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Stephen Wolfram declared computer experiments with pattern formation of cel-
lular automata as “new kind of science” (NKS). It is obviously a great merit
of NKS to highlight the experimental approach in the computational sciences
[26]. But we claim that even in the future quasi-empirical computer experiments
are not sufficient [12]. Cellular automata must be considered complex dynamical
systems in the strictly mathematical sense with corresponding equations and
proofs. In short, we also need analytical models of cellular automata, in order
to find precise answers and predictions in the universe of cellular automata. In
this sense, our approach goes beyond Wolfram’s NKS.

In our approach cellular automata (CA) are defined as complex dynamical
systems. The geometrical representation of the eight CA-rules as a Boolean cube
allows precise definitions of a complexity index and universal symmetries. It
can be proved that the 256 one-dimensional cellular automata are classified by
local and global symmetry classes of cellular automata. There is an exceptional
symmetry group with universal computability which we call the “holy grail” in
the universe of cellular automata. Although the four automata of this group
are completely deterministic, their long-term behavior cannot be predicted in
principle with respect to the undecidability of Turing’s halting problem. Many
analytical concepts of complexity research (e.g., attractors, basin of attractors,
time series, power spectrum, fractality) are defined for cellular automata. But
there are also surprising phenomena in the CA-world (isles of Eden) without
analytical representation in dynamical systems.

1 Dynamics in the Universe of Cellular Automata

Because of their simplicity, rules of cellular automata can easily be understood. In
a most simple version, we consider two-state one-dimensional cellular automata
(CA) made of identical cells with a periodic boundary condition. In this case, the
object of study is a ring of coupled cells with L = I+1 cells, labeled consecutively
from i = 0 to i = I (Fig. 1(a)). Each cell i has two states ui ∈ {0, 1}, which are
coded by the colors blue and red, respectively. A clock sets the pace in discrete
times by iterations or generations. The state ut+1

i of all i at time t+ 1 (i.e. the
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next generation) is determined by the states of its nearest neighbors ut
i−1, u

t
i+1,

and itself ut
i at time t (Fig. 1(c)), i.e. by a Boolean function ut+1

i = N(ut
i−1,

ut
i, u

t
i+1), in accordance with a prescribed Boolean truth table of 8 = 23 distinct

3-input patterns (Fig. 1(d)).

1.1 From Simple Local Rules to Global Complex Patterns

These eight 3-input patterns can nicely be mapped into the eight vertices of a
toy cube (Fig. 1(b)), henceforth called a Boolean cube [3]. The output of each
prescribed 3-input pattern is mapped onto the corresponding colors (red for 1,
blue for 0) at the vertices of the Boolean cube (in Fig. 1(d) yet unspecified).
Since there are 28 = 256 distinct combinations of eight bits, there are exactly
256 Boolean cubes with distinct vertex color combinations. Thus, we get a gallery
of picturesque toy cubes.

Fig. 1. Scheme of a two-state one-dimensional Cellular Automaton with local rule N

It is convenient to associate the 8-bit patterns of each Boolean function with
a decimal number N representing the corresponding 8-bit word, namely N =
β7 ·27+β6 ·26+β5 ·25+β4 ·24+β3 ·23+β2 ·22+β1 ·21+β0 ·20 with β ∈ {0, 1}.
Notice that since βi = 0 for each blue vertex in Fig. 1(b), N is simply obtained by
adding the weights (indicated next to each pattern in Fig. 1(b)) associated with
all red vertices. For example, for the Boolean cube shown in Fig. 2(b), we have
N = 0·27+1·26+1·25+0·24+1·23+1·22+1·21+1·20 = 26+25+23+22+21 = 110.

For the example of local rule 110, the ring and the colored vertices of
the Boolean cube are shown in Fig. 2(a)-(b). Given any initial binary bit-
configuration at time t = 0, the local rule N is used to update the state ut+1

i

of each cell i at time t+ 1, using the states of the three neighboring cells i− 1,
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Fig. 2. Example of local rule 110

i, and i + 1, centered at location i, respectively. The space-time pattern for the
initial state is shown in Fig. 2(c) for t = 0, 1, 2, . . . , 11.

