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Abstract. Cellular automata can be applied to simulate various natural
processes, particularly those described by physics, and can also serve as
an abstract model for all kinds of computers. This results in a intriguing
linkage between physics and the theory of automata. Such connections
prove to be suggestive in the experiment, to be described below, to apply
cellular automata as models for mechanisms in the physical world. Based
on such analogies, the properties of our world can be formulated in the
simplest possible way. The primary focus lies not on the explicit simu-
lation of certain laws of nature but on the general principle underlying
their effects. By choice of suitable algorithms, local and causal condi-
tions as well as random deviations can be visually rendered. In addition,
the problem of determinism can be handled. Apart from the classifica-
tion of computable and non-computable processes, a third category of
phenomena arises, namely, mechanisms which are deterministic but not
predictable. All of these characteristics of our world can be classified
as aspects of some underlying structure. And, the laws of nature are
apparently consistent with the evolution of a multiplicity of relatively
well-defined structures.

The concept of cellular automata goes back originally to John von Neumann.
The central proposition of his work was the concept of an abstract computer
with universal capabilities, which could produce the blueprint of any possible
computer as well as reproduce a copy of itself. The underlying question was
whether, in this context, the possibility existed of self-reproduction of animate
beings [28]. The idea of visualizing the distribution of instantaneous states on a
graphical grid was introduced by the mathematician Stanislaw Ulam. John von
Neumann’s system (which contained a small error, corrected by his successors)
was extremely intricate. Later, simpler solutions were discovered. For exam-
ple, John Horton Conway’s “Game of Life” [2] also turned out to be a cellular
automaton.

The definitive advance is due to Stephen Wolfram, who proved that all of
the systematic properties contained in a rectangular grid mirrored those which
show up in a one-dimensional configuration, which can be represented along a
single line. Wolfram had therefore identified the least complex type of cellular
automaton [11, 12, 13, 14].
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Based on their generic behavior, cellular automata can be categorized into
four groups as follows.

Class 1: After a finite number of steps, a uniform homogeneous final state is
reached, with all cells either empty or filled.

Class 2: Initially generated simple local patterns, sometimes changing into
vertical stripes or continually recurring repetition of short cycles.

Class 3: Patterns spreading in an apparently irregular way, typical clusters
evolving at intervals .

Class 4: Processes depending sensitively on a set of initial values. This might
lead to behavior similar to one of the classes generated above. Sometimes, these
structures are unstable and non-periodic. The automata belonging to this class
will also generate laterally shifted patterns, that is oblique lines or stripes. This
class possibly contains universal automata.

In all four cases, an infinite cell-space is necessary, so that the growth mecha-
nism is unimpeded. Otherwise repetitions would necessarily be produced, sooner
or later. This classification was based, more or less, on heuristic aspects; only
later a parameter was found by Christopher G. Langton, which he labeled
lambda, its value increasing with increasing class number. Lambda expresses
quantitatively the possibility of a cell’s survival in the transition to the next
generation [7].

1 The Turing Machine and Gödel’s Principle

Since all kinds of automata can be simulated by universal cellular automata, this
also applies to Turing machines [5]. This raises the question of the connection
with one of the deepest and most fundamental questions in mathematics: do
unsolvable problems exist? Gödel had proved by complicated logical argumen-
tation that there are indeed undecidable mathematical and logical problems.
Now, that same proof can be carried out in a far more graphic way using Alan
Turing’s abstract automaton, which in its most general form also has the quality
of universality. Every algorithm created to solve a problem of any kind can be
simulated by a Turing automaton, and a problem turns out to be unsolvable if
the output sequence does not terminate. There exist a number of deep analo-
gies between the Gödel principle, the Turing machine, and cellular automata.
Thus, fundamental principles of mathematics are equivalent to the functioning
of automata and, by extension, to everything that can be simulated by them,
including interactions among physical objects.

One special example is the predictability of questions that fall within the
scope of logic or mathematics. There is no generally applicable procedure to
determine whether a mathematical problem is solvable or not. The only way to
find out is to actually construct a solution, by whatever creative means that can
be applied. When you harness a Turing machine for such a problem, the sequence
of steps will not be predictable in advance even if they follow one another in a
deterministic manner.
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2 Cellular World-Models

Cellular automata have been applied to all kinds of problems, including the eluci-
dation of mathematical problems, the modeling of automata, and the simulation
of scientific processes, such as evolutionary mechanisms [4, 1]. They have proven
to be especially useful when applied to physical phenomena. Several attempts
were directed towards a “digital mechanics”: Ed Fredkin suggests that classical-
mechanical systems are equivalent to cellular automata [8]. Cellular automata
later served to simulate various types of structure-generating processes, among
others, diffusion processes in fluid mechanics. Furthermore they shed some light
on the formation of symmetrical patterns in natural phenomena.

