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Abstract. The predictability of many complex systems is limited by
computational irreducibility, but we argue that the nature of computa-
tional irreducibility varies across physical, biological and human social
systems. We suggest that the computational irreducibility of biological
and social systems is distinguished from physical systems by functional
contingency, biological evolution, and individual variation. In physical
systems, computationally irreducibility is driven by the interactions,
sometimes nonlinear, of many different system components (e.g., par-
ticles, atoms, planets). Biological systems can also be computationally
irreducible because of nonlinear interactions of a large number of system
components (e.g., gene networks, cells, individuals). Biological systems
additionally create the probability space into which the system moves:
Biological evolution creates new biological attributes, stores this accu-
mulated information in an organism’s genetic code, allows for individual
genetic and phenotypic variation among interacting agents, and selects
for the functionality of these biological attributes in a contextually de-
pendent manner. Human social systems are biological systems that in-
clude these same processes, but whose computational irreducibility arises
as well from sentience, i.e., the conscious perception of the adjacent pos-
sible, that drives social evolution of culture, governance, and technology.
Human social systems create their own adjacent possible through the cre-
ativity of sentience, and accumulate and store this information culturally,
as reflected in the emergence and evolution of, for example, technology.
The changing nature of computational irreducibility results in a loss of
predictability as one moves from physical to biological to human social
systems, but also creates a rich and enchanting range of dynamics.
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1 Introduction

Systems change through time–whether the system of interest is a galaxy, a forest
ecosystem, a social network, or a circulatory system. This continuous process of
change in the system state can be thought of as computation [35]: the state of the
system is updated based on its current and past states. In a forest, for example,
the growth and recruitment of trees is dependent on the spatial arrangement
of trees through processes such as competitive interactions, light shading, and
seed dispersal as well as environmental externalities [4]. In some systems, pre-
cise predictions of the future state of the system can be made without having
to perform the intervening computations. In these systems, prediction is possi-
ble because simplified models exist that can be used to bypass the intervening
computations intrinsically performed by the system . Astronomical models, for
example, can predict the spatial and temporal distribution of sunlight on earth,
and describe the past orbital forcing of the climate system [20]. In other systems,
like a forest ecosystem, predicting the detailed state of the system is very difficult
without allowing the system to update itself on its own characteristic time scale
[3]. Systems that require the computation of intervening system states on their
characteristic time scale in order to predict future states are computationally
irreducible. Computational irreducibility therefore implies the absence of simpli-
fying models that can reproduce future system states without information loss.
The dynamics of a system that is computationally irreducible cannot be known
without allowing for the evolution of the system on its own time scale. While
any process that is computationally irreducible may seem to imply an equivalent
degree of unpredictability a priori, we suggest that this is not the case. We argue
that the processes that drive computational irreducibility differ across physical,
biological and social systems, and that these differences result in some forms
of computational irreducibility being ’more irreducible’ than others. Computa-
tional irreducibility does not imply that predictions are impossible, but that they
come at the cost of information loss. In cellular automata, for example, cells can
be spatially aggregated into larger units with an associated set of updating rules
in a process of coarse-graining [18] [19]. Prediction in some computationally ir-
reducible systems is possible through coarse-graining, but comes at the cost of
information loss through spatial and temporal averaging. We suggest, then, that
gains in prediction require increasing information loss in physical, biological,
and human social systems, and thus some systems are more computationally
irreducible than others. We argue that the basis for these differences lie in the
different processes operating in physical, biological, and human social systems.

2 Physical Systems

Physics has been particularly successful at prediction. Physicists, for example,
were able to predict the existence of black holes from a singularity in the equa-
tions describing the physical system [31] [32]. Engineers routinely use the laws
of physics to design and build skyscrapers, bridges, airplanes, and to send space-
craft to distant planets, and these efforts are usually successful. We don’t mean
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to imply that physics is axiomatic and its laws universal but rather that, while
mathematical representations of physical laws may be only approximate descrip-
tions of underlying physical reality, the approximations can be quite good. The
approximate laws of physics seem to be much more useful for prediction than
the approximate laws of biological or human social systems.

We argue that physical systems tend to be more predictable than living sys-
tems because computational irreducibility in these systems is driven by a smaller
set of less complex processes. Computational irreducibility in physical systems
largely results from the interactions of particles or objects governed by a fixed
set of rules, analogous to simple cellular automata [35]. Physical systems can be-
come computationally irreducible with a relatively small number of interacting
objects, e.g., the three body problem [35], and systems with large numbers of in-
teracting components are likely to be computationally irreducible. The evolution
of a large volume of a gas, for example, may be computational irreducible even
as the gas molecules interact with each other and their surrounding environment
according to known physical laws. An approximate, statistical description of the
mean state of a gas is still possible, however, without an exact description of the
velocities and locations of each molecule: the temperature and pressure of a gas
can be described using the ideal gas law. Physical systems that are computation-
ally irreducible can often become predictable from a macro-level perspective due
to the averaging of a very large number of separate interactions, albeit with the
loss of information. This is analogous to the coarse-graining of cellular automata
described earlier.