In principle, one can draw and paint the patterns of cellular automata fol-
lowing these rules step by step. Modern computers with high speed and capac-
ity allow extensive computer experiments to study pattern formations of these
automata. Stephen Wolfram discovered remarkable analogies with patterns in
physics and biology [26]. In the world of cellular automata many phenomena of
the physical world seem to evolve. Some automata generate symmetric patterns
reminding us of the coloring in sea shells, skins or feathers. Other automata
reproduce rhythms like oscillating waves. Some of these automata stop their
development after a finite number of steps, independent of their initial state,
and remain in a constant color state like a system reaching at an equilibrium
state for all future steps. Some automata develop complex patters reminding us
of the growth of corals or plants, depending sensitively on tiny changes of the
initial states. This phenomenon is well-known as the butterfly-effect, when local
events lead to global effects in chaotic and unstable situations (e.g., weather and
climate). Even these chaotic patterns can be generated by cellular automata.

One can try to classify these patterns with respect to their outward appearance
like zoologists and botanists distinguishing birds and plants in taxonomies. But
sometimes, outward features are misleading. Fundamental question arises: Are
there laws of complex pattern formation for cellular automata like in nature?
Can the development of complex patterns be predicted in a mathematically
rigorous way like in physics? We argue for a mathematically precise explanation
of the dynamics in cellular automata. Therefore, they must also be characterized
by complex dynamical systems determined with differential equations like in
physics. This is, of course, beyond the scope of elementary rules of toy worlds.
But, we should keep this perspective in mind.
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1.2 Cellular Automata as Dynamical Systems

For maximum generality, each cell i is assumed to be a dynamical system with
an intrinsic state xi, an output yi and three inputs ui−1, ui, and ui+1 where ui−1

denotes the input coming from the left neighboring cell i− 1, ui denotes the self
input of cell i , and ui+1 denotes the input coming from the right neighboring
cell i+ 1 in the ring of Fig. 1(a). Each cell evolves with its prescribed dynamics
and its own time scale. When coupled together, the system evolves consistently
with its own rule as well as the rule of interaction imposed by the coupling laws.

Each input is assumed to be a constant integer ui ∈ {−1, 1}, and the output
yi converges to a constant either −1 or 1 from a zero initial condition xi(0) = 0.
Actually, it takes a finite amount of time for any dynamical system to converge
to an attractor. But, for the purpose of idealized cellular automata, each attrac-
tor is assumed to be reached instantaneously. Under this assumption and with
respect to the binary input and output, our dynamical system can be defined
by a nonlinear map which is uniquely described by a truth table of three input
variables (ui−1, ui, ui+1). The choice of {−1, 1} and not {0, 1} as binary signals
is crucial, because the state xi and output yi evolves in real time via a care-
fully designed scalar ordinary differential equation. According to this differential
equation, the output yi which is defined via an output equation yi = y(xi) tends
to either 1 or −1 after the solution xi (with zero initial state xi(0) = 0) reaches
a steady state. In this way, the attractors of the dynamical system can be used
to encode a binary truth table.

Aside from the cell’s intrinsic time scale (which is of no concern in cellular
automata), an external clocking mechanism is introduced to reset the input ui of
each cell i at the end of each clock cycle by feeding back the steady state output
yi ∈ {−1, 1} as an updated input ui ∈ {−1, 1} for the next iteration. This
mechanism corresponds to the periodic boundary condition of a one-dimensional
cellular automaton in Fig. 1(a).

Although cellular automata are concerned only with the ring’s evolutions over
discrete times, any computer used to simulate cellular automata is always a con-
tinuous time system with very small but non-zero time scale. Computers use
transistors as devices, and each cellular automata iteration involves the physical
evolution of millions of transistors with its own ui ∈ {−1, 1} intrinsic dynamics.
These transistors evolve in accordance with a large system of nonlinear differ-
ential equations governing the entire internal computer circuit and return the
desired output after converging to their attractors in a non-zero amount of time.