The first to introduce the concept of “Rechnender Raum”, or “Computational
Space”, was Konrad Zuse. According to his ideas, elementary particles can be-
have as sub-microscopic computers, interacting among themselves and thereby
somehow reproducing known physical phenomena [19]. In particular, those phe-
nomena that can be represented by differential equations are well suited for the
digital modeling via cellular automata [10].

Attempts to construct direct digital models of physical processes, e.g., the
propagation of waves, might appear at first sight to be clumsy and unrealistic.
More promising, however, is the exploration of the fundamental ordering prin-
ciples in our universe, considering the analogy between physics with its mech-
anisms and cellular automata. The starting-point of the argument is this: if
the physical world is describable at all in mathematical terms, then the entire
sequence of intermediate steps must also be modeled as cellular automaton, al-
though possibly in a rather complex and intricate way. Certain general properties
that are valid for all cellular automata must then also apply for the world as
a whole [6]. At least, all those possible structures that are also implemented in
the smallest cellular automaton must be present. So that, while some processes
can be simulated only within certain limitations, generally valid statements can
be made about the whole system of laws of nature and their interrelationships,
solely by comparison with the smallest possible devices which can simulate them.

3 Locality and Causality

The algorithms for the control of cellular automata can be considered to cor-
respond to the basic laws of physics. These are embedded in a program that
prescribes how they are applied [3]. The structure and design of this program is
extremely simple, not only because of the rules for a minimal number of states
and functional connections, but also by keeping these rules unchanged from start
to finish in a program run. This principle corresponds to the widely-accepted pre-
sumption of physicists that the basic laws of nature have not changed since the
beginning of our universe. Because at every step the newly-arising distribution of
values is subject to the same set of rules, the sequence of states can conceptually
be regarded as an iterative process.

Temporal continuity must be analogously true, corresponding to the usual
assumption of a spatial continuum. It is taken for granted that the same laws of
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nature are valid everywhere in the universe. It would be quite easy to insert a
local dependence into the program, but, as far as we know at present, that does
not appear to be the case.

Two more evidently universal rules of physics have, from the outset, been
included in the concept of the cellular automaton. By permitting only adjacent
cells to influence the state of the next generation, we limit our considerations to
behavior which obeys locality–there are no nonlocal effects, and each effect on
one cell is mediated only by its immediate neighbors. It could be demonstrated
that a kind of information transfer is feasible within cellular automata by freeing
a cluster of cells from its surrounding group and setting it adrift in something
like a round trip across space and time. This phenomenon corresponds to the
emergence of diagonal stripes in cellular automata of the fourth type.

The same situation holds true for the time-dependent effects, which are of
a strictly causal nature in the prototypical cellular automaton, and which are
assumed to influence only immediately subsequent time intervals. Any effect
transmitted from one cell to another thus needs the activation of all intermediate
generations. These spatial and temporal adjacency rules demand that a certain
cell can exert influence only within a certain limited space, and that an effect
working on a certain cell can originate only within a limited space. This situation
corresponds to Einstein’s Light Cone, which degenerates in cellular automata
into a triangle, the cell forming the starting or end point located at the top or
bottom vertex. The time interval between the states, when the effects are handed
on from one generation to the next, thereby behaves as an analogy to the finite
speed of light.

Within classical mechanics, there arises the problem of the reversibility of
events. As can easily be seen, this is normally not the case. State N+1 does
not allow the reconstruction of the previous state N. In other words, different
distributions in a generation can lead to exactly the same distribution in the
next one. On the other hand, the algorithms can be designed so that the process
will also run in the reverse direction. As Ed Fredkin has shown, this is the case
if the principle of cellular automata is somewhat extended, such that not only
the preceding generation, but, in addition, the antecedent of that generation are
allowed to influence its successor. The simplest case is encoded by the following
equations:

z(t) = f(t− 1)− z(t− 2) (1)

Then there also exists an inverse algorithm:

z(t− 2) = f(t− 1)− z(t) (2)

This leads to a correspondence with classical mechanics: information about the
momentary place is not sufficient for calculating the subsequent state, additional
information must be given about the rate of change (speed or impulse are nor-
mally used for this purpose). In this manner, by embedding the immediate as
well as the remote past, the rate of change can be calculated.
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4 Determinism or Randomness?

So far, we have discussed only purely deterministic examples, the course of events
being immutably fixed by the starting conditions. As a result of the equivalences
between cellular automata and the Turing machine, the process needs not neces-
sarily be computable. It is conceivable that the physical processes described by
the laws of nature never do come to an end, which means that we are simulating
the behavior of a cellular automaton which runs deterministically, but is not
computable. There are conflicting philosophical viewpoints that do not accept
the influence of chance on what happens in the world. For them, determinism
fulfills their belief that the world runs according to strict rules, embracing all
creation and all apparent innovation, both expected and unexpected. Innovation,
originating in this way, is the equivalent of chaos as understood in dynamical
chaos theory, which, as we know, is based not on actual chance, but on non-
computability.

