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Abstract. The basic engineering problem is to build useful systems
from given materials and with given tools. Here we explore this prob-
lem in the computational technosphere of computers, smartphones,
networks and other information processing and communication devices
created by people. The emphasis is on construction of different kinds of
information processing automata by means of cellular automata. We call
this engineering problem cellular engineering. Various types and levels of
computing systems and models are considered in the context of cellular
engineering.
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1 Introduction

Stephen Wolfram [11] suggested the Principle of Computational Equivalence,
which asserts that systems found in the natural world can perform computations
up to a maximal (“universal”) level of computational power, and that most sys-
tems do in fact attain this maximal level of computational power. Consequently,
most systems performing recursive computations are computationally equivalent
in general and equivalent to cellular automata in particular. Here we consider a
technological counterpart of this Principle, which is related not to nature but to
the technosphere created by people. The technosphere is the world of all techni-
cal devices. In it, computers and other information processing systems play the
leading role. Taking all these devices, we obtain the computational technosphere,
which is an important part of the technosphere as a whole. The computational
technosphere has its own Principle of Computational Equivalence. It is called the
Church-Turing Thesis. There are different versions of this Thesis. In its original
form, it states that the informal notion of algorithm is equivalent to the concept
of a Turing machine (the Turing’s version) or that any computable function is
a partial recursive function (the Church’s version). The domineering opinion is
that the Thesis is true as it has been supported by numerous arguments and
examples. As a result, the Church-Turing Thesis has become the central pillar
of computer science and implicitly one of the cornerstones of mathematics as
it separates provable propositions from those that are not provable. In spite of
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all supportive evidence and its usefulness for proving various theoretical results
in computer science and mathematics, different researchers, at first, expressed
negative opinion with respect to validity of the Church-Turing Thesis, and then
build more powerful models of algorithms and computations, which disproved
this Thesis. It is possible to find the history of these explorations in [6]. Here we
go beyond the computational technosphere, suggesting the Technological Prin-
ciple of Computational Equivalence for the whole technosphere. It asserts:

For any technical system, there is an equivalent cellular automaton.

This principle also has a constructive form:

For any technical system, it is possible to build (find) an equivalent cellular
automaton.

Here we consider only the computational form of the Technological Principle of
Computational Equivalence. It is expressed as the Computational Principle of
Technological Equivalence:

For any information processing system, it is possible to build (find) an
equivalent cellular automaton.

Note that in this Principle cellular automata are not restricted to classical cel-
lular automata. There are much more powerful cellular automata. For instance,
inductive cellular automata can solve much more problems than classical cellu-
lar automata or Turing machines. Building technical systems is an engineering
problem. That is why in Section 2, we discuss computational engineering, which
is rooted in the work of von Neumann who used a special kind of computational
engineering, or more exactly, cellular engineering, for building self reproducing
automata [28]. He also demonstrated that construction of complex systems using
cellular automata allows one to essentially increase reliability of these systems.
However, to be able to rigorously demonstrate validity of the Computational
Principle of Technological Equivalence, as well as of the Technological Princi-
ple of Computational Equivalence and Wolfram’s Principle of Computational
Equivalence, it is necessary to ascribe exact meaning to terms used in these
principles. That is why in Section 3, we introduce and analyze different types
of computational and system equivalence. In Section 4, we demonstrate possi-
bilities of cellular engineering in modeling and construction, giving supporting
evidence for the Computational Principle of Technological Equivalence. Some of
these results were obtained in [7], while other results are new.

2 Computational Engineering

It is possible to describe an engineering problem in the following way. Given
working materials and tools for operation, build/construct a system (object)
that satisfies given conditions. Here we consider a specification of such a problem
for computational (information processing) systems. Thus, we have the following
initial conditions:
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• A class K of computational (information processing) automata is given.
• A class H of computational (information processing) automata is provided.
• A set A of composition operations is made available.
• A type φ of automata equivalence is offered.

