
Chapter 2

On the Necessity of Complexity

Joost J. Joosten

Department of Logic, History and Philosophy of Science
Faculty of Philosophy

Carrer Montalegre 6, 08001 Barcelona, Spain
jjoosten@ub.edu

Abstract. Wolfram’s Principle of Computational Equivalence (PCE)
implies that universal complexity abounds in nature. This paper com-
prises three sections. In the first section we consider the question why
there are so many universal phenomena around. So, in a sense, we seek
a driving force behind the PCE if any. We postulate a principle GNS
that we call the Generalized Natural Selection principle that together
with the Church-Turing thesis is seen to be equivalent in a sense to a
weak version of PCE. In the second section we ask the question why
we do not observe any phenomena that are complex but not-universal.
We choose a cognitive setting to embark on this question and make some
analogies with formal logic.

In the third and final section we report on a case study where we see
rich structures arise everywhere.

1 Why Complexity Abounds

Throughout the literature one can find various different and sometimes contra-
dicting definitions of what complexity is. The definition that we shall employ in
the first section involves the notion of a universal computational process/device.
For the second and third section of this paper we shall use slightly less formal
and more relaxed notions of the word complexity.

1.1 What Is Complexity?

Let us recall that a computational process Π is universal if it can simulate any
other computational process Θ. In other words, Π is universal if for any other
computational process Θ, we can find an easy coding protocol C and decoding
protocol C−1 so that we can encode any input x for Θ as an input C(x) for Π so
that after Π has performed its computation we can decode the answer Π(C(x))
to the answer that Θ would have given us. In symbols: C−1(Π(C(x))) = Θ(x).

For the sake of this first section we can take as working definition that a system
is complex if we can easily perceive it as a universal computational process. Note
that we have used the word ‘easy’ a couple of times above. If we were to be more
precise we should specify this and could for example choose for poly-time or some

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 11–23.
DOI: 10.1007/978-3-642-35482-3_2 © Springer-Verlag Berlin Heidelberg 2013

12 Chapter 2. On the Necessity of Complexity

other technical notion that more or less covers the intuition of what is easy. We
wish to be not too specific on these kind of details here.

Thus, for the first section of this paper, a complex process is one that is
computationally universal. However, great parts of the reasoning here will also
hold for other definitions of complexity. For example, stating that a process is
complex if comprehending or describing it exceeds or supersedes all available
resources (time, space, description size).

Note that our current definition of complexity need not necessarily manifest
itself in a complex way. Remember that a universal process is one that can
simulate any other process, thus also including the very simple and repetitive
ones. One might thus equally well observe a universal process that temporarily
exhibits very regular behavior. In this sense universal cannot be directly equated
to our intuitive notion of complexity but rather to potentially complex.

1.2 The Principle of Computational Equivalence and the
Church-Turing Thesis

In his NKS book [10], Wolfram postulates the Principle of Computational Equiv-
alence (PCE):

PCE: Almost all processes that are not obviously simple can be viewed
as computations of equivalent and maximal sophistication.

The processes here referred to are processes that occur in nature, or at least,
processes that could in principle be implemented in nature. Thus, processes that
require some oracle or black box that give the correct answer to some hard
questions are of course not allowed here.

As noted in the book, PCE implies the famous Church-Turing Thesis (CT):

CT: Everything that is algorithmically computable is computable by a
Turing Machine.

In Section 3 below we shall briefly revisit the definition of a Turing Machine.
Both theses have some inherent vagueness in that they try to capture/define an
intuitive notion. While the CT thesis aims at defining the intuitive notion of al-
gorithmic computability,PCE aims at defining what degrees of complexity occur
in natural processes. But note, this is not a mere definition as, for example, the
notion of what is algorithmically computable comes with a clear intuitive mean-
ing. And thus, the thesis applies to all such systems that fall under our intuitive
meaning. As a consequence, the CT thesis would become false if some scientists
were to point out an algorithmic computation that cannot be performed on a
Turing Machine with unlimited time and space resources. With the development
and progress of scientific discovery the thesis has to be questioned and tested
time and again. And this is actually what we have seen over the past decades
with the invention and systematic study of new computational paradigms like
DNA computing [11], quantum computing [10], membrane computing [4], etc.
Most scientists still adhere to the CT thesis. There are some highly theoretical

1 Why Complexity Abounds 13

notions of super-computations and super-tasks which would allegedly escape the
CT thesis but to my modest esteem, they depend too much on very strong as-
sumptions and seem impossible to be implemented [12]. However, I would love
to be proven wrong in this and see such a super-computer be implemented.