The computational irreducibility of physical systems is related to the Halt-
ing Problem in a Universal Turing Machine [34]. A computation is said to be
incompressible when the sequential behavior of a computer program cannot be
computed in any shorter way than to allow the program to run and note its
successive states. The central features of a Turing machine include a head with
a set of pre-stated symbols standing for internal states, a tape marked in squares
of perhaps infinite length, a prestated alphabet of symbols (e.g., 0 and 1) that
can be read from and written to the tape by the reading head [10]). Given a set
of symbols on the tape, and the reading head over one square with a symbol
written on it, the head reads from the tape and, depending upon the symbol,
its internal state will not move or move one square to the left or right, erase the
symbol on the square below it, write a symbol on that square and go from one
internal state to another internal state. Then this set of operations will iterate.
Given any initial state of the tape and reading head, the next states of the tape
and head can be computed for 1, 2, 3, . . . , N finite number of steps ahead. A
Turing machine is a subset of classical physics.

We define the computationally irreducibility of physical systems and other
Turing-like systems as first order computationally irreducible. This is the sim-
plest mode of computational irreducibility in that the set of rules governing sys-
tem evolution and the possible states of the particle or node are fixed, e.g., the
set of potential states of a cell in a simple automaton, and do not change as the
system itself evolves. We suggest that coarse-graining approaches to prediction
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would be most effective in systems with first order computational irreducibility,
i.e., they would gain greatest predictive capacity with minimal information loss.
We argue that biological systems and human social systems have a different set
of processes governing system evolution than those found in physical systems
and associated with first order computational irreducibility.

3 Biological Systems

Biological systems are computationally irreducible for qualitatively different
reasons than physical systems. While the same processes that yield first or-
der computational irreducibility in physical systems also operate in biological
systems, i.e., large number of interacting components, the set of rules govern-
ing these interactions and the potential states of the system components (e.g.,
cells in a CA, particles, organisms) evolve along with the overall state of the
system. We refer to this as second order computational irreducibility–a more
complex computational irreducibility than the first order computational irre-
ducibility. The second order nature of the computational irreducibility of biolog-
ical systems–meaning that the rules and set of states of fundamental units can
evolve–follows from nearly universal attributes of biological systems: i) contin-
gency of the function and selective value of biological attributes on interactions
with other organisms and their environment, ii) the creation of new attributes
and functions through biological evolution, and iii) individual variability in bio-
logical attributes even among organisms of the same species. Note that we use
the term ‘biological evolution’ to refer to Darwinian evolution in biological sys-
tems as distinguished by ‘system evolution’, which describes changes in the state
of a system through time, although biological evolution often leads to system
evolution of biological systems.

Functional contingency. Biological attributes have a set of potential functions,
and the set of these functions is contextually dependent on interactions with
other organisms and the environment. A subset of the functions associated with
an attribute may be useful in the current context of an organism and its inter-
actions with other organisms and its environment, while other function of an
attribute may be useful in other future (or past) contexts. Feathers in dinosaurs,
for example, may have initially functioned in thermal regulation and only later
provided additional functionalities that were coopted for flight [6] [33]. The swim
bladder, a sac found in some fish that is partly filled with air and partly with wa-
ter and the ratio of which determines and adjusts neutral buoyancy in the water
column, is believed to have arisen from the lungs of lung fish, providing a new
functionality to an existing structure [29]. Even the human capacity for reason
and logic may have been a new functionality of biological traits with origins in
the context of group dynamics of social organisms [26]. Some components of the
set of functions of existing biological attributes might have causal consequences
that are of selective significance in new environments. Functions of biological
structures that are of no selective advantage in the current environment but
that become selectively advantageous in later environments, typically with a



3 Biological Systems 83

new functionality, are referred to as pre-adaptations or exaptations. We assert
that the potential functions of biological attributes are both indefinite in num-
ber and unorderable, and, importantly, that no algorithm can list them all. We
argue that this means that the set of rules governing system evolution changes
and contributes to the second order computational irreducibility of biological
systems.