These considerations lead us to the important result that, even in discrete
systems like cellular automata, there are two different time scales involved. The
first one applies to the rule N while the second applies to the global patterns of
evolution. In order to understand the complex dynamics of global patterns, it is
necessary to analyze both times scales. By unfolding the truth tables of cellular
automata into an appropriate nonlinear dynamical system, we can exploit the
theory of nonlinear differential equations to arrive at phenomena based on a
precise mathematical theory, and not only on empirical observations.
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For this purpose, we substituted the binary symbol 0 by the −1, and the input
and output values 0 and 1 in the truth table of Fig. 1(d) by the real numbers
−1 and 1, respectively. An advantage of working with the numeric rather than
the symbolic truth table is the remarkable insights provided by the equivalent
Boolean cube representation. Here, the eight vertices of the cube (−1,−1,−1),
(−1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1), (1,−1, 1), (1, 1,−1) and (1, 1, 1)
are located exactly at the coordinates (ui−1, ui, ui+1) of a coordinate system
with the origin located at the center of the cube. The vertex n = 0, 1, 2, . . . , 7
corresponding to row n of the truth table is coded blue if the output is −1 , and
red if the output is 1.

The choice of {−1, 1} instead of {0, 1} as binary signals is necessary, when
the truth table is mapped onto a dynamical system where the states evolve in
real time via an ordinary differential equation which is always based on the real
number system. Each cell i is coupled only to its left neighbor cell i−1 and right
neighbor cell i+1. As a dynamical system, each cell i has a state variable xi, an
output variable yi, and three constant binary inputs ui−1, ui and ui+1 (Fig. 3).

Thus, the dynamical system is determined by a

state equation: ẋi = f(xi, ui−1, ui, ui+1)

x(0) = 0 (initial condition)

output equation: yi = y(xi)

Fig. 3. Cell as dynamical system with state variable xi, an output variable yi, and
three constant binary inputs ui−1, ui, and ui−1

Every cellular automata can be mapped into a nonlinear dynamical sys-
tem whose attractors encode precisely the associated truth table N =
0, 1, 2, 3, . . . , 255. Function f models the time-depend change of states and is
defined by a scalar ordinary differential equation of the form

ẋ = g(xi) + w(ui−1, ui, ui+1) with g(xi) � −xi + |xi + 1| − |xi − 1| .
There are many possible choices of nonlinear basis functions for g(xi) and
w(ui−1, ui, ui+1). We have chosen the absolute value function |x |= x for pos-
itive numbers x and |x |= –x for negative numbers x as nonlinear basis function,
because the resulting equation can be expressed in an optimally compact form,
and it allows us to derive the solution of the state equation in an explicit form.
The scalar function w(ui−1, ui, ui+1) can be chosen to be a composite function
w(σ) of a single variable σ � b1 ui−1 + b2 ui + b3 ui+1 with w(σ) � {z 2 ± |[z 1 ±
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|z o + σ|]|}. This function is used to define the appropriate differential equation
for generating the truth table of all 256 Boolean cubes. Thus, each rule of a cel-
lular automaton corresponds to a particular set of six real numbers { z o, z 1, z 2;
b1, b2, b3}, and two integers ±1. Only eight bits are needed to uniquely specify
the differential equation associated with each rule N of a cellular automaton.

It can be proven that once the parameters defining a particular rule N are
specified, then for any one of the eight inputs ui−1, ui, and ui+1 listed in the
corresponding truth table of N, the solution xi of the scalar differential equa-
tion will either increase monotonically from the initial state xi = 0 towards a
positive equilibrium value x̄i(n) ≥ 1, henceforth denoted by attractor Q+(n), or
decrease monotonically towards a negative equilibrium state x̄i(n) ≤ −1, hence-
forth denoted by attractor Q−(n), when the input (ui−1, ui, ui+1) is chosen
from the coordinates of vertex n of the associated Boolean cube, or equivalently,
from row n of the corresponding truth table, for n = 0, 1, 2, . . . , 7 [3]. Vertex
n is painted red whenever its equilibrium value x̄i(n) ≥ 1, and blue whenever
x̄i(n) ≤ −1, then the color of all eight vertices for the associated Boolean cube
will be uniquely specified by the equilibrium solutions of the eight associated
differential equations.

In general, we can summarize: once the parameters associated with a particular
rule of a cellular automaton are specified, the corresponding truth table orBoolean
cube, will be uniquely generated by the scalar differential equation alone. If the
output equation of the dynamical system is yi = y(xi) � 1

2 (|xi + 1|– | xi – 1|),
then yi = +1 when xi ≥ 1, and yi = –1 when xi ≤ −1. The steady-state output
at equilibrium is given explicitly by the formula yi = sgn {w(σ)} for any function
w(σ) � w(ui−1, ui, ui+1) with signum function sgn (x ) = +1 for positive numbers
x, sgn (x ) = –1 for negative numbers x and sgn (0) = 0.