In the PCE there is moreover a vague quantification present in that the prin-
ciple speaks of almost all. This vague quantification is also essential. Trying to
make it more precise is an interesting and challenging enterprise. However, one
should not expect a definite answer in the form of a definition here. Rather, I
think, the question is a guideline that points out interesting philosophical issues
as we shall argue in Section 2. Moreover, these vague quantifiers could be read in
other parts of science too. For example, the Second Law of Thermodynamics tells
us that all isolated macroscopic processes in nature are going in the direction
that leads to an increase of entropy. First of all, it is per definition not possible to
observe perfectly isolated macroscopic processes. So, in all practical applications
of the Second Law of Thermodynamics we would have to comfort ourselves with
a highly isolated macroscopic process instead. And then, we know, as a mat-
ter of fact that we should read a vague quantifier to the effect that almost all
such processes lead to an increase of entropy. A notable exception is given by
processes that involve living organisms. Of course one can debate here to what
extent higher-level living organisms can occur in a highly isolated environment.
But certainly lower-level living organisms like colonies of protozoans can occur
in relative isolation thus at least locally violating the Second Law of Thermo-
dynamics. (See [2] and [13] for different viewpoints on whether life violates the
Second Law of Thermodynamics.)

It has been observed before in [10] that the PCE does imply the CT. Note
that PCE quantifies over all processes, be they natural or designed by us. Thus
in particular Turing Machines are considered by the PCE and stipulated to
have the maximal degree of computational sophistication which implies the CT
thesis.

But the PCE says more. It says that the space of possible degrees of com-
putational sophistication between obviously simple and universal is practically
un-inhibited. In what follows we shall address the question what might cause
this. We put forward two observations. First we formulate a natural candidate
principle that can account for PCE and argue for its plausibility. Second, we
shall briefly address how cognition can be important. In particular, the way we
perceive, interpret and analyze our environment could be such that in a natural
way it will not focus on intermediate degrees even if they were there.

We would like to stress here that intermediate degrees refer to undecidable
yet not-universal to be on the safe side. There are various natural decidable
processes known that fall into different computational classes like P-time and
EXP-time processes which are known to be different classes.

In theoretical computer science there are explicit undecidable intermediate
degrees known and the structure of such degrees is actually known to be very
rich. However, the processes that generate such degrees are very artificial whence
unlikely to be observed in nature. Moreover, although the question about the

14 Chapter 2. On the Necessity of Complexity

particular outcome of these processes is known to yield intermediate degrees,
various other aspects of these processes exhibit universal complexity.

1.3 Complexity and Evolution

In various contexts but in particular in evolutionary processes one employs the
principle of Natural Selection, often also referred to as Survival of the Fittest.
These days basically everyone is familiar with this principle. It is often described
as species being in constant fight with each other over a limited amount of
resources. In this fight only those species that outperform others will have access
to the limited amount of resources, whence will be able to pass on its reproductive
code to next generations causing the selection.

We would like to generalize this principle to the setting of computations. This
leads us to what we call the principle of Generalized Natural Selection:

GNS: In nature, computational processes of high computational sophis-
tication are more likely to maintain/abide than processes of lower com-
putational sophistication.

If one sustains the view that all natural processes can be viewed as computational
ones, this generalization is readily made. For a computation, to be executed, it
needs access to the three main resources space, matter, and time. If now one
computation outperforms the other, it will win the battle over access to the
limited resources and abide. What does outperform mean in this context?