Biological evolution. Biological evolution is a central process that distinguishes
the evolution of the biosphere from other physical systems [24]. Biological sys-
tems create and accrue attributes such as new structures, biochemical pathways,
gene regulatory networks, etc. through biological evolution. These attributes
provide the basis for biological function and exaptations of the previous section.
The process of biological evolution is immensely creative and unpredictable, and
forms a positive feedback loop that leads to further biological evolution. The
evolution of feathers in dinosaurs and their ultimate use in flight resulted in
the emergence of a completely new set of ecological niches, and an associated
proliferation of species of birds. The emergence of flight in birds, in turn, has
allowed for the long range transportation of seeds and organisms to islands and
inland water bodies (e.g., [25]), opening even new ecological niches, providing
the basis for new functionality of existing biological structure, and for continued
evolutionarily development of biological attributes. Seabirds are, for example,
responsible for substantial nutrient flows from oceans to terrestrial ecosystems,
and their presence or absence can determine whether a landscape is in one of
two alternative stable states–a grassland or closed shrubland [9].

Individual variation. Biological systems are distinguished from purely physical
systems by individual variation of agents. Individual organisms often differ from
other individuals of the same species [7]. Much of this variation is derived from
underlying genetic differences and these genetic differences provide the basis for
differences in biological attributes, e.g., behaviors, functions, and environmen-
tal responses and the raw material for biological evolution. Individual variation
within species has been postulated to be a key mechanism driving patterns of
and maintaining species diversity in ecological communities [4]. Species phenol-
ogy, for example, describes the seasonal timing of demographic processes such as
flowering in trees (e.g., [27]). Individual variation in response to environmental
cues (e.g., day length, temperature) means that some trees will bud out and
flower earlier in the spring than others. An earlier phenology could increase the
likelihood of seeds colonizing and capturing new available (empty) sites in a
forest or, alternatively, increase the risk of being adversely impacted by a late
spring frost. The consequences of individual variation, thus, depend on the en-
vironmental and ecological context. Individual variability means that the rules
for updating a system can vary from individual to individual even if the envi-
ronmental context is identical. In a cellular automaton, this is analogous to cell
to cell variation in the updating rule for a specific cell type, for instance, among
different white cells even with identical neighborhoods.
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Synthesis. Biological evolution creates attributes of organisms and the biologi-
cal system creates the context that determines the functionality and utility of
these attributes. Biological evolution led to photosynthesis, and photosynthesis
then resulted in abundant free oxygen in the atmosphere (e.g., [30] [21]. Biolog-
ical attributes that enabled aerobic respiration in the presence of free oxygen
were advantageous in this new context. Free oxygen and aerobic respiration,
subsequently allowed for a wide array of niches that did not exist before and
these niches could be occupied by species with new or pre-adapted functional
attributes (e.g., [28]). Biological systems create and modify their own adjacent
possible through construction of or extension of biological function or niche space
that is immediately adjacent to current niche space. The creation of new bio-
logical opportunities allows for the emergence of new organisms, new function-
alities, and a new adjacent possible. This process is enormously creative and
unpredictable a priori. Biological systems are thus second order computation-
ally irreducible, because the rules for updating and the potential states of the
system change as the system evolves. The evolution of the biosphere is non-
algorithmic. We claim that no algorithm can pre-state all possible biological
attributes, their potential functions, or how these functions might be of selective
advantage in potential future environments. The unpredictability of biological
systems is thus radically unlike the computational incompressibility of physical
systems, the Halting problem on a universal Turing machine or, a fortiori, unlike
the irreducibility of cellular automata.

4 Human Social Systems

Human social systems are a specialized case of a biological system with an ad-
ditional source of computational irreducibility: sentience. We use ‘sentience’ to
refer to the state of being conscious, self-aware, and having free will. Humans
are sentient beings that are able to perceive their own possibilities within the
context of their environment. A person might, for instance, conceive of a network
of linked computers that would later become the internet and allow for the world
wide web. The creation of the internet and world wide web then provides the ba-
sis for other innovations that are dependent on the existence of the internet, e.g.
social networking websites, cloud computing, etc. The creation of the internet
allowed for the possibility of these subsequent innovations–the internet resulted
in a new and expanded adjacent possible. All of these innovations–the internet,
social networking websites, and cloud computing–require a person(s) that imag-
ined or perceived the possibility of these innovations in a given context. Similar
sequences of creative expansion of the adjacent possible can be found in many
contexts outside of technology–from music and visual art to the development of
law and systems of governance. Sentience thus acts to create what is possible
adjacent to what currently exists in a manner analogous to biological evolution,
and this process proceeds in a positive, self-reinforcing feedback loop: Innovation
creates the opportunity for more innovation.

Sentience and the perception of possibility distinguish the computational ir-
reducibility of human social systems from physical and other biological systems.
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The processes that contribute to the computational irreducibility of physical
and biological systems also apply to human social systems, i.e., interactions
among many system components, biological evolution, and individual variation,
functional contingency. Sentience operates in addition to these processes and
sets the computational irreducibility of human social systems apart from these
other systems. We thus characterize human social systems as having third order
computational irreducibility. Third order computational irreducibility is distin-
guished by the sentient perception of what is possible in a given context, and
drives the evolution of technology, economics, governance, and other components
of the human social system. We expect that human social systems will be less
predictable than biological or physical systems, meaning that predictive gains
from coarse-graining will result in larger information loss than occurs in these
other systems.

