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Four centuries ago, telescopes were turned to the sky for the first time—
and what they saw ultimately launched much of modern science. Over
the past twenty years I have begun to explore a new universe—the com-
putational universe—made visible not by telescopes but by computers

Stephen Wolfram
A New Kind of Science, 2002



Foreword

It has been a pleasure and a privilege for me to discuss fundamental questions
with Stephen over the years. In this foreword I want to indicate what I regard as
some of the major contributions of A New Kind of Science (henceforth NKS).

In my opinion, NKS is a milestone work that will be appreciated more and
more with time. Now, ten years after its publication, some things already begin
to stand out.

First of all, Stephen’s book is wonderfully unconventional. In an age in which
there are too many papers “filling in much needed gaps” (Stan Ulam’s classic
put-down), who can take the time from producing a constant stream of routine
papers, one that is required by the funding agencies, to write a conventional
book, let alone a magnum opus in the grand manner?

Stephen’s NKS is an example to us all, a beacon of high intellectual ambition
shining through a fog of mediocrity and dispensable erudition.

I regard NKS as a fundamental work on philosophy, a work on possible worlds
rather than merely about this one. Here are some of the topics that it touches
on:

– Ontology: the world may be built of discrete mathematical structures, out
of algorithms, not differential equations.

– Epistemology: even knowing the fundamental laws, there may be no short-
cuts, no better way to deduce how a system will behave than to run it and
see.

– On randomness and pseudo-randomness: an entirely deterministic
world may seem to be random, but only be pseudo-random.

– Digital philosophy: what are the combinatorial bricks out of which the
world is built?

Another remarkable feature of NKS is that it can be read by an intelligent high-
school student, thus continuing the fine tradition of Naturphilosophie. The ideas
are so basic that they do not require elaborate technical machinery.

Furthermore, Stephen brings the playful experimental approach of a physicist
to combinatorial mathematics and theoretical computer science, fields formerly
not accustomed to such playfulness.

Newton developed the calculus, which was the tool he needed for his Prin-
cipia, and Stephen has similarly developed—and continues developing—the tool
he needs, the extremely powerful algorithmic language Mathematica.

And NKS is a kind of combinatorics art book, full of amazingly suggestive
high-resolution illustrations, reminding me of works like D’Arcy Thompson, On
Growth and Form and Ernest Haeckel’s Art Forms in Nature. And this in an
age dominated by Bourbaki’s “death to triangles!” and totally opposed to any
visual images in mathematics.

As I said, I think the significance of NKS can only increase with time.



VIII Foreword

Let me illustrate this with a recent example, involving my work on “metabi-
ology” that models biological evolution by studying the evolution of mutating
software. I am attempting to unify theoretical biology and theoretical computer
science based on the ansatz that DNA is digital software.

And having set out on this path, I immediately discover that Stephen’s NKS
is highly relevant. In particular, I think that the discussion of the Cambrian
explosion in Stephen Jay Gould’s Wonderful Life is illuminated by Wolfram’s
metaphor of mining the computational universe, and that the mysterious origin
of life, which is actually the spontaneous discovery of software by Nature, is illu-
minated by Wolfram’s thesis that it is easy to build a universal Turing machine
out of almost any discrete combinatorial components.1

So NKS is a book on biology and Stephen Wolfram is a biologist! Let us
celebrate the tenth anniversary of this remarkable volume. We shall be lucky to
see its like again in this generation.

—Gregory Chaitin
Federal University of Rio de Janeiro

1 For more on such topics, please see G. Chaitin, Proving Darwin: Making Biology
Mathematical, New York: Pantheon, 2012.



Preface

In 2005, I began a project on mathematical logic at the then called NKS Sum-
mer School (today the Wolfram Science Summer School), a project close to my
heart but rather far afield of my then interest in Computability theory. Quite
surprisingly, Stephen Wolfram would listen to my stuff on neural networks, real
numbers and computing at different levels of the arithmetical hierarchy with
great interest, even as I myself was becoming increasingly aware that he was
very skeptical about it. The project I started at Stephen’s suggestion was a
natural extension of the exploration of the “mathematical universe” of propo-
sitional sentences he had undertaken in A New Kind of Science (chapter 12,
section 9 “Implications for Mathematics and Its Foundations”) with very inter-
esting results. Among his discoveries is the shortest single axiom equivalent to
the axioms of Boolean algebra with a formula of six “Nand”’s and two variables:
((a.b).c).(a.((a.c).a)) = c. He also found that Boolean formulas that had a name
in, for example textbooks, such as the Laws of Tautology, Commutativity, Dou-
ble Negation, etc., were exactly the formulas independent of (that cannot be
derived from) the set of shorter formulas by number of variables and symbols.
The very few exceptions, such as De Morgan’s Laws, enable the shortening of
proofs that would otherwise be significantly longer.

So I undertook the challenge of making predicate calculus my “mathematical
universe” of investigation during the school at Brown, which eventually gener-
ated several research ideas, some of which people from Carnegie Mellon Univer-
sity (CMU) found interesting enough to invite me to CMU in Pittsburgh for the
Spring semester of 2008 as a visiting scholar. My time at Brown and CMU ulti-
mately led to a paper I published in Cristian Calude’s festschrift under the title
“From Computer Runtimes to the Length of Proofs”1 with a potential applica-
tion to waiting times useful in automatic theorem proving (and perhaps more
useful in the field of verification of programs, a matter now being investigated by
a student of mine). At CMU I also encountered Klaus Sutner, a researcher who
had been interested in the possible connections between Wolfram’s Principle of
Computational Equivalence and intermediate Turing degrees almost since the
publication of the ANKS book and contributor to this volume summarising for
the readers some of his latest findings and ideas in this direction.

While at the NKS Summer School, as participant and then instructor, I
encountered a thriving community of remarkably smart people who I hold in
the highest esteem. Two of them (Bolognesi and Joosten) report some of their
current and future directions in connection to NKS questions, who together with

1 H. Zenil, From Computer Runtimes to the Length of Proofs: With an Algorithmic
Probabilistic Application to Waiting Times in Automatic Theorem Proving. In M.J.
Dinneen, B. Khousainov, and A. Nies (Eds.), Computation, Physics and Beyond:
Theoretical Computer Science and Applications, WTCS 2012, LNCS 7160, pp. 223–
240, Springer, 2012.



X Preface

Beckage and Maymin are NKS-SS alumni contributing to this volume. My own
interests changed soon after participating at Wolfram’s Science Summer School,
not only because of my experience with and at Wolfram but because of the insight
of my PhD thesis advisor Jean-Paul Delahaye, at Lille, who immediately saw
the question of hyper-computation as a “faux problème” given that the question
belongs to physics and not to computer science. From then on I developed a great
interest in the intersection of Wolfram’s experimental techniques with another
exciting area of computer science, Algorithmic Information Theory (AIT), as
developed by Kolmogorov, Chaitin, Levin and Solomonoff, among others. Two
of the aforementioned founders of AIT (Chaitin and Solomonoff) have been
relatively close to Wolfram’s NKS, attending conferences and contributing from
their particular vantage points and insightful perspectives.

In 2007, Stephen Wolfram introduced me to Greg Chaitin, whom I visited
at his office in the IBM TJ Watson Research Center in Yorktown, NY. Chaitin
and Wolfram have been discussing about NKS and AIT for many years, both
their points of possible contact and of possible stress with always interesting,
and often unexpected, outcomes2 in part motivating the beginning of my own
research programme. Chaitin has an advantageous first hand view of Wolfram’s
work that shares with us in his foreword, once more with an unexpected, but
provocative, outcome (that Wolfram is rather a biologist!). Calude, on the other
hand, has approached Wolfram’s ideas more recently and brings a fresh but in-
sightful outlook of Wolfram’s work in his afterword, equilibrated with references
to some of the reviews of Wolfram’s book in the course of the last ten years.

While the cellular automaton is among the preferred computing models in
ANKS (also the model of choice for most of the contributors to this volume,
see e.g. the opening chapter by Franke), the book’s main concepts are the con-
cepts of Irreducibility and Computational Equivalence that Wolfram claims to
be of essential value for understanding nature and has consequently advanced in
the form of guiding general principles. Cellular automata are therefore merely
a means to arrive at and illustrate these central concepts. Zwirn and Delahaye
contribute an interesting approach to one aspect of Wolfram’s notion of irre-
ducibility from the perspective of traditional computational complexity. Sutner
investigates the formal side of the Principle of Computational Equivalence from
the perspective of classical Recursion theory, also the direction of Joosten’s con-
tribution in connection to the question of the pervasiveness of complexity in
nature. Rucker explores the aspect of Wolfram’s ideas on computation that are
more connected to the material and everyday world, comparing different sys-
tems and suggesting that both universality and undecidability are everywhere.
Beckage, Kauffman, Gross, Zia, Vattay and Koliba explore the nature of compu-
tational irreducibility in connection to limits in physical and biological systems.
Maymin and Velupillai connect concepts of computational irreducibility and

2 You can find their public debates together with other personalities in the transcrip-
tions (by Adrian German) published in: H. Zenil, Randomness Through Computation,
World Scientific, 2011; and H. Zenil (ed), A Computable Universe: Understanding and
Exploring Nature As Computation, World Scientific, 2013.
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universality to algorithmic finance and computable economics, fields inaugu-
rated by the authors themselves. Burgin explores the consequences for tech-
nology and engineering. Dowek, Arrighi, Bolognesi and Vidal discuss the
foundations of physics from the bottom up, from particles to cosmology. Baetens
and De Baets; Margenstern; Sapin; Ruivo and Oliveira; Mainzer; Mart́ınez and
Seck Tuoh Mora; and Reisinger, Martin, Blankenship, Harrison, Squires and
Beavers, investigate cellular automata in connection to their computational be-
havioural properties, their limits and the notion of computational irreducibility.
Bailey also explores the connections of Wolfram’s pragmatic approaches to exper-
imental mathematics and the discovery of formulas with the help of computers in
a sort of NKS exploration fashion in traditional mathematics. Dodig-Crnkovic,
Tagliabue and Bringsjord enlighten us by dissecting Wolfram’s most fundamen-
tal assumptions and the philosophical consequences of his work.

Everything came together for this book at the right time. Since Wolfram’s
book had been published ten years previously, the authors had enough material
to present and progress to report vis-à-vis new directions related to or motivated
by the subjects covered in Wolfram’s work. I had established connections with
many of the leading researchers in the field at, among other events, the Wolfram
Science conferences held in Boston, Washington and Burlington, the two Midwest
NKS conferences organised by Adrian German at the University of Indiana,
Bloomington in 2005 and 2008, and the JOUAL workshop held at the CNR in
Pisa, Italy, organised by Bolognesi in 2009 where, among the speakers, were also
contributors to this volume (Dowek, Burgin, Sapin and Dodig-Crnkovic).

I want to thank all the aforementioned individuals, and also specially to
Matthew Szudzik, Joost Joosten, Todd Rowland, Catherine Boucher, Adrian
German, Paul-Jean Letourneau, Genaro J. Mart́ınez, Vela Velupillai, Gre-
gory Chaitin, Cristian Calude, Jean-Paul Delahaye, Gordana Dodig-Crnkovic,
Clément Vidal and Stephen Wolfram. Thanks also to Elena Villarreal for her
continuous support and understanding, to Ivan Zelinka, the series editor of
“Emergence, Complexity and Computation”, who supported this project, and
to Thomas Ditzinger, the publishing editor of Springer.

—Hector Zenil
The University of Sheffield, United Kingdom
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Chapter 1

Cellular Automata: Models of the Physical
World

Herbert W. Franke�

ZIB-Institute, Germany

Abstract. Cellular automata can be applied to simulate various natural
processes, particularly those described by physics, and can also serve as
an abstract model for all kinds of computers. This results in a intriguing
linkage between physics and the theory of automata. Such connections
prove to be suggestive in the experiment, to be described below, to apply
cellular automata as models for mechanisms in the physical world. Based
on such analogies, the properties of our world can be formulated in the
simplest possible way. The primary focus lies not on the explicit simu-
lation of certain laws of nature but on the general principle underlying
their effects. By choice of suitable algorithms, local and causal condi-
tions as well as random deviations can be visually rendered. In addition,
the problem of determinism can be handled. Apart from the classifica-
tion of computable and non-computable processes, a third category of
phenomena arises, namely, mechanisms which are deterministic but not
predictable. All of these characteristics of our world can be classified
as aspects of some underlying structure. And, the laws of nature are
apparently consistent with the evolution of a multiplicity of relatively
well-defined structures.

The concept of cellular automata goes back originally to John von Neumann.
The central proposition of his work was the concept of an abstract computer
with universal capabilities, which could produce the blueprint of any possible
computer as well as reproduce a copy of itself. The underlying question was
whether, in this context, the possibility existed of self-reproduction of animate
beings [28]. The idea of visualizing the distribution of instantaneous states on a
graphical grid was introduced by the mathematician Stanislaw Ulam. John von
Neumann’s system (which contained a small error, corrected by his successors)
was extremely intricate. Later, simpler solutions were discovered. For exam-
ple, John Horton Conway’s “Game of Life” [2] also turned out to be a cellular
automaton.

The definitive advance is due to Stephen Wolfram, who proved that all of
the systematic properties contained in a rectangular grid mirrored those which
show up in a one-dimensional configuration, which can be represented along a
single line. Wolfram had therefore identified the least complex type of cellular
automaton [11, 12, 13, 14].

� I thank S.M. Blinder for help by the translation –HWF.

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 3–10.
DOI: 10.1007/978-3-642-35482-3_1 © Springer-Verlag Berlin Heidelberg 2013
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Based on their generic behavior, cellular automata can be categorized into
four groups as follows.

Class 1: After a finite number of steps, a uniform homogeneous final state is
reached, with all cells either empty or filled.

Class 2: Initially generated simple local patterns, sometimes changing into
vertical stripes or continually recurring repetition of short cycles.

Class 3: Patterns spreading in an apparently irregular way, typical clusters
evolving at intervals .

Class 4: Processes depending sensitively on a set of initial values. This might
lead to behavior similar to one of the classes generated above. Sometimes, these
structures are unstable and non-periodic. The automata belonging to this class
will also generate laterally shifted patterns, that is oblique lines or stripes. This
class possibly contains universal automata.

In all four cases, an infinite cell-space is necessary, so that the growth mecha-
nism is unimpeded. Otherwise repetitions would necessarily be produced, sooner
or later. This classification was based, more or less, on heuristic aspects; only
later a parameter was found by Christopher G. Langton, which he labeled
lambda, its value increasing with increasing class number. Lambda expresses
quantitatively the possibility of a cell’s survival in the transition to the next
generation [7].

1 The Turing Machine and Gödel’s Principle

Since all kinds of automata can be simulated by universal cellular automata, this
also applies to Turing machines [5]. This raises the question of the connection
with one of the deepest and most fundamental questions in mathematics: do
unsolvable problems exist? Gödel had proved by complicated logical argumen-
tation that there are indeed undecidable mathematical and logical problems.
Now, that same proof can be carried out in a far more graphic way using Alan
Turing’s abstract automaton, which in its most general form also has the quality
of universality. Every algorithm created to solve a problem of any kind can be
simulated by a Turing automaton, and a problem turns out to be unsolvable if
the output sequence does not terminate. There exist a number of deep analo-
gies between the Gödel principle, the Turing machine, and cellular automata.
Thus, fundamental principles of mathematics are equivalent to the functioning
of automata and, by extension, to everything that can be simulated by them,
including interactions among physical objects.

One special example is the predictability of questions that fall within the
scope of logic or mathematics. There is no generally applicable procedure to
determine whether a mathematical problem is solvable or not. The only way to
find out is to actually construct a solution, by whatever creative means that can
be applied. When you harness a Turing machine for such a problem, the sequence
of steps will not be predictable in advance even if they follow one another in a
deterministic manner.
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2 Cellular World-Models

Cellular automata have been applied to all kinds of problems, including the eluci-
dation of mathematical problems, the modeling of automata, and the simulation
of scientific processes, such as evolutionary mechanisms [4, 1]. They have proven
to be especially useful when applied to physical phenomena. Several attempts
were directed towards a “digital mechanics”: Ed Fredkin suggests that classical-
mechanical systems are equivalent to cellular automata [8]. Cellular automata
later served to simulate various types of structure-generating processes, among
others, diffusion processes in fluid mechanics. Furthermore they shed some light
on the formation of symmetrical patterns in natural phenomena.

The first to introduce the concept of “Rechnender Raum”, or “Computational
Space”, was Konrad Zuse. According to his ideas, elementary particles can be-
have as sub-microscopic computers, interacting among themselves and thereby
somehow reproducing known physical phenomena [19]. In particular, those phe-
nomena that can be represented by differential equations are well suited for the
digital modeling via cellular automata [10].

Attempts to construct direct digital models of physical processes, e.g., the
propagation of waves, might appear at first sight to be clumsy and unrealistic.
More promising, however, is the exploration of the fundamental ordering prin-
ciples in our universe, considering the analogy between physics with its mech-
anisms and cellular automata. The starting-point of the argument is this: if
the physical world is describable at all in mathematical terms, then the entire
sequence of intermediate steps must also be modeled as cellular automaton, al-
though possibly in a rather complex and intricate way. Certain general properties
that are valid for all cellular automata must then also apply for the world as
a whole [6]. At least, all those possible structures that are also implemented in
the smallest cellular automaton must be present. So that, while some processes
can be simulated only within certain limitations, generally valid statements can
be made about the whole system of laws of nature and their interrelationships,
solely by comparison with the smallest possible devices which can simulate them.

3 Locality and Causality

The algorithms for the control of cellular automata can be considered to cor-
respond to the basic laws of physics. These are embedded in a program that
prescribes how they are applied [3]. The structure and design of this program is
extremely simple, not only because of the rules for a minimal number of states
and functional connections, but also by keeping these rules unchanged from start
to finish in a program run. This principle corresponds to the widely-accepted pre-
sumption of physicists that the basic laws of nature have not changed since the
beginning of our universe. Because at every step the newly-arising distribution of
values is subject to the same set of rules, the sequence of states can conceptually
be regarded as an iterative process.

Temporal continuity must be analogously true, corresponding to the usual
assumption of a spatial continuum. It is taken for granted that the same laws of
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nature are valid everywhere in the universe. It would be quite easy to insert a
local dependence into the program, but, as far as we know at present, that does
not appear to be the case.

Two more evidently universal rules of physics have, from the outset, been
included in the concept of the cellular automaton. By permitting only adjacent
cells to influence the state of the next generation, we limit our considerations to
behavior which obeys locality–there are no nonlocal effects, and each effect on
one cell is mediated only by its immediate neighbors. It could be demonstrated
that a kind of information transfer is feasible within cellular automata by freeing
a cluster of cells from its surrounding group and setting it adrift in something
like a round trip across space and time. This phenomenon corresponds to the
emergence of diagonal stripes in cellular automata of the fourth type.

The same situation holds true for the time-dependent effects, which are of
a strictly causal nature in the prototypical cellular automaton, and which are
assumed to influence only immediately subsequent time intervals. Any effect
transmitted from one cell to another thus needs the activation of all intermediate
generations. These spatial and temporal adjacency rules demand that a certain
cell can exert influence only within a certain limited space, and that an effect
working on a certain cell can originate only within a limited space. This situation
corresponds to Einstein’s Light Cone, which degenerates in cellular automata
into a triangle, the cell forming the starting or end point located at the top or
bottom vertex. The time interval between the states, when the effects are handed
on from one generation to the next, thereby behaves as an analogy to the finite
speed of light.

Within classical mechanics, there arises the problem of the reversibility of
events. As can easily be seen, this is normally not the case. State N+1 does
not allow the reconstruction of the previous state N. In other words, different
distributions in a generation can lead to exactly the same distribution in the
next one. On the other hand, the algorithms can be designed so that the process
will also run in the reverse direction. As Ed Fredkin has shown, this is the case
if the principle of cellular automata is somewhat extended, such that not only
the preceding generation, but, in addition, the antecedent of that generation are
allowed to influence its successor. The simplest case is encoded by the following
equations:

z(t) = f(t− 1)− z(t− 2) (1)

Then there also exists an inverse algorithm:

z(t− 2) = f(t− 1)− z(t) (2)

This leads to a correspondence with classical mechanics: information about the
momentary place is not sufficient for calculating the subsequent state, additional
information must be given about the rate of change (speed or impulse are nor-
mally used for this purpose). In this manner, by embedding the immediate as
well as the remote past, the rate of change can be calculated.
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4 Determinism or Randomness?

So far, we have discussed only purely deterministic examples, the course of events
being immutably fixed by the starting conditions. As a result of the equivalences
between cellular automata and the Turing machine, the process needs not neces-
sarily be computable. It is conceivable that the physical processes described by
the laws of nature never do come to an end, which means that we are simulating
the behavior of a cellular automaton which runs deterministically, but is not
computable. There are conflicting philosophical viewpoints that do not accept
the influence of chance on what happens in the world. For them, determinism
fulfills their belief that the world runs according to strict rules, embracing all
creation and all apparent innovation, both expected and unexpected. Innovation,
originating in this way, is the equivalent of chaos as understood in dynamical
chaos theory, which, as we know, is based not on actual chance, but on non-
computability.

The type of randomness described above has to be distinguished from that
encountered in quantum theory, which is non-deterministic on a fundamental
level. Most theoretical physicists will accept that, despite some disagreements
about details, a final definitive answer to this question remains to be formulated
in the future. But it is quite possible to test this idea with cellular automata.
This can be done by introducing randomly-induced modifications–“mutations”–
into the algorithms. An easier way, however, of adding an irregular interference
or disturbance would consist in randomly changing the states in various places;

Fig. 1. For illustration, we use a cellular automaton with the two states and the
transition code 0 1 2 3 4 5 / 1 1 0 1 0 0 probably of the class four type [11]. Scale of
colors: 0 black, 1 bright brown, 2 bright blue, 3 yellow, 4 dark brown, 5 dark gray. The
picture shows the origin of patterns on the begin of evolution, emerging of a locally and
temporally limited field of chaotic distribution of initial states. As soon the evolution
has reached the random free zone, the rules for the automaton produce no more shapes,
but only emptiness or crystal-like order.
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(a) 398 (b) 400

(c) 402 (d) 404

(e) 406 (f) 408

(g) 410

Fig. 2. Structures generated under an increasing influence of randomness (images fol-
lowed by their density parameter). Some random-selected sites of the lines are occupied
with the state 1. New shapes emerge there where such sites come in neighbourhood. By
this series of pictures, the density of introduced randomness is expressed by a numerical
parameter - the pictures show the situation for some parameters between 398 and 410.
Randomness acts as a creative effect which counteracts against the trend towards order
which the set of rules tries to maintain. A specific value of the mentioned parameter
(approximately by 400) defines the status of balance between growing and destruction
of structures. Such parameter gives a characteristic value for every cellular automaton.
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we might say that chance could be interspersed, for example by adding a few
extra lines of program code containing a randomizer.

Much information can be gained from a comparison between repeated runs of
the same cellular automaton with and without disturbance (see figures). As can
be seen, by the application of a disturbing element, an antagonism, a competi-
tion between order and disorder is triggered. There are cellular automata that
obviously possess a strong trend towards expressing their repertoire of patterns,
and thus easily suppressing all germs of chaos. On the other hand, there are oth-
ers in which even a slight touch of randomness suffices to “lead them astray” or
make them run out of control, so that a great multiplicity of different patterns is
generated. A Class One linear cellular automaton requires a strong dose of ran-
domness to get its regularity disturbed, but, all the same, the previous pattern
will soon be re-established. In Class Three automata, by contrast, a minimal dis-
turbance is enough to render impossible a return to a homogeneous pattern; the
chances are that random effects generate nuclei of larger well-ordered clusters.

What is visually expressed in the illustrations can also be seen as aspects
of information or complexity: irreversible and deterministic automata run in
a manner in which complexity can never increase, but in most cases must
inevitably decrease. As a consequence, the patterns get more and more sim-
ple, they degenerate into cyclic sequences that fill the whole available space
or vanish completely. Only reversible processes retain their complexity, and in-
novation emerges, if at all, via re-ordering as understood by the deterministic
modification of chaos theory. The formation of complexity then becomes possible
only in stochastic models.

The structural variety of our world as we experience it might also spring from
a deterministic model without the influence of chance if that model belongs to
the category of undecidable mathematical problems. Since, however, a decisive
answer on whether this is the case cannot possibly be given, since there would
always exist the alternative that such a world will sooner or later turn into
crystal-like rigidity or dissolve into chaos, possibly in the sense of the Heat Death
of the universe. This kind of world is philosophically unsatisfying, but it is not
our option to choose in what sort of world we actually live. It is quite informative
to view it from a completely different point of view, asking ourselves: How must
a universe be built that will keep its structure-creating capability forever and
with certainty? The best solution is an endlessly running cellular automaton
modified with that touch of randomness that conforms with its innate trend
towards regularity.

5 Conclusions

To sum up, cellular automata turn out to be possible models to visualize the
basic structure of our world. By reducing that structure to the least complex
programs, they enable us to deal in a more definite way with various relevant
problems, including those with philosophical implications–near and far effects,
causality, determinism, and entropy. A new multiplicity of problems, triggered
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not in the least by chaos theory, is that of the formation of structures, as this
capability inherent in nature is doubtlessly of fundamental relevance. Preeminent
in this context is the role of randomness, an issue since the early days of the
quantum theory. To identify our universe as a Class Four cellular automaton is
at present no more than a speculation, but in future considerations involving
this class of problems it will have to be considered as a promising candidate.
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Abstract. Wolfram’s Principle of Computational Equivalence (PCE)
implies that universal complexity abounds in nature. This paper com-
prises three sections. In the first section we consider the question why
there are so many universal phenomena around. So, in a sense, we seek
a driving force behind the PCE if any. We postulate a principle GNS
that we call the Generalized Natural Selection principle that together
with the Church-Turing thesis is seen to be equivalent in a sense to a
weak version of PCE. In the second section we ask the question why
we do not observe any phenomena that are complex but not-universal.
We choose a cognitive setting to embark on this question and make some
analogies with formal logic.

In the third and final section we report on a case study where we see
rich structures arise everywhere.

1 Why Complexity Abounds

Throughout the literature one can find various different and sometimes contra-
dicting definitions of what complexity is. The definition that we shall employ in
the first section involves the notion of a universal computational process/device.
For the second and third section of this paper we shall use slightly less formal
and more relaxed notions of the word complexity.

1.1 What Is Complexity?

Let us recall that a computational process Π is universal if it can simulate any
other computational process Θ. In other words, Π is universal if for any other
computational process Θ, we can find an easy coding protocol C and decoding
protocol C−1 so that we can encode any input x for Θ as an input C(x) for Π so
that after Π has performed its computation we can decode the answer Π(C(x))
to the answer that Θ would have given us. In symbols: C−1(Π(C(x))) = Θ(x).

For the sake of this first section we can take as working definition that a system
is complex if we can easily perceive it as a universal computational process. Note
that we have used the word ‘easy’ a couple of times above. If we were to be more
precise we should specify this and could for example choose for poly-time or some
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DOI: 10.1007/978-3-642-35482-3_2 © Springer-Verlag Berlin Heidelberg 2013
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other technical notion that more or less covers the intuition of what is easy. We
wish to be not too specific on these kind of details here.

Thus, for the first section of this paper, a complex process is one that is
computationally universal. However, great parts of the reasoning here will also
hold for other definitions of complexity. For example, stating that a process is
complex if comprehending or describing it exceeds or supersedes all available
resources (time, space, description size).

Note that our current definition of complexity need not necessarily manifest
itself in a complex way. Remember that a universal process is one that can
simulate any other process, thus also including the very simple and repetitive
ones. One might thus equally well observe a universal process that temporarily
exhibits very regular behavior. In this sense universal cannot be directly equated
to our intuitive notion of complexity but rather to potentially complex.

1.2 The Principle of Computational Equivalence and the
Church-Turing Thesis

In his NKS book [10], Wolfram postulates the Principle of Computational Equiv-
alence (PCE):

PCE: Almost all processes that are not obviously simple can be viewed
as computations of equivalent and maximal sophistication.

The processes here referred to are processes that occur in nature, or at least,
processes that could in principle be implemented in nature. Thus, processes that
require some oracle or black box that give the correct answer to some hard
questions are of course not allowed here.

As noted in the book, PCE implies the famous Church-Turing Thesis (CT):

CT: Everything that is algorithmically computable is computable by a
Turing Machine.

In Section 3 below we shall briefly revisit the definition of a Turing Machine.
Both theses have some inherent vagueness in that they try to capture/define an
intuitive notion. While the CT thesis aims at defining the intuitive notion of al-
gorithmic computability,PCE aims at defining what degrees of complexity occur
in natural processes. But note, this is not a mere definition as, for example, the
notion of what is algorithmically computable comes with a clear intuitive mean-
ing. And thus, the thesis applies to all such systems that fall under our intuitive
meaning. As a consequence, the CT thesis would become false if some scientists
were to point out an algorithmic computation that cannot be performed on a
Turing Machine with unlimited time and space resources. With the development
and progress of scientific discovery the thesis has to be questioned and tested
time and again. And this is actually what we have seen over the past decades
with the invention and systematic study of new computational paradigms like
DNA computing [11], quantum computing [10], membrane computing [4], etc.
Most scientists still adhere to the CT thesis. There are some highly theoretical
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notions of super-computations and super-tasks which would allegedly escape the
CT thesis but to my modest esteem, they depend too much on very strong as-
sumptions and seem impossible to be implemented [12]. However, I would love
to be proven wrong in this and see such a super-computer be implemented.

In the PCE there is moreover a vague quantification present in that the prin-
ciple speaks of almost all. This vague quantification is also essential. Trying to
make it more precise is an interesting and challenging enterprise. However, one
should not expect a definite answer in the form of a definition here. Rather, I
think, the question is a guideline that points out interesting philosophical issues
as we shall argue in Section 2. Moreover, these vague quantifiers could be read in
other parts of science too. For example, the Second Law of Thermodynamics tells
us that all isolated macroscopic processes in nature are going in the direction
that leads to an increase of entropy. First of all, it is per definition not possible to
observe perfectly isolated macroscopic processes. So, in all practical applications
of the Second Law of Thermodynamics we would have to comfort ourselves with
a highly isolated macroscopic process instead. And then, we know, as a mat-
ter of fact that we should read a vague quantifier to the effect that almost all
such processes lead to an increase of entropy. A notable exception is given by
processes that involve living organisms. Of course one can debate here to what
extent higher-level living organisms can occur in a highly isolated environment.
But certainly lower-level living organisms like colonies of protozoans can occur
in relative isolation thus at least locally violating the Second Law of Thermo-
dynamics. (See [2] and [13] for different viewpoints on whether life violates the
Second Law of Thermodynamics.)

It has been observed before in [10] that the PCE does imply the CT. Note
that PCE quantifies over all processes, be they natural or designed by us. Thus
in particular Turing Machines are considered by the PCE and stipulated to
have the maximal degree of computational sophistication which implies the CT
thesis.

But the PCE says more. It says that the space of possible degrees of com-
putational sophistication between obviously simple and universal is practically
un-inhibited. In what follows we shall address the question what might cause
this. We put forward two observations. First we formulate a natural candidate
principle that can account for PCE and argue for its plausibility. Second, we
shall briefly address how cognition can be important. In particular, the way we
perceive, interpret and analyze our environment could be such that in a natural
way it will not focus on intermediate degrees even if they were there.

We would like to stress here that intermediate degrees refer to undecidable
yet not-universal to be on the safe side. There are various natural decidable
processes known that fall into different computational classes like P-time and
EXP-time processes which are known to be different classes.

In theoretical computer science there are explicit undecidable intermediate
degrees known and the structure of such degrees is actually known to be very
rich. However, the processes that generate such degrees are very artificial whence
unlikely to be observed in nature. Moreover, although the question about the
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particular outcome of these processes is known to yield intermediate degrees,
various other aspects of these processes exhibit universal complexity.

1.3 Complexity and Evolution

In various contexts but in particular in evolutionary processes one employs the
principle of Natural Selection, often also referred to as Survival of the Fittest.
These days basically everyone is familiar with this principle. It is often described
as species being in constant fight with each other over a limited amount of
resources. In this fight only those species that outperform others will have access
to the limited amount of resources, whence will be able to pass on its reproductive
code to next generations causing the selection.

We would like to generalize this principle to the setting of computations. This
leads us to what we call the principle of Generalized Natural Selection:

GNS: In nature, computational processes of high computational sophis-
tication are more likely to maintain/abide than processes of lower com-
putational sophistication.

If one sustains the view that all natural processes can be viewed as computational
ones, this generalization is readily made. For a computation, to be executed, it
needs access to the three main resources space, matter, and time. If now one
computation outperforms the other, it will win the battle over access to the
limited resources and abide. What does outperform mean in this context?

Say we have two neighboring processes Π1 and Π2 that both need resources
to be executed. Thus, Π1 and Π2 will interfere with each other. Stability of a
process is thus certainly a requirement for survival. Moreover, if Π1 can incor-
porate, or short-cut Π2 it can actually use Π2 for its survival. A generalization
of incorporating, or short-cutting is given by the notion of simulation that we
have given above. Thus, if Π1 can simulate Π2, it is more likely to survive. In
other words, processes that are of higher computational sophistication are likely
to outperform and survive processes of lower computational sophistication. In
particular, if the process Π1 is universal, it can simulate any other process Π2

and thus is likely to use or incorporate any such process Π2.
Of course this is merely a heuristic argument or an analogy rather than a

conclusive argument for the GNS principle. One can think of experimental ev-
idence where universal automata in the spirit of the Game of Life are run next
to and interacting with automata that generate regular or repetitive patterns to
see if, indeed, the more complex automata are more stable than the repetitive
ones. However one cannot expect of course that experiments and circumstantial
evidence can substitute or prove the principle.

Just like the theory of the selfish gene (see [5]) shifted the scale on which nat-
ural selection was to be considered, now GNS is an even more drastic proposal
and natural selection can be perceived to occur already on the lowest possible
level: individual small-scale computational processes.

We note that GNS only talks about computational processes in nature and
not in full generality about computational processes either artificial or natural as
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was the case in PCE. Under some reasonable circumstances we may see GNS
as a consequence of PCE. For if ¬ GNS were true, there would be no complex
processes to witness after some time and this contradicts PCE. Thus we have:

PCE =⇒ CT + GNS.

As we already mentioned,GNS only involves computational processes in nature.
Thus we cannot expect thatCT+GNS is actually equivalent to PCE. However,
if we restrict PCE to talk only about processes in nature, let us denote this by
PCE′, then we do argue that we can expect a correspondence. That is:

PCE′ ≈ CT + GNS.

But PCE′ tells us that almost all computational processes in nature are either
simple or universal. If we have GNS we find that more sophisticated processes
will outperform simpler ones and CT gives us an attainable maximum. Thus
the combination of them would yield that in the limit all processes end up
being complex. The question then arises, where do simple processes come from?
(Normally, the question is where do complex processes come from, but in the
formal setting of CT+GNS it is the simple processes that are in need of further
explanation.)

Simple processes in nature often have various symmetries. As we have argued
above these symmetries are readily broken when a simple system interacts with
a more complex one resulting in the simple system being absorbed in the more
complex one. We see two main forces that favor simple systems.

The first driving force is what we may call cooling down. For example, temper-
ature/energy going down, or material resources growing scarce. If these resources
are not available, the complex computations cannot continue their course, break-
ing down and resulting in less complex systems.

A second driving force may be referred to as scaling and invokes mechanisms
like the Central Limit Theorem. The Central Limit Theorem is a phenomenon
that creates symmetry by repeating a process with stochastic outcome a large
number of times yielding the well-known Gaussian distribution. Thus the scale
(number of repetitions) of the process determines the amount of symmetry that
is built up by phenomena that invoke the Central Limit Theorem.

In the above, we have identified a driving force that creates complexity (GNS)
and two driving forces that creates simplicity: cooling down and scaling. In the
light of these two opposite forces we can restate PCE′ as saying that simplicity
and universality are the two main attractors of these interacting forces.

Note that we deliberately do not speak of an equivalence between PCE′ and
CT + GNS. Rather we speak of a correspondence. It is like when modeling
the movement of a weight on a spring on earth. The main driving forces in this
movement are gravitation and the tension of the spring. However, this does not
fully determine a final equilibrium if we do not enter in more details taking into
account friction and the like. It is in the same spirit that we should interpret the
above mentioned correspondence.

However, there are two issues here that we wish to address. First, we have
argued that CT + GNS is in close correspondence to PCE′ which is a weak
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version of PCE. What can be said about full PCE? In other words, what
about those processes that we naturally come up with? There is clearly a strong
cognitive component in the study of those processes that we naturally come up
with.

Second, PCE has a strong intrinsic implicit cognitive component as it deals
with the processes that we observe in nature and not necessarily the ones that
are out there. Admittedly, in its original formulation there is no mention of this
cognitive component in PCE but only the most radical Platonic reading of PCE
would deny that there is an intrinsic cognitive component present.

We shall try to address both issues in the next section where we discuss how
cognition enters a treatment of PCE.

2 Cognition and Complexity

In the first section we used a robust definition of complexity by saying a process
is complex if we can easily perceive it as a universal computational process. In
the current section we shall deliberately use a less formal and rigorous definition.

2.1 Relative Complexity

In the current section we say that a process is complex if comprehending or de-
scribing it exceeds or supersedes all available resources (time, space, description
size). In doing so the relative nature of complexity becomes apparent.

The relativity is not so much due to our underspecification when we spoke
of comprehension or description of a process. One can easily think of formal
interpretations of these words. For example, comprehension can be substituted
by obtaining a formal proof in a particular proof system. Likewise, descriptions
can be thought of as programs that reproduce or model a process. However for
the sake of the current argument it is not necessary to enter into that much
detail or formalization.

The relativity of the notion of complexity that we employ in this section is
merely reflected in how much resources are available. A problem or process can
be complex for one set of resources but easy for another.

For example, let us consider the currently known process/procedure Π that
decides whether or not a natural number is prime (see [1]). If we only have
quadratic time resources, then Π(n) is difficult as the current known procedure
is known to require an amount of time in the order of |n|12 (that is, in the order
of magnitude of the length of n (written in decimal notation) to the power 12).
Of course, if we allow polynomial time, then primality is an easy problem.

This relativity is a rather trivial observation. The point that we wish to
make here however is more subtle and profound. So, we depart from the ob-
servation that complexity is always relative to the framework in which it is
described/perceived. Now, the ultimate framework where all our formal reason-
ing is embedded is our own framework of cognitive abilities. And this has two
important consequences.
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Firstly, it implies that if we study how our cognitive framework deals with
complexity and related notions, we get a better understanding of the nature of
the definitions of complexity that we come up with. And secondly, it strongly
suggests that various notions and definitions of complexity in various unrelated
areas of science in the end are of the same nature. Thus, various formal theorems
that relate different notions of complexity, like ergodicity, entropy, Kolmogorov-
Chaitin complexity, computational complexity etc. are expected to be found.
And as a matter of fact, in recent developments many such theorems have been
proven. In the final section of this chapter we shall see a new such and rather
unexpected connection between two seemingly different notions of complexity:
fractal dimensions versus computational runtime classes.

2.2 Cognitive Diagonalization

In this section we wish to dwell a bit on the following simple observation: as
human beings we have a natural ability to consider a system in a more complete
and more complex framework if necessary. We shall give some examples of this
in a formalized setting and pose the question how we naturally generate more
complex systems in a cognitive and less formal setting.

Suppose we study a system S with just an initial element –let us call that 0–
and an operator S that gives us a next, new and unique element which we call
the successor. The smallest system of this kind can be conceived as the natural
numbers without further extra structure on them:

{0, S0, SS0, SSS0, . . .}.
If we study this system in a fairly simple language it turns out that all questions
about this systems are easily decidable by us.

Of course, we would not leave it there and move on to summarize certain
processes in this system. The process of repeating taking the successor a number
of times is readily introduced yielding our notion of addition defined by x+0 = x
and x+ Sy = S(x+ y). So, by summarizing certain processes in S we naturally
arrive at a richer structure S ′ whose operations are S and +.

If we now study S ′ in the same simple language as we used for S but now
with the additional symbol +, we see that all questions are still decidable. That
is, we can still find the answer to any question we pose about this system in an
algorithmic way. The time complexity of the algorithm is slightly higher than
that of S but the important thing is that it is still decidable.

By a process similar to by which we went from S to S ′ we can now further
enrich our structure. We consider repeated addition to get to our well-known
definition of multiplication: x × 0 = 0 and x × Sy = x × y + x. The resulting
structure S ′′ has now three operations: S,+ and ×. However questions about
this structure in this language now turn out to be undecidable. That is, there is
no single algorithm that settles all questions about this structure in our simple
language.

The process by which we went from S to the more complex system S ′ and from
S ′ to the more complex system S ′′ is called iteration. One may think that this can
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only be repeated ω many times but we shall now describe a more general process
of gaining complexity which is called diagonalization and of which iteration is
just a special case. As an illustration of how this works we shall give a proof of
Gödel’s First Incompleteness Theorem.

Gödel’s First Incompleteness Theorem For each algorithmically
enumerable theory T that only proves true statements and that is of
some minimal strength there is a true sentence ϕT that is not provable
in T .

Although Gödel had a slightly different formulation of his First Incompleteness
Theorem in essence it is the one that we shall prove here. Our proof will focus on
the computable functions f(x) that T can prove to be total. Thus, we focus on
those unary functions f which are computable and moreover, so that T proves
that f is defined for each value of x. We shall write

T � ∀x∃y f(x) = y

for the latter. As T is algorithmically enumerable, we can fix an enumeration
and just enumerate the proofs of T and stick with all the proofs πi that prove
some computable function fi to be total. Once we have a way to make this list
of functions fi we readily come up with a new computable function f ′ which is
total but not provably so by T . We construct f ′ by what is called diagonalization
and it will soon become clear why this is called this way. We can make a table
of our functions fi with their values where we in anticipation have displayed the
diagonal in boldface.

f0(0) f0(1) f0(2) f0(3) . . .
f1(0) f1(1) f1(2) f1(3) . . .
f2(0) f2(1) f2(2) f2(3) . . .
f3(0) f3(1) f3(2) f3(3) . . .
...

...
...

...
. . .

We now define f ′(x) = fx(x) + 42. Clearly f ′ differs from any fi as it differs
on the diagonal. However, f ′ is clearly a total function and there is also an
easy algorithm to compute it: to compute f(x) we enumerate, using the fixed
enumeration of the theorems of T , all proofs of T until we arrive at πx. Then we
compute fx(x) and add 42 to the result.

To summarize, we have provided a total computable function that is not
proven to be total by T whence T is incomplete. It is clear what minimal re-
quirements should be satisfied by T in order to have the proof go through.

For the main argument of this paper this proof of Gödel’s First Incomplete-
ness Theorem is not entirely necessary. We have included it for two main reasons.
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Firstly, of course, there is the beauty of the argument which is a reason for itself.
And second, the proof illustrates nicely how diagonalization works.

In mathematical logic diagonalization is a widely used technique and a univer-
sal way to obtain more complex systems. An interesting and important question
is, is there a natural cognitive counterpart of this? So, is there some sort of
universal cognitive construct –cognitive diagonalization if it were– that always
yields us a more complex framework in which to study a system. For it is clear
that we tend to add complexity to systems that we build and perceive until it
reaches the boundaries of our abilities. And thus we pose the question if there
is some universal and natural way by which we add this complexity.

As an academic exercise one could try to rephrase diagonalization in a setting
of formalized cognition but that would yield a very artificial principle. Moreover
this will say nothing about what we actually do in our heads.

2.3 Cognition, Complexity and Evolution

Fodor has postulated a principle concerning our language. It says that (see [6])
the structure and vocabulary of our language is such that it is efficient in de-
scribing our world and dealing with the frame problem. The frame problem is
an important problem in artificial intelligence which deals with the problem how
to describe the world in an efficient way so that after a change in the state of
affairs no entirely new description of the world is needed.

On a similar page, we would like to suggest that our cognitive toolkit has
evolved over the course of time so that it best deals with the processes it needs
to deal with. Now, by PCE these processes are either universal or very simple.
Thus, it seems to make sense in terms of evolution to have a cognitive toolkit
that is well-suited to deal with just two kinds of processes: the very simple ones
and the universal ones.

Thus, it could well be that there actually are computational processes out
there that violate PCE just as there are chemical processes (life) that locally
violate the Second Law of Thermodynamics but that our cognitive toolkit is just
not well-equipped enough to deal with them.

This might also be related to the question we posed in the previous section:
how do we add complexity to a system? Let us continue the analogue with formal
logic. Diagonalization is currently the main universal tool for adding strength to
a system. However, there are various indications that for many purposes diago-
nalization seems not to be fine-grained enough and some scientists believe this
is one of the main reasons why we have such problems dealing with the famous
P versus NP problem. Likewise, it might be that cognitive diagonalization is
not fine-grained enough to naturally observe/design intermediate degrees.

3 Complexity Everywhere: Small Turing Machines

In this final section I will report on an ongoing project jointly with Fernando
Soler-Toscano and Hector Zenil. In this project we study the structures that
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arise when one considers small Turing machines. Here, in this final section we
relax the working definition of complexity even further to just refer to interesting
structures.

In 2009 I attended the NKS summer school led by Stephan Wolfram in Pisa,
Italy. One of the main themes of NKS is that simple programs can yield in-
teresting and complex behavior. Being trained as a mathematician and logician
this did not at all shock my world view as there are various simple functions
or axiomatic systems known that yield very rich and complex structures. How-
ever, when you start delving the computational universe yourself it is that you
get really excited about the NKS paradigm. It is not merely that there are
various interesting systems out there, it is the astonishing fact that these sys-
tems abound. And wherever you go and look in the computable universe you
find beautiful, intriguing and interesting structures. In this final section I shall
report on one of those explorations in the computational universe.

The set-up of our experiment was inspired by an exploration performed in [10]
and we decided to look at small Turing-machines. There are various definitions of
Turing machines in the literature which all look alike. For us, a Turing machine
(TM) consist of a tape of cells where the tape extends infinitely to the left and
is bounded to the right. Each cell on the tape can be either black (1) or white
(0) and this start configuration is specified by us. There is a head that moves
over the tape and as it does so, the head can be in one of finitely many states
(like states of mind).

We have now specified the hardware of a TM. The software, so to say, of a
TM consists of a lookup table. This table tells the head what to do in which
situation. More concrete, depending on the state the head is in and depending
what symbol the head reads on the cell of the tape it is currently visiting, it will
perform an action as specified by the lookup table. This action is very simple
and consist of three parts: writing a symbol on the cell it currently is at, moving
the head one cell left or right and going to some state of mind.

We only looked at small Turing machines that have either 2, 3 or 4 states of
mind. On those machines we defined a computation to start at the right-most
cell of the tape in State 0. We say the computation halts when the head ‘drops
off’ at the right-hand side of the tape. That is, when it is at the border cell of
the tape and receives a command to go one cell to the right. We fed these TMs
successive inputs that were coded in unary plus one. Thus, input 0 was coded by
just one black cell, input 1 was coded by two consecutive black cells, and input
n was coded by n+ 1 consecutive black cells on an otherwise white tape.

With this set-up we looked at the different functions that were computed by
these small TMs and had a particular focus on the runtimes that occurred. Of
course, there are various fundamental issues to address that are mostly related
to either the Halting Problem (there is no algorithm that decides whether a TM
will halt on a certain input) or unfeasibility. Some of these issues are addressed
in [15].

When plotting the halting probability distribution for our TMs we verified
a theoretical result by Calude to the effect that most TMs either halt quickly
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or they never halt at all ([6]). Although this result was expected we did not
expect the pronounced phase-transitions one can see in Figure 1 in the halting
probability distributions that we found. In a sense, these phase transitions are
rudimentary manifestations of the low-level complexity classes as described in [8].

Fig. 1. Halting time distribution among TMs with three states and two colors on the
first 21 inputs

Another striking feature that we found is that TMs tend to grow slower if you
give them more resources. Let us make this statement more precise. We studied
the behavior of all 4,096 TMs with two colors and two states (we speak of the
(2,2)-space). In total, they computed 74 different functions. We also studied the
behavior of all the 2,985,984 TMs with two colors and three states where now
3,886 different functions were computed. Any function that is computed in the
(2,2)-space is easily seen to be also present in (3,2)-space. We looked at the time
needed to compute a function in the different spaces. To our surprise we saw
that almost always slow-down occurs. And at all possible levels: slow-down on
average, worst case, harmonic average, asymptotically, etc. We only found very
few cases of at most linear speed-up.

So the overall behavior of these small TMs revealed interesting structures to
us. But also looking at each particular TM showed interesting structures. In
Figure 2 we show two such examples. The rule numbering refers to Wolfram’s
enumeration scheme for (2,2) space as explained in [10] and [7].

For TM number 2205 we have plotted the tape evolution for the first 6 entries.
So, each gridded rectangle represents a complete computation for a certain input.
The diagrams should be interpreted as follows. The top row represents the initial
tape configuration. The white cells represent a zero and the black cells a one. The
grey cell represent the edge of the tape. Now each row in the gridded rectangle
depicts the tape configuration after one more step in the computation. That
is why each row differs at at most one cell from the previous row. We call
these rectangles space-time diagrams of our computation where the space/tape
is depicted horizontally and the time vertically.

We now see that TM 2205 always outputs just one black cell. Its computation
yields a space-time diagram with a very clear localized character where the head
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has just moved from right to the left-end of the input and back to the right
end again doing some easy computation in between. TM number 1351 shows a
clear recursive structure. Curiously enough this machine computes a very easy
function which is just the tape identity. So it does a dazing amount of things (it
needs exponential time for it) to leave in the end (the bottom row) the tape in
the exact same configuration as the input (the top row). For more examples and
structure we refer the interested reader to [8].

Fig. 2. Tape evolution for Rules 2205 (left) and 1351 (right)

Let us take a closer look at our pictures from Figure 2. It is clear that each
TM defines an infinite sequence of these space-time diagrams as each different
input defines such a diagram. It is pretty standard to assign to this sequence of
space-time diagrams a fractal dimension dτ that describes some features of the
asymptotic behavior of a TM τ . We have empirically established for all TMs in
(2,2)-space a very curious correspondence. It turns out that

The fractal dimension dτ that corresponds to a TM τ is 2 if and only if τ
computes in linear time. The dimension dτ is 1 if and only if τ computes
in exponential time.

This result is remarkable because it relates two completely different complexity
measures: the geometrical fractal dimension on the one side versus the time
complexity of a computation on the other side. The result is one out of the many
recent results that link various notions of complexity the existence of which we
already forecasted on philosophical grounds in Section 2.1.
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Abstract. Although cellular automata (CAs) have been invented only
about three quarter of a century ago, much has been written about the
fascinating space-time patterns these utter discrete dynamical systems
can bring forth, which can be largely attributed to the fact that it is
striking to notice that the dynamics of these overly simple dynamical
systems can be so intriguing. Driven by the advances in the theory of
dynamical systems of continuous dynamical systems, several quantita-
tive measures have been proposed to grasp the stability of CAs, among
which the Lyapunov exponent (LE) has received particular attention.
Originally, the latter was understood as the Hamming distance between
configurations evolved by the same CA from different initially close con-
figurations, but it suffers from the important drawback that it can grow
only linearly over time. In this paper, it will be shown how one should
determine the LE of a two-state CA, in such a way that its meaning is in
line with the framework of continuous dynamical systems. Besides, the
proposed methodology will be exemplified for two CA families.

1 Introduction

Ever since cellular automata (CAs) were conceived by their spiritual father, the
brilliant von Neumann, following a suggestion of with regard to the represen-
tation of the elements of a CA [16, 17], his successors have been impressed by
the intriguing space-time patterns that some CAs can generate in spite of their
intrinsically simple nature. For instance, von Neumann’s contemporary [14] stud-
ied the growth patterns generated by CAs [13], while [11] discovered that not
every possible configuration can be reached during a CA’s evolution. Yet, it was
not until records on the spatio-temporal dynamics of a CA, which was devised
by Conway in an attempt to construct a simpler self-replicating machine than
the one assembled by , and which is commonly known as ‘The Game of Life’
[7], penetrated literature before the CA paradigm and the intriguing dynamics
of some CAs got known across various scientific disciplines. Although studies
on the dynamics of CAs in the sixties and seventies were largely confined to
a visual inspection and discussion of the evolved space-time patterns, from the
eighties on, several computer scientists and mathematicians endeavored a more
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quantitative assessment of CA dynamics in line with the efforts that had en-
abled a profound understanding of dynamical systems that are built upon a
continuous state space, such as differential equations and iterated maps [10, 12].
More specifically, researchers have proposed quantitative measures for grasping
the dynamical properties of CAs in general, and their stability, i.e. their char-
acteristic behavior in the long run, in particular, such as the [18], the Langton
parameter [9], entropies and dimensions [8], and others [18, 20]. The former had
been understood by [18] as the analogue of the leading Lyapunov exponent of a
continuous dynamical system and quantifies the total number of site values that
differ after a given number of time steps between the configurations that were
evolved from initial configurations that differed in only one cell. Yet, this metric
has the important shortcoming that it can only grow linearly over time so that
it precludes the existence of exponentially diverging phase space trajectories [5],
which is, however, an intrinsic property of so-called chaotic dynamical systems
[6]. Consequently, the Hamming distance cannot grasp the chaotic nature that
has been discovered among a substantial share of CAs. Typically, such CAs are
typified as Class 3 or 4 CAs according to the classification originally put forward
by [18] in the framework of one-dimensional CAs, but which is conjectured to
be applicable to any kind of CA family [19]. The notion of of CAs can however
be brought in agreement with their meaning in the framework of continuous
dynamical systems by reconsidering the propagation of perturbations in CAs.

This paper is organized as follows. In Section 2, the shortcoming of the Ham-
ming distance as an analogue of Lyapunov exponents for continuous dynamical
systems will be illustrated and the methodology that should be adopted for
tracking perturbations in two-state CAs will be outlined. In the subsequent sec-
tion, we will demonstrate how the stability of CAs can be expressed in terms
of Lyapunov exponents that are built upon this tracking procedure and we will
exemplify the soundness of the proposed methodology for two CA families.

2 Tracking Perturbations in Cellular Automata

Before turning to the methodology that should be adopted in order to quantify
the propagation of perturbations in two-state CAs, we indicate why the Ham-
ming distance does not comply with the notion of Lyapunov exponents as they
have been conceived for continuous dynamical systems.

2.1 The Inadequacy of the Hamming Distance

In the remainder of this paper, we denote the state value of a two-state CA C at a
given time step t as s(ci, t), where ci refers to the ith cell of the tessellation upon
which C is built. Let us consider an initial configuration s0 and its perturbed
counterpart s∗0, which differs in only one cell from s0, meaning that there is
only one cell cj in the CA for which the initial state value does not agree. In the
remainder we refer to such a perturbed cell as a defective cell and to the actual as
a . More precisely, in case of two-state CAs this entails that s∗0(cj) is the so-called
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Boolean complement of s0(cj), i.e. if s0(cj) = 0 then s∗0(cj) = 1, and vice versa.
Now, if we evolve a CA from s0 and co-evolve the same CA from s∗0, we may
compute the Hamming distance dHt between the configurations s(·, t) and s∗(·, t)
at the tth time step as the number of cells ck for which s(ck, t) �= s∗(ck, t), i.e. the
number of defective cells. Clearly, as a defective cell can only affect its immediate
neighbors in every consecutive time step, the Hamming distance can only grow
linearly over time since it is upper bounded by the number of cells, which, after t
time steps, receive a bit of information that was supplied at t = 0 to the initially
defective cell cj . Hence, if elementary CAs are stake, it is clear that dHt is upper
bounded by 1+2 t since a defective cell can affect at most two additional cells at
every consecutive time step, being the cells that border the left and right side of
the field of dependence that originates from the initially defective cell [5]. Such
a field of dependence is illustrated in the space-time diagram depicted in Fig. 1,
and shows the maximal propagation of information, and hence defects, that
originates from a single cell in the center of the tessellation. Similar observations
have been made with regard to two-dimensional lattice gas automata [4] and
graph CAs [1].

Fig. 1. Domain of dependence originating from a single cell in the center of the tes-
sellation

Taking into account that the Lyapunov exponent of a continuous dynamical
system quantifies the mean exponential rate of divergence of two initially close
trajectories in phase space [6], it is clear that the Hamming distance cannot
serve as its equivalent in case of two-state CAs since it can only grow linearly
over time. Basically, the linearity of this metric seems to indicate that it loses
track of a substantial share of defects that arise during the evolution of a CA,
so the nature of propagation of defects in CAs must be reconsidered in order to
arrive at a measure that allows for an exponential increase over time.

2.2 Tracking All Perturbations

From the preceding discussion it should be clear that the Hamming distance
merely allows for tracking the number of defective cells that arise during the
evolution of a CA, whereas it does not yield any insight into the actual number of
defects, denoted εt, which might be of a completely different order of magnitude
than the actual number of defective cells, and which can be tracked by explicitly
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accounting for all possible ways defects can propagate. This discrepancy is not
yet clear after the first time step because every defective cell at t = 1 traces back
to the same initial defective cell cj that is located in the center of the tessellation.
As such, the total number of defective cells at the first time step dHt equals the
total number of defects at the same time step. Yet, as soon as the CA is evolved
one more time step, a subtle – though significant – discrepancy arises between the
quantities ε2 and dH2 . This discrepancy can be understood by explicitly graphing
all possible ways defects at t = 1 may propagate and accumulate during one
subsequent time step as illustrated in Fig 2. More precisely, this figure depicts the
cells of a CA as disconnected squares that are colored black if the corresponding
cell is defective, and white otherwise, together with all possible ways (arrows)
defects can propagate during the first three time steps in the evolution of an
elementary CA that allows for maximal propagation of defects. From this figure
it should be clear that there are three possible ways for a defect to emerge in the
initially defective cell cj, whereas there are two such pathways possible in case
of cj’s right and left neighboring cells and only way pathway for the left- and
rightmost cells in the domain of dependence that originates from cj . Hence, all
together, there are nine possible ways along which defects may propagate during
the second time step in the CA evolution. This entails that the five defective
cells at t = 2, which are detected using the Hamming distance, may actually
embody nine defects, such that, from the second time step on, there is clear
discrepancy between the number of defective cells on the one hand, and the
number of defects, on the other hand.
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Fig. 2. Maximal propagation of defects (black) in evolution space of an elementary
CA together with all possible ways defects can propagate (arrows)

This discrepancy becomes even clearer upon evolving the CA one more time
step since then one also has to account for the multiplicity of the defects that can
propagate, which is indicated by the variable thickness of the arrows in Fig. 2.
For instance, the center cell of the tessellation can become affected along seven
different pathways, three of them involving the center cell at t = 2, and four
of them originating from the center cell’s left and right neighboring cell. All
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together there are 27 possible ways along which defects may propagate during
the third time step in the CA evolution, which strongly deviates from the number
of defective cells at t = 3. Continuing along this line of reasoning it should be
clear that the maximum number of defects at time step t is given by 3t, which
indicates that εt can grow exponentially over time and might therefore constitute
a means to define Lyapunov exponents in the framework of CAs of which the
notion complies with the one of Lyapunov exponents for continuous dynamical
systems. Similarly, it can be shown that the maximum number of defects at a
given time step in case of graph CAs or CAs on arbitrary tessellations is given
by Ct, where C denotes the CA’s average number of neighbors.

3 Stability of Cellular Automata

3.1 Lyapunov Exponents of Cellular Automata

Recalling that the Lyapunov exponent of a continuous dynamical system quan-
tifies the mean exponential rate of divergence of two initially close trajectories
in phase space [6] and acknowledging that the number of defects εt gives in-
sight into the divergence of two initially close CA configurations s0 and s∗0 (i.e.
ε0 = 1), the Lyapunov exponent (LE) of a two-state CA may be defined as:

λ = lim
t→∞

1

t
log (εt) . (1)

It should be emphasized that this equation leads to the largest LE of a CA,
whereas the procedure for finding the other LEs that make up a CA’s full Lya-
punov spectrum, which is a characteristic of any higher-dimensional dynamical
system, is more involved [2].

Now, just as in case of a of continuous dynamical systems, the sign of λ
gives insight into the stability of CAs. More precisely, if the number of defects
increases exponentially over time, Eq. (1) will give rise to a positive LE, and
hence it may be said that the underlying CA exhibits sensitive dependence on
initial conditions, so that it may also be referred to as an unstable CA. Seen
the fact that εt can be at most 3t if elementary CAs are at stake [5], and Ct

if graph CAs or CAs on arbitrary tessellations are considered [1], it should be
clear that the LE of the former is upper bounded by log(3), and by log(C) if the
latter are at stake. Further, it is clear that a zero LE can only occur if εt = 1
for all t, indicating that the initial separation between s0 and s∗0 remains as the
CA evolves. Cellular automata exhibiting this behavior may be referred to as
stable CAs. Finally, a negative LE can occur if the separation between phase
space trajectories decreases over time, which, taking into account that ε0 = 1, is
only possible if εt = 0, and implies that there is only one negative LE possible
in the framework of CAs, namely −∞, which clearly contrasts with the entire
range of negative real-valued LEs that can be attained by continuous dynamical
systems. Such CAs may be referred to as superstable CAs.

Following the postulation of Eq. (1) as the mathematical construct defining
the LE of CA, it has been demonstrated that this LE is related to the sensitivity
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of a CA to its inputs. More specifically, upon quantifying this sensitivity using
Boolean Jacobians [15] on a relative scale between zero and one, it can be shown
that the upper bound on the LE at a given sensitivity of a graph CA to its inputs,
denoted μ̄, is given by log(μ̄ C), and similarly for elementary CA for which C = 3
[1]. Moreover, with regard to unstable CAs, it has been found that the LE in
most cases approaches this theoretical upper bound. Hence, the cumbersome
computations that are involved in an assessment of the LE can be overcome by
determining the CA’s sensitivity to its inputs, which is far less computationally
demanding than an assessment of εt, and compute an estimate of its LE using the
aforementioned upper bound log(μ̄ C). It has been demonstrated that a similar
reasoning is possible if asynchronously updated CAs are at stake [3].

For comprehensiveness, it should be noticed that the discrete nature of a
CA’s phase space may hinder the evolution of a CA to a stable configuration
(an attractor) notwithstanding the consecutive configurations it brings forth are
less stable, which may be attributed to a lack of configurations that bridge the
gap between the more stable configuration and the semistable ones. Although
a transition to the more stable configuration can be induced by adding some
noise to the subsequent configurations [5], it might be worthwhile to take the
two-fold nature of the stability of some CAs into consideration explicitly. For
that purpose, the LE of a given CA should be computed for an ensemble of
different initial perturbations after which its stability can be typified as uncon-
ditionally unstable (Class C) if it gives rise to a positive LE for all members
of the ensemble, and analogously, unconditionally superstable (Class A) if the
initial separation between s0 and any of the ensemble’s members vanishes over
time. On the other hand, those CAs for which some members of the ensemble
lead to a positive LE while others lead to −∞ may be typified as condition-
ally unstable or superstable (Class B), depending on the relative frequency of
superstable and unstable behaviour among the members of the ensemble [1].