Say we have two neighboring processes Π1 and Π2 that both need resources
to be executed. Thus, Π1 and Π2 will interfere with each other. Stability of a
process is thus certainly a requirement for survival. Moreover, if Π1 can incor-
porate, or short-cut Π2 it can actually use Π2 for its survival. A generalization
of incorporating, or short-cutting is given by the notion of simulation that we
have given above. Thus, if Π1 can simulate Π2, it is more likely to survive. In
other words, processes that are of higher computational sophistication are likely
to outperform and survive processes of lower computational sophistication. In
particular, if the process Π1 is universal, it can simulate any other process Π2

and thus is likely to use or incorporate any such process Π2.
Of course this is merely a heuristic argument or an analogy rather than a

conclusive argument for the GNS principle. One can think of experimental ev-
idence where universal automata in the spirit of the Game of Life are run next
to and interacting with automata that generate regular or repetitive patterns to
see if, indeed, the more complex automata are more stable than the repetitive
ones. However one cannot expect of course that experiments and circumstantial
evidence can substitute or prove the principle.

Just like the theory of the selfish gene (see [5]) shifted the scale on which nat-
ural selection was to be considered, now GNS is an even more drastic proposal
and natural selection can be perceived to occur already on the lowest possible
level: individual small-scale computational processes.

We note that GNS only talks about computational processes in nature and
not in full generality about computational processes either artificial or natural as

1 Why Complexity Abounds 15

was the case in PCE. Under some reasonable circumstances we may see GNS
as a consequence of PCE. For if ¬ GNS were true, there would be no complex
processes to witness after some time and this contradicts PCE. Thus we have:

PCE =⇒ CT + GNS.

As we already mentioned,GNS only involves computational processes in nature.
Thus we cannot expect thatCT+GNS is actually equivalent to PCE. However,
if we restrict PCE to talk only about processes in nature, let us denote this by
PCE′, then we do argue that we can expect a correspondence. That is:

PCE′ ≈ CT + GNS.

But PCE′ tells us that almost all computational processes in nature are either
simple or universal. If we have GNS we find that more sophisticated processes
will outperform simpler ones and CT gives us an attainable maximum. Thus
the combination of them would yield that in the limit all processes end up
being complex. The question then arises, where do simple processes come from?
(Normally, the question is where do complex processes come from, but in the
formal setting of CT+GNS it is the simple processes that are in need of further
explanation.)

Simple processes in nature often have various symmetries. As we have argued
above these symmetries are readily broken when a simple system interacts with
a more complex one resulting in the simple system being absorbed in the more
complex one. We see two main forces that favor simple systems.

The first driving force is what we may call cooling down. For example, temper-
ature/energy going down, or material resources growing scarce. If these resources
are not available, the complex computations cannot continue their course, break-
ing down and resulting in less complex systems.

A second driving force may be referred to as scaling and invokes mechanisms
like the Central Limit Theorem. The Central Limit Theorem is a phenomenon
that creates symmetry by repeating a process with stochastic outcome a large
number of times yielding the well-known Gaussian distribution. Thus the scale
(number of repetitions) of the process determines the amount of symmetry that
is built up by phenomena that invoke the Central Limit Theorem.

In the above, we have identified a driving force that creates complexity (GNS)
and two driving forces that creates simplicity: cooling down and scaling. In the
light of these two opposite forces we can restate PCE′ as saying that simplicity
and universality are the two main attractors of these interacting forces.

Note that we deliberately do not speak of an equivalence between PCE′ and
CT + GNS. Rather we speak of a correspondence. It is like when modeling
the movement of a weight on a spring on earth. The main driving forces in this
movement are gravitation and the tension of the spring. However, this does not
fully determine a final equilibrium if we do not enter in more details taking into
account friction and the like. It is in the same spirit that we should interpret the
above mentioned correspondence.

However, there are two issues here that we wish to address. First, we have
argued that CT + GNS is in close correspondence to PCE′ which is a weak

16 Chapter 2. On the Necessity of Complexity

version of PCE. What can be said about full PCE? In other words, what
about those processes that we naturally come up with? There is clearly a strong
cognitive component in the study of those processes that we naturally come up
with.

Second, PCE has a strong intrinsic implicit cognitive component as it deals
with the processes that we observe in nature and not necessarily the ones that
are out there. Admittedly, in its original formulation there is no mention of this
cognitive component in PCE but only the most radical Platonic reading of PCE
would deny that there is an intrinsic cognitive component present.

We shall try to address both issues in the next section where we discuss how
cognition enters a treatment of PCE.

2 Cognition and Complexity

In the first section we used a robust definition of complexity by saying a process
is complex if we can easily perceive it as a universal computational process. In
the current section we shall deliberately use a less formal and rigorous definition.