For the particular w(σ) in Fig. 4 the output (color) at equilibrium is given
explicitly by the

attractor color code: yi = sgn {z2 ± |[z1 ± |z0 + σ|]|} .

Fig. 4 contains 4 examples of dynamical systems and the rules they encode, each
one identified by its rule number N = 0, 1, 2, . . . , 255. The truth table for
each rule N is generated by the associated dynamical system defined in upper
portion of each quadrant, and not from the truth table, thereby proving that
each dynamical system and the rule of the cellular automaton it encodes are one
and the same. The truth table for each rule in Fig. 4 is cast in a format with
only 22

3

= 256 distinct 1x3 neighborhood patterns. Each color picture consists
of 30 x 61 pixels, generated by a 1-dimensional cellular automaton with 61 cells
and a boundary condition with a specific rule N.

As an example, let us examine one of the rules from Fig. 4, rule 110, which
will later on be identified as the simplest universal Turing machine known to
date. With its differential equation, one can identify σ = b1 ui−1 + b2 ui + b3
ui+1 with b1 = 1, b2 = 2, and b3 = –3, and w(σ) � {z 2 ± |[z 1 ± |z o + σ|]|}
with z 2 = –2, z 1 = 0, and z o = –1. Thus, the attractor color code is explicitly
given by yi = sgn[–2 + |ui−1 + 2ui – 3ui+1 – 1)|].
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Fig. 4. Cellular automata with rules 2, 110, 150, 232 as dynamical systems. The initial
condition is x(0) = 0.

1.3 Digital Dynamics with Difference Equations

The dynamics of dynamical systems are modeled with continuous differential
equations. For computing the dynamics for digital cellular automata, a program
must use a “do loop” instruction which feedbacks the output yti of each cell at
iteration t back to its inputs to obtain the output yt+1

i at the next iteration
t+1. Using the superscripts t and t+1 as iteration number from one to the next
generation, we can express each rule N explicitly in the form of a nonlinear
difference equation with
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Fig. 5. Cellular automaton as dynamical system with difference equation

ut+1
i = sgn{z2 + c2|[z1 + c1|(z0 + b1u

t
i−1 + b2u

t
i + b3u

t
i+1)|]|},

where the eight parameters {z o, z 1, z 2; b1, b2, b3; c1, c2} are given for each rule.
Thus, the first main result is that each of 256 1-dimensional cellular automata
which were studied by Stephen Wolfram experimentally can be generated from a
single scalar nonlinear differential equation or a corresponding nonlinear differ-
ence equation with at most eight parameters. These equation are also universal
in the sense of a universal Turing machine (UTM), because we will later on see
that at least one of the 256 rules (for example, rule 110) is capable of universal
computation [4]. For rule 110 (Fig. 5), we get ut+1

i = sgn (–2+|ut
i−1+ 2 ut

i – 3
ut
i+1–1|). This kind of difference equation can be understood with elementary

knowledge in basic mathematics, although it demonstrates important features
of nonlinear dynamics.

2 Complexity in the Universe of Cellular Automata

The colored toy cubes contain all information about the complex dynamics of
cellular automata. An important advantage of the Boolean cube representation
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is that it allows us to define an index of complexity [3]. Each one of the 256 cubes
is obviously characterized by different clusters of red or blues vertices which can
be separated by parallel planes. On the other hand, the separating planes can be
analytically defined in the coordinate system of the Boolean cubes. Therefore,
the complexity index of a cellular automaton with local rule N is defined by
the minimum number of parallel planes needed to separate the red vertices of
the corresponding Boolean cube N from the blue vertices. Fig. 6 shows three
examples of Boolean cubes for the three possible complexity indices κ = 1, 2, 3
with one, two and three separating parallel planes. There are 104 local rules with
complexity index κ = 1. Similarly, there are 126 local rules with complexity index
κ = 2 and only 26 local rules with complexity index κ = 3. This analytically
defined complexity index is to be distinguished from Wolfram’s complexity index
based on phenomenological estimations of pattern formation.