The type of randomness described above has to be distinguished from that
encountered in quantum theory, which is non-deterministic on a fundamental
level. Most theoretical physicists will accept that, despite some disagreements
about details, a final definitive answer to this question remains to be formulated
in the future. But it is quite possible to test this idea with cellular automata.
This can be done by introducing randomly-induced modifications–“mutations”–
into the algorithms. An easier way, however, of adding an irregular interference
or disturbance would consist in randomly changing the states in various places;

Fig. 1. For illustration, we use a cellular automaton with the two states and the
transition code 0 1 2 3 4 5 / 1 1 0 1 0 0 probably of the class four type [11]. Scale of
colors: 0 black, 1 bright brown, 2 bright blue, 3 yellow, 4 dark brown, 5 dark gray. The
picture shows the origin of patterns on the begin of evolution, emerging of a locally and
temporally limited field of chaotic distribution of initial states. As soon the evolution
has reached the random free zone, the rules for the automaton produce no more shapes,
but only emptiness or crystal-like order.
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(a) 398 (b) 400

(c) 402 (d) 404

(e) 406 (f) 408

(g) 410

Fig. 2. Structures generated under an increasing influence of randomness (images fol-
lowed by their density parameter). Some random-selected sites of the lines are occupied
with the state 1. New shapes emerge there where such sites come in neighbourhood. By
this series of pictures, the density of introduced randomness is expressed by a numerical
parameter - the pictures show the situation for some parameters between 398 and 410.
Randomness acts as a creative effect which counteracts against the trend towards order
which the set of rules tries to maintain. A specific value of the mentioned parameter
(approximately by 400) defines the status of balance between growing and destruction
of structures. Such parameter gives a characteristic value for every cellular automaton.
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we might say that chance could be interspersed, for example by adding a few
extra lines of program code containing a randomizer.

Much information can be gained from a comparison between repeated runs of
the same cellular automaton with and without disturbance (see figures). As can
be seen, by the application of a disturbing element, an antagonism, a competi-
tion between order and disorder is triggered. There are cellular automata that
obviously possess a strong trend towards expressing their repertoire of patterns,
and thus easily suppressing all germs of chaos. On the other hand, there are oth-
ers in which even a slight touch of randomness suffices to “lead them astray” or
make them run out of control, so that a great multiplicity of different patterns is
generated. A Class One linear cellular automaton requires a strong dose of ran-
domness to get its regularity disturbed, but, all the same, the previous pattern
will soon be re-established. In Class Three automata, by contrast, a minimal dis-
turbance is enough to render impossible a return to a homogeneous pattern; the
chances are that random effects generate nuclei of larger well-ordered clusters.

What is visually expressed in the illustrations can also be seen as aspects
of information or complexity: irreversible and deterministic automata run in
a manner in which complexity can never increase, but in most cases must
inevitably decrease. As a consequence, the patterns get more and more sim-
ple, they degenerate into cyclic sequences that fill the whole available space
or vanish completely. Only reversible processes retain their complexity, and in-
novation emerges, if at all, via re-ordering as understood by the deterministic
modification of chaos theory. The formation of complexity then becomes possible
only in stochastic models.

The structural variety of our world as we experience it might also spring from
a deterministic model without the influence of chance if that model belongs to
the category of undecidable mathematical problems. Since, however, a decisive
answer on whether this is the case cannot possibly be given, since there would
always exist the alternative that such a world will sooner or later turn into
crystal-like rigidity or dissolve into chaos, possibly in the sense of the Heat Death
of the universe. This kind of world is philosophically unsatisfying, but it is not
our option to choose in what sort of world we actually live. It is quite informative
to view it from a completely different point of view, asking ourselves: How must
a universe be built that will keep its structure-creating capability forever and
with certainty? The best solution is an endlessly running cellular automaton
modified with that touch of randomness that conforms with its innate trend
towards regularity.

5 Conclusions

To sum up, cellular automata turn out to be possible models to visualize the
basic structure of our world. By reducing that structure to the least complex
programs, they enable us to deal in a more definite way with various relevant
problems, including those with philosophical implications–near and far effects,
causality, determinism, and entropy. A new multiplicity of problems, triggered
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not in the least by chaos theory, is that of the formation of structures, as this
capability inherent in nature is doubtlessly of fundamental relevance. Preeminent
in this context is the role of randomness, an issue since the early days of the
quantum theory. To identify our universe as a Class Four cellular automaton is
at present no more than a speculation, but in future considerations involving
this class of problems it will have to be considered as a promising candidate.
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