3.2 Some Examples

As a means to exemplify the methodology outlined in the preceding part of this
paper, Table 1 lists the classification of the 88 representative elementary CAs
according to both the classification scheme by [18] and the classification based
upon their LEs. The latter were calculated over an ensemble of eight initial
perturbations by applying the procedure described in Section 2 for 500 time
steps and a one-dimensional tessellation of 675 cells on which periodic boundary
conditions were imposed. From this table, it is clear that all Class 1 rules
give rise to superstable behavior irrespective of the initial perturbation. This
coincides with our expectations since this class encloses all rules that lead to
a homogeneous configuration, which, from a dynamical systems point of view,
means that their εt approaches zero as t grows large, irrespective of the initial
perturbation. Further, Table 1 indicates that all Class 4 rules and, leaving aside
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rules 18 and 126, the Class 3 rules are typified as unconditionally unstable based
upon an assessment of their LEs, which indicates that these rules give rise to
exponential divergence of initially close phase space trajectories and therewith
underlines their sensitive dependence on initial conditions. It also points out
the ambiguous nature of Class 2 rules since most of them give rise to either a
positive LE or a a LE of −∞ depending on the initial perturbation, but there
also a few that are classified as unconditionally unstable based upon their LEs,
such as rules 6,15 and 28, and there are even two Class 2 rules (14 and 142) that
lead to converging trajectories.

Table 1. Classification of the 88 representative CAs based upon Wolfram’s classifica-
tion scheme and their Lyapunov exponents (LEs)

rule Wolfram LE rule Wolfram LE rule Wolfram LE
0 1 A 35 2 B 108 2 C
1 2 B 36 2 B 110 4 C
2 2 B 37 2 C 122 3 C
3 2 B 38 2 B 126 3 B
4 2 B 40 1 A 128 1 A
5 2 B 41 4 C 130 2 B
6 2 C 42 2 C 132 2 C
7 2 B 43 2 B 134 2 C
8 1 A 44 2 C 136 1 A
9 2 B 45 3 C 138 2 B
10 2 B 46 2 B 140 2 B
11 2 B 50 2 B 142 2 A
12 2 B 51 2 C 146 3 C
13 2 B 54 4 C 150 3 C
14 2 A 56 2 C 152 2 B
15 2 C 57 2 C 154 2 C
18 3 B 58 2 B 156 2 C
19 2 B 60 3 C 160 1 A
22 3 C 62 2 C 162 2 B
23 2 B 72 2 B 164 2 C
24 2 B 73 2 C 168 1 A
25 2 B 74 2 B 170 2 C
26 2 B 76 2 C 172 2 B
27 2 B 77 2 B 178 2 B
28 2 C 78 2 B 184 2 C
29 2 C 90 3 C 200 2 B
30 3 C 94 2 C 204 2 C
32 1 A 104 2 B 232 2 B
33 2 C 105 3 C
34 2 B 106 4 C
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As a further justification of the methodology outlined in Section 2, Figure 3
shows the LE (λ) versus the input sensitivity (μ̄) for a family of 256 two-state
totalistic CAs that are built upon an irregular tessellation consisting of 675 cells
and for which λ �= −∞ for at least one member of an ensemble of eight initial
conditions. Rules giving rise to λ = −∞ for at least one member of the ensemble
are indicated with square markers. Besides, this figure also displays the function
λ(μ̄) = log(C μ̄), which for the tessellation used in these simulations, equals
λ(μ̄) = log(6.97 μ̄) and visualizes the theoretical upper bound on λ for a given
input sensitivity μ̄. It is clear that most data points are lying near this curve,
which demonstrates that the LE of an unstable CA in most cases approaches its
theoretical upper bound. Moreover, such a plot allows for judging the stability
of the involved (conditionally) unstable CAs at a glance.
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Fig. 3. Lyapunov exponent (λ) versus the input sensitivity (μ̄) for a family of 256
two-state totalistic CAs for which λ �= −∞ for at least one member of an ensemble of
eight initial conditions. Rules giving rise to λ = −∞ for at least one member of the
ensemble are indicated with square markers.

4 Conclusion

In this paper we showed how the propagation of perturbations in two-state CAs
should be tracked in order to get an insight into their stability. More precisely,
we demonstrated that it is of utter importance to explicitly track all possible
ways defects can propagate across the cellular space since this is the only way
to correctly assess the number of defects emerging during the evolution of a CA
from two initially close configurations that can be used thereafter to compute
the CA’s LE. The latter can then be used to classify CAs in accordance with
their underlying dynamical properties.
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Abstract. In this paper we look at the possibility to implement cellular
automata in hyperbolic spaces and at a few consequences it may have,
both on theory and on more practical problems.

Keywords: cellular automata, hyperbolic geometry, tilings.

1 Introduction

If many physical phenomena are governed by cellular automata as suggested by
Stephen Wolfram in A New Kind of Science, then, it should be possible to do
something with cellular automata and hyperbolic geometry.

When I started my first works on cellular automata in the hyperbolic plane,
I heard only on Stephen’s classification on elementary cellular automata. Alas, I
was not aware of his papers on cellular automata. Moreover, the NKS appeared
a few years later.

Nevertheless, I know the vivid effect on the study of cellular automata raised
by Stephen’s papers. I am very pleased to contribute to this volume and to
present my works under such a prestigious auspice.

First, I shall try to explain the reader why hyperbolic geometry and then
why to implement cellular automata in this frame. Then, if the reader has well
captured one of the messages of NKS, he/she will not be very much surprised
that I speak about universality and undecidability in this context.

2 Hyperbolic Geometry: Why Not?

2.1 A Quick Look at History

Hyperbolic geometry appeared in the first half of the 19th century, in the last
attempts to prove the famous parallel axiom of Euclid’s Elements from the re-
maining ones. These attempts were probably motivated by the fact that this
axiom was formulated by Euclid in the form of a theorem rather than an asser-
tion which seems obviously true like through two distinct points there is a line
and a single one. Also, in his famous Elements, Euclid made use of this axiom

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 37–46.
DOI: 10.1007/978-3-642-35482-3_4 © Springer-Verlag Berlin Heidelberg 2013
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as lately as possible, a point which also puzzled his followers. Now, as pointed
by Coxeter in [6],

Moreover, his reluctance to introduce it provides a case for calling him the
first non-Euclidean geometer!

This sentence should not be read as implying that Euclid discovered the non-
Euclidean geometries. I think that it is reasonable to consider that Euclid realized
that he was at a kind of crossroad and that another way could be explored. But,
eventually, Euclid choosewhat seemed to him the simpler. It canbe noticed that his
choice is in agreement with the architecture of his surrounding world at that time.

More than two thousand years were needed to find out the answer to this
question. Independently, around 1830, Lobachevsky and Bolyai discovered a new
geometry by assuming that in the plane, from a point out of a given line, there
are at least two lines which are parallel to the given line. This was an unexpected
issue, although it was the natural conclusion of a line of research which started
around one hundred and fifty years before the discovery, see [27, 3].

Later, around 1870, models of the new geometry were found, in particular
Poincaré’s model, which is the frame of all this paper.

The significance of this discovery takes a particular place in the history of
sciences. It was the first time that people discovered that a set of natural ax-
ioms failed to find a definite foundation. It was the first time, but not the last.
Unfortunately, we have no room to go further along this line.

2.2 Hyperbolic Geometry in Two Words

We shall describe the minimal features of hyperbolic geometry within Poincaré’s
disc model which seems to me the best for intuition.

Accordingly, the hyperbolic plane is the set of points inside an open disc D
of the Euclidean plane, fixed once and for all. The border of D is called the set
of points at infinity of the hyperbolic plane and these points do not belong
to this plane. Lines are trace of diameters or circles orthogonal to the border of
the disc, e.g. the line m in Figure 1.

In this model, two lines which meet in the open disc are called secant and
two lines which meet at infinity, i.e. at a point at infinity are called parallel. In
the figure, we can see a line s through the point A which cuts m. Now, we can
see that two lines pass through A which are parallel to m: p and q. They touch m
in the model at P and Q respectively which are points at infinity. At last, and
not the least: the line n also passes through A without cutting m, neither inside
the disc nor outside it. This line is called non-secant.

An important feature of hyperbolic geometry is that in this world there is no
similaritywhichplays so great a role inEuclideangeometry.An importantproperty
of the model is that the angle between two lines meeting at A are the Euclidean
angle of the tangents at A of the supports of the lines. From this we can define
perpendiculars, bisectors and many notions connected with the geometry of the
triangle which is here very different from the Euclidean geometry of the triangle.

Before turning to cellular automata, let us mention that Poincaré’s disc model
generalizes to any dimension. In particular, for the 3D hyperbolic space, the
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Fig. 1. Poincaré’s disc model

space is defined by a fixed open ball B, its border defines the points at infinity and
the planes are the traces of diametral planes or of spheres which are orthogonal
to the sphere of which the border consists. Lines are intersections of planes. Now,
it is not difficult to see that they belong to diametral planes.

2.3 Tilings and Cellular Automata

An unexpected result of the study of the hyperbolic plane is the feature dis-
covered by Henri Poincaré in the late 19th century. Consider a regular convex
polygon P and the following process: replicate P by reflection in its sides and
then, recursively, replicate the images by reflection in their sides. Later, these
images are called copies of P . If all the copies cover the hyperbolic plane and if
the copies do not pairwise overlap, we say that they tile the hyperbolic plane.
We also say that a tiling obtained by the just described process is a tessella-
tion. Can we obtain a tessellation starting from any regular convex polygon P?
The answer is no but, what is surprising, is that there are infinitely many such
tessellations. They are characterized by a simple relation between the number p
of their sides and the number q of copies of P which can be put around a vertex
with no overlap and which cover a neighbourhood of the vertex. It is enough that
1

p
+

1

q
<

1

2
in order that the polygon defined by p and q generates a tessellation

of the hyperbolic plane denoted by {p, q}.
By contrast, in the Euclidean plane, up to similarities, there are only three

tessellations: the square, the regular hexagon and the equilateral triangle, {4, 4},
{6, 3} and {3, 6} respectively.

Now, we can see that we have a large choice of a grid in order to define
there cellular automata. We shall mainly investigate what we performed in two
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particular tessellations of the hyperbolic plane: the pentagrid and the hepta-
grid, {5, 4} and {7, 3} respectively. Figure 2 illustrates these grids, the pentagrid,
on the left-hand side and the heptagrid, on the right-hand side.

Unfortunately, we have no room here for giving even a hint at how coordinates
can be introduced for the tiles. This is absolutely needed if we want to implement
cellular automata on a grid: first, we must identify the tiles, at least to allow
each tile to locate its neighbours. We can just mention [9], the first paper where
I introduced such coordinates, first on the pentagrid. The reader is referred
to [11, 13] for a detailed presentation of these coordinates, for the pentagrid,
for the heptagrid and for infinitely many other tilings of the hyperbolic plane
which are basically the generalizations of what I found in [9]. There, there are
also coordinates for the dodecagrid, the tessellation of the 3D-hyperbolic space
based on the dodecahedron whose faces are copies of the pentagon on which the
pentagrid is generated: this also generalizes the just mentioned planar system of
coordinates.

Fig. 2. Pentagrid, left, and heptagrid, right

As the tile (0, 0) is attached to a special element of Z
2 in the case of the

Euclidean square grid, there is a central tile in the case of the just mentioned
tessellations of the hyperbolic plane. Now, in these case, these coordinates have
a remarkable property: there is an algorithm which computes the path from the
central tile to the tile in linear time in the size of its coordinate.

2.4 Why Cellular Automata in Hyperbolic Spaces?

Now, I go back to the question of our introduction.
Of course, hyperbolic geometry plays an important role in physics: in the

theory of relativity, namely in the formulation of certain laws, and in a few
models of our universe.
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Now, there is another interest. At the beginning of my research in this frame,
just after having found the first step to the coordinates defined in [9], I had
a paper with a colleague where we found that NP-problems can be solved in
polynomial time by cellular automata in the pentagrid, see [20]. In fact, this
result was anticipated a few years ago in [24], which we did not know at that time,
but the description we gave in [20] is very acute. A bit later, with other colleagues,
see [8], we proved that P = NP for cellular automata of the pentagrid, and this
is also true for the heptagrid, although nobody proved it strictly speaking.

I think that this result is very important. First, it shows that the P = NP?
question is an ill posed problem: complexity in time cannot be defined regard-
less of complexity in space. Second, I think that this could be a way to tackle
the question and, more precisely, to prove that P �= NP in the Euclidean set-
ting. There is an important difference for the results in the Euclidean setting
and in the hyperbolic one. In the Euclidean setting, cellular automata work
much faster than Turing machines, but the gain is polynomial. Indeed, a planar
Turing machine needs only a cubic time to simulate a cellular automaton, of
course, considering finite computations only. In the hyperbolic plane, a planar
Turing machine may require an exponential time to perform the computation
of a cellular automaton. And so, there is a gap between sequential and paral-
lel deterministic devices in the hyperbolic plane, which is not the case in the
Euclidean plane.

3 Practical and Theoretical Applications

We turn now to applications. There are two kinds of them: for practical purposes
and for theoretical issues.

3.1 Simulations

As I have no room for explanation, I just list a few examples with appropriate
illustrations.

The first application was a colour chooser, see [4] and the second one was
a proposal of cellphone keyboard for the Japanese language, see [19] and the
illustration of Figure 3. In fact, both work on the same principle: with eight
selected keys for the chooser and six of them for the keyboard, the user can
move the disc as a window upon the plane in order to place at the centre the
tile corresponding to his/her choice. The differences are the following. In the
case of the colour chooser, we use the heptagrid for aesthetic reasons and there,
the amplitude of the moves of the user is arbitrary. In the case of the Japanese
keyboard, we use the pentagrid as its tiles are bigger and the user needs at most
three moves to reach the desired letter. Also, the pentagrid is well suited for the
Japanese keyboard: the traditional display of hiraganas and katakanas which
are phonetic syllabic alphabets is performed according to the five vowels of the
Japanese language.

I also have an application of the heptagrid to the simulation of a message
system between cells of the tessellation. I have no illustration for this and also
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Fig. 3. To left: the colour chooser. To right: the Japanese keyboard

no room for further explanation. I can just mention that with a suitable Poisson
law, the system seems to work satisfactorily, see [17].

To conclude this sub-section, I mention the simulation of the growth of a
colony of bacteria by a cellular automaton on a grid which I obtained from
the heptagrid: first divide each tile into seven triangles with a vertex at the
center of the tile; second, divide each just obtained triangles into four triangles
whose vertices are on the mid-points of the sides of the previous triangles. This
simulation was inspired by the pictures of the fascinating paper [1]. I am very
much in debt to its author, Professor Ben Jacob, for giving me the opportunity
to reproduce one of his pictures. I have some considerations on these colonies
which might interest the reader, see [16].

3.2 Universality

When I was planning to devise cellular automata in the hyperbolic plane, I
wished to implement there universal cellular automata, in fact weakly universal
ones as the initial configuration is infinite, but a regular one. I have just the
room to sketchily tell the story of this adventure up to now.

As usual, when dealing with universality, we simulate something we call a
model, which is well known to simulate any Turing machine in the end, in par-
ticular a universal one. Sometimes, it may be a direct simulation of a Turing
machine but most often it is another model and, in some cases, as here, we
simulate a model of a model.

Our model is the railway model devised in [26]. We have tracks and switches,
as illustrated in Figure 5, left-hand side, reproducing those of [26].

By assembling copies of the element of circuit in the right-hand side of Fig-
ure 5, it is possible to devise circuits which mimic the circuitry of a computer
and to model, in this way, a register machine. It is well known from [23] that
such a machine can simulate a Turing machine with two registers only.
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Fig. 4. To left: simulation of the growth of a bacteria colony with the heptatrigrid. To
right: propagation of a bacteria colony, picture by courtesy of Professor Ben-Jacob.
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Fig. 5. To left: the switches, fixed switch, flip-flop and memory switch from left to right
respectively, each one in two versions. To right: an element with one bit of information,
the same as in [26].

The first universal cellular automaton appeared in [7] as an automaton in the
pentagrid with 22 states. A few years later, I devised a much improved version
in the hyperbolic 3D space, see [10] with 5 states only. Well: in the dodecagrid,
each cell has 12 neighbours and the third dimension allows us to replace crossings
by bridges which spares a lot of states. Then, in [22], the automaton in the
pentagrid was reduced to 9 states and the translation of the same scenario into
the heptagrid produced the first universal cellular automaton on the heptagrid
and it has 6 states, see [21].

Then, in [15], I reduced the number of states for a universal cellular automaton
in the heptagrid to 4 states. There was an important change in the scenario.
Instead of simulating the tracks by a specific colour, the tracks are marked by
milestones which have a different colour with respect to the blank background.
This makes things a bit less simple, but this is the price to pay in order to reduce
the number of states. The implementation of the idea of [15] in the hyperbolic
3D space directly produced a universal cellular automaton with 3 states. Three
states seems to be very closed to two ones, which is the limit as a single state
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U

V

A

BC

D

E
F

0

Fig. 6. Left-hand side: arriving through U or V , the right exit is the second one.
Right-hand side, zoom at an exit: the locomotive, now a particle, arrives either at E
or at A. When at E, it leaves through D as two particles. When at A: if one particle,
it goes out through F , it two particles, one is kept and the other is sent to C, then D
and further to the next exit.

cannot be universal, trivially. I succeeded to do that recently, by a new tuning:
instead of two-way tracks, take one-way ones as in modern railways.

We remain with the plane. It is possible to go down to two states with an
embedding of the elementary cellular automaton rule 110 known to be universal,
see [5, 11]. This was done in [14]. But the automaton is not truly a planar one.
Very recently, I could go down to two states with a planar cellular automaton,
in infinitely many grids of the hyperbolic plane but starting from {13, 3}.

This was made possible by replacing crossings by round-abouts, see [18]. A
partial view of the round-about in {13, 3} is given by Figure 6 which also explains
the mechanism.

I just mention another point about universality: this study allowedme to prove
that the domino problem is undecidable in the hyperbolic plane. According to
the principle of computational equivalence from the NKS, see [11], this is based
on the simulation of a universal Turing machine. Now, here, the difficulty was
to devise a way to force the tiling to simulate the Turing machine, whatever
the tile with which we start the process of constructing the tiling, see [12]. The
problem was solved in 1966 for the Euclidean plane, see [2] and raised for the
hyperbolic plane in 1971, see [25]. Details on the history of the problem can be
found in [12].

4 Conclusion

Some work has been achieved, but I think that many problems have still to
be solved about cellular automata in the hyperbolic plane. It remains to find
universal planar cellular automata with two states for the heptagrid and for the
pentagrid which does not seem a simple task. We also remain with the question
of universality in these grids when starting from a finite configuration, see a first
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attempt in [14]. The P = NP? question is, of course a very challenging one and
it would certainly be very nice to be given an answer here. Also, there are a lot
of possible simulations which I could not explore. I hope that this journey will
suggest a reader to walk on this path.
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Stephen Wolfram declared computer experiments with pattern formation of cel-
lular automata as “new kind of science” (NKS). It is obviously a great merit
of NKS to highlight the experimental approach in the computational sciences
[26]. But we claim that even in the future quasi-empirical computer experiments
are not sufficient [12]. Cellular automata must be considered complex dynamical
systems in the strictly mathematical sense with corresponding equations and
proofs. In short, we also need analytical models of cellular automata, in order
to find precise answers and predictions in the universe of cellular automata. In
this sense, our approach goes beyond Wolfram’s NKS.

In our approach cellular automata (CA) are defined as complex dynamical
systems. The geometrical representation of the eight CA-rules as a Boolean cube
allows precise definitions of a complexity index and universal symmetries. It
can be proved that the 256 one-dimensional cellular automata are classified by
local and global symmetry classes of cellular automata. There is an exceptional
symmetry group with universal computability which we call the “holy grail” in
the universe of cellular automata. Although the four automata of this group
are completely deterministic, their long-term behavior cannot be predicted in
principle with respect to the undecidability of Turing’s halting problem. Many
analytical concepts of complexity research (e.g., attractors, basin of attractors,
time series, power spectrum, fractality) are defined for cellular automata. But
there are also surprising phenomena in the CA-world (isles of Eden) without
analytical representation in dynamical systems.

1 Dynamics in the Universe of Cellular Automata

Because of their simplicity, rules of cellular automata can easily be understood. In
a most simple version, we consider two-state one-dimensional cellular automata
(CA) made of identical cells with a periodic boundary condition. In this case, the
object of study is a ring of coupled cells with L = I+1 cells, labeled consecutively
from i = 0 to i = I (Fig. 1(a)). Each cell i has two states ui ∈ {0, 1}, which are
coded by the colors blue and red, respectively. A clock sets the pace in discrete
times by iterations or generations. The state ut+1

i of all i at time t+ 1 (i.e. the

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 47–65.
DOI: 10.1007/978-3-642-35482-3_5 © Springer-Verlag Berlin Heidelberg 2013
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next generation) is determined by the states of its nearest neighbors ut
i−1, u

t
i+1,

and itself ut
i at time t (Fig. 1(c)), i.e. by a Boolean function ut+1

i = N(ut
i−1,

ut
i, u

t
i+1), in accordance with a prescribed Boolean truth table of 8 = 23 distinct

3-input patterns (Fig. 1(d)).

1.1 From Simple Local Rules to Global Complex Patterns

These eight 3-input patterns can nicely be mapped into the eight vertices of a
toy cube (Fig. 1(b)), henceforth called a Boolean cube [3]. The output of each
prescribed 3-input pattern is mapped onto the corresponding colors (red for 1,
blue for 0) at the vertices of the Boolean cube (in Fig. 1(d) yet unspecified).
Since there are 28 = 256 distinct combinations of eight bits, there are exactly
256 Boolean cubes with distinct vertex color combinations. Thus, we get a gallery
of picturesque toy cubes.

Fig. 1. Scheme of a two-state one-dimensional Cellular Automaton with local rule N

It is convenient to associate the 8-bit patterns of each Boolean function with
a decimal number N representing the corresponding 8-bit word, namely N =
β7 ·27+β6 ·26+β5 ·25+β4 ·24+β3 ·23+β2 ·22+β1 ·21+β0 ·20 with β ∈ {0, 1}.
Notice that since βi = 0 for each blue vertex in Fig. 1(b), N is simply obtained by
adding the weights (indicated next to each pattern in Fig. 1(b)) associated with
all red vertices. For example, for the Boolean cube shown in Fig. 2(b), we have
N = 0·27+1·26+1·25+0·24+1·23+1·22+1·21+1·20 = 26+25+23+22+21 = 110.

For the example of local rule 110, the ring and the colored vertices of
the Boolean cube are shown in Fig. 2(a)-(b). Given any initial binary bit-
configuration at time t = 0, the local rule N is used to update the state ut+1

i

of each cell i at time t+ 1, using the states of the three neighboring cells i− 1,
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Fig. 2. Example of local rule 110

i, and i + 1, centered at location i, respectively. The space-time pattern for the
initial state is shown in Fig. 2(c) for t = 0, 1, 2, . . . , 11.

In principle, one can draw and paint the patterns of cellular automata fol-
lowing these rules step by step. Modern computers with high speed and capac-
ity allow extensive computer experiments to study pattern formations of these
automata. Stephen Wolfram discovered remarkable analogies with patterns in
physics and biology [26]. In the world of cellular automata many phenomena of
the physical world seem to evolve. Some automata generate symmetric patterns
reminding us of the coloring in sea shells, skins or feathers. Other automata
reproduce rhythms like oscillating waves. Some of these automata stop their
development after a finite number of steps, independent of their initial state,
and remain in a constant color state like a system reaching at an equilibrium
state for all future steps. Some automata develop complex patters reminding us
of the growth of corals or plants, depending sensitively on tiny changes of the
initial states. This phenomenon is well-known as the butterfly-effect, when local
events lead to global effects in chaotic and unstable situations (e.g., weather and
climate). Even these chaotic patterns can be generated by cellular automata.

One can try to classify these patterns with respect to their outward appearance
like zoologists and botanists distinguishing birds and plants in taxonomies. But
sometimes, outward features are misleading. Fundamental question arises: Are
there laws of complex pattern formation for cellular automata like in nature?
Can the development of complex patterns be predicted in a mathematically
rigorous way like in physics? We argue for a mathematically precise explanation
of the dynamics in cellular automata. Therefore, they must also be characterized
by complex dynamical systems determined with differential equations like in
physics. This is, of course, beyond the scope of elementary rules of toy worlds.
But, we should keep this perspective in mind.
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1.2 Cellular Automata as Dynamical Systems

For maximum generality, each cell i is assumed to be a dynamical system with
an intrinsic state xi, an output yi and three inputs ui−1, ui, and ui+1 where ui−1

denotes the input coming from the left neighboring cell i− 1, ui denotes the self
input of cell i , and ui+1 denotes the input coming from the right neighboring
cell i+ 1 in the ring of Fig. 1(a). Each cell evolves with its prescribed dynamics
and its own time scale. When coupled together, the system evolves consistently
with its own rule as well as the rule of interaction imposed by the coupling laws.

Each input is assumed to be a constant integer ui ∈ {−1, 1}, and the output
yi converges to a constant either −1 or 1 from a zero initial condition xi(0) = 0.
Actually, it takes a finite amount of time for any dynamical system to converge
to an attractor. But, for the purpose of idealized cellular automata, each attrac-
tor is assumed to be reached instantaneously. Under this assumption and with
respect to the binary input and output, our dynamical system can be defined
by a nonlinear map which is uniquely described by a truth table of three input
variables (ui−1, ui, ui+1). The choice of {−1, 1} and not {0, 1} as binary signals
is crucial, because the state xi and output yi evolves in real time via a care-
fully designed scalar ordinary differential equation. According to this differential
equation, the output yi which is defined via an output equation yi = y(xi) tends
to either 1 or −1 after the solution xi (with zero initial state xi(0) = 0) reaches
a steady state. In this way, the attractors of the dynamical system can be used
to encode a binary truth table.

Aside from the cell’s intrinsic time scale (which is of no concern in cellular
automata), an external clocking mechanism is introduced to reset the input ui of
each cell i at the end of each clock cycle by feeding back the steady state output
yi ∈ {−1, 1} as an updated input ui ∈ {−1, 1} for the next iteration. This
mechanism corresponds to the periodic boundary condition of a one-dimensional
cellular automaton in Fig. 1(a).

Although cellular automata are concerned only with the ring’s evolutions over
discrete times, any computer used to simulate cellular automata is always a con-
tinuous time system with very small but non-zero time scale. Computers use
transistors as devices, and each cellular automata iteration involves the physical
evolution of millions of transistors with its own ui ∈ {−1, 1} intrinsic dynamics.
These transistors evolve in accordance with a large system of nonlinear differ-
ential equations governing the entire internal computer circuit and return the
desired output after converging to their attractors in a non-zero amount of time.

These considerations lead us to the important result that, even in discrete
systems like cellular automata, there are two different time scales involved. The
first one applies to the rule N while the second applies to the global patterns of
evolution. In order to understand the complex dynamics of global patterns, it is
necessary to analyze both times scales. By unfolding the truth tables of cellular
automata into an appropriate nonlinear dynamical system, we can exploit the
theory of nonlinear differential equations to arrive at phenomena based on a
precise mathematical theory, and not only on empirical observations.
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For this purpose, we substituted the binary symbol 0 by the −1, and the input
and output values 0 and 1 in the truth table of Fig. 1(d) by the real numbers
−1 and 1, respectively. An advantage of working with the numeric rather than
the symbolic truth table is the remarkable insights provided by the equivalent
Boolean cube representation. Here, the eight vertices of the cube (−1,−1,−1),
(−1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1), (1,−1, 1), (1, 1,−1) and (1, 1, 1)
are located exactly at the coordinates (ui−1, ui, ui+1) of a coordinate system
with the origin located at the center of the cube. The vertex n = 0, 1, 2, . . . , 7
corresponding to row n of the truth table is coded blue if the output is −1 , and
red if the output is 1.

The choice of {−1, 1} instead of {0, 1} as binary signals is necessary, when
the truth table is mapped onto a dynamical system where the states evolve in
real time via an ordinary differential equation which is always based on the real
number system. Each cell i is coupled only to its left neighbor cell i−1 and right
neighbor cell i+1. As a dynamical system, each cell i has a state variable xi, an
output variable yi, and three constant binary inputs ui−1, ui and ui+1 (Fig. 3).

Thus, the dynamical system is determined by a

state equation: ẋi = f(xi, ui−1, ui, ui+1)

x(0) = 0 (initial condition)

output equation: yi = y(xi)

Fig. 3. Cell as dynamical system with state variable xi, an output variable yi, and
three constant binary inputs ui−1, ui, and ui−1

Every cellular automata can be mapped into a nonlinear dynamical sys-
tem whose attractors encode precisely the associated truth table N =
0, 1, 2, 3, . . . , 255. Function f models the time-depend change of states and is
defined by a scalar ordinary differential equation of the form

ẋ = g(xi) + w(ui−1, ui, ui+1) with g(xi) � −xi + |xi + 1| − |xi − 1| .
There are many possible choices of nonlinear basis functions for g(xi) and
w(ui−1, ui, ui+1). We have chosen the absolute value function |x |= x for pos-
itive numbers x and |x |= –x for negative numbers x as nonlinear basis function,
because the resulting equation can be expressed in an optimally compact form,
and it allows us to derive the solution of the state equation in an explicit form.
The scalar function w(ui−1, ui, ui+1) can be chosen to be a composite function
w(σ) of a single variable σ � b1 ui−1 + b2 ui + b3 ui+1 with w(σ) � {z 2 ± |[z 1 ±
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|z o + σ|]|}. This function is used to define the appropriate differential equation
for generating the truth table of all 256 Boolean cubes. Thus, each rule of a cel-
lular automaton corresponds to a particular set of six real numbers { z o, z 1, z 2;
b1, b2, b3}, and two integers ±1. Only eight bits are needed to uniquely specify
the differential equation associated with each rule N of a cellular automaton.

It can be proven that once the parameters defining a particular rule N are
specified, then for any one of the eight inputs ui−1, ui, and ui+1 listed in the
corresponding truth table of N, the solution xi of the scalar differential equa-
tion will either increase monotonically from the initial state xi = 0 towards a
positive equilibrium value x̄i(n) ≥ 1, henceforth denoted by attractor Q+(n), or
decrease monotonically towards a negative equilibrium state x̄i(n) ≤ −1, hence-
forth denoted by attractor Q−(n), when the input (ui−1, ui, ui+1) is chosen
from the coordinates of vertex n of the associated Boolean cube, or equivalently,
from row n of the corresponding truth table, for n = 0, 1, 2, . . . , 7 [3]. Vertex
n is painted red whenever its equilibrium value x̄i(n) ≥ 1, and blue whenever
x̄i(n) ≤ −1, then the color of all eight vertices for the associated Boolean cube
will be uniquely specified by the equilibrium solutions of the eight associated
differential equations.

In general, we can summarize: once the parameters associated with a particular
rule of a cellular automaton are specified, the corresponding truth table orBoolean
cube, will be uniquely generated by the scalar differential equation alone. If the
output equation of the dynamical system is yi = y(xi) � 1

2 (|xi + 1|– | xi – 1|),
then yi = +1 when xi ≥ 1, and yi = –1 when xi ≤ −1. The steady-state output
at equilibrium is given explicitly by the formula yi = sgn {w(σ)} for any function
w(σ) � w(ui−1, ui, ui+1) with signum function sgn (x ) = +1 for positive numbers
x, sgn (x ) = –1 for negative numbers x and sgn (0) = 0.

For the particular w(σ) in Fig. 4 the output (color) at equilibrium is given
explicitly by the

attractor color code: yi = sgn {z2 ± |[z1 ± |z0 + σ|]|} .

Fig. 4 contains 4 examples of dynamical systems and the rules they encode, each
one identified by its rule number N = 0, 1, 2, . . . , 255. The truth table for
each rule N is generated by the associated dynamical system defined in upper
portion of each quadrant, and not from the truth table, thereby proving that
each dynamical system and the rule of the cellular automaton it encodes are one
and the same. The truth table for each rule in Fig. 4 is cast in a format with
only 22

3

= 256 distinct 1x3 neighborhood patterns. Each color picture consists
of 30 x 61 pixels, generated by a 1-dimensional cellular automaton with 61 cells
and a boundary condition with a specific rule N.

As an example, let us examine one of the rules from Fig. 4, rule 110, which
will later on be identified as the simplest universal Turing machine known to
date. With its differential equation, one can identify σ = b1 ui−1 + b2 ui + b3
ui+1 with b1 = 1, b2 = 2, and b3 = –3, and w(σ) � {z 2 ± |[z 1 ± |z o + σ|]|}
with z 2 = –2, z 1 = 0, and z o = –1. Thus, the attractor color code is explicitly
given by yi = sgn[–2 + |ui−1 + 2ui – 3ui+1 – 1)|].
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Fig. 4. Cellular automata with rules 2, 110, 150, 232 as dynamical systems. The initial
condition is x(0) = 0.

1.3 Digital Dynamics with Difference Equations

The dynamics of dynamical systems are modeled with continuous differential
equations. For computing the dynamics for digital cellular automata, a program
must use a “do loop” instruction which feedbacks the output yti of each cell at
iteration t back to its inputs to obtain the output yt+1

i at the next iteration
t+1. Using the superscripts t and t+1 as iteration number from one to the next
generation, we can express each rule N explicitly in the form of a nonlinear
difference equation with
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Fig. 5. Cellular automaton as dynamical system with difference equation

ut+1
i = sgn{z2 + c2|[z1 + c1|(z0 + b1u

t
i−1 + b2u

t
i + b3u

t
i+1)|]|},

where the eight parameters {z o, z 1, z 2; b1, b2, b3; c1, c2} are given for each rule.
Thus, the first main result is that each of 256 1-dimensional cellular automata
which were studied by Stephen Wolfram experimentally can be generated from a
single scalar nonlinear differential equation or a corresponding nonlinear differ-
ence equation with at most eight parameters. These equation are also universal
in the sense of a universal Turing machine (UTM), because we will later on see
that at least one of the 256 rules (for example, rule 110) is capable of universal
computation [4]. For rule 110 (Fig. 5), we get ut+1

i = sgn (–2+|ut
i−1+ 2 ut

i – 3
ut
i+1–1|). This kind of difference equation can be understood with elementary

knowledge in basic mathematics, although it demonstrates important features
of nonlinear dynamics.

2 Complexity in the Universe of Cellular Automata

The colored toy cubes contain all information about the complex dynamics of
cellular automata. An important advantage of the Boolean cube representation
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is that it allows us to define an index of complexity [3]. Each one of the 256 cubes
is obviously characterized by different clusters of red or blues vertices which can
be separated by parallel planes. On the other hand, the separating planes can be
analytically defined in the coordinate system of the Boolean cubes. Therefore,
the complexity index of a cellular automaton with local rule N is defined by
the minimum number of parallel planes needed to separate the red vertices of
the corresponding Boolean cube N from the blue vertices. Fig. 6 shows three
examples of Boolean cubes for the three possible complexity indices κ = 1, 2, 3
with one, two and three separating parallel planes. There are 104 local rules with
complexity index κ = 1. Similarly, there are 126 local rules with complexity index
κ = 2 and only 26 local rules with complexity index κ = 3. This analytically
defined complexity index is to be distinguished from Wolfram’s complexity index
based on phenomenological estimations of pattern formation.

2.1 Complexity Index of Cellular Automata

In the context of colored cubes of cellular automata, separability refers to the
number of cutting (parallel) planes separating the vertices into clusters of the
same color. For rule 110, for example, we can introduce two separating parallel
planes of the corresponding colored cube which are distinguished in Fig.6b by
two different colors: The red vertices 2 and 6 lie above a yellow plane. The
blue vertices 0, 4, and 7 lie between the yellow and a light blue plane. The red
vertices 3, 1, and 5 lie below the light blue plane. It is well-known that the
cellular automaton of rule 110 is one of the few types of the 256 automata which
are universal Turing machines. In the sense of Wolfram’s class 3 of computer
experiments, it produces very complex patterns [26].

An example of an automaton which can only produce very simple patterns is
rule 232. There is only one separating plane cutting the corresponding Boolean
cube for separating colored points (Fig.6a): Red vertices 3, 5, 6, and 7 lie above
a light blue plane. The blue vertices 0, 1, 2, and 4 lie below the light blue plane.
A colored Boolean cube with three parallel separating planes is shown in Fig.
6c, representing the cellular automaton of rule 150: The blue vertex 6 lies above
a green plane. The red vertices 2, 4, and 7 lie between a yellow plane and the
green plane. The blue vertices 0, 3, and 5 lie between the yellow plane and a
light blue plane. The blue vertex 1 lies below the light blue plane. Obviously, it
is not possible to separate the 8 vertices into three colored clusters and at the
same time separate them by two parallel planes, no matter how the planes are
positioned.

A rule whose colored vertices can be separated by only one plane is said to
be linearly separable. An examination of the 256 Boolean cubes shows that 104
among them are linearly separable. The remaining 152 rules are not linearly
separable. Each rule can be separated by various numbers of parallel planes.
In general, there is a unique integer κ, henceforth called the complexity index
of rule N, which characterizes the geometrical structure of the corresponding
Boolean cube, namely the minimum number of parallel planes that is necessary
to separate the colored vertices. All linearly separable rules have a complexity
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index κ=1. An analysis of the remaining 152 linearly non-separable rules shows
that they have a complexity index of either 2 or 3. For example, rule 110 has
a complexity index κ=2 whereas rule 150 has a complexity index κ=3. No rule
with complexity index κ=1 is capable for generating complex patterns, even for
random initial conditions. The emergence of complex phenomena significantly
depends on a minimum complexity of κ=2. In this sense, complexity index 2 can
be considered the threshold of complexity for 1-dimensional cellular automata.

Fig. 6. Examples of complexity index κ = 1, 2, 3 with parallel planes separating all
vertices having one color from those having a different color on the other side for rule
232 (a), rule 110 (b),and rule 150 (c)

2.2 Computational Complexity and Universal Computability

A motivation for the introduction of a complexity index is also computational
complexity. The class of cellular automata with complexity index κ = 2 contains
examples with universal computation (e.g., N = 110), but the local rules with
complexity index κ = 1 are not capable of universal computation. It follows that
κ = 2 also represents a threshold of computational complexity.

Universal computation is a remarkable concept of computational complexity
which dates back to Alan Turing’s universal machine [17]. Universal cellular
automata are well-known since Conway’s game of life [13]. A universal Tur-
ing machine can by definition simulate any Turing machine. According to the
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Church-Turing thesis, any algorithm or effective procedure can be realized by a
Turing machine. Now Turing’s famous Halting problem comes in. Following his
proof, there is no algorithm which can decide for an arbitrary computer program
and initial condition if it will stop or not in the long run. (A computer program
cannot stop if it must follow a closed loop.) Consequently, for a system with
universal computation (in the sense of a universal Turing machine), we cannot
predict if it will stop in the long run or not. Assume that we were able to do that.
Then, in the case of a universal Turing machine, we could also decide whether
any Turing machine (which can be simulated by the universal machine) would
stop or not. That is obviously a contradiction to Turing’s result of the Halting
problem. Thus, systems with universal computation are unpredictable.

Unpredictability is obviously a high degree of complexity. It is absolutely sur-
prising that systems with simple rules of behavior like cellular automata lead
to complex dynamics which is no longer predictable. We will be very curious to
discover examples of these, in principle, unpredictable automata in nature.

3 Symmetry in the Universe of Cellular Automata

A cursory inspection of the discrete time evolutions of the 256 local rules reveals
some similarity and partial symmetry among various evolved patterns. It reminds
us of more or less random observations in the natural sciences demanding for
unifying mathematical explanations with fundamental laws. The unifying theory
of physics is based on the assumption of fundamental mathematical symmetries
[8, 9]. According to this view, the variety and complexity of natural phenomena
have evolved from some few principles of symmetry. They are the “Holy Grail”
of the Universe which is sought by prominent scientists and research groups all
over the world. For the universe of cellular automata, we found the fundamental
symmetries in the gallery of Boolean cubes [5]. Thus, at least in the toy world
of cellular automata, the importance of symmetry laws can easily be imagined
and understood.

3.1 Local Equivalence of Cellular Automata

But, even in the universe of cellular automata, the situation is sophisticated. The
Boolean cubes of many different pairs of local rules seem to be related by some
symmetry transformations, such as complementation of the vertex colors (e.g.,
rules 145 and 110). Yet, their evolved patterns are so different that it is impossible
to relate them. How do we make sense of all these observations? In the case of
rule 145 and 110, the associated Boolean cubes are related by a “red - blue vertex
transformation”. It is denoted as local complementation operation TC , because
complementation is locally restricted. Intuitively, one might expect that their
respective evolved patterns must also be related by a global complementation
operation. But the intuition turns out to be wrong in general, upon comparing
the two evolved patterns (Fig. 7). It is only true in a local sense with respect to
special iterations. For example, starting from the same initial pattern (single red
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center pixel) in the first row, we find the output (first iteration) of rule 145 is
in fact the complement of that of rule 110; namely, two blue pixels for 145 and
two red pixels for 110 at corresponding locations to the left of center. All other
pixels at corresponding locations are also complements of each other.

However, the next iteration (row 3) under rules 145 and 110 in Fig. 7 are not
complements of each other. The reason is that unlike the initial input u0

i , i =
0, 1, 2, . . . , n, which are the same for both 145 and 110, the next input u1

i , i =
0, 1, 2, . . . , n (for t = 1 in row 2) needed to find the next iteration (row 3) are
different and there is no reason for the output u2

i (for t = 2) at corresponding
locations to be the complement of each other. In these cases, a pair of local rules
is equivalent only in a local sense with respect to “local in iteration time”, and
not local in the usual sense of a spatial neighborhood.

In general, we define

Local Equivalence: Two local rules N and N’ are said to be locally equivalent
under a transformation T : N → N’ iff the output u1

i of N after one iteration
of any initial input pattern u0

i can be found by applying the transformed input
T(u0

i ) to rule N’ and then followed by applying the inverse transformation T−1

: N’ → N to u1
i .

3.2 Global Equivalence of Cellular Automata

Global aspects can be observed in the evolved patterns for the rules 110, 137
(Fig. 7), 124, and 193 (Fig. 8). Despite the fact that the respective Boolean
cubes of these three rules do not seem to be related in an obvious way, their
output patterns are so precisely related that one could predict the evolved
pattern over all times t of each local rule 110, 124, 137, and 193. For example,
the evolved output pattern of rule 124 can be obtained by a reflection of that
of 110 about the center line, namely a bilateral transformation. The output of
rule 193 can be obtained by applying the complement of u0

i (i.e. blue center
pixels amidst a red background) to rule 110 and then taking the complement
of the evolved pattern from 110. The output of rule 137 can be obtained by
repeating the above algorithm for 193, and then followed further by a reflection
about the center line. It can be proved that these algorithms remain valid for
all initial input patterns. This result is most remarkable because it allows us to
predict the evolved patterns from arbitrary initial configurations of three rules
over all iterations and not just for one iteration as in the case of local equivalence.

In general, we define

Global Equivalence: Two local rules N and N’ are said to be globally equivalent
under a transformation T : N → N’ iff the output xt

i of N can be found, for any
t, by applying the transformed input T(x0

i ) to local rule N’ and then followed
by applying the inverse transformation T−1 : N’ → N to x1

i , for any t = 1, 2,
. . . .
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Fig. 7. The evolutions of rules 110 and 145 only reveal a local complement relationship
in the first iteration, but 110 and 137 reveal global symmetrical relationship

Obviously, the four rules 110, 124, 137, and 193 are globally equivalent in
the sense that the evolved patterns of any three members of this class can be
trivially predicted from the fourth for all iterations. Therefore, these four rules
have identical nonlinear dynamics for all initial input patterns and therefore
they represent only one generic rule, henceforth called an equivalence class. This
global property is not only true for four rules, but also for all rules, thereby
allowing us to partition the 256 rules into only 88 global equivalence classes. It
is convenient to identify these equivalence classes with the symbol εκm, where κ
is the complexity index and m the class number. There are 38 cellular automata
belonging to the equivalence classes ε1m with complexity index κ = 1 and m
= 1, 2, . . . , 38. The equivalence classes ε2m with complexity index κ = 2 are
distinguished by m = 1, 2, . . . , 41. Further on, there are nine global equivalence
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Fig. 8. The evolutions of rules 110, 124, 193 reveals global symmetrical relationships

classes with complexity index κ = 3. They are identified by ε3m with m = 1, 2,
. . . , 9.

This result is significant because it asserts that one only needs to study in
depth the dynamics and long-term behaviors of 88 representative local rules.
Moreover, since 38 among these 88 dynamically distinct rules have complexity
index κ = 1, and are therefore trivial, we are left with only 50 local rules (41 rules
with κ = 2 and 9 rules with κ = 3) that justify further in-depth investigations.

3.3 Symmetry with Global Transformations

It can be proven that every local rule belongs to a global equivalence class deter-
mined by certain global transformations. There are three global transformations,
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namely, global complementation T, left-right complementation T�, and left-right
transformation T† which are distinguished as symmetry transformations in the
universe of cellular automata. The four rules 110, 124, 137, and 193 are globally
equivalent to each other in the sense that their long term (as t → ∞) dynamics
are mathematically identical with respect to the three global transformations
T†, T�, and T.

The intuitive meaning of these symmetry transformations can easily be seen
in Fig. 9. In this picture, all four patterns of rules 110, 124, 137, and 193 have 60
rows corresponding to iterations numbers t = 0, 1, 2, . . . , 59, and 61 columns,
corresponding to 61 cells (n = 60). All patterns have a random initial condition
(t = 0), or its reflection, complementation, or both. The two patterns 124 and
110 on top are generated by a left-right transformation T†, and are related by a
bilateral reflection about an imaginary vertical line situated midway between the
two patterns. The two patterns 193 and 137 below are likewise related via T† and
exhibit the same bilateral reflection symmetry. The two vertically situated local
rules 137 and 110, as well as 193 and 124 are related by a global complementation
T. The two diagonally-situated local rules 124 and 137, as well as 193 and 110
are related by a left-right complementation T�.

Fig. 9. Global equivalence of rules 110, 124, 137, and 193

The geometrical definition of these symmetry transformations is easy to un-
derstand and can even be imagined with help of our toy cubes of cellular au-
tomata. Mathematically, these transformations are defined by 3 x 3 matrices
Tu, T

�
u, and T†

u. Each of the three matrices transforms the three axes (ui−1,
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ui, ui+1), drawn through the center of the Boolean cube into a transformed
set of axes (u′

i−1, u
′
i, u

′
i+1). These matrix representations also only need basic

mathematics. An analytical definition is given in [12].

3.4 Global Symmetry of Klein’s Vierergruppe V

The three global transformations T†, T�, and T are generated from elements of
the classic noncyclic four-element Abelian group V, originally called the “Vier-
ergruppe” by the German mathematician Felix Klein [16]. The four elements of
V are denoted by the 3 x 3 matrices T0 , Tu, T

�
u, and T†

u . The symbol T0 de-
notes the identity, or unit matrix, of any dimension. The actual transformations,
however, that allow us to establish the long-term correlations among members
of each of the 88 global equivalence classes of all 256 cellular automata are the
4 x 4 matrices T0, T

†, T�, and T. Fig. 10 shows that they are related by the
group multiplication table of Klein’s Vierergruppe V. This is the only abstract
mathematical group which makes it possible to predict the long-term correlations
among all members of the four remarkable rules 110, 124, 137, and 193.

Fig. 10. Global Symmetry and Klein’s Vierergruppe

These results are global in the sense of asymptotic time behavior as t → ∞.
It proves that even though there are 256 distinct local rules of 1-dimensional
cellular automata, there are only 88 distinct global behaviors, a fundamental
result predicted by the identification of 88 global equivalence classes εκm.

3.5 The Holy Grail of Symmetry and Computability

Since the local rule 110 has been proved to be capable of universal computation,
it follows that all four local rules of the VierergruppeV are universal Turing ma-
chines. The fundamental importance of the universality result was to exploit the
symmetry of the Boolean cubes in order to identify equivalence classes among
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the 256 rules. The discovery of the Vierergruppe V and the rotation group R had
led to the major logical classifications of the 256 local rules into 88 global equiv-
alence classes εκm and 30 local equivalence classes Sκ

m . The significance of the
88 global equivalence classes εκm is similar to the classification of computational
algorithms into various complexity classes, for example, the N - or NP -classes,
in the sense that any property that applies to one member of εκm applies to the
other members in the same global equivalence class.

The universality of the four rules 110, 124, 137, and 193 and their identical
long-term dynamic behaviors, with respect to the symmetry transformations of
the Vierergruppe V, are encapsulated in the commutative diagram shown in
Fig. 11. Thus, Klein’s Vierergruppe represents the fundamental symmetry law
of the 256 two-state one-dimensional cellular automata. It is the “Holy Grail”
of a unified theory in the universe of these cellular automata, containing all
information about their nonlinear dynamics.

Fig. 11. Universal symmetry and computability in the universe of cellular automata

4 Outlook to a Computational Universe of Dynamical
Systems

One-dimensional cellular automata with L = I+1 cells are complex systems with
nonlinear dynamics [1, 11, 15] determined by one of the 256 local rules N. Their
state spaces contain all distinct states of cellular rows (xt

0, . . . , x
t
I−1, x

t
I) at step

t of time (iteration or generation). An entire list of consecutive rows with no
two rows identical and including the initial configuration is called an orbit in
the state space of a cellular automaton. On that background, the well-known
attractor dynamics of complex systems can also be studied in the theory of
cellular automata [12].
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Summing up all these insights, we are on the way to conceive the universe as an
automaton and dynamical system. The success of this research program depends
on the digitization of physics. The question “Is the Universe a computer” leads to
the question: How far is it possible to map the laws of physics onto computational
digital physics? [6] Digitization is not only exciting for answering philosophical
questions of the universe. Digitization is the key paradigm of modern research
and technology. Nearly all kind of research and technical innovation depend on
computational modeling. The emerging complexity of nature and society cannot
be handled without computers with increasing computational power and storage.

In order to make this complex computational world more understandable,
cellular automata are an excellent tool. NKS and our analytical approach show
that many basic principles of the expanding universe and the evolution of life and
brain can be illustrated with cellular automata. The emergence of new structures
and patterns depends on phase transitions of complex dynamical systems in the
quantum, molecular, cellular, organic, ecological, and societal world [10]. Cellular
automata are recognized as an intuitive modeling paradigm for complex systems
with many useful applications [7]. In cellular automata, extremely simple local
interactions of cells lead to the emergence of complex global structures. This
local principle of activity is also true in the world of complex systems with
elementary particles, atoms, molecules, cells, organs, organisms, populations,
and societies [2]. Although local interactions generate a complex variety of being
in the universe, they can be mathematically reduced to some fundamental laws
of symmetry.

Symmetries play a key role in the physical world as well as in the universe of
automata. In philosophy of science, they have been considered universal princi-
ples of Platonic truth and beauty [8]. The scientific search for symmetries reminds
us of Parsifal’s quest for the Holy Grail. The legend of Parsifal was written by
the minnesinger Wolfram von Eschenbach (c. 1170–c. 1220). It may be a ran-
dom accord of names that a “Wolfram” also wrote “A New Kind of Science” for
cellular automata. In the 19th century, Richard Wagner composed his famous
opera based on Wolfram’s legend of Parsifal. In Wagner’s interpretation, it is the
quest of the “poor fool” Parsifal for the Holy Grail. The question is still open
whether the scientific search for a final symmetry or “world formula” will also
be a “foolish” quest.
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Chapter 6

A New Kind of Science: Ten Years Later

David H. Bailey�

Lawrence Berkeley National Laboratory, Berkeley, CA, USA
DHBailey@lbl.gov

Abstract. It has been ten years since Stephen Wolfram published his
magnum opus A New Kind of Science [13]. It is worth re-examining the
book and its impact in the field.

1 Highlights of ANKS

The present author personally read the book with great interest when it was first
published. Of particular interest then and now are the many illustrations, par-
ticularly those of the complex patterns generated by certain cellular automata
systems, such as rule 30 and rule 110, as contrasted with the very regular pat-
terns produced by other rules. In this regard, graphical analyses of these cellular
automata rules join a select group of modern mathematical phenomena (includ-
ing, for example, studies of the Mandlebrot set, chaotic iterations and certain
topological manifolds) that have been studied graphically as well as analytically.

In looking again at ANKS, the present author is struck today, as in 2002,
with the many interesting items in the endnote section, which occupies 350
pages of two-column, small-font text. In some respects, the endnotes of ANKS
constitute an encyclopedia of sorts, covering, in concise yet highly readable form,
historical background, mathematical foundations and scientific connections of a
wide variety of topics related to modern-day computing. Much of this material
remains as cogent and interesting today as when it was written over ten years
ago. Some of the particularly interesting endnote passages are the following:

1. Wolfram’s entry on “History of experimental mathematics” (pg. 899) con-
tains a number of interesting insights on the practice of using computers as
exploratory tools in mathematics.

2. In his entry “Randomness in markets” (pg. 1014), Wolfram notes that in
modern-day financial markets, large price fluctuations are significantly more
common than a Gaussian distribution would imply—a phenomenon amply
affirmed in the 2007–2009 worldwide financial crash.

3. Under “Einstein equations” (pg. 1052–1054), Wolfram presents a brief and
yet informative introduction to the equations of general relativity, together
with some interesting computational perspectives in the general arena of
relativity and cosmology.

� Supported in part by the Director, Office of Computational and Technology Re-
search, Division of Mathematical, Information, and Computational Sciences of the
U.S. Department of Energy, under contract number DE-AC02-05CH11231.
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DOI: 10.1007/978-3-642-35482-3_6 © Springer-Verlag Berlin Heidelberg 2013
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4. Under “Quantum phenomena” (pg. 1056–1065), Wolfram presents an even
more detailed overview of quantum mechanics, including an introduction
to Feynman diagrams, quantum field theory and Bell’s inequality, all with
interesting connections to computation.

5. Under “Data Compression” (pg. 1069–1074), Wolfram includes numerous
details of state-of-the-art data compression algorithms.

6. Beginning with a series of articles under the heading “Undecidability and
Intractibility” (pg. 1136–1149), Wolfram presents a fairly technical but
nonetheless quite coherent introduction to many of the topics of modern
theoretical computer science, including undecidability, computational com-
plexity, Turing machines, NP-completeness and quantum computers.

7. Immediately following the material on theoretical computer science is a sim-
ilarly detailed introduction (pg. 1149–1177) to modern developments in the
foundations of mathematics, with implications for computing.

8. In a fascinating section “Intelligence in the Universe” (pg. 1177–1191), Wol-
fram discusses such topics as the origin of life, extraterrestrial life, the nature
of animal and human intelligence, Fermi’s paradox and speculations, from a
computational point of view, as to why our search for extraterrestrial intel-
ligence so far as been unsuccessful.

2 Experimental Mathematics

With regards to item 1 in the list above (experimental mathematics), it is worth
pointing out that while Wolfram is very well versed in rigorous mathematical
proof, nonetheless he confesses (pg. 899), “by now I have come to trust the
correctness of conclusions based on simple systematic computer experiments
much more than I trust all but the simplest proofs.” Wolfram laments the fact
that so few others in the field of modern-day mathematics are willing embrace
this computational-experimental paradigm (pg. 899):

[E]ven now, unlike essentially all other branches of science, mainstream
mathematics continues to be entirely dominated by theoretical rather
than experimental methods. And even when experiments are done, their
purpose is essentially always just to provide another way to look at
traditional questions in traditional mathematical systems.

Fortunately, this is one arena where substantial progress has been made in the
past ten or fifteen years. Nowadays many research mathematicians use the com-
puter to manipulate symbolic expressions, generate sequences, visually inspect
numerical data, check analytical work, compute expressions to very high nu-
meric precision, and otherwise explore the mathematical universe using the lat-
est computer technology. This trend has been greatly facilitated by continuing
improvements in Mathematica and other mathematical software packages. Just
as important for this phenomenon is the entry into the field of a large number
of junior-level mathematicians who are completely comfortable with computer-
based tools, and who instinctively look to the computer as the first step in
investigating a mathematical question.
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3 A New Formula for Pi

Perhaps one of the most interesting of the recent computer-discovered mathe-
matical facts is what is now known as the “BBP” formula for π = 3.14159 . . .:

π =

∞∑

k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
, (1)

which can also be written

π = 4

∞∑

k=0

1

16k(8k + 1)
− 2

∞∑

k=0

1

16k(8k + 4)
−

∞∑

k=0

1

16k(8k + 5)

−
∞∑

k=0

1

16k(8k + 6)
. (2)

Here
∑

is the usual mathematical notation for summation. Thus formula (2),
for instance, is merely shorthand for

π = 4

(
1 +

1

16(8 + 1)
+

1

162(2 · 8 + 1)
+

1

163(3 · 8 + 1)
+ · · ·
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+

1
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+ · · ·

)

−
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1

5
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1

16(8 + 5)
+

1

162(2 · 8 + 5)
+

1

163(3 · 8 + 5)
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)

−
(
1

6
+

1

16(8 + 6)
+

1

162(2 · 8 + 6)
+

1

163(3 · 8 + 6)
+ · · ·

)
. (3)

These infinite series converge quite rapidly—if one adds up just the first four
terms displayed above for each series (i.e., truncating the sums at the · · · sign),
the result will be a value of π correct to six digits.

However, the most remarkable feature of BBP formula is that it permits one
to calculate a string of binary (base 2) or hexadecimal (base-16) digits of π
beginning at an arbitrary position n, without needing to calculate any of the
preceding n − 1 digits. See [4], [9] or [10, pg. 118–125] for details. Indeed, a
Mathematica implementation of this surprisingly simple scheme is presented in
ANKS (pg. 912).

Recently Tsz-Wo Sze of Yahoo! Cloud Computing demonstrated a closely
related variant of this scheme by calculating binary digits of π beginning at
position two quadrillion [7]. The first 25 binary digits beginning at this point
are: 0111001101100000100101001.

An even more interesting aspect of the BBP formula, one particularly relevant
to the present discussion, is the fact that it was discovered by a computer. Indeed,
it may be the first instance in the history of mathematics where a significant
new formula for π was found by a computer. This all happened in 1995, when
Canadian mathematician Peter Borwein was considering whether or not it was
possible to calculate the n-th digit of a mathematical constant such as π by some
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shortcut that avoided the necessity of computing all digits up to and including
the n-th digit. He and Simon Plouffe found a way to compute the n-th binary
digit of the natural logarithm of two, namely ln 2 = 0.693147 . . ., by manipulating
the following well-known formula for ln 2:

ln 2 =

∞∑

k=1

1

k2k
=

1

2
+

1

3 · 23 +
1

4 · 24 +
1

5 · 25 + · · · . (4)

After this discovery, Borwein and Plouffe immediately asked whether they could
do the same mathematical “trick” for π. It all depended on finding a similar
formula for π. Peter Borwein, who was very familiar with the mathematical
literature regarding π, was not aware of any such formula for π, and it seemed
exceedingly unlikely that such a formula would have escaped detection by the
many thousands of great mathematicians who have studied π through the ages.
But Plouffe embarked on a computer search for such a formula, using a 200-digit
computer implementation (provided by the present author) of mathematician-
sculptor Helaman Ferguson’s integer relation “PSLQ” algorithm, which finds
integer linear relations among an input set of numerical values. After several
months of fits and starts, Plouffe and his computer found formula (1). The rest,
as they say, is history.

Since 1995, researchers have discovered similar digit-calculating formulas for
numerous other fundamental constants of mathematics, in most cases by similar
computer searches using the PSLQ algorithm. See [10, Chap. 3] or [7] for details.

4 Ramanujan’s Continued Fraction

Srinivasa Ramanujan (1887–1920), born to a poor family in India, learned math-
ematics mostly by studying math books on his own. His genius was recognized
by British mathematician G. H. Hardy, who invited him to come work with him
in Cambridge. Ramanujan’s mathematical achievements have been recognized
as among the greatest of all time, in spite of the fact that he died at the tender
age of 32.

One of the many topics that he addressed in his notebooks is the following
class of continued fractions. Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + . . .

. (5)

This complicated-looking expression simply means to evaluate the indicated
compound fraction out to some level, and then take the limit as more and more
terms are included. Ramanujan discovered the beautiful fact that

Rη (a, b) +Rη (b, a)

2
= Rη

(
a+ b

2
,
√
ab

)
, (6)
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for certain a, b > 0 parameterized by elliptic functions. And indeed this is true
for all a, b > 0, as Berndt notes in his annotation of Ramanujan’s notebook [8].

Just as ANKS was being completed, a group of mathematicians (including
Jonathan Borwein, Richard Crandall, David Borwein, Raymond Mayer and oth-
ers) applied the tools of experimental mathematics to study these continued
fractions. This started with a simple attempt to numerically validate (6), which,
in turn, meant numerically computing formula (5).

Unfortunately, a first attempt to numerically compute R1 (1, 1), as a proto-
type problem, failed miserably—after a lengthy computation only three reliable
digits were produced: 0.693 . . .. But researchers recognized this value as close
to the value of ln 2 = 0.693147 . . ., and then discovered that convergence of the
continued fraction is worst when a = b (i.e., the initial problem they selected
was a poor choice).

Eventually a number of very interesting results were obtained, including an
algorithm to compute (5) in the complex plane, and so to determine exactly
when it converged. For instance, with the help of Maple and Mathematica and
a scatter plot, these researchers discovered that the fraction converges and (6)
holds exactly when (a, b) lie in the cardioid defined by |a| + |b| ≥ 2

√|a||b|.
They then determined an elliptic function representation from which the simple
formula

R1(a, a) = 2

∫ 1

0

t1/a

1 + t2
dt, (7)

true for all nonzero real numbers a, followed easily. No such formula is known
for Rη(a, b) with a �= b or not real, although striking results have been obtained
in cases such as Rη(ia, ia), for real a, which exhibits true chaos [2].

Study of convergence of these Ramanujan continued fractions was facilitated
by reducing them to the following discrete dynamical system: Given complex
numbers a and b as in (5), set t0 = 1, t1 = 1 and then iterate

tn :=
1

n
+ ωn−1

(
1− 1

n

)
tn−2, (8)

where ωn = a2 or b2, depending on whether n is even or odd. It can be shown
that Rη(a, b) diverges if and only if the sequence

√
ntn remains bounded.

If one studies this iteration based solely on its numerical values, nothing much
is evident—one only sees that tn → 0 fairly slowly. However, if one looks at this
iteration pictorially, significantly more can be learned. In particular, if one plots
these iterates in the complex plane, scaled by

√
n, with iterations colored blue or

red depending on odd or even n, then some remarkable fine structure appears—
see Figure 1.

With assistance of such plots, the behavior of these iterates (and the
Ramanujan continued fractions themselves) is now quite well understood. A
Cinderella applet exploring the dynamics of these iterations is available at
http://carma.newcastle.edu.au/jon/dynamics.html. When a and b are

http://carma.newcastle.edu.au/jon/dynamics.html
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Fig. 1. Dynamics and attractors discovered by plotting
√
ntn for various cases with

|a| = |b| = 1

complex numbers such that |a| = |b| = 1, a circle appears when either of a, b is
not a root of unity, but k isolated spirals are seen when one of them is a k-th
root of unity (i.e., when a = e2iπ/k for some integer k).
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In short, Ramanujan continued fractions and related iterations join the dis-
tinguished category of mathematical objects that have been profitably studied
via computer graphics, in company with Wolfram’s cellular automata, chaotic
sequences, and the Julia-set structures of roots of algebraic equations.

5 Formulas for the Riemann Zeta Function

The Riemann zeta function, which is defined by the simple formula

ζ(s) =

∞∑

k=0

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · · , (9)

is one of the most important objects in modern mathematics, with applications
in physics, probability theory, applied statistics and number theory. A premier
unsolved problem of mathematics, for which the Clay Mathematics Institute has
offered US$1,000,000 for solution, is to rigorously prove the “Riemann hypoth-
esis,” namely the assertion that all of the nontrivial solutions of the equation
ζ(s) = 0 in the complex plane lie precisely on a particular vertical straight line.