Task 1: For any automaton H from H, construct an automaton K from K by
means of operations from A, such that K is φ-equivalent to H.

Task 2: For any automaton H from H, construct an automaton A φ-equivalent
to H using operations from A and automata from K as the building material
for operations from A.

Note that in the second case, the automaton A does not necessarily belong to
the class K.

The area where such problems are solved is computational engineering. When
the class K consists of cellular automata, i.e., we construct using cellular au-
tomata as the construction media, the construction problem is in the scope of
cellular engineering introduced and studied in [7]. Another basic problem of
cellular engineering is construction of different automata, such as pushdown au-
tomata, Turing machines and others, using cellular automata as building bricks,
blocks and modules. In this case, the result of construction is a grid automaton
[6] in a general case and only in some cases it can be a cellular automaton, which
is a particular case of grid automata.

Note that there is one more type of computational engineering problems. In
it, we have the following initial conditions:

• A class K of computational (information processing) automata is given.
• A set A of composition operations is made available.
• A goal σ is offered.

Task 3: Using operations from A and automata from K as the building material
for operations from A, construct an automaton A that allows one to achieve the
goal σ. Usually such a goal σ represents realization of certain functions and
satisfaction of selected conditions.

There are three main types of cellular engineering:

• Process cellular engineering is aimed at building a cellular automaton to
reproduce, organize, model or simulate some process.
• Function cellular engineering is aimed at building a cellular automaton to
reproduce, organize, model or simulate some function.
• System cellular engineering is aimed at building a cellular automaton to
reproduce or model some system with its subsystems, components and ele-
ments.

Traditional engineering problems for cellular automata are mostly related to
process cellular organization or reproduction, that is, how to get a process with
necessary characteristics in a cellular automaton. Only sometimes functions are
modeled like when cellular automata are used to model functioning of a Turing
machine. System cellular engineering reproduces (models) a system with some



116 Chapter 10. Computational Technosphere and Cellular Engineering

level of detailing. For instance, it is possible to represent a system at the level
of its elements or at the level of its components.

The area of cellular automata can be divided into three big subareas: CA
science, CA computation, and CA engineering. CA science studies properties
of cellular automata and particular, their dynamics or how they function. CA
computation uses cellular automata for computation, simulation, optimization,
and generation of evolving processes. CA engineering is aimed at constructing
different devices from cellular automata. All three areas are complementary to
one another.

Ideas similar to the concept of cellular engineering were also discussed by
Deutsch in the form of constructor theory and verifiable metaphysics [10].

Cellular automata are the simplest uniform models of distributed compu-
tations and concurrent processes. Grid automata are the most advanced and
powerful models of distributed computations and concurrent processes, which
synthesize different approaches to modeling and simulation of such processes
[4, 6].

Informally a grid automaton is a system of automata, which are situated in a
grid and called nodes. Some of these automata are connected and interact with
one another. It is possible to find formal definitions and elements of the theory
of grid automata in [4, 6].

Cellular automata are special cases of grid automata although, in general,
grid automata are non-uniform. Our goal is not to substitute cellular automata
by grid automata, but to use cellular automata as the basic level for building
hierarchies of grid automata. The reason for doing this is to reduce complexity of
the description of the system and its processes. For instance, computer hardware
has several levels of hierarchy: from the lowest logic gate level to the highest level
of functional units, such as system memory, CPU, keyboard, monitor, printer,
etc. In addition, as Clark writes (cf. [15]), all good computer scientists worship
the god of modularity, since modularity brings many benefits, including the all-
powerful benefit of not having to understand all parts of a problem at the same
time in order to solve it. That is why one more goal of this paper is to introduce
modularity into the realm of cellular automata, making possible to get better
understanding and more flexible construction tools without going into detailed
exposition of the lower levels of systems. As a result, we develop a computing
hierarchy based on cellular automata.