2.1 Relative Complexity

In the current section we say that a process is complex if comprehending or de-
scribing it exceeds or supersedes all available resources (time, space, description
size). In doing so the relative nature of complexity becomes apparent.

The relativity is not so much due to our underspecification when we spoke
of comprehension or description of a process. One can easily think of formal
interpretations of these words. For example, comprehension can be substituted
by obtaining a formal proof in a particular proof system. Likewise, descriptions
can be thought of as programs that reproduce or model a process. However for
the sake of the current argument it is not necessary to enter into that much
detail or formalization.

The relativity of the notion of complexity that we employ in this section is
merely reflected in how much resources are available. A problem or process can
be complex for one set of resources but easy for another.

For example, let us consider the currently known process/procedure Π that
decides whether or not a natural number is prime (see [1]). If we only have
quadratic time resources, then Π(n) is difficult as the current known procedure
is known to require an amount of time in the order of |n|12 (that is, in the order
of magnitude of the length of n (written in decimal notation) to the power 12).
Of course, if we allow polynomial time, then primality is an easy problem.

This relativity is a rather trivial observation. The point that we wish to
make here however is more subtle and profound. So, we depart from the ob-
servation that complexity is always relative to the framework in which it is
described/perceived. Now, the ultimate framework where all our formal reason-
ing is embedded is our own framework of cognitive abilities. And this has two
important consequences.

2 Cognition and Complexity 17

Firstly, it implies that if we study how our cognitive framework deals with
complexity and related notions, we get a better understanding of the nature of
the definitions of complexity that we come up with. And secondly, it strongly
suggests that various notions and definitions of complexity in various unrelated
areas of science in the end are of the same nature. Thus, various formal theorems
that relate different notions of complexity, like ergodicity, entropy, Kolmogorov-
Chaitin complexity, computational complexity etc. are expected to be found.
And as a matter of fact, in recent developments many such theorems have been
proven. In the final section of this chapter we shall see a new such and rather
unexpected connection between two seemingly different notions of complexity:
fractal dimensions versus computational runtime classes.

2.2 Cognitive Diagonalization

In this section we wish to dwell a bit on the following simple observation: as
human beings we have a natural ability to consider a system in a more complete
and more complex framework if necessary. We shall give some examples of this
in a formalized setting and pose the question how we naturally generate more
complex systems in a cognitive and less formal setting.

Suppose we study a system S with just an initial element –let us call that 0–
and an operator S that gives us a next, new and unique element which we call
the successor. The smallest system of this kind can be conceived as the natural
numbers without further extra structure on them:

{0, S0, SS0, SSS0, . . .}.
If we study this system in a fairly simple language it turns out that all questions
about this systems are easily decidable by us.

Of course, we would not leave it there and move on to summarize certain
processes in this system. The process of repeating taking the successor a number
of times is readily introduced yielding our notion of addition defined by x+0 = x
and x+ Sy = S(x+ y). So, by summarizing certain processes in S we naturally
arrive at a richer structure S ′ whose operations are S and +.

If we now study S ′ in the same simple language as we used for S but now
with the additional symbol +, we see that all questions are still decidable. That
is, we can still find the answer to any question we pose about this system in an
algorithmic way. The time complexity of the algorithm is slightly higher than
that of S but the important thing is that it is still decidable.

By a process similar to by which we went from S to S ′ we can now further
enrich our structure. We consider repeated addition to get to our well-known
definition of multiplication: x × 0 = 0 and x × Sy = x × y + x. The resulting
structure S ′′ has now three operations: S,+ and ×. However questions about
this structure in this language now turn out to be undecidable. That is, there is
no single algorithm that settles all questions about this structure in our simple
language.

The process by which we went from S to the more complex system S ′ and from
S ′ to the more complex system S ′′ is called iteration. One may think that this can

18 Chapter 2. On the Necessity of Complexity

only be repeated ω many times but we shall now describe a more general process
of gaining complexity which is called diagonalization and of which iteration is
just a special case. As an illustration of how this works we shall give a proof of
Gödel’s First Incompleteness Theorem.

Gödel’s First Incompleteness Theorem For each algorithmically
enumerable theory T that only proves true statements and that is of
some minimal strength there is a true sentence ϕT that is not provable
in T .