Among the many questions explored by mathematicians over the past cen-
tury regarding the Riemann zeta function are whether the following intriguing
formulas, which have been known for several decades, can be generalized:

ζ(2) = 3

∞∑
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k2
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2k
k
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2
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ζ(4) =
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k4
(
2k
k

) =
36
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(
1

1 · 2 +
1

16 · 6 +
1

81 · 20 + · · ·
)
. (12)

Here the notation
(
n
m

)
is shorthand for the binomial coefficient, namely the

number of combinations of n objects taken m at a time. Do similar formulas
exist for integer arguments greater than four? Numerous mathematicians have
tried to find such formulas, but, until recently, none were known.

In 1997, using a combination of integer relation algorithms, the “Pade ap-
proximation” facility and some other computational techniques available in
Mathematica and similar mathematical software systems, Jonathan Borwein
(Peter Borwein’s brother) and David Bradley discovered the following unan-
ticipated general formula ([11] or [1, pg. 70–77]):

∞∑

k=0

ζ(4k + 3)x4k =
5

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
(1− x4/k4)

k−1∏

m=1

(
1 + 4x4/m4

1− x4/m4

)
. (13)

Here the notation
∏k−1

m=1 means the product of the term to the right of
∏

for m
from 1 to k− 1. Formula (13) permits one to read off an infinity of formulas for
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ζ(4n+3), beginning with formula (11) above when n = 0, simply by comparing
coefficients of x4k on the left-hand side and the right-hand side of (13).

In 2007, following a similar but much more deliberate computer-experimental
procedure, as detailed in [5] or [1, pg. 70–77], a similar general formula was
discovered for ζ(2n+ 2):

∞∑

k=0

ζ(2k + 2)x2k = 3
∞∑

k=1

1

k2
(
2k
k

)
(1− x2/k2)

k−1∏

m=1

(
1− 4 x2/m2

1− x2/m2

)
. (14)

As with (13), one can now read off an infinity of formulas, beginning with formula
(10) above when n = 0. This general formula was then proved using what is
known as the Wilf-Zeilberger algorithm [13]. A comparable general formula for
ζ(2n + 4) has also been found, giving formula (12) above when n = 0, but a
similar general formula for all ζ(4n+ 1) is not yet known.

It is worth emphasizing the fact that formula (14) above was both discovered
and proven by computer. There is no reason for human mathematicians to panic,
as considerable human ingenuity was involved in both steps. But this result is a
harbinger of a future in which the computer is as essential to the mathematician,
for both discovery and proof, as a particle collider is to a high-energy physicist,
or as a DNA sequencer is to a molecular biologist.

6 Proof versus Experiment

Although Wolfram repeatedly champions the experimental approach in A New
Kind of Science, he also acknowledges that experimental explorations are no
substitute for rigorous proof. This principle has been amply underscored during
the past few years by discoveries of some remarkable examples that serve as
cautionary tales to those who too glibly apply experimental methods.

One particularly sobering example is the following:

I =

∫ ∞

0

cos(2x)

∞∏

n=1

cos(x/n) dx, (15)

where
∫∞
0 means the usual signed area under the curve that we study in calculus.

Calculating the numerical integral of this oscillating function (see Figure 2) to
high accuracy is a nontrivial challenge, but can be done using a scheme described
in [6]. When this integral was first computed to 20-digit accuracy, its value
appeared to be π/8 = 0.392699 . . .. But when more than 50 digits were obtained,
upon careful comparison with the numerical value of π/8:

I = 0.392699081698724154807830422909937860524645434187231595926 . . .

π/8 = 0.392699081698724154807830422909937860524646174921888227621 . . . ,

it is clear that the two values disagree beginning with the 43rd digit! In other
words, the integral I is not π/8. At first the authors of this study felt that there
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Fig. 2. Graph of the oscillating function cos(2x)
∏∞

n=1 cos(x/n)

must be some “bugs” in the computer programs calculating the integral, but
none were found.

Richard Crandall [12] later explained this mystery. In the course of analyzing
physically motivated “running out of fuel” random walks, he showed that π/8
is given by the following very rapidly convergent series expansion, of which the
integral (15) above is merely the first term:

π

8
=

∞∑

m=0

∫ ∞

0

cos[2(2m+ 1)x]

∞∏

n=1

cos(x/n) dx. (16)

As mentioned above, one term of this series is accurate to 43 digits; two terms
are accurate to more than 500 digits; three series suffice for at least 8000 digits,
and so on.

7 Conclusion

Considerable progress has been made since the publication of AKNS in identify-
ing opportunities and techniques for experimental mathematics. New formulas
have been discovered, interesting features have been identified in plots of mathe-
matical structures, and computer-based techniques have been developed to prove
certain types of results, as well as to discover them in the first place.

However, examples such the one mentioned in the previous section, where
mathematical objects differ significantly from what one might think after per-
forming an initial computation, draw attention to the fact that there has not
yet been substantial and intellectually rigorous progress in the way experimental
mathematics is presented in research papers, textbooks and classroom instruc-
tion, or in how the mathematical discovery process is organized. This is an
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arena where works such as A New Kind of Science can have significant impact.
The present author, for one, looks forward to this dialogue. See [3] for more
discussion.
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Abstract. The predictability of many complex systems is limited by
computational irreducibility, but we argue that the nature of computa-
tional irreducibility varies across physical, biological and human social
systems. We suggest that the computational irreducibility of biological
and social systems is distinguished from physical systems by functional
contingency, biological evolution, and individual variation. In physical
systems, computationally irreducibility is driven by the interactions,
sometimes nonlinear, of many different system components (e.g., par-
ticles, atoms, planets). Biological systems can also be computationally
irreducible because of nonlinear interactions of a large number of system
components (e.g., gene networks, cells, individuals). Biological systems
additionally create the probability space into which the system moves:
Biological evolution creates new biological attributes, stores this accu-
mulated information in an organism’s genetic code, allows for individual
genetic and phenotypic variation among interacting agents, and selects
for the functionality of these biological attributes in a contextually de-
pendent manner. Human social systems are biological systems that in-
clude these same processes, but whose computational irreducibility arises
as well from sentience, i.e., the conscious perception of the adjacent pos-
sible, that drives social evolution of culture, governance, and technology.
Human social systems create their own adjacent possible through the cre-
ativity of sentience, and accumulate and store this information culturally,
as reflected in the emergence and evolution of, for example, technology.
The changing nature of computational irreducibility results in a loss of
predictability as one moves from physical to biological to human social
systems, but also creates a rich and enchanting range of dynamics.
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1 Introduction

Systems change through time–whether the system of interest is a galaxy, a forest
ecosystem, a social network, or a circulatory system. This continuous process of
change in the system state can be thought of as computation [35]: the state of the
system is updated based on its current and past states. In a forest, for example,
the growth and recruitment of trees is dependent on the spatial arrangement
of trees through processes such as competitive interactions, light shading, and
seed dispersal as well as environmental externalities [4]. In some systems, pre-
cise predictions of the future state of the system can be made without having
to perform the intervening computations. In these systems, prediction is possi-
ble because simplified models exist that can be used to bypass the intervening
computations intrinsically performed by the system . Astronomical models, for
example, can predict the spatial and temporal distribution of sunlight on earth,
and describe the past orbital forcing of the climate system [20]. In other systems,
like a forest ecosystem, predicting the detailed state of the system is very difficult
without allowing the system to update itself on its own characteristic time scale
[3]. Systems that require the computation of intervening system states on their
characteristic time scale in order to predict future states are computationally
irreducible. Computational irreducibility therefore implies the absence of simpli-
fying models that can reproduce future system states without information loss.
The dynamics of a system that is computationally irreducible cannot be known
without allowing for the evolution of the system on its own time scale. While
any process that is computationally irreducible may seem to imply an equivalent
degree of unpredictability a priori, we suggest that this is not the case. We argue
that the processes that drive computational irreducibility differ across physical,
biological and social systems, and that these differences result in some forms
of computational irreducibility being ’more irreducible’ than others. Computa-
tional irreducibility does not imply that predictions are impossible, but that they
come at the cost of information loss. In cellular automata, for example, cells can
be spatially aggregated into larger units with an associated set of updating rules
in a process of coarse-graining [18] [19]. Prediction in some computationally ir-
reducible systems is possible through coarse-graining, but comes at the cost of
information loss through spatial and temporal averaging. We suggest, then, that
gains in prediction require increasing information loss in physical, biological,
and human social systems, and thus some systems are more computationally
irreducible than others. We argue that the basis for these differences lie in the
different processes operating in physical, biological, and human social systems.

2 Physical Systems

Physics has been particularly successful at prediction. Physicists, for example,
were able to predict the existence of black holes from a singularity in the equa-
tions describing the physical system [31] [32]. Engineers routinely use the laws
of physics to design and build skyscrapers, bridges, airplanes, and to send space-
craft to distant planets, and these efforts are usually successful. We don’t mean
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to imply that physics is axiomatic and its laws universal but rather that, while
mathematical representations of physical laws may be only approximate descrip-
tions of underlying physical reality, the approximations can be quite good. The
approximate laws of physics seem to be much more useful for prediction than
the approximate laws of biological or human social systems.

We argue that physical systems tend to be more predictable than living sys-
tems because computational irreducibility in these systems is driven by a smaller
set of less complex processes. Computational irreducibility in physical systems
largely results from the interactions of particles or objects governed by a fixed
set of rules, analogous to simple cellular automata [35]. Physical systems can be-
come computationally irreducible with a relatively small number of interacting
objects, e.g., the three body problem [35], and systems with large numbers of in-
teracting components are likely to be computationally irreducible. The evolution
of a large volume of a gas, for example, may be computational irreducible even
as the gas molecules interact with each other and their surrounding environment
according to known physical laws. An approximate, statistical description of the
mean state of a gas is still possible, however, without an exact description of the
velocities and locations of each molecule: the temperature and pressure of a gas
can be described using the ideal gas law. Physical systems that are computation-
ally irreducible can often become predictable from a macro-level perspective due
to the averaging of a very large number of separate interactions, albeit with the
loss of information. This is analogous to the coarse-graining of cellular automata
described earlier.

The computational irreducibility of physical systems is related to the Halt-
ing Problem in a Universal Turing Machine [34]. A computation is said to be
incompressible when the sequential behavior of a computer program cannot be
computed in any shorter way than to allow the program to run and note its
successive states. The central features of a Turing machine include a head with
a set of pre-stated symbols standing for internal states, a tape marked in squares
of perhaps infinite length, a prestated alphabet of symbols (e.g., 0 and 1) that
can be read from and written to the tape by the reading head [10]). Given a set
of symbols on the tape, and the reading head over one square with a symbol
written on it, the head reads from the tape and, depending upon the symbol,
its internal state will not move or move one square to the left or right, erase the
symbol on the square below it, write a symbol on that square and go from one
internal state to another internal state. Then this set of operations will iterate.
Given any initial state of the tape and reading head, the next states of the tape
and head can be computed for 1, 2, 3, . . . , N finite number of steps ahead. A
Turing machine is a subset of classical physics.

We define the computationally irreducibility of physical systems and other
Turing-like systems as first order computationally irreducible. This is the sim-
plest mode of computational irreducibility in that the set of rules governing sys-
tem evolution and the possible states of the particle or node are fixed, e.g., the
set of potential states of a cell in a simple automaton, and do not change as the
system itself evolves. We suggest that coarse-graining approaches to prediction
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would be most effective in systems with first order computational irreducibility,
i.e., they would gain greatest predictive capacity with minimal information loss.
We argue that biological systems and human social systems have a different set
of processes governing system evolution than those found in physical systems
and associated with first order computational irreducibility.

3 Biological Systems

Biological systems are computationally irreducible for qualitatively different
reasons than physical systems. While the same processes that yield first or-
der computational irreducibility in physical systems also operate in biological
systems, i.e., large number of interacting components, the set of rules govern-
ing these interactions and the potential states of the system components (e.g.,
cells in a CA, particles, organisms) evolve along with the overall state of the
system. We refer to this as second order computational irreducibility–a more
complex computational irreducibility than the first order computational irre-
ducibility. The second order nature of the computational irreducibility of biolog-
ical systems–meaning that the rules and set of states of fundamental units can
evolve–follows from nearly universal attributes of biological systems: i) contin-
gency of the function and selective value of biological attributes on interactions
with other organisms and their environment, ii) the creation of new attributes
and functions through biological evolution, and iii) individual variability in bio-
logical attributes even among organisms of the same species. Note that we use
the term ‘biological evolution’ to refer to Darwinian evolution in biological sys-
tems as distinguished by ‘system evolution’, which describes changes in the state
of a system through time, although biological evolution often leads to system
evolution of biological systems.

Functional contingency. Biological attributes have a set of potential functions,
and the set of these functions is contextually dependent on interactions with
other organisms and the environment. A subset of the functions associated with
an attribute may be useful in the current context of an organism and its inter-
actions with other organisms and its environment, while other function of an
attribute may be useful in other future (or past) contexts. Feathers in dinosaurs,
for example, may have initially functioned in thermal regulation and only later
provided additional functionalities that were coopted for flight [6] [33]. The swim
bladder, a sac found in some fish that is partly filled with air and partly with wa-
ter and the ratio of which determines and adjusts neutral buoyancy in the water
column, is believed to have arisen from the lungs of lung fish, providing a new
functionality to an existing structure [29]. Even the human capacity for reason
and logic may have been a new functionality of biological traits with origins in
the context of group dynamics of social organisms [26]. Some components of the
set of functions of existing biological attributes might have causal consequences
that are of selective significance in new environments. Functions of biological
structures that are of no selective advantage in the current environment but
that become selectively advantageous in later environments, typically with a
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new functionality, are referred to as pre-adaptations or exaptations. We assert
that the potential functions of biological attributes are both indefinite in num-
ber and unorderable, and, importantly, that no algorithm can list them all. We
argue that this means that the set of rules governing system evolution changes
and contributes to the second order computational irreducibility of biological
systems.

Biological evolution. Biological evolution is a central process that distinguishes
the evolution of the biosphere from other physical systems [24]. Biological sys-
tems create and accrue attributes such as new structures, biochemical pathways,
gene regulatory networks, etc. through biological evolution. These attributes
provide the basis for biological function and exaptations of the previous section.
The process of biological evolution is immensely creative and unpredictable, and
forms a positive feedback loop that leads to further biological evolution. The
evolution of feathers in dinosaurs and their ultimate use in flight resulted in
the emergence of a completely new set of ecological niches, and an associated
proliferation of species of birds. The emergence of flight in birds, in turn, has
allowed for the long range transportation of seeds and organisms to islands and
inland water bodies (e.g., [25]), opening even new ecological niches, providing
the basis for new functionality of existing biological structure, and for continued
evolutionarily development of biological attributes. Seabirds are, for example,
responsible for substantial nutrient flows from oceans to terrestrial ecosystems,
and their presence or absence can determine whether a landscape is in one of
two alternative stable states–a grassland or closed shrubland [9].

Individual variation. Biological systems are distinguished from purely physical
systems by individual variation of agents. Individual organisms often differ from
other individuals of the same species [7]. Much of this variation is derived from
underlying genetic differences and these genetic differences provide the basis for
differences in biological attributes, e.g., behaviors, functions, and environmen-
tal responses and the raw material for biological evolution. Individual variation
within species has been postulated to be a key mechanism driving patterns of
and maintaining species diversity in ecological communities [4]. Species phenol-
ogy, for example, describes the seasonal timing of demographic processes such as
flowering in trees (e.g., [27]). Individual variation in response to environmental
cues (e.g., day length, temperature) means that some trees will bud out and
flower earlier in the spring than others. An earlier phenology could increase the
likelihood of seeds colonizing and capturing new available (empty) sites in a
forest or, alternatively, increase the risk of being adversely impacted by a late
spring frost. The consequences of individual variation, thus, depend on the en-
vironmental and ecological context. Individual variability means that the rules
for updating a system can vary from individual to individual even if the envi-
ronmental context is identical. In a cellular automaton, this is analogous to cell
to cell variation in the updating rule for a specific cell type, for instance, among
different white cells even with identical neighborhoods.
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Synthesis. Biological evolution creates attributes of organisms and the biologi-
cal system creates the context that determines the functionality and utility of
these attributes. Biological evolution led to photosynthesis, and photosynthesis
then resulted in abundant free oxygen in the atmosphere (e.g., [30] [21]. Biolog-
ical attributes that enabled aerobic respiration in the presence of free oxygen
were advantageous in this new context. Free oxygen and aerobic respiration,
subsequently allowed for a wide array of niches that did not exist before and
these niches could be occupied by species with new or pre-adapted functional
attributes (e.g., [28]). Biological systems create and modify their own adjacent
possible through construction of or extension of biological function or niche space
that is immediately adjacent to current niche space. The creation of new bio-
logical opportunities allows for the emergence of new organisms, new function-
alities, and a new adjacent possible. This process is enormously creative and
unpredictable a priori. Biological systems are thus second order computation-
ally irreducible, because the rules for updating and the potential states of the
system change as the system evolves. The evolution of the biosphere is non-
algorithmic. We claim that no algorithm can pre-state all possible biological
attributes, their potential functions, or how these functions might be of selective
advantage in potential future environments. The unpredictability of biological
systems is thus radically unlike the computational incompressibility of physical
systems, the Halting problem on a universal Turing machine or, a fortiori, unlike
the irreducibility of cellular automata.

4 Human Social Systems

Human social systems are a specialized case of a biological system with an ad-
ditional source of computational irreducibility: sentience. We use ‘sentience’ to
refer to the state of being conscious, self-aware, and having free will. Humans
are sentient beings that are able to perceive their own possibilities within the
context of their environment. A person might, for instance, conceive of a network
of linked computers that would later become the internet and allow for the world
wide web. The creation of the internet and world wide web then provides the ba-
sis for other innovations that are dependent on the existence of the internet, e.g.
social networking websites, cloud computing, etc. The creation of the internet
allowed for the possibility of these subsequent innovations–the internet resulted
in a new and expanded adjacent possible. All of these innovations–the internet,
social networking websites, and cloud computing–require a person(s) that imag-
ined or perceived the possibility of these innovations in a given context. Similar
sequences of creative expansion of the adjacent possible can be found in many
contexts outside of technology–from music and visual art to the development of
law and systems of governance. Sentience thus acts to create what is possible
adjacent to what currently exists in a manner analogous to biological evolution,
and this process proceeds in a positive, self-reinforcing feedback loop: Innovation
creates the opportunity for more innovation.

Sentience and the perception of possibility distinguish the computational ir-
reducibility of human social systems from physical and other biological systems.
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The processes that contribute to the computational irreducibility of physical
and biological systems also apply to human social systems, i.e., interactions
among many system components, biological evolution, and individual variation,
functional contingency. Sentience operates in addition to these processes and
sets the computational irreducibility of human social systems apart from these
other systems. We thus characterize human social systems as having third order
computational irreducibility. Third order computational irreducibility is distin-
guished by the sentient perception of what is possible in a given context, and
drives the evolution of technology, economics, governance, and other components
of the human social system. We expect that human social systems will be less
predictable than biological or physical systems, meaning that predictive gains
from coarse-graining will result in larger information loss than occurs in these
other systems.

In the context of human social systems, the adjacent possible is related to the
concept of affordances. Affordances are the attributes of an object or environ-
ment that allow an action to be performed [12]. Affordances are action possibil-
ities that humans perceive as, for example, the many potential uses of a screw
driver (e.g., turning a screw, opening a can, puncturing a tire). Affordances are in
many ways analogous to the process of biological evolution ‘discovering’ the func-
tion of attributes of organisms in the context of an organism’s environment. The
relationships between humans and their environment can thus lead to perceived
possibilities, actions, and cognition, and is dynamic, reciprocal, and contextual
[23]. While our discussion has focused on individuals and consciousness, human
social systems operate across hierarchical levels of structure. Social systems in-
clude individuals, small groups of people, more expansive social organizations
and institutions, and networks of organizations [22]. Each of these levels of social
organization contributes to the computational irreducibility of social systems,
but the sentience of individuals–and the inherit variability among individuals–is
the defining process that distinguishes human social systems from other purely
biological systems. The computational irreducibility that stems from sentience
is compounded by the interactions between and among the other components
of social systems. The agency of an individual person can affect higher levels of
social organization (e.g., through leadership and contagion of beliefs), but social
groups and organizations also impact the actions and identities of individuals.
These feedbacks and linkages between individuals and groups have likely been
made stronger and more fluid with the advent of social media, and are central to
understanding and predicting trajectories of human social systems. Lastly, the
role of culture in accumulating and transferring information among individuals
is a central feature of human social systems that is akin to information storage
in the genetic code in biological systems. Challenges. Designing algorithms for
essentially non-algorithmic problems has been problematic since the onslaught
of Turing-complete machines (e.g., [8]). In human social systems, the problem of
framing affordances has not yet been programmed. Whether it is programmable
or not is a question that is central to the field of computational complexity,
artificial intelligence and robotics. Agent based models (ABMs) have opened up
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new vistas of scientific discovery to simulate decision-making by heterogeneous
agents in artificial societies (e.g. [13]), but there are significant limits to the al-
gorithmic approach for simulating both creative decision making by intelligent
agents in rapidly shifting environments and social dynamics, a problem that was
even acknowledged by Turing [10]. Fundamental assumptions that are ingrained
in each algorithm about the behavioral rules, creative decision-making, learn-
ing, treatment of uncertainty and so forth, constrain the modeling of emergence,
self-organization and adaptation in complex social systems. Different types of
algorithms and Turing-complete machines such as agent based models, genetic
algorithms and artificial neural networks, have opened up new vistas for mod-
eling creative decision making in finite, discrete, computational steps (e.g., [17]
[16] [14]). Human social systems with heterogeneous agents with the capability
for creative decision making in rapidly shifting social environments may signifi-
cantly limit the potential for algorithms to model and predict the trajectory of
these systems. Our understanding of emergence, self-organization and adapta-
tion in complex systems populated by sentient agents that undertake creative
decision-making is limited by algorithms.

5 Conclusions

The limits to predictive capacity imposed by computational irreducibility is in-
creasingly important as we confront complex and interlinked problems that in-
corporate natural and human social systems. Predicting the trajectory of earth’s
climate system, for example, is an important but difficult problem because it
incorporates human social, biological, and physical systems. Computational ir-
reducibility is an inevitable feature of complex systems, but we argue that not all
forms of computational irreducibility are equivalent. The underlying processes
that lead to computational irreducibility and the potential for gains in predictive
capacity vary across physical, biological, and social systems. Physical systems
have the simplest kind of computational irreducibility, which we define as first
order computational irreducibility, in which neither the set of potential states
nor the rules for updating the states change as the system evolves. The potential
for system prediction is likely to be the greatest with first order computational
irreducibility but with the loss of information. Biological systems have a more in-
transigent computational irreducibility because the potential system states and
updating rules change as the system evolves. Functional contingency, biologi-
cal evolution, and individual variation are three underlying processes that lead
to this second order computational irreducibility of biological systems. Humans
perceive and create their own adjacent possible and this sentience leads to human
social systems being characterized by third order computational irreducibility.
The increasingly difficult forms of computational irreducibility across physical,
biological, and human social systems, and the low predictive capacity found in
these living systems is offset by their remarkably rich, diverse, and creative dy-
namics. Although we argue that ultimately, the evolution of the biosphere is
non-algorithmic, there is much to be learned in the pursuit of the frontier of
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first, second and third order computational irreducibility, and this will challenge
computational modelers to reach the outer limits of computational irreducibility.
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but it can and will benefit even more in the future, and the gains from
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The insights and techniques from Stephen Wolfram’s A New Kind of Science
[26]—namely that simple systems can generate complexity, that all complexity
is maximal complexity, and that the only general way of determining the full
effects of even simple systems is to simulate them–are perhaps most useful, and
least applied, in the field of finance.

The influence of NKS on the current state of finance depends on the par-
ticular area of finance being studied. In the area of market-based finance, a
unique minimal model of financial complexity has been discovered. In the area
of government-based finance, the same minimal model has been used to test
the effects of different regulatory regimes. Those are academic results; finance is
ultimately a practitioner’s field. From the perspective of practitioners, a result
linking computational efficiency and market efficiency has been found.

In short, finance has benefited from the NKS approach but it can and will
benefit even more in the future, and the gains from the influence may actually be
concentrated among practitioners who unintentionally employ those principles
as a group.

What is finance, anyway? It can be hard enough to pronounce, let alone define.
Should it be FIE-nance , or fih-NANCE? I’ve studied, researched, and practiced
in the field for most of my life, and I still don’t know how to pronounce it.
Fortunately, I’m not alone. Dictionaries list both as acceptable pronunciations.

Perhaps it depends on whether the word is used as a verb or a noun. After
some prodding, English American speakers will usually agree that the former is
the proper pronunciation for the verb form, as in when you FIE-nance a car, and
the latter for the noun form, as in when you protest the bailouts of companies
involved in high fih-NANCE. The British feel just as strongly that one form is
a verb and the other a noun—but the opposite ones.

The term originated from the French fin, marking the end of a contract
through the fulfillment of an obligation or debt. As such, finance has a noble

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 89–99.
DOI: 10.1007/978-3-642-35482-3_8 © Springer-Verlag Berlin Heidelberg 2013
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libertarian heritage. But it shares the same root as the unfortunately authorita-
tive English word “fine”, meaning a penalty payment to a government.

This pronunciation ambiguity is not just a curiosity. It is an omen and a symp-
tom of the deep divide in the study of finance between market-based approaches
and government-based approaches. And it turns out that this deep divide ex-
plains why in finance the NKS perspective is both so sorely needed and so often
neglected.

1 Market-Based Approaches

Markets resulting from voluntary trade tend to be complex phenomena. A typical
price chart shows wild swings, big jumps, bubbles, and crashes. These are even
more obvious when we look at the chart of returns instead of prices. (Recall that
the return from one day to the next is the percentage you would have earned if
you bought it one day and sold it on the next.)

1960 1980 2000
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S&P 500 Returns and Simulated Returns

Fig. 1. The dark dots are the actual daily returns of the Standard & Poor’s 500, the
most widely followed broad based U.S. market index. The light dots overlaid on top are
simulated returns from the Normal distribution having the same mean and standard
deviation as the actual returns. You can see that the blue dots vary wildly, much more
than could be expected from a Gaussian distribution. In addition, these periods of
higher volatility tend to cluster together. And finally, there is Black Monday, October
19, 1987, when the market fell by 20 percent.

As Wolfram has noted, most academic market-based approaches to explaining
or understanding these complexities essentially ignore the vast amount of seem-
ing randomness and focus on the few pockets of predictability. For example,
momentum, the idea that winners will keep winning and losers will keep losing,
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seems to be a persistent feature of many markets, and has been the subject of
thousands of scholarly papers after its first documentation by Jegadeesh and
Titman [3]. But the effect of momentum, while profitable, is still rather small
compared to the vast degree of randomness.

Virtually the only tools used for this standard strand of research are regression
analysis, attempting to explain individual security or portfolio returns through a
fixed number of factors, and portfolio construction, attempting to sort portfolios
into buckets based on some factors or indicators and explore the difference in
future performance between the highest and the lowest buckets.

In NKS, Wolfram explored the alternative approach of trying to model the
randomness directly rather than ignoring it. He proposed a one-dimensional
cellular automaton model where each cell represents an agent’s decision to buy
or sell, and the running totals of black cells can be used to infer a market price.
Jason Cawley has generalized this model in a Mathematica demonstration1.

In a sense, cellular automata models for financial prices are a subset of the
more general recent approach of agent-based modelling. Here, agent behavior is
programmed into several varieties, initial proportions of each are chosen, and
the interactions between those agents generates market transactions and prices.
Gilbert [2] offers a comprehensive introduction and treatment of this literature.
The Santa Fe Institute created an artificial stock market a few decades ago;
Ehrentreich [1] focuses on agent-based finance and specifically on the lessons of
this market. The ability to create multi-agent models has become even easier with
the introduction of specialized environments for such tasks such as NetLogo [9].

However, all such agent-based models, including Wolfram’s, rely on multiple
agents interacting and trading with each other, often with multiple securities
too. In the spirit of NKS, we should ask: could a single representative investor
trading a single security generate complexity?

This was exactly the question I asked during the NKS Summer School of 2007.
I realized that because there was no one for the lonely representative investor
to trade with, and no other assets for him to compare his to, he would have
to be a technical trader, someone who makes decisions based solely on the past
history of prices. Technical traders are also called chartists because they often
rely on graphical representations of past prices, such as when moving averages of
different lookback windows cross, or when the prices seem to form a recognizable
visual pattern. Indeed, given the recognition in NKS that our natural visual
ability was well-adapted to discerning complexity, it seemed reasonable to assume
that some of the skills of a technical trader could possibly result in complexity
in the price series directly.

Although technical traders can rely on any function of historical prices, a sim-
pler and yet still fully general approach would be to model a trader as evaluating
an arbitrary algorithm taking as input the previous prices, or price changes, or
even just the signs of those price changes, starting with the most recent first.

The primary benefit of the NKS Summer School is working one-on-one with
the author. Indeed, Wolfram suggested using an iterated finite automaton (c.f.

1 http://demonstrations.wolfram.com/TimeSeriesFromCellularAutomata/

http://demonstrations.wolfram.com/TimeSeriesFromCellularAutomata/
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Wolfram [11]) to model the internal algorithm of the trader. An iterated finite
automaton (IFA) takes one list of symbols and outputs another, and can have
internal states. It is thus a collection of rules of the form:

{state1,input} → {state2,output}
Trivially, no single-state IFA generates complexity. Among all of the 256 pos-

sible two-state IFAs, there turned out to essentially be only one unique trading
rule that generated some form of complexity. Using Wolfram’s IFA numbering
scheme, this was trading rule 54, depicted by the graphical network below.

UP � Sell

DOWN � Buy

UP � Buy

DOWN � Sell 12

Fig. 2. The boxes represent the two internal states of the trader’s rule. He starts every
day in state 1. He looks back at the n most recent price changes, starting with the
most recent, and follows the arrows until he reaches the nth-most recent one.

Suppose his lookback window is n = 3 days. If today is Thursday, then he
would have to look back at the market price change on Wednesday, Tuesday, and
Monday, in that order. Let’s say the market was down Wednesday. So he leaves
state 1 following the DOWN arrow, which leads him to state 2. That DOWN
arrow also outputs a Buy signal. This can be viewed as his current thinking on
what to do in the market, but it is not his final decision because he has not
looked at all of the past few days that he intended to.

Next he would need to look at Tuesday’s price change. Suppose it too was
down. Then he would follow the DOWN arrow out of his current state, state 2.
This arrow leads him back to state 2, and updates his current thinking to Sell.

Ultimately, his decision on whether to buy or sell will now depend on what the
price change on Monday was: if the market had been down, he would now sell,
and if it had been up, he would now buy. Whatever he does, the market follows,
because he is the representative investor. So if he were to Buy, no transactions
would actually take place, because he has no one to trade with, but the level of
the market would go up so he is now indifferent about buying more. The next
day, he starts the process all over again, starting with the most recent price
change, which happened to be up.

This rule 54 generates quite complex behavior, for virtually any lookback
window. The graphs below show the price processes for a variety of lookback
windows (See Fig. 3).

So it is true that the absolute simplest model of trading can indeed generate
complex price patterns, validating the key insights of NKS and finally answering



1 Market-Based Approaches 93

Lookback 5

�10

�8

�6

�4

�2

0

Lookback 6

�14
�12
�10
�8
�6
�4
�2

0

Lookback 7

�40

�30

�20

�10

0
Lookback 10

�60

�50

�40

�30

�20

�10

0
Lookback 11

�60

�40

�20

0
Lookback 12

�120

�100

�80

�60

�40

�20

0
Lookback 13

�120
�100
�80
�60
�40
�20

0

Lookback 14

�250

�200

�150

�100

�50

0
Lookback 15

�500

�400

�300

�200

�100

0

Lookback 18 Lookback 19 Lookback 20

Fig. 3. Notice how the prices jump down drastically before coming back up. Because
the prices are always deterministically calculated, they will eventually cycle, and could
in principle start anywhere along the cycle. Thus, the big jump down could occur later
in the cycle. Furthermore, the lookback window can be made larger so that the cycle
time is longer than the age of the universe: looking back just 22 ticks means the cycle
time is more than four million ticks.

a question that Wolfram had worked on for decades. With just a single trader
and a single asset, and only two internal states, there is essentially a unique rule
that generates complex security prices. This is the minimal model of financial
complexity (Maymin, [5]).

But how complex is the generated price series? We have seen above that real
markets suffer from many irregularities. Specifically, the stylized facts about
market returns relative to independently distributed Normal returns are that
real returns have higher kurtosis (fatter tails), negative skewness (more extreme
jumps down), and a rich panoply of autocorrelations (generating mean reversion
or momentum at different horizons).

By taking a lookback window of n = 22 and partitioning the up and down
ticks into buckets large enough to interpret their rolling sum as a daily return,
we can estimate the implied kurtosis, skewness, and correlations of the resulting
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price series. Surprisingly enough, it turns out that all of the troublesome stylized
facts of real markets occur in the generated price series as well!

Thus, the unique, simple, and minimal model of financial complexity, with no
parameters to tweak, serendipitously ends up explaining much of what we see in
real markets.

What does the rule do, exactly? Do such traders exist? In general, there need
be no easy description of a trading rule. But in this case, there happens to be a
very simple explanation. Notice that state 1 is an UP-absorbing state: any UP
day will bring the trader to state 1. Similarly, state 2 is a DOWN-absorbing state.
Thus, rule 54 ultimately merely compares the two earliest days of its lookback
window: if the price change n − 1 ticks ago were the same as the price n ticks
ago, then the investor would sell; if they were different, he would buy.

An alternative interpretation is that the representative investor look each tick
and compares it to the previous one. If they are the same, whether both up
or both down, he sells; if they are different, either up and then down or down
and then up, he buys. However, his order does not take effect immediately but
rather experiences a delay of n− 1 ticks. Put this way, such a trading rule can
be expressed as a combination of four commonplace rules: profit taking in bull
markets, momentum in bear markets, buying on dips, and buying on recoveries.

Naturally, the minimal model can be extended to multiple states, multiple
assets, and multiple traders, and complexity again emerges, with more variety
as well. But it is interesting that even the minimal model is able to fit actual
returns so well, and so much better than random walks or Brownian motions,
the standard assumptions of non-NKS-influenced finance.

Clearly, the NKS approach is useful in market-based finance. So why is it not
more frequently used in academic circles? The reason is selection bias.

The bane of academic financial research is selection bias. Selection bias in
data can falsely suggest that certain assets or industries had high expected re-
turns, only because those were the only ones who survived long enough to be
in the dataset. Selection bias may even be latent and quite subtle: one of the
longest puzzles in finance is the equity premium puzzle documented by Mehra
and Prescott [8] in 1985, noting that historical average returns have been far too
high to be explained by risk aversion, the standard explanatory tool of financial
economics. But we will never know if the selection bias of having had a booming
stock market for many decades is what allowed us the luxury of asking why have
our stock returns been so large.

But by far the biggest concern is selection bias of the models, also known as
data snooping. If we posit a model that is influenced by what we have seen, then
tests of the model are contaminated. At the extreme, you can always optimize
the parameters of any family of models to get the best possible fit, but you will
never know if you are not just overfitting noise.

Partially in an attempt to combat this problem, and partially because finance
is often viewed as a discipline of economics, academic literature in the area
is virtually required to motivate any analysis with detailed reasoning why the
model makes sense a priori. Of course, it is impossible to tell by reading a paper
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whether the model indeed was formulated prior to any observation of the data
or whether it was retrofit onto it later, or, less obviously, whether it was just
the lucky one of many models tested that happened to work. Academics rarely
(though not never) publish the results of failed models.

This attachment to motivation is the biggest hurdle to wider acceptance of the
useful tools and techniques of the NKS framework. Mining the computational fi-
nancial universe requires abandoning all preconceptions of what should or should
not work and instead trying hundreds, thousands, millions of possibilities to see
what does indeed work. By the Principle of Computational Irreducibility, the
motivation game can not work in general, and can even be a hindrance to the
truth. The NKS approach to market-based finance requires overcoming enor-
mous inertia to flip standard academic practice completely on its head.

That’s a tough row to hoe, but there have been some other inroads. Explic-
itly, Zenil and Delahaye [12] investigate the market as a rule-based system by
comparing the distributions of binary sequences from actual data with those re-
sulting from purely algorithmic means. On a more implicit level, many otherwise
standard-seeming financial results seem to be more willing to test literally all
possible strategies or combinations, reserving their motivation and justification
only to the form of the model. The tide may not have started to turn yet, but
the waves are starting to froth.

2 Government-Based Approaches

Markets resulting from government fiat tend to be simple price fixings. Even the
ostensibly more general price floors or ceilings end up being price fixings any-
way because otherwise the legislation is useless. So a time series of government-
controlled prices tend to look like a constant, experiencing nearly zero volatility...
until the government can no longer control the price and the pent-up volatility
explodes all at once. Imagine a currency peg about to break or the stock market
hitting an automatic circuit breaker curbing trading. When trading resumes, the
true price will likely be very different from the most recently reported price.

In exploring regulatory issues and their possible effects on markets, there
are two traditional approaches: theoretical and econometric. The theoretical ap-
proach solves for the equilibrium in a particular standard model and evaluates
how it changes under different regulatory regimes. The econometric approach
attempts to analyze past regulatory changes to isolate the effects of unantici-
pated regulatory changes. These two approaches sometimes agree and sometimes
disagree, and each has its own pitfalls.

A unifying way of viewing both approaches is to observe that they each effec-
tively assume a particular process for the evolution of market prices, and then
translate regulatory changes into different values for the particular parameters.
Theoretical models attempt to solve for what the new parameters will be while
the econometric models attempt to estimate them from the historical record.

There is a third way, the NKS way: one could use a rules-based approach with
regulatory overrides. Specifically, one could imagine the rule 54 trader wanting
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to sell the asset but being stopped by government forces intent on propping up
the market.

This is now a question of computational search. It is unclear ahead of time
what the effect will be. The best way to find out is to simulate it. In Maymin [4], I
did just that, and showed that regulation in general makes market price processes
appear to be more Normal and less complex (until, of course, the regulation can
no longer be afforded). Particular periods, however, could actually appear even
worse than the non-regulated version. Further, the results from pricking bubbles
and propping up crashes are not symmetrical: specifically, if regulations were to
prick apparent bubbles, then propping up apparent crashes makes no additional
difference (see Fig. 4).
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Fig. 4. The graphs show rolling moment estimates from these four different regulatory
regimes

An even more direct result can be found in Maymin and Lim [7] where we
compare regulations directly on a cellular automaton model. In the context of
environmental regulations, suppose each cell represents an entity that can choose
whether or not to pollute. And suppose the rule governing whether you pollute
or not depends entirely on what you and your neighbors did in the previous
instance. For concreteness, let’s say it is Wolfram rule 110, which he has shown
to be computational universal, or maximally complex (see Fig. 5).

With the NKS approach to regulation in general, both financial and otherwise,
we are able to see the effects of varying kinds of regulatory overrides on top of a
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Anarchy Noisy Libertarian Regulation

Fig. 5. Call anarchy the state of no overriding law, neither a priori regulation nor ex
post justice. Then the half of the people on the right hand side never pollute, while
those who occasionally pollute exhibit interesting, indeed maximal, complexity. Under
complete a priori regulation, no one would pollute ever, leading to zero complexity. But
under ex post albeit noisy justice in which with some probability those who polluted
last time will now be polluted on by those who had abstained, maximal complexity is
restored. Furthermore, even that half of the population that would not have polluted
under anarchy now does occasionally pollute. Bearing in mind that pollution is a cost
with associated benefits, and that some amount of pollution is likely to be optimal, we
can draw conclusions about which system accomplishes what we want.

simple system of otherwise static rules. I expect that for the government-based
strand of finance research, the NKS approach will eventually come to dominate
the field, as it represents the only way I can see of performing true experiments
on the possible effects of different proposed regulations.

3 Practitioners

While academics and regulators play a loud part in finance, the silent super-
majority are practitioners: traders, investors, and speculators who have a vested
interested in keeping quiet and keeping secrets. Practitioners do not care how to
pronounce the word “finance,” and they switch randomly from one to the other.
They represent by far the most important constituency. Can an NKS approach
help them too?

In one sense, they represent the heart of the NKS approach. Markets are
complex but by the Principle of Computational Equivalence they are no more
complex than other maximally complex things. Complex things can often be
modeled by simple rules. When even the simplest of rules constitute an astro-
nomical number of possibilities, the only possible approach, by the Principle of
Computational Irreducibility, is exhaustive or random search. Thus, together,
practitioners are essentially mapping and mining the financial computational
universe, even if they are doing so unintentionally and occasionally redundantly.

It turns out that this task of finding a profitable strategy in past prices is one
of the hardest computational problems on the planet. Indeed, I have shown that
this task is as hard as solving satisfiability or the traveling salesman problem. In
other words, markets will be efficient—that is, there will be no profitable trading
strategies based on past prices because they would have all been discovered and
exploited—only if all other difficult problems have also been solved.
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Surprisingly enough, I have also shown the converse: that if the markets hap-
pen to be efficient, then we can actually use those markets to solve the other
difficult problems. We can, in effect, “program” the market to solve general
computational problems.

Thus, market efficiency and computational efficiency turn out to be the same
thing. This paper, Maymin [6], sparked the creation of Algorithmic Finance, a
new journal and indeed a new field launched specifically to continue the insights
from merging computational efficiency and market efficiency. I am the managing
editor of the journal and Stephen Wolfram is on the advisory board. With this
journal, we hope to continue the journey of exploring NKS -inspired approaches
to the field of finance.

4 Conclusions

The insights from NKS are general, deep, and broad: simple rules can generate
complexity; beyond a small threshold, all complexity is maximal complexity; the
only way of evaluating even simple systems that generate complexity is to run
them and see. In finance, these insights are critical for understanding markets and
their evolution, particularly as trading moves ever closer to complete automation.

Both the journal Algorithmic Finance and the field of algorithmic finance
rely on these insights to grow. Applications as varied as high frequency finance
and automated trading, the heuristics of behavioral investors, news analytics,
statistical arbitrage, and dynamic portfolio management all reside at the inter-
section of computer science and finance, and could, and have, and will continue
to benefit from the tools of NKS.
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Abstract. Stephen Wolfram’s A New Kind of Science [26] should have
made a greater impact in economics—at least in its theorising and com-
putational modes—than it seems to have. There are those who sub-
scribe to varieties of agent-based modelling, who do refer to Wolfram’s
paradigms–a word I use with the utmost trepidation–whenever simu-
lational exercises within a framework of cellular automata is invoked
to make claims on complexity, emergence, holism, reduction and many
such ‘buzz words’. Very few of these exercises, and their practitioners,
seem to be aware of the deep mathematical–and even metamathematical–
underpinnings of Wolfram’s innovative concepts, particularly of compu-
tational equivalence and computational irreducibility in the works of
Turing and Ulam. Some threads of these foundational underpinnings are
woven together to form a possible tapestry for economic theorising and
modelling in computable modes.

Keywords: Computational equivalence, computational irreducibility,
computation universality.

1 A Preamble on the Origins of the Visions1

“From that point on [i.e., from January, 1982], Wolfram’s bibliography,
his list of scientific production, goes from no cellular automata at all to
100 per cent cellular automata. He decided that cellular automata can
do anything. From that moment on Stephen Wolfram became the Saint
Paul of cellular automata.”

Toffoli, in ([10], p. 238); italics added.

Even as we celebrate a decade of experiences and adventures with A New
Kind of Science2, we should bear in mind that the romantic seeds of the

� I am greatly indebted to my friend, Hector Zenil, for the kind invitation to contribute
to this important commemorative volume. One minor caveat should be added here.
I subscribe to the entirely sensible view of Chris Moore & Stephan Mertens that ‘old
fashioned topics, like formal languages and automata’ are better left out of discussions
at the frontiers of the theory of computation ([7], p. xvii).

1 I shall assume readers of this volume will have at least a nodding acquaintance
with the concepts of the Principle of Computational Equivalence, Computational
Irreducibility and the related notion of Algorithmic Incompressibility (cf., for example
[6], chapter 6).

2 Henceforth, referred to as NKS.

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 101–111.
DOI: 10.1007/978-3-642-35482-3_9 © Springer-Verlag Berlin Heidelberg 2013
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vision that became the core of NKS, computational irreducibility, were sown at
a quintessential private3 Island in the Sun in the Carribean, Moskito Island in
January, 1982, thirty years ago–and that this is also the year we commemorate
the Birth Centennial of Alan Turing, whose genius lies at the heart of Wolfram’s
sustained efforts at creating a new paradigm for scientific practice, particularly
from an inductive4 point of view.

It seems to me, as an economist who practices its formalisation in computable
and dynamical systems theory modes, that the Computational Irreducibility vi-
sion comes against the backdrop of an all permeating Complexity Vision of
economics. I am convinced that this is, proverbially, a case of placing the cart(s)
before the horse(s): it is computability and dynamical systems theory - and their
fertile interaction - that underpins the computational irreducibility vision which,
in turn, provides one kind of foundation5 for a complexity vision, particularly of
economics.

Emergence, order, self-organisation, turbulence, induction, evolution, critical-
ity, adaptive, non-linear, non-equilibrium are some of the words that characterise
the conceptual underpinnings of the ‘new’ sciences of complexity that seem to
pervade some of the frontiers in the natural, social and even the human sciences.
Not since the heyday of Cybernetics and the more recent brief-lived ebullience of
chaos applied to a theory of everything and by all and sundry, has a concept be-
come so prevalent and pervasive in almost all fields, from Physics to Economics,
from Biology to Sociology, from Computer Science to Philosophy as Complex-
ity seems to have become. An entire Institution, with high-powered scientists
in many of the above fields, including several Nobel Laureates from across the
disciplinary boundaries as key permanent or visiting members, has come into
existence with the specific purpose of promoting the Sciences of Complexity6.

3 Owned by Ed Fredkin who himself, with the Fredkin-Zuse Thesis which, put in
an ultra simple way, states that The Universe is a Computer, espouses a vision
that is embodied in NKS. Fredkin articulated this vision much later than he had
conceptualised it in his actual adherence to working with such a metaphor as his
guiding scientific, inductive, principle.

4 I do not want to emphasise Inductive at the expense of Abductive, especially by
contrasting the former exclusively as an alternative to Deductive. The mischief in-
dulged in by economists, particularly those advocating blind agent-based modelling
in economics and finance, claiming that their practice makes the case against formal
mathematics in its deductive underpinnings, enhancing the case for a ‘new mathe-
matics’ that is inductively based, shunts research towards pointless ends.

5 I have in mind, as another kind of foundation, the philosophy and epistemology that
came with the vision of the British Emergentists.

6 I am referring, of course, to the Santa Fe Institute, which, refreshingly, has thought it
prudent to have a permanent Economics division from the outset. But, on a sceptical
note, the almost untrammelled enthusiasm for a unified vision for all of the disciplines
has the danger, in my opinion, of making essentially moral, human and social sciences
like economics a handmaiden to the concepts and methods of the natural sciences
and, in this sense, we seem to be travelling along well trodden and mistaken paths
of the past. Vico’s famous dictum keeps coming back to haunt my mind: ‘Corsi e
ricorsi . . . ’ !
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I have found Duncan Foley’s excellent characterisation of the objects of study
by the ‘sciences of complexity’ in ([3], p.2) (italics added), extremely helpful in
providing a base from which to approach the study of a subject that is technically
demanding, conceptually multi-faceted and philosophically and epistemologically
highly inhomogeneous:

Complexity theory represents an ambitious effort to analyse the func-
tioning of highly organized but decentralized systems composed of very
large numbers of individual components. The basic processes of life, in-
volving the chemical interactions of thousands of proteins, the living cell,
which localizes and organizes these processes, the human brain in which
thousands of cells interact to maintain consciousness, ecological systems
arising from the interaction of thousands of species, the processes of
biological evolution from which new species emerges, and the capitalist
economy, which arises from the interaction of millions of human indi-
viduals, each of them already a complex entity, are leading examples.

It is one thing to observe similarities at a phenomenological and structural level.
It is quite another to claim that one ‘science’, with its own characteristic set of
methods, can encapsulate their study in a uniform way, thus providing rationale
for an interdisciplinary approach to all of them. Here again, I believe the elegant
attempt to go just below the surface similarities of phenomena and structure,
and define the conceptual and methodological underpinnings of this new ‘science’
in Foley (ibid), is most illuminating:

What these [highly organized but decentralized] systems share are a po-
tential to configure their component parts in an astronomically large
number of ways (they are complex ), constant change in response to en-
vironmental stimulus and their own development (they are adaptive),
a strong tendency to achieve recognizable, stable patterns in their
configuration (they are self-organising), and an avoidance of stable,
self-reproducing states (they are non-equilibrium systems). The task
complexity science sets itself is the exploration of the general prop-
erties of complex, adaptive, self-organizing, non-equilibrium
systems.
The methods of complex systems theory are highly empirical and induc-
tive. . . . A characteristic of these . . . complex systems is that their com-
ponents and rules of interactions are non-linear . . . . The computer
plays a critical role in this research, because it becomes impossi-
ble to say much directly about the dynamics of non-linear systems with
a large number of degrees of freedom using classical mathematical
analytical methods.
ibid, p.2; bold emphasis added.

Note, however, that the discourse is about potentials and tendencies and, there-
fore, in an economic context, but not only in it, there could be scope for design or
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policies. Moreover, the ‘avoidance of stable, self-reproducing states’ is an indict-
ment against mechanical growth theories, of a macroeconomic sort, with their
uninteresting, stable, attractors.

This is exactly where the notion of computational irreducibility, interpreted
in economic contexts as computation universality, especially within what I have
come to call Computable Economics7, plays an important role, both at the level
of individual behaviour and institutional design - or, both microeconomically
and macroeconomically. In the former case, i.e., microeconomically, at the level
of individual behaviour, the notion allows one to show that the much maligned
Simonian concept of Bounded Rationality encapsulates, naturally and generally,
the normal practice of rational behaviour; in the latter case, i.e., macroeconom-
ically, it allows one to derive an impossibility theorem on policy.

One final cautionary note has to be added, lest the unwary practitioner of
indiscriminate reliance on ‘pattern recognition’ of computer graphics is lulled
into thinking that the pixels on the screen are independent of the mathematics
of the computer—i.e., recursion theory. It is necessary to remember the following
classical result from recursion theory:

Letϕ and ζ be a partial and a total function, respectively. Then:

• ϕ is partial recursive iff its graph is recursively enumerable.
• ζ is recursive iff its graph is recursive.

This kind of result is alien to the practitioners of varieties of agent-based mod-
elling, who seem to rely on blind computer graphics for significant inductive
propositions. Stephen Wolfram never made such a mistake—nor did, naturally,
Turing!

2 Computational Irreducibility as Computation
Universality, Implied by the Principle of Computational
Equivalence

“And what the Principle of Computational Equivalence implies is that
in fact almost any system whose behaviour is not obviously simple will
tend to exhibit computational irreducibility.”
NKS ([26], p. 745); italics added.

I have, within the framework of Computable Economics, attempted to formalise
the notion of computation universality, as against computationally irreducible, in
terms of the computing trajectories of finite automatons and Turing Machines,
respectively, with the formalisation of the notion of trajectories in terms of for-
mal dynamical systems. Moreover, my definition of the dynamics of a complex
economic system as one capable of computation universality was, I realised with

7 A brief, but rigorously intuitive–in the senses in which the Church-Turing Thesis can
be referred to in this way–characterisation of what I mean by Computable Economics
can be gleaned from [4]. A more detailed, but already dated, characterisation is in [11].



2 Computational Irreducibility as Computation Universality 105

the benefit of hindsight, exactly similar to a ‘system whose behaviour is not
obviously simple’ and, therefore, one which ‘will tend to exhibit computational
irreducibility’. What I have claimed, explicitly, is an equivalence between the
notion of complex and not obviously simple. I go further and assert that it is not
possible to prove–by means of any notion of proof–a formal equivalence between
the notion of complex and the phrase not obviously simple–except, for example,
by means of invoking something like computationally reducible and enunciating
a thesis that simple is equivalent to reducible8. It was, then, straightforward to
identify the behaviour of a finite automaton with one that is computationally
reducible, for example one that is not subject to the Halting problem for Turing
Machines or, more pertinently, one that is only capable of trivial dynamics, with
the notion of ‘trivial’ given a formalism via Rice’s Theorem. In this way simplic-
ity, reducibility and triviality can be coupled to the computing dynamics of finite
automata and complexity, irreducibility and non-triviality to those trajectories
that are routine for a Turing Machine.

Finally, Wolfram’s characteristically fertile assumption, one which I have come
to call Wolfram’s Thesis ([26], p. 715)

Claim 1. All processes can be viewed as computations

I claim that this is a kind of ‘dual’ to the following variant of the Church-Turing
Thesis (cf. [1], p. 34):

Claim 2. Every rule is a recursive rule

With this conceptual background at hand, I can illustrate the derivation of two
fundamental results in microeconomics and macroeconomics–one on the notion
of rational behaviour and the other on the feasibility of effective policy in a
complex (dynamic) economy.

Definition 3. Invariant set
A set (usually compact) S � U is invariant under the flow ϕ(., .) whenever

∀t ∈ R, ϕ(., .) � S.

Definition 4. Attracting set
A closed invariant set A � U is referred to as the attracting set of the flow

ϕ(t, x) if ∃ some neighbourhood V of A, s.t ∀x ∈ V & ∀t ≥ 0, ϕ(t, x) ∈ V and:

ϕ(t, x)→ A as t→∞ (1)

Remark 5. It is important to remember that in dynamical systems theory con-
texts the attracting sets are considered the observable states of the dynamical
system and its flow.

8 Or the notion of simplicity to be formally identified with reducibility in a computa-
tional sense. I am convinced that this corresponds exactly to the way Kemeny used
the notion of simplicity in induction in his classic contribution which lies at the basis
of algorithmic complexity ([5];[6]).
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Definition 6. The basin of attraction of the attracting set A of a flow, denoted,
say, by ΘA, is defined to be the following set:

ΘA = ∪t≤0ϕt(V ) (2)

where: ϕt(.) denotes the flow ϕ(., .), ∀t.

Remark 7. Intuitively, the basin of attraction of a flow is the set of initial
conditions that eventually leads to its attracting set - i.e., to its limit set (limit
points, limit cycles, strange attractors, etc).

Definition 8. Dynamical Systems capable of Computation Universality
A dynamical system capable of computation universality is one whose defining

initial conditions can be used to program and simulate the actions of any arbitrary
Turing Machine, in particular that of a Universal Turing Machine.

Proposition 9. Dynamical systems characterizable in terms of limit points,
limit cycles or ‘chaotic’ attractors, called ‘elementary attractors’, are not ca-
pable of universal computation.

Theorem 10. There is no effective procedure to decide whether a given observ-
able trajectory is in the basin of attraction of a dynamical system capable of
computation universality

Proof. The first step in the proof is to show that the basin of attraction of a
dynamical system capable of universal computation is recursively enumerable
but not recursive. The second step, then, is to apply Rice’s theorem to the prob-
lem of membership decidability in such a set. First of all, note that the basin of
attraction of a dynamical system capable of universal computation is recursively
enumerable. This is so since trajectories belonging to such a dynamical system
can be effectively listed simply by trying out, systematically, sets of appropriate
initial conditions. On the other hand, such a basin of attraction is not recursive.
For, suppose a basin of attraction of a dynamical system capable of universal
computation is recursive. Then, given arbitrary initial conditions, the Turing Ma-
chine corresponding to the dynamical system capable of universal computation
would be able to answer whether (or not) it will halt at the particular con-
figuration characterising the relevant observed trajectory. This contradicts the
unsolvability of the Halting problem for Turing Machines. Therefore, by Rice’s
theorem, there is no effective procedure to decided whether any given arbitrary
observed trajectory is in the basin of attraction of such recursively enumerable
but not recursive basin of attraction.

Given this result, it is clear that an effective theory of policy is impossible in a
complex economy. Obviously, if it is effectively undecidable to determine whether
an observable trajectory lies in the basin of attraction of a dynamical system
capable of computation universality, it is also impossible to devise a policy—i.e.,
a recursive rule—as a function of the defining coordinates of such an observed or
observable trajectory. Just for the record I shall state it as a formal proposition:
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Proposition 11. An effective theory of policy is impossible for a complex econ-
omy

Remark 12. The ‘impossibility’ must be understood in the context of effectivity
and that it does not mean specific policies cannot be devised for individual com-
plex economies. This is similar to the fact that non-existence of general purpose
algorithms for solving arbitrary Diophantine equations does not mean specific al-
gorithms cannot and have not been found for special, particular, such equations.

What if the realized trajectory lies outside the basin of attraction of a dynamical
system capable of computation universality and the objective of policy is to drive
the system to such a basin of attraction? This means the policy maker is trying
to design a dynamical system capable of computational universality with initial
conditions pertaining to one that does not have that capability. Or, equivalently,
an attempt is being made, by the policy maker, to devise a method by which
to make a Finite Automaton construct a Turing Machine, an impossibility. In
other words, an attempt is being made endogenously to construct a ‘complex
economy’ from a ‘non-complex economy’. Much of this effort is, perhaps, what is
called ‘development economics’ or ‘transition economics’. Essentially, my claim
is that it is recursively impossible to construct a system capable of computation
universality using only the defining characteristics of a Finite Automaton. To put
it more picturesquely, a non-algorithmic step must be taken to go from systems
incapable of self-organisation to ones that are capable of it. This interpretation is
entirely consistent with the original definition, explicitly stated, of an ‘emergent
property’ or an ‘emergent phenomenon’, by George Henry Lewes. This is why
‘development’ and ‘transition’ are difficult issues to theorise about, especially for
policy purposes.

Next, consider a (rational) problem solving entity to be an information pro-
cessing system ([8]). The strategy for my formalization exercise can be summa-
rized in the following sequence of steps:

• Extract the procedural content of orthodox rational choices (in theory).
• Formalize such a procedural content as a process of computation.
• Given the formalized procedural content as a process of computation, to be
able to discuss its computational complexity.
• Show the equivalence between a process of computation and a suitable dy-
namical system.
• To, then, show the possibility of non-maximum rational choice.
• Then, to show that such behaviour is that which is manifested by a bound-
edly rational, satisficing, agent.

The following results encapsulates, formally, the content of the first three steps
of the above six-step scheme:

Theorem 13. The process of rational choice by an economic agent is formally
equivalent to the computing activity of a suitably programmed (Universal) Turing
machine.
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Proof. By construction. See §3.2, pp. 29-36, [11].

Remark 14. The important caveat is ‘process’ of rational choice, which Simon–
more than anyone else–tirelessly emphasized by characterizing the difference be-
tween ‘procedural’ and ‘substantive’ rationality; the latter being the defining basis
for Olympian rationality (cf. [9], chapter 1), the former that of the computation-
ally underpinned problem solver facing decision problems. Any decision–rational
or not–has a time dimension and, hence, a content in terms of some process.
In the Olympian model the ‘process’ aspect is submerged and dominated by the
static optimization operator, By transforming the agent into a problem solver,
constrained by computational formalisms to determine a decision problem, Si-
mon was able to extract the procedural content in any rational choice. The above
result is a summary of such an approach.

Theorem 15. Only dynamical systems capable of computation universality are
consistent with rationality in the sense that economists use that term in the
Olympian Model.

Proof. See pp. 49-50, [11].

Remark 16. This result, and its proof, depend on theorem 13 and, therefore, its
background basis, as explained in the Remark following it, given above. In this
way, following the Simon’s vision and the definition of rationality is divorced from
optimization and coupled to the decision problems of an information processing
problem solver, emphasizing the procedural acts of choice.

Theorem 17. Non-Maximum Rational Choice

No trajectory of a dynamical system capable of universal computation can, in
any ‘useful sense’ (read: ‘cannot obviously’) be related to optimization in
the Olympian model of rationality.

Proof. See [13].

Remark 18. The claim here is, then, that optimization in the Olympican model
of rationality is computationally reducible.

Theorem 19. Boundedly rational choice by an information processing agent
within the framework of a decision problem is capable of computation
universality.

Proof. An immediate consequence of the definitions and theorems of this
section.

Remark 20. From this result, in particular, it is clear that the Boundedly Ra-
tional Agent, satisficing in the context of a decision problem, encapsulates the
only notion of rationality that can ‘in any useful sense’ be defined procedurally.
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3 A Computable Economist’s Paen to the NKS Vision9

“Mathematics is not a finished object based on some axioms. It evolves
genetically. This has not yet quite come to conscious realization. ...

Mathematics will change. Instead of precise theorems, of which there
are now millions, we will have, fifty years from now, general theories
and vague guidelines, and the individual proofs will be worked out by
graduate students or by computers.

Mathematicians fool themselves when they think that the purpose of
mathematics is to prove theorems, without regard to the broader impact
of mathematical results. Isn’t it strange.

In the next fifty years there will be, if not axioms, at least agreements
among mathematicians about assumptions of new freedoms of construc-
tions, of thoughts. Given an undecidable proposition, there will be a
preference as to whether one should assume it to be true or false. It-
erated this becomes: some statements may be undecidably undecidable.
This has great philosophical interest

Ulam in ([2], pp.310-312); italics added.

Ulam was always a prescient mathematician. In an almost uncanny confirmation
of his audacious prediction, Stephen Wolfram’s NKS seems to have set out an
implementable version of the vision of the kind of mathematics—but not quite
science—that Ulam may have had in mind. It is particularly appropriate that
Wolfram achieved this implementable vision of Ulam’s vision of A New Kind
of Mathematics utilising Cellular Automata as his computational paradigm–
especially since it was Ulam, together with von Neumann, who pioneered the
use of this medium for the kind of questions that are fundamental in the new
sciences of complexity. Indeed, Wolfram’s explicit philosophical and epistemo-
logical stances on the nature and evolution of mathematics buttresses my own
vision of the mathematical foundations of Computable Economics:

“[L]ike most other fields of human enquiry mathematics has tended
to define itself to be concerned with just those questions that its methods
can successfully address. And since the main methods traditionally used
in mathematics have revolved around doing proofs, questions that involve
undecidability and unprovability have inevitably been avoided. ...

The main point .... is that in both the systems it studies and the
questions it asks mathematics is much more a product of its history
than is realised.”

NKS ([26] p. 792); italics added

It is precisely these questions that have not been avoided in Computable
Economics and precisely because, inadvertently, those of us who were busy

9 The paen of this section is a slightly modified version of an initial attempt to pay
homage to NKS, in [12].
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developing this alternative vision of doing economics in the mathematical mode
underpinned our methodologies and epistemologies in what, with hindsight,
could be identified with the Principle of Computational Equivalence (PCE),
the notion of computational irreducibility and Wolfram’s Thesis–albeit in other,
but equivalent, formalisms.

If economics is formalised using traditional mathematics, it will be crippled
by the poverty of the history that determines that tradition–but it may also
be enhanced by the richness of that tradition. It is just that the richness seems
an entirely internal history, completely unrelated to the ontology of economics.
This, I think, is the point made by Ulam and Wolfram in their indictments of
the traditional philosophy and epistemology of mathematics and science, respec-
tively. Economics in the mathematical mode, a step child and a handmaiden to
both of these endeavours, in applying the concepts and methods emerging (sic!)
from their traditional evolutionary history, would therefore by crippled to the
same extent as these noble products of the human mind.

Essentially, computational irreducibility of a computational process, by PCE
and Wolfram’s Thesis, implies also unpredictability10. Wolfram is then able to
show that traditional science is computationally reducible and, hence, can suc-
ceed in local predictability. This, in turn, is because the mathematical laws that
encapsulate traditional science are simple enough to be analytically tractable
and, hence, are computationally reducible.

In other words, he extracts the implicit processes intrinsic to, and implied by,
any mathematical law or formalism in traditional science, and uses the PCE,
and its phenomenological consequence–computational irreducibility–to evaluate
their effective and predictable content to show the simplistic, unrealistic and
undesirable nature of mathematical formalism in the traditional sciences.

