix and Gather (2002) for more details.

3.4 Records for a Multidimensional Sequence

Let {Xn = (Rn,Θn),n ≥ 1} be a sequence of independent, identically distributed
random variables as X = (R,Θ) in the previous sections, with common condi-
tional distribution function Fθ(·). According to the definitions of Sect. 3.2, we
associate the sequence of the levels, that is the sequence of the independent, uni-
formly distributed over [0,1] variables {Un = FΘn(Rn),n ≥ 1}. As usual, Resnick
(1973a), Galambos (1987), we can define the notion of record values for the se-
quence {Un,n ≥ 1}. Uj is a record value for this sequence if and only if:

Uj > max(U1, . . . ,Uj−1),

with the convention that U1 is a record value.
The indices at which record values occur are given by the random variables

{Ln,n ≥ 0} defined by

L0 = 1,

and

Ln = min(j : j > Ln−1,Uj > ULn−1).

The distribution function for a uniform variable being continuous, the variables
Ln are well defined with probability one.
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Note that ULn = max(U1, . . . ,ULn).
Now we can define the record values for the multidimensional sequence {Xn =

(Rn,Θn),n ≥ 1}, since the sequence has been ordered according to the increasing
levels.

Definition 3.6 The record values for the sequence {Xn = (Rn,Θn),n ≥ 1} are de-
fined by:

{
XLn = (RLn,ΘLn), n ≥ 0

}
. (3.7)

So the definition of the record values for the sequence of the levels {Un,n ≥ 1}
induces the definition of the record values for the sequence {Xn = (Rn,Θn),n ≥ 1}.
The definition seems relevant because it is based on the probability to be at a certain
distance from the origin, given the angle. Thus, we consider the intrinsic properties
of the multivariate distribution.

Lemma 1 For all n ≥ 0, The variables ΘLn and Θ are identically distributed.

Proof The record value of the sequence {Xn,n ≥ 1}, associated with the record time
Ln is almost surely defined as the point XLn with polar representation

(RLn,ΘLn) =
+∞∑

i=1

(Ri,Θi)1Ei
, (3.8)

where

Ei =
{
FΘi

(Ri) = ULn = max(U1, . . . ,ULn) = Ln
max
j=1

FΘj
(Rj )

}
. (3.9)

As noticed in Remark 2, P(FΘ(R) ≤ r | Θ = θ) = r , and for each j ≥ 1 the
variables Θj and Uj = FΘj

(Rj ) are independent. It follows that {Θj ; j ≥ 1} and
{FΘj

(Rj ); j ≥ 1} are independent. Therefore for each j ≥ 1, Θj and 1Ej
are in-

dependent, since the variables Lj are σ(Uj )—measurable. Consequently, for any
Borel set C of Sk−1:

P(ΘLn ∈ C) = P

(+∞∑

i=1

Θi 1Ei
∈ C

)

=
+∞∑

i=1

P(Θi ∈ C;Ei )

=
+∞∑

i=1

P(Θi ∈ C)P (Ei ) = P(Θ ∈ C). (3.10)

�

Lemma 2 Any isobar from the distribution of R given Θ is also an isobar from the
distribution of RLn given ΘLn .
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Proof Let g(θ) = F−1
θ (u) be an u-level isobar from the distribution of R given

Θ = θ and let B be the event

B = {
RLn ≤ F−1

ΘLn
(u)

}
.

Since B = ⋂Ln

i=1{FΘi
(Ri) ≤ u} = {max(U1, . . . ,ULn) ≤ u}, B is independent of

{Θj , j ≥ 1}. Thus for any Borel set C of Sd−1, (3.10) implies:

P(ΘLn ∈ C;B) =
+∞∑

i=1

P(Θi ∈ C;Ei;B) =
+∞∑

i=1

P(Θi ∈ C)P (Ei;B)

= P(ΘLn ∈ C)P (B).

Thus ΘLn and 1B are independent; therefore,

P
(
RLn ≤ F−1

ΘLn
(u) | ΘLn = θ

) = P(B) =
+∞∑

k=1

P

(
Ln⋂

i=1

FΘi
(Ri) ≤ u;Ln = k

)

=
+∞∑

k=1

ukP (Ln = k). �

3.5 Weak Stability of Multivariate Records

The results of the previous section state that both the distributions of R given Θ

and the distributions of RLn given ΘLn have the same set of isobars. Hence, we deal
only with the formers. In the sequel, any u-level isobar from the distribution of R

given Θ is labelled as u-level isobar. So we may give the following definitions.

Definition 3.7 The sequence (XLn)n = ((RLn,ΘLn))n of the multidimensional
records is stable in probability if and only if there is a sequence (gn)n of isobars
satisfying

RLn − gn(ΘLn)
P→ 0. (3.11)

We can also define the relative stability for the multidimensional records.

Definition 3.8 The sequence (XLn)n = ((RLn,ΘLn))n of the multidimensional
records is relatively stable in probability if and only if there is a sequence (gn)n
of isobars satisfying

RLn

gn(ΘLn)

P→ 1. (3.12)

As in Sect. 3.3, we suppose that Fθ is one-to-one. In the next theorem, it is shown
that the weak stability of the sequence of the multidimensional records (XLn)n =
((RLn,ΘLn))n can be investigated through the stability of the real sequence (WLn)n.
See Fig. 3.5. The conditions (H) and (K) will be useful again.
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Fig. 3.5 The sequence of
records

Theorem 3.4

1. Under condition (K) the sequence (XLn)n is stable in probability if the sequence
(WLn)n is stable in probability.

2. Under condition (H) the sequence (XLn)n is stable in probability if and only if
the sequence (WLn)n is stable in probability.