Although Gödel had a slightly different formulation of his First Incompleteness
Theorem in essence it is the one that we shall prove here. Our proof will focus on
the computable functions f(x) that T can prove to be total. Thus, we focus on
those unary functions f which are computable and moreover, so that T proves
that f is defined for each value of x. We shall write

T � ∀x∃y f(x) = y

for the latter. As T is algorithmically enumerable, we can fix an enumeration
and just enumerate the proofs of T and stick with all the proofs πi that prove
some computable function fi to be total. Once we have a way to make this list
of functions fi we readily come up with a new computable function f ′ which is
total but not provably so by T . We construct f ′ by what is called diagonalization
and it will soon become clear why this is called this way. We can make a table
of our functions fi with their values where we in anticipation have displayed the
diagonal in boldface.

f0(0) f0(1) f0(2) f0(3) . . .
f1(0) f1(1) f1(2) f1(3) . . .
f2(0) f2(1) f2(2) f2(3) . . .
f3(0) f3(1) f3(2) f3(3) . . .
...

...
...

...
. . .

We now define f ′(x) = fx(x) + 42. Clearly f ′ differs from any fi as it differs
on the diagonal. However, f ′ is clearly a total function and there is also an
easy algorithm to compute it: to compute f(x) we enumerate, using the fixed
enumeration of the theorems of T , all proofs of T until we arrive at πx. Then we
compute fx(x) and add 42 to the result.

To summarize, we have provided a total computable function that is not
proven to be total by T whence T is incomplete. It is clear what minimal re-
quirements should be satisfied by T in order to have the proof go through.

For the main argument of this paper this proof of Gödel’s First Incomplete-
ness Theorem is not entirely necessary. We have included it for two main reasons.

3 Complexity Everywhere: Small Turing Machines 19

Firstly, of course, there is the beauty of the argument which is a reason for itself.
And second, the proof illustrates nicely how diagonalization works.

In mathematical logic diagonalization is a widely used technique and a univer-
sal way to obtain more complex systems. An interesting and important question
is, is there a natural cognitive counterpart of this? So, is there some sort of
universal cognitive construct –cognitive diagonalization if it were– that always
yields us a more complex framework in which to study a system. For it is clear
that we tend to add complexity to systems that we build and perceive until it
reaches the boundaries of our abilities. And thus we pose the question if there
is some universal and natural way by which we add this complexity.

As an academic exercise one could try to rephrase diagonalization in a setting
of formalized cognition but that would yield a very artificial principle. Moreover
this will say nothing about what we actually do in our heads.

2.3 Cognition, Complexity and Evolution

Fodor has postulated a principle concerning our language. It says that (see [6])
the structure and vocabulary of our language is such that it is efficient in de-
scribing our world and dealing with the frame problem. The frame problem is
an important problem in artificial intelligence which deals with the problem how
to describe the world in an efficient way so that after a change in the state of
affairs no entirely new description of the world is needed.

On a similar page, we would like to suggest that our cognitive toolkit has
evolved over the course of time so that it best deals with the processes it needs
to deal with. Now, by PCE these processes are either universal or very simple.
Thus, it seems to make sense in terms of evolution to have a cognitive toolkit
that is well-suited to deal with just two kinds of processes: the very simple ones
and the universal ones.

Thus, it could well be that there actually are computational processes out
there that violate PCE just as there are chemical processes (life) that locally
violate the Second Law of Thermodynamics but that our cognitive toolkit is just
not well-equipped enough to deal with them.

This might also be related to the question we posed in the previous section:
how do we add complexity to a system? Let us continue the analogue with formal
logic. Diagonalization is currently the main universal tool for adding strength to
a system. However, there are various indications that for many purposes diago-
nalization seems not to be fine-grained enough and some scientists believe this
is one of the main reasons why we have such problems dealing with the famous
P versus NP problem. Likewise, it might be that cognitive diagonalization is
not fine-grained enough to naturally observe/design intermediate degrees.

3 Complexity Everywhere: Small Turing Machines

In this final section I will report on an ongoing project jointly with Fernando
Soler-Toscano and Hector Zenil. In this project we study the structures that

20 Chapter 2. On the Necessity of Complexity

arise when one considers small Turing machines. Here, in this final section we
relax the working definition of complexity even further to just refer to interesting
structures.