Cellular engineering is an approach complimentary to evolutionary simula-
tion and optimization. Evolutionary simulation is aimed at modeling complex
behavior by simple systems, such as cellular automata. Evolutionary optimiza-
tion is aimed at improving systems by simple means of automata, such as cellular
automata, which imitate natural evolutionary processes. Cellular engineering is
aimed at constructing complex systems using simple systems, such as cellular au-
tomata. In evolutionary processes, systems are evolving subject to definite rules.
In engineering, systems are purposefully constructed according to a designed
plan.
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3 Types of System Equivalence, Modeling and
Construction

When researchers discuss equivalence of different models of computation, they
are, as a rule, dealing only with one type of equivalence - functional equivalence.
The reason is that initially computation performed only computation of func-
tions. Later with an advent of electronic computers, computation enormously
expanded its domain but the initial imprinting continues to influence computer
science.

At the same time, there is a variety of different types and kinds of equiva-
lence between computational models, automata, software systems, information
processing systems and computer hardware. We consider only some of them:

1. Functional equivalence.
2. Linguistic equivalence.
3. Computational equivalence.
4. Structural equivalence.
5. Complexity functional equivalence.
6. Local functional equivalence.
7. Operational or process equivalence.
8. Local operational equivalence.

Let us consider definitions of these types. Two classes of algorithms/automata
are functionally equivalent if they compute the same class of functions. Two
classes of algorithms/automata are linguistically equivalent if they compute the
same class of languages. Two classes of algorithms/automata are computation-
ally equivalent if what is possible to compute in one class it is also possible to
compute in the other class. Two classes of algorithms/automata are operationally
or processually equivalent if they generate the same class of computational pro-
cesses. Two classes of algorithms/automata are locally operationally equivalent
if they can perform the same class of computational operations. Two classes
of algorithms/automata are functionally equivalent with respect to complexity if
they compute the same class of functions with the same complexity. Two classes
of algorithms/automata are functionally equivalent with respect to completion if
they compute the same class of functions with the same (level of) complexity.
All these definitions describe direct types of equivalence. At the same time, there
are more advanced but also useful transcribed types of equivalence. Transcribed
equivalence includes coding and decoding. For instance, an automaton or a soft-
ware system B is functionally equivalent with transcription to an automaton or
a software system A if there are two automata (software systems) C, D, F and
G such that for any input X to A, we have A(X) = D(B(C(X))) and for any
input Y to B, we have B(Y) = G(B(F(X))). In these processes, C and F are
coders of information, while D and G are decoders of information. Functional
and processual types of equivalence bring us to the concept of modeling.

Definition 1. It is possible to model an abstract automaton A by a cellular
automaton C if there is a configuration W of cells from A and a system R
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of states of cells from W such that after initializing these states, the cellular
automaton C works as the automaton A.

This modeling relation is related either to process cellular engineering or to
function cellular engineering. It is necessary to remark that modeling relation
plays an important role not only in information processing systems or other
technical systems but also in all life processes and living systems [16, 12]. In some
cases, individual cellular engineering allow us to perform cellular engineering for
classes of automata.

Definition 2. It is possible to model a model M of computation in a class C of
cellular automata if it is possible to model any automaton A from M by some
cellular automaton C from C.

There are different types of modeling.

Definition 3. An abstract automaton A is called programmable in a cellular
automaton C if there is a configuration W of cells from A and a system R
of states of cells from W such that after initializing these states, the cellular
automaton C works as the automaton A, that is, with the same input, C gives
the same result as A.
This is a function cellular engineering. It is defined by the functional equivalence.

We remind [9] that there are two kinds of functional modeling: direct and
transcribed. Direct functional modeling of an automaton or a software system A
by an automaton or a software system B means that given any input X to A, it
either does give any result or gives the same result as the automaton (software
system) B with the same input.

Transcribed functional modeling includes coding and decoding [9]. Namely, an
automaton or a software system B allows transcribed functional modeling of an
automaton or a software system A if there are two automata (software systems)
C and D such that for any input X to A, we have A(X) = D(B(C(X))). In this
process, C is the coder of information, while D is the decoder of information.
The process of transcribed functional modeling is described by the diagram in
Fig. 1.