2.1 Complexity Index of Cellular Automata

In the context of colored cubes of cellular automata, separability refers to the
number of cutting (parallel) planes separating the vertices into clusters of the
same color. For rule 110, for example, we can introduce two separating parallel
planes of the corresponding colored cube which are distinguished in Fig.6b by
two different colors: The red vertices 2 and 6 lie above a yellow plane. The
blue vertices 0, 4, and 7 lie between the yellow and a light blue plane. The red
vertices 3, 1, and 5 lie below the light blue plane. It is well-known that the
cellular automaton of rule 110 is one of the few types of the 256 automata which
are universal Turing machines. In the sense of Wolfram’s class 3 of computer
experiments, it produces very complex patterns [26].

An example of an automaton which can only produce very simple patterns is
rule 232. There is only one separating plane cutting the corresponding Boolean
cube for separating colored points (Fig.6a): Red vertices 3, 5, 6, and 7 lie above
a light blue plane. The blue vertices 0, 1, 2, and 4 lie below the light blue plane.
A colored Boolean cube with three parallel separating planes is shown in Fig.
6c, representing the cellular automaton of rule 150: The blue vertex 6 lies above
a green plane. The red vertices 2, 4, and 7 lie between a yellow plane and the
green plane. The blue vertices 0, 3, and 5 lie between the yellow plane and a
light blue plane. The blue vertex 1 lies below the light blue plane. Obviously, it
is not possible to separate the 8 vertices into three colored clusters and at the
same time separate them by two parallel planes, no matter how the planes are
positioned.

A rule whose colored vertices can be separated by only one plane is said to
be linearly separable. An examination of the 256 Boolean cubes shows that 104
among them are linearly separable. The remaining 152 rules are not linearly
separable. Each rule can be separated by various numbers of parallel planes.
In general, there is a unique integer κ, henceforth called the complexity index
of rule N, which characterizes the geometrical structure of the corresponding
Boolean cube, namely the minimum number of parallel planes that is necessary
to separate the colored vertices. All linearly separable rules have a complexity
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index κ=1. An analysis of the remaining 152 linearly non-separable rules shows
that they have a complexity index of either 2 or 3. For example, rule 110 has
a complexity index κ=2 whereas rule 150 has a complexity index κ=3. No rule
with complexity index κ=1 is capable for generating complex patterns, even for
random initial conditions. The emergence of complex phenomena significantly
depends on a minimum complexity of κ=2. In this sense, complexity index 2 can
be considered the threshold of complexity for 1-dimensional cellular automata.

Fig. 6. Examples of complexity index κ = 1, 2, 3 with parallel planes separating all
vertices having one color from those having a different color on the other side for rule
232 (a), rule 110 (b),and rule 150 (c)

2.2 Computational Complexity and Universal Computability

A motivation for the introduction of a complexity index is also computational
complexity. The class of cellular automata with complexity index κ = 2 contains
examples with universal computation (e.g., N = 110), but the local rules with
complexity index κ = 1 are not capable of universal computation. It follows that
κ = 2 also represents a threshold of computational complexity.

Universal computation is a remarkable concept of computational complexity
which dates back to Alan Turing’s universal machine [17]. Universal cellular
automata are well-known since Conway’s game of life [13]. A universal Tur-
ing machine can by definition simulate any Turing machine. According to the
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Church-Turing thesis, any algorithm or effective procedure can be realized by a
Turing machine. Now Turing’s famous Halting problem comes in. Following his
proof, there is no algorithm which can decide for an arbitrary computer program
and initial condition if it will stop or not in the long run. (A computer program
cannot stop if it must follow a closed loop.) Consequently, for a system with
universal computation (in the sense of a universal Turing machine), we cannot
predict if it will stop in the long run or not. Assume that we were able to do that.
Then, in the case of a universal Turing machine, we could also decide whether
any Turing machine (which can be simulated by the universal machine) would
stop or not. That is obviously a contradiction to Turing’s result of the Halting
problem. Thus, systems with universal computation are unpredictable.

Unpredictability is obviously a high degree of complexity. It is absolutely sur-
prising that systems with simple rules of behavior like cellular automata lead
to complex dynamics which is no longer predictable. We will be very curious to
discover examples of these, in principle, unpredictable automata in nature.