In 2009 I attended the NKS summer school led by Stephan Wolfram in Pisa,
Italy. One of the main themes of NKS is that simple programs can yield in-
teresting and complex behavior. Being trained as a mathematician and logician
this did not at all shock my world view as there are various simple functions
or axiomatic systems known that yield very rich and complex structures. How-
ever, when you start delving the computational universe yourself it is that you
get really excited about the NKS paradigm. It is not merely that there are
various interesting systems out there, it is the astonishing fact that these sys-
tems abound. And wherever you go and look in the computable universe you
find beautiful, intriguing and interesting structures. In this final section I shall
report on one of those explorations in the computational universe.

The set-up of our experiment was inspired by an exploration performed in [10]
and we decided to look at small Turing-machines. There are various definitions of
Turing machines in the literature which all look alike. For us, a Turing machine
(TM) consist of a tape of cells where the tape extends infinitely to the left and
is bounded to the right. Each cell on the tape can be either black (1) or white
(0) and this start configuration is specified by us. There is a head that moves
over the tape and as it does so, the head can be in one of finitely many states
(like states of mind).

We have now specified the hardware of a TM. The software, so to say, of a
TM consists of a lookup table. This table tells the head what to do in which
situation. More concrete, depending on the state the head is in and depending
what symbol the head reads on the cell of the tape it is currently visiting, it will
perform an action as specified by the lookup table. This action is very simple
and consist of three parts: writing a symbol on the cell it currently is at, moving
the head one cell left or right and going to some state of mind.

We only looked at small Turing machines that have either 2, 3 or 4 states of
mind. On those machines we defined a computation to start at the right-most
cell of the tape in State 0. We say the computation halts when the head ‘drops
off’ at the right-hand side of the tape. That is, when it is at the border cell of
the tape and receives a command to go one cell to the right. We fed these TMs
successive inputs that were coded in unary plus one. Thus, input 0 was coded by
just one black cell, input 1 was coded by two consecutive black cells, and input
n was coded by n+ 1 consecutive black cells on an otherwise white tape.

With this set-up we looked at the different functions that were computed by
these small TMs and had a particular focus on the runtimes that occurred. Of
course, there are various fundamental issues to address that are mostly related
to either the Halting Problem (there is no algorithm that decides whether a TM
will halt on a certain input) or unfeasibility. Some of these issues are addressed
in [15].

When plotting the halting probability distribution for our TMs we verified
a theoretical result by Calude to the effect that most TMs either halt quickly

3 Complexity Everywhere: Small Turing Machines 21

or they never halt at all ([6]). Although this result was expected we did not
expect the pronounced phase-transitions one can see in Figure 1 in the halting
probability distributions that we found. In a sense, these phase transitions are
rudimentary manifestations of the low-level complexity classes as described in [8].

Fig. 1. Halting time distribution among TMs with three states and two colors on the
first 21 inputs

Another striking feature that we found is that TMs tend to grow slower if you
give them more resources. Let us make this statement more precise. We studied
the behavior of all 4,096 TMs with two colors and two states (we speak of the
(2,2)-space). In total, they computed 74 different functions. We also studied the
behavior of all the 2,985,984 TMs with two colors and three states where now
3,886 different functions were computed. Any function that is computed in the
(2,2)-space is easily seen to be also present in (3,2)-space. We looked at the time
needed to compute a function in the different spaces. To our surprise we saw
that almost always slow-down occurs. And at all possible levels: slow-down on
average, worst case, harmonic average, asymptotically, etc. We only found very
few cases of at most linear speed-up.

So the overall behavior of these small TMs revealed interesting structures to
us. But also looking at each particular TM showed interesting structures. In
Figure 2 we show two such examples. The rule numbering refers to Wolfram’s
enumeration scheme for (2,2) space as explained in [10] and [7].

For TM number 2205 we have plotted the tape evolution for the first 6 entries.
So, each gridded rectangle represents a complete computation for a certain input.
The diagrams should be interpreted as follows. The top row represents the initial
tape configuration. The white cells represent a zero and the black cells a one. The
grey cell represent the edge of the tape. Now each row in the gridded rectangle
depicts the tape configuration after one more step in the computation. That
is why each row differs at at most one cell from the previous row. We call
these rectangles space-time diagrams of our computation where the space/tape
is depicted horizontally and the time vertically.