As in a general case, we can realize function cellular engineering for classes of
automata.

Fig. 1. The process of transcribed functional modeling



4 Construction of Information Processing Systems with Cellular Automata 119

Definition 4. A model of computation M is called programmable in a class C of
cellular automata if any automaton A from M is programmable in some cellular
automaton C from C.

Definition 5. An abstract automaton A is called constructible in a cellular
automaton C if there is a configuration W of cells from A and a system R
of states of cells from W such that after initializing these states, the cellular
automaton C works as the automaton A. and to each structural component D
of A some part B of the automaton C is corresponded in such a way that B
works as D.

This gives us the construction relation related to system cellular engineering. It
is defined by the structural equivalence.

Note that both modeling relation “A models B” and construction relation “A
is constructed in B” are special cases of the fundamental triad [5].

Definition 6. A model of computation M is called constructible in a class C of
cellular automata if any automaton A from M is constructible in some cellular
automaton C from C.

To construct definite devices, we need elements from which we construct and
algorithms how to do this. There are three main element types (in information
typology), which correspond to the three main types of information operations
described in [3]:

• Computational elements or transformers.
• Transaction elements or transmitters.
• Storage elements or memory cells.

There are three element types (in dynamic typology), which correspond to their
dynamic:

• Elements with a fixed structure.
• Reconfigurable elements.
• Switching elements.

Elements with a fixed structure have the same structure during the whole process.
Reconfigurable elements can change their structure during the process. Switching
elements tentatively change their structure in each operation. There are three
element types of memory cells: read-only cells, write-only cells, and two-way cells,
which allow both reading and writing.

4 Construction of Information Processing Systems with
Cellular Automata

Let us consider a model of computation M that has a universal automaton U.
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Theorem 1. A model of computation M is programmable in a class C of
cellular automata if and only if a universal automaton U is programmable in
some cellular automaton C from M.

Note that here the transcribed equivalence is used because usually universal
automata, e.g., universal Turing machines, model other automata from the
same class, e.g., other Turing machines, only with transcription [6].

Corollary 1. A model of computation M is programmable in a cellular
automaton C if the automaton U is programmable in C.

For illustration, we give here a well-known result in the theory of cellular
automata.

Theorem 2. The class T of all Turing machines is programmable in the class
C1 of one-dimensional cellular automata.

Lemma 1. If a class A of automata is programmable in a class C of automata
and a class C of automata is programmable in a class B of automata, then the
class A is programmable in the class B.

It is known (cf., for example, [6]) that any class of recursive algorithms, such as
partial recursive functions, random access machines (RAM) or Minsky machines,
as well as any class of subrecursive algorithms, such as recursive functions,
pushdown automata or context free grammars, is programmable in the class T of
all Turing machines. Thus, Lemma 1 and Theorem 2 give us the following result.

Theorem 3. Any class of recursive algorithms (any class of subrecursive al-
gorithms) is programmable in the class C1 of one-dimensional cellular automata.

Corollary 2. An arbitrary pushdown automaton is constructible in the class
C2 of two-dimensional cellular automata.

Building a two-dimensional cellular automaton CA from multilevel finite
automata [7], it is possible to prove the following result.

Theorem 4. A two-dimensional cellular automaton can realize any finite grid
of connections between nodes in a grid automaton G.

To realize all these types of elements in cellular automata, multilevel finite
automata described in [7] are used.

Corollary 3. If all nodes in a finite grid automaton G have a finite number
of ports and are programmable (constructible) in one-dimensional cellular
automata, then the automaton G is programmable (respectively, constructible)
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in a two-dimensional cellular automaton. Note that not any finite configuration
is a finite automaton. For instance, at each step, a Turing machine is a finite
configuration but it’s not a finite automaton. Another example is when a node
in a grid automaton can be an automaton that works with real numbers.

It is also possible to construct Turing machines in cellular automata.

Theorem 5. An arbitrary Turing machine with a one-dimensional tape is
constructible in the class C1 of one-dimensional cellular automata.