I believe NKS succeeded admirably in showing that the appearance of the
successes of traditional science, using the criteria of simplicity in the laws that en-
capsulate the phenomena to be explained and the predictions that are extracted
from them, are the results of a subterfuge: that of concentrating on using analyt-
ically solvable mathematical formalisms to encapsulate natural laws and thereby
ignoring the processes that have to be used to evaluate the solution to any such
formalism. In this way, the methodology of traditional science circumvented the
implications of computational irreducibility and, hence, ignored PCE.

But he may have forgotten that Brouwer could have also been, together with
Ulam, a compatriot–with his Choice Sequences, which enriching PCE and com-
putational irreducibility in ways that would have enhanced the positive aspects
of his negative results.

All this could have been said, pari passu, of the achievements - or, more ac-
curately put, the non-achievements–of traditional mathematical and analytical
economics.

10 To the triptych of undecidability, unprovability and unpredictability must be added
unsolvability and uncomputability as the five cardinal unifying conceptual bases that
underpin Computable Economics (cf. [4]).
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Computational Technosphere and Cellular
Engineering

Mark Burgin

Department of Mathematics, University of California, USA

Abstract. The basic engineering problem is to build useful systems
from given materials and with given tools. Here we explore this prob-
lem in the computational technosphere of computers, smartphones,
networks and other information processing and communication devices
created by people. The emphasis is on construction of different kinds of
information processing automata by means of cellular automata. We call
this engineering problem cellular engineering. Various types and levels of
computing systems and models are considered in the context of cellular
engineering.

Keywords: cellular automaton, computational equivalence, engineer-
ing, modeling, construction, model of computation, grid automaton.

1 Introduction

Stephen Wolfram [11] suggested the Principle of Computational Equivalence,
which asserts that systems found in the natural world can perform computations
up to a maximal (“universal”) level of computational power, and that most sys-
tems do in fact attain this maximal level of computational power. Consequently,
most systems performing recursive computations are computationally equivalent
in general and equivalent to cellular automata in particular. Here we consider a
technological counterpart of this Principle, which is related not to nature but to
the technosphere created by people. The technosphere is the world of all techni-
cal devices. In it, computers and other information processing systems play the
leading role. Taking all these devices, we obtain the computational technosphere,
which is an important part of the technosphere as a whole. The computational
technosphere has its own Principle of Computational Equivalence. It is called the
Church-Turing Thesis. There are different versions of this Thesis. In its original
form, it states that the informal notion of algorithm is equivalent to the concept
of a Turing machine (the Turing’s version) or that any computable function is
a partial recursive function (the Church’s version). The domineering opinion is
that the Thesis is true as it has been supported by numerous arguments and
examples. As a result, the Church-Turing Thesis has become the central pillar
of computer science and implicitly one of the cornerstones of mathematics as
it separates provable propositions from those that are not provable. In spite of

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 113–124.
DOI: 10.1007/978-3-642-35482-3_10 © Springer-Verlag Berlin Heidelberg 2013
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all supportive evidence and its usefulness for proving various theoretical results
in computer science and mathematics, different researchers, at first, expressed
negative opinion with respect to validity of the Church-Turing Thesis, and then
build more powerful models of algorithms and computations, which disproved
this Thesis. It is possible to find the history of these explorations in [6]. Here we
go beyond the computational technosphere, suggesting the Technological Prin-
ciple of Computational Equivalence for the whole technosphere. It asserts:

For any technical system, there is an equivalent cellular automaton.

This principle also has a constructive form:

For any technical system, it is possible to build (find) an equivalent cellular
automaton.

Here we consider only the computational form of the Technological Principle of
Computational Equivalence. It is expressed as the Computational Principle of
Technological Equivalence:

For any information processing system, it is possible to build (find) an
equivalent cellular automaton.

Note that in this Principle cellular automata are not restricted to classical cel-
lular automata. There are much more powerful cellular automata. For instance,
inductive cellular automata can solve much more problems than classical cellu-
lar automata or Turing machines. Building technical systems is an engineering
problem. That is why in Section 2, we discuss computational engineering, which
is rooted in the work of von Neumann who used a special kind of computational
engineering, or more exactly, cellular engineering, for building self reproducing
automata [28]. He also demonstrated that construction of complex systems using
cellular automata allows one to essentially increase reliability of these systems.
However, to be able to rigorously demonstrate validity of the Computational
Principle of Technological Equivalence, as well as of the Technological Princi-
ple of Computational Equivalence and Wolfram’s Principle of Computational
Equivalence, it is necessary to ascribe exact meaning to terms used in these
principles. That is why in Section 3, we introduce and analyze different types
of computational and system equivalence. In Section 4, we demonstrate possi-
bilities of cellular engineering in modeling and construction, giving supporting
evidence for the Computational Principle of Technological Equivalence. Some of
these results were obtained in [7], while other results are new.

2 Computational Engineering

It is possible to describe an engineering problem in the following way. Given
working materials and tools for operation, build/construct a system (object)
that satisfies given conditions. Here we consider a specification of such a problem
for computational (information processing) systems. Thus, we have the following
initial conditions:
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• A class K of computational (information processing) automata is given.
• A class H of computational (information processing) automata is provided.
• A set A of composition operations is made available.
• A type φ of automata equivalence is offered.

Task 1: For any automaton H from H, construct an automaton K from K by
means of operations from A, such that K is φ-equivalent to H.

Task 2: For any automaton H from H, construct an automaton A φ-equivalent
to H using operations from A and automata from K as the building material
for operations from A.

Note that in the second case, the automaton A does not necessarily belong to
the class K.

The area where such problems are solved is computational engineering. When
the class K consists of cellular automata, i.e., we construct using cellular au-
tomata as the construction media, the construction problem is in the scope of
cellular engineering introduced and studied in [7]. Another basic problem of
cellular engineering is construction of different automata, such as pushdown au-
tomata, Turing machines and others, using cellular automata as building bricks,
blocks and modules. In this case, the result of construction is a grid automaton
[6] in a general case and only in some cases it can be a cellular automaton, which
is a particular case of grid automata.

Note that there is one more type of computational engineering problems. In
it, we have the following initial conditions:

• A class K of computational (information processing) automata is given.
• A set A of composition operations is made available.
• A goal σ is offered.

Task 3: Using operations from A and automata from K as the building material
for operations from A, construct an automaton A that allows one to achieve the
goal σ. Usually such a goal σ represents realization of certain functions and
satisfaction of selected conditions.

There are three main types of cellular engineering:

• Process cellular engineering is aimed at building a cellular automaton to
reproduce, organize, model or simulate some process.
• Function cellular engineering is aimed at building a cellular automaton to
reproduce, organize, model or simulate some function.
• System cellular engineering is aimed at building a cellular automaton to
reproduce or model some system with its subsystems, components and ele-
ments.

Traditional engineering problems for cellular automata are mostly related to
process cellular organization or reproduction, that is, how to get a process with
necessary characteristics in a cellular automaton. Only sometimes functions are
modeled like when cellular automata are used to model functioning of a Turing
machine. System cellular engineering reproduces (models) a system with some
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level of detailing. For instance, it is possible to represent a system at the level
of its elements or at the level of its components.

The area of cellular automata can be divided into three big subareas: CA
science, CA computation, and CA engineering. CA science studies properties
of cellular automata and particular, their dynamics or how they function. CA
computation uses cellular automata for computation, simulation, optimization,
and generation of evolving processes. CA engineering is aimed at constructing
different devices from cellular automata. All three areas are complementary to
one another.

Ideas similar to the concept of cellular engineering were also discussed by
Deutsch in the form of constructor theory and verifiable metaphysics [10].

Cellular automata are the simplest uniform models of distributed compu-
tations and concurrent processes. Grid automata are the most advanced and
powerful models of distributed computations and concurrent processes, which
synthesize different approaches to modeling and simulation of such processes
[4, 6].

Informally a grid automaton is a system of automata, which are situated in a
grid and called nodes. Some of these automata are connected and interact with
one another. It is possible to find formal definitions and elements of the theory
of grid automata in [4, 6].

Cellular automata are special cases of grid automata although, in general,
grid automata are non-uniform. Our goal is not to substitute cellular automata
by grid automata, but to use cellular automata as the basic level for building
hierarchies of grid automata. The reason for doing this is to reduce complexity of
the description of the system and its processes. For instance, computer hardware
has several levels of hierarchy: from the lowest logic gate level to the highest level
of functional units, such as system memory, CPU, keyboard, monitor, printer,
etc. In addition, as Clark writes (cf. [15]), all good computer scientists worship
the god of modularity, since modularity brings many benefits, including the all-
powerful benefit of not having to understand all parts of a problem at the same
time in order to solve it. That is why one more goal of this paper is to introduce
modularity into the realm of cellular automata, making possible to get better
understanding and more flexible construction tools without going into detailed
exposition of the lower levels of systems. As a result, we develop a computing
hierarchy based on cellular automata.

Cellular engineering is an approach complimentary to evolutionary simula-
tion and optimization. Evolutionary simulation is aimed at modeling complex
behavior by simple systems, such as cellular automata. Evolutionary optimiza-
tion is aimed at improving systems by simple means of automata, such as cellular
automata, which imitate natural evolutionary processes. Cellular engineering is
aimed at constructing complex systems using simple systems, such as cellular au-
tomata. In evolutionary processes, systems are evolving subject to definite rules.
In engineering, systems are purposefully constructed according to a designed
plan.
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3 Types of System Equivalence, Modeling and
Construction

When researchers discuss equivalence of different models of computation, they
are, as a rule, dealing only with one type of equivalence - functional equivalence.
The reason is that initially computation performed only computation of func-
tions. Later with an advent of electronic computers, computation enormously
expanded its domain but the initial imprinting continues to influence computer
science.

At the same time, there is a variety of different types and kinds of equiva-
lence between computational models, automata, software systems, information
processing systems and computer hardware. We consider only some of them:

1. Functional equivalence.
2. Linguistic equivalence.
3. Computational equivalence.
4. Structural equivalence.
5. Complexity functional equivalence.
6. Local functional equivalence.
7. Operational or process equivalence.
8. Local operational equivalence.

Let us consider definitions of these types. Two classes of algorithms/automata
are functionally equivalent if they compute the same class of functions. Two
classes of algorithms/automata are linguistically equivalent if they compute the
same class of languages. Two classes of algorithms/automata are computation-
ally equivalent if what is possible to compute in one class it is also possible to
compute in the other class. Two classes of algorithms/automata are operationally
or processually equivalent if they generate the same class of computational pro-
cesses. Two classes of algorithms/automata are locally operationally equivalent
if they can perform the same class of computational operations. Two classes
of algorithms/automata are functionally equivalent with respect to complexity if
they compute the same class of functions with the same complexity. Two classes
of algorithms/automata are functionally equivalent with respect to completion if
they compute the same class of functions with the same (level of) complexity.
All these definitions describe direct types of equivalence. At the same time, there
are more advanced but also useful transcribed types of equivalence. Transcribed
equivalence includes coding and decoding. For instance, an automaton or a soft-
ware system B is functionally equivalent with transcription to an automaton or
a software system A if there are two automata (software systems) C, D, F and
G such that for any input X to A, we have A(X) = D(B(C(X))) and for any
input Y to B, we have B(Y) = G(B(F(X))). In these processes, C and F are
coders of information, while D and G are decoders of information. Functional
and processual types of equivalence bring us to the concept of modeling.

Definition 1. It is possible to model an abstract automaton A by a cellular
automaton C if there is a configuration W of cells from A and a system R
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of states of cells from W such that after initializing these states, the cellular
automaton C works as the automaton A.

This modeling relation is related either to process cellular engineering or to
function cellular engineering. It is necessary to remark that modeling relation
plays an important role not only in information processing systems or other
technical systems but also in all life processes and living systems [16, 12]. In some
cases, individual cellular engineering allow us to perform cellular engineering for
classes of automata.

Definition 2. It is possible to model a model M of computation in a class C of
cellular automata if it is possible to model any automaton A from M by some
cellular automaton C from C.

There are different types of modeling.

Definition 3. An abstract automaton A is called programmable in a cellular
automaton C if there is a configuration W of cells from A and a system R
of states of cells from W such that after initializing these states, the cellular
automaton C works as the automaton A, that is, with the same input, C gives
the same result as A.
This is a function cellular engineering. It is defined by the functional equivalence.

We remind [9] that there are two kinds of functional modeling: direct and
transcribed. Direct functional modeling of an automaton or a software system A
by an automaton or a software system B means that given any input X to A, it
either does give any result or gives the same result as the automaton (software
system) B with the same input.

Transcribed functional modeling includes coding and decoding [9]. Namely, an
automaton or a software system B allows transcribed functional modeling of an
automaton or a software system A if there are two automata (software systems)
C and D such that for any input X to A, we have A(X) = D(B(C(X))). In this
process, C is the coder of information, while D is the decoder of information.
The process of transcribed functional modeling is described by the diagram in
Fig. 1.

As in a general case, we can realize function cellular engineering for classes of
automata.

Fig. 1. The process of transcribed functional modeling
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Definition 4. A model of computation M is called programmable in a class C of
cellular automata if any automaton A from M is programmable in some cellular
automaton C from C.

Definition 5. An abstract automaton A is called constructible in a cellular
automaton C if there is a configuration W of cells from A and a system R
of states of cells from W such that after initializing these states, the cellular
automaton C works as the automaton A. and to each structural component D
of A some part B of the automaton C is corresponded in such a way that B
works as D.

This gives us the construction relation related to system cellular engineering. It
is defined by the structural equivalence.

Note that both modeling relation “A models B” and construction relation “A
is constructed in B” are special cases of the fundamental triad [5].

Definition 6. A model of computation M is called constructible in a class C of
cellular automata if any automaton A from M is constructible in some cellular
automaton C from C.

To construct definite devices, we need elements from which we construct and
algorithms how to do this. There are three main element types (in information
typology), which correspond to the three main types of information operations
described in [3]:

• Computational elements or transformers.
• Transaction elements or transmitters.
• Storage elements or memory cells.

There are three element types (in dynamic typology), which correspond to their
dynamic:

• Elements with a fixed structure.
• Reconfigurable elements.
• Switching elements.

Elements with a fixed structure have the same structure during the whole process.
Reconfigurable elements can change their structure during the process. Switching
elements tentatively change their structure in each operation. There are three
element types of memory cells: read-only cells, write-only cells, and two-way cells,
which allow both reading and writing.

4 Construction of Information Processing Systems with
Cellular Automata

Let us consider a model of computation M that has a universal automaton U.
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Theorem 1. A model of computation M is programmable in a class C of
cellular automata if and only if a universal automaton U is programmable in
some cellular automaton C from M.

Note that here the transcribed equivalence is used because usually universal
automata, e.g., universal Turing machines, model other automata from the
same class, e.g., other Turing machines, only with transcription [6].

Corollary 1. A model of computation M is programmable in a cellular
automaton C if the automaton U is programmable in C.

For illustration, we give here a well-known result in the theory of cellular
automata.

Theorem 2. The class T of all Turing machines is programmable in the class
C1 of one-dimensional cellular automata.

Lemma 1. If a class A of automata is programmable in a class C of automata
and a class C of automata is programmable in a class B of automata, then the
class A is programmable in the class B.

It is known (cf., for example, [6]) that any class of recursive algorithms, such as
partial recursive functions, random access machines (RAM) or Minsky machines,
as well as any class of subrecursive algorithms, such as recursive functions,
pushdown automata or context free grammars, is programmable in the class T of
all Turing machines. Thus, Lemma 1 and Theorem 2 give us the following result.

Theorem 3. Any class of recursive algorithms (any class of subrecursive al-
gorithms) is programmable in the class C1 of one-dimensional cellular automata.

Corollary 2. An arbitrary pushdown automaton is constructible in the class
C2 of two-dimensional cellular automata.

Building a two-dimensional cellular automaton CA from multilevel finite
automata [7], it is possible to prove the following result.

Theorem 4. A two-dimensional cellular automaton can realize any finite grid
of connections between nodes in a grid automaton G.

To realize all these types of elements in cellular automata, multilevel finite
automata described in [7] are used.

Corollary 3. If all nodes in a finite grid automaton G have a finite number
of ports and are programmable (constructible) in one-dimensional cellular
automata, then the automaton G is programmable (respectively, constructible)
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in a two-dimensional cellular automaton. Note that not any finite configuration
is a finite automaton. For instance, at each step, a Turing machine is a finite
configuration but it’s not a finite automaton. Another example is when a node
in a grid automaton can be an automaton that works with real numbers.

It is also possible to construct Turing machines in cellular automata.

Theorem 5. An arbitrary Turing machine with a one-dimensional tape is
constructible in the class C1 of one-dimensional cellular automata.

To prove this theorem, finite automata with inner structure are used.
Note that it is not the standard result that one-dimensional cellular automata

can emulate a one-dimensional Turing machine. The standard result tells that
an arbitrary Turing machine is programmable in the class C1 of one-dimensional
cellular automata. Theorem 5 establishes that an arbitrary Turing machine is
constructible in the class C1 . Constructability implies programmability but the
converse is not true. For instance, any Turing machine with a two-dimensional
tape is programmable in the class of Turing machines with a one-dimensional
tape, but it is not constructible in this class.

As the class T has universal Turing machines, Theorems 1 and 5 imply the
following result.

Corollary 4. The class T of all Turing machines with a one-dimensional tape
is constructible in the class C1 of one-dimensional cellular automata.

Global Turing machines or Internet machines introduced in [17] form a natural
class of grid automata. An Internet machine is a finite grid automaton in which
all nodes are Turing machines. Theorems 4 and 5 imply the following result.

Corollary 5. An Internet machine IM is constructible in the class CA of
cellular automata. This implies the following result.

Corollary 6. The class IM of all Internet machines is constructible in the class
CA of cellular automata.

Corollary 7. The class T of all Turing machines is constructible in the class
CA of cellular automata.

In a similar way, it is possible to program inductive automata (inductive models
of computation), which provide better modeling of contemporary computers and
computer networks than traditional models, such as Turing machines [6].

Theorem 6. Any inductive Turing machine of the first order is programmable
in the class ICA of inductive cellular automata.
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Corollary 8. The class IT1 of all inductive Turing machines of the first order
is programmable in the class ICA of inductive cellular automata.

Similar to Internet machines, it is useful to introduce inductive Internet ma-
chines, which also form a natural class of grid automata. Any Internet machine
is a finite grid automaton in which all nodes are inductive Turing machines.

Theorems 4 and 6 imply the following result.

Corollary 9. Any inductive Internet machine IM is constructible in the class
ICA of inductive cellular automata.

Computers and devices in global networks start processing data not only in the
form of words, as conventional abstract automata do, but also more sophisticated
structures. For instance, researchers forecast that future global networks will use
graphs or heaps of soft protocol elements instead of multilayered protocol stacks
used now [8, 2]. That is why it is important to represent not only words but other
advanced structures using cellular automata. In addition, structures of computer
hardware and software are much more sophisticated than linear structures of
words.

Here is one result that demonstrates corresponding possibilities of cellular
automata in modeling data structures.

Theorem 7. A two-dimensional cellular automaton can realize any finite graph
or network.

In a similar way, cellular automata can realize many other data structures.

5 Conclusion

We discussed a new discipline – cellular engineering. Obtained results show how
it is possible to construct and model sophisticated complex system using such
relatively simple systems as cellular automata. The functional cellular engineer-
ing is one of the weakest forms, while the system cellular engineering is one of
the strongest forms of cellular engineering.

Indeed, building a system with necessary properties solves the problem of
creating a process with necessary features, while the latter solves the problem of
constructing a function with necessary characteristics. Usually only functional
cellular engineering has been considered, e.g., when cellular automata computed
the same function as a Turing machine.

Modeling relation plays an important role in all life processes and living
systems [16, 12]. Thus, it would be interesting to use cellular automata for
modeling real living systems and not only some processes that resemble
functioning of living systems as it is done in Artificial Life [1]. Moreover, in the
context of pancomputationalism (cf., for example, [19, 11, 11, 13]) when the uni-
verse is treated as a huge computational structure or a network of computational
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processes which following fundamental physical laws compute (dynamically de-
velop) its own next state from the current one, the Technological Principle of
Computational Equivalence can be the base for constructor theory discussed by
Deutsch in [10].

It is interesting to know that the method developed in [6] for construction of
Turing machines and grid automata in cellular automata gives a formal repre-
sentation of the old Internet idea [8] that any component with more than one
network interface can be a router.
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Abstract. The possibility to describe the laws of the Universe in a
computational way seems to be correlated to a principle that the density
of information is bounded. This principle, that is dual to that of a finite
velocity of information, has already been investigated in Physics, and is
correlated to the old idea that there is no way to know a magnitude with
an infinite precision. It takes different forms in classical Physics and in
quantum Physics.

1 Why Cellular Automata?

Stephen Wolfram has advocated in [10] the idea that cellular automata might
be a relevant formalism to study the laws of the Universe. This thesis can be
seen as a consequence of three more fundamental principles that are implicit in
the definition of the notion of a cellular automaton.

To define a cellular automaton, we must discretize space by partitioning it into
an infinite set of identical cells, for instance cubes. We must also discretize time
and observe the Universe at regular time steps. Then come three assumptions

1. that the state space of each cell is finite,
2. that the state space of a cell at a given time step depends only on the state

of a finite number of neighbours at the previous time step,
3. that the state space is the same for all cells and the evolution acts the same

everywhere and everywhen.

Assumption (3.) is a reformulation of a well-known principle of Physics: the
homogeneity of space and time. So is assumption (2.), which is a reformulation
of the bounded velocity of information. Assumption (1.), in contrast, seems to
express the new idea, that the density of information also is bounded. Such a
principle can be formulated as the fact that the amount of information that can
be stored in a bounded region of space is bounded. It can also be formulated
as the fact that the cardinality of the state space of a bounded region of space
is bounded, since the amount of information storage is the logarithm of this
cardinality.

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 127–134.
DOI: 10.1007/978-3-642-35482-3_11 © Springer-Verlag Berlin Heidelberg 2013
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There are other assumptions in the definition of a cellular automaton, such as
the fact that space-time is absolute and passive: the neighbourhood relation on
cells does not evolve as their states do. Weakening these assumptions is possible,
leading for instance to causal networks [10] or to causal graph dynamics [2].

There is a historical discrepancy between the idea of a finite velocity of in-
formation and that of a finite density of information. The first has had a clear
status as a principle of Physics, since special relativity, and we even know the
bound on the velocity. The second seems to be less established. Yet, it is not
completely new, as all three principles (1.), (2.), and (3.), have been stated by
Robin Gandy in [7], and the principle of a bounded density of information has
also been stated by Jacob Bekenstein—although the Bekenstein bound is not
on the amount of information but on the quotient of the amount of information
and the energy contained in a sphere [5].

2 Two Dual Principles

The principles of a bounded velocity and of a bounded density of information
play a dual role.

For instance, the amount I of information that can be output by a wire of
section S in a given time t is bounded by the amount of information contained
in the cylinder of section S and length l, where l is the distance that information
can travel in time t.
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If information has a bounded velocity, then l is bounded and if moreover
information has a finite density, the amount of information I is bounded. Thus
we need both principles to prove that the information flow of a wire is bounded.
If one of these principles were invalid, it would be easy to build a wire with
unbounded flow.

A more evolved example is the impossibility to build a infinitely parallel com-
puting machine, i.e. a machine formed with an infinite number of processors
communicating with a common server. If information has a bounded density,
then the size of each machine has a lower bound and some machines must be
arbitrarily far from the server and if moreover information has a finite velocity,
some machines are too far to communicate with the server in due time. Again,
if one of these principles were invalidated it would be easy to build an infinitely
parallel machine, either with processors of the same size communicating infinitely
fast with the server, or with arbitrarily small machines, of size 1, 1/2, 1/4, 1/8,
1/16, . . . that would lie at a finite distance of the server.
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...
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It seems that these two principles could even be summarized in one, as the
fact that in a given time, a piece of information can only travel in a space which
is itself populated by a finite amount of information.

Finally, the two principles are comparable, and both differ from the third:
homogeneity of space and time. Indeed, the latter is pre-supposed by the very
notion of a ‘Physics law’. For instance, suppose that some law would be valid in
Paris but not in Boston, then this would not be much of a law. The word ‘law’
itself carries a notion of universality.
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But what about the other two? It turns out that a it is possible to do very
respectable Physics without these principles. Yet, it is still the case a notion of
applicability of a Physics laws underpins both the finite velocity of information
and the bounded density of information principles. If a law broke the finite veloc-
ity of information principle, this would entail that, in order to determine the new
state of a physical system after one second has past, one may potentially need
to look at an unbounded number of neighbours. This is no doubt unpractical,
unless far-away contributors can be neglected.

In the same way, if a law broke the finite density of information principle, in
order to determine the new state of a physical system, one would need to use
a description of the state of the neighbours that might potentially contain an
unbounded amount of information. Again this law would hardly be applicable,
unless this information can be rounded up in some way.
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3 Newtonian Physics

It is well-know that Newtonian Physics contradicts the principle of a finite ve-
locity of information. Whenever a bee flies half a centimeter, it instantaneouly
modifies the gravitational field on a distant galaxy. It is only with General Rel-
ativity that we understood how to control the consequences of the flight of a
bee.

Newtonian Physics not only contradicts the finite velocity principle, it also
contradicts the principle of a finite density of information as the distance between
the jaws of a caliper for instance is measured by a real number. So if we imagine
an infinite amount of information expressed, for instance, as an infinite sequence
of 0 and 1, we can see this infinite sequence as the digits of a real number and
place the jaws of a caliper at this exact distance, recording this way the infinite
amount of information in a finite volume.

Of course, we have all been taught that this idea is nonsense and that the
distance between the jaws of a caliper is defined with a finite precision: three or
four digits. It is surprising that this thesis that a physical magnitude is always
defined with a finite precision has never been given the status of a Physics
principle as have the homogeneity of space and time. Yet, this thesis may be a
very early occurrence of this idea of a finite density of information.

4 The Finite-Density versus the Superposition Principle

The principle of a finite density of information seems to be challenged by quan-
tum theory and its superposition principle. Indeed, regardless of whether a region
of space is bounded or not, whenever its state space contains two states u and
v, then it must also contain all the linear combinations λu+ μv up to a renor-
malization factor. Hence it is infinite, and the finite density principle cannot be
formulated as the fact that the set of states of a bounded region of space is finite.

These complex amplitudes λ and μ can be compared with probabilities. But
this comparison has its limits. Indeed, since probabilities are positive real num-
bers, they can only add up constructively to make and event more likely. In
contrast amplitudes are complex numbers, then can also be substracted to one
another, i.e. add up destructively, making an event either more likely of less
likely; or sometimes even impossible.

This is why when two different scenarios happen in a superposition, we cannot
quite think of them as two non-interacting branches of what may happen in the
Universe: these amplitudes cannot be ignored. This makes the superposition
principle is a difficulty when extending the finite-density principle to quantum
theory.

Yet, the infinity of the state space does not mean that the amount of possible
outcomes, when measuring the state of this region, is itself infinite, because
in quantum theory, we cannot measure the state of the system, but only one
of its observables. Thus, an alternative formulation of the bounded density of
information principle is that each projective measurement of a bounded region,
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at any given point in time, may only yield a finite number of possible outcomes.
This requirement amounts to the fact that the state space of a bounded region
of space is a finite-dimensional vector space. This constitutes a good quantum
alternative to the formulation of the finite density of information principle, one
which does not demand anything to be actually measured in any way.

5 The Finite-Density Principle versus Correlations

Moreover, yet another problem arises in the quantum setting, mamely that of
‘correlations’; which in this context are also referred to as ‘entanglement’. To
understand what entanglement is, one must apply the superposition principle
again, but this time to pairs of systems. For instance if systems A and B may
be in state uu, meaning that both are in state u, or in state vv, meaning that
both are in state v, then the state λ(uu)+μ(vv) is also allowed. This entangled
state corresponds to a superposition of two global, and everywhere different
scenarios. It is possible to get an intuition of the meaning of this entangled
state by appealing to our understanding about usual probabilities. In probability
theory, it is a commonplace that knowing the marginal probabilities over the
individual systems does not entail knowing the joint probability distributions.
For instance Alice and Bob may have a half-half chance of having a blue or
red ball in each of their boxes, but it could be that each of their boxes have
been prepared in such a way that both balls are of the same colour. The state
λ(uu) + μ(vv) tells the same story not for probabilities, but for amplitudes.

This is an issue, because the bounded velocity of information principle seems
very weak in that respect: after all, all it says is that the state of each individ-
ual system is determined by that of the neighbours, but it does not say how
the entanglement between the individual states is determined. If we retake the
probability analogy; the bounded velocity of information principle tells you that
the probabilities of Alice finding a red or a blue ball in her box are determined
locally; but what about the probability that this ball is of the same color as
Bob’s?

Fortunately on this issue of whether the correlations can be determined locally,
quantum theory is a bit friendlier than probability theory. Indeed, it has been
shown that whereas the bounded velocity of information principle is way too
weak in the context of probabilistic cellular automata [3], surprisingly it turns out
to be sufficient in the context of quantum cellular automata [4] for the evolution
to be described as a composition of local functions mapping neighbourhoods
to neighbourhoods, that is functions from a finite-dimensional vector space to
itself. Another way to phrase this is that in the quantum setting, any evolution
that respects the bounded velocity of information principle necessarily takes the
form of a circuit of gates being applied on systems and their neighbours. Thus
correlations can be ‘tamed’ and the global evolution broken into functions from
finite-dimensional vector spaces to themselves.
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6 A Computable Quantum Universe

Yet, moving from a finite set to a vector space, even a finite-dimensional one, is a
big leap and many advantages of describing the Universe as a cellular automaton
might be lost by doing so. Indeed, the main advantage of having a finite state
space S for cells was that the local evolution function of the cellular automaton,
that is a function from Sn to S, where n is the number of neighbours of a
cell, was a function from a finite set to a finite set. Such a function can be
described by a table giving the image of each element of the domain and it
is always computable. This point was the key to the computability of cellular
automata, and thus to the idea that the Universe is computable if it can be
described as a cellular automaton. This idea of a computable Universe—the
physical Church-Turing thesis—is one of the main goals of both Robin Gandy
and Stephen Wolfram. Fortunately, another feature of the quantum theory comes
to repair the damages created by the superposition principle. According to the
quantum theory, theses local functions of a quantum cellular automata cannot be
any function from neighbourhoods to neighbourhoods, but must be linear. There
are much less linear functions than functions from a finite-dimensional vector
space to another. In particular any such linear function can be described by a
matrix, and matrix multiplication boils down to additions and multiplications
that are computable operations. Thus if scalars are chosen in an adequate manner
as discussed below, all such functions are computable. Thus, infinity is tamed
by finite-dimension and linearity and this formulation of the principle of a finite
density of information is sufficient to prove the Universe computable.

7 Scalars

When saying that addition and multiplication of scalars are computable, we need
to be a little careful, as scalars are complex numbers and computability is mostly
defined for natural numbers.

Computability can be extended from natural numbers to real and complex
numbers [9], but then the picture is a somewhat different. Not only functions
from complex numbers to complex numbers can be computable or not, but com-
plex numbers themselves can be computable or not. Thus, although multiplica-
tion is computable, multiplication by a fixed scalar may be non-computable if
the fixed scalar is non-computable.

Michael Nielsen has noticed that having a process building a superposed state
λu + μv, where λ and μ are non computable numbers, can per se lead to non
computability, as this state can be tomographed by repeated measurements and
λ be extracted with increased precision from the state.

Thus, a physical system has two ways to encode an infinite amount of infor-
mation: either by having an infinite dimensional state space, or by encoding an
infinite amount of information in a scalar, exactly in the same way as an infinite
amount of information can be encoded in a distance in Newtonian Physics.
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To express the finite-density principle, it seems that it not sufficient to restrict
to finite-dimensional vector spaces for the state spaces of cells, but we must also
restrict to a smaller set of scalars, yielding an intersting problem for physicists
about the fields that can be used for the scalars in quantum theory.

With this precise formulation of the finite density of information, we can
formally prove that the physical Church-Turing thesis is a consequence of the
three hypotheses we have mentioned: homogeneity of space and time, bounded
velocity of information and bounded density of information [1].

Some scientists, such as David Deutsch [6] propose to take the physical
Church-Turing thesis as a principle of Physics. Some others, such as Michael
Nielsen [8], propose to deduce this thesis from more fundamental principles of
Physics. Like Robin Gandy, we have chosen to start from these three fundamen-
tal principles. An advantage of this approach is that these three principles are
falsifiable provided explicit bounds are given. Thus, from a logical point of view,
they are purely universal formulas, while the physical Church-Turing thesis itself
has a much more complex logical form ∀∃∀, namely for all physical system m,
there exists a computable function f such that forall initial state x, the evolution
of m leads from x to f(x).

8 Conclusion: Cellular Automata and Quantum Cellular
Automata

It is one thing to say that the Universe is computable and thus can be sim-
ulated by any model of computation, e.g Cellular Automata. It is another to
seek to closely model physical systems in a space-preserving manner. Pursuing
this second, more demanding aim leads us to investigate how to model the state
space of a bounded region of space. Supposing that this state space is finite is
adequate in the classical setting, but must be refined in the quantum setting to
a finite-dimensional vector space over a reasonable field. Indeed it seems that
simulating a quantum systems by classical cellular automata not only leads to an
exponential slowdown, but also fails to respect the geometry of the system. This
justifies Feynman’s proposal to model quantum systems with Quantum Cellular
Automata. This quantum extension of the Cellular Automata model shows its
liveliness and robustness.
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Do Particles Evolve?

Tommaso Bolognesi
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Abstract. After some reflection on the messages that I have found most
inspiring in Wolfram’s NKS book, ten years after its publication, in this
paper I speculate on a few, highly attractive new developments that
NKS-style experimental research might undergo, and that I have myself
begun to explore in recent years. According to these visions, the grand
challenge that the emergent, localized structures of elementary automa-
ton 110, or similar ‘particles’, must face in the next ten years is to evolve
into populations of increasingly complex individuals, up to forms of (ar-
tificial) life, and to a fully blown biosphere.

On a more technical side, the paper illustrates some preliminary steps
and results in the application of Genetic Algorithms to variants of Wol-
fram’s Network Mobile Automata; the objective here is to investigate
the emergent qualitative and quantitative properties of the causal sets
associated to the automata computations, in view of their potential ap-
plication as discrete models of physical spacetime.

1 Introduction

Ten years have passed since the interacting ‘artificial particles’ of elementary
cellular automaton n. 110 have started flickering from the cover of the NKS
book, sending puzzling signals to the scientific community and the general public,
and raising controversy as to the role that this type of phenomena should play
between recreational mathematics and theoretical physics.

What are the most inspiring contributions from the 1197 pages of the NKS
volume? Starting in 2005, I have met several readers of the book, also due to my
involvement with various editions of the NKS Summer School. Many of them
would point to a specific chapter, but a surprisingly high number of readers
would go as far as providing exact page numbers for their favorite passages or
pictures. However, if I am to single out the thing that I found most stimulating
and influential for my work, I would indicate the very spirit and investigation
attitude that pervades all of its components.

This attitude has been sometimes compared to that of an entomologist, who
patiently and carefully observes and classifies the variety of shapes and phe-
nomena occurring in a specific corner of the universe; the difference is that the
universe explored by NKS is the computational one, and the studied insects
are the free, spontaneous computations of simple programs. Observing, naming,
classifying things in the universe are the primordial cognitive activities of homo
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sapiens: NKS transposes these attitudes, most directly, to the study of another
universe, based on the bold conjecture that the two universes might coincide.

And one feeling that comes with these activities is pleasure. The impressive
array of plots for the countless computational experiments carried out in [25] is
indeed permeated by the pleasure of discovery. This is tangible, for example, in
the series of plots for Elementary Cellular Automaton (ECA) 30, at pages 27-30,
or in the longer series at pages 32-38, for ECA 110, that manage to convey the
excitement of progressively disclosing the pseudo-randomness and the interacting
localized particles of the two most celebrated members of the ECA family.

Exhaustive enumeration, simulation and visual inspection of the space of spon-
taneous computations, with a clear mind, free of expectations, are fundamental
experimental activities in the NKS approach, and their primary objective is just
to see what happens ; this is best represented by the ECA tables at pages 54-56,
and is nicely reflected in a reported dialogue between Richard Feynman and
Stephen Wolfram:

- ‘How did you know in advance that, out of 256 automata, n. 30 would behave
pseudo-randomly’?

- ‘I didn’t; I ran them all’ !
One experiences a progression of excitement levels, in moving from the pre-

dictability of class 1 behaviors to the surprises found in class 4. Needless to
say, precious gems are very rare, and this makes their discovery particularly
gratifying. Having myself compiled hundreds of tables analogous to those just
mentioned, for various other models of computation, I reproduce in Figure 1,
without providing details (see [2]), one that well reflects the amount of inspira-
tion that I have derived from NKS, and the excitement that comes from spotting
a gem (e.g. the plot for computation (17, 8)) among pebbles.

The most ambitious among the NKS experimental activities and goals is some-
times called ‘universe hunting’: finding the ultimate, digital code of nature. The
barrier of computational irreducibility makes it impossible to predict the steps
of an evolving, digital universe, other than in real time, i.e., as it evolves. Hence,
any computational theory of the physical universe would fail to efficiently pre-
dict the evolution of the universe, as a whole, and in full detail ; but it could
always be used for simulating its infancy, in search for emergent features and
entities that might have played some role in building up our mature, 13-billion
year universe, or that might have even reached us, unchanged, across this huge
time span.

So, what kind of gems might we expect to see emerge from universe hunting
experiments in the next ten years? Although the NKS lesson is to carry out com-
putational Big-Bang experiments without predefined expectations, in Section 2
I provide a wish list of phenomena whose emergence would represent a strong
indication of the validity of the approach.

More concretely, Section 3 illustrates an application of Genetic Algorithms to
Network Mobile Automata, meant to bias the evolution of these automata and
assess their potential applicability to the discrete modeling of spacetime.
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Fig. 1. Plots showing the dynamics of an ant moving on a planar trivalent graph ac-
cording to the algorithm described in [2]. The ant behavior depends on two parameters,
ranging, respectively, in 1-18 (rows) and 1-9 (columns).
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2 Particle Evolution

The interest for the localized structures of ECA 110, in the context of a
computation-oriented, fundamental theory of physics, depends on two facts: (i)
they are strongly reminiscent of scattering phenomena and diagrams from parti-
cle physics; (ii) they can be used for performing Turing-complete computations.
It seems therefore natural to consider these particles as an encouraging clue for a
theory that tries to relate complexity in physics with emergence in computation,
and to take them as a starting point for developing such a theory.

More precisely, if we accept the idea of a physical universe organized as a
layered architecture of emergence, fueled by a simple computation at the bottom
[7], we may wonder whether further layers of increased complexity can be found
on top of some layer of simple (artificial) particles. Note that, when referring to
‘particles’, I am not restricting to the localized structures of cellular automata.
Similar phenomena are also observed with other models (two-dimensional Tur-
ing machines, or turmites, are just one example [20, 21]), or in the causal sets
derived from their computations [6]. In particular, the localized structures ob-
served in a causal set can be interpreted as trajectories across spacetime, or
particle worldlines.

In the sequel I speculate on a number of possible evolved forms of artificial par-
ticle; their appearance might contribute to the creation of an artificial universe
of growing complexity, as close as possible (if not identical!) to our universe.

2.1 Soft vs. Hard Particles

Consider one of the trajectories that traverse an ECA 110 diagram. It is formed
by a periodic pattern of black and white cells that moves in time (vertically), and
often in space (horizontally). When it translates in space, the localized pattern
repeats every few rows, being formed, each time, by a different set of a few
adjacent cells: the pattern moves, the cells don’t.

But in other models of computation, the elements of the memory support
may themselves move around. For example, in the Trinet Mobile Automata to
be discussed in the next section, the support is a dynamic planar graph whose
polygonal faces are modified during the computation. A typical face update
consists in increasing or decreasing by one unit the number of sides, and in this
game, faces that are adjacent at some moment, drift apart later on. Think of
a face as corresponding to an ECA cell, and of the face size (number of sides)
as corresponding to the cell state (a bit). Then, in a computation, formed by
a sequence of graph configurations, in principle we may observe two types of
particle, which, in the absence of better names, I call ‘soft’ and ‘hard’:

Soft particles equivalent to the ECA particles, are persistent periodic patterns
that move around, but are formed by ever changing underlying faces;

Hard particles are groups of faces that persistently stick together and move
around while undergoing cyclic shape changes.
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For visualizing the idea of dynamic, planar trivalent graphs, and of a face that
moves around while changing its shape, it may be useful to consider Voronoi
diagrams. By using the interactive demonstration in [22], the interested reader
can actually create, destroy, or carry around, under the mouse cursor, a face of
a random Voronoi diagram, while observing that all these operations correspond
to the application of simple graph-rewrite rules (Pachner moves).

In [4, 6] I report about the emergence of some periodic trajectories in the
causets of various models, but without relating these structures with the ele-
ments of the underlying memory support, which is the key for discriminating
between the two types of particle. The search for soft particles, in particular, is
computationally quite costly, but being able to detect them might reveal com-
plex interaction scenarios that, so far, have only been observed with the (soft)
particles of Cellular Automata.

2.2 Stateful Particles

The outcome of the interactions between two ECA 110 particles depends on the
precise phase by which they collide, as illustrated in [25] (pp. 294-295) – a cir-
cumstance that contributes to the richness of interaction scenarios but makes it
particularly hard to control these structures for specific computational purposes.
Complex interactions could also be observed among particles whose behavior de-
pends on some form of internal state: the idea is to move from stateless particles
to stateful agents.

Systems of stateful entities that interact by various mechanisms – by shar-
ing memory locations or by exchanging messages via an ether or via dedicated
channels – are pervasive in computer science. Examples include Actors [12, 1],
and process calculi such as CCS [17] and CSP [13]. Although these models have
been primarily conceived for providing formal foundations to concurrent pro-
gramming or specification languages, they identify the general features of con-
currency, (massive) parallelism, interaction and communication, at such a high
abstraction level that they become applicable also to natural systems in which
those features are of relevance.

The gap between the relatively simple artificial, computational particles ob-
served so far, and the concept of stateful agent, is huge. However, in a theory
that conceives physical objects and their background as made of the same fabric,
in which both are obtained from the dynamic geometry of spacetime, a useful
condition for the emergence of advanced, stateful entities would be the appear-
ance of ‘shells’ that encapsulate small regions of that fabric, separating a small
inside from a large outside, an active object from a (relatively) passive back-
ground. Similar to a selectively permeable cell membrane, this closed surface
would favor the persistence of the localized structure, promote some internal
state stability, and regulate interactions with the environment.1

1 Highly persistent structures can be observed in 2-D cellular automata, e.g. the ‘ice-
balls’ of Ice Nine: http://www.collidoscope.com/modernca/icenine.html
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In [6] I identify a first rudimentary form of this ‘causet compartmentation’
phenomenon, and I argue that it can only occur with deterministic, algorithmic
(as opposed to stochastic) causal sets.

2.3 Self Modifying Code

In a review of the NKS book, appearing in the Web, Ray Kurzweil writes:

“Ultimately, the patterns are not that complex. They’re all kind of
similar and too low-level to explain the evolution of higher levels of
intelligence.”

After much experimental evidence from [25], we accept the idea that the iteration
of simple rules can originate complex and unpredictable phenomena, but could
these include a living cell? Several layers of emergence should be required for
that; can they all originate from a fixed, initial set of rules? After about five years
of experience with various formal systems, in particular with graph rewriting, I
am becoming increasingly convinced that a big step ahead could be made if we
allowed the rules themselves to take part into the evolutionary process, rather
than having them fixed in advance.

Indeed, most scientists would probably look more favourably at a scenario in
which physical laws emerge as the universe unfolds from the Big Bang, rather
than one that attributes an absolute, transcendental status to those laws, placing
them in Plato’s hyperuranium. At least, this is the position expressed by eminent
physicist John A. Wheeler, with his famous concept of ‘Law Without Law’, and
with the idea that

“Proud unbending immutability is a mistaken ideal for physics; this
science now shares, and must forever share, the more modest mutability
of its sister sciences, biology and geology”.

The idea of a self-modifying program is, again, quite familiar in computer science.
In logic programming, for example, a program can modify itself by absorbing
new facts and rules during execution, realizing, in a way, a process of learning
from experience. Note, however, that the execution of a self-modifying program
is supported by software (compiler, interpreter, operating system) and hardware
that are not self-modifying at all: this induces us to take a closer look at the
idea that the program fueling the universe from the bottom (if any) be a self-
modifying piece of code.

For fixing ideas, let that program be expressed as a Turing machine Y . We
actually don’t know what it formally means for Y to be self-modifying, since
a Turing machine can only access its tape, not its own state transition table.
On the other hand, we can simulate Y on some standard (not self-modifying!)
universal Turing machine X , and do more: we can program X so that it pro-
gressively changes the behavior (the state transition rules) of Y as the simulated
computation proceeds. In this case, though, the role of animating the universe
would be ultimately attributed to X – a fixed behavior – not to Y !
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In conclusion, even if novel and increasingly complex particle types were to
emerge from Turing machines with dynamically changing behavior, such inter-
esting cases could as well be found by exploring the space of ‘spontaneous’ com-
putations of standard, not self-modifying, universal Turing machines.

Does this make the idea of self-modifying rules useless? Yes, in principle;
but not in practice. The chances that a randomly chosen machine X actually
implemented the scenario of a simulated machine Y with dynamically changing
rules are prohibitively small. Thus, rather than waiting for cosmological times
for this to happen, we could more pragmatically set up NKS-style experiments
in which we explicitly implement various policies for changing the rules of the
game, as the game unfolds.

2.4 Ant Multiplication

At p. 486 of [25], Wolfram writes:

“At first it may seem bizarre, but one possibility that I believe is
ultimately not too far from correct is that the universe might work not
like a cellular automaton in which all cells get updated at once, but
instead like a mobile automaton or Turing machine, in which just a
single cell gets updated at each step”.

Since in Turing machines and Mobile Automata the computation is carried out
by a control unit that walks, like a little ant, on a memory support – typically a
binary tape – we may refer to the bold idea above as the ‘Touring Ant Universe
(TAU) conjecture’. Most of the computational experiments described in [2, 3, 4,
6] refer to a form of Network Mobile Automata based on a stateless ant (to be
discussed later), and are ultimately meant to investigate the TAU conjecture.

The idea of a Cosmos run by a memoryless ant is quite appealing; if true,
if would represent a stupendously simple theory of everything. But, again, can
we expect the whole layered architecture of our universe to emerge from the
tireless work of a single ant, or should we rather think of multiple agents, with
the expectation to obtain additional complexity from their collective operation?

With experiments on Generalized Mobile Automata [25], a model in which
ants are allowed to reproduce, Wolfram has found that complex behavior is more
likely to emerge when several such agents are simultaneously active.

On more theoretical grounds, Carl Hewitt shows that the paradigm of mul-
tiple, concurrent agents extends the notion of computation beyond Turing ma-
chines, proving that there are effective computations that can be performed by
the already mentioned Actor model [12, 1], and not by Turing machines: Actors
can implement unbounded nondeterminism, Turing machines can’t [11].

There are therefore good reasons for exploring ‘multiple-ant’ systems, in the
context of the computing universe conjecture. Indeed, this makes sense regard-
less of whether we assume a single agent (a TAU model) or a collection of agents
(inspired, say, by the Actor model) as the ultimate, primitive mechanism oper-
ating at the root. In the first case, the rationale behind the experiments would
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be to skip the first phases of evolution, and to assume that they might lead to
the hypothetical, multiple-agent intermediate layer at which we decide to start
the simulation.

2.5 Collectively Autocatalytic Systems of Particles

In [15] Kauffman elaborates the hypothesis that darwinian natural selection may
not be the only source of order in the biosphere. The other source might be self-
organization: life might derive from the spontaneous emergence of collectively
autocatalytic systems of molecules. In essence, once a sufficiently large variety
of molecules is allowed to interact and react in a primordial soup, it is almost
inevitable that a subset of them ‘take power’: these molecules are at the same
time the product and the catalysts of their reactions, and the group achieves a
stationary regime representing a primitive form of self-sustaining metabolism.
The beauty of this theory is in the simplicity of the underlying mechanism: the
‘order for free’ in the molecule soup is directly related to the well known phase
transition that leads, in random graphs, to the formation of a giant connected
component, as studied by Erdös.

We see no reason why this simple, abstract mechanism from random graph
theory should not play a role also for a sufficiently variegated population of (soft
or hard, stateless or stateful) particles, once these exhibit an ability to interact,
combine, split, and perhaps even promote such events, as enzymes do.

3 Evolving Ants

The most ambitious form of computational universe conjecture suggests that a
simple program, starting from simple initial conditions, is sufficient for originat-
ing a universe so complex as to host, for example, human intelligence. The huge
complexity gap between the initial seed and the final result becomes much more
tractable if we assume the already mentioned layered architecture of emergence,
in which the emergent objects and behaviors of each layer, characterized by their
own laws, provide the primitives for the emergence of the objects, behaviors and
associated laws at the upper layer.

Note that the layered architecture concept can be understood to refer both to
a sequence of actual evolutionary steps in the history of the physical universe,
and to the way scientific theories refine one another. Regardless of which inter-
pretation we choose (and they are not mutually exclusive), one way to avoid
or mitigate the difficulties involved with ‘pure’ universe hunting – that means
jumping directly to the bottom – is to start from some intermediate level of evo-
lution: one imagines and explicitly introduces ad-hoc features in the investigated
models, trying to anticipate what might have emerged from yet unknown lower
layers, and finds out about the emergent phenomena that such features might
trigger in the upper layers. Most of the visions about particle evolution presented
in the previous section fit into this picture: we could manage to actually obtain
them as the final outcome of a simulated evolutionary path, starting from more
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elementary particles, or we could take them as initial, hypothetical conditions,
and explore their consequences.

An effective way to speed-up the emergence of some specific property and to
identify interesting intermediate levels of evolution, is offered by Genetic Algo-
rithms. In my most recent experiments I have indeed started using them for iden-
tifying Trinet Mobile Automata whose computations provide causets (spacetime
instances) of maximized dimensionality. Let us quickly survey the introduced
concepts.

3.1 A ‘Touring Ant’ Model: Trinet Mobile Automata (TMA)

In Trinet Mobile Automata (TMA), a stateless control head, or ant, moves on a
trinet, which is an undirected trivalent graph – one in which each node has three
incident, undirected edges. The ant moves by short steps, each time applying
some graph-rewrite rule before moving to the next location. I adopt well known
graph rewrite rules, namely the 2-D Pachner moves sometimes called Expand,
Contract and Exchange, that find application also in Loop Quantum Gravity
(see, e.g., [16]). Usually the initial condition is a trinet consisting of two nodes
connected by three parallel arcs, reminiscent of the φ greek letter; this is the
smallest possible three-connected graph.2

In one TMA variant, qualified as threshold-based [2], the ant behavior is fully
determined by the parameter triple (threshold, expandCode, exchangeCode). The
ant is initially positioned on an edge of the φ-graph; it applies rule Exchange
whenever this does not create trinet faces smaller than a fixed threshold (for
this purpose, it is indeed sufficient to monitor the two faces sharing the current
edge); otherwise it applies rule Expand. Then, depending on the applied rule, the
ant moves to a next location, which is defined, relative to its current position,
by parameters expandCode and exchangeCode, respectively (see [2] for details).

The Turing machine is another touring ant model, except that the ant moves
on a tape and has an internal state.

3.2 Causal Sets (‘Causets’) and Their Dimensionality

The Causal Set Program is an approach to quantum gravity suggesting that, at
the smallest scales, spacetime is best described in terms of the simple, discrete
mathematical structure of causal sets [9, 23, 24, 10].

A causal set (or ‘causet ’) can be conveniently represented by a directed graph
with no cycles, in which nodes represent spacetime events, the number of nodes
in a subgraph defines the volume of a corresponding spacetime region, and the
order relation defines the causal dependencies among events (in the continuum,
these relations are usually described in terms of lightcones).

In the Causal Set Program, various probabilistic techniques have been inves-
tigated for building causets, e.g. sprinkling [24], or transitive percolation [23].

2 A connected graph is n-connected when n is the minimum number of edges one has
to remove in order to disconnect it.
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As an alternative, in our recent work we have started exploring deterministic
techniques, based on the idea that more interesting qualitative and quantitative
properties should emerge with algorithmic causets [4, 6].

A property of great physical relevance for a causet is its dimensionality. Vari-
ous techniques are available for estimating the dimensionality of a graph [19], and
often their outcomes do not agree. Node-shell-growth analysis, used by Wolfram
in [25], is based on detecting the growth rate of the node shells at progressive
distance r from a fixed node: a growth rate of the order of rk, with k ≥ 1 and
possibly noninteger, reflects a dimension k+1. In [8] we have in particular com-
pared the Myrheim-Meyer dimension estimation technique [24], commonly used
in the Causal Set Program, with the node-shell-growth technique, pointing out
their differences in terms of outcome and applicability.

3.3 Deriving Causets from TMA Computations

The objective of my recent work [5, 4, 6, 8] has been to investigate the emergent
qualitative and quantitative properties of the causets associated with the compu-
tations of various models, including TMA, in light of their potential applicability
to the modeling of physical spacetime. The basic idea for deriving a causal set
from a generic sequential computation is simple: each computation step becomes
an event (node) in the causet, and a causal link is created from event ei to event
ej whenever the latter reads a global state component that was written by the
former. In concurrent models such as Actors [12, 1], no notion of global state
is available, but partial orders of events are even more easily obtained, being
essentially built into the model.

3.4 Genetic Algorithms (GA) for TMA

The GA approach, first proposed by John Holland in [14], is meant to identify
programs that are fittest for achieving some predefined goal. The approach is
quite directly modeled on the darwinian mechanisms of natural selection and
evolution, and can be very effective in solving problems that are hard to ad-
dress with traditional engineering approaches. An example of GA application
in the context of cellular automata, called ‘majority classification’, is provided
in [18]; the uninitiated reader can find in it a convenient, quick introduction to
the technique. Below we identify the key elements of the GA approach, while
instantiating them to our case of interest – that of obtaining high dimensional
causets from TMA computations.

Individual an instance of a program, whose behavior can be fully coded by a
genome. In our application, an individual is an instance of a Trinet Mobile
Automaton.

Population, or generation a collection of individuals. We have considered
populations of 100 mobile automata each.

Situation a configuration of the global state of the program/individual, or the
part of it which is relevant for determining the next computation step, i.e.
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the reaction. Much freedom is available, and much creativity possible in
conceiving TMA situations. In the above mentioned, threshold-based TMA
model [2], in which planar trinets are handled, only two situations were
considered, corresponding to whether or not at least one of the two trinet
faces sharing the current edge (where the ant is positioned) has less than a
threshold number of sides.

Conceiving a reduced number of situations, and restricting the range of
corresponding ant reactions, is useful for reducing the space of model in-
stances to a manageable size, in view of its exhaustive exploration. But,
with the GA approach, model space size is not a big concern, since evolution
will find its own path across that space, ignoring large portions of it, and
heading towards the regions with the fittest individuals. In fact, working
with a larger space may increase the chances of finding interesting individu-
als. Thus, in this new GA experiment the situation is defined by the ordered
triple:

(size(f1), size(f2), size(f3))

of sizes (number of edges) of the three faces incident to the current trinet
node – the node that the ant is facing. We have considered a range of 7
possibilities for face sizes: 2, 3, ..., 7, 8+, where ‘8+’ refers to a face with 8
or more sides. In conclusion, the ant distinguishes among 73 = 343 possible
situations.

Reaction the state change performed by the individual based on the current
situation. In these GA experiments with TMA I have preserved the reaction
policies of my previous experiments: the ant reacts to its current situation
by choosing and applying graph rewrite rule Expand or Exchange, and by
moving to one among 18 possible next locations in the neighborhood. In
conclusion, the ant may react to a situation in 2 ∗ 18 = 36 possible ways.

Genome a function that associates a reaction to every possible situation:

genome : Situations→ Reactions

Each individual behaves according to its own genome. In light of the above
definitions, the number of possible TMA genomes, i.e. different individuals,
is 36343, which is close to 10534 – a space size completely incompatible with
exhaustive search.

Fitness a function that evaluates an individual’s performance with respect to its
intended goal. In light of the mentioned application to spacetime modeling,
we are interested in a fitness function able to promote the production of
causets with dimension above the already observed 1-D and 2-D cases. Out
of several dimension estimation techniques, the above mentioned node-shell-
growth analysis has been chosen, for reasons of simplicity, computational
efficiency, and for its ability to extracts useful information also from totally
ordered causets.3

3 See [6] for a discussion on the apparently degenerate case of totally ordered causets.
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In particular, I have focused on node-shell-growth relative to the causet
root.

Informally, the implemented fitness function proceeds as follows. It at-
tempts to match an initial subsequence of the node-shell-growth data, both
by monomial a ∗ xb and by exponential function c ∗ dx, using Mathematica
function FindFit, where parameters a, b, c, and d are real constants, and
x is the variable node-shell size. In both cases the fitting error is detected.
Driven in part by previous experiments, I have given preference to causets
with polynomial node-shell-growth. Thus, if a smaller error is found for the
exponential fit, the individual is assigned a conveniently low value (-2, in
the sequel), while if the polynomial fit is more accurate, a fitness value is
assigned that corresponds to the obtained exponent b, with minor modifica-
tions meant to promote small errors and large numbers of node shells, while
avoiding excessively small values for the multiplicative parameter a.

If, at some step, a loop edge is created in the trinet–a pathological situa-
tion in which rewrite rule application becomes problematic – the computa-
tion is forced into a fixpoint, and the trinet no longer evolves.

Mating the process of deriving a new generation of individuals from the current
one. With generations of 100 individuals, 50 couples are selected, by using
a random distribution that favors the choice of high-fitness elements. For
couple (a, b), with genome strings ga, gb, a split point is chosen, which is an
integer random variable s distributed around half the length of the genome
(i.e. 343/2). A pair of children (c, d) are obtained from the couple by splitting
both parental genomes at point s, and by combining the first part of ga with
the second part of gb, and vice versa.

Random mutation the replacement of some genome elements by a random
value. In our experiment, typically each element in the genome of a new
born has a 4 percent probability of being replaced by a random value.

We are now ready for describing some of the preliminary results that have been
obtained from the application of GA’s to the evolution of ants living on trinets.
In the sequel, I shall concisely refer to the latter by the term ‘GA ants’.

4 Some Experiments and Preliminary Results

4.1 First Experiment

In a first experiment, the initial generation is formed by 100 GA ants with
random genome codes; recall that these are tuples of 343 random integers in
the range [1, 36]. The fitness of each ant has been computed by the discussed
comparative polynomial and exponential fitting procedure, relative to a 2000-
ant-step computation, yielding a 2000-node causet; 500 generations have been
produced.

Three-four generations are sufficient for the average fitness to approach value 0
(from below), which corresponds to a 1-D node-shell-growth dimension, relative
to the causet root.
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This is not surprising, since the pervasive presence of rather uninteresting 1-D
polymer-like cases was already observed in other algorithmic causet families.4

However, in 500 generations, and several hours of simulation, no increase of
the average fitness above zero could be observed. Thus, an alternative way to
stimulate the growth was explored.

4.2 Second Experiment

In a second round of experiments, special individuals have been included in the
initial generation, hoping to trigger interesting evolutions. The special behaviors
I have used were obtained by previous experiments with the threshold-based
Trinet Mobile Automata mentioned above. The causets that they originate, their
(threshold, expandCode, exchangeCode) parameters, and their fitness values are
illustrated in Figure 2.

The choice of the two upper causets was motivated by their relatively high
fitness values – these are approximately 2-D and 3-D causets, respectively, under
the chosen node-shell-growth dimension estimator. The lower case was chosen
simply because it represents one of the two exceptional pseudorandom cases that
were found in the class of threshold-based automata.

The behavior of these threshold-based ants is fully defined by their three-
element codes – a much smaller genome than the 343-element genome of a GA
ant. However, these automata can be imported in the more elaborate GA setting
because the situations recognized on the graph by a GA ant are precisely a
refinement of those relevant to threshold-based ants. A GA ant detects the sizes
(up to size 8) of three neighboring trinet faces, and reacts differently for each
such triple, while a threshold-based ant only looks at two of them, and reacts
only depending on how their sizes compare with the fixed threshold (for the
refinement to hold, no threshold above 8 should be considered). On the other
hand, the set of possible reactions – determining which rule to apply and where
to move next – is the same in the two cases. As a consequence, any behavior of a
threshold-based ant can be expressed by a GA ant genome, one in which many
situations are regarded as equivalent and share the same reaction.

The inclusion of just one instance of ant (6, 10, 2) in an initial set of 100 oth-
erwise random individuals proves insufficient for triggering anything of interest:
the special individual disappears in the second generation without leaving trace
of its high fitness, and the subsequent evolution is equivalent to the one obtained
from the totally random initial generation.

A better result is obtained by associating 10 copies of ant (6, 10, 2) with 90
random individuals. In this case, within the first 7 generations several variants
of the initial ‘seed’ appear, as shown in Figure 3.

Fitness values are also provided in that figure, relative to 1000 and 10,000
ant-step computations. Increasing the number of ant-steps improves the approx-
imation to the expected fitness = 1 but, given the size and number of gener-

4 In [4], for example, we show that 4084 out of 4096 elementary Turing machines yield
1-D, polymeric causets, when their tape is initially filled with 0’s.
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Fig. 2. The causets obtained from 3000-ant-step computations of three threshold-based
Trinet Mobile Automata, their codes and their fitness values.

ations considered, letting the ants run for more than 1000-2000 steps is quite
unpractical.

4.3 Third Experiment

In the third round of experiments, the random individuals have been completely
removed from the initial generation. As a first choice, 50 copies of ant (6, 10,
2) and 50 copies of ant (4, 17, 8) (see Figure 2) have been used in the initial
population, and the evolution of 200 generations has been simulated, taking over
24 hours to complete.

The individuals in the final generation are partitioned into two classes. We
find 62 elements with fitness close to 0, or smaller, that correspond to the usual,
uninteresting, polymer-like causets. The remaining 38 elements are of the type
shown at the l.h.s. of Figure 4.

Subsequently, 10 instances of this newly found individual have been used for
composing a new initial generation, where 40 instances of ant (4, 17, 8), and
50 instances of ant (5, 17, 2) (see Figure 2) have been added. The latter was
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Fig. 3. Some of the causets obtained in 7 generations of Trinet Mobile Automata,
when the initial generation is composed by 10 instances of ant (6, 10, 2) (see Figure
2) and 90 random individuals. The causets exhibit, respectively, 1, 2, 3, 4, 5 and 7
spiraling ‘particles’, formed by pentagonal faces in a hexagonal grid. Fitness values are
shown, relative to 1000 and (in parentheses) 10,000 ant-step computations.

Fig. 4. Causets obtained from the evolution of Trinet Mobile Automata. The first was
obtained from an initial generation composed by 50 copies of ant (6, 10, 2) and 50
copies of ant (4, 17, 8), and was used, jointly with copies of ants (4, 17, 8) and (5, 17,
2) (see Figure 2) for obtaining the second and third. Fitness values are shown, relative
to 1000 and (in parentheses) 10,000 ant-step computations.



150 Chapter 12. Do Particles Evolve?

chosen because it builds the causet with fastest, polynomial node-shell-growth
from the root, namely O(n2), that could be found among those derived from
TMA computations.

Three identical experiments were conducted, each computing a sequence of
100 generations of 100 individuals, each individual running for 1000 steps. Due
to the randomness involved in mating and mutations, we may expect different
results for each simulation. Indeed, causets of a familiar type were obtained in
two cases, with relatively low fitness figures. But in one case the final generation
contains individuals that produce the causets shown in Figure 4. These causets
appear as one-fold, two-fold, and four-fold realizations of the same basic pattern,
and in this respect bear analogies with those in Figure 3. However, they achieve
considerably higher fitness figures.