We now see that TM 2205 always outputs just one black cell. Its computation
yields a space-time diagram with a very clear localized character where the head

22 Chapter 2. On the Necessity of Complexity

has just moved from right to the left-end of the input and back to the right
end again doing some easy computation in between. TM number 1351 shows a
clear recursive structure. Curiously enough this machine computes a very easy
function which is just the tape identity. So it does a dazing amount of things (it
needs exponential time for it) to leave in the end (the bottom row) the tape in
the exact same configuration as the input (the top row). For more examples and
structure we refer the interested reader to [8].

Fig. 2. Tape evolution for Rules 2205 (left) and 1351 (right)

Let us take a closer look at our pictures from Figure 2. It is clear that each
TM defines an infinite sequence of these space-time diagrams as each different
input defines such a diagram. It is pretty standard to assign to this sequence of
space-time diagrams a fractal dimension dτ that describes some features of the
asymptotic behavior of a TM τ . We have empirically established for all TMs in
(2,2)-space a very curious correspondence. It turns out that

The fractal dimension dτ that corresponds to a TM τ is 2 if and only if τ
computes in linear time. The dimension dτ is 1 if and only if τ computes
in exponential time.

This result is remarkable because it relates two completely different complexity
measures: the geometrical fractal dimension on the one side versus the time
complexity of a computation on the other side. The result is one out of the many
recent results that link various notions of complexity the existence of which we
already forecasted on philosophical grounds in Section 2.1.

References 23

Acknowledgments. The author would like to thank David Fernández-Duque,
José Mart́ınez-Fernández, Todd Rowland, Stephen Wolfram, and Hector Zenil
for their comments, discussions and general scientific input and feedback for this
paper.

References

[1] Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathemat-
ics 160(2), 781–793 (2004)

[2] Bennett, C.H.: The Thermodynamics of Computation - A Review. Int. J. Theo-
retical Physics 21(12), 905–940 (1982)

[3] Calude, C.S., Stay, M.A.: Most programs stop quickly or never halt. Advances in
Applied Mathematics 40, 295–308 (2005)

[4] Calude, C.S., Paun, G.: Computing with Cells and Atoms: An Introduction to
Quantum, DNA and Membrane Computing. CRC Press (2000)

[5] Dawkins, R.: The Selfish Gene. Oxford University Press, New York City (1976)
ISBN 0-19-286092-5

[6] Fodor, J.A.: Modules, Frames, Fridgeons, Sleeping Dogs, and the Music of the
Spheres. In: Pylyshyn (1987)

[7] Joosten, J.J.: Turing Machine Enumeration: NKS versus Lexicographical, Wol-
fram Demonstrations Project (2010), http://demonstrations.wolfram.com/
TuringMachineEnumeratinNKSVersusLexicographical/

[8] Joosten, J.J., Soler, F., Zenil, H.: Program-size versus Time Complexity. Slowdown
and Speed-up Phenomena in the Micro-cosmos of Small Turing Machines. Int.
Journ. of Unconventional Computing 7, 353–387 (2011)

[9] Joosten, J.J., Soler Toscano, F., Zenil, H.: Turing machine runtimes per number
of states. To appear in Wolfram Demonstrations Project (2012)

[10] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

[11] Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing
Paradigms. Springer (2010)

[12] Pitowsky, I.: The Physical Church Thesis and Physical Computational Complex-
ity. Iyyun, A Jerusalem Philosophical Quarterly 39, 81–99 (1990)

[13] Schrödinger, E.: What is Life? Cambridge University Press (1944)
[14] Wolfram, S.: A New Kind of Science. Wolfram Media (2002)
[15] Zenil, H., Soler Toscano, F., Joosten, J.J.: Empirical encounters with computa-

tional irreducibility and unpredictability. Minds and Machines 21 (2011)

	On the Necessity of Complexity
	Why Complexity Abounds
	What Is Complexity?
	The Principle of Computational Equivalence and the Church-Turing Thesis
	Complexity and Evolution

	Cognition and Complexity
	Relative Complexity
	Cognitive Diagonalization
	Cognition, Complexity and Evolution

	Complexity Everywhere: Small Turing Machines
	References