Proof (1) If (WLn)n is stable in probability, then there exists a sequence (wn) such

that WLn − wn
P→ 0. According to (K), for ε > 0 there exists η > 0 such that

supθ {g(θ, r + η) − g(θ, r − η)} < ε, for all w > 0. Let h
η
n(θ) = g(θ,wn + η) and

h
−η
n (θ) = g(θ,wn − η) and put g(θ,wn) = hn(θ). We have therefore

{|WLn − wn| ≤ η
} = {

h−η
n (θ1) ≤ WLn ≤ hη

n(θ1)
}

⊂ {
h−η

n (ΘLn) ≤ RLn ≤ hη
n(ΘLn)

}

⊂ {∣∣RLn − hn(ΘLn)
∣∣ ≤ ε

}

implying that RLn − hn(ΘLn)
P→ 0.

(2) Conversely, if there exists a sequence of surfaces gn such that RLn −
gn(ΘLn)

P→ 0 , denote by wn the intersection of the half axis 0θ1 with gn. According
to (H), there exist α and β such that

g(θ,wn) + λα ≤ g(θ,wn + λ) ≤ g(θ,wn) + λβ

and

g(θ,wn) − λβ ≤ g(θ,wn − λ) ≤ g(θ,wn) − λα

for all λ > 0 and all θ . Given ε > 0, it is possible to choose λ = ε/β and
η = εα/β and to take

hn(θ) = g(θ,wn + λ),

h̃n(θ) = g(θ,wn − λ).
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It follows that
{∣∣RLn − gn(ΘLn)

∣∣ ≤ η
} ⊂ {

h̃n(ΘLn) ≤ RLn ≤ hn(ΘLn)
} ⊂ {|WLn − wn| ≤ ε

}
,

which completes the proof. �

Now we can use unidimensional criteria to obtain characterizations for the
weak stability or relative stability of multidimensional records. Following Resnick
(1973a,b), let us define for all θ and for all r > 0, the integrated hazard function

Rθ (r) = − log
(
1 − Fθ(r)

)
.

Theorem 3.5 Under condition (H), the sequence (XLn)n is stable in probability if
and only if

RLn −R−1
ΘLn

(n)
P→ 0. (3.13)

Or, equivalently, if and only if there exists θ1 such that for all ε > 0,

lim
r→+∞

Rθ1(r + ε) −Rθ1(r)

R1/2
θ1

(r + ε)
= +∞. (3.14)

Or, equivalently, if and only if for all θ and for all ε > 0,

lim
r→+∞

Rθ (r + ε) −Rθ (r)

R1/2
θ (r + ε)

= +∞. (3.15)

Theorem 3.6 Under condition (H), the sequence (XLn)n is relatively stable in prob-
ability if and only if

RLn

R−1
ΘLn

(n)

P→ 1. (3.16)

Or, equivalently, if and only if there exists θ1 such that for all k > 1,

lim
r→+∞

Rθ1(kr) −Rθ1(r)

R1/2
θ1

(kr)
= +∞. (3.17)

Or, equivalently, if and only if for all θ and for all k > 1,

lim
r→+∞

Rθ (kr) −Rθ (r)

R1/2
θ (kr)

= +∞. (3.18)

Remark 6 These theorems imply that a convenient sequence of isobars satisfying
the conditions (3.11) and (3.12) of Definitions 3.7 and 3.8 is given by gn(θ) =
R−1

θ (n) = F−1
θ (1 − exp (−n)).

Example 3 Recall that in the first example, Fθ(r) = (1 − e−α(θ)rm
)1{r>0}, where

m > 0, and α is a continuous strictly positive function over [0,2π] such that α(0) =
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α(2π). For a fixed θ1 and for every r > 0, the u(r)-level isobar g(θ, r) is defined,
according to (3.4), by

g(θ, r) =
(

α(θ1)

α(θ)

)1/m

r,

and (H) is fulfilled. In this case Rθ (r) = α(θ)rm; so condition (3.14) or (3.15) of
Theorem 3.5 is satisfied for m > 2 and the sequence (XLn)n is stable in probability
for m > 2. Moreover, for all m > 0, condition (3.17) or (3.18) is satisfied and the
sequence (XLn)n is relatively stable in probability for all m > 0.

Example 4 For a bivariate Gaussian centered distribution with covariance matrix(
σ 2 0
0 τ 2

)
, we have g(θ, r) = rφ(θ) with φ(θ) = 1√

2σ
( cos2 θ

2σ 2 + sin2 θ

2τ 2 )
−1
2 . We know

already that condition (H) is satisfied. In this example, Fθ(r) = 1 − exp(−r2φ(θ))

and Rθ (r) = r2φ(θ) and we can easily check the conditions of Theorem 3.5 and
conclude that the sequence (XLn)n is stable in probability.

3.6 Conclusions

We have shown that, by using the isobar surfaces approach, the multivariate weak
stability properties for the extreme values and record values may be investigated in
a univariate way. We could now focus, in a future work, on finding characterizations
of the multivariate a.s. stability of the record values as it has been done for the
intermediate order statistics in Barme-Delcroix and Brito (2001).
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