Although for applications to physics we should be in general more interested
in pseudo-random computations, or in cases exhibiting a mix of order and dis-
order, inspecting regular cases, such as those in Figure 4, may reveal interesting
features. The interest for these planar and layered causets comes on the fact that,
in spite of their planarity, they achieve and even overtake the O(x2) node-shell
growth rate of a 3-D cubic lattice! Note that, although the ants work on planar
trinets, and the adopted rewrite rules preserve planarity, the derived causets
need not be planar; but in this case, they are.

This causet type was never observed among the (over 1000) cases that I have
derived from threshold-based Trinet Mobile Automata. The conclusion is that
the evolving ant, due to its rich and flexible genome, has entered a region that is
out of the reach of the more primitive, threshold-based ant. On the other hand,
similar planar, layered causets with O(x2) node-shell growth from the root, were
found with other models of computation, namely with Turing machines, string
rewrite systems, and cyclic tag systems; these are described in [4], where it is
also proved that all causets from those models have to be planar.

One of the open problems of the computational universe conjecture is con-
cerned with the choice among various candidate models of computation, or with
questioning the actual relevance of such a choice, given the fact that all (Turing-
complete) models are equivalent, at least in a formal sense. Causets may rep-
resent the appropriate abstraction for looking at these different models, and
finding commonalities among different causet classes, as the one just exposed,
may shed further light on the relevance or irrelevance of the above choice.

5 Further Experiments and Ongoing Work

Further experiments with Genetic Algorithms for Trinet Mobile Automata have
been conducted, and more are under way. Most of the creativity in setting them
up is concentrated in two aspects: (i) the definition of the situation to which the
ant reacts, and (ii) the definition of the fitness function. The former may take
advantage from additional structure introduced in trinets, e.g. node and/or edge
labels.
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Fig. 5. The growth of the average fitness for a sequence of 2000 generations, each
consisting of 100 individuals. The fitness is defined as in the previously described
experiments, but the TMA algorithm is now based on trinets with three-colored edges.
The ant reactions depend here on the detected color patterns.

For example, I have run a series of experiments with three-colored trinets,
while keeping the same fitness function used in the previous experiments, meant
to maximize node-shell-growth dimension from the causet root. A Tait coloring
of a trivalent graph is a labeling of its edges made with only three colors, such
that at each vertex the colors of the three incident edges are different (I am are
grateful to Richard Southwell for stimulating interest in this approach). For an
ant living on such a graph, the situation can be defined in terms of the color
pattern that it detects around her.

One of the reasons for looking at three-colored trinets was to relax the trinet
planarity condition. Graph rewrite rule Exchange has two forms, planar and
nonplanar. In the previous experiments the first form was always chosen. But
when looking only at edge colors, we lose control on this choice, and the trinet
may soon become non planar. Following the intuition that nonplanar trinets
could achieve higher (node-shell-growth) dimension than planar ones, and that
the higher the dimension of the support, the higher the dimension of the causet
derived from computing on it, 5 one could expect to hit relatively high fitness
values with this type of TMA.

Figure 5 is a plot of the average fitness achieved, generation by generation,
in a sequence of 2000 of them. The fitness function is the same of the previous
experiments. Unfortunately, the values achieved so far are relatively low; how-
ever, the plot indicates that sudden increases in these values may take place after
considerably long stationary phases.

5 One can think of this increment as the contribution of the time dimension.
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In another series of experiments on nonplanar Trinet Mobile Automata, the
situation has been conceived based on the age of edges, that is, on their order of
appearance in the growing graph. Assume that the ant is positioned on edge e1,
facing node n1, and let e2 and e3 be the other edges incident to n, where e2 is
younger than e3. The situation is then defined as the ordered pair (L1,2, L1,3) of
lengths of the two shortest cycles containing, respectively, edge pair (e1, e2) and
edge pair (e1, e3). In a way, these cycle lengths are the nonplanar analogous of
the polygonal face sizes used for defining the situation in planar trinets. Three
cycle lengths have been distinguished: 3 (parallel edges are excluded), 4, and 5
or higher. Thus, there are 32 = 9 possible situations.

The reaction consists in choosing a rewrite rule in the set {Expand, Exchange-
planar, Exchange-nonplanar} and then using a numeric code in the range 1-6

Fig. 6. The remarkable pseudo-random, 10,000-step computation of a nonplanar Trinet
Mobile Automaton. Upper-left: sequence of edges visited and revisited by the ant.
Upper-right: 10,000-node causet. Lower-left: final trinet. Lower-right: node-shell sizes
at progressive distance from a trinet node, for 12 nodes selected at random in the
graph, showing the uniformity of the latter (these 12 plots are actually based on a
trinet with about 3500 nodes, larger than the one shown, and obtained by a 80,000-
step computation).
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to move to one of six possible next locations, defined relative to the current,
oriented ant position. Thus, there are 3 ∗ 6 = 18 possible reactions.

Since the genome is a function from situations to reactions, there are a total of
189 = 198,359,290,368 possible genetic codes, much less than with the previous
TMA models.

Even with this new, nonplanar trinet setting, no improvement of fitness values
can be reported yet. However, the search through the generations has led, among
others, to the interesting individual illustrated in Figure 6.6

This is the third case of pseudorandom TMA that I have found, after the
two cases described in [2]; but it is the first yielding a nonplanar trinet. The
upper-left diagram in Figure 6 closely resembles the ‘gem’ found in Figure 1 –
the thumbnail with parameters (17, 8) – and shares with it an O(x1/2) growth
rate, but only for an initial phase; subsequently, it appears to grow roughly
linear, at least as far as I could experimentally test. The trinet produced by
this computation appears completely uniform, in the sense that all trinet nodes
seem to share the same view at the node-shell-growth rate, as illustrated by the
lower-right plots.

6 Conclusions

During one of his late-evening talks at some NKS Summer School edition,
Stephen Wolfram has indicated two types of achievement that can be expected
from the NKS endeavor: breakthroughs in fundamental physics, and new insights
in various fields of technology.

In the second case, the exploration of the computational universe, intended
as the space of simple programs, may indeed help in identifying unorthodox
solutions to computing problems that would be unaccessible by traditional en-
gineering techniques; the development of a complex software system such as the
Wolfram Alpha knowledge engine, for example, seems to have benefitted from
this approach.

In this paper, however, we have concentrated on the first goal: we have formu-
lated some visions on the desirable evolutionary steps that systems of artificial
particles, similar to those in Wolfram’s ECA 110, might take for building systems
of increasing complexity, and, hopefully, increasing similarity with the physical
universe; and we have shown some applications of Genetic Algorithms to the
challenging activity of ‘universe hunting’.

Under the picture of a physical universe organized as a layered architecture
of emergence, ‘universe hunting’ primarily refers to the simulation of computa-
tional Big Bangs, looking at the bottom layers of the architecture in search for
structures, objects, behaviors, laws, relevant at those levels. There is no guar-
antee that what we find there has a direct counterpart in (let alone numerical
correspondence with) the repertoire of objects and laws from current physical
theories, that are to be probably located several layers above. But, following

6 According to our implemented conventions for reaction coding, this individual has
genetic code {5, 7, 17, 8, 3, 3, 13, 1, 11}.
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Einstein, we can believe that the universe is, surprisingly, understandable; addi-
tionally, we could count on the fact that its layers show imaginative variations
of a few recurrent patterns. Thus, in simulating the lower layers, we can hope to
detect at least analogies with what we already know about higher layers – those
that we can directly explore, say, by particle accelerators.

For qualifying as a scientific theory, any computational Big Bang conjecture
will eventually need a stringent validation in the form of an accurate numerical
prediction of some known physical constant, or of the outcome of some ‘real’
experiment. After Galileo, there is no escape from this requirement. In fact, I
do not consider this event as totally unconceivable. However, given the gap that
separates, say, the ‘artificial’ localized structures of some TMA computation
from the mass of a ‘real’ electron, much work still remains to be done, at both
ends of the gap.

In particular, we still need plenty of creative experiments for simulating, bot-
tom up, the the lower levels of the architecture. The fact that most of the work
done at these levels proceeds somewhat blindly, with the primary objective to
see what might possibly happen, makes it quite reasonable to call this approach
‘a new kind of science’.

Acknowledgments. I would like to thank Hector Zenil for his kind invitation
to contribute to this volume, celebrating the tenth anniversary of Wolfram’s
NKS book.
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Abstract. This paper introduces foundations for a new kind of cosmol-
ogy. We advocate that computer simulations are needed to address two
key cosmological issues. First, the robustness of the emergence of com-
plexity, which boils down to ask: “what would remain the same if the tape
of the universe were replayed?” Second, the much debated fine-tuning is-
sue, which requires to answer the question: “are complex universes rare
or common in the space of possible universes?” We argue that computer
simulations are indispensable tools to address those two issues scientif-
ically. We first discuss definitions of possible universes and of possible
cosmic outcomes—such as atoms, stars, life or intelligence. This leads
us to introduce a generalized Drake-like equation, the Cosmic Evolution
Equation. It is a modular and conceptual framework to define research
agendas in computational cosmology. We outline some studies of alterna-
tive complex universes. However, such studies are still in their infancy,
and they can be fruitfully developed within a new kind of cosmology,
heavily supported by computer simulations,

Artificial Cosmogenesis. The appendix [A] provides argumentative maps
of the paper’s main thesis.

Keywords: artificial cosmogenesis, cosmic evolution, computational
cosmology, digital physics, Drake equation, Cosmic Evolution Equation,
robustness, fine-tuning, multiverse.

What I cannot create I do not understand
On Richard Feynman’s blackboard

at time of death in 1988, as reported in [29]

1 Introduction

I am fond of both computer science and cosmology. However, the methods, con-
cepts and tools used in those two disciplines are very different. Is it possible to
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unite this dual passion? This essay outlines foundations for such a new kind of
cosmology, Artificial Cosmogenesis.

Broadly speaking, we can distinguish three kinds of science: deterministic,
probabilistic and computational. Deterministic science can roughly be character-
ized by the science Newton practiced. He used physical laws and initial conditions
to predict the future and explain the past. The predictions are of an amazing ac-
curacy and the tools used are mathematical equations which are relatively easy
to solve. Because of its successes, it is often implicitly considered the typical
model of hard science.

However, when there are too many particles in a system, their sheer number
and interactions make the newtonian approach weak. In fact, even with only
three gravitational bodies the newtonian theory of gravitation fails to make
practically useful predictions. The main insight of the founders of statistical
physics was to average out the interactions of particles to derive statistical laws
of behavior, such as the laws of thermodynamics or quantum mechanics.

In recent years, Laurent Nottale generalized this statistical predictability to
all scales in nature, by unifying relativity theories with microphysics (see e.g.
[41, 42, 43]). This scale relativity theory constitutes a revolution in progress
in the domain of theoretical physics, since its leads to fundamental theoretical
results as well as highly precise and validated predictions (see also [63], p96-97).

But what if our statistical methods also fail or are absent? What if we do not
know any way to predict the behavior of a very complex system? An even more
general approach is needed. This can be done in a computational view of nature,
by theorizing and experimenting with algorithms (see e.g. [71, 70]). The field of
Artificial Life constitutes a remarkable application of this view, when it attempts
to decipher the most general laws of life, and then to implement and experiment
with them in computers. Stephen Wolfram [69] argued at length how important
this new kind of science based on computer simulations is. He advocated a wide
exploration of simple programs, to study their behavior and properties. He ar-
gued that such a new approach is unavoidable if we want to understand complex
dynamics. As a matter of fact, the study of complex dynamical systems will in
most cases not be predictable with simple equations. Wolfram [68, 69] further
conjectured that most systems in nature are computationally irreducible. This
means that to study complex systems, there is no shorter way than to run step
by step the model, and study how it behaves (see also [72] for a general formal
definition of irreducible computation). Such a kind of science can still make pre-
dictions because simulations can be run faster than reality. Studying complex
systems, equations won’t help, simulations will.

Of course, when possible, it is best to aim for absolute and precise predictions
such as in Newtonian science. When this fails, statistical laws are the second
best option. But most real and complex systems may not be predictable in these
two ways. A broader general computational exploration promises to be the way
to understand the rise and evolution of complexity.

My aim in this paper is to propose a computational approach to progress on two
arduous cosmological issues. First, the robustness of the emergence of complexity
in our universe; second, the question of how fine-tuned our universe is.
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The question of the robustness of the emergence of complexity can simply be
illustrated by a thought experiment. What would remain the same if we would
replay the tape of the universe? To address this issue, we introduce the Cosmic
Evolution Equation (CEE). It is a modular conceptual framework to discuss
possible universes, possible cosmic outcomes, the robustness of the universe and
fine-tuning. To define it, we build on Drake’s [19] equation in the Search for
Extraterrestrial Intelligence (SETI) and on the thoughtful discussion of possible
universes by Ellis, Kirchner and Stoeger [23].

The fine-tuning issue is much debated and intricate. The problem is that if
we vary one by one a number of parameters, both in cosmological and standard
particle models, no life or no complexity of any sort emerges (see e.g. [35, 44, 16]).
The issue is mined with logical and probabilistic fallacies (e.g. [39, 14]) as well
as physical fallacies (see e.g. [64, 67, 53]). It is also commonly confused with
other related issues such as free parameters, parameter sensitivity, metaphysical
issues, anthropic principles, observational selection effects, teleology and God’s
existence [67].

Additionally, different discussions of fine-tuning focus on very different cosmic
outcomes. We see fine-tuning discussions regarding the dimensionality of space
[44], the production of carbon atoms in stars [30], the existence of long-lived stars
[1]; the number of black holes [49]; biochemistry [5]; but also complexity of any
sort [20]. A key question to clarify the issue is thus to explicitly ask: fine-tuning
for what? Which cosmic outcome are we interested in? In particular, we will see
that most fine-tuning arguments are poor, since they vary parameters one by
one, which is a fallacy resulting in exploring only 0,00000000000000456 % of the
parameter space under consideration!

To remedy this situation, we generalize the CEE. The Drake equation esti-
mates the number of communicative intelligent civilizations in our galaxy. By
extension, one application of the generalized CEE is to estimate the likelihood
of our particular universe in the space of possible universes. In other words, if
Drake’s equation allows to estimate the probability of life existing “somewhere
in the galaxy”; one application of the CEE is to estimate the more general prob-
ability of life existing “anywhere in the space of possible universes”. Artificial
Cosmogenesis—ACosm for short—is the study of alternative cosmic evolutions
and allows in principle to assess how fine-tuned our universe is.

We first discuss the issues of possible universes and possible cosmic outcomes
(sections 2 and 3). Then we introduce the CEE to discuss the robustness issue
(section 4) and generalize the CEE to address the fine-tuning issue (sections
5-6). By bridging the gap between computer science and cosmology, I hope this
framework will fruitfully pave the way for resolving these two fundamental cos-
mological issues.

2 Possible Universes

What are the possible universes? How can we describe the space of possible
universes? These questions raise enormous logical, metaphysical, philosophical,
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and scientific problems. Although possible universes or possible worlds have been
discussed centrally in the history of philosophy (see e.g. [2, 36], see also [18] for
a wider historical perspective), our aim here is to formulate the issue of possible
universes so that it can progressively exit metaphysics and enter the realm of
operational science.

We now follow Ellis’, Kirchner’s and Stoeger’s [23] definition of the class of
all possible universes. Let M be a structural and dynamical space of all possible
universes m. Each universe m is described by a set of states s in a state space S.
Each universem is characterized by a set P of distinguishing parameters p, which
are coordinates on S. Such parameters will be logical, physical or dynamical. How
will they dynamically evolve? The three authors elaborate:

Each universe m will evolve from its initial state to some final state ac-
cording to the dynamics operative, with some or all of its parameters
varying as it does so. The course of this evolution of states will be repre-
sented by a path in the state space S, depending on the parametrisation
of S. Thus, each such path (in degenerate cases a point) is a representa-
tion of one of the universes m in M . The coordinates in S will be directly
related to the parameters specifying members of M .

In such a procedure, we face a first major issue:

Possibility space issue: What delimits the set of possibilities? What is
the meta-law or meta-cause which determines M?

As the three authors argue, we can’t avoid the meta-law issue, because otherwise
we have no basis to set up a consistent description of M . We need to have a logic
which describes M . There are other difficult issues related to identifying which
different representations represent the same universe models—the equivalence
problem— and the problem of dealing with an infinite space of possible universes.
I refer the reader to the three authors’ paper for more in depth discussions of
these issues.

More directly related to the fine-tuning issue is the remark of Jean-Philippe
Uzan that “the larger the possibility space considered, the more fine-tuned the
actual universe appears to be” (in [23], p923). Indeed, we can easily increase the
unlikelihood of our universe simply by allowing the parameter space to grow. You
could ask for example, did you explore if universes with 42 dimensions generate
life? Do we really want to capture the radical idea of “all that can happen,
happens”? There is much variation in the space of possibility we want to delimit.
Ellis ([21], p1261) distinguishes four levels of variation, weak, moderate, strong
and extreme:

• “Weak variation: e.g. only the values of the constants of physics are
allowed to vary? This is an interesting exercise but is certainly not an
implementation of the idea ‘all that can happen, happens’. It is an ex-
tremely constrained set of variations.
• Moderate variation: different symmetry groups, or numbers of dimen-
sions, etc. We might for example consider the possibility landscapes of
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string theory [24] as realistic indications of what may rule multiverses
[24, 55, 56]. But that is very far indeed from ‘all that is possible’, for
that should certainly include spacetimes not ruled by string theory.
• Strong variation: different numbers and kinds of forces, universes with-
out quantum theory or in which relativity is untrue (e.g. there is an
aether), some in which string theory is a good theory for quantum grav-
ity and others where it is not, some with quite different bases for the
laws of physics (e.g. no variational principles).
• Extreme variation: universes where physics is not well described by
mathematics; with different logic; universes ruled by local deities; allow-
ing magic as in the Harry Potter series of books; with no laws of physics
at all? Without even mathematics or logic?”

We indeed need to make a choice between theoretical physics and magic... or
anything in between.

Do we need to assume an actual multiverse? No we do not. To study the
fine-tuning issue, we need onlypossible or virtual universes, not actually realized
ones. This interpretation still allows us to use the vast multiverse literature to
define and explore possible universes, without making strong and problematic
ontological claims regarding their actual existence.

3 Possible Cosmic Outcomes

Once we settle on a framework to define possible universes, a second major issue
is to specify the parameters which differentiate possible universes:

Cosmic outcomes issue:What are the cosmic outcomes? What are the
milestones of cosmic evolution? What parameters differentiate possible
universes? How do we find those parameters?

As the three authors mention, the values of the parameters may not be known
initially. They may emerge out of transitions from one regime to another. For
example, sociologists do not explore alternative sociological structures by varying
the mass of elementary particles. They start from different, less fundamental
parameters, such as the influence of population density, the climate or the media.
The challenge to understand complexity transitions in cosmic evolution is of
upmost importance and difficulty. For example, how did atoms emerge out of
the big bang era? How did planets form out of stars and stardust? How did
life originate out of molecules? How did consciousness emerge from biological
organisms? Etc.

The ideal of reducing such parameters is a major goal of science. The objec-
tive is to build a consistent theory and narrative of cosmic evolution, which ex-
plains a maximum of cosmic outcomes with a minimum of parameters. Scientific
progress is achieved when new theories capture previously free and unexplained
parameters (see e.g. [64] for an illustration in physics). We could now extend
this attitude to attempt a reduction of other higher parameters (such as life)
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to fundamental physics and cosmic parameters. However, since we are still very
far from such a feat, in our description of possible universes we must assume
explicitly higher parameters. Typically, when researchers tackle the issue of the
origin of life, they don’t start from big bang nucleosynthesis, but they assume
the existence of molecules.

Ellis, Kirchner and Stoeger categorize the parameters from the most basic ones
to the most complex ones. They distinguish different categories of parameters
pj , with j = 1 - 2 describing basic physics; j = 3 - 5 describing cosmology and
a category of parameters j = 6 - 7 related to the emergence of life and higher
complexity.

Each category pj is composed of different parameters i. For example, p1(i) are
basic physics parameters, such that the fine-structure constant; masses, charges
and spins of particles, as well as other dimensionless parameters. I refer the
reader to the detailed description of the parameters given by the three authors.

However, in each parameter category I would like to add explicitly some ran-
dom, chance or noise parameters. For example, these could include for j = 1
- 5 quantum effects in the early universe; or nonlinear chaotic dynamics which
might trigger catastrophic events, such as meteorites impacting planets for j =
7. This would certainly complicate the dynamics, but would also make it much
more realistic. A dynamical argument can even be advanced that such random
events might be essential to the open-ended growth of complexity. An illustra-
tion can be found in engineering with the heuristic of simulated annealing. It
starts by adding important noise into the system, and then gradually reduces
it. The purpose of the noise is to shake the system to reach a maximally stable
configuration.

Now, how do we decide which cosmic outcomes to keep, and which ones to
leave out? At first, we can aim at including a maximum of parameters. Then, we
would progressively reduce the number of parameters, as we get better and better
insights on how they emerge from more fundamental principles and theories; i.e.
from previous parameters. Robert Aunger ([3], p1142-1144) did compile from
many authors a list of more than 100 different cosmic outcomes. This is the most
comprehensive review I am aware of, ranging from the big bang, the formation
of atoms, stars, solar systems, life, DNA, multicellularity, sexual reproduction,
fishes, to mammals, agriculture, modern science and space exploration.

However, we can already anticipate a fallacy lurking when considering a large
list of cosmic outcomes. Similarly to Uzan’s remark for the space of possible uni-
verses, we can note that themore cosmic outcomes we have, the more unlikely they
will seem. The extreme case is to consider one single object as a cosmic outcome.
For example, in intelligent design discussions, they consider a complex object (like
a living organism or an airplane) and try to assess the likelihood that it arose by
chance. Of course this will be very unlikely! Additionally, as Dawkins [17] argues,
natural selection would still constitute a much better candidate explanation than
design. A scientist will look for possible mechanisms, theories, which can explain
the emergence of complexity. The a posteriori probability of a single object iso-
lated from its evolutionary or human context is of weak scientific interest.
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To avoid such an error, we need to advance theoretical reasons to select cer-
tain cosmic outcomes and not others. This is rarely attempted. Most authors
propose an arbitrary list without strong theoretical justification. Ellis, Kirchner
and Stoeger did not justify their choice of distinguishing parameters; although
it is clear that they included a lot of cosmological parameters necessary for their
subsequent study of alternative universes with different geometries.

The most promising avenue of research is to focus on thermodynamics (see e.g.
[47]). Indeed, all systems need to process energy, which is therefore a universal
concept, applicable from the beginning of the universe to our energy hungry
technological society. Robert Aunger [3, 4] built on a thermodynamical theory to
select cosmic outcomes, non-equilibrium steady-state transitions. Each transition
involves first an energy innovation, then a structural adjustment and finally a
new control mechanism. He thus constructed a consistent selection of cosmic
outcomes and evolutionary transitions.

Which cosmic outcomes are contingent and evolutionary? Which ones are
necessary and developmental? Are there attractors in the dynamic of cosmic
evolutionary development? To answer these issues, we need to explore the ro-
bustness of the emergence of complexity. Stated otherwise, if we would re-run the
tape of the universe, would galaxies, stars, biology and technology arise again
and again? The straightforward way to answer those questions, in parallel to a
theoretical rationale like Aunger’s, is indeed to re-run the tape of the universe.
Let us now examine how we can conceptualize and do that.

4 Robustness in Cosmic Evolution

what would remain the same if the tape of life were replayed?
Stephen Jay Gould [25]

what would remain the same if the tape of the universe were replayed?
Paraphrasing Gould’s question to the universe [62]

Answering this latter question, Paul Davies ([15], p317) wrote that if “the uni-
verse were re-run a second time, there would be no solar system, no Earth and no
people. But the emergence of life and consciousness somewhere and somewhen
in the cosmos is, I believe, assured by the underlying laws of nature.” Those
claims, as Davies acknowledges, are only informed intuitions. How can we test
this intuition or different ones scientifically? This is the issue of the robustness
of the emergence of complexity in cosmic evolution.

A first analysis of the tape metaphor shows its limits. Indeed, if the tape and
its player were perfect, we should get exactly the same results when re-running
the tape. So, the thought experiment would be trivial. Yet if our universe self-
constructs, one question is whether small fluctuations, chance events, noise or
random perturbations would lead to slightly different outcomes, or very different
ones. This makes the issue of robustness in cosmic evolution highly stimulating.
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It is very hard to tackle because it is linked to a great weakness of cosmology
as a science: it has only one object of study, our unique universe. More precisely,
we can distinguish two fundamental limitations that Ellis ([21], 1216) pointed
out:

Thesis A1: The universe itself cannot be subjected to physical
experimentation. We cannot re-run the universe with the same or al-
tered conditions to see what would happen if they were different, so we
cannot carry out scientific experiments on the universe itself. Further-
more,

Thesis A2: The universe cannot be observationally compared
with other universes. We cannot compare the universe with any sim-
ilar object, nor can we test our hypotheses about it by observations de-
termining statistical properties of a known class of physically existing
universes.

Our thesis is that it is possible to address those limitations and the issue of ro-
bustness by running computer simulations of our universe. It is important to note
that if we replay the tape of our universe, we don’t aim to actually explore the
full space of possible universes. Here, we only aim to assess the robustness of the
emergence of the different cosmic outcomes. We thus vary only nondeterministic
dynamical parameters we discussed above (quantum mechanical effects, random
perturbations, nonlinear chaotic dynamics, etc.). An open question is also how
we vary the random parameters. How often? How strong is the variation? Vari-
ous distributions can be tested, from gaussian distributions, where most random
variations are of an average strength, few are weak or strong; to power-law dis-
tributions, where there are few very strong variations, some medium variations,
and most of the time weak random variations.

Because of the inclusion of such parameters, it makes sense to re-run the
same universe simulation. By running a multitude of times the simulation, it
will be possible to make statistics on the emergence of complexity. An even
more straightforward way to make such statistics would be to drastically in-
tensify astrobiology—the search for extraterrestrials. If or when we will find
extraterrestrials, we would be able to progressively study the “natural re-runs”
of complexity. Additionally, searching for extraterrestrials more complex than us
would force us to break with the implicit anthropocentric assumption that life
and humans on Earth are the highest development in cosmic evolution. This in-
vites us to speculate on the existence of higher cosmic outcomes, and this opens
the way to test our theories of the general evolution of cosmic complexity (see
e.g. [10, 65] for modern views on the search for advanced extraterrestrials).

An example of ambitious simulations of our universe are the Millennium run
simulations [50, 9, 27]. The authors studied the formation, evolution and clus-
tering of galaxies and quasars within the standard (or concordance) model of
cosmology. Although they did not run the same simulation in its full complexity
many times, the volume space explored is large enough to extract meaningful
statistical properties on the evolution of the distribution of matter.
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Replaying the tape of our entire universe is still a much more ambitious
project, which at present remains unrealistic. We should remain aware that our
current models and their associated free parameters are most likely not the ulti-
mate ones. Of course, new theories need to be developed to know what the key
parameters of our universe are. In the meantime, a way to progress is to break
down the issue into smaller solvable problems. For example, if we want to tackle
the robustness up to the emergence of intelligent life, we can write a generalized
Drake equation ([23], p925) that we call the Cosmic Evolution Equation:

Nlife(m
∗) = Ng · NS · fS · fp · ne · fl · fi

where Nlife(m
∗) is the number of planets with intelligent life in our particular

universe m∗; and

• Ng is the number of galaxies in the model
• NS is the average number of stars per galaxy

• fS is the fraction of stars suitable for life

• fp is the fraction of such stars with planetary systems
• ne is the mean number of planets which are suitable habitats for life

• fl is the fraction of planets on which life originates
• fi is the fraction of life bearing planets with intelligent life.

There are many implicit assumptions in such a framework, for example that life-
supporting stars will be Sun-like; or that life starts necessarily on planets and
not on more exotic places. We also implicitly assume that the parameters are
independent. To deal with dependent parameters, one would need to introduce
a bayesian probability framework. Additionally, we may have clear definitions
of what stars or galaxies are, but the issues of defining higher cosmic outcomes
such as life or intelligence remain of huge scientific debate.

The factors Ng and NS can nowadays be estimated, while the recent explosion
of exoplanets discoveries is allowing us to estimate more and more precisely the
factors fS · fp · ne. However, huge uncertainties remain regarding the last two
factors fl · fi.

The main interest of such a framework—whether we consider these seven
factors to be most relevant or others—is that we can in a first approximation
estimate the factors independently. Additionally, the more we progress in our
knowledge of the universe, the larger the distance between factors we can assess.
For example, assessing the number of planets with intelligent life knowing only
the number of galaxies seems very hard. But shorter distances between factors
are easier to assess. For example, Miller’s [40] famous experiment tells us that
the probability to have amino acids out of a primordial soup and some energy
source is high. Which is indeed an important insight to evaluate ne · fl.

Let us now imagine that we run multiple times a model of our entire universe
m∗. We would be able to interpret the results of the multiple runs of the simula-
tion as a set of virtual universes. We would end up with a distribution function
f(m∗) combining the probability distributions obtained for each factor.
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However, we need to further specify a possibility space, which in this case is
M∗ resulting from the variation of random parameters only; and a measure π∗

on M∗. Such a virtual ensemble of simulated universes V would thus be defined
as:

V = {M∗, π∗, f(m∗)}

The number of planets with intelligent life would then be:

Nlife(m
∗) =

∫
Ng · NS · fS · fp · ne · fl · fi · π∗

Note that the integral is necessary to normalize the result according to the
measure π∗ and distribution function f(m∗).

There are important and subtle issues to make this normalization sound and
possible (see again[23]).

Let us give some more concrete possible results such simulation studies would
bring. We might conclude that our universe is robust for galaxy-formation, i.e.
most simulation runs lead to galaxy formation.

But still, it might turn out that our universe is not robust for intelligent life,
i.e. most simulations do not lead to the emergence of intelligent life.

We can now take a fresh eye on our question: are cosmic outcomes necessary
or contingent? We can define a cosmic outcome as necessary if it appears again
and again as we re-run the same universe simulation, as contingent otherwise.
For example, let us take the DNA code in biology: is it necessary that there is a
unique DNA code for terrestrial or extraterrestrial biology? In a similar fashion,
in economy, is it a necessity in civilizational development that monetary systems
converge to a common currency?

We can also compare the cosmic outcome selections. On the one hand we
would have the ones resulting from “simulation experiments” (see e.g. [32] for a
discussion); and on the other hand the theoretical approaches (such as Aunger’s).
Simulation experiments in cosmology can play the role that empirical experi-
ments play in other sciences. This approach can be called “cosmology in silico”
or “computational cosmology”. In fact, these endeavors are already developing
quickly, as illustrated by the Virgo Consortium for Cosmological Supercomputer
Simulations.

We have just begun to explore how robust the emergence of complexity in our
universe is. If we want to understand it better, we need to perform computer
simulations and use existing conceptual, mathematical and statistical tools to
design simulation experiments and to assess the results.

However interesting and important this enterprise is, it does not tackle the
fine-tuning issue. Indeed, in studying the robustness of our universe, we try to
understand the emergence of complexity in our universe, whereas to address
fine-tuning we must study the place of our particular universe in the space of
possible universes.
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5 Artificial Cosmogenesis or the Study of Alternative
Cosmic Evolutions

Now, we create a considerable problem. For we are tempted to make statements
of comparative reference regarding the properties of our observable Universe
with respect to the alternative universes we can imagine possessing different

values of their fundamental constants. But there is only one Universe; where do
we find the other possible universes against which to compare our own in order

to decide how fortunate it is that all these remarkable coincidences that are
necessary for our own evolution actually exist?

Barrow and Tipler ([6], p6)

you might end up having a future subject which is “comparative
universality”—we have all these laws for the universe that cannot be eliminated
as ours and you study them, you talk about them, you compare them, this could

be a future subject. Students would be required to pass exams on their ten
possible favorite universes ...
Gregory Chaitin ([1], p339)

This first quote by Barrow and Tipler summarizes the core problem of fine-
tuning. The second quote by Chaitin illustrates a core idea towards its resolution.
With the robustness issue, we have focused on our universe. To assess in how far
our universe is fine-tuned, we must study the place of our universe in the space
of possible universes. We call this space the virtual multiverse.

Fine-tuning arguments vary just one parameter, a fallacy which is nearly
always committed. The underlying assumption is that parameters are indepen-
dent. As Stenger ([53], p70) remarks, this is “both dubious and scientifically
shoddy”. If the history of physics learned us something, it is that phenomena
which where thought to be widely independent, turned out to have common
underlying causes and principles. For example, our common sense fails to see
a connection between the fall of an apple and the tides; magnetism and elec-
tricity; and even less between space, time and the speed of light. But all these
phenomena have been unified thanks to physical theories.

Additionally, varying several parameters without care can lead to what is
known as the one-factor-at-a-time (OAT) paradox in sensitivity analysis. The
problem with the OAT method is that it is non-explorative. Let us see why.
At first sight, it seems logical and rigorous, since it varies factors one-at-a-time
while keeping the others constant. It seems consistent because the output from
a change can be attributed unambiguously to the change of one factor. It also
never detects non-influential factors as relevant. However, by construction, this
method is non-explorative, with exploration decreasing rapidly with the number
of factors. For a simple example, consider Figure 1, which shows clearly that
OAT explores only 5 points forming a cross, out of 9 points in total.

Let us now generalize this example with a geometrical interpretation of the
parameter space. In n-dimensions, the n-cross will necessarily be inscribed in
the n-sphere. The problem is that this n-sphere represents a small percentage
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[-1, 1]

[-1, 0]

[-1, -1]

[1, 1]

[1, 0]

[1, -1]

[0, 1]

[0, 0]

[0, -1]

Fig. 1. The one-factor-at-a-time method can only reach points on the cross. In this
simple two-dimensional parameter space, each discrete factors can only take values 0,
1 or -1. OAT can reach [0, 0], [0, 1], [0, -1] (points on the vertical line); and [-1, 0], [1, 0]
(points on the horizontal line). The points explored are thus on a cross. The points not
explored are the corners [-1, 1], [-1, -1], [1, 1], [1, -1]. In a geometrical interpretation,
note that the cross is by construction inscribed in the circle. But OAT actually restricts
the exploration to points on the cross, not inside the circle because exploring points
inside the circle would imply varying two parameters at the same time. Now, that cross
itself is inscribed in the circle. In sum, OAT restricts the exploration to the cross, not
the circle, but the cross is inscribed in the circle. And this circle is inscribed in the
square (2-cube), which is why OAT can’t reach the corners of the square.

of the total parameter space defined by the n-cube. This is illustrated in Figure
1, where the cross explored is inscribed in the circle of center [0, 0] and radius
1. In this 2-dimensional example, the ratio of the partially explored to the total
area—i.e. the square minus the circle—is r ≈ 0,78. The problem gets quickly
worse as we increase the number of dimensions. In 3 dimensions, r ≈ 0,52 and in
12 dimensions, r ≈ 0,000326 (see [46] for those calculations, as well as critiques
and alternatives to OAT).

Fine-tuning arguments typically vary one parameter at a time. So, they use
the OAT method to explore the space of alternative universes by varying one
by one some of the 31 fundamental physics and cosmic parameters. They actually
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explore only r ≈ 4, 56.10−15 of the parameter space. We conclude that such fine-
tuning arguments have restricted their exploration to 0,00000000000000456 %
of the relevant parameter space!1 Can we hope to explore more of this space?
How can we proceed?

Let us first call a fecund universe a universe generating at least as much com-
plexity as our own. Are fecund universes rare or common in the multiverse?
This is the core issue of fine-tuning. To answer it demands to explore this vir-
tual multiverse. Milan Ćirković [13] and I both converged on this conclusion.
Ćirković used the metaphor of sailing the archipelago of possible universes; I
proposed to perform simulations of possible universes, an endeavor called Artifi-
cial Cosmogenesis (or ACosm, see [62];[64]; and also [60]; [61] for critiques; and
[66] for replies). Such simulations would enable us not only to understand our
own universe (with “real-world modelling”, or processes-as-we-know-them) but
also other possible universes (with “artificial-world modelling”, or processes-as-
they-could-be). We thus need to develop methods, concepts and simulation tools
to explore the space of possible universes (the “cosmic landscape” as Leonard
Susskind [55] calls it in the framework of string theory). In [62], I proposed to call
this new field of research Artificial Cosmogenesis because it sets forth a “general
cosmology”, in analogy with Artificial Life (ALife) which appeared with the help
of computer simulations to enquiry about a “general biology”. However, recent
work on the EvoGrid2 simulation project suggests that the growth of complexity
is more likely to remain open-ended if stochastic, non-deterministic processing
is used at the bottom, instead of deterministic rules, like in ALife.

Now that we have a framework to define possible universes, we will need to
generalize the “Cosmic Evolution Equation” we used to assess the robustness of
our universe to explore not only our universem∗, but also all universesm element
of the wider class of possible universes M . This constitutes a rigorous approach
to assess how fine-tuned our universe is. However, it is important to understand
that the results of such studies would not ipso facto provide an explanation of
fine-tuning. Only if it turns out that our kind of complex universe is common,
then an explanation of fine-tuning would be a principle of fecundity: “there is
no fine-tuning, because intelligent life of some form will emerge under extremely
varied circumstances” ([57], p4).

Most fine-tuning arguments change just one parameter at a time and conclude
that the resulting universe is not fit for developing complexity. This leads to the
“one-factor-at-a-time” paradox. What if we would change several parameters
at the same time? Systematically exploring the multiple variation of parameters
seems like a very cumbersome enterprise. As Gribbin and Rees wrote ([26], p269):

1 I used the formulae in ([46], 1510) for this calculation. Note that this assumes that
we can put upper and lower boundaries on each of the parameters, which is not at all
warranted for physics and cosmic parameters. Note also that this is a very generous
estimate, since the actual exploration of OAT will only be a tiny n-cross within the
volume of the n-sphere, which itself represents only 4, 56.10−15 of the full parameter
space defined by the n-cube.

2 http://www.evogrid.org

http://www.evogrid.org/
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If we modify the value of one of the fundamental constants, something
invariably goes wrong, leading to a universe that is inhospitable to life
as we know it. When we adjust a second constant in an attempt to fix
the problem(s), the result, generally, is to create three new problems for
every one that we “solve”. The conditions in our universe really do seem
to be uniquely suitable for life forms like ourselves, and perhaps even for
any form of organic complexity.

Back in 1991, it indeed seemed very difficult to explore and find alternative uni-
verse. However, a way to overcome this problem is to use computer simulations
to test systematical modifications of parameters’ values. In varying just one pa-
rameter, parameter sensitivity arguments have only begun to explore possible
universes, like a baby wetting his toes for the first time on the seashore. Surely,
we had to start somewhere. But it is truly a tiny exploration. Furthermore,
maybe there is a deep link between the different constants and physical laws,
such that it makes no sense to change just one parameter at a time. Changing a
parameter would automatically perturb other parameters (see [11], p1581). For-
tunately, more recent research have gone much further than these one-parameter
variations.

What happens when we vary multiple parameters? Let us first generalize the
Cosmic Evolution Equation, which this time includes other possible cosmic evo-
lutions—notice the plural! Let us imagine that we run multiple times simulations
of different models of universes m. We interpret the results of the multiple runs
of the simulations as a set of virtual universes. We end up with a distribution
function f(m) combining the probability distributions obtained for each factor
of the CEE. Let us mention that, based on modern developments in computer
science, there is another more theoretical way to study and choose distribution
functions for possible universes (see the remarkable study of Schmidhuber [48]).

The possibility space is the huge M resulting from the definition of possible
universes; and we add a measure π on M . The resulting ensemble of simulated
universes E would thus be defined as:

E = {M,π, f(m)}
The number of planets with intelligent life would then be:

Nlife(m) =

∫
Ng · NS · fS · fp · ne · fl · fi · π

We are now talking about cosmic outcomes in other universes. The topic be-
comes quite speculative, because it is not clear at all which cosmic outcomes
are the most relevant to assess. The factors in the equation above might be
totally irrelevant. What if other possible universes do not generate objects like
galaxies, stars and planets, but completely different kinds of complex structures?
Nothing that we know may evolve anymore... but other things might! We now
see the fundamental importance to define cosmic outcomes and the emergence
of complexity in a very general manner, so they can also apply to other possi-
ble universes. Bradford [11] proposed such a framework when he wrote about
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sequences of entropy reduction. Aunger’s [3] systems theoretical approach in
terms of energy innovation, organization and control is also a higher-level ap-
proach. Valentin Turchin [58] also proposed a cybernetic theory of complexity
transitions with the central concept of metasystem transition. Theoretical com-
puter science measures such as algorithmic complexity (see e.g. [22]) or logical
depth [8] are also precious tools to assess the complexity of systems in a uni-
versal manner. But these are just a few examples of frameworks to tackle the
general, fascinating and fundamental problems of the evolution and measure of
complexity (see also [7] for a discussion in the context of Artificial Life).

We already saw that higher outcomes fl·fi are harder to assess. This is precisely
where computer simulations can be very helpful. Typically, there are so many
local interactions in the evolution of complex organisms that it is hard to analyze
them analytically with a deterministic science approach. For example, there is
not one single equation which allows to predict the development of an embryo.

Let us now outline some remarkable alternative complex universes that re-
searchers recently studied. Gordon McCabe studied variations on the standard
model of particles, by changing the geometrical structure of space-time. The
result is not the end of any complexity, but just the beginning of a new set of
elementary particles. McCabe ([38], 2:38) elaborates:

Universes of a different dimension and/or geometrical signature, will pos-
sess a different local symmetry group, and will therefore possess differ-
ent sets of possible elementary particles. Moreover, even universes of the
same dimension and geometrical signature will not necessarily possess
the same sets of possible particles. To reiterate, the dimension and geo-
metrical signature merely determines the largest possible local symmetry
group, and universes with different gauge fields, and different couplings
between the gauge fields and matter fields, will possess different local
symmetry groups, and, perforce, will possess different sets of possible
particles.

It thus seems that we can vary basic physics parameters without compromising
all kinds of cosmic evolution. Who knows what kind of complexity can emerge
from this new set of particles?

As an illustration of their framework to define the multiverse, Ellis, Kirchner
and Stoeger [23] did examine some parameter variations in Friedmann-Lemâıtre-
Robertson-Walker (FLRW)

models. They found life-allowing regions in a phase space described by the
evolution of FLRW models. The fact that they found regions and not a single
point in the phase space shows that there is room for some variation. So it seems
that we can vary fundamental geometrical cosmological parameters without pre-
cluding the apparition of life.

Harnik, Kribs and Perez [28] constructed a universe without electroweak in-
teractions called the Weakless Universe. They show that by adjusting standard
model and cosmological parameters, they are able to obtain:
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a universe that is remarkably similar to our own. This “Weakless Uni-
verse” has big-bang nucleosynthesis, structure formation, star formation,
stellar burning with a wide range of timescales, stellar nucleosynthesis up
to iron and slightly beyond, and mechanisms to disperse heavy elements
through type Ia supernovae and stellar mergers.

This is a truly remarkable result because the cosmic outcomes are numerous,
relatively high and non trivial. Three factors in the CEE are addressed more
or less directly: Ng · NS · fS . Maybe strong living creatures could live in the
weakless universe? This remains to be investigated.

Anthony Aguirre [2] did study a class of cosmological models “in which some
or all of the cosmological parameters differ by orders of magnitude from the
values they assume in the standard hot big-bang cosmology, without precluding
in any obvious way the existence of intelligent life.” This study also shows that it
is possible to vary parameters widely without obviously harming the emergence
of complexity as we know it.

Robert Jaffe, Alejandro Jenkins and Itamar Kimchi [31] pursued a detailed
study of possible universes with modified quark masses. They define congenial
worlds the ones in which the quark masses allow organic chemistry. Again, they
found comfortable regions of congeniality.

Fred C. Adams [1] has conducted a parametric survey of stellar stability. He
found that a wide region of the parameter space provides stellar objects with
nuclear fusion. He concludes that the “set of parameters necessary to support
stars are not particularly rare.”

An early attempt to explore alternative universes with simulations has been
proposed by Victor Stenger [51, 52]. He has performed a remarkable simulation
of possible universes. He considers four fundamental constants, the strength of
electromagnetism α; the strong nuclear force αs, and the masses of the electron
and the proton. He then analysed “100 universes in which the values of the
four parameters were generated randomly from a range five orders of magnitude
above to five orders of magnitude below their values in our universe, that is,
over a total range of ten orders of magnitude” [52]. The distribution of stellar
lifetimes in those universes shows that most universes have stars that live long
enough to allow stellar evolution and heavy elements nucleosynthesis. Stenger’s
initial motivation was to refute fine-tuning arguments, which is why he ironically
baptised his simulation “MonkeyGod”. The implicit idea is that even a stupid
monkey playing with cosmic parameters can create as much complexity as God.

In conclusion, other possible universes are also fine-tuned for some sort of
complexity! Those remarkable studies show consistently that alternative com-
plex universes are possible. One might object that such explorations do not yet
assess the higher complexity factors in the CEE. They do not answer the fol-
lowing key questions: would other interesting complex structures like planetary
systems, life, intelligence or technology evolve in those other universes? However,
these are only early attempts in conceptualizing and simulating other possible
universes, and the enterprise is certainly worth pursuing. The fine-tuning issue
could then be seriously tackled, because we would know more and more precisely
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the likelihood of having our universe as it is, by comparing it to other possible
universes. Such pioneering studies are just a beginning, and certainly new studies
will come up with more and more complex alternative universes.

6 Summary

Let us now summarize the three main steps necessary to assess how fine-tuned
our universe is.

(1) Define a space M of possible universes

(2) Explore this space

(3) Assess the place of our universe in M

Let us review step (1). Our analysis of the historical trends regarding free param-
eters [64] invites us to start with a weak variation, i.e. varying free parameters in
physical and cosmological models. Why not vary the laws of physics themselves?
It seems a very cumbersome enterprise, because we do not even know how to
make them vary (see [59]). It can also be dubious to do so, since the distinction
between laws and initial or boundary conditions is fuzzy in cosmology [21].

This suggestion to focus on weak variation makes most sense for the following
reasons. First, it is concrete and operational, and has a clear meaning with well
established physics. Second, we assume supernatural miracles happening in the
middle of cosmic evolution to be—by definition—impossible. We assume there
is a consistency and continuity in cosmic evolution. We hypothesize that higher
level parameters are ultimately reducible to these physics and cosmic ones. The
emergent higher levels occur naturalistically. Of course, this remains to be shown,
and for practical purposes we might assume as given such higher level parameters
in our studies and simulations. New levels of emergence, new levels of complexity
did historically emerge from lower levels, even if complicated top-down causation
occurs (see e.g. [22]). Take for example an economic law like the law of supply and
demand. It did not and could not exist before the apparition of organized human
civilizations. It emerged out of such new organizations. It seems that what we
call “natural laws” are simply the result of more and more regular interactions.
For example, as the universe cools down, new organizations emerge. Again, it is
clear that a few billion years ago, there was no economic laws.

We also need to be more specific to apply probabilities to the ensemble of
possible universes, and avoid probabilistic fallacies. For example, we must decide,
arbitrarily or not, parameter’s upper and lower bounds. This is necessary for
all practical purposes, because we can not explore the parameter space of all
parameters varying from −∞ to +∞. We thus need to define the maximum
deviation allowed for each parameter.

We must beware of one-factor-at-a-time limitations and paradox. We must
also define a probability measure on the parameter space. I refer the reader
to [33] and [23] for detailed arguments that measure-theoretical grounds can
be specified to assess fine-tuning. It is also crucial to define cosmic outcomes
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to specify the object of fine-tuning we aim to address. Do we talk about fine-
tuning for nucleosynthesis? atoms? Stars? Life? Intelligence? Or a more general
complexity emergence?

Step (2) requires to explore this space. The simplest exploration is to re-run
the tape of our universe. But this only tackles the issue of the robustness of
the universe. If we want to address the fine-tuning issue we must also run and
re-run tapes of other possible universes. This will bring us insights into how our
and other universes are parameter sensitive, and generate complex outcomes.
Although we always need good theoretical models to start with, it is necessary
to use computer simulations to explore the huge parameter landscape we are
talking about. That landscape is not just very big, but really huge. Because we
don’t want to and do not have the resources to explore the space blindly, it also
makes most sense to use simulations to test particular hypotheses and theories.
As an application, if we take Lee Smolin’s [49] cosmological natural selection
theory, and find alternative universes with more black holes (the cosmic outcome
under consideration) by tweaking parameters, it is a way to falsify the theory.

The last step (3) is to compare the distribution functions of the cosmic out-
comes obtained through simulations, to the space M of possible universes. In
other words, we assess the probability to find a universe with outcome O. Note
that this is the crucial difference between tackling the robustness and the fine-
tuning issue. In robustness analysis, we run multiple times the same universe
simulation changing only the random dynamical parameters. We compare mul-
tiple runs of the same universe. In fine-tuning analysis, we run multiple different
universe simulations, changing a wide number of parameters. We compare our
universe to the set of possible universes. How typical or atypical is our universe
in the space of possible universes? The results of such simulation experiments
will enable us to answer this question. Ideally, we will be in a position to assess
the likelihood or unlikelihood of complexity emergence in the space of possi-
ble universes. Even better than assessing specific cosmic outcomes, which might
bias us to a universe-centric perspective, we can aim to assess the probability
to find universes which display open-ended evolutionary mechanisms leading to
ever increasingly complex cosmic outcomes.

To the traditionally trained cosmologist, this enterprise might seem totally
unconventional. And it is, because it is a new kind of computational science. This
is why we can call it Artificial Cosmogenesis. It might also seem out of reach.
As I argued elsewhere, since the sheer computational resources grow more than
exponentially, this allows us in principle to increase accordingly the complexity
and richness of our computer simulations [62].

Additionally, engineers and professional model makers have developed a wide
variety of tools to test multiple variables, rarely used in cosmological contexts.
Let us just mention of few of them. A starting point is to use the tools of global
sensitivity analysis (see e.g. [45]).

These include advanced statistical approaches such as latin hypercube sam-
pling, multivariate stratified sampling or Montecarlo simulations for finding dy-
namic confidence intervals. Systems dynamics and engineering have also many
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tools to offer such as phase portraits or probabilistic designs. The classic book by
John D. Sterman [54] remains a reference and quite comprehensive introductory
book on complex systems modeling and simulations.

Let us now be scrupulous. What is a proof of fine-tuning? Let n be the number
of free parameters. We have a logical and statistical version of what a proof of
fine-tuning would be:

Logical proof of fine-tuning: If you vary one parameter, there exists
no possible universe generating outcome O by adjusting the (n−1) other
parameters.
Which is equivalent to:
if you vary one parameter, there is no way whatsoever that all other
possible universes can generate outcome O.

Probabilistic proof of fine-tuning: If you vary one parameter, ad-
justing the (n−1) other parameters will not make outcome O more likely.
Which is equivalent to:
if you vary one parameter, there is no way whatsoever that all other
possible universes can generate outcome O with a higher probability.

In sum, you need to have explored the relevant parameter space of possible
universes to make serious claims about fine-tuning. Pretty hard to prove! This
is even harder for outcomes as advanced as life or intelligence.

Our conclusion is that fine-tuning for life or intelligence remains a conjecture.
Like in mathematics, we have strong reasons to believe the conjecture is true,
but a proof is out of reach and certainly requires a huge amount of work. As a
matter of fact, the challenge of simulating possible universes and comparing them
is overwhelming. This is why the concept of the cosmic outcome is so important
to ease the process. Indeed, we can break down the problem and progress by
tackling higher and higher outcomes, with more and more connection between
outcomes. We don’t need nor can assess all outcomes at once in the CEE. As
our understanding, modeling capacities and computational resources increase,
we can be more ambitious in simulating more and more as well as higher and
higher outcomes in cosmic evolution. I am well aware of the highly ambitious
research program that ACosm proposes. However, the good news is that there is
work for many generations of scientists. Tomorrow’s cosmology is not restricted
to empirical observations or highly theoretical models. It is also the science of
simulating and experimenting with alternative universes.

7 Conclusion

Up to now, discussions about possible universes were chiefly a metaphysical
recreation. We advanced conceptual foundations to study possible universes sci-
entifically, with the help of computer simulations. This approach is needed if
we take seriously the thesis of computational irreducibility, namely that most
complex systems are theoretically impossible to predict in a deterministic or
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statistical manner. A more general computational kind of science is needed. We
applied this new kind of science to cosmology, to address two key cosmological
issues: the robustness of the emergence of complexity, and the fine-tuning of the
universe.

We first formulated the issues of defining possible universes, and possible
cosmic outcomes (sections 2 and 3).

Based on previous work, we defined a modular “Cosmic Evolution Equation”
(CEE). This equation can have many applications to define research agendas in
computational cosmology. In particular, to tackle our two issues, we adjusted
the CEE by varying the space of possible universes it acts upon, to study either
the robustness (section 4) or the fine-tuning issue (5).

Importantly, we considered only a virtual multiverse, that we define within
our concrete models and simulations. This is in sharp contrast with speculations
about an actual multiverse, an idea quite common in modern cosmology, yet
often criticized for being hard or impossible to test scientifically.

To address the delicate fine-tuning issue, we further argued that studies and
simulations of alternative possible universes are demanded, a research field called
Artificial Cosmogenesis (ACosm, sections 5-6). This field is actually not new,
since we outlined quite some research which have examined alternative possible
universes. Yet these studies are really just beginning to explore possible uni-
verses, and ACosm holds great promise to further investigate whether and how
our universe and others generate increasing complexity.

Acknowledgments. I thank Rick Bradford, Bruce Damer, Jean-Paul Delahaye,
Francis Heylighen, Tomás Igor Veloz González, Stanley Salthe, and William
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A Appendix - Argumentative Maps

Fig. 2 maps the problem described in introduction, while Fig. 3 maps the core
argument presented in the paper. Please read in a top-down direction. More
details on argumentation mapping can be found in [62].

Fig. 2. The core problem
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Fig. 3. The proposed solution
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1 Introduction

The philosopher Gottfried Wilhelm von Leibniz is perhaps best known for the
fierce controversy that arose between him and Sir Isaac Newton over the in-
vention of calculus. The S-like integral sign that we use to this day is in fact a
notation invented by Leibniz.

When Leibniz was a youth of nineteen, he wrote a paper called “De Arte
Combinatorica”, in which he tried to formulate a universal algebra for reasoning,
in the hope that human thought might some day be reducible to mathematical
calculations, with symbols or characters standing for thoughts.

But to return to the expression of thoughts by means of characters, I thus
think that controversies can never be resolved, nor sectarian disputes be
silenced, unless we renounce complicated chains of reasoning in favor of
simple calculations, and vague terms of uncertain meaning in favor of
determinate characters. In other words, it must be brought about that
every fallacy becomes nothing other than a calculating error, and every
sophism expressed in this new type of notation becomes in fact nothing
other than a grammatical or linguistic error, easily proved to be such by
the very laws of this philosophical grammar.

Once this has been achieved, when controversies arise, there will be
no more need for a disputation between two philosophers than there
would be between two accountants. It would be enough for them to pick
up their pens and sit at their abacuses, and say to each other (perhaps
having summoned a mutual friend): “Let us calculate.”1

Let’s refer to this notion as Leibniz’s dream – the dream of finding a logical
system to decide all of the things that people might ever disagree about. Could
the dream ever work?

1 The quote is from Leibniz and Gerhardt (1978), volume VII, p. 200. The passage is
translated by the British philosopher George MacDonald Ross and can be found on
his website.
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Even if the dream were theoretically possible (which it isn’t), as a practical
matter it wouldn’t work anyway. If a universal algebra for reasoning had come
into existence, would, for instance, Leibniz have been able to avoid his big argu-
ments with Newton? Not likely. People don’t actually care all that much about
logic, not even Leibniz. We just pretend to like logic when it happens to be on
our side – otherwise we very often abandon logic and turn to emotional appeals.
This said, there’s a powerful attraction to Leibniz’s dream. People like the idea
of finding an ultimate set of rules to decide everything. Physicists, for instance,
dream of a Theory of Everything. At a less exalted level, newspapers and TV
are filled with miracle diets – simple rules for regulating your weight as easily
as turning a knob on a radio. On the ethical front, each religion has its own
compact set of central teachings. And books meant to help their readers lead
happier lives offer a simple list of rules to follow.

But, as I hinted above, achieving Leibniz’s dream is logically impossible.
In order to truly refute Leibniz’s dream, we need to find a precise way to for-

mulate it. As it happens, formal versions of Leibniz’s dream were first developed
early in the Twentieth century.

An early milestone occurred in 1910, when the philosophers Bertrand Russell
and Alfred North Whitehead published their monumental Principia Mathemat-
ica, intended to provide a formal logical system that could account for all of
mathematics. And, as we’ll be discussing below, hand in hand with the notion of
a formal system came an exact description of what is meant by a logical proof.
There were some problems with the Russell-Whitehead system, but by 1920, the
mathematician David Hilbert was confident enough to propose what came to be
known as Hilbert’s program.

1. We will discover a complete formal system, capable of deciding all the ques-
tions of mathematics.

2. We will prove that this system is free of any possible contradiction.

As Hilbert put it, “The conviction of the solvability of every mathematical prob-
lem is a powerful incentive to the worker. We hear within us the perpetual call:
There is the problem. Seek its solution. You can find it by pure reason, for in
mathematics there is no ignorabimus.”

For a decade, scientists could dream that Hilbert’s program might come true.
And meanwhile mathematics and much of physics were being recast as formal
systems. Scientific theories could now be viewed as deterministic processes for
determining the truth of theorems. Leibniz’s dream was nearly at hand! But,
then, in 1931, the logician Kurt Gödel proved his celebrated Incompleteness
Theorem.

Gödel’s Incompleteness Theorem. If F is a consistent formal system as powerful
as arithmetic, then there are infinitely many sentences which are undecidable
for F .
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This means there can never be formal system of mathematics of the kind sought
by Hilbert’s program. Every formal system F about mathematics is incomplete
in the sense that there are sentences G such that F fails to prove G or ∼ G,
where ∼ G is the negation of G.

Gödel’s sentences G take the form of statements that certain algebraic formu-
las have no solutions in the natural numbers. Normally these sentences include
at least one very large numerical parameter that in some sense codes up the
entire theory F . And a typical Gödelian sentence G is in some sense asserting
“I am not provable from the theory F .” Wolfram ([11] p. 790) has suggested
that there might be some much simpler undecidable Gödelian sentences, and
proposes that the following sentence might be undecidable: “For all m and n,
m2 �= n5 + 6n+ 3.”

Philosophers of science have wondered if there is something like an Incom-
pleteness Theorem for theories about the natural world. One somewhat awkward
approach might be to argue that if the natural world happens to be infinite, then
we can in some sense represent the system of natural numbers as a list of ob-
jects within the world and then go on to claim that the usual undecidable Gödel
statements about arithmetic are also statements about the natural world.

But, as I discuss in ([3] p. 290), this isn’t a satisfying approach. If we wanted
to have number theory be a subset of a theory W about the physical world, we’d
need for W to single out an infinite set of objects to play the role of the numbers,
and W would also need to define relations the correspond to numerical addition
and multiplication.

What we really want is a proof–or at least a plausibility argument–for a Nat-
ural Incompleteness Theorem that asserts the existence of undecidable sentences
that are about natural physical processes–as opposed to being about the natural
numbers in disguise.

Wolfram’s analysis of computation in A New Kind of Science opens a path.
The first step is to accept the idea that natural processes can be thought of
as computations. And the second step is to argue for some form of Wolfram’s
Principle of Computational Equivalence.

Wolfram’s Principle of Computational Equivalence (PCE): Almost all processes
that are not obviously simple can be viewed as computations of equivalent so-
phistication.

In this essay I’ll show that, starting from Wolfram’s two steps, we can prove
a Natural Incompleteness Theorem. My method will be to make use of Alan
Turing’s 1936 work on what he called unsolvable halting problems. And rather
than using the full strength of Wolfram’s somewhat controversial Principle of
Computational Equivalence, I’ll base my argument on a weaker assumption,
which I call the Halting Problem Hypothesis. And we’ll end up with the following
Natural Incompleteness Theorem.
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Natural Incompleteness Theorem. For most naturally occurring complex pro-
cesses and for any correct formal system for science, there will be sentences
about the process which are undecidable by the given formal system.

This is, I believe, a clean statement of new result–and may be of real importance
to the philosophy of science. Although Wolfram ([11] p. 1138) gives some specific
examples of undecidable statements about natural processes, he fails to state the
general Natural Incompleteness Theorem.

2 The Halting Problem Hypothesis

It’s traditional to ask if a computation comes to an end, or if it halts. We can
extend our language a bit and speak of a natural process as halting it hap-
pens to reach or to pass through some particular designated state. The estab-
lished results about the narrow sense of halting apply to this generalized sense
as well.

In many situations we value processes that halt in our more general sense.
Suppose you feed a set of equations into some computer algebra software, and
that you ask the software to solve the equations. What you want is for the
resulting process to halt in the sense of displaying an answer on the screen. It
doesn’t halt in the more dramatic and narrow sense of going dead or freezing up
the machine.

In many situations, we like to have computations or processes that don’t halt.
When we simulate, say, the life of some artificially alive creature, or the evolution
of a species, we aren’t aiming towards a specific kind of result, and still less do
we want to see a fixed state or periodic behavior. In this situation we prefer a
non-halting computation that continues to produce novel effects.

The distinction between halting and not halting leads to Turing’s Theorem of
1936.

Definition. The computation P is said to have a solvable halting problem if and
only if there is an algorithm for deciding in advance which inputs will cause P
eventually to reach a halted target state, and which inputs will cause P to run
endlessly without ever reaching a halted target state.

Definition. A computation is universal if it can emulate any other computation.

Emulating a particular computation C means that you can feed a certain code
into your universal computation U that will cause U to produce the same input-
output behavior as C.

As it happens, universal computations are in fact very common. Any personal
computer, for instance, embodies a universal computation. Indeed, even as
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simple a computation as the one-dimensional cellular automaton with rule-code
110 is universal [11].

Putting all our new concepts together, we arrive at the following.

Turing’s Theorem. If U is a universal computation, then U has an unsolvable
halting problem.

This means that if a computation is of a sufficiently rich and general nature,
then there is no simple algorithm for predicting which inputs will make U run
forever, and which inputs will make U end up in some desired target state, such
as the state of coming to a halt.

Let’s switch focus now, and discuss how the notion of halting problems can
be used to formulate a weaker form of Wolfram’s Principle of Computational
Equivalence. For convenience, here is a statement of the PCE again.

Wolfram’s Principle of Computational Equivalence (PCE): Almost all processes
that are not obviously simple can be viewed as computations of equivalent so-
phistication.

I’ll now ring the PCE through three changes, hit a snag, formulate an alternate
form of the PCE, and then suggest a still-weaker hypothesis that I’ll call the
Halting Problem Hypothesis (HPH).

Suppose that we speak of computations rather than processes, and that we
speak of computations that are “complex” rather than “not obviously simple.”
In this case the PCE becomes:

(1) Almost all complex computations are of equivalent sophistication.

What might Wolfram mean by saying that two computations are “of equiv-
alent sophistication”? Suppose we take this to mean that the computations
can emulate each other or that, more technically, they have the same degree of
unsolvability. So now the PCE becomes:

(2) Almost all complex computations can emulate each other.

Now certainly Turing’s universal computation is complex. So, given that a
computation which emulates a universal computation is itself universal, the
PCE becomes:

(3) Almost all complex computations are universal.