To prove this theorem, finite automata with inner structure are used.
Note that it is not the standard result that one-dimensional cellular automata

can emulate a one-dimensional Turing machine. The standard result tells that
an arbitrary Turing machine is programmable in the class C1 of one-dimensional
cellular automata. Theorem 5 establishes that an arbitrary Turing machine is
constructible in the class C1 . Constructability implies programmability but the
converse is not true. For instance, any Turing machine with a two-dimensional
tape is programmable in the class of Turing machines with a one-dimensional
tape, but it is not constructible in this class.

As the class T has universal Turing machines, Theorems 1 and 5 imply the
following result.

Corollary 4. The class T of all Turing machines with a one-dimensional tape
is constructible in the class C1 of one-dimensional cellular automata.

Global Turing machines or Internet machines introduced in [17] form a natural
class of grid automata. An Internet machine is a finite grid automaton in which
all nodes are Turing machines. Theorems 4 and 5 imply the following result.

Corollary 5. An Internet machine IM is constructible in the class CA of
cellular automata. This implies the following result.

Corollary 6. The class IM of all Internet machines is constructible in the class
CA of cellular automata.

Corollary 7. The class T of all Turing machines is constructible in the class
CA of cellular automata.

In a similar way, it is possible to program inductive automata (inductive models
of computation), which provide better modeling of contemporary computers and
computer networks than traditional models, such as Turing machines [6].

Theorem 6. Any inductive Turing machine of the first order is programmable
in the class ICA of inductive cellular automata.
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Corollary 8. The class IT1 of all inductive Turing machines of the first order
is programmable in the class ICA of inductive cellular automata.

Similar to Internet machines, it is useful to introduce inductive Internet ma-
chines, which also form a natural class of grid automata. Any Internet machine
is a finite grid automaton in which all nodes are inductive Turing machines.

Theorems 4 and 6 imply the following result.

Corollary 9. Any inductive Internet machine IM is constructible in the class
ICA of inductive cellular automata.

Computers and devices in global networks start processing data not only in the
form of words, as conventional abstract automata do, but also more sophisticated
structures. For instance, researchers forecast that future global networks will use
graphs or heaps of soft protocol elements instead of multilayered protocol stacks
used now [8, 2]. That is why it is important to represent not only words but other
advanced structures using cellular automata. In addition, structures of computer
hardware and software are much more sophisticated than linear structures of
words.

Here is one result that demonstrates corresponding possibilities of cellular
automata in modeling data structures.

Theorem 7. A two-dimensional cellular automaton can realize any finite graph
or network.

In a similar way, cellular automata can realize many other data structures.

5 Conclusion

We discussed a new discipline – cellular engineering. Obtained results show how
it is possible to construct and model sophisticated complex system using such
relatively simple systems as cellular automata. The functional cellular engineer-
ing is one of the weakest forms, while the system cellular engineering is one of
the strongest forms of cellular engineering.

Indeed, building a system with necessary properties solves the problem of
creating a process with necessary features, while the latter solves the problem of
constructing a function with necessary characteristics. Usually only functional
cellular engineering has been considered, e.g., when cellular automata computed
the same function as a Turing machine.

Modeling relation plays an important role in all life processes and living
systems [16, 12]. Thus, it would be interesting to use cellular automata for
modeling real living systems and not only some processes that resemble
functioning of living systems as it is done in Artificial Life [1]. Moreover, in the
context of pancomputationalism (cf., for example, [19, 11, 11, 13]) when the uni-
verse is treated as a huge computational structure or a network of computational
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processes which following fundamental physical laws compute (dynamically de-
velop) its own next state from the current one, the Technological Principle of
Computational Equivalence can be the base for constructor theory discussed by
Deutsch in [10].

It is interesting to know that the method developed in [6] for construction of
Turing machines and grid automata in cellular automata gives a formal repre-
sentation of the old Internet idea [8] that any component with more than one
network interface can be a router.
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