In the context of human social systems, the adjacent possible is related to the
concept of affordances. Affordances are the attributes of an object or environ-
ment that allow an action to be performed [12]. Affordances are action possibil-
ities that humans perceive as, for example, the many potential uses of a screw
driver (e.g., turning a screw, opening a can, puncturing a tire). Affordances are in
many ways analogous to the process of biological evolution ‘discovering’ the func-
tion of attributes of organisms in the context of an organism’s environment. The
relationships between humans and their environment can thus lead to perceived
possibilities, actions, and cognition, and is dynamic, reciprocal, and contextual
[23]. While our discussion has focused on individuals and consciousness, human
social systems operate across hierarchical levels of structure. Social systems in-
clude individuals, small groups of people, more expansive social organizations
and institutions, and networks of organizations [22]. Each of these levels of social
organization contributes to the computational irreducibility of social systems,
but the sentience of individuals–and the inherit variability among individuals–is
the defining process that distinguishes human social systems from other purely
biological systems. The computational irreducibility that stems from sentience
is compounded by the interactions between and among the other components
of social systems. The agency of an individual person can affect higher levels of
social organization (e.g., through leadership and contagion of beliefs), but social
groups and organizations also impact the actions and identities of individuals.
These feedbacks and linkages between individuals and groups have likely been
made stronger and more fluid with the advent of social media, and are central to
understanding and predicting trajectories of human social systems. Lastly, the
role of culture in accumulating and transferring information among individuals
is a central feature of human social systems that is akin to information storage
in the genetic code in biological systems. Challenges. Designing algorithms for
essentially non-algorithmic problems has been problematic since the onslaught
of Turing-complete machines (e.g., [8]). In human social systems, the problem of
framing affordances has not yet been programmed. Whether it is programmable
or not is a question that is central to the field of computational complexity,
artificial intelligence and robotics. Agent based models (ABMs) have opened up
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new vistas of scientific discovery to simulate decision-making by heterogeneous
agents in artificial societies (e.g. [13]), but there are significant limits to the al-
gorithmic approach for simulating both creative decision making by intelligent
agents in rapidly shifting environments and social dynamics, a problem that was
even acknowledged by Turing [10]. Fundamental assumptions that are ingrained
in each algorithm about the behavioral rules, creative decision-making, learn-
ing, treatment of uncertainty and so forth, constrain the modeling of emergence,
self-organization and adaptation in complex social systems. Different types of
algorithms and Turing-complete machines such as agent based models, genetic
algorithms and artificial neural networks, have opened up new vistas for mod-
eling creative decision making in finite, discrete, computational steps (e.g., [17]
[16] [14]). Human social systems with heterogeneous agents with the capability
for creative decision making in rapidly shifting social environments may signifi-
cantly limit the potential for algorithms to model and predict the trajectory of
these systems. Our understanding of emergence, self-organization and adapta-
tion in complex systems populated by sentient agents that undertake creative
decision-making is limited by algorithms.

5 Conclusions

The limits to predictive capacity imposed by computational irreducibility is in-
creasingly important as we confront complex and interlinked problems that in-
corporate natural and human social systems. Predicting the trajectory of earth’s
climate system, for example, is an important but difficult problem because it
incorporates human social, biological, and physical systems. Computational ir-
reducibility is an inevitable feature of complex systems, but we argue that not all
forms of computational irreducibility are equivalent. The underlying processes
that lead to computational irreducibility and the potential for gains in predictive
capacity vary across physical, biological, and social systems. Physical systems
have the simplest kind of computational irreducibility, which we define as first
order computational irreducibility, in which neither the set of potential states
nor the rules for updating the states change as the system evolves. The potential
for system prediction is likely to be the greatest with first order computational
irreducibility but with the loss of information. Biological systems have a more in-
transigent computational irreducibility because the potential system states and
updating rules change as the system evolves. Functional contingency, biologi-
cal evolution, and individual variation are three underlying processes that lead
to this second order computational irreducibility of biological systems. Humans
perceive and create their own adjacent possible and this sentience leads to human
social systems being characterized by third order computational irreducibility.
The increasingly difficult forms of computational irreducibility across physical,
biological, and human social systems, and the low predictive capacity found in
these living systems is offset by their remarkably rich, diverse, and creative dy-
namics. Although we argue that ultimately, the evolution of the biosphere is
non-algorithmic, there is much to be learned in the pursuit of the frontier of
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first, second and third order computational irreducibility, and this will challenge
computational modelers to reach the outer limits of computational irreducibility.
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