But mathematical logicians have proved:

(Snag) There are very many complex computations which are not universal.
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The “almost all” in the PCE gives us some wiggle room.2 But at this point
we’d do well to back off. Suppose we weaken the range of application of the
PCE. Rather than saying it applies to “almost all” complex computations,
suppose we say it applies to “Most naturally occurring” complex computations.
And this gives us a weakened formulation of the PCE.

(4) Most naturally occurring complex computations are universal.

This statement may still be too strong. Rather than insisting upon it, let’s
consider what we plan to use the PCE for. As I mentioned in the introductory
section, I plan to use something like the PCE as a stepping stone to a Natural
Incompleteness Theorem. And for this, all I need is the following Halting Problem
Hypothesis (HPH).

(HPH) Halting Problem Hypothesis: Most naturally occurring complex computa-
tions have unsolvable halting problems relative to some simple notion of halting.

Think of a computation as an ongoing process, for example your life, or society,
or a plant growing, or the weather. As I mentioned in the previous section,
relative to a given computation we can formulate the notion of a target state
as being some special status or behavior that the computation might eventually
reach. The halting problem in this context is the problem of deciding whether a

2 When Wolfram formulated his PCE, he was well aware of the problem that there are
infinitely many degrees of unsolvability. Therefore he phrased his PCE so that it has
two loopholes. ([11], p. 734 and pp. 1130-1131.) The loopholes are to be found in,
respectively, the very first and very last phrases of the PCE, which I italicize here:
Almost all processes that are not obviously simple can be viewed as computations of
equivalent sophistication. Regarding the first loophole, Wolfram is saying that com-
plex non-universal Turing machines “almost never” occur in natural contexts. This
is an interesting aspect of the PCE, in that it seems to say something about the
kinds of processes that actually occur in the real world. Keep in mind that Wolfram’s
work is empirical. Unlike physical experiments, computer science experiments are
exactly reproducible, and thus have a touch of the mathematical or theoretical. But
really his inspiration came from looking at exceedingly many computations in action.
And to reduce experimenter bias, he made a point of conducting exhaustive surveys
of various classes of rudimentary computations such as Turing machines and cellu-
lar automata. To exploit the second loophole we might interpret “computations of
equivalent sophistication” more broadly than “computations that can emulate each
other.” Wolfram feels that the processes by which logicians construct complex but
non-universal computations have always depended so essentially on the use of an
underlying universal computation that the constructed computations are in some as-
yet-to-be-defined-sense “as sophisticated as” the universal computations. Now, so far
as I know, all the existing constructions of these complex non-universal computations
do use a universal computation. But it seems capricious to conclude that therefore
every complex non-universal computation in some way relies upon a construction in-
volving a universal Turing machine. Indeed it seems plausible that there may in fact
be naturally occurring processes of intermediate degree. It’s tempting to speculate
that the one-dimensional CA Rule 30 itself is such a computation. And in this case,
the PCE would be false, but the HPH that I describe would be true.
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given input will eventually send your computation into one of the target states.
And, once again, a halting problem is unsolvable if there’s no computation,
algorithm, or rule-of-thumb to detect which inputs won’t ever produce one of
these specified target state.

The HPH says that if you have some naturally occurring computation that
isn’t obviously simple, then there will probably be some simple notion of a target
state that leads to an unsolvable halting problem.

Note that the PCE implies the HPH. Going in the other direction, the HPH
does not imply the PCE. The HPH claims only that certain computations have
unsolvable halting problems, and does not claim that these computations are
universal. The good thing about the HPH is that, unlike the PCE, the HPH
has no difficulties with the many non-universal computations that have un-
solvable halting problems. The HPH has a better chance of being true, and
is easier to defend against those who doubt the validity of Wolfram’s analysis of
computation.

It’s worth noting that it may be possible to drop the two-fold qualifier “mast
naturally occurring” from the HPH and to get a Strong Halting Problem Hy-
pothesis as stated below.

Strong Halting Problem Hypothesis: All complex computations have unsolvable
halting problems relative to some notion of halting.

This says that all complex computations have associated with them some un-
solvable halting problem. If this is indeed the case, then the Strong Halting
Problem Hypothesis clarifies what we mean by a “complex computation.”

Table 1. Unsolvable Halting Problems In Everyday Life

Computation Target States Unsolvable Halting Problem

The motions of the bodies
in our solar system.

Something rams into
Earth.

Which possible adjustments to Earth’s
orbit can make us safe forever?

The evolution of our
species as we spread from
world to world.

Extinction. Which possible tweaks to our genet-
ics might allow our race survive indefi-
nitely?

The growth and aging of
your body.

Developing cancer. Which people will never get cancer?

Economics and finance. Becoming wealthy. Which people will never get rich?

Crime and punishment. Going to jail. Which kinds of careers allow a person
to avoid incarceration forever?

Writing a book. It’s obviously fin-
ished.

Which projects are doomed from the
outset never to be finished?

Working to improve one’s
mental outlook.

Serenity, tranquility,
peace.

When is a person definitely on the
wrong path?

Finding a mate. Knowing that this is
the one.

Who is doomed never to find true love?

Inventing something. Eureka! Which research programs are utterly
hopeless?
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Getting back to the weaker HPH, let me clarify its import by giving some
fanciful examples. Table 1 lists a variety of real world computations. In each
row, I suggest a computation, a notion of “target state”, and a relevant question
that has the form of a halting problem–where we try to detect initial states that
produce endlessly running computations that never reach the specified target
state. (I’m idealizing here, and temporarily setting aside the issue that none
of the physical processes that I mention can in fact run for infinitely many
years.)

Assuming that the HPH applies to these computations with these particular
definitions of target state, we’re faced with unsolvability, which means that none
of the questions in the third column can be answered by a finding a simple
way to detect which inputs will set off a process that never reaches the target
states.

3 A Natural Incompleteness Theorem

Let’s begin by defining what I mean by a formal system. A formal system F
can be characterized as having four components: A set of symbols, a rule for
recognizing which finite strings of symbols are grammatical sentences, a rule for
deciding which sentences are to be regarded as the axioms of the system, and
some inference rules for deducing sentences from other sentences.

A proof of a sentence S from the formal system F is a sequence of sentences,
with the last sentence of the sequence being the targeted sentence S. Each pre-
ceding sentence must either be an axiom or be a sentence which is arrived at by
combining still earlier sentences according to the inference rules. If a sentence is
provable from F , we call it a theorem of F .

Combined with the notion of proof, a formal system becomes the source of a
potentially endless number of theorems. Aided by a formal system, we mentally
reach out into the unknown and produce facts about entirely new situations.

Now let’s think of a formal system as a computation. There are several ways
one might do this, but what’s going to be most useful here is to work with a
computation FProvable that captures the key aspect of a formal system: it finds
theorems. Our FProvable will try to detect – so far as possible – which strings
of symbols are theorems of F . That is, for any proposed provable sentence S,
the computation FProvable(S) will carry out the following computation.

1. If S fails to be a grammatical sentence FProvable(S) returns False.

2. Otherwise FProvable starts mechanically generating proofs from the formal
system F in order of proof size, and if S appears at the end of a proof,
FProvable(S) returns True.

3. If S is a grammatical sentence but no proof of S is ever found, then
FProvable(S) fails to halt.
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As it turns out, if F is a powerful enough formal system to prove the basic facts
of arithmetic, then FProvable will be universal. And then, by Turing’s Theorem,
FProvable has an unsolvable halting problem.3

Let’s come back to Leibniz’s dream. Suppose we could formulate some won-
derfully rich and inclusive formal system F that includes mathematics, physics,
biology, human psychology, and even the laws of human society. And then, just
as Leibniz said, whenever we’re asked if some statement S about the world were
true, we’d set the computation FProvable(S) in motion, and the computation
would eventually return True – provided that S is provable as well as true.

One cloud on the horizon is that, if S isn’t provable, then FProvable(S) is
going to run forever. And, due to the unsolvability of the halting problem, there’s
no way to filter out in advance those sentences S that are in fact unprovable
sentences.

To delve deeper, we need two more definitions. As I mentioned before, we’ll
use ∼ to represent negation. So if S is a sentence, ∼ S means “not S”. That
is, S is false if and only if ∼ S is true. Using this notion of negation, we can
formulate the notion of consistency.

Definition. F is consistent if and only if there is no sentence S such that F
proves S and F proves ∼ S.

According to the usual rules of logic, if a theory proves even one contradiction,
then it will go ahead and prove everything possible. So an inconsistent theory
is useless for distinguishing between true and false statements about the world.
We can reasonably suppose that our proposed Leibniz’s-dream-type theory F is
consistent.

What if neither S nor ∼ S are provable from F? As it turns out, the
neither-nor case does happen. A lot! The reason has to do with, once again, the
unsovability of the halting problem for FProvable.

Definition. If F is a formal system and S is a particular statement such that F
proves neither S nor ∼ S, we say S is undecidable for F .

A priori, we can see that there are four possible situations regarding the behavior
of the “Is S provable?” computation, as shown in Table 2.

In their optimism, the early mathematical logicians such as David Hilbert
hoped to find a formal system F such that the undecidable and inconsistent
cases would never arise. As I mentioned earlier, Hilbert’s program proposed
finding a provably consistent formal system F that could decide all mathemati-
cal questions. But Hilbert’s hopes were in vain. For, as I already mentioned, we

3 Turing’s work showed that arithmetic is strong enough to emulate the running of Tur-
ing machines. More specifically, he showed that for any F as strong as arithmetic, we
can set things up so that FProvable emulates any given machine M . This means that
FProvable is a universal computation, so Turing’s Theorem applies, and FProvable
has an unsolvable halting problem.
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Table 2. Four Kinds of Provability and Unprovability

FProvable(∼ S) returns
True

FProvable(∼ S) doesn’t
halt

FProvable(S) re-
turns True

F proves both S and ∼ S,
meaning F is inconsistent.

F proves S.

FProvable(S)
doesn’t halt

F proves ∼ S. F proves neither S nor ∼
S, meaning that S is un-
decidable for F .

have Gödel’s Incompleteness Theorem, which tells us that any formal system
designed along the lines of Leibniz’s dream or Hilbert’s program will leave
infinitely many sentences undecidable. Let’s look at the details.

Gödel’s Incompleteness Theorem. If F is a consistent formal system as powerful
as arithmetic, then there are infinitely many sentences which are undecidable
for F .

What are these undecidable sentences like? As I mentioned in the introduction,
one simple kind of undecidable sentence, call it G, might be characterized in
terms of some algebraic property g[n] that a number n might have. It might
look like this, where g[n] can be thought of as being a simple algebraic formula
with the parameter n:

(G) For all n, g[n] isn’t true.

It’s interesting, though a bit dizzying, to compare and contrast two related
ways of talking about a sentence S. On the one hand, we can ask if S is true
or false in the real world of numbers, and on the other hand we can ask if S or
∼ S happens to be provable from F . In the case where the sentence G has the
form mentioned above, only three possibilities can occur. In order to illuminate
the notion of undecidability, let’s take a quick look at the three case.

1. G is false, and ∼ G is provable. If G is false, this means there is a specific
n such that g[n] holds in the world of numbers. F will be able to prove the
instance g[n] simply by checking the arithmetic. Therefore, F will be able to
prove ∼ G.

2. G is true, and G is provable. If the G sentence is true in the world of num-
bers, then g[n] is false for every n. Now in some situations, there may be a
clever proof of this general fact from F . I call such a proof “clever” because
it somehow has to prove in a finite number of symbols that that g[n] is im-
possible for every n. A general proof doesn’t get bogged down at looking at
every possible value of n. It has to use some kind of tricky reasoning to cover
infinitely many cases at once.

3. G is true, and G is not provable. In these cases, there is no clever proof. The
only way F could prove G would be to look at every possible number n and
show that g[n] isn’t true – but this would take forever. In a case like this it’s
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almost as if G only happens to be true. At least as far as F can see, there’s
no overarching reason why g[n] is impossible for every n. It’s just that, as
chance would have it, in the real world there aren’t any such n. And thus G
is undecidable by F.

The computer scientist Gregory Chaitin suggests that in a case like the third, we
think of G as a random truth. It’s not true for any deep, theoretical reason. It’s
just something that turns out to be so. 4 Note that there’s an endless supply of
undecidable sentences S beyond the simple kinds of sentences G that I’ve been
discussing. Some initial examples of the next level of complexity might be “For
each m there is an n such that g[m,n]” or “There is an m such that for all n,
g[m,n].” Most mathematicians would feel that, in the real world of mathematics,
any of these sentences is definitely true or false, regardless of F ’s inability to
prove either of the alternatives. And the true but unprovable statements are
brute facts that hold for no particular reason.

So far, we’ve only been talking about number theory. How do we get to un-
decidable sentences about the natural world? If we accept the HPH, and if we
assume that any natural process can be regarded as a computation, then we can
find undecidability in any complex natural process!

The path leads through the following lemma, proved by Turing in 1936.

Unsolvability and Undecidability Lemma. If P is a computation with an
unsolvable halting problem, and F is a correct formal theory, then there will be
infinitely many sentences about P which are undecidable for F .

In this Lemma, by the way, I’m using the phrase “correct formal theory” to
mean a formal theory that doesn’t prove things which are false. I won’t go into
the somewhat technical details of the proof of this lemma, but the general idea
is that there have to be lots of sentences about P that are undecidable for F ,
for otherwise F could solve P ’s unsolvable halting problem.

So now we come to the pay-off. Naturally occurring processes can be thought
of as computations. If we accept the Halting Problem Hypothesis, then each nat-
urally occurring process will have an unsolvable halting problem. And then, by
applying Turing’s Unsolvability and Undecidability Lemma, we get the following.

Natural Incompleteness Theorem. For most naturally occurring complex pro-
cesses, and any correct formal system for science, there will be sentences about
the process that are undecidable by the given formal system.

What makes the Natural Incompleteness Theorem attractive is that the unde-
cidable sentences are not just about arithmetic. They’re about the behavior of
actual real-world processes.

No matter how thoroughly you try and figure the world out, there are infinitely
many things you can’t prove. Here are some examples of potentially undecidable
sentences. Each of them may be, in principle, true or false, but only in a random

4 You can find more details in [1], and in the papers on Chaitin’s home page.
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kind of way, in that they’re not proved or disproved by any of our formal theories
about the world.

Potentially undecidable statements about the natural world:

• Nobody will ever manage to bounce a golf ball a thousand times in a row
off a putter head.

• There are an endless number of planets in our universe.

• There are an endless number of planets with people indistinguishable from
you.

• No human will ever be born with six functioning arms.

• No cow’s spots will ever spell out your first name in big puffy letters.

• The left wing will dominate American politics more often than the right
wing does.

• Mankind will evolve into higher forms of life.

• The majority of times that you move to a different line in a supermarket,
the new line goes slower than one of the lines you didn’t pick.

• New races of intelligent beings will emerge over and over for the rest of time.

• The time of our cosmos extends forever.

Do note that, as with our examples about natural halting problems, we need
some analysis of how to take into account the issue that so few of our natural
systems can in fact be viewed as potentially eternal. But I’ll leave the fine points
of issue for other investigators to work out.

4 Undecidability Everywhere

It often happens in the history of science that some odd-ball new category is
discovered. At first nobody’s sure if any phenomena of this kind exist, but then
there’s some kind of logical argument why these odd-ball things have to occur.
And then, as time goes on, more and more of the curious entities are discovered
until finally they’re perceived to be quite run of the mill. And I think this is
what will happen with the notion of undecidable sentences about the natural
world.

To dramatize this notion, I’ll present a sustained analogy between the spread
of undecidability and the rise of transcendental numbers in mathematics. Brian
Silverman suggested this analogy to me in an email.

Transcendental Numbers. 300 BC. The Greeks worked primarily with real num-
bers that can be expressed either as the fraction of two whole numbers, or
which can be obtained by the process of taking square roots. By the time of
the Renaissance, mathematicians had learned to work with roots of all kinds,
that is, with the full class of algebraic numbers – where an algebraic number
can be expressed as the solution to some polynomial algebraic equation formu-
lated in terms of whole numbers. The non-algebraic numbers were dubbed the
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transcendental numbers. And, for a time, nobody was sure if any transcendental
numbers existed.

Undecidable Sentences. 1920. In David Hilbert’s time, it seemed possible that, at
least in mathematics, every problem could be decided on the basis of a reasonable
formal system. This was the inspiration for Hilbert’s program.

Transcendental Numbers. 1884. The first constructions of transcendental
real numbers were carried out by Joseph Liouville. Liouville’s numbers
were, however, quite artificial, such as the so-called Liouvillian number
0.1100010000000000000000010000... which has a 1 in the decimal positions n!
and 0 in all the other places. Someone might readily say that a number like this
is unlikely to occur in any real context. (n! stands for “n factorial” which is the
product 1× 2× · · · × n of all the integers from 1 to n.)

Undecidable Sentences. 1931. Kurt Gödel proved the existence of some particu-
lar undecidable algebraic sentences. These sentences were somewhat unnatural.
Relative to a given formal system F, they had the form “This sentence is not
provable from F ,” or the alternate form, “The contradiction 0 = 1 is not provable
from the formal system F .”

Transcendental Numbers. 1874. Georg Cantor developed his set theory, and
showed there are an infinite number of transcendental numbers. Someone could
say that Cantor’s transcendental numbers aren’t numbers that would naturally
occur, that they are artificial, and that they depend in an essential way upon
higher-order concepts such as treating an infinite enumeration of reals as a com-
pleted object.

Undecidable Sentences. 1936. Building on Gödel’s work, Alan Turing proved his
theorem on the unsolvability of the halting problem. He immediately derived the
corollary that there are infinitely many undecidable sentences of mathematics,
and that these sentences come in quite arbitrary forms. Even so, the specific
examples of such sentences that he could give were still odd and somewhat self-
referential, like Gödel’s undecidable sentences.

Transcendental Numbers. 1873. Charles Hermite proved that the relatively non-
artificial number e is transcendental.

Undecidable Sentences. 1965. On an entirely different front, Paul J. Cohen proved
that an important question about infinite sets called the continuum hypothesis is
undecidable from the known axioms of mathematics. (Cohen’s proof built on an
earlier result proved by Kurt Gödel in 1946.) And in 1970, back in the realm of
unsolvable halting problems, Julia Robinson, Martin Davis, Yuri Matiyasevich
showed that among the sentences undecidable for any formal theory we’ll find
an infinite number of polynomial Diophantine equations which don’t have any
whole number solutions, but for which we can’t prove this fact. This means there
is a very large range of ordinary mathematical sentences which are undecidable.

Transcendental Numbers. 1882. Ferdinand Lindemann proved that the garden
variety number π is transcendental.
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Undecidable Sentences. 2002. Wolfram pointed out that we should be able to
find numerous examples of undecidability in the natural world.

And now we have a Natural Incompleteness Theorem telling us that every
possible complex natural process is going to have undecidable sentences associ-
ated with it! Undecidability is everywhere, and all of our theories about nature
must remain incomplete.
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Abstract. We aim to construct an automatic system for the discovery
of Turing-universal cellular automata. In this chapter, steps towards this
automatic system are presented. These steps will lead to the discovery
of thousands of computing patterns in cellular automata.

1 Introduction

One of the most fascinating phenomena in nature is the case of systems in which
the whole exhibits more than the sum of its parts. Such systems are known as
complex systems [25]. Some relevant examples of such systems are ant colonies
and brains. One of the biggest challenges in science is to find out principles
behind complex systems [1], indeed this is one of the greatest mysteries of the
natural world [28].

Promising environments in which to study complex systems are the universes
of cellular automata [12, 18] which are the simplest mathematical representations
of complex systems [7], and important modelling paradigms in natural sciences.
They are also uniform frameworks in which cells evolve through time on the
basis of a local functions, called the transition rules [26].

Complex phenomena in cellular automata have different forms of which one
of the most widely studied is the emergence of computation tasks. Some have
studied specific computation like density and synchronization tasks [11, 13, 24],
and pattern recognition [29]. While others have considered Turing-universal au-
tomata [3, 10, 9] i.e. automata encompassing the whole computational power of the
class of Turing machines. Wolfram [27] and others have asked the question about
the pervasiveness of universal cellular automata, this problem is tackled here.

In order to find universal automata, we aim to construct an automatic system
which can discover Turing-universal cellular automata. Possible steps towards
this automatic system are presented in this chapter. The Game of Life of Conway
et al. [4] and some generalities about cellular automata are the subjects of Section
2 while, in Section 3, a search for traveling patterns is presented. A 2D 2-state
automaton, called R, is described and it is proven to be Turing-universal in
Section 4. In Section 5, a search for computing patterns is presented while a
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search for simulations of logic gates is the subject of Section 6. To finish, the
last section summarizes the results which have been put forward, and discusses
directions for future research.

2 Previous Work

2.1 Game of Life

In 1970, Conway discovered a special automaton [25] he gave it the name Game
of Life because of its resemblance to real-life processes [6]. In the Game of Life,
cells on a regular grid can be born, die, or survive generation after generation.
Cells follow local rules that consider only their eight closest neighbours: Cells stay
alive if and only if they have two or three living neighbours and dead cells come
alife if and only if they have three living neighbours. From these simple local
rules and a random population of cells emerges a society of living organisms [6].
Patterns that emerge from random configurations of cells are shown in figure 1.

Fig. 1. Patterns that emerge most often after 1000 generations in the Game of Life
from four random configurations of cells in a 50×50 square with equal probability of
each cell being either dead or alive

Stable and periodic patterns are common but the most remarkable discovery
is an element that recovers its shape after shifting in space. Such mobile self-
localized patterns of non-resting states called spaceships are very common in the
Game of Life with various shapes and periods (i.e. number of generations before
recovering their original shapes). Conway et al. called the five cell spaceship
shown in figure 1 a glider. Gliders and glider generators called guns which, when
evolving alone, periodically recover their original shape after emitting a number
of spaceships led to the universality of the Game of Life [4].

2.2 Cellular Automata

The Game of Life is in the space I of isotropic two dimensional two-state au-
tomata using the eight closest neighbours of a cell to determine its state in the
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next generation. The eight closest neighbours of a cell are defined as a neigh-
bourhood state (hereafter referred to as a N-state). There are 28=256 different
N-states [2] and the state of the central cell of a N-state in the next generation
is determined by its state in the current generation and its N-state. At each
N-state is associated a first number that is the state in which the central will
be in the next generation if its state is 0 and a second number if its state is 1.
In order to maintain the isotropy, these two numbers have to be the same for
some N-states [20]. The 51 sets of such N-states are named the isotropic N-state
subsets (hereafter referred to as INS subsets).

The convention that is used here is the one of the freeware Life32 that can
be downloaded at [5]. Fig. 2 shows one element from each INS subset that is
referred to by the number of cells from 0 to 8 and a letter. Conventionally, the
INS subset that allows the central cell to survive is noticed in the first part after
the letter s of the cellular automaton notation and the INS subset that allows
the central cell to be born is noticed in the second part after the letter b. For
example, the notation s2iv3a8/b4i8 means cells survive for the INS subsets 2i,
2v, 3a and 8.

Fig. 2. An element from each INS subset that is referred to by the number of cells
from 0 to 8 and a letter

3 Search for Spaceships

As the glider of the Game of Life is one of the key elements to demonstrate its
universality, a search for spaceships is one of the possible first steps to search for
universal cellular automata and is presented here.

3.1 Method

Various stochastic algorithms have been tried to search for spaceships and Monte
Carlo method and evolutionary algorithms are described here:

• The Monte Carlo method consists solely of generating random solutions and
testing them.
• Evolutionary algorithms incorporate aspects of natural selection or survival
of the fittest. It maintains a population of structures (usually initially
generated at random) that evolves according to rules of selection, recom-
bination, mutation, and survival referred to as genetic operators. A shared
environment is used to determine the fitness or performance of each individ-
ual in the population. The fittest individuals are more likely to be selected for
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reproduction through recombination and mutation, in order to obtain po-
tentially superior ones.

Throughout our experiment, no spaceship was found with a Monte Carlo method
in one million randomly generated cellular automata. Then, an evolutionary
approach was tried in which the fitness of each individual is determined using
the number of spaceships and periodic patterns that appear from a random
configuration of cells.

3.2 Results

Our algorithm was able to find tens of thousands of spaceships that can move
orthogonally or diagonally [17]. When a spaceship is found, this spaceship may or
may not be a new discovery. Considering the number of spaceships the algorithm
can find, an automatic system to determine whether or not a spaceship was
unknown was required. This system has been based on the transition rules of
the automata that accept the considered spaceship [19]. Spaceships of different
periods were found and figure 2 shows the distribution of the periods of some
orthogonal and diagonal spaceships.

Fig. 3. Distribution of the period of the discovered orthogonal and diagonal spaceships
for the first 20000 spaceships found in an experiment
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The even periods are more common than odd. That can be explained by the
fact some of the spaceships that were discovered recover a symmetry of their
original shape after half of their period has elapsed as shown in figure 4 for a
spaceship.
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Fig. 4. A spaceship of period 4 in generations 0, 1, 2, 3 and 4 evolving with the
transition rule s/b2ca

The spaceships with low periods are the ones for which the average numbers
of appearances from random configurations of cells are the highest. In the ex-
periment, the spaceship with the highest number of appearances from a random
configuration of cells when it was discovered is a surprising result and will be
the subject of the next section.

Fig. 5. Evolution of cells by the automaton R

4 Automaton R

This section is devoted to a cellular automaton we called R that was discov-
ered from the search for spaceships. This automaton is described by s2eki3caiv
rqjy4cvqjz/b3caivqy4cekaivrqytwz5ckairj6cekaiv8 in the convention of Life32.
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A visual analysis of the evolution of cells by R, shown in figure 5, leads to the
conclusion that most of the spaceships that appeared were emitted by guns that
spontaneously appear from the evolution of cells.

As for the Game of Life, patterns that emerge from random configurations of
cells are shown in figure 6.

Fig. 6. Patterns that emerge the most often after 1000 generations in the automaton
R from 4 random configurations of cells in a 50×50 squares with equal probability to
be dead and alive for each cell

Guns can appear in the Game of Life from collisions of gliders but such a
frequent appearance of guns from random configurations of cells is a new and
very surprising result. Also the automaton R is chosen on which attempts are
made to demonstrate its universality.

The demonstration of universality of R is inspired by the demonstration of
universality of the Game of Life in which streams of spaceships are used to carry
information where spaceships represent 1s and missing spaceships represent 0s.

In this demonstration of universality of the Game of Life and the automaton
R, a collision, Conway called vanishing reaction and shown in figure 7 with
spaceships in R, is used to simulate and gates. Collisions of streams of spaceships
and a stream emitted by a gun is used in order to turn at right angle streams
and to realize and gates. The result of a collision of a stream of spaceships A and
a stream from a gun is a stream orthogonal to the stream A and carrying the
information not(A). This stream crashes into the stream B and each spaceship

Fig. 7. Vanishing collision of two spaceships generation after generation in the au-
tomaton R
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of stream not(A) when it exists destroys the corresponding spaceships of B when
it exists. Then the stream B is turned into a stream A&B.

In the Game of Life, a very tricky mechanism using a particular collision of
gliders Conway called Kickback reaction is used in order to perform duplication
of streams and a not gate. This collision does not exist in R but a very simple
way to duplicate a stream is described then another method to simulate a not

gate is presented. The not gate and the duplication of streams are used in order
to demonstrate the universality of R.

4.1 Duplication

The duplication of streams is based on a specific collision of spaceships we called
duplicative collision and shown in figure 8.

Fig. 8. Duplicative collision of two spaceships generation after generation

In order to duplicate a stream A, an orthogonal stream B emitted by a gun
crashes into it. All spaceships of stream A survive from this collision whereas
each spaceship of streamB is destroyed by the corresponding spaceship of stream
A when it exists. Then the stream B carries the information not(A) and is
orthogonal to streamA. Another stream emitted by a gun can collide with stream
B in order to make it parallel to stream A and to carry the information A.

4.2 Not Gate

The simulation of a not gate in cellular automata is a genuine challenge. A gun
can complement a stream of spaceships but turns it at a right angle at the same
time. To perform a not gate complementing without turning a stream must be
done or, that is equivalent, by turning without complementing. The latter has
been chosen in the automaton R and done thanks to a particular frontal collision
of two streams that creates a spaceship at a right angle for any spaceship that
was in the stream [21]. The scheme of the not gate, using this frontal collision
and the duplication of streams, is shown in figure 9.

4.3 Universality of R

In order to demonstrate the universality of the automaton R, the idea is to
simulate the Game of Life with R. The Game of Life being universal, R will
also be demonstrated as universal. Using simulations of and gates, not gates
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Fig. 9. A scheme of the not gate in the automaton R with the input stream C

Fig. 10. Pattern that represents a cell S of the Game of Life in the automaton R. The
nine input streams represent the state of the eight direct neighbours of S and the state
of this cell in a generation n. The output stream is the state of S in generation n+ 1.

and duplications of streams, a cell of the Game of Life can be simulated [16], as
shown in figure 10.

The simulation of the Game of Life is then shown by carrying out a tilling
of a surface with the identical and interconnected simulations of cells as a proof
that R is universal in the Turing sense [22]. The automaton R is thus the first
2D two-state dynamical automaton, other than the Game of Life, that has been
demonstrated to be universal in the Turing sense.
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5 Search for Guns

As guns are one of the key elements to demonstrate the universalities of the
automaton R and the Game of Life, a search for guns is one of the possible steps
to search for universal cellular automata and is presented here.

Inspired by the search for spaceships, an evolutionary approach is used to
find guns. The idea is to focus on a spaceship and to find a gun emitting this
spaceship. As the gun of the automaton R was found by optimising the number
of appearances of spaceships from a random configuration of cells, this number
has been optimised by the evolutionary process in order to find guns. The results
of this research are described in the next subsections.

5.1 Guns for Various Spaceships

Guns are searched for from a sample of one hundred spaceships [17]. For each
spaceship, ten runs of the algorithm have been realized for each of the one
hundred spaceships. These runs allow us to find guns for 55 spaceships, also
fewer guns were found for spaceships of high periods and fewer guns were also
found for diagonal spaceships.

5.2 Guns for a Specific Spaceship

Ten guns over ten runs of the algorithm were found for a specific spaceship
shown in figure 11. These ten guns were all different. Then, a hundred runs of the
algorithm have been realized and for each run a new gun was found. An extensive
search found the quantity of more than 20000 guns for this spaceship [19]. All
the discovered guns have emerged spontaneously from the evolution of a random
configuration of cells.

The emergence of this number of guns is a very surprising result as Resnick
et al. claimed: ‘You would be shocked to see something as large and organized
as a gun emerge spontaneously.’ [14]. The existence of so many different guns
shows that they are more easy to find than Wolfram claimed “There are however
indications that the required initial configuration is quite large, and is very
difficult to find.” [26]. Thus the discovery of so many different guns represents a
significant contribution to the theory of cellular automata and complex systems
that considers computational theory.

6 Search for Logic Gates

The universality of the Game of Life and the automaton R is demonstrated
using simulations of logic gates, they are then searched for in the automata with
a spaceship and a gun that were discovered by the search that is described in
the previous section.
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6.1 Search for and Gates

And gates are simulated in the Game of Life and R using vanishing reactions
shown in figure 7 then simulations of this collision by new automata are searched
for. The idea is to search for vanishing reactions that can be simulated by the
discovered automata that already simulate guns and spaceships. An evolutionary
algorithm has been elaborated to search for vanishing reactions.

Simulations of and gates have been discovered for 15 percent of the automata
with a spaceship and a gun [23].

6.2 Search for not Gates

The kickback reaction that allows the simulation of not gates in the Game of
Life and the frontal collision of spaceships that allows to simulate not gate in the
automaton R are searched for in the automata able to simulate and gates but
they have not been found. Another way to simulate not gates was then searched
for. A pattern, called 90-degree reflector or reflector that allows a stream to be
redirected without changing its value is searched for.

In 2 percent of the automata that simulate and gates a reflector is found [15].
A reflector that turns a spaceship at a right angle that was emitted by a gun is
shown in figure 11 generation after generation.

Fig. 11. A reflector that turn at right angle a spaceship that was emit-
ted by a gun generation after generation with the transition rule s2kaiv3ce
kvj4caqr5cekrqy6civ7c8/b2ci3cekayj4kavyq5ekivy6cekai8 in the convention of Life32
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7 Synthesis and Perspectives

This paper deals with the emergence of computation in complex systems with
local interactions. A contribution to the well established problem of universality
in cellular automata is presented. Steps toward an automatic system for the
discovery of Turing-universal cellular automata are presented. These steps are a
search for spaceships, a demonstration of universality of a discovered automaton,
a search for guns and simulations of logic gates.

Tens of thousands of cellular automata that allow spaceships to appear from
random configurations of cells were discovered. One of them called R also allows
guns to appear and is demonstrated to be universal. Guns are searched for in
some of these automata. For more than half of the one in which guns are searched
for, guns were found. Simulations of logic gates were searched for and found. All
these discoveries suggest that universality is common in cellular automata.

Next steps towards an automatic system for the discovery of Turing-universal
cellular automata are to find another ways to simulate logic gates. A further step
will be to find an automatic way to search for duplication of streams and the
possibility to combine logic gates. Future work could also be to search for sets
of conditions that are sufficient for a cellular automaton to be universal.

Additionally, another domain that seems worth exploring is to study how
spaceships appear from a random configuration of cells and which part of the
transition rule makes them move throughout generations. Also this research
opens the possibility of an evaluation of all discovered universal automata and
calculate for each one some rule-based parameters, e.g., Langton’s lamda [8].
All universal automata may have similar values for these parameters that could
lead to an answer to the question ‘Where are the edges of computational uni-
versality?’ and may therefore lead to a better understanding of the emergence
of computation in complex systems with local interactions.
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Abstract. Fourier spectra of cellular automata rules give a quantitative
characterisation of the frequency of bit patterns present in the limit con-
figurations generated out of their time evolution. By means of the simi-
larity among the spectrum of each rule, the elementary cellular automata
rule space is partitioned, both for periodic and non-periodic boundary
conditions, thus giving rise to rule classes of spectral equivalence. The
partitions generated are formally explained in terms of the dynamical
behaviour of the rules, and maps of the elementary space are given in
terms of graphs that represent the spectral similarity among the rules,
thus displaying a spectral portrait of how the classes relate to each other.

Keywords: Fourier spectrum, discrete Fourier transform, elementary
cellular automata, discrete dynamical systems, dynamical behaviour of
cellular automata.

1 Introduction

The analysis of the Fourier spectra of cellular automata rules arises as an approach
to investigate their dynamical behaviour, the existence of patterns and attractors
generated by their temporal evolution ([13], [2] and [7]), and provides a summary
of the types of blocks that make up the limit configurations that can be generated.
Moreover, the Fourier transforms, or the spectra obtained by means of it, give sta-
tistical information about the behaviour of cellular automata ([12]).

The Fourier spectrum of a cellular automaton (CA) rule is obtained by com-
puting the discrete Fourier transform (DFT) for a set of limit configurations
generated through the time evolution of the rule, thus giving a frequency do-
main representation for the average limit configuration of the CA. This means
that, in the particular case of binary cellular automata, such a frequency be-
comes a measure of how often every possible bit change pattern is present in all
possible binary strings that make up the limit configurations entailed by a rule.

Not many analyses of cellular automata based on the Fourier spectrum itself—
or on its power spectrum, which is obtained by squaring the Fourier spec-
trum coordinate-wise—can be found in the literature. For instance, in [2] the
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elementary cellular automata (ECA) is studied along this perspective. Also, [5]
analyses the particular ECA rule 110, showing that it displays 1/f noise power
spectrum, and a genetic algorithm is used in [6] to search for rules that present
that type of power spectrum, based on the conjecture that there might be a
relation between computational universality and 1/f noise power spectrum. It
is worth noticing that in [5], [6] and [7], the spectra are computed along the
time evolution of a rule iterated from a single initial configuration, rather than
computing the spectra over sets of final configurations obtained at the end of
the time evolution of a rule, as done here.

It is possible to classify the ECA rule space according to the spectra obtained
by the DFT of each particular rule. In [7], for instance, the space is partitioned
into four broad groups of rules, according to the general characteristics of their
power spectra.

But it is tempting to consider a finer-grained, Fourier transform based classi-
fication of a CA rule space, by taking into account the absolute similarity among
the rules’ spectra, rather than their general characteristics. This is the direction
we take here.

Accordingly, a partition of the ECA rule space in disjoint sets with similar
Fourier spectra is given and the meaning of such spectral similarity is studied
based on the dynamical behaviour of the rules; this allows us to refer to spectral
classes in the ECA. Moreover, graphs representing a proximity structure be-
tween the different spectral classes obtained are derived. The similarity between
rule spectra implies similarity between the blocks that constitute the final con-
figurations obtained out of the time evolution of the rules (possibly, except for
reflection, conjugation or conjugated reflection). Not only the similarity of blocks
of limit configurations is represented in resembling spectra, but also the similar-
ity among the densities at which every possible bit change pattern is present in
the limit configurations.

The key point of this paper is to provide a portrait or map of the ECA rule
space, from the standpoint of their spectra, both for cyclic and acyclic lattices.
This is achieved through a graph structure representing a notion of similarity
among classes of spectral equivalence, a notion that is also derived herein. Bits
and pieces of the text are drawn from our recent, much shorter account on the
subject [9], where the presentation is limited to cyclic configurations, and none
of the actual maps are displayed.

This paper is organised as follows. In the next section, the notion of the Fourier
spectrum of a cellular automaton rule is presented, as well as an explanation
to a rule spectrum. The spectral similarity among ECA rules under periodic
boundary condition (PBC), and the reasons behind it, are explained in Section
3; also, the spectral classes obtained out of partitioning the ECA rule space based
upon this similarity are listed in Section 4 and these classes are organised in a
graph in Section 5, giving a mapping of the ECA rule space in terms of spectral
similarity. Then, another partition of the ECA rule space is given and another
graph is built, now with configurations under non-periodic boundary conditions
in Section 5.1. Concluding remarks are made in Section 6.
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2 Fourier Spectrum of a Cellular Automaton

Before presenting a way to compute the spectrum of a cellular automaton rule,
let us first consider the discrete Fourier transform (DFT), upon which the com-
putation of the spectrum is based.

Given a complex vector u = (u1, · · · , un), the DFT of u is denoted by DFT (u)
and corresponds to the complex vector v = (v1, · · · , vn) given by

vk =
1

n

n∑

j=1

uje
2πi(j−1)(k−1)/n (1)

Here, |DFT (u)| will denote the absolute value of DFT (u) taken coordinate-wise.
That is, if DFT (u) = (v1, · · · , vn), then |DFT (u)| = (|v1|, · · · , |vn|).

The Fourier spectrum of a cellular automaton rule is obtained by computing
the DFT for a set of configurations (final configurations - FCs) obtained after
the time evolution of the rule applied to a set of initial configurations (ICs).

Formally, given an ECA local rule f , a set C of N ICs of length L and a
number of iterations t ∈ R, the spectrum Sf of rule f is given by

Sf =
1

N

∑

c∈C

|DFT (F t(c))| (2)

where F is the global rule induced by f and F t(c) denotes the configuration
obtained by iterating t times F over c.

Since the computation of the spectrum of an ECA is obtained by iterating a
rule a given number of times on a random sample of initial configurations of a
fixed length, it may present statistical fluctuations depending on the set of ICs,
their length and the number of iterations of the rule.

The power spectra computed in [2] were obtained by iterating each ECA rule
from 15 to more than 100 times, over each initial configuration, in order to ensure
that each computed spectrum would be beyond any transient stage. Considering
this and that the sets of initial configurations had to be sufficiently large, the
experiments in Sections 3 to 5 were made with 1,000 random ICs of length 1,024
and 200 iterations.

Also, in order to ensure that each spectrum represents the limit behaviour of
a rule, it is worth verifying the sensibility of the spectrum with their parameters.
As an example, Figure 1 shows the effects of changing the set of parameters used
to compute the spectrum of rule 56. Taking larger ICs (Figure 1.b), the result
is a thicker spectrum, since the DFT of each IC has more coordinates; with
more ICs (Figure 1.c), the resulting spectrum is smoother, for it is obtained
from a larger sampling of initial conditions; for more iterations (Figure 1.d),
the spectrum becomes essentially the same, for most rules, as discussed below.
(Figure 1.e) shows the spectrum of rule 56 computed for larger values of the
parameters in comparison to those used on this paper. In any case, the shape of
the spectrum does not change, therefore the set of parameters previously chosen
(Figure 1.a: 1,000 ICs of 1,024 bits and 200 iterations of each rule) describes
indeed a representative spectral behaviour of the rules.
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Fig. 1. Rule 56 spectra for different sets of parameters. The essential aspect of the
spectrum remains the same, even with larger values for the parameters.

Although increasing the number of iterations far above 200 (the average num-
ber of iterations taken to compute the spectra) does not change the spectra of
most ECA rules, this is not the case for rules in Wolfram class IV (complex
rules), such as rules 54 and 110, which take a longer time to stabilise. Figure 2
shows the spectra computed for 200, 1,000 and 2,000 iterations for rules 54 and
110. Qualitative changes are present in these spectra, with peaks appearing and
growing for longer times. That occurs because the transient times for complex
rules are much longer than those for rules in other Wolfram classes. For instance,
according to [13], the transient time for rule 110 from the IC made up of a single
1 surrounded by 0s is about 2,800 iterations. Therefore, rules with spectra that
change along time are more complex than those without such a feature.

Let us now consider the kind of information present in the spectra. Clearly,
this has two facets: it summarizes the patterns of bit sequences that appear out
of the time evolution of the rule (after a sufficiently long time) and the frequency
of changes of values among adjacent bits in these patterns.

The amount of changes between adjacent bits in a binary sequence can be
considered as the frequency of bit changes in it. Then, the horizontal axis of a
spectrum represents the sets of patterns with the same frequency of bit changes
formed out of the time evolution of the rule, with the sequences that have higher
frequency of bit changes on the right-hand side of the axis. As for the vertical
axis, it represents the density that each set of patterns that have the same
frequency of bit changes appear in the final configurations.

An illustrative example is given by rule 184, whose action on cyclic config-
uration is known to be as follows: for configurations with the same amount of
0s and 1s, the time evolution leads to configurations with alternating 0s and 1s;
for configurations with more 0s than 1s, the final configurations display alter-
nating 0s and 1s, as in the previous case, and the exceeding 0s are clustered in
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Fig. 2. Spectra of rules 54 and 110 computed with different number of time steps, with
1,000 ICs of 1,024 bits

Fig. 3. Time evolution of rule 184 for an initial configuration with density of 1s equal
to 0.4 (a) and 0.5 (b) and their corresponding spectra computed on a set of such initial
configurations

groups; and for configurations with more 1s than 0s, the final configurations are
analogous to those described in the previous case.

Figure 3.a shows the spectrum of rule 184 computed on a set of initial config-
urations with density of 1s equal to 0.4. According to the interpretation of the
spectrum given above, the higher values are present in the right-hand side of the
graph, depicting that the final configurations have many regions with high fre-
quency of bit changes - that is, regions with blocks of the type (· · · , 0, 1, 0, 1, · · · )
or (· · · , 1, 0, 1, 0, · · · ). As for the left-hand side of the graph, it depicts the regions
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of the groups of exceeding 0s present in the final configurations. On the other
hand, by taking a set of ICs with density of 1s equal to 0.5 (same amount of 0s
and 1s), all the FCs will present only the pattern (· · · , 1, 0, 1, 0, · · · ), which corre-
sponds to the highest frequency of bit changes. The result is presented in Figure
3.b, with a null spectrum except for an isolated peak at the highest frequency.

Given all the latter, we can turn to the organization of the ECA rule space in
terms of its spectra. First of all, it is expected that dynamically equivalent rules
present similar spectra, since the FCs obtained by such rules are qualitatively
the same. Since the DFT of pairs of conjugated and/or reflected vectors are
the same, whenever the spectra of any two dynamically equivalent ECAs are
computed with the parameter values listed above, they have very similar spectra,
thus providing a fair practical approximation to their sameness.

Even though any dynamically equivalent rules have the same spectrum, the
converse is not true. As shown in Figure 4 the spectra of rules 18, 146, 182 and
183 are similar, but rule 18 is only dynamically equivalent to rule 183, while rule
146 is dynamically equivalent only to rule 182.

This means that there are factors behind spectral similarity other than the
dynamical equivalence. These are discussed in the next section.

Fig. 4. Despite the fact that rules {18, 183} and {146, 182} belong pairwise to different
dynamical equivalence classes, their spectra are similar

3 Spectral Similarity in the ECA Rule Space

In order to analyse the reasons behind the spectral similarity among ECA rules,
the rule space was partitioned according to the spectral similarity of the rules.
For this, the distance between two spectra was defined as the euclidean distance
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between the vectors of the spectra. The distances between each spectrum were
computed and then normalised by the maximum computed distance. Then, for
each local rule f , with ε > 0, the set N0,ε

f of the spectral neighbours of f was
defined as

N0,ε
f = {g is an ECA local rule : d(fS , gS) < ε} (3)

where d(., .) is the euclidean distance function.
However, with this definition, it may occur that the spectral neighbourhood of

a rule g ∈ N0,ε
f contains rules that are not present in the spectral neighbourhood

of f , since the spectra are generated through sampling of initial configurations,
what leads to statistical fluctuations. In order to sort out this issue, the sets
Nk,ε

f , k ∈ N, k > 0, are defined as

Nk,ε
f = {g ∈ N0,ε

h : h ∈ N
(k−1),ε
f } (4)

Since the ECA rule space is finite, for each local rule f there is kf ∈ N such that

N
(k+1),ε
f = Nk,ε

f , for all k > kf . Therefore, it is possible to define the spectral
class of f , Sε

f , as

Sε
f =

kf⋃

i=0

N i,ε
f (5)

The spectrum of rule g is said to be similar to that of rule f if g ∈ Sε
f

By induction on k, if g ∈ N0,ε
f , then for all h ∈ Nk,ε

f , h ∈ N
(k+1),ε
g holds.

Therefore, from Equations 3, 4 and 5 the equality Sε
f = Sε

g holds for all g ∈ Sε
f ,

that is, if the spectrum of rule f is similar to that of rule g, then the spectrum
of rule g is similar to that of rule f , as expected.

For the results presented herein, ε = 0.005 was taken, which resulted in a
partition of the ECA rule space into 59 disjoint spectral classes, which are pre-
sented in Section 4. The ε parameter was empirically determined in order to
preserve the visual coherency of each spectral class, in the sense that only rules
with visually similar spectra would end up in the same subset, and that no pair
of distinct subsets would contain visually similar spectra. However, as presented
below, this similarity is not merely visual, and can be justified in terms of the
dynamics of the rules, making the partition formally coherent and relevant.

Since the spectrum of a rule depends upon the binary patterns present in the
final configurations generated out of the time evolution of the rule, there are
three main reasons underlying spectral similarity: (1) symmetry of FCs and/or
dynamical equivalence, (2) surjectivity and (3) rules with equivalent behaviour.
These reasons are more thoroughly discussed below.

3.1 Spectral Similarity due to Symmetries of Configurations and
Dynamical Equivalence

Since the DFT essentially reveals periodicity in data, if two given binary vectors
u and u′ are such that u′ can be obtained by applying the symmetry operators
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of reflection, conjugation and conjugated reflection to vector u, then the discrete
Fourier transform of both vectors will be the same. Moreover, under configu-
rations taken under periodic boundary conditions, the shift operator can also
be considered a symmetry operation. Therefore, if vector u′ can be obtained by
applying reflection, conjugation (and possibly a shift for the cyclic lattice case)
or any composition of these operators to vector u, the DFT of both vectors will
be identical.

Hence, if two ECA rules f1 and f2 (with inducted global rules F1 and F2,
respectively), iterated a sufficiently large number of time steps, over any initial
configuration c0, result in two configurations c1 and c2, respectively, that are the
same, except for symmetry, then the spectra of rules f1 and f2 will be identical.
Formally,

∀c0, ∀t ∈ N, F t
1(c0) = sym(F t

2(c0))⇒ |DFT (F t
1(c0))| = |DFT (F t

2(c0))| (6)

where sym(·) denotes the application of reflection, conjugation, shift (the last is
only a symmetry in the case of periodic boundary condition) or any composition
of them.

In a similar fashion, as the dynamical equivalence classes are constructed
by applying reflection, conjugation or conjugated reflection to the rule tables,
and since the experiments were made over random sets of initial conditions, the
spectra of dynamically equivalent rules will be similar, as described above.

Out of the 59 subsets mentioned above, 54 of them present rules with similar
spectra due to symmetries in the final configurations and to dynamical equiva-
lence, and are presented in Section 4. The remaining 5 subsets will be discussed
in the next subsections.

3.2 White-Noise Spectra

A remarkable class in the partition of the ECA rule space computed is the
one represented by rule 15, which exactly comprehends the surjective ECA rules
(listed in Section 4). The spectra of those rules have a white-noise type behaviour
(Figure 5), which implies that the final configurations obtained by the iterative
applications of the rules to the set of random initial conditions have no noticeable
periodicity, that is, the final configurations are essentially as random as the initial
conditions.

Since in a surjective CA every pattern of a given size has the same number
of pre-images ([1]), each configuration obtained after a fixed number of time
steps has a set of initial configurations that lead to it along the time evolution
of the same size. That is, any final configuration has the same probability of
being obtained at the end of the time evolution, regardless of the choice of the
configuration.

Therefore, in the present conditions of spectra generation, the sets of final
configurations will have a white-noise type display; consequently, all surjective
ECAs are in the same spectral class which, in fact, they end up defining.
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Fig. 5. The spectrum of rule 15 and the other surjective ECA rules have a white-noise
type nature

3.3 Rules with Equivalent Behaviour

The rules of each of the 4 last spectral classes of the ECA space in Section 4 do
not show similarity due to the reasons discussed above; however, they result in
final configurations where certain binary sequences tend not to be present. Part
of the rules in these classes are dynamically equivalent, which partially explains
the composition of these classes. Despite the fact that not all rules in each class
are dynamically equivalent, the rules show equivalent behaviour after a given
number of iterations. Each particular case is explained below.

Class 13 - rules 13, 69, 78, 79, 92, 93, 141 and 197
Dynamical classes: 13 (13, 69, 79 and 93) and 78 (78, 92, 141 and 197)
Rules 78 and 79 only differ at the (0, 0, 0) neighbourhood: for rule 78, (0, 0, 0)→ 0
and for rule 79 (0, 0, 0)→ 1.

For a set of 1,000,000 random ICs of 1024 bits, rules 78 and 79 were iterated
200 times over each IC and the sequence (0, 0, 0) was absent in every resulting
final configuration. That is, the only block upon which rules 78 and 79 differ,
disappears during the time evolution of the rules.

Therefore, after a given number of time steps, rules 78 and 79 behave exactly
the same, thus leading to equivalent spectra. As for the other rules in the class,
the equivalence is given by dynamical equivalence to rules 78 or 79.

Class 18 - rules 18, 146, 182 and 183
Dynamical classes: 18 (18 and 183) and 146 (146 and 182)
Rules 18 and 146 only differ at the (1, 1, 1) neighbourhood: (1, 1, 1)→ 0 for rule
18 and (1, 1, 1) → 1 for rule 146. The set of sucessive pre-images of (1, 1, 1) by
rule 146 is given by (1, 1, 1) ← (1, 1, 1, 1, 1) ← (1, 1, 1, 1, 1, 1, 1) ← · · · . Also,
(1, 1, 1) has no pre-image for rule 18.

If a configuration is not fully made of 1s, after a number of iterations of rule
146, the (1, 1, 1) sequence will no longer be present in the configuration and rule
146 will then behave exactly as rule 18. On the other hand, if a configuration is
made up of 1s, both rules (18 and 146) will lead it to a configuration with only
0s or 1s, that is, configurations that lead to null spectrum.
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Hence, rules 18 and 146 display the same spectrum and the other rules in the
class also present equivalent spectra due to dynamical equivalence to rules 18 or
146.

Class 28 - rules 28, 70, 156, 157, 198 and 199
Dynamical classes: 28 (28, 70, 157 and 199) and 156 (156 and 198)
Rules 156 and 157 only differ at the (0, 0, 0) neighbourhood. For rule 56,
(0, 0, 0) → 0, and for rule 157, (0, 0, 0) → 1. Also, there is no 5-bit sequence
that has (0, 0, 0) as its image under rule 157. Hence, any configuration contain-
ing (0, 0, 0) is a Garden-of-Eden (GoE) for 157. Therefore, after one iteration of
rule 157 over any configuration, the sequence (0, 0, 0) is absent and, from there,
rule 157 will behave just like 156. As for the converse, rule 156 may not behave
as rule 157 for some particular configurations, since (0, 0, 0) has preimages for
rule 156. Nevertheless, in general, (0, 0, 0) is eliminated by rule 156 over its time
evolution. For a set of 1,000,000 random ICs of 1024 bits, rule 156 was iter-
ated 200 times over each IC and the sequence (0, 0, 0) was absent in every FC
obtained.

The remaining equivalences are due to dynamical equivalence to rules 156 or
157.

Class 122 - rules 122, 126, 129 and 161
Dynamical classes: 122 (122 and 161) and 126 (126 and 129)
For this class, the explanation is analogous to the one for class 28. Rules 122
and 126 only differ at the neighbourhood (0, 1, 0): ((0, 1, 0)→ 0 for rule 122 and
(0, 1, 0) → 1 for rule 126). Also, (0, 1, 0) is not an image of any 5-bit sequence
for rule 126; hence, any configuration containing (0, 1, 0) is a GoE for rule 126.
Therefore, after one iteration of rule 126 over any configuration, the sequence
(0, 1, 0) is absent and rule 126 ends up behaving like rule 122. As for rule 122,
it has preimages of (0, 1, 0), hence, for some particular configurations, rules 122
and 126 may present distinct behaviour. However, in general, rule 122 excludes
the sequence (0, 1, 0) during its time evolution (for 200 iterations of rule 122
over a set of 1,000,000 random ICs of 1024 bits, (0, 1, 0) was absent in every final
configuration obtained), what justifies the spectral equivalence.

The other equivalences are due to dynamical equivalence to rules 122 or 126.
Out of the four classes described above, only one was formalised in an ana-

lytical way which has shown the spectral equivalence of the rules in this class
for any case. The other three classes were partially (or completely) based upon
empirical results which are useful to understand what makes these groups of
rules belong to the same spectral classes. A full characterisation of the sets of
initial configurations upon which the rules behave exactly the same is certainly
a point to be considered in future investigations.

4 Classes of Spectral Equivalence

With the considerations made in Sections 3.1, 3.2 and 3.3, it is possible to for-
mally define the notion of a class of spectral equivalence (or spectral class) in the
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ECA rule space. Two ECA rules are said to be on the same spectral class if any
of the following occur:

(a) The rules are in the same dynamical equivalence class, or the final config-
urations obtained by them are the same, except for conjugation, reflection
and/or shift (only for the case of periodic boundary condition) or a compo-
sition of them;

(b) Both rules are surjective; and/or
(c) The rules present equivalent behaviour after a number of time steps.

Based upon the previous discussions, we obtained the spectral classes shown
in Table 1, where DE / SFC denotes dynamical equivalence and/or symmetry
of final configurations, S denotes surjective rules; and EB denotes equivalent
behaviour.

Table 1. Partition of the ECA rule space in spectral classes

Rep. Rules on spectral class Type Class

0 0, 8, 32, 40, 64, 96, 128, 136, 160 DE / SFC I
- 168, 192, 224, 234, 235, 238, 239, 248 - -
- 249, 250, 251, 252, 253, 254, 255 - -
1 1, 127 DE / SFC II
2 2, 16, 172, 191, 202, 216, 228, 247 DE / SFC II
3 3, 17, 63, 119 DE / SFC SFC II
4 4, 223 DE / SFC SFC II
5 5, 95 DE / SFC II
6 6, 20, 159, 215 DE / SFC II
7 7, 21, 31, 87 DE / SFC II
9 9, 65, 111, 125 DE / SFC II
10 10, 80, 175, 245 DE / SFC II
11 11, 47, 81, 117 DE / SFC II
12 12, 34, 48, 68, 140, 187, 196 DE / SFC II
- 206, 207, 220, 221, 243 - -
13 13, 69, 78, 79, 92, 93, 141, 197 EB II
14 14, 84, 143, 213 DE / SFC II
15 15, 30, 45, 51, 60, 75, 85, 86, 89, 90 S II/III
- 101, 102, 105, 106, 120, 135, 149 - -
- 150, 153, 154, 165, 166, 169, 170 - -
- 180, 195, 204, 210, 225, 240 - -
18 18, 146, 182, 183 EB III
19 19, 55 DE / SFC II
22 22, 151 DE / SFC III
23 23, 232 DE / SFC II
24 24, 66, 189, 231 DE / SFC II
25 25, 61, 67, 103 DE / SFC II
26 26, 82, 167, 181 DE / SFC II
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Table 1. (continued)

Rep. Rules on spectral class Type Class

27 27, 39, 53, 83 DE / SFC II
28 28, 70, 156, 157, 198, 199 EB II
29 29, 71 DE / SFC II
33 33, 123 DE / SFC II
35 35, 49, 59, 115 DE / SFC II
36 36, 219 DE / SFC II
37 37, 91 DE / SFC II
38 38, 52, 155, 211 DE / SFC II
41 41, 97, 107, 121 DE / SFC II
42 42, 112, 171, 241 DE / SFC II
43 43, 113, 142, 212 DE / SFC II
44 44, 100, 203, 217 DE / SFC II
46 46, 116, 139, 209 DE / SFC II
50 50, 77, 178, 179 DE / SFC II
54 54, 147 DE / SFC IV
56 56, 98, 185, 227 DE / SFC II
57 57, 99 DE / SFC II
58 58, 114, 163, 177 DE / SFC II
62 62, 118, 131, 145 DE / SFC II
72 72, 237 DE / SFC II
73 73, 109 DE / SFC III
74 74, 88, 173, 229 DE / SFC II
76 76, 205 DE / SFC II
94 94, 133 DE / SFC II
104 104, 233 DE / SFC II
108 108, 201 DE / SFC II
110 110, 124, 137, 193 DE / SFC IV
122 122, 126, 129, 161 EB III
130 130, 144, 190, 246 DE / SFC II
132 132, 222 DE / SFC II
134 134, 148, 158, 214 DE / SFC II
138 138, 174, 208, 244 DE / SFC II
152 152, 188, 194, 230 DE / SFC II
162 162, 176, 186, 242 DE / SFC II
164 164, 218 DE / SFC II
184 184, 226 DE / SFC II
200 200, 236 DE / SFC II

Rules in the same class yield similar sets of final configurations, except for
reflection, conjugation or conjugated reflection. Moreover, the spectra also de-
pict how much the different frequencies of bit changes are represented in these
configurations.
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5 Similarity among Spectral Classes

Since the ECA rule space is partitioned into rule sets with equivalent spectra,
the question now is how does each spectral class relate to each other in terms
of spectral similarity. For instance, Figure 6 shows the spectra of rules 12 and
76. Even though these rules belong to distinct spectral classes there is a clear
resemblance among their spectra. In this section we try to answer the question
of how the ECA rule space can be organised in terms of the spectra of the rules;
that is, a portrait of the ECA rule space is provided in these terms, depicted as
a graph. The vertices of the graph are the spectra of the representatives of the
spectral classes and the edges are weighted and computed as described below,
representing a proximity between the spectral classes.

Fig. 6. Even though rules 12 and 76 belong to distinct spectral classes, there is a
resemblance among their spectra

The procedure to obtain such a graph is as follows. First of all, for each
spectral class, its rule with the smallest number is taken to represent it and
assigned a node in the graph. Then, the spectrum of each class is computed
and normalised by its highest component value. In the sequence, the euclidean
distance between each pair of spectra is computed and normalised by the largest
distance computed; each class is then connected (as an edge in the graph) to
its closest neighbour, according to the smallest distance between them - such a
procedure resulted in 19 groups of connected classes (i.e., 19 second-order type
spectral classes); the process is then iterated, and each group is connected to its
closest group, also given by the smallest distance between them, which resulted
in 4 sets of groups. Finally, after one more iteration, the groups were connected,
resulting in the graph.

The reason for not having all rules in the same group of connected classes is
the generation of cycles of connections during the process. For instance, consider
the spectral classes a, b and c. It may occur that a connects to b, b connects to
c and c connects to a, giving rise to a group of connected classes apart from the
other classes. The same applies to the connected components: the process yields
cycles of connections between the groups of connected classes, generating more
than one connected component.
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Since the distance measure chosen here is the euclidean distance, the weights
on the graph’s edges stand for the absolute distance between the vectors of the
representative spectra, rather than a visual distance between them. The result
is shown below: Figure 7 shows the connection between the 19 groups (G1 to
G9) and Figures 8 to 10 show the groups of rules that were obtained.

Fig. 7. Graph representing the connections of the 19 groups of spectral classes. Solid
lines represent connections obtained in the second iteration of the process, while dotted
lines represent connections obtained in the third and last iteration.

Since the process forces every class to be connected to another, some of the
connections in the previous graph do not represent spectral similarity among
different spectral classes, but rather a mapping of the pairs of closest classes (in
respect to euclidean distance).

5.1 Spectral Similarity under Non-periodic Boundary Conditions

The previous results were obtained out of the time evolution of ECA rules under
periodic boundary condition (PBC). In this section the partition of the ECA
rule space in spectral classes is made under non-periodic boundary conditions
(NPBC) and the respective graph is shown.

To compute the spectra, for each rule, a set of 1,000 random ICs of length 2,048
bits was superimposed over backgrounds of 0s or 1s (half of the number of ICs for
each background) and the rule was iterated a number of times ranging from 4,000
to 8,000 time steps. Since the size of the (active) resulting final configuration
(FC) obtained out of the time evolution of an IC may vary depending on the
particular IC, a part of each FC was taken rather than the FC itself. Each part
corresponds to a 1,024-bit substring of a FC, taken at a random point.

Under NPBC, the active part of the configuration may display significant
changes over the time evolution. For instance, rule 102 yields triangular pat-
terns appearing periodically in its time evolution under NPBC (Figure 11), thus
entailing the bit patterns of the configuration to vary drastically through time.
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Fig. 8. Groups (1 through 5) of spectral classes, under PBC
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Fig. 9. Groups (6 through 11) of spectral classes, under PBC
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Fig. 10. Groups (12 through 19) of spectral classes, under PBC
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Fig. 11. Time evolution of rule 102 on a random IC of length 2,048 over 16,000 time
steps. Triangular patterns are formed periodically.