3 Symmetry in the Universe of Cellular Automata

A cursory inspection of the discrete time evolutions of the 256 local rules reveals
some similarity and partial symmetry among various evolved patterns. It reminds
us of more or less random observations in the natural sciences demanding for
unifying mathematical explanations with fundamental laws. The unifying theory
of physics is based on the assumption of fundamental mathematical symmetries
[8, 9]. According to this view, the variety and complexity of natural phenomena
have evolved from some few principles of symmetry. They are the “Holy Grail”
of the Universe which is sought by prominent scientists and research groups all
over the world. For the universe of cellular automata, we found the fundamental
symmetries in the gallery of Boolean cubes [5]. Thus, at least in the toy world
of cellular automata, the importance of symmetry laws can easily be imagined
and understood.

3.1 Local Equivalence of Cellular Automata

But, even in the universe of cellular automata, the situation is sophisticated. The
Boolean cubes of many different pairs of local rules seem to be related by some
symmetry transformations, such as complementation of the vertex colors (e.g.,
rules 145 and 110). Yet, their evolved patterns are so different that it is impossible
to relate them. How do we make sense of all these observations? In the case of
rule 145 and 110, the associated Boolean cubes are related by a “red - blue vertex
transformation”. It is denoted as local complementation operation TC , because
complementation is locally restricted. Intuitively, one might expect that their
respective evolved patterns must also be related by a global complementation
operation. But the intuition turns out to be wrong in general, upon comparing
the two evolved patterns (Fig. 7). It is only true in a local sense with respect to
special iterations. For example, starting from the same initial pattern (single red
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center pixel) in the first row, we find the output (first iteration) of rule 145 is
in fact the complement of that of rule 110; namely, two blue pixels for 145 and
two red pixels for 110 at corresponding locations to the left of center. All other
pixels at corresponding locations are also complements of each other.

However, the next iteration (row 3) under rules 145 and 110 in Fig. 7 are not
complements of each other. The reason is that unlike the initial input u0

i , i =
0, 1, 2, . . . , n, which are the same for both 145 and 110, the next input u1

i , i =
0, 1, 2, . . . , n (for t = 1 in row 2) needed to find the next iteration (row 3) are
different and there is no reason for the output u2

i (for t = 2) at corresponding
locations to be the complement of each other. In these cases, a pair of local rules
is equivalent only in a local sense with respect to “local in iteration time”, and
not local in the usual sense of a spatial neighborhood.

In general, we define

Local Equivalence: Two local rules N and N’ are said to be locally equivalent
under a transformation T : N → N’ iff the output u1

i of N after one iteration
of any initial input pattern u0

i can be found by applying the transformed input
T(u0

i ) to rule N’ and then followed by applying the inverse transformation T−1

: N’ → N to u1
i .

3.2 Global Equivalence of Cellular Automata

Global aspects can be observed in the evolved patterns for the rules 110, 137
(Fig. 7), 124, and 193 (Fig. 8). Despite the fact that the respective Boolean
cubes of these three rules do not seem to be related in an obvious way, their
output patterns are so precisely related that one could predict the evolved
pattern over all times t of each local rule 110, 124, 137, and 193. For example,
the evolved output pattern of rule 124 can be obtained by a reflection of that
of 110 about the center line, namely a bilateral transformation. The output of
rule 193 can be obtained by applying the complement of u0

i (i.e. blue center
pixels amidst a red background) to rule 110 and then taking the complement
of the evolved pattern from 110. The output of rule 137 can be obtained by
repeating the above algorithm for 193, and then followed further by a reflection
about the center line. It can be proved that these algorithms remain valid for
all initial input patterns. This result is most remarkable because it allows us to
predict the evolved patterns from arbitrary initial configurations of three rules
over all iterations and not just for one iteration as in the case of local equivalence.

In general, we define

Global Equivalence: Two local rules N and N’ are said to be globally equivalent
under a transformation T : N → N’ iff the output xt

i of N can be found, for any
t, by applying the transformed input T(x0

i ) to local rule N’ and then followed
by applying the inverse transformation T−1 : N’ → N to x1

i , for any t = 1, 2,
. . . .
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Fig. 7. The evolutions of rules 110 and 145 only reveal a local complement relationship
in the first iteration, but 110 and 137 reveal global symmetrical relationship

Obviously, the four rules 110, 124, 137, and 193 are globally equivalent in
the sense that the evolved patterns of any three members of this class can be
trivially predicted from the fourth for all iterations. Therefore, these four rules
have identical nonlinear dynamics for all initial input patterns and therefore
they represent only one generic rule, henceforth called an equivalence class. This
global property is not only true for four rules, but also for all rules, thereby
allowing us to partition the 256 rules into only 88 global equivalence classes. It
is convenient to identify these equivalence classes with the symbol εκm, where κ
is the complexity index and m the class number. There are 38 cellular automata
belonging to the equivalence classes ε1m with complexity index κ = 1 and m
= 1, 2, . . . , 38. The equivalence classes ε2m with complexity index κ = 2 are
distinguished by m = 1, 2, . . . , 41. Further on, there are nine global equivalence
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Fig. 8. The evolutions of rules 110, 124, 193 reveals global symmetrical relationships

classes with complexity index κ = 3. They are identified by ε3m with m = 1, 2,
. . . , 9.

This result is significant because it asserts that one only needs to study in
depth the dynamics and long-term behaviors of 88 representative local rules.
Moreover, since 38 among these 88 dynamically distinct rules have complexity
index κ = 1, and are therefore trivial, we are left with only 50 local rules (41 rules
with κ = 2 and 9 rules with κ = 3) that justify further in-depth investigations.

3.3 Symmetry with Global Transformations

It can be proven that every local rule belongs to a global equivalence class deter-
mined by certain global transformations. There are three global transformations,
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namely, global complementation T, left-right complementation T�, and left-right
transformation T† which are distinguished as symmetry transformations in the
universe of cellular automata. The four rules 110, 124, 137, and 193 are globally
equivalent to each other in the sense that their long term (as t → ∞) dynamics
are mathematically identical with respect to the three global transformations
T†, T�, and T.

The intuitive meaning of these symmetry transformations can easily be seen
in Fig. 9. In this picture, all four patterns of rules 110, 124, 137, and 193 have 60
rows corresponding to iterations numbers t = 0, 1, 2, . . . , 59, and 61 columns,
corresponding to 61 cells (n = 60). All patterns have a random initial condition
(t = 0), or its reflection, complementation, or both. The two patterns 124 and
110 on top are generated by a left-right transformation T†, and are related by a
bilateral reflection about an imaginary vertical line situated midway between the
two patterns. The two patterns 193 and 137 below are likewise related via T† and
exhibit the same bilateral reflection symmetry. The two vertically situated local
rules 137 and 110, as well as 193 and 124 are related by a global complementation
T. The two diagonally-situated local rules 124 and 137, as well as 193 and 110
are related by a left-right complementation T�.

Fig. 9. Global equivalence of rules 110, 124, 137, and 193

The geometrical definition of these symmetry transformations is easy to un-
derstand and can even be imagined with help of our toy cubes of cellular au-
tomata. Mathematically, these transformations are defined by 3 x 3 matrices
Tu, T

�
u, and T†

u. Each of the three matrices transforms the three axes (ui−1,
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ui, ui+1), drawn through the center of the Boolean cube into a transformed
set of axes (u′

i−1, u
′
i, u

′
i+1). These matrix representations also only need basic

mathematics. An analytical definition is given in [12].

3.4 Global Symmetry of Klein’s Vierergruppe V

The three global transformations T†, T�, and T are generated from elements of
the classic noncyclic four-element Abelian group V, originally called the “Vier-
ergruppe” by the German mathematician Felix Klein [16]. The four elements of
V are denoted by the 3 x 3 matrices T0 , Tu, T

�
u, and T†

u . The symbol T0 de-
notes the identity, or unit matrix, of any dimension. The actual transformations,
however, that allow us to establish the long-term correlations among members
of each of the 88 global equivalence classes of all 256 cellular automata are the
4 x 4 matrices T0, T

†, T�, and T. Fig. 10 shows that they are related by the
group multiplication table of Klein’s Vierergruppe V. This is the only abstract
mathematical group which makes it possible to predict the long-term correlations
among all members of the four remarkable rules 110, 124, 137, and 193.