Table 2. Partition of the ECA space under NPBC

Rep. Rules in spectral class Class

0 0, 8, 32, 40, 64, 96, 128, 136, 160 I
- 168, 192, 224, 234, 235, 238, 239, 248 -
- 249, 250, 251, 252, 253, 254, 255 -
1 1, 127 II
2 2, 16, 172, 191, 202, 216, 228, 247 II
3 3, 17, 63, 119 II
4 4, 223 II
5 5, 95 II
6 6, 20, 159, 215 II
7 7, 21, 31, 87 II
9 9, 65, 111, 125 II
10 10, 80, 175, 245 II
11 11, 47, 81, 117 II
12 12, 34, 48, 68, 140, 187, 196 II
- 206, 207, 220, 221, 243 -
13 13, 28, 69, 70, 78, 79, 92 II
- 93, 141, 156, 157, 197, 198, 199 -
14 14, 43, 84, 113, 142, 143, 212, 213 II
15 15, 30, 45, 51, 75, 85, II
- 86, 89, 101, 106, 120, 135, -
- 149, 169, 170, 204, 225, 240 -
18 18, 146, 182, 183 III
19 19, 55 II
22 22, 151 III
23 23, 232 II
24 24, 66, 189, 231 II
25 25, 61, 67, 103 II
26 26, 82, 167, 181 II
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Table 2. (continued)

Rep. Rules on spectral class Class

27 27, 39, 53, 83 II
29 29, 71 II
33 33, 123 II
35 35, 49, 59, 115 II
36 36, 219 II
37 37, 91 II
38 38, 52, 155, 211 II
41 41, 97, 107, 121 II
42 42, 112, 171, 241 II
44 44, 100, 203, 217 II
46 46, 116, 139, 209 II
50 50, 77, 178, 179 II
54 54, 147 IV
56 56, 98, 185, 227 II
57 57, 99 II
58 58, 114, 163, 177 II
60 60, 90, 102, 105, 150, 153, 165, 195 III
62 62, 118, 131, 145 II
72 72, 237 II
73 73, 109 III
74 74, 88, 173, 229 II
76 76, 205 II
94 94, 133 II
104 104, 233 II
108 108, 201 II
110 110, 124, 137, 193 IV
122 122, 126, 129, 161 III
130 130, 144, 190, 246 II
132 132, 222 II
134 134, 148, 158, 214 II
138 138, 174, 208, 244 II
152 152, 188, 194, 230 II
154 154, 166, 180, 210 II
162 162, 176, 186, 242 II
164 164, 218 II
184 184, 226 II
200 200, 236 II

The rules were then partitioned as in the PBC case. Taking ε = 0.02, which
was established empirically, the resulting partition of the ECA rule space also led
to 59 spectral classes (although not the same classes as in the PBC partition).
In comparison to the ε = 0.005 taken under the PBC case, the larger value of
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the parameter under NPBC highlights the fact that similar spectra under NPBC
displays greater fluctuation than the ones computed under PBC. The spectral
classes obtained under NPBC are presented in Table 2.

It is worth noticing that in the partition under NPBC, the surjective rules
(spectral class 15 under PBC) were divided into spectral classes 15, 60, and 154.
However, their spectra are visually similar, as shown in Figure 12. In fact, most
of the spectra is white-noise type, except for peaks in the lower and/or higher
frequencies.

Following the same procedure introduced for PBC, a similarity graph has also
been generated for NPBC. The resulting graph has 16 groups, in contrast to the
one obtained under PBC, which has 19 groups. This can be explained by the
generation of cycles of connections, as in the PBC case. Since the configurations

Fig. 12. Even though the surjective rules are in distinct spectral classes under NPBC,
their spectra remain similar

Fig. 13. Graph representing the connections among groups of spectral classes under
NPBC. Solid lines depict connections of groups obtained in the second iteration of the
process and dotted lines depict connections obtained in the third iteration.
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Fig. 14. Groups (1 through 4) of spectral classes, under NPBC
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Fig. 15. Groups (5 through 9) of spectral classes, under NPBC
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under NPBC display greater variation over time evolution than those under
PBC, the same occurs to the spectra. Therefore, it is less likely for cycles of
connections to be formed under NPBC than under PBC; consequently, the cycles
formed under NPBC tend to be larger than the ones under PBC, thus yielding
less groups of connected classes.

The groups of the graph are shown below (Figures 14 to 16) and the graph of
the connections among groups is presented in Figure 13.

Fig. 16. Groups (10 through 16) of spectral classes, under NPBC
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6 Concluding Remarks

The Fourier spectra of binary cellular automata rules give a description not
only of the possible binary blocks of limit configurations obtained out of the
time evolution of a rule, but also a quantitative characterisation of how binary
sequences of distinct frequencies of bit changes are represented, in average, in
the limit configurations obtained from each rule.

Here, a meaning for the Fourier spectrum was given, related to the dynamical
behaviour of cellular automata and the possible configurations generated by their
rules; also, reasons for the spectral similarity among ECA rules have been made
explicit. The partition of the ECA rule space under PBC, at first based on the
distance between the spectra, yielded 59 spectral classes, which were formalised
in terms of dynamical behaviour, surjectivity of rules and rules with equivalent
behaviour; since every set of dynamically equivalent rules is a subset of a spectral
class, the partition obtained due to spectral similarity is coarser than the one
arising from dynamical equivalence.

Also, a partition of the ECA rule space under non-periodic boundary condi-
tions was presented in terms of spectral classes, resulting in 59 classes. For both
PBC and NPBC, portraits of the ECA rule space in terms of graphs representing
the spectral similarity among rules were given. Under NPBC, the surjective rules
were subdivided into distinct spectral classes, in contrast to the PBC case; also,
the graph generated under NPBC has a smaller number of groups of connected
classes (16) than the one generated under PBC (19). The larger diversity of rule
behaviour under NPBC makes the cycles of connections generated during the
computation of the graph to be larger and more scarce than the ones generated
under PBC, thus entailing that the NPBC graph has a smaller number of groups
of connected classes than the PBC graph. These facts show that the spectrum
of a rule display greater variation under NPBC than under PBC.

The partition method used here to compute the spectral classes relied upon
the euclidean distance between the Fourier spectra of the rules, followed by
a visual coherence check; but while this procedure makes sense for the small
ECA space, it is unfeasible in larger spaces. In these cases, it would thus be
necessary to develop means for automatic checking of the validity of a partition,
which might even lead to investigations of other distance measures. Hence, the
determination of an appropriate method to define a partition based only upon
similarity between the Fourier spectra of the rules is a key point for further
investigations.

Computing spectral similarity of rules due to symmetries and dynamical
equivalence seems to be a way to establish a partial division of general cellu-
lar automata rule spaces in spectral classes.

The fact that every surjective ECA rule under PBC has shown white-noise
type spectrum is an interesting point that could be investigated in other one-
dimensional rule spaces, as a criterion to the automatic search for surjective, and
even reversible rules in those spaces.
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Finally, it would also be fruitful to be able to relate the Fourier spectra and
spectral similarity to static rule parameters, such as the ones in [3], [14], [10],
[16], and [8].
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Abstract. We conduct a brief survey on Wolfram’s classification, in
particular related to the computing capabilities of Cellular Automata
(CA) in Wolfram’s classes III and IV. We formulate and shed light on the
question of whether Class III systems are capable of Turing-completeness
or may turn out to be “too hot” in practice to be controlled and pro-
grammed. We show that systems in Class III are indeed capable of com-
putation and that there is no reason to believe that they are unable, in
principle, to reach Turing universality.

Keywords: cellular automata, universality, unconventional computing,
complexity, gliders, attractors, Mean field theory, information theory,
compressibility.

1 Wolfram’s Classification of Cellular Automata

A comment in Wolfram’s A New Kind of Science gestures toward the first dif-
ficult problem we will tackle (ANKOS) (page 235): trying to predict detailed
properties of a particular cellular automaton, it was often enough just to know
what class the cellular automaton was in. The second problem we will take on
concerns the possible relation between complexity of Cellular Automata and
Turing universal computation, also highlighted by Wolfram in his ANKOS (page
691– on Class 4 behaviour and Universality): I strongly suspect that it is true in
general that any cellular automaton which shows overall class 4 behaviour will
turn out—like Rule 110—to be universal. The classification and identification
of cellular automata (CA) has become a central focus of research in the field. In
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[108], Stephen Wolfram presented his now well-known classes. Wolfram’s analy-
sis included a thorough study of one-dimensional (1D) CA, order (k = 2, r = 2)
(where k ∈ Z+ is the cardinality of the finite alphabet and r ∈ Z+ the num-
ber of neighbours), and also found the same classes of behaviour in other CA
rule spaces. This allowed Wolfram to generalise his classification to all sorts of
systems in [114].

An Elementary Cellular Automaton (ECA) is a finite automaton defined in a
1D array. The automaton assumes two states, and updates its state in discrete
time according to its own state and the state of its two closest neighbours, all
cells updating their states synchronously.

Wolfram’s classes can be characterised as follows:

• Class I. CA evolving to a homogeneous state

• Class II. CA evolving periodically

• Class III. CA evolving chaotically

• Class IV. Includes all previous cases, known as a class of complex rules

Otherwise explained, in the case of a given CA:

• If the evolution is dominated by a unique state of its alphabet for any random
initial condition, then it belongs to Class I.

• If the evolution is dominated by blocks of cells which are periodically re-
peated for any random initial condition, then it belongs to Class II.

• If for a long time and for any random initial condition, the evolution is
dominated by sets of cells without any defined pattern, then it belongs to
Class III.

• If the evolution is dominated by non-trivial structures emerging and travelling
along the evolution space where uniform, periodic, or chaotic regions can co-
exist with these structures, then it belongs toClass IV. This class is frequently
tagged: complex behaviour, complexity dynamics, or simply complex.

Fig. 1 illustrates Wolfram’s classes, focusing on a specific ECA evolution rule
(following Wolfram’s notation for ECA [107]). All evolutions begin with the
same random initial condition. Thus, Fig. 1a displays ECA Rule 32 converging
quickly to a homogeneous state, Class I. Figure 1b displays blocks of cells in
state one which evolve periodically showing a leftward shift, Class II. Figure 1c
displays a typical chaotic evolution, where no pattern can be recognised or any
limit point identified, Class III. Finally, Fig. 1d displays the so called complex
class or Class IV. Here we see non-trivial patterns emerging in the evolution
space. Such patterns possess a defined form and travel along the evolution space.
They interact (collide), giving rise to interesting reactions such as annihilations,
fusions, solitons and reflections, or they produce new structures. These patterns
are referred to as gliders in the CA literature (‘glider’ is a widely accepted concept
popularised by John Conway through his well-known additive binary 2D CA, the
Game of Life (GoL) [34]). In Class IV CA we see regions with periodic evolutions
and chaos, and most frequently in complex rules the background is dominated by
stable states, such as in GoL. In such cases—and this is particularly true of the
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(a) (b)

(c) (d)

Fig. 1. Wolfram’s classes represented by ECA rules: (a) Class I - ECA Rule 32, (b)
Class II - ECA Rule 10, (c) Class III - ECA Rule 126, (d) Class IV - ECA Rule 110.
We have the same initial condition in all these cases, with a density of 50% for state
0 (white dots) and state 1 (black dots). The evolution space begins with a ring of 358
cells for 344 generations.

complex ECA Rule 110–the CA can evolve with a periodic background (called
ether) where these gliders emerge and live. Gliders in GoL and other CAs such
as the 2D Brian’s Brain CA [99] caught the attention of Christopher Langton,
spurring the development of the field of Artificial Life (AL) [51, 52].

Since the publication of the paper “Universality and complexity in cellular
automata” in 1984 [108], qualitative classifications of CA (an other systems) have
been a much studied and disputed subject. Wolfram advanced several ECA rules
as representatives for each of his classes and despite an early comment suggesting
that (page 31): k = 2, r = 1 cellular automata are too simple to support universal
computation, in his book “Cellular Automata and Complexity” [112] ECA Rule
110 was granted its own appendix (Table 15, Structures in Rule 110, pages
575–577). It contains specimens of evolutions, including a list of thirteen gliders
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compiled by Doug Lind, and also presents the conjecture that the rule could be
universal. Wolfram writes: One may speculate that the behaviour of Rule 110 is
sophisticated enough to support universal computation.

An interesting paper written by Karel Culik II and Sheng Yu titled “Un-
decidability of CA Classification Schemes” [26, 94] discussed the properties of
such classes, concluding that: it is undecidable to which class a given cellular
automaton belongs (page 177). Indeed, in 1984 Wolfram [108] commented (page
1): The fourth class is probably capable of universal computation, so that proper-
ties of its infinite time behaviour are undecidable. Actually, we can see that no
effective algorithm exists that is capable of deciding whether a CA is complex
or universal, and so far only a few discovered (as opposed to constructed) cellu-
lar automata have been proven to be capable of universal computation (notably
Wolfram’s Rule 110 and Conway’s Game of Life). However some techniques offer
suitable approximations for finding certain sets of complex, though perhaps not
necessarily universal rules (under Wolfram’s PCE they would be, c.f. Section 4).
In [20], Israeli and Goldenfeld devised a coarse-grained technique to find pre-
dictable properties of elementary CA and other systems. While they were able
to reduce elementary CAs in all Wolfram’s classes, they were unable to do so for
some in Class III (rules 30, 45, 106 and their symmetries) and more surprisingly
in Class II (rule 154 and its symmetries). Their technique showed to be able
to find properties of CA at some coarse-grained level of description without ac-
counting for small-scale details. They show that by using this technique one can
take a Class III system to a Class I in order to predict some properties of the
original system by a reduction of its apparent complexity, pointing out that irre-
ducibility may not be the same as complexity (or universality) given that some
irreducible rules can be coarse-grained (at least one example of an irreducible
rule (110) is known for certain because its ability of Turing universality). This
seems in agreement with the fact that systems in Class IV seem to show more
persistent structures than systems in Class III. In “Local structure theory for
cellular automata” [40] Howard Gutowitz developed a statistical analysis. An
interesting schematic diagram conceptualising the umbral of classes of CA was
offered by Wentian Li and Norman Packard in “The Structure of the Elemen-
tary Cellular Automata Rule Space” [54]. Pattern recognition and classification
has been examined in “Toward the classification of the patterns generated by
one-dimensional cellular automata” [13] by Yoji Aizawa and Ikuko Nishikawa.
An extended analysis by Andrew Adamatzky under the heading “Identification
of Cellular Automata” in [2] considered the problem of how, given a sequence
of configurations of an unknown cellular automaton, one may reconstruct its
evolution rules. A recent special issue dedicated to this problem focuses on some
theoretical and practical results.4 Klaus Sutner has discussed this classifica-
tion and also the principle of computational equivalence in “Classification of
Cellular Automata” [96], with an emphasis on Class IV or computable CA. An

4 Special issue “Identification of Cellular Automata”, Journal of Cellular Automata
2(1), 1–102, 2007.
http://www.oldcitypublishing.com/JCA/JCAcontents/JCAv2n1contents.html

http://www.oldcitypublishing.com/JCA/JCAcontents/JCAv2n1contents.html
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interesting approach involving an additive 2D CA was described in David Epp-
stein’s classification scheme [30]5.

We will discuss some practical and theoretical topics that distinguish such
classes and explore the computing properties of CA rules, in particular in classes
III and IV. Among the topics we want to explore is the feasibility of using ex-
tended analog computers (EAC) [76] for CA construction, in order to obtain
unconventional computing models [4, 3]. In this classification, Class IV is of par-
ticular interest because the rules of the class present non-trivial behaviour, with
a rich diversity of patterns emerging, and non-trivial interactions between glid-
ers, plus mobile localizations, particles, or fragments of waves. This feature was
useful in implementing a register machine in GoL [17] to determine its univer-
sality. First we survey some of the approximations that allow the identification
of complex properties of CA and other systems.

1.1 Mean Field Approximation

The Mean field theory is a well-known technique for discovering the statistical
properties of CA without analysing the evolution space of individual rules. It
has been used extensively by Gutowitz in [42]. The method assumes that states
in Σ are independent and do not correlate with each other in the local function
ϕ. Thus we can study probabilities of states in a neighbourhood in terms of the
probability of a single state (the state in which the neighbourhood evolves), and
the probability of a neighbourhood would be the product of the probabilities of
each cell in it.

Harold V. McIntosh in [67] presents an explanation of Wolfram’s classes using
a mixture of probability theory and de Bruijn diagrams6, resulting in a classifi-
cation based on the mean field theory curve:

• Class I: monotonic, entirely on one side of diagonal;

• Class II: horizontal tangency, never reaches diagonal;

• Class IV: horizontal plus diagonal tangency, no crossing;

• Class III: no tangencies, curve crosses diagonal.

For the one-dimensional case, all neighbourhoods are considered, as follows:

pt+1 =

k2r+1−1∑

j=0

ϕj(X)pvt (1 − pt)
n−v (1)

5 For a discussion see Tim Tyler’s CA FAQ at
http://cafaq.com/classify/index.php, and more recently, a compression-based
technique inspired by algorithmic information theory has been advanced[119] that
offers a powerful method for identifying complex CA and other complex systems

6 The de Bruijn diagrams have been culled from Masakazu Nasu’s 1978 work on tes-
sellation automata [83]. Wolfram himself has explored some of this in [109], later
thoroughly analysed by McIntosh [68, 73], Sutner [95], Burton Voorhees [102, 103],
and, particularly, exploited to calculate reversible 1D CA using de Bruijn diagrams
derived from the Welch diagrams by Seck-Tuoh-Mora in [89, 91]

http://cafaq.com/classify/index.php


242 Chapter 17. Wolfram’s Classification and Computation

such that j indexes every neighbourhood, X are cells xi−r, . . . , xi, . . . , xi+r, n
is the number of cells in every neighbourhood, v indicates how often state ‘1’
occurs in X , n− v shows how often state ‘0’ occurs in the neighbourhood X , pt
is the probability of a cell being in state ‘1’, and qt is the probability of a cell
being in state ‘0’; i.e., q = 1 − p. For Mean field theory in other lattices and
dimensions, please consult[41, 43].

1.2 Basins of Attraction Approximation

Andrew Wuensche, together with Mike Lesser, published a landmark book enti-
tled “The Global Dynamics of Cellular Automata” in 1992 [105] which contained
a very extended analysis of attractors in ECA. Wolfram himself had explored
part of these cycles in “Random Sequence Generation by Cellular Automata”
[110], as had McIntosh in “One Dimensional Cellular Automata” [73]. Notably,
Stuart Kauffman in his book “The Origins of Order: Self-Organization and Se-
lection in Evolution” [50] applies basins of attraction to sample random Boolean
networks (RBN) in order to illustrate his idea that RBN constitute a model of
the gene regulatory network, and that cell types are attractors. The best de-
scription of such an analysis is to be found in [117]. A basin (of attraction) field
of a finite CA is the set of basins of attraction into which all possible states
and trajectories will be organized by the local function ϕ. The topology of a
single basin of attraction may be represented by a diagram, the state transition
graph. Thus the set of graphs composing the field specifies the global behaviour
of the system [105]. Generally a basin can also recognize CA with chaotic or com-
plex behaviour using prior results on attractors [105]. Thus, Wuensche says that
Wolfram’s classes can be represented as a basin classification [105], as follows:

• Class I: very short transients, mainly point attractors (but possibly also
periodic attractors), very high in-degree, very high leaf density (very ordered
dynamics);

• Class II: very short transients, mainly short periodic attractors (but also
point attractors), high in-degree, very high leaf density;

• Class IV: moderate transients, moderate-length periodic attractors, moder-
ate in-degree, very moderate leaf density (possibly complex dynamics);

• Class III: very long transients, very long periodic attractors, low in-degree,
low leaf density (chaotic dynamics).

1.3 Compressibility Approximation

A compression-based classification of CA (and other systems) was proposed in
[119], based on the concept of algorithmic (Kolmogorov) complexity. Unlike the
Mean field theory, this technique analyses the asymptotic statistical properties of
CA by looking at full space-time evolution of individual rules up to an arbitrary
number of steps. The method produces the following variation of Wolfram’s
classification [120].
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• Class I: highly compressible evolutions for any number of steps;

• Class II: highly compressible evolutions for any number of steps;

• Class III: the lengths of compressed evolutions asymptotically converge to
the uncompressed evolution lengths;

• Class IV: the lengths of compressed evolutions asymptotically converge to
the uncompressed evolution lengths.

The four classes seem to give way to only two (Classes I and II and Classes
III and IV are not distinguishable in this first approach). But it is shown how
algorithmic information theory helps to separate them again, using the concept
of asymptotic behaviour advanced in [119, 121].

(a) (b)

(c) (d)

Fig. 2. To which of Wolfram’s Classes do these two ECAs (Rule 22 and Rule 109) be-
long? (a) Wolfram’s ECA Rule 22 starting from a single black cell, (b) Rule 22 starting
from another initial configuration (11001), (c) Wolfram’s ECA Rule 109 starting from
a single black cell, (d) The same Rule 109 starting from another initial configuration
(111101).

The motivation in [119] is to address one of the apparent problems of Wol-
fram’s original classification, that of rules behaving in different ways starting
from different initial configurations. In the experiments that led Wolfram to
propose his classification he started the systems with a “random” initial con-
figuration as a way to sample the behaviour of a system and circumvent the
problem of having to choose a particular initial configuration to map a system
to its possible class of behaviour. The problem resides in the fact that a CA, like
any other dynamical system, may have phase transitions, behaving very differ-
ently for different initial configurations (the question is ultimately undecidable
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as pointed out in [26]) but this is also a practical issue for an heuristic classifi-
cation, given that systems may seem to jump from one class to another in such
phase transitions. The chances of having a CA display an average behaviour
(that is, its behaviour for most initial configurations) are greater when taking
a “random” initial configuration, only if one assumes that there is no bias to-
wards any particular region of the possible enumerations of initial configurations
(consider the behaviour of a CA starting from one initial configuration versus
another (see Figures 2). In [119] this issue is addressed with the definition of
a compression-based phase transition coefficient capturing the asymptotic be-
haviour of a system, which in turn allows to separate the collapsed classes and
even advance a different and alternative classification, based on the sensitivity
of a CA to its initial conditions, which has also been conjectured to be related
to the system’s ability to transfer information, and ultimately to its computing
abilities, particularly as these relate to Turing universal computation (see [121]).
This approach does not solve the problem of a system that behaves in a qual-
itatively different manner after a certain number of initial input configurations
or after a certain period of time (the same problem encountered when devising
the original classification), which is not a problem of method, but is instead
related to the general problem of induction and of reachability (hence to unde-
cidability in general). Nonetheless it does address the problem of a reasonable
definition of the “average behaviour” of a system (in this case a CA) under the
same assumptions made for other enumerations (viz. that enumerations, espe-
cially natural ones, have no distinct regions where a system starts behaving in a
completely different fashion, making it impossible to talk about the convergence
in behaviour of a system). Wolfram’s classes can once again be separated using
the compression-based approach in combination with the following classification
[120], derived from a phase transition coefficient presented in [119]:

• Class I: insensitivity to initial configurations, inability to transfer information
other than isolated bits;

• Class II: sensitivity to initial conditions, ability to transfer some information;

• Class III: insensitivity to initial configurations, inability to transfer informa-
tion, perhaps due to lack of (evident means of) control;

• Class IV: sensitivity to initial conditions, ability to transfer some
information.

One can only understand how Classes I and III can now be together in this
classification on the basis of the qualitative treatment explained above. In other
words, when one changes the initial configuration of a system in either of these
two classes (I and III) the system’s behaviour remains the same (each evolution
is equally compressible), and it is therefore considered unable to or inefficient at
transferring information or programming a CA to perform (universal) computa-
tion. On the other hand, this suggests that classes II and IV may be better at
transferring information, even if they may do so in different ways. This classifi-
cation may tell us that some classes are more sensitive to initial configurations.
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Together, the compression-based classifications capturing different behaviours
of the systems capture other intuitive notions that one would expect from Wol-
fram’s original classification. The values for ECA calculated in [119] yielded
results that also suggest that one may be able to relate these measures to uni-
versality through the definition of Class IV, as given above (see [121]).

2 Universal CA Class IV versus Class III

Karel Culik II and Sheng Yu have demonstrated [26] that whether a CA be-
longs to Class IV is undecidable. Nevertheless, some approximations have been
developed, with interesting results. The use of genetic programming by Melanie
Mitchell, Rajarshi Das, Peter Hraber, and James Crutchfield [75, 28] to obtain
sets of rules with particles and computations is a case in point. As indeed is
Emmanuel Sapin’s calculation of a non-additive binary universal 2D CA with
a genetic algorithm, the R rule [87, 88]. However, the use of evolutionary tech-
niques has been limited to a small portion of complex CA with few states and
small configurations. Up to now, brute force programming has been necessary to
obtain monsters of complex patterns in huge spaces, as Eppstein shows in [31].

2.1 The Game of Life: Class IV

The most popular 2D CA is certainly Conway’s Game of Life (GoL), a binary 2D
additive CA, first published in Martin Garden’s column in Scientific American
[34]. GoL can be represented as R(2, 3, 3, 3), or typically, as the B3/S23 rule.7 In
1982, Conway proved that GoL was universal by developing a register machine
working with gliders, glider guns, still life and oscillator collisions [17]. However,
such universality was completed by Paul Rendell’s demonstration in 2000 that
involved implementing a 3-state, 3-symbol Turing machine in GoL [85, 86]. The
machine duplicates a pattern of 1’s within two 1’s on the tape to the right of the
reading position, running 16 cycles to stop with four 1’s on the tape. A snapshot
of this implementation is provided in Fig. 3a. For details about each part and
about the functionality of this machine please visit “Details of a Turing Machine
in Conway’s Game of Life” http://rendell-attic.org/gol/tmdetails.htm.

GoL is a typical Class IV CA evolving with complex global and local be-
haviour. In its evolution space we can see a number of complex patterns which
emerge from different configurations. GoL has been studied since 1969 by Con-
way, and William Gosper of MIT’s Artificial Life research group has taken a
strong interest in it. The tradition of GoL research is very much alive, with to-
day’s GoL researchers discovering new and very complex constructions by run-
ning complicated algorithms. Just last year, GoL celebrated its 40th anniversary.

7 An excellent forum on GoL is “LifeWiki” http://conwaylife.com/wiki/

index.php?title=Main Page. To complement this, you may consult “The Game of
Life Sites” http://uncomp.uwe.ac.uk/genaro/Cellular Automata

Repository/Life.html.

http://rendell-attic.org/gol/tmdetails.htm
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(a)

(b)

Fig. 3. (a) A 3-state, 3-symbol Turing machine in GoL by Rendell [85, 86], (b) its
mean field curve
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The occasion was marked by the publication of the volume “Game of Life Cellu-
lar Automata” [6], summarising a number of contemporary and historical results
in GoL research as well as work on other interesting Life-like rules.

According to Mean field theory, p is the probability of a cell’s being in state
‘1’ while q is its probability of its being in state ‘0’ i.e., q = 1− p, and the mean
field equation represents the neighbourhood that meets the requirement for a
live cell in the next generation [67]. As we have already seen, horizontal plus
diagonal tangency, not crossing the identity axis (diagonal), and the marginal
stability of the fixed point(s) due to their multiplicity indicates Wolfram’s Class
IV [42], or complex behaviour. Hence, we will review the global behaviour of
GoL using Mean field theory. Figure 3b shows the mean field curve for GoL,
with polynomial:

pt+1 = 28p3tq
5
t (2pt + 3qt).

The origin is a stable fixed point, while the unstable fixed point p = 0.2 represents
the fact that densities around 20% induce complex behaviour for configurations
in such a distribution. p = 0.37 is the maximum stable fixed point where GoL
commonly reaches global stability inside the evolution space.

In [122] a compression-based phase transition coefficient was calculated, show-
ing that, as expected, GoL exhibits a high degree of variability and potential
(efficient) programmability. This is in agreement with the known fact that GoL
is capable of universal computation, and hence supports the idea that sensitiv-
ity to initial configurations is deeply connected to both programmability and
(Turing) universality.

2.2 Life-Like Rule B35/S236: Class III

The Life-like CA evolution rule B35/S236 was proposed by Eppstein
and Dean Hickerson as a chaotic CA with sufficient elements for devel-
oping universality. Details about these computable elements are available
at http://www.ics.uci.edu/~eppstein/ca/b35s236/construct.html. The
family of gliders and other complex constructions in this rule can be found at
http://www.ics.uci.edu/~eppstein/ca/b35s236/.

The B35/S236 automaton commonly evolves chaotically. Figure 4a displays a
typical chaotic evolution starting from an L-pentomino configuration; after 1,497
generations there is a population of 52,619 live cells. Here we see how a few gliders
emerge from chaos and then quickly escape, although the predominant evolution
over a long period is chaotic.

Figure 4b shows the mean field curve for CA B35/S236, with polynomial:

pt+1 = 28p3tp
2
t (p

4
t + 2ptq

3
t + 2p2tq

2
t + 3q4t ).

The origin is a stable fixed point (as in GoL) which guarantees the stable con-
figuration in zero, while the unstable fixed point p = 0.1943 (again very similar
to GoL) represents densities where we could find complex patterns emerging in

http://www.ics.uci.edu/~eppstein/ca/b35s236/construct.html
http://www.ics.uci.edu/~eppstein/ca/b35s236/
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(a)

(b)

Fig. 4. (a) Evolution starting from an L-pentomino in Life-like CA B35/S236, (b) its
mean field curve

B35/S236. p = 0.4537 is the maximum stable fixed point at which B35/S236
commonly reaches global stability.

This way, B35/S236 preserves the diagonal tangency between a stable and
an unstable fixed point on its mean field curve. But although its values are
close to those of GoL, CA B35/S236 has a bigger population of live cells, which
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is not a sufficient condition for constructing reliable organisms from unreliable
components.

2.3 ECA Rule 110: Class IV

The 1D binary CA rule numbered 110 in Wolfram’s system of classification [107]
has been the object of special attention due to the structures or gliders which
have been observed in instances of its evolution from random initial conditions.
The rule is assigned number 110 in Wolfram’s enumeration because it represents
the decimal base of the transition rule expanded in binary: 01110110. The tran-
sition function evaluates the neighbourhoods synchronously in order to calculate
the new configuration transforming the neighbourhoods 001, 010, 011, 101 and
011 into state 1 and the neighbourhoods 000, 100 and 111 into state 0. It has
been suggested that Rule 110 belongs to the exceptional Class IV of automata
whose chaotic aspects are mixed with regular patterns. But in this case the back-
ground where the chaotic behaviour occurs is textured rather than quiescent, a
tacit assumption in the original classification.8 Rule 110 was granted its own
appendix (Table 15) in [110]. It contains specimens of evolution including a list
of thirteen gliders compiled by Lind and also presents the conjecture that the
rule could be universal.

The literature on the origins of Rule 110 includes a statistical study done by
Wentian Li and Mats Nordahl in 1992 [53]. This paper studies the transitional
role of Rule 110 and its relation to Class IV rules figuring between Wolfram’s
classes II and III. The study would seem to reflect an approach to equilibrium
statistics via a power law rather than exponentially. Matthew Cook wrote an
eight page introduction [21] listing gliders from A through H and a glider gun.9.
This list shows new gliders which do not appear on Lind’s list, gliders with
rare extensions, and a pair of gliders of complicated construction, including an
amazing glider gun. Cook makes a comparison between Rule 110 and Life, finding
some similarities in the behaviour of the two evolution rules and suggesting that
Rule 110 may be called “LeftLife.”

Looking at the rule itself, one notices a ubiquitous background texture which
Cook calls “ether,” although it is just one of many regular stable lattices capable
of being formed by the evolution rule, and can be obtained quickly using the de
Bruijn diagrams [70, 64]. McIntosh raises the issue of the triangles of different
sizes that cover the evolution space of Rule 110 [71]. The appearance of these
triangles suggests the analysis of the plane generated by the evolution of Rule 110
as a two dimensional shift of finite type. This suggestion is arrived at by observing
that the basic entities in the lattices, the unit cells, induce the formation of
upside-down isosceles right triangles of varying sizes. The significance of Rule
110 could lie in the fact that it is assembled from recognisably distinct tiles,

8 A repository of materials on ECA Rule 110 can be found at:
http://uncomp.uwe.ac.uk/genaro/Rule110.html

9 An extended list of gliders in Rule 110 is provided in
http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html

http://uncomp.uwe.ac.uk/genaro/Rule110.html
http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html
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Fig. 5. Mean field curve for ECA Rule 110

and hence its evolution can be studied as a tiling problem, in the sense of Hao
Wang [37]. It may even be possible to see fitting elements of one lattice into
another as an instance of Emil L. Post’s correspondence principle [27], which
would establish the computational complexity of the evolution rule [70].

The most important result both in the study of Rule 110 and in CA theory over
the last twenty years, is the demonstration that Rule 110 is capable of universal
computation [22, 114, 72, 23, 65]. For so a type of system called a cyclic tag
system (CTS) as a variation of a well-known model of computation (Post’s tag
systems) was designed to be of use for the proof and its characteristic restrictions:
1D, boundary conditions, package of gliders, and multiple collisions. CTS are
a new kind of computing formalism [22, 114] used as tools for implementing
computations in Rule 110.

Fig. 5b shows the mean field curve for Rule 110 with polynomial:

pt+1 = 2ptq
2
t + 3p2t qt.

The origin of Fig. 5 displays a stable fixed point (as in GoL) which guarantees
the stable configuration in zero. The maximum point (p = 0.6311) is close to the
fixed stable point in p = 0.62. In Rule 110 we cannot find unstable fixed points,
and in any case the emergence of complex structures is ample and diverse.

A basin (of attraction) field of a finite CA is the set of basins of attraction into
which all possible states and trajectories will be organised by the local function
ϕ. The topology of a single basin of attraction may be represented by a diagram,
the state transition graph. Thus the set of graphs composing the field specifies
the global behaviour of the system [105].
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As calculated in [119], rules such as Rule 110 and Rule 54 (also believed
to be capable of universal computation) had a large compression-based phase
transition coefficient, as discussed in Section 1.3, meaning that their ability to
transfer information was well captured by the measure defined in [119] (and,
interestingly, perhaps strengthens the belief that Rule 54 is capable of Turing
universality).

3 Heat and Programmability in Class III

Class III CAs may turn out to be too sensitive, so the question may be whether
even if they are that sensitive they can carry information from one side to an-
other. Universality results in simple programs capable of complicated behaviour
have traditionally relied on localised structures (“particles”) well separated by
relatively uniform regions. It could also be the case that proofs of universality of
seemingly Class IV systems are easier to construct because of its “particle-like”
behaviour, unlike systems seemingly in Class III.

The open problem is thus to prove computational universality in a simple
program system for which an entropy measure on each time step remains near
its maximum—e.g. 80% of its maximum theoretical value on at least 80% of its
time steps. Can a “hot system” of this sort perform meaningful computation?

In the Game of Life, for example, there is a common intuitive notion of heat10,
defined as the average number of cells which change state in each generation
(note the strong connection of Shannon’s Entropy and the Mean Field Theory).
For example, the heat of a glider in GoL is known to be four, because two cells
are born and two die in every generation, and that for a blinker is 4, because 2
cells are born and 2 die in every generation. In general, for a period n oscillator
with an r-cell “rotor”, the heat is at least 2r/n, and no more than r(1 − (n
mod 2)/n).

The concept of heat can clearly be associated with Wolfram’s chaotic Class
III, where CAs, e.g., rule 30, change state at a very high rate, (see Figures
(c) 1), which is what keeps them from developing persistent structures such as
are seen in Rule 110 (see Figure (d) 1). The presence of persistent structures in
Wolfram’s Rule 110 and Conway’s Game of Life is what traditionally has been
used to perform computation–implementing logic gates or transferring informa-
tion over time by putting particles in the way of interacting with each other.
So the question is whether CAs such as the ones belonging to Wolfram’s Class
III are “too hot” to transfer information and are therefore, paradoxically in this
particular way, just like Class I systems which are unable to perform computa-
tion. Alternatively, Class III may be able to perform computation, as has been
suggested, but it may turn out to be difficult to program such systems (if not
designed to “look” like a Class III system by using first a system from a Class
IV, somehow hiding the computing capabilities of the Class III system), and this
potential similarity between the insensitivity to initial conditions of Class I and
Class III systems is what the compressibility approach discussed in Section 1.3 is

10 See http://www.argentum.freeserve.co.uk/life.htm accessed in July 2012.

http://www.argentum.freeserve.co.uk/life.htm
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measuring and which has been advanced in [120] as a measure of programmabil-
ity. Wolfram identified some of these issues in his enumeration of open problems
in the research on CA [113] (problems 1, 2 and 14), concerning the connections
between the computational and statistical characteristics of cellular automata,
measures of entropy and complexity and how to improve his classification using
dynamic systems (which was one of the motivations of [119]). Wolfram asks,
for example, about the rate of information transmission of a CA in relation to
its Lyapunov exponent (positive for Classes III and IV) and the computational
power of these systems according to their classes. Another interesting question
concerns the connection to Langton’s λ parameter [51] and the ongoing inves-
tigation of its connections to some of the approaches described in this paper.
In [15] a similar approach is taken using Lyapunov exponents and Jacobians–
anticipated by Wolfram in [110]–where the calculation of the number of cells
that differ provide a metric of the average rate of transmission of information
(one that is related to the more informal term heat in GoL).

4 Final Remarks

Usually, Class III rules are not considered candidates for computational univer-
sality. However, in some cases such rules can support complex patterns, including
performing complex computations. Exploring many CA rules, including the ex-
ceptionally chaotic Life-like rule Life Without Death [35], one finds that there
are several rules between chaos and complexity which are not included within
the domain of complex behaviour. However, they present many elements equally
likely to reach Turing computational universality. An important point made in
this survey and review is that it seems clearly to be the case that it is not only
complex CA11 rules that are capable of computation, and that CA, even if simple
or random-looking, may support Turing universality. Whether the encoding to
make them actually compute turns out to be more difficult than taking advan-
tage of the common interacting persistent structures in rules usually believed to
belong to Wolfram’s class IV is an open question.

Previous results on universal CAs (developing signals, self-reproductions, glid-
ers, collisions, tiles, leaders, etc.) prove that unconventional computing can be
obtained depending on the nature of each complex system. For example, to
prove universality in Rule 110 it was necessary to develop a new equivalent Tur-
ing machine to take advantage of limitations in 1D and the same dynamics in its
evolution space, e.g., mobility of gliders and boundary properties. Hence, a CTS
was devised, before this system was known as a circular machine [14, 49, 79, 66].
This way, the nature of each system would determine the best environment in
which to design a corresponding computer. This could be the basis of Wolfram’s
Principle of Computational Equivalence and it is also the inspiration behind the

11 A Complex Cellular Automata Repository with several interesting rules is
available at http://uncomp.uwe.ac.uk/genaro/otherRules.html.
We particularly recommend Tim Hutton’s Rule Table Repository
http://code.google.com/p/ruletablerepository/.

http://uncomp.uwe.ac.uk/genaro/otherRules.html
http://code.google.com/p/ruletablerepository/
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definition of programmability measures for natural computation in [120]. Wol-
fram’s Principle of Computational Equivalence ultimately only distinguishes be-
tween two kinds of behaviours (despite Wolfram’s own heuristic classification),
namely those that are “sophisticated” enough and reach Wolfram’s threshold,
constituting a class of systems capable of computational universality, and those
that fall below this threshold and are incapable of universal computation. And
indeed, the compression-based classification in [119] at first distinguishes only
two classes.

A number of approximations were developed or adapted to find complex CA.
Perhaps the most successful technique was the one developed by Wuensche,
with its Z parameter [118]. Some attempts were made by Mitchell et. al using
genetic algorithms, although they had a particular interest in finding rules able
to support complex patterns (gliders) with computational uses [28, 116]. Unfor-
tunately, these algorithms have strong limitations when it comes to searching
in large rule spaces and very complex structures. And though the technique in
[119] has proven capable of identifying complex systems with great accuracy, it
requires very large computational resources to extend the method to larger rule
spaces if a thorough investigation is desired (though in conjunction with other
techniques it may turn out to be feasible).

As it has proven to be a very rich space, new kinds of CAs are proposed all
the time. e.g., reversible CA [48, 90, 69], partitioned CA [114], hyperbolic CA
[58], CA with non-trivial collective behaviour (self-organization) [24, 25], asyn-
chronous CA [32], biodiversity in CA [55], CA with memory [9, 10], morpholog-
ical diversity [12], identification of CA [2], communication complexity [29, 38],
pattern recognition from CA [13], to mention a few.

Some other studies dedicated to designing or identifying universal CAs are
[44, 3, 4, 36, 62]. Obtaining CA of Class IV from other rules has been studied via
lattice analysis [39], with memory [56, 57, 62, 7, 11, 8], asynchronous [97, 100, 18,
32], differential equations [19], partitioned [74, 78, 46, 79, 80, 77, 60, 61], parity-
filter CA [84, 93, 47], number-conserving [81] changing different neighbourhoods
in CA [106].

CA as super computer models are developed extensively in [104, 20, 16, 59,
82, 99, 111, 92, 44, 98, 33, 3, 4, 5, 1, 115, 45, 66].
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Exploring Wolfram’s Notion of Computational
Irreducibility with a Two-Dimensional Cellular

Automaton
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The Digital Humanities Laboratory, The University of Evansville, USA

Abstract. The notion of computational irreducibility says that a prob-
lem is computationally irreducible when the only way to solve it is to
traverse a trajectory through a state space step by step using no short-
cut. In this paper, we will explore this notion by addressing whether
computational irreducibility is a consequence of how a particular prob-
lem is represented. To do so, we will examine two versions of a given
game that are isomorphic representations of both the play space and
the transition rules underlying the game. We will then develop a third
isomorph of the play space with transition rules that seem to only be
determined in a computationally irreducible manner. As a consequence,
it would seem that representing the play space differently in the third
isomorph introduces computational irreducibility into the game where
it was previously lacking. If so, we will have shown that, in some cases
at least, computational irreducibility depends on the representation of a
given problem.

Keywords: Cellular automaton, computational equivalence, computa-
tional irreducibility, formal equivalence, Haugeland, Wolfram.

1 The Problem

In A New Kind of Science [11], Stephen Wolfram observes that “when viewed in
computational terms most of the great historical triumphs of theoretical science
turn out to be remarkably similar in their basic character. For at some level
almost all of them are based on finding ways to reduce the computational work
that has to be done in order to predict how some particular system will behave”
(p. 737 [11]). Systems for which this is not possible are termed “computationally
irreducible” (CI). Furthermore, “whenever computational irreducibility exists in
a system, it means that in effect there can be no way to predict how the system
will behave, except by going through almost as many steps of computation as the
evolution of the system itself” (p. 739 [11]). While the notion exceeds the scope
of cellular automata, much of Wolfram’s research in this area involves them.
Indeed, this is one place where the notion of CI is transparent. For instance, in
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John Conway’s Game of Life, a two-dimensional cellular automaton, artificial
agents, or “counters,” operate according to four rules:

1. Every counter with two or three neighboring counters survives for the next
generation.

2. Each counter with four or more neighbors dies (is removed) from overpopu-
lation.

3. Every counter with one neighbor or no neighbors dies from isolation.

4. Each empty cell adjacent to exactly three neighbors–no more, no fewer–is a
birth cell. A counter is placed on it at the next move. (p. 120 [1])

At each time stamp, or tick, all of the agents in the system follow these rules.
The question that we can ask concerning CI is whether it is possible to predict in
advance what the state of the system will be in, say, fifty ticks, given a particular
initial configuration without having to step through each tick and let the system
evolve. If we cannot find a “shortcut,” as it were, the system is computationally
irreducible. In Artificial Intelligence: The Very Idea [2], John Haugeland presents
a pair of isomorphs to demonstrate the notion of formal equivalence, which
should not be confused with Wolfram’s notion of computational equivalence.
The latter says that “almost all processes that are not obviously simple can be
viewed as computations of equivalent sophistication” (pp. 716-717 [11]). Formal
equivalence, on the other hand, occurs when the following conditions hold:

1. For each distinct position in one system there is exactly one corresponding
position in the other system.

2. Whenever a move would be legal in one system, the corresponding move
(i.e., from the corresponding position to the corresponding position) would
be legal in the other system.

3. All of the starting positions correspond. (p. 62 [2]).

To demonstrate the notion of formal equivalence, Haugeland invites his reader
to consider a couple of formal games. The first one is defined thusly:

1. The tokens are thirty-three plastic chips, each with two letters written on
it: one from early in the alphabet (A-G), and one from late in the alphabet
(T-Z).

2. In the starting position, all of the chips are together in a white basket, except
for the one marked DW, which is all by itself in a black basket.

3. A move consists of exchanging two chips in the white basket for one in the
black; but there’s a restriction on which chips can be exchanged for which:
a. either all three chips must have the same early letter and sequential late
letters, or else they must have the same late letter and sequential early
letters;
b. and the middle letter in the sequence can’t be on the one chip going from
the black basket to the white.
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For example:

AX, BX <=> CX and AX, AW <=> AV are legal moves;

but ET, EV <=> EZ isn’t legal (second letters not sequential);

AW, BX <=> CY isn’t legal (no same letter); and

AX, CX <=> BX isn’t legal (middle letter in black basket). (pp. 60-61 [2])

Haugeland then invites his reader to consider a different game with tokens that
are all identical and that are laid out in a particular spatial configuration as
follows:

Table 1. A spatial representation of Haugeland’s game

X X X
X X X

X X X X X X X
X X X X X X
X X X X X X X

X X X
X X X

In this game, the X’s represent marbles on a constrained play space. A move
consists of jumping one marble over another and then moving the jumped marble
off the board. The goal of the game is to end with just one marble left in the
center of the board.

The import of Haugeland’s demonstration becomes clear when we assign iden-
tifiers to the game tokens in the manner shown in Table 2 ([2]). Here, game pieces
on the spatialized board represent the tokens in the first game as presented above.
By turning the original game into a spatialized version of the same, we have re-
duced the number of rules, thereby simplifying the game. (For a similar strategy
involving the “Towers of Hanoi” game, see p. 84 [4]). Nevertheless, for each token
in one game there is a token that plays the same computational role in the other,
and for each move in one game there is a computationally-equivalent move in
the other game. In other words, the games are isomorphs of each other regarding
both play state and transition rules for moving from one state to another.

In the investigation that follows, we will construct a third representation of
the game state as a compact collection of six “vectors” (to be defined subse-
quently). To do so, we will treat the spatialized version of Haugeland’s game as
a cellular automaton in order to address the question of whether computational
irreducibility depends on the representation of a given problem.

Israeli and Goldenfeld ([3]) investigated a similar question concerning whether
the level of description of a problem can change its computational reducibility.
Unlike our work, however, they did so by employing homomorphs that do not
preserve all of the information contained in the original system. Our investiga-
tion differs insofar as we developed an alternate representation that is an actual
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Table 2. Reproduced from Haugeland p. 61 [2]

AV AW AX
BV BW BX

CT CU CV CW CX CY CZ
DT DU DV DX DY DZ
ET EU EV EW EX EY EZ

FV FW FX
GV GW GX

isomorphic redescription of the original game. This is important because it re-
sponds to a claim that Wolfram makes in [11] concerning counterexamples to
computationally irreducible systems:

If one views the pattern of behavior [in a system] as a piece of data
... regularities in it allow a compressed description to be found. But
the existence of a compressed description does not on its own imply
computational reducibility. For any system that has simple rules and
simple initial conditions – including for example rule 30 – will always
have such a description. (p. 746 [11])

In other words, Wolfram claims that changing the representation of a system
does not change whether it is computationally reducible or irreducible; however,
we think that it can. To show this, we will adopt an inverted strategy by taking
a computationally reducible system and transforming it into a computationally
irreducible one by changing the representation without a loss of information,
that is, again, by creating an isomorphic and not merely a homomorphic rep-
resentation of the original system. In so doing, we will introduce irreducibility
into a formally equivalent system where it was lacking previously.

2 Representing the Board as a Vector Space

The first four vectors are generated based on the number of pieces in each row,
column and both diagonal directions of the board. To generate the row vector,
we simply counted the number of pieces in each row on the board; we then did
the same for the columns and then for both diagonal directions. Thus, the row
vector <3,3,7,6,7,3,3> signifies that on a 7 x 7 automaton there are three pieces
in the first row, three in the second, seven in the third, and so on. Similarly, if the
above were a column vector, it would signify that there are three pieces in the first
column, three in the second, seven in the third, and so on. Since there are 13 diag-
onals in each direction, there are two diagonal vectors each with 13 components.
For the board described above, for instance, the diagonal vector in each direc-
tion would be the same, <0,0,2,4,5,4,2,4,5,4,2,0,0>. These vectors represent the
initial state of Haugeland’s game as presented above. Together, we call this four-
vector representation the “RCD feature detection method,” “RCD” standing for
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“row, column, diagonal.” By itself, the method cannot represent all unique board
states. For instance, the vector set r = <1,2,3,1,4,2,0>, c = <1,1,1,5,2,1,2>, d1
= <0,0,0,1,3,2,1,2,2,1,1,0,0>, d2 = <0,0,2,1,2,2,1,2,1,1,1,0,0> (where d1 rep-
resents the diagonals that run from the top left to the bottom right, and d2
represents that diagonals that run from the top right to the bottom left) repre-
sents both of the non-identical boards in Table 3.

Table 3. Two different board constructions produced from the same set of RCD vectors

A B C D E F G A B C D E F G
+ — — — — — — — + + — — — — — — — +

1 | . . o | 1 1 | . . o | 1
2 | o o . | 2 2 | . o o | 2
3 | . . . o . o o | 3 3 | . o . o . . o | 3
4 | . . . o . . . | 4 4 | . . . o . . . | 4
5 | o o . o . . o | 5 5 | o . . o . o o | 5
6 | . o o | 6 6 | o o . | 6
7 | . . . | 7 7 | . . . | 7

+ — — — — — — — + + — — — — — — — +
A B C D E F G A B C D E F G

To account for this disparity, we added another method that yields what we
call “heat map representations.” This method involves two vectors, one that
defines the board space and the other the pieces on the board. Both of these
vectors are necessary because, together, they represent the distribution of pieces
and the playable spaces for any arbitrary game board. For simplicity’s sake, we
will start by explaining the piece vector, though both piece and space vectors
are determined by counting an individual piece or space plus the number of its
neighbors, defining “heat” here as a measure of how clustered together the game
elements are. The heat map for the pieces of Haugeland’s game above is thus
represented by Table 4. To calculate the heat for the piece in the middle of the
3 x 3 highlighted space in the table, for instance, we considered the 3 x 3 space
containing it. The heat of the cell was then determined by counting the number
of pieces within this space. In this example, the highlighted cell contains a piece
that has seven neighboring cells containing pieces; therefore, its heat value is
eight. Repeating the same procedure, we then calculated the heat value of each
cell, thereby arriving at the heat map displayed in Table 4. Each cell also has
a second heat value calculated in a similar manner except that we count the
number of empty but playable spaces in the 3 x 3 square instead of the number
of pieces.

With these two heat maps defined, we constructed the piece heat vector and
space heat vector as follows. The first component of each vector is the number
of cells that have a heat value of one. In our example, for instance, the first
component of the piece heat vector is zero, since there are no cells with a piece
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Table 4. The left image is of the initial board state and the right image is of the
corresponding heat map

A B C D E F G A B C D E F G
+ — — — — — — — + + — — — — — — — +

1 | o o o | 1 1 | 0 2 4 6 4 2 0 | 1
2 | o o o | 2 2 | 2 5 7 9 7 5 2 | 2

3 | o o o o o o o | 3 3 | 4 7 7 8 7 7 4 | 3

4 | o o o • o o o | 4 4 | 6 9 8 8 8 9 6 | 4

5 | o o o o o o o | 5 5 | 4 7 7 8 7 7 4 | 5
6 | o o o | 6 6 | 2 5 7 9 7 5 2 | 6
7 | o o o | 7 7 | 0 2 4 6 4 2 0 | 7

+ — — — — — — — + + — — — — — — — +
A B C D E F G A B C D E F G

heat of one. The second component is the number of cells with a heat value of
two. Since there are eight of these, the second component is an eight. The third
is the number of cells with a heat value of three, and so forth. This sequence
continues up to the ninth component, which counts the number of cells with a
heat value of nine. In Table 4, the entire piece heat vector is <0,8,0,8,4,4,12,5,4>.

The four RCD vectors together with the two heat vectors describe a third
game that is formally equivalent (i.e., isomorphic) to Haugeland’s game. This
technique represents any board state as a unique set of these six vectors. To
show that the reverse correspondence also holds, we developed an algorithm
that reconstructs the spatial layout of the board using only the vectors.

Our algorithm uses a stochastic hill climbing search that begins with a random
arrangement of pieces on the board, which is, in turn, converted to vectors
using the methods described above. These are then compared to a set of vectors
representing the goal state of the desired board. Together, both sets of vectors
are compared to calculate an error value for each possible future state, and then
the state with the lowest error is selected. In the event of a tie, one is selected
at random. The process continues until the error value is zero, in which case the
vectors serving as the goal successfully reproduce the state of the board.

The procedure for calculating the aforementioned error value is adapted from
backpropagation methods used in training artificial neural networks that employ
a mean square of errors. In our use, the algorithm compares the vectors of the
current board with the vectors of the goal by subtracting each component in the
current vectors from its counterpart in the goal, squaring this difference, and
then summing these squares into a single number that represents the error. Since
this calculation only uses information contained in the vector representation, the
algorithm recreates the spatial board state solely by virtue of the vectors.

To evaluate the performance of the algorithm, we generated a random sample
of 450 board configurations. We obtained the vectors from each board in the
sample and used the algorithm to reconstruct the boards from these vectors.
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For our evaluation run, the algorithm successfully reconstructed all 450 of the
generated boards. This result confirms our claim that the vector representation
fully encodes the board states in Haugeland’s game.

Having shown that we could reconstruct the board using vectors, we then
faced the problem of determining equivalent transition rules for Haugeland’s
game necessary to show that the games are formally equivalent. This is where
we run into computational irreducibility. In principle, one could construct these
rules by enumerating all of the possible state transitions and then retaining
those that entail legal moves in the original game; however, we were not able
to construct the game rules explicitly. The difficulty in determining transitions
rules for the vector space lies in their elusive, disjunctive, nonlinear nature.

When a piece is moved, the RCD vectors change in a linear manner. If a
piece jumps along a column over another piece, it decrements one component
of the column vector by one. See the change of the fourth component of the
C vector from five to four in Table 5. Three components of the row vector
change, but they do so in a predictable manner. Two adjacent components of
the row vector decrement by one, while one additional adjacent component is
incremented. See the R vector in Table 5 below and the changes in the third
through fifth components in the up move. Also note the changes in the fourth
through sixth components in the down move. Both diagonal vectors change in
a similar manner. Note, however, the unpredictable changes in H1 between the
different moves that are highlighted in the table.

Table 5. Changes in vector values given two different available moves in the game

Initial Board Jump Up Jump Down
R <3,3,5,6,6,2,3> <3,3,6,5,5,2,3> <3,3,5,5,5,3,3>
C <3,2,6,5,6,3,3> <3,2,6,4,6,3,3> <3,2,6,4,6,3,3>
D1 <0,0,2,4,5,1,2,4,4,4,2,0,0><0,0,2,4,5,2,1,3,4,4,2,0,0><0,0,2,4,5,1,1,3,5,4,2,0,0>
D2 <0,0,2,3,4,3,3,3,4,4,2,0,0><0,0,2,3,4,2,2,4,4,4,2,0,0><0,0,2,3,5,2,2,3,4,4,2,0,0>
H1 <9,15,7,7,8,11,6,2,0> <9,15,8,8,10,9,4,2,0> <9,15,5,12,10,9,3,2,0>
H2 <15,9,4,0,0,0,0,0,0> <13,6,4,3,1,0,0,0,0> <12,6,4,3,3,0,0,0,0>

While the RCD vector transitions can be easily predicted as demonstrated, the
heat vector transitions are another matter, as they are based on the clustering of
pieces. There does not appear to be a clear and easy set of transition rules as in
the previous cases. Two jumps from the same board configuration produce very
different heat vectors despite similar structure in the RCD representation. The
heat vectors vary when moving based on how tightly clustered the pieces are in
the resulting board. This clustering of the pieces is not fully represented by the
RCD vectors because they only show the number of pieces in each row, column,
and diagonal and do not account for the relative positions of those pieces. Thus
the transitions for the heat vectors cannot be directly derived from the RCD
transition rules. In other words, while the heat vector transitions do need to be
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Table 6. Changes in heat vectors throughout a game

Heat Vector Modified Vector Change
<8,16,4,8,4,4,12,5,4> - U D N
<8,16,6,6,7,5,8,5,4> <N,N,U,D,U,U,D,N,N> 3 2 4
<9,15,8,6,7,3,10,3,4> <U,D,U,N,N,D,U,D,N> 3 3 3
<10,15,7,5,6,4,7,4,5> <U,N,D,D,D,U,D,U,U> 4 4 1
<9,17,5,8,6,4,7,4,3> <D,U,D,U,N,N,N,N,D> 2 3 4
<10,15,8,7,8,2,7,4,2> <U,D,U,D,U,D,N,N,D> 3 4 2
<11,14,7,7,7,2,7,4,2> <U,D,D,N,D,N,N,N,N> 1 3 5
<13,13,8,6,7,3,5,4,2> <U,D,U,D,N,U,D,N,N> 3 3 3
<17,12,6,6,6,3,5,4,2> <U,D,D,N,D,N,N,N,N> 1 3 5
<15,13,7,8,6,4,6,1,1> <D,U,U,U,N,U,U,D,D> 5 3 1
<16,11,9,8,3,4,4,2,1> <U,D,U,N,D,N,D,U,N> 3 3 3
<16,13,9,9,3,6,1,1,1> <N,U,N,U,N,U,D,D,N> 3 2 4
<18,12,7,7,5,4,2,1,1> <U,D,D,D,U,D,U,N,N> 3 4 2
<17,13,8,9,5,3,1,0,1> <D,U,U,U,N,D,D,D,N> 3 4 2
<20,11,4,12,2,3,2,0,1> <U,D,D,U,D,N,U,N,N> 3 3 3
<17,14,6,13,2,2,1,0,0> <D,U,U,U,N,D,D,N,D> 3 4 2
<14,11,9,9,2,3,0,1,0> <D,D,U,D,N,U,D,U,N> 3 4 2
<14,13,7,6,3,3,0,1,0> <N,U,D,D,U,N,N,N,N> 2 2 5
<18,13,5,4,3,2,1,1,0> <U,N,D,D,N,D,U,N,N> 2 3 4
<18,14,6,5,1,2,1,0,0> <N,U,U,U,D,N,N,D,N> 3 2 4
<19,11,8,3,2,2,0,0,0> <U,D,U,D,U,N,D,N,N> 3 3 3
<20,10,7,3,1,2,0,0,0> <U,D,D,N,D,N,N,N,N> 1 3 5
<20,13,6,3,1,0,0,0,0> <N,U,D,N,N,D,N,N,N> 1 2 6
<20,12,8,1,0,0,0,0,0> <N,D,U,D,D,N,N,N,N> 1 3 5
<27,8,4,2,0,0,0,0,0> <U,D,D,U,N,N,N,N,N> 2 2 5
<25,10,3,0,0,0,0,0> <D,U,D,D,N,N,N,N,N> 1 3 5
<23,8,2,0,0,0,0,0,0> <D,D,D,N,N,N,N,N,N> 0 3 6
<26,5,0,0,0,0,0,0,0> <U,D,D,N,N,N,N,N,N> 1 2 6

dependent in some way on the RCD vectors to ensure that all six vectors in the
representation are kept in sync, they do not follow any discernible pattern in
their transitions, despite the fact that the RCD vectors on which they need to
depend do change linearly. This lack of linearity in the transitions of the heat
vectors is demonstrated by the sporadic nature of the heat vector transitions
shown in Table 6. Note the lack of any discernible patterns in the changes in
heat vectors between moves. See in particular the columns labeled U, D, and
N below, which stand for a transformation upward, downward, or no change,
respectively.

From the data shown in Table 6, it would seem that we are dealing with a truly
nonlinear set of transition rules necessary for computational irreducibility. Not
only that, there appears to be no readily discernible pattern for the transition
rules, though further mathematical analysis is required for definitive proof.



3 Conclusions and Caveats 271

3 Conclusions and Caveats

To demonstrate formal equivalence, Haugeland introduced two isomorphic repre-
sentations of the same underlying game: one in which plastic chips are exchanged
between two baskets according to a purely symbolic set of rules, the other in
which tokens are laid out in a spatial configuration such that a move consists of
jumping one token with another and removing the jumped token. The spatial
representation yielded simpler rules while preserving both the play space and
the transition rules of the underlying game. In both cases, the transition rules
for the games appear to be computationally reducible.

However, when we constructed a third isomorphic representation of the game’s
state space with our compact collection of six vectors, we lost the ability to for-
mulate transition rules easily. Indeed it appears that the only method for deter-
mining the transition rules from one state to another involves stepping through
the state space, and thus the process appears to be computationally irreducible.
If so, then we have shown that computational irreducibility is contingent upon
the representation of a given problem. Nevertheless, Zenil, Soler-Toscano, and
Joosten [6] have developed a framework for empirically searching for shortcuts
to computations. Applying their framework to our representation may reveal a
counterexample to our claim. On the other hand, their work with predicting
the outputs of Turing machines presents examples of functions that are easily
predictable in their binary encoding but become more complex in decimal. Both
their results and our vector representation exhibit an increase in complexity
caused by a change in representation and, therefore, come to bear on the larger
question addressed in this paper.

Our proof here is empirical, not mathematical. But it nonetheless provides
an existence proof of a relationship between the representation of a problem
and the question of reducibility. To arrive at a more definitive claim about Wol-
fram’s work, it would be necessary to take one of Wolfram’s computationally
irreducible cellular automata, formulate an isomorphic representation of it, and
then determine whether transition rules of the equivalent system are computa-
tionally reducible. This effort would, in effect, reverse the procedure laid out in
this paper, but we leave it for the next stages of this project.
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Abstract. We explore several concepts for analyzing the intuitive no-

tion of computational irreducibility and we propose a robust formal defi-

nition, first in the field of cellular automata and then in the general field

of any computable function f from N to N. We prove that, through a

robust definition of what means “to be unable to compute the nth step

without having to follow the same path than simulating the automaton

or to be unable to compute f(n) without having to compute f(i) for

i = 1 to n−1”, this implies genuinely, as intuitively expected, that if the

behavior of an object is computationally irreducible, no computation of

its nth state can be faster than the simulation itself.

Keywords: Complexity, logical depth, cellular automata, irreducibility,

computation.

1 Introduction

It is now common knowledge that it is not because the behavior of a system is de-
terministic that it is possible to predict it. That has been proven in mathematics
in the first part of the 20th century through the work of Kurt Gödel on the for-
mal axiom systems and of Alan Turing [7, 8, 6, 39] on the computing machines.
That has also been proven in physics after Henri Poincaré, Edward Lorenz and the
subsequent works on the so called ”deterministic chaos” during the second half of
the XXth century [23, 35, 39, 29, 30, 5]. So, we now know that even if a system is
deterministic it can be the case that we can’t predict its behavior in the long run.
The reasons for this unpredictability can be multiple. If the behavior of a dynam-
ical non linear system is not predictable, it is because very near initial conditions
can lead to very far states after a certain time. So, predicting the behavior in the
long term would mean knowing initial conditions with an infinite precision which
is impossible. As far as computing machines are concerned, the halting problem is
known to be undecidable. That means that no algorithm, if fed with the descrip-
tion of a particular Turing machine, can tell if this machine is going to stop or to

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 273–295.
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compute forever. Incidentally, a consequence of this undecidability is that for ev-
ery formal system, there exists a Turing machine that doesn’t halt but for which
it’s impossible to prove that it will never stop. In this case, what we can’t predict
is a fact about a fully deterministic machine.

Another kind of unpredictability is of interest. It concerns also computing
machines but is linked with their computation time. Predicting the behavior of
a computation machine is to be able to find the result it computes faster than the
machine itself. Of course in any case, using a modern computer obviously enables
to get faster the result of a given program running on an older one. A more
interesting definition is: given a Turing machine computing a definite function,
is there another Turing machine [16, 19, 18, 26, 27, 34, 17] computing the same
function faster (i.e. in a smaller number of steps)? It is useful to be more precise
and to restrict the type of the Turing machines allowed to compete. The efficiency
of different kinds of Turing machines is not the same. For example, when deciding
whether a string of length l is a palindrome, a 1-tape Turing machine will need
a number of steps of O(l2) whereas a 2-tape Turing machine will use only O(l)
[27, 17]. Therefore an immediate question occurs: Is it possible by adding an
arbitrary number of tapes to increase indefinitely the gap between the speed of
1-tape Turing machines and the speed of k-tape Turing machines? The answer
is no for a well known theorem states that “given any k-tape Turing machine
M operating within time f(n), we can construct a 1-tape Turing machine M ′

operating within time O(f(n)2) and such that for any input x, M ′(x) = M(x)
[27]”. That means that whatever fast k-tape machine is considered for computing
a function, there is a 1-tape Turing machine doing the same job in just the square
of the time needed by the k-tape machine. So the best we can do is achieving
quadratic savings in time. The link with our subject of unpredictability is clear:
if a computation is performed through the fastest algorithm that can perform
it, it will not be possible to predict the result. Of course, these considerations
are of interest only when infinite processes are considered (i.e. computation of a
function f(n) for all values of n). For a finite computation of a given data d the
fastest algorithm that computes d is always something like: print “d”. A more
precise definition will be given below and more will be said as well about the so
called “speed-up” theorems.