Fig. 10. Global Symmetry and Klein’s Vierergruppe

These results are global in the sense of asymptotic time behavior as t → ∞.
It proves that even though there are 256 distinct local rules of 1-dimensional
cellular automata, there are only 88 distinct global behaviors, a fundamental
result predicted by the identification of 88 global equivalence classes εκm.

3.5 The Holy Grail of Symmetry and Computability

Since the local rule 110 has been proved to be capable of universal computation,
it follows that all four local rules of the VierergruppeV are universal Turing ma-
chines. The fundamental importance of the universality result was to exploit the
symmetry of the Boolean cubes in order to identify equivalence classes among



4 Outlook to a Computational Universe of Dynamical Systems 63

the 256 rules. The discovery of the Vierergruppe V and the rotation group R had
led to the major logical classifications of the 256 local rules into 88 global equiv-
alence classes εκm and 30 local equivalence classes Sκ

m . The significance of the
88 global equivalence classes εκm is similar to the classification of computational
algorithms into various complexity classes, for example, the N - or NP -classes,
in the sense that any property that applies to one member of εκm applies to the
other members in the same global equivalence class.

The universality of the four rules 110, 124, 137, and 193 and their identical
long-term dynamic behaviors, with respect to the symmetry transformations of
the Vierergruppe V, are encapsulated in the commutative diagram shown in
Fig. 11. Thus, Klein’s Vierergruppe represents the fundamental symmetry law
of the 256 two-state one-dimensional cellular automata. It is the “Holy Grail”
of a unified theory in the universe of these cellular automata, containing all
information about their nonlinear dynamics.

Fig. 11. Universal symmetry and computability in the universe of cellular automata

4 Outlook to a Computational Universe of Dynamical
Systems

One-dimensional cellular automata with L = I+1 cells are complex systems with
nonlinear dynamics [1, 11, 15] determined by one of the 256 local rules N. Their
state spaces contain all distinct states of cellular rows (xt

0, . . . , x
t
I−1, x

t
I) at step

t of time (iteration or generation). An entire list of consecutive rows with no
two rows identical and including the initial configuration is called an orbit in
the state space of a cellular automaton. On that background, the well-known
attractor dynamics of complex systems can also be studied in the theory of
cellular automata [12].
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Summing up all these insights, we are on the way to conceive the universe as an
automaton and dynamical system. The success of this research program depends
on the digitization of physics. The question “Is the Universe a computer” leads to
the question: How far is it possible to map the laws of physics onto computational
digital physics? [6] Digitization is not only exciting for answering philosophical
questions of the universe. Digitization is the key paradigm of modern research
and technology. Nearly all kind of research and technical innovation depend on
computational modeling. The emerging complexity of nature and society cannot
be handled without computers with increasing computational power and storage.

In order to make this complex computational world more understandable,
cellular automata are an excellent tool. NKS and our analytical approach show
that many basic principles of the expanding universe and the evolution of life and
brain can be illustrated with cellular automata. The emergence of new structures
and patterns depends on phase transitions of complex dynamical systems in the
quantum, molecular, cellular, organic, ecological, and societal world [10]. Cellular
automata are recognized as an intuitive modeling paradigm for complex systems
with many useful applications [7]. In cellular automata, extremely simple local
interactions of cells lead to the emergence of complex global structures. This
local principle of activity is also true in the world of complex systems with
elementary particles, atoms, molecules, cells, organs, organisms, populations,
and societies [2]. Although local interactions generate a complex variety of being
in the universe, they can be mathematically reduced to some fundamental laws
of symmetry.

Symmetries play a key role in the physical world as well as in the universe of
automata. In philosophy of science, they have been considered universal princi-
ples of Platonic truth and beauty [8]. The scientific search for symmetries reminds
us of Parsifal’s quest for the Holy Grail. The legend of Parsifal was written by
the minnesinger Wolfram von Eschenbach (c. 1170–c. 1220). It may be a ran-
dom accord of names that a “Wolfram” also wrote “A New Kind of Science” for
cellular automata. In the 19th century, Richard Wagner composed his famous
opera based on Wolfram’s legend of Parsifal. In Wagner’s interpretation, it is the
quest of the “poor fool” Parsifal for the Holy Grail. The question is still open
whether the scientific search for a final symmetry or “world formula” will also
be a “foolish” quest.
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