The question of unpredictability can be put forward in a more direct way:
given a physical system whose behavior can be calculated by simulating explicitly
each step in its evolution, is it always possible to predict the outcome without
tracing each step? That means: is there always a shortcut to go directly to the
nth step? A computer is of course such a physical system. Wolfram conjectured
[33, 20, 37] that in most cases the answer is no. This “no” expresses the concept
of computational irreducibility (CIR). This question has been widely analyzed
in the context of cellular automata (CA) by Wolfram [34]. A cellular automaton
(CA) is computationally irreducible if in order to know the state of the system
after n steps there is no other way than to evolve the system n times according
to the equations of motion. That means that there is no short-cut, no way
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to compress the dynamic. Thus the system appears to be unpredictable. The
intuition behind this definition is that there is no other way to reach the nth

state than to go through the (n-1) previous ones. The consequence is that it’s
impossible to reach the nth state faster than the automaton itself. While really
appealing from the intuitive standpoint, this definition lacks for robustness. If we
take it at face value, asking that there is no other possibility than to go through
exactly the same states than the automaton itself, it’s too restrictive. Imagine
for example, that there is an algorithm A1 such that it gives for each input n a
result differing only by a small difference from the nth state of the automaton and
that for computing the result for n, it goes through all the previous results for
i < n. Imagine as well that there is an algorithm A2 that computes the nth state
of the automaton from the nth result of the algorithm A1. Then, the composed
algorithm A2 ◦A1 (where the symbol o stands for the composition) will give the
nth state of the automaton when given n as input but will not follow the same
path than the automaton itself. Nevertheless, if no other algorithm is able to
give directly the nth state of the automaton, we will not be willing to consider
the existence of A2 ◦A1 as a counter example of the fact that the automaton is
CIR. That means that demanding that the only way to reach the nth state is to
follow the exact path of the automaton through the (n−1) previous states is too
restrictive. So a first question is: how far can we depart from this path? A second
question is related to the computation time. Could it be enough to say that a
CA is CIR if it’s impossible to know its nth state faster than itself even if it is
possible to compute this nth state without having to go through all the previous
states? Even if these questions have been raised inside the cellular automata
field, they concern as well the field of all computable functions. What does that
mean for a function f(n) from N to N (the set of all positive or null integers) to
be CIR? Is there any function f(n) such that it’s necessary to compute all the
f(i) for i = 1 to n− 1, to get f(n)?

In this paper, we deal with these questions and attempt to find a robust formal
definition of the concept of computational irreducibility. Our goal is general and
we look for a concept of computational irreducibility that is applicable to any
system. Computational irreducibility is related to a system and a computation
model. For the sake of simplicity, we’ll use as our typical examples of systems
the cellular automata and we’ll consider Turing machines as implementing the
concept of computation. The reader will easily convince himself that these choices
don’t imply any loss of generality and at the end of the paper, we’ll aim at giving
the most general form to our results so as not to be restricted to the field of
cellular automata which is used only as a suitable example.

2 Turing Machines

We assume the reader to be familiar with the concept of Turing machines [16,
19, 26, 27, 34, 17] but we give nevertheless the basic notions.



276 Chapter 19. Unpredictability and Computational Irreducibility

A Turing machine is a theoretical device capable of manipulating a list of
cells called tape (infinite in principle), using an access pointer called the head
through a finite program. Each cell can contain a symbol from a finite alphabet.
The time is discrete and each instruction is executed in one step of time. The
head is always positioned over a particular cell which it is said to scan. The
machine can be in internal states (members of a finite set always containing at
least a start state and a halting state). At time 0, the head is supposed to scan
the leftmost cell (the string written on the tape at the beginning is considered
as input, possibly empty) and the machine to be in the start state. At each
step, the head reads the symbol written on the scanned cell, erases it or writes
another symbol, goes left or right and changes its internal state. The program
of the machine is a finite rule (sometimes called the transition function) which
states exactly what the head must do depending on the symbol written on the
scanned cell and the internal state of the machine. When the machine reaches
the halting state the computation is finished and what is written on the tape is
the result of the computation. Of course, the machine can possibly never stop.
It is also possible to consider Turing machines with several tapes. As we’ll see,
the consideration of multi-tape Turing machines is important when dealing with
the concept of complexity. Multi-tape Turing machines are also very useful to
facilitate the design of machines that compute functions of interest.

The main point with the Turing machines model is that it is very simple and
that through the Church-Turing thesis [15, 11], it allows the computation of any
computable function. More precisely, the Church-Turing thesis says that a func-
tion can be computed by some Turing machine if and only if it can be computed
by some machine of any other reasonable and general model of computation.
Put simply, that means that a function is in any way computable if and only if
it can be computed with a Turing machine.

The fact that the description of any Turing machine through its transition
function is itself computable shows that there exist Turing machines able to
simulate any other Turing machine. Such a machine is called a Universal Turing
machine. A Universal Turing machine U is such that given the index i of any
Turing machine T under a given numbering, it simulates the computation of T
on every input argument m:

For all i, if T is the ith Turing machine, then for all m, U(i,m) = T (m).
We’ll see that Universal Turing machines are fundamental tools for defining

many important notions in the following.

3 Some General Speed-Up Results

Notations. We’ll need in the following some notations for comparing the order
of magnitude of different functions. We recall here the standard notations.

1. f(n) = O(g(n)) if there are constants c > 0, n0 > 0 such that ∀n > n0,
|f(n)| ≤ c|g(n)|.
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2. f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

3. f = ω(g) if there is a constant n0 > 0 such that ∀c > 0, |f(n)| > c|g(n)|.
4. f(n) = Ω(g(n)) if there is a constant c > 0 such that |f(n)| ≥ c|g(n)|

infinitely often.

It is well known that the time complexity of a problem may depend on the
model of computation. We mentioned above the problem of deciding if a string
is a palindrome which is O(n2) in the 1-tape Turing machines model and O(n)
in the 2-tape Turing machines model.

If we adopt the computation model of the k-tape Turing machines, some
results help understanding the limits on the savings that can be expected either
by increasing the number of tapes or by designing more efficient machines doing
the same computation.

A first result [27] says that we can’t expect more than a quadratic saving
through allowing an arbitrary number of tapes.

Theorem 3.1. Given any k-tape Turing machine M operating within time
f(n), it’s possible to construct a 1-tape Turing machine M ′ operating within
time O(f(n)2) and such that for any input x, M(x) = M ′(x).

The meaning of this result is that the best k-tape machine that can be designed
for doing a computation will never operate in less that O(f(n)1/2) if the best
1-tape Turing machine doing the same computation operates in a time O(f(n)).

More generally, the Cobham-Edmonds thesis [9, 17] states that a problem has
time complexity t in some “reasonable and general” model of computation if and
only if it has time complexity poly(t) in the model of 1-tape Turing machines.3

The time complexity of the problems in all reasonable models is polynomially
related.

A second result [27] is known as linear speed-up.

Theorem 3.2. For any k-tapes Turing machine M operating in time f(n)
there exists a k′-tapes Turing machine M ′ operating in time f ′(n) = εf(n) + n
(where ε is an arbitrary small positive constant) which simulates M .

This linear speed-up means that the main aspect of complexity is cap-
tured through the function f(n) irrespectively of any multiplicative constant.
DTIME(f(n)) is the class of functions4 computable by a k tape Turing ma-
chine in f(n) steps. This result means that DTIME(f(n)) = DTIME(εf(n))
and so it’s legitimate to define DTIME(f(n)) as the class of functions com-
putable by a Turing machine in O(f(n)) steps.

More interesting is the Time Hierarchy theorem [17] which states that for
2-tape Turing machines:

3 Poly(t) stands for any function polynomial in t.
4 More precisely the class of decision problems.
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Theorem 3.3. DTIME(f(n)) is strictly included in DTIME(f(n)g(n)) when
g(n) = ω(logn) and f(n) > n.

For example, there are some functions that are computable in O(n2 log2 n) and
not computable in O(n2). Using the Cobham-Edmonds thesis this gives similar
hierarchy theorems for any reasonable models of computation.

A simple consequence is theorem 3.4:

Theorem 3.4. A universal Turing machine cannot be significantly sped-up
(more than by a factor O(log2(n))).

Proof: The reason why such a universal Turing machine cannot be significantly
sped-up is the following. A multi-tape universal Turing machine needs only
be slower by logarithmic factor [17] compared to the machines it simulates.
Assume T computes in time O(t(n)), then U(i) computes in time O(t(n) log n).
If U could be significantly sped-up then any function simulated by U would
as well be sped-up the same way, up to the factor logn. Then, let’s consider a
function f in DTIME(O(n2 log2 n)) − DTIME(O(n2)). Speeding-up U by a
factor O(log2(n)) would mean being able to compute f through U in a time
O(n2), which is impossible.

4 Chaitin-Kolmogorov Complexity and Bennett’s Logical
Depth

We give here the basic notions of algorithmic complexity and logical depth. A
good reference is the book by Li and Vitanyi [22] and others [21, 7, 22, 6, 36, 38].
We’ll then explore the possible conceptual links between these two notions and
CIR.

4.1 The Chaitin-Kolmogorov complexity

Intuitively, the Chaitin-Kolmogorov complexity 5 (sometimes called simply al-
gorithmic complexity) K(s) of a string s is the length of the shortest com-
puter program p that outputs s if it is given as input to a universal machine
U : K(s) = min{�(p)|U(p) = s} where �(p) is the length of p.

This program is called the minimal program or the shortest description for s
and sometimes noted s∗. It is possible to show that this definition depends on
the choice of the universal machine only up to a constant. More precisely:

5 We present here the so called “prefix complexity” in which no program is a proper
prefix of another program. There are many technical reasons for imposing this re-
striction. See [22] for an extensive presentation.
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Theorem 4.1.1. (invariance theorem).Given two Universal Turing machines
U and V , there exists a constant CUV depending only of U and V such that for
every s : |KU (s)−KV (s)| < CUV .

Proof: Roughly, this can be understood through the fact that the universal
Turing machine U can be simulated through the other one V by a simulation
program pV U . So, if s

∗
U is the minimal program for s relatively to U , pV U ◦ s∗U

(where ◦ stands here for composition) is a program computing s on V . Hence
KV (s) ≤ �(pV U ◦ s∗U ) = �(pV U ) + �(s∗U ) = KU (s) + �(pV U ) (and vice versa).

This invariance theorem gives all its interest to the definition because it states
that the algorithmic complexity of a string is a good measure (choosing a univer-
sal Turing machine is roughly similar to choosing the zero of a temperature scale
for a thermometer). It also shows that from an asymptotic point of view, the
complexity of a string does not depend on the chosen machine (the simulation
program becomes negligible).

The algorithmic complexity of a string s is a measure of how regular is the
string. If the string contains many redundancies it will be easy to compress and
its complexity will be low. For instance, the string (01)1000 of one thousand
times “01” is easy to describe in a way much shorter than its length (we just
did it). On the contrary, if there is no redundancy, the only way to describe a
random string is to enumerate all of its bits. So the shortest program with the
output s will be “print s” and its length will be of the order of magnitude of
the length of s (plus the length of the program print). A finite string will be
random (i.e. with no redundancy at all) if its complexity is roughly equal to its
size. Equivalently, that means that it is not compressible. The right statistical
definition of a random infinite string has been given by Martin-Löf6 [12, 13,
8, 14]. An interesting point is the link between the algorithmic complexity and
randomness for infinite strings.

Theorem 4.1.2. (infinite binary sequence). An infinite binary sequence s
is random if there is a constant c such that for all n : K(s1:n) ≥ n − c (where
s1:n stands for the initial segment of the n first bits of s)

Another point worth noticing is the fact that among the 2n binary strings of
length n, less than a proportion of 2−p have a complexity smaller than n −
p. The reason why is easy to understand. There are less than 2k strings of
length inferior to k, then less than 2k programs of length inferior to k. So there
is a maximum number 2k of strings of complexity smaller than k. Then the
proportion of strings of complexity smaller than k among the 2n strings of length
n is less than 2k−n. Equivalently (by letting k = n − p) less than a proportion

6 [24] In precise terms s is random if it is not contained in any Gδ set determined by
a constructive null cover.
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of 2−p have a complexity smaller than n− p. That means that almost all strings
are incompressible and hence random.

4.2 Bennett’s Logical Depth

Bennett’s logical depth [3, 4, 1, 2] is an attempt to measure the amount of non
random or “useful” information in a string. Roughly, the logical depth of a string
s is defined as the time required by a universal Turing machine to generate s
from its shortest description 7. Note that this time is at least equal to the length
of the string s since s has to be written (which needs at least as many steps as
the number of bits of s).

The computation models used to estimate the time of computation need to
be reasonable. Bennett considers what he calls “fast universal Turing machines”.
For example, these machines must be able to run a “print s” program in a time
linear in the length of s. More generally, a fast universal Turing machine must be
able to simulate any computation done on another machine in a time bounded
by a polynomial linear in the time needed by the other machine, whatever other
machine is considered.

Intuitively, an object is deep if it contains some redundancy (hence is
not random), but an algorithm requires extensive resources to exploit that
redundancy.

It’s also possible to define the depth of a string s relative to another string w,
which is the computation time to produce s from w by the minimal program of
s. The more the depth D(s) of a string s will be large relative to its length n,
the deeper s will be. For example a string s with D(s) = O(nn) will be deeper
than a string s′ with D(s′) = O(n2). Some strings are supposed to have a non
linear depth in this precise meaning. That’s the case of the string composed of
the n bits (a1, a2,. . . , an) where ai is 1 if the ith Turing machine (under a given
numbering) halts and 0 otherwise. A problem with the logical depth is that it
is not computable (there is the same problem with the algorithmic complexity).
As a result it’s often impossible to prove things rigorously. A large literature has
been extensively written these last years on the subject and some authors 8 have
proposed more sophisticated but computable definitions of depth.

In this paper, we are mainly interested about the possible conceptual links
between logical depth and CIR. Hence, we will not dive into technical subtleties
out of the scope of our subject and will adopt the simplest (if not the most
correct) definition of the logical depth: D(s) is the computation time of the
minimal program for s.

7 Actually, for technical reasons, this definition is not totally satisfying and the correct
one is: the depth at significance level l of a string s is the least time required by a
universal Turing machine to generate s by a program that is not compressible itself
by more than l bits. We’ll ignore this subtlety in the following.

8 See for example [25].
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The main point about the logical depth is that it can easily be seen that it is
a measure of the amount of useful information while the algorithmic complexity
is clearly a measure of random information.

A random string with maximal algorithmic complexity (of order of magnitude
of its length) is not deep. Logical depth and algorithmic complexity are comple-
mentary notions. A deep string can be seen as a highly organized object or as
an object produced by a long computation.

A string with a simple organization (n times “0” for instance) can be deep if n
is deep but will always have a low depth relative to its length. For a string to be
really deep, it will necessarily be produced after a long computation having let
some tracks in its structure. The slow growth law [3] expresses the fact that it is
very unlikely that a deterministic program transforms quickly a shallow string
into a deep one. This is an indication that the logical depth concept is reaching
its goal of describing the organization hidden in a string and that it is a very
important mathematical notion that can even be used in concrete applications
[36].

5 Elementary Cellular Automata

For the sake of simplicity and as a useful intuitive guide but without any loss of
generality, we will address the problem of defining the computational irreducibil-
ity first inside the framework of Elementary Cellular Automata (ECA). Cellular
automata (CA) were originally introduced by von Neumann and Ulam [28, 31] in
the 1940’s as a possible way of simulating self reproduction in biological systems.
A CA is a dynamical system composed of a lattice of cells inside a one or many
dimensions array. Each cell can contain a value from a given finite alphabet. The
system evolves in time according to an update rule that gives a cell’s new state
as a function of the values of the other cells in a given neighborhood (for instance
the eight immediate neighbors in a square array). A ECA is a one dimensional
CA which has two possible values for each cell (0 or 1) and update rules that
depend only on the two nearest neighbor values. According to Wolfram [32, 34]:

the evolution of an elementary cellular automaton can completely be
described by a table specifying the state a given cell will have in the next
generation based on the value of the cell to its left, the value the cell itself,
and the value of the cell to its right. Since there are 2× 2× 2 = 23 = 8
possible binary states for the three cells neighboring a given cell, there
are a total of 28 = 256 elementary cellular automata, each of which can
be indexed with an 8-bit binary number.

A point worth noticing is that the number of update rules to perform to reach
the nth configuration going successively through all the configurations is growing
at most as n2. That’s easy to see through considering an initial state with only
one black cell. Then computing the next configuration needs applying one of the
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8 rules describing the automaton. At the next step, there can be at most 3 black
cells, then 5 black cells and so on. If we number 0 the initial configuration, the
nth configuration contains at most 2n + 1 black cells. Thus, provided that no
intermediate configuration collapses, the number of rules to apply to reach the
nth configuration is: 3 + 5+. . . +(2n − 1) = n2 − 1. If the length of the initial
configuration is l, then the number of update rules to perform will be l + 2 for
the next configuration, then l+4, and so on. . . The total number of update rules
to perform will be at most n2 + n(l − 1)− 1.

Does that mean that the computation of the nth configuration of every ECA
among the 256 possible ones always needs to perform n2 rules? No, since some
ECA’s show trivial behavior 9. Rules 0, 40 or 96 give immediately vanishing
configurations. Rules 4,12, 36 or 76 give stable configurations with a unique
black cell under the initial one. These ECA can be simulated 10 in time O(n)
and of course the computation of the nth configuration can be done in a constant
time since all the configurations are identical. A little bit more interesting are the
rules 2, 6, 16, and many similar others giving rise to a sloping black line of one cell
length. The computation of the nth configuration can be done directly in time
O(n). The simulation can be done either in time O(n2) or time O(n) depending
on the fact that we demand that all the successive configurations keep written
or not. In the following we’ll just demand that all the configurations appear and
not that they keep written. So, the simulation can be done in O(n).

Consider now the ECA rule 158 (see Fig.1). It’s easy to see that the nth

configuration is always a string of length 2n + 1 with the following structure:
for n odd, 1110011001100... . ..0011 and for n even, 111011101110... . ..11101. So,
while simulating rule 158 needs a time O(n2), it is not complicated to compute
directly the nth configuration in a time O(n).

The same situation appears with many other ECA. Consider the ECA rule
90 (see Fig.2). The situation is simple since the 2nth configuration is the string
“1(0)2n−11”. The configuration 2n + 1 is the string “1(0)2n − 11”. Here again,
while the simulation of rule 90 needs a time O(n2), it’s easy to compute directly
the nth configuration in time O(n).

For all these automata (rules 2, 6, 16, . . . giving only a slopping black line,
rules 90, 158, . . . giving more complex but regular configurations) computing the
nth configuration can be done in time O(n). However this is not always the case.
Consider for example the ECA rule 30 (see Fig.3).

It seems much more difficult to see any reasonable way to find a rule giving
directly the structure of the nth configuration. That seems as well difficult with
ECA rule 110 (see Fig.4).

9 In the following, we’ll consider only the behavior of ECA from an initial state with
only one black cell.

10 A simulation of a ECA A is the enumeration of the successive configurations of A.
We’ll define below a ECA Turing machine representing a ECA A as a Turing machine
computing successively all the configurations of A.
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Fig. 1.

Fig. 2.

Fig. 3.
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Fig. 4.

That looks even more difficult if we have a look at a larger number of config-
urations (see Fig.5).

Rule 110 is of particular interest since it has been proven [34, 10] to be capable
of universal computation. It’s up to now the simplest rule known to be universal.

Fig. 5.

ECA Simulation
time

En direct compu-
tation time

Class

Rules, 0, 8, 32, 40, 96, . . . and
Rules 4, 12, 36, 44, 76 . . .

O(n) O(1) 1

Rules 2, 6, 16, 24, . . . O(n) O(n) 2
Rules 18, 26, 90, 158, . . . O(n2) O(n) 3
Rules 90, 110, . . . ?? O(n2) ? 4
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We can draw a classification11 according to the following classes (noticing that
the simulation time must be at least O(n) since a simulation is the enumeration
of n successive configurations and that the direct computation time can’t be
greater than the simulation time):

Class 2 and 4 are the only possible classes for CIR ECA. Automata in class 2
have the property that the number of cells that change between two successive
configurations is bounded by a constant and so is the time to compute the
(n + 1)th configuration from the nth configuration. We don’t want to consider
them as CIR. Indeed, their behavior is very simple and hence can easily be
predictable. So the only possible class for CIR ECA is class 4. The consideration
of such automata naturally raises the question of whether it is possible – but
just not obvious – to find a rule for directly computing the nth configuration
of such automata or if this is really impossible as claimed by Wolfram. So the
question is: “is there any automaton in class 4?”. This question can actually be
split into:

1. is it possible to compute the nth configuration without having to perform n2

rules?

2. is it possible to compute the nth configuration without computing the (n−1)
previous ones?

An answer “no” to the second question implies an answer “no” to the first one
if all the configurations have the maximum length 2n + 1, but the reverse is
not true. And the implication is not true if the lengths of the configurations are
O(n). To give a more precise meaning to these questions, we now address the
computation model in which we’ll try to state them.

ECA can be simulated through 1-tape 2-symbols Turing machines if we adopt
the following convention: a Turing machine T will be said to simulate an au-
tomaton if, starting with the number n and the initial configuration (numbered
0) on its otherwise blank tape, it stops with the n first configurations of the
automaton written on its tape. How are we to recognize the different states?
A simple convention makes that easy: let’s say that the number representing a
configuration will be written with all the symbols doubled. For instance, starting
from the left to the right, a line containing two black cells followed by a blank
one and then a black one (1101) will be represented on the tape by “11110011”.
This insures that the string “01” with 0 at an odd position will never appear
and can be reserved for separating the different lines. Thus, at the end of the
computation, the tape will start by “01” followed by the value of the first line
(with figures doubled) then “01” separating the first line from the second one
and so on. . .The tape will be by ended by “01”. For example:

01110111001101111100110001

11 Be careful not to confuse this classification with Wolfram’s classification which bears
some similarities with this one.
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describes 3 lines. The first line with a black cell, the second line with a black
cell, a blank one and then a black one, and the third line with cells black, black,
white, black, white. This convention allows as well to specify the initial state of
the ECA we want to simulate. At the beginning, the tape will contain “01” then
the number n of configurations to be computed (written with figures doubled)
then “01” then the initial configuration (written with the same convention).

It’s easy to see that this way of encoding ECA’s through 1-tape 2-symbols
Turing machines is not very efficient. The head will have to go back and forth per-
manently: back to read the three cells of the configuration i− 1 that correspond
to the current computed cell of the configuration i, forth to write the current
cell, back again to read the next three cells of the configuration i − 1, forth to
write the next cell and so on. Since the configuration i has (2i+1) cells, the head
will have to go back and forth (2i+1) times. During each trip, it will go through
2(2i−1) cells. With our coding that implies 4(2i−1)+4 moves. Thus it will need
(2i+1)[4(2i− 1)+4] steps for computing the configuration i from configuration
i− 1 (apart some details that doesn’t change the argument). The total number
of steps for computing the nth configuration is then Σ(2i+ 1)[4(2i− 1) + 4] for
i = 1 to n. Since Σ(2i+ 1)[4(2i− 1) + 4] = O(Σi2) = O(n3), we compute ECA
in O(n3). We could save space in allowing 3 symbols. That would avoid doubling
each bit. But the gain would only be linear.

Is it possible to be more efficient? Yes, it suffices to use 2-tape 2-symbols
Turing machines. When the computation starts, one tape contains the number
of configurations that is to compute and the initial configuration, the second
tape is blank. Now, the head of the first tape reads the initial configuration
and the head of the second tape writes the next configuration according to
the update rules. It’s easy to see that reading configuration i − 1 and writing
configuration i can be done in (2i+1) steps (here, no need to go back and forth).
When configuration i is written the role of the heads is reversed. If the initial
configuration has length 1, apart from a small subtlety to deal with the counter
n allowing to stop after having written n configurations (which just adds a linear
number of steps), the total number of steps when the machine halts is Σ(2i+1)
for i = 1 to n: i.e. O(n2). A length of the initial configuration strictly greater
than 1 will only have a constant multiplicative impact.

Can we save more time? Here the answer is no for unless an intermediate
computation collapses, we have seen that the number of updating rules to
perform is n2 − 1. So we can say that in general the most efficient Turing
machines for simulating ECA’s can be chosen among 2 tape 2-symbols Turing
machines computing in O(n2).

Definition (ECA Turing machine). Let’s denote by En the nth state of the
ECA A. A Turing machine TA will be called a ECA Turing machine representing
A if:
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• For all n, TA computes En on input n. (It’s important to notice that this is
the same Turing machine which on input n computes En : En is uniformly
computed by TA).

• during the computation, the TA tapes contain successively in an increasing
order from i = 1 to n− 1, the configurations Ei.

In the following, we will abbreviate “for all n, T computes En on input n” by
“T computes every En”.

A ECA Turing machine representing an automaton A is exactly a program
simulating the behavior of the automaton.

We can now translate the question to decide if an automaton A is CIR or not
in a question expressed in terms of ECA Turing machines representing A: Let A
be a ECA and let TA be a ECA Turing machine representing A and running in
time O(n2):

1. is it possible to find a Turing machine which on input n computes En faster
than TA?

2. is it possible to find a Turing machine which on input n computes En without
computing the (n− 1) previous Ei (i.e. which is not a ECA Turing machine
representing A)?

6 Tentative Definitions

We’ll consider first definitions in the framework of ECA Turing machines but,
remembering that we seek a general definition, we shall come back to the case
of functions f(n) from N to N to check if these definitions are robust enough.

Before giving our preferred definitions, it’s worth presenting previous attempts
linked to specific intuitions. These definitions, while intuitively appealing, don’t
work for reasons that preclude to use them as capturing correctly the concept
of CIR.

6.1 Definition Linked to the Algorithmic Complexity

Tentative definition 1 (CIR). A ECA will be said CIR if and only if
∃c > 0, ∀n,K(En) > K(n) + c.

The intuition behind this definition is that the length of the states grows as n
and thus that the ECA is not evolving through fixed states or states that oscillate
or vanish. In a certain sense, the automaton keeps the memory of the number of
iterations for reaching a given configuration. But this definition is too weak since
it is respected by many automata that are obviously not CIR: for example, the
automaton which, starting from a unique black cell, adds a black cell on each side
of the previous configuration. The nth configuration contains 2n − 1 contiguous
black cells so K(En) is of the order of magnitude of K(n) but this automaton
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is not CIR. Besides that, this definition, while a priori appealing for ECA is not
applicable to functionf(n) like predicates for example, since the only values that
a predicate can take are 0 or 1. So the complexity of f(n) can’t grow.

6.2 Definition Linked to the Logical Depth

Tentative definition 2 (CIR). A ECA will be said CIR if and only if
∀n,D(En+1) > D(En) where D, the Bennett’s logical depth, is understood as a
measure of the content of computation.

As we saw previously, the more a string is profound the more it needs time to
be computed by its minimal (or near minimal) program. The intuition here
is that the successive configurations of a CIR automaton should result from
more and more computation. For a ECA satisfying this definition, it would be
necessary to compute longer to get the (n + 1)th configuration than to get the
nth one. Its configurations would be deeper and deeper. The problem with this
definition is that one can imagine that the behavior of a CIR automaton is such
that even if in the average the configurations become deeper and deeper, it can
happen that suddenly there is a fall in the successive depths. So the following
definition is preferable.

Tentative definition 3 (CIR). A ECA will be said CIR if and only if
∀n,D(En) = Ω(n2)

We saw that to compute the nth state the ECA needs n2 steps when each kth

configuration contains 2k + 1 cells. The intuition is that nothing is lost in the
computation and that in the long range, about n2 steps are necessary to compute
the nth configuration even if occasionally the depth of one configuration can drop
down to a lower value.

What is wrong with these definitions? It seems that they capture correctly
the fact that the nth state needs a lot of computation in average to be produced
and that it is not possible to get it quickly. Isn’t it the very meaning of CIR?
Actually not. Once again, the consideration of predicates is a good way to see
the problem. The nth state of a predicate function will be either 0 or 1 and can
neither be complex nor deep.

Considering the case of possibly CIR predicates shows that the real meaning of
CIR is located inside the very succession of states not inside any single state. CIR
is meaningful only regarding the way the different states are related each others.
Definitions 2 and 3 mean that for each state, the time required to compute it from
its minimal program must be long but this minimal program can be different
for each state. On the contrary, what CIR means implies that there exists no
general program which can compute for every n the nth state from n faster than
the ECA. So that’s a different meaning we need to capture. Nevertheless, this
definition is interesting by itself and worthwhile to be explored. This will be
done in another paper.
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7 Preferred Definitions

7.1 A First Attempt

Let A be a ECA and let TA be a ECA Turing machine representing A and
running in time O(n2), we saw that the question of deciding if a ECA A is CIR
or not can be split into:

1. is it possible to find a Turing machine which computes every En faster than
TA?

2. is it possible to find a Turing machine which on input n computes En without
computing the (n− 1) previous Ei (i.e. which is not a ECA Turing machine
representing A)?

We now turn to the problem of giving a precise formulation of these questions.
The first question will lead to the tentative definition 4 and the second question
to the definition 5.

Definition (efficient ECA Turing machine). We will say that a ECA
Turing machine M eff

A representing A is an efficient ECA Turing machine
representing A if no other ECA Turing machine representing A can compute
the configuration En faster than M eff

A . Let T (M eff
A (n)) the time for MA to

compute En. More precisely, we will say that a ECA Turing machine M eff
A rep-

resenting A is an efficient ECA Turing machine representing A if for any other
ECA Turing machine MA representing A : T (M eff

A (n)) = O(T (MA(n))) i.e.

there are constants c > 0, n0 > 0 such that ∀n > n0, T (M
eff
A (n)) ≤ cT (MA(n))

where T (MA(n)) is the time for MA to compute En.

Of course when T (MA(n)) = O(n2), it is always possible to design a ECA
Turing machine representing A and computing in time greater than O(n2), if
for example, the related program is not efficient. But, as we saw previously, it is
also possible to have T (MA(n)) = O(n) for simpler automata such that rules 4,
12, 36 and many similar others 12. For these automata, the number of cells that
change between two successive configurations is bounded by a constant and so
is the time to compute the (n + 1)th configuration from the nth configuration.
As we said previously, we don’t want to call CIR these automata. So we will
demand that T (MA(n)) = O(n2) (i.e. automata of classes 3 and 4) and of
course, we will exclude class 3. This leads to the following definition.

Tentative Definition 4 (CIR). A ECA A will be said CIR if and only if
no Turing machine computing every En computes the configuration En in a
number of steps less than O(n2).

12 T (MA(n)) = O(n) or T (MA(n)) = O(n2). One could think of an intermediate
situation with an automaton for which O(n2) > T (MA(n)) > O(n). For example
T (MA(n)) = O(n log n). Interestingly enough, none of the 256 ECA has this property.
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The intuition behind this definition is that it is impossible to compute the state
En faster that the automaton itself. There is no way to predict the result of the
computation done by the automaton because in order to know what is the state
En, whatever general program is used, it will need as much time as running
the automaton itself. What’s wrong with this definition? We have just defined
CIR as the fact that the most efficient program to compute En can’t run faster
than the simulation. That is of course a first step (linked to the first part of
the question above) but that is not enough to capture the whole intuition about
CIR. The intuition that we want to preserve is that in order to know the state of
the system after n steps it is necessary to follow approximately the same path if
not exactly the same. The main difficulty here is to define exactly what is meant
by “approximately the same path”.

7.2 The Final Definition

Definition (approximation of a ECA Turing machine). Let Meff
A be an

efficient ECA Turing machine representing A and computing in T (Meff
A (n)).

A Turing Machine T will be said to be an approximation of a ECA Turing
machine representing A if and only if there is a function F such that F (n) =
o(T (M eff

A (n))/n) and a Turing machine P 13. That’s a such that:

1. on input n, T computes a result rn and halts.

2. during the computation, the T tape contains as a substring successively in
an increasing order from i = 1 to n − 1, data ri from which the Turing
machine P computes Ei in a number of steps F (i).

Intuitively, an approximation of a ECA Turing machine is a Turing machine
doing a computation that is near the computation made by an ECA Turing
machine. We are going to show below how it is possible to build a ECA Turing
machine from any approximation of a ECA Turing machine. The factor 1/n in
o(T (M eff

A (n))/n) takes into account the fact that there are n necessary steps to
compute En with a ECA Turing machine and that we want the computation time
of P between ri and Ei to be much shorter than the average of the computation
time between Ei−1 and Ei.

Definition 5 (CIR ECA). A ECA A will be said CIR if and only if any Turing
machine computing every En is an approximation of a ECA Turing machine
representing A.

Theorem 7.2. If a ECA A is CIR then no Turing machine computing every En

can compute faster than an efficient ECA-Turing machine representing A. More

13 Here again, it’s important to notice that this is the same Turing machine P which
on input ri computes f(i)
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precisely, if M is a Turing machine computing every En then T (M eff
A (n)) =

O(T (M(n))).

Proof: We shall start by proving the following result.

Lemma. Given any M approximation of a ECA Turing machine representing A,
there exists a ECA Turing machine M ′ representing A (we’ll call it the daughter
of M) computing in a time T (M ′(n)) ∼ T (M(n)).

Proof: Since M is an approximation of a ECA Turing machine represent-
ing A, there are a Turing machine P and a function F associated as men-
tioned in the definition. Let’s consider the Turing machine M ′ which does
exactly the same computation than M but for each i, when ri is written on
its tape, which computes Ei through P from ri in a time F (i), writes Ei on
its tape and resumes the computation at the exact point where it left M com-
putation. It’s clear that M ′ is a ECA Turing machine representing A. From
the fact that F (n) = o(T (MA(n))/n) the additional time will be at most
O(T (MA(n))). Hence, M

′ will compute in T (M ′(n)) = T (M(n))+o(T (MA(n))).
Since M ′ is a ECA Turing machine representing A, T (M ′(n)) ≥ TMA(n). Hence
T (M(n)) + o(T (MA(n))) ≥ T (MA(n)). From that, it follows that:

lim
n→∞

T (M ′(n))
T (M(n))

= lim
n→∞

◦(T (MA(n)))

T (M(n))
= 1 (1)

Therefore, T (M ′(n)) ∼ T (M(n)). M and its daughter M ′ compute in the same
time.

We can now prove the theorem. If A is CIR, a Turing machine M computing
every En is an approximation of a ECA Turing machine representing A. From
the lemma, M ′, the daughter of M (which computes in the same time than M)
is a ECA Turing machine representing A. So T (M eff

A (n)) = O(T (M ′(n))) and

since T (M ′(n)) ∼ T (M(n)) we get T (M eff
A (n)) = O(T (M(n))).

Through theorem 7.2, it is clear that if a ECA A is CIR, it will be impossible
to compute its nth configuration faster than A itself (i.e. an efficient ECA Turing
machine representing A). Hence A will satisfy automatically the tentative defi-
nition 4. It will also be necessary to follow a path similar to the path followed
by A. That’s exactly the meaning (now fully formalized) of Wolfram’s claim.

Remark: Previously, we explicitly discarded ECA of class 2 (with simulation time
O(n)) because we didn’t want to accept that any of them be CIR. In definition 5,
we don’t suppose that the efficient ECA Turing machine representing a CIR ECA
must compute in O(n2). So, it seems that we open the door to find a CIR ECA
A such that an efficient ECA Turing machine representing A computes in O(n),
provided that any Turing machine computing every En is an approximation of
a ECA Turing machine representing A. Actually, it’s easy to see that none of
the class 2 ECA has this property since for all of them it is possible to compute
directly the nth configuration without having to compute all the previous ones.
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8 Generalization

We now leave the ECA framework and switch to the generalization of the
definition to any function from N to N. We mimic the same process of
definitions for functions than for ECA. In the following f will be a function
from N to N.

Definition (E-Turing machine). A Turing machine Tf will be called a E-
Turing machine representing f if:

1. Tf computes every f(n).

2. during the computation, the Tf tape contains as a substring successively in
an increasing order from i = 1 to n− 1, the values f(i).

A E-Turing machine representing a function f is a program enumerating the
function f through the computation of the successive values f(i). It is the
equivalent for a given function of what a ECA Turing machine simulating the
ECA through the enumeration of all its successive states is for the ECA.

Definition (Efficient E-Turing machine). We will say that a E-Turing
machine M eff

f representing f is an efficient E-Turing machine representing
f if no other E-Turing machine representing f can compute f(n) faster than
Mf . Let T (M eff

f (n)) the time for Mf to compute f(n). More precisely, we

will say that a E-Turing machine Meff
f representing f is an efficient E-Turing

machine representing f if for any other E-Turing machine Mf representing

f : T (M eff
f (n)) = O(T (Mf (n))) i.e. there are constants c > 0, n0 > 0 such that

∀n > n0, T (M
eff
f (n)) ≤ cT (Mf(n)).

Definition (approximation of a E-Turing machine). Let Meff
f be an ef-

ficient E-Turing machine representing a function f . For every input n, Meff
f

computes f(n) and halts in a time T (M eff
f (n)). A Turing Machine T will be

said to be an approximation of a E-Turing machine representing f if and only if
there is a function F such that F (n) = o(T (M eff

f (n))/n) and a Turing machine
P such that:

1. on input n, T computes a result rn and halts.

2. during the computation, the T tape contains as a substring successively in
an increasing order from i = 1 to n− 1, data ri from which P computes f(i)
in a number of steps F (i).

Definition 5 (CIR function). A function f(n) from N to N will be said CIR
if and only if any Turing machine computing every f(n) is an approximation of
a E-Turing machine representing f .

Theorem 8.1. If a function f is CIR then no Turing machine computing
every f(n) can compute faster than an efficient E-Turing machine representing
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f . More precisely, if M is a Turing machine computing every f(n) then
T (M eff

f (n)) = O(T (M(n))).

Proof: The proof is identical to the proof of theorem 7.2.

9 Conclusion

We derived a robust definition for the computational irreducibility and we proved
that, through a robust definition of what means “to be unable to compute the
state n without having to follow the same path than the computation simulating
the automaton or the function”, this implies genuinely, as intuitively expected,
that if the behavior of an object is computationally irreducible, no computation
of its nth state can be faster than the simulation itself. For CIR automata,
functions or processes, there is no short-cut allowing to predict the nth state
faster than waiting till all the steps are done. In this sense, these objects are
unpredictable.

An open problem is now to prove that explicit objects are really CIR. Possible
candidates are:

• F (n) = 2n (in base 10)

• F (n) = n!

• F (n) = the nth prime number

• xn = 4xn−1(1 − xn−1) (logistic map for x0 ∈ [0, 1] and having a limited
number of digits)

• Rule 30

• Rule 110

• . . . . . .

This opens the way for philosophical discussions and applications. Assume for
example that the process leading from inanimate matter to life, or from neurons
to consciousness be CIR. In this case, there could be no way to “understand”
what is life or consciousness since understanding a phenomenon is being able
to predict the final state from the initial conditions, or at least to anticipate
intuitively what is going to happen. For a CIR process this is impossible 14. CIR
could also be a key for explaining emergent phenomena. These points will be
studied elsewhere.

The concept of approximation can be extended so as to give a classification of
computable functions with similar properties in terms of irreducibility, algorith-
mic complexity and logical depth. This will be presented in the part II of this
paper (forthcoming).

14 See a more extensive discussion of this point in [40].
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Chapter 20

Computational Equivalence and Classical

Recursion Theory

Klaus Sutner

School of Computer Science, Carnegie Mellon University, USA

1 Universality

Two central results in Wolfram’s A New Kind of Science [17] have attracted close
scrutiny by the computability theory community: the first is the computational
universality of elementary cellular automaton rule number 110, the other the
Principle of Computational Equivalence, see section 2 below.

The discovery of universality is arguably the key insight in A. Turing’s sem-
inal 1936 paper [15] where he introduced his now eponymous machines: there
is a single computing machine that can emulate all other possible computing
machines. While Turing established universality only with respect to other Tur-
ing machines, experience has since shown that his definitions are quite robust
and extend to random-access machines, parallel machines, probabilistic machines
and even quantum computation. From a modern perspective, the single universal
machine takes as input an arbitrary program and corresponding data, and then
simulates the execution of the program on the given data. If the computation is
successful, it returns the same output as the program would have returned when
executed on the given input. If the computation of the program fails to termi-
nate, the universal simulator likewise fails to terminate. Of course, it is precisely
this idea of using programs as input that has made modern digital computers
possible and it was only a few years after Turing’s discovery that von Neumann
set out to produce a usable universal machine–with very modest resources, such
as a random access store of size 32× 32× 40 bits and an access speed of 32 mi-
croseconds. The original construction of a universal Turing machine is somewhat
tedious and a lot of effort has gone into designing smaller or simpler systems that
can be shown to be universal–typically by demonstrating that they can emulate
an already known universal system. It is intuitively clear that there is a trade-off
in the construction of a universal Turing machine: one can either keep the num-
ber of states low or the number of alphabet symbols small. For example, it is
known that 24 states suffice given a binary tape alphabet; at the other extreme,
two states suffice if the alphabet has size 18, [10].

One-dimensional cellular automata are one model of computation that is eas-
ily seen to be computationally universal: we can think of the one-dimensional
grid of cells as the tape of a Turing machine. It is not hard to add a bit more
information to a cell that indicates the position of the tape head and the state of
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the Turing machine. The operation of the Turing machine is then easily simulated
by a cellular automaton. It fact, the construction turns a highly parallel model
into an artificially sequential one by performing relevant operations only in the
immediate neighborhood of the special cell that indicates state and head posi-
tion. It is indicative of the robustness of the notion of universality that one can
build cellular automata that are capable of simulating not just Turing machines
but even any other cellular automaton, a property known as intrinsic universal-
ity; see [17] for an example of an intrinsically universal cellular automaton. In
fact, two states and a neighborhood of size 5 suffice; on the other hand, with 4
states a neighborhood of size 3 suffices. If we are content with plain universality,
it was shown in [17] that 2 states and a neighborhood of size 3 suffice, though
apparently not if intrinsic universality is the goal. Cellular automata with just
2 states and 3 neighbors are often referred to as elementary cellular automata
because of their great simplicity; their local maps are simply ternary Boolean
function. There are only 256 such functions and it is quite straightforward to set
up computational experiments that examine all elementary cellular automata.
To extend the local map to a global map operating on bi-infinite sequences of bits
on chops these sequences into overlapping blocks of three consecutive bits and
then applies the ternary map in parallel and synchronously to all these blocks.
Here is the local map of elementary cellular automaton number 110, given as a
truthtable for the ternary function f(x, y, z):

x y z f x y z f

0 0 0 0 1 0 0 0
0 0 1 1 1 0 1 1
0 1 0 1 1 1 0 1
0 1 1 1 1 1 1 0

It has been pointed out that if one thinks of y as a control bit, and of x and y
as the actual inputs, then for y = 0 the effect of rule 110 is a left-shift, whereas
y = 1 corresponds to an application of nand to x and z. The nand operation is
well-known to be a universal in the realm of Boolean functions, but, of course, in
the cellular automaton we are not at ease to choose the interconnections between
these gates arbitrarily. As it turns out, the evolution of configurations under
rule 110 spontaneously gives rise to fairly complicated, yet orderly geometric
structures. One simple example can be seen if figure 1. With considerable effort
one can control these geometric structures and exploit them to simulate cyclic
tag systems and thus establish universality, see [17] and [1].

The universality argument for rule 110 differs in two interesting ways from other
constructions in one-dimensional cellular automata. First, universal machines are
typically constructed in a very careful and deliberate manner, they are not dis-
covered in “the wild.” Unsurprisingly, the type of arguments required to establish
universality for a given, rather than constructed, machine are quite complicated.
Since an elementary cellular automaton is described by just 8 bits, it is quite sur-
prising and even counterintuitive that one of these simple devices should turn out
to be capable of performing computations of arbitrary complexity.
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Fig. 1. A fragment of the evolution of a one-point seed configuration under rule 110

The second major difference is that the argument requires mildly infinitary
configurations. In the past, in computability arguments involving cellular au-
tomata, it has been standard practice to rely on configurations of finite support,
configurations of the form . . . 0000 x 0000 . . .where 0 is an arbitrarily chosen sym-
bol in the alphabet and x is a finite string of letters. By contrast, the configura-
tions used in the universality argument have the form ωuwvω = . . . uuuwvvv . . .
where u, w and v are all finite words. Let us refer to these configurations as
almost periodic configurations . We write Cap for the collection of all almost pe-
riodic configurations. We can recover standard spatially periodic configurations,
corresponding to finite cellular automata with periodic boundary conditions, by
setting u = v and w = ε. Similarly, configurations of finite support correspond to
u = v = 0. While almost periodic configurations are infinite, they have a canon-
ical finite description and can thus be handled naturally within the context of
ordinary computability theory.

The choice of almost periodic configurations as a framework for the univer-
sality proof may seem ad hoc, but it is actually quite natural. For consider
the first-order structure A = 〈 C, G 〉 where C is the set of all configurations
and the global map G is interpreted as the edge relation of a directed graph:
there is an edge x→ y if, and only if,G(x) = y. We refer to A as the phasespace of
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the corresponding cellular automaton. Then A is uncountable and thus problem-
atic from the perspective of computability theory. However, A has a countable
subgraph Aap = 〈 Cap, G 〉 . As it turns out, this subgraph is an elementary sub-
structure in the sense of model theory: exactly the same first-order sentences hold
over both structures. Note that this fails even when we consider only symmetric
configurations of the form ωuwuω.

In other words, any assertion about the short-term evolution of general con-
figurations in a one-dimensional cellular automaton are true if, and only if, the
same assertion is true for only almost periodic configurations. An observer who
is limited to short-term evolution cannot distinguish between the two settings.
For example, properties such as “is reversible,” “has a 5-cycle” or “is 2-to-1”
will hold in the full space exactly when they hold in the smaller space. In addi-
tion, there is a general decision algorithm that makes it possible to automatically
verify these assertions, see [5, 6] for a description of the necessary automata theo-
retic machinery. The algorithm requires fairly complicated constructions such as
the determinization of Büchi automata and fails to be practical even for formu-
lae of relative modest complexity. Still, the standard quadratic time algorithms
algorithms for testing injectivity, openness and surjectivity of the global map
can be derived fairly easily from the general decision algorithm, see [13, 14].
Note that our restriction to one-dimensional cellular automata is critical here,
the first-order theory of two or higher dimensional automata is undecidable in
general. In fact, it was shown by J. Kari that even reversibility of the global
map is undecidable, see [4], so sentences with only existential quantifiers do not
admit a decision procedure in higher dimensions.

Of course, descriptions of phasespace from the perspective of first-order logic
are necessarily quite limited. Of much greater interest are questions relating to
the long-term evolution of configurations such as “does some configuration evolve
to another in finitely many steps” or “does every orbit end in a fixed point?”
It is precisely the long-term evolution of configurations that is critical for the
proof of universality for rule 110; one has to make sure that certain structures
and interaction persist indefinitely. Pinning down the necessary details is quite
difficult and often requires recourse to geometric intuition. While there is no
reason to doubt the accuracy of the argument, it would still be interesting to
construct a proof that can be verified by a machine. Proof-assistants are still
fairly complicated and difficult to use, but G. Gonthier has recently succeeded
in constructing a very detailed machine-checked proof of the Four Color Theorem
using the Coq proof assistant, see [3]. It is not implausible that a formal, verifiable
proof could also be constructed for the universality of rule 110, in Coq or a
similar environment. Note that the undecidability result also has consequences
in lower complexity classes. Considerable effort has also gone into streamlining
the simulations, in particular one can now avoid an exponential slow-down. For
example, it was shown that it is P-complete to predict the state of a particular
cell at time t under rule 110, given an initial configuration, see [9].
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2 Computational Equivalence

As Turing argued in his paper, universal Turing machines are the most compli-
cated computational devices possible. To make this intuition technically precise
it is best to consider decision problems solved by Turing machines, rather than
the functions they compute. Formally, a decision problem is comprised of a class
of instances and a subclass of Yes-instances. A decision problem is decidable if
there is an algorithm that accepts as input an arbitrary instance and determines,
in a finite number of steps, whether the given instance is a Yes-instance. For ex-
ample, in number theory one is naturally interested in primality. Primality can
be modeled as a decision problem where the natural numbers are the instances
and the collection of primes forms the Yes-instances. Much effort has gone into
developing fast algorithms to test primality and there is now a method that has
running time polynomial in the size of the input (though probabilistic algorithms
are vastly superior in practice).

The set of instances is always trivial, so for purposes of complexity classifi-
cations one identifies the whole decision problem with the set of Yes-instances.
As it turns out, there is a natural class of decision problems that are not quite
decidable, but nearly so. An excellent example, again from number theory, is the
solvability of Diophantine equations, equations of the form P (x1, x2, . . . , xn) = 0
where P is a multivariate polynomial with integer coefficients and we are look-
ing for an integral solution. Diophantine equations are notoriously difficult to
deal with; in fact, this problem was enshrined in Hilbert’s famous list of critical
open problems in mathematics from 1900. For example, the quadratic equation
x2 − 991y2 − 1 = 0 has a trivial solution x = 1, y = 0, but the smallest positive
solution is

x = 379516400906811930638014896080

y = 12055735790331359447442538767

and is obviously quite difficult to find. It was shown by Matiyasevic in 1970 that
there is no decision algorithm for Diophantine equations, [8]. But the problem is
semidecidable in the sense that there is a brute-force search algorithm: enumerate
all potential solutions a = (a1, a2, . . . , an) ∈ Z

n in some natural order. For each
a, evaluate the polynomial on a and, if the result is 0, stop and return Yes.
If no solution exists the search fails to terminate. More generally, a problem is
semidecidable if there is an algorithm that correctly returns Yes after finitely
many steps when given a Yes-instance, but computes forever otherwise, without
returning an answer. In a sense, the class of semidecidable problems is even
more fundamental and natural than the class of decidable problems. Note that
a problem is decidable if, and only if, both the problem and its negation are
semidecidable. In the interesting direction, this can be seen by interleaving the
computations of two semidecision algorithms.
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Another way of looking at semidecidable problems is to consider algo-
rithms that generate the set A of Yes-instances. These algorithms are non-
terminating (unless the set in question is finite) and produce a sequence of objects
a0, a1, a2, . . . , an, . . . so that A = { ai | i ≥ 0 }. We can think of the algorithm
as enumerating A in stages; at stage s a finite computation is performed and
as is thrown into A. As an aside, this enumeration can be made to be strictly
monotonic if, and only if, the set is decidable (again ignoring the finite case).
Note that it is not allowed to remove an object from A once it has been added.
Sets that can be described in this fashion are called recursively enumerable and
it is not hard to see that they coincide with the semidecidable sets. It is this
description as recursively enumerable sets that is particularly relevant to the
Principle of Computational Equivalence (PCE).

The Principle of Computational Equivalence, proposed by Wolfram in [17],
can be shortly stated like so: “. . . almost all processes that are not obviously sim-
ple can be viewed as computations of equivalent sophistication.” The reference
also states that “. . . all processes, whether they are produced by human effort
or occur spontaneously in nature, can be viewed as computations.” The latter
assertion is fairly uncontroversial if one is willing to adopt a rather relaxed view
of what exactly constitutes a computation. For example, is a waterfall just an
arbitrary physical process or is there a specific computation being carried out
whose computational purpose can be articulated in any way? Searle has warned
against an overly simplified interpretation of physical computation, see [11].

So how about PCE? It seems safe to assume that the “processes” in question
would include the execution of an algorithm. We can think of this execution
as a logical process, or, if one prefers to stay closer to physics, as a particular
physical process that corresponds to the execution of the algorithm on some
particular hardware such as a digital computer. In particular we can consider a
non-terminating algorithm that enumerates a semidecidable set by constructing
its elements in stages. We could declare such an enumeration algorithm to be
simple if there is a computational shortcut to the enumeration: instead of having
to wait, potentially forever, until a certain potential element appears, we can
use another algorithm to decide whether it will ever appear. In other words,
the semidecidable set in question is already decidable. For example, given a
monotonic enumeration (pn) of the primes and a number q we can decide whether
q is prime by generating the pn in order and stopping when either q = pn or
when q < pn for the first time. Monotonicity is critical here, this approach does
not work if the enumeration is not in order. Of course, this is a rather generous
interpretation of simplicity; the corresponding algorithm might be enormously
complicated and require huge resources to execute. Since we are inflating the
class of simple processes this should not detract from PCE.

Which enumerations fail to be simple in this sense? The ones where the
computational shortcut does not exist, where the enumerated set is in fact unde-
cidable. In his paper, Turing gave the ur-example of such a problem: the Halting
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Problem, the question of whether a given Turing machine halts on some partic-
ular input. Note that the problem is semidecidable, we can simply simulate the
machine for as many steps as are necessary to have it stop, if it does in fact stop
at some point. If not, the simulation just goes on forever.

The Halting Problem is remarkable in that, in a strong technical sense, it en-
capsulates information about all possible finite computations. As a consequence,
membership in any semidecidable set would be decidable if only one could get
access to a fictitious database that stores information about the Halting Prob-
lem. To formalize this idea, Turing introduced the notion of an oracle Turing
machine, a Turing machine that has additional access to an “oracle,” really a
database that contains complete information about some decision problem B.
The Turing machine is then allowed to query the oracle: “Is x in B?” and will
receive the correct answer in one step. Turing never explored his oracle machines
in depth, but E. Post and S. Kleene later used his idea to introduce a partial
order on decision problems, see [7]: problem A is Turing reducible to problem B
if membership in A can be decided by an oracle Turing machine given B as an
oracle, written A ≤T B. If B can in turn be decided given A as oracle we say
that the two problems are Turing equivalent . A collection of all Turing equiva-
lent problems is called a Turing degree and encapsulates the notion of problems
of the same level of complexity. The importance of the Halting Problem now can
be seen clearly: any semidecidable problem is Turing reducible to the Halting
Problem. More generally, any semidecidable problem with the property that all
semidecidable problems are reducible to it is called complete. Thus, so far, we
have two natural classes of semidecidable problems: the decidable ones and the
complete ones.

Naturally one might try to find others that fail to fall into either class. The
question whether there is a semidecidable problem that is incomplete but fails
to be decidable has become known as Post’s Problem. A positive solution is
called an intermediate set or intermediate degree. Perhaps surprisingly, a careful
inspection of known natural semidecidable decision problems does not turn up
any examples of intermediate sets; ultimately they all appear to be either decid-
able or complete. While it may be quite difficult to establish either classification,
there are no natural examples known to date where a problem turns out to be
intermediate. Post’s question is fairly straightforward, but the answer supplied
by computability theory is somewhat problematic. In the 1950’s, R. Friedberg
and A. Muchnik, two researchers working independently of each other in the
US and Russia respectively, solved Post’s Problem in the affirmative; moreover,
they used essentially the same technique. Their construction is now known as the
priority method and has become the weapon of choice in computability theory.

The technical details of the construction are quite complicated, but the main
idea is rather intuitive: we try to enumerate two semidecidable problems A and
B with the property that neither one is reducible to the other; hence neither one
can be decidable or complete. How do we make sure that, say, A �≤T B? If we
had A ≤T B, then there would need to be an oracle Turing machine M that,
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given B as oracle, correctly decides membership questions about A. In order to
break this relation, we could try to find some number a such that M with oracle
B proclaims that a /∈ A: we can then throw a into A (recall that adding elements
is the only operation at our disposal). The key problem now is that there is not
just a single machine M to consider, but a whole infinite family (Me) of oracle
machines, each one of which might produce a reduction. Moreover, we also need
to do the same for B with oracle A. As a consequence we have to contend with
infinitely many requirements

(R2e) A �≤T B via Me (R2e+1) B �≤T A via Me

for all e. We try to discharge each one of these requirements as just indicated.
Unfortunately, the requirements may clash: suppose we have just placed a into
A to deal with (R2e). It may happen later that because of another require-
ment (R2e′+1) we place an element into B. But now we may have inadvertently
changed the oracle for Me, it might be the case that this machine, with the new
B as oracle, now returns true instead of false to the query “is a ∈ A?” So (R2e)
is broken and we need to work on this requirement again in the future.

To deal with these infinitely many mutually clashing requirements one uses a
simple priority ordering: requirement (Rs) always takes priority over (Rt) when-
ever s < t. Some care is needed to protect higher priority requirements from
intrusion by lower priority ones; conversely one needs to make sure that the
lower priority requirements ultimately get a chance to be satisfied. When every-
thing is carefully arranged, a simple induction argument shows that ultimately
all requirements are satisfied and we do indeed succeed in constructing two re-
cursively enumerable sets A and B that are mutually incomparable with respect
to Turing reductions.

Alas, these solutions to Post’s Problem produced by a priority construction
are somewhat unsatisfactory in that they are strikingly artificial. Martin Davis
[2] states:

But one can be quite precise in stating that no one has produced an
intermediate recursively enumerable degree about which it can be said
that it is the degree of a decision problem that had been previously
studied and named.

Hao Wang [16] is even less complimentary:

The study of degrees [of unsolvability] seems to be appealing only to
some special kind of temperament since the results seem to go into many
different directions. Methods of proof are emphasized to the extent that
the main interest in this area is said to be not so much the conclusions
proved as the elaborate methods of proof.

Of course, all this pointed criticism does not change the technical core of the
result: there is a semidecidable problem A such that ∅ <T A <T H where H
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is the Halting Problem. In fact, it turns out that the structure of the upper
semi-lattice of the semidecidable degrees is highly complicated. For example,
by Sacks’ density theorem, for any two semidecidable problems A and B such
that A <T B there there exists a third in between: A <T C <T B for some
semidecidable C. By repeating this argument one can construct a collection of
semidecidable Turing degrees that that are ordered by Turing reductions just
like the rationals, a less than obvious result.

3 Information Hiding and Observers

How do these results about intermediate semidecidable degrees coexist with
PCE? Certainly, at first glance, any intermediate semidecidable set appears to
wreak havoc with PCE: the construction is clearly an example of a process, al-
beit an exceedingly technical and complicated one, presumably much different
from processes more closely associated with physics. However, on closer inspec-
tion, there is a clear objection to this alleged counterexample: a universal Turing
machine is working in the background, without it we could not work on all the
infinitely many requirements in a single construction. The intermediate sets con-
structed are in a sense obtained by hiding lots of information, and in particular
all the details of the actual enumeration in a very deliberate way.

Let us pursue the perspective of physical processes a bit further. In physics
we observe and measure certain aspects of the events unfolding and use our
observations to draw conclusions about the complexity of the process. Of course,
we have to trust the observer to use the right instruments, looking at the wrong
aspects of the process might lead to a conclusion of simplicity when in fact
something complicated is going on.

Now suppose we wish to use a similar approach to studying the Friedberg-
Muchnik construction. An observer monitoring the construction from the out-
side will easily conclude that there is a universal Turing machine at work. Of
course, we might not be using this universal machine to perform computations
of maximal complexity, in which case we could still claim to have a process
of intermediate complexity. Alas, no such luck: the disjoint union of A and B,
meaning { 2a | a ∈ A } ∪ { 2b+ 1 | b ∈ B }, is already complete, see [12]. Only
if we remove B from consideration is A intermediate. So clearly the whole con-
struction should be considered to be a “process of maximum sophistication.”
One might argue that the problem here lies with the particular approach taken
by Friedberg-Muchnik, but it turns out that a similar argument can be made for
a wide class of priority constructions. In fact, it is entirely unclear how to avoid
this phenomenon: an observer with access to all the details of the construction
can easily extract a complete set from it.

How, then, could one formalize a version of PCE so as to open the possibil-
ity of a proof, or perhaps of a conclusive refutation? First, we need to set up
a sandbox in which the computational process takes place. A one-dimensional
cellular automaton operating on almost period configurations seems like a good
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choice since the elementary steps in the computation are clearly laid out in this
setting. Second, we introduce an observer. At every stage of the construction,
the observer has access to the finite strings u, w and v that determine the config-
uration. However, the computational power of the observer must be exceedingly
small so as to prevent any complicated computation on his part. For example,
consider a trivial process that produces the configuration ω0 1n 0ω at stage n. If
the observer had even modest computational power it could exploit the string
1n to perform an independent computation of some n steps and produce an “ob-
servation” that has no connection to the actual process. To avoid this problem,
we restrict the observer to be a finite state machine: the observer has the ability
to filter out some part of the detailed process and can rewrite this part slightly,
producing a finite string as output. The collection of all such observed strings is
the observation language. Note that there always is an observer that produces
a trivial observation language, say, a language containing only the empty word.
But there also might be more interesting observations that can be drawn from
a given process. For example, for the Friedberg-Muchnik process there is an ob-
server that produces an intermediate observation language. Alas, there is yet
another that produces a complete observation language.

This leads to a fairly natural classification of processes. A process is undecid-
able if there is at least one observer whose observation language is undecidable.
A process is complete if there is at least one observer for it whose observation
language is complete. Lastly, a process is intermediate if it is undecidable but
fails to be complete: we can find an observer that produces an undecidable ob-
servation, but no observer will return a complete observation. It is a labor of
love to check that known constructions of intermediate degrees, formalized in
the way just outlined, all produce complete processes rather than the desired in-
termediate ones. We strongly suspect that in the right framework some version
of PCE is provably correct. Alas, we are currently unable to establish this claim;
new methods and tools in computability theory appear to be necessary to make
any progress in this direction.
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Abstract. Stephen Wolfram’s work, and especially his New Kind of

Science, presents as much a new science as a new natural philosophy-

natural computationalism. In the same way as Andrew Hodges, based

on Alan Turing’s pioneering work on computability and his ideas on

morphological computing and artificial intelligence, argues that Turing

is best viewed as a natural philosopher we can also assert that Wolfram’s

work constitutes natural philosophy. It is evident through natural and

formal computational phenomena studied in different media, from the

book with related materials to programs and demonstrations and com-

putational knowledge engine. Wolfram’s theoretical studies and practical

computational constructs including Mathematica and Wolfram|Alpha re-

veal a research program reminiscent of Leibniz’ Mathesis universalis, the

project of a universal science supported by a logical calculation frame-

work. Wolfram’s new kind of science may be seen in the sense of New-

ton’s Philosophiæ Naturalis Principia Mathematica being both natural

philosophy and science, not only because of the new methodology of

experimental computer science and simulation, or because of particular

contributions addressing variety of phenomena, but in the first place as

a new unified scientific framework for all of knowledge. It is not only

about explaining special patterns seen in nature and models of complex

behaviors; it is about the computational nature derived from the first

computational principles. Wolfram’s as well as Turing’s natural philoso-

phy differs from Galileo’s view of nature. Computation used in modeling

is more than a language. It produces real time behaviors of physical sys-

tems: computation is the way nature is. Cellular automata as explored

by Wolfram are a whole fascinating computational universe. Do they

exhaust all possible computational behaviors that our physical universe

exhibit? If we understand physical processes as computations in a more

general sense than the computations performed by symbol manipulation

done by our current computers, then universal Turing machines and uni-

versal cellular automata exhibit only a subset of all possible information-

processing behaviors found in nature. Even though mathematically, there

is a principle of computational equivalence, in physical nature exists a

hierarchy of emergent processes on many levels of organization that ex-

hibits different physical behavior and thus can be said compute with
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different expressive power. This article argues that, based on the notion

of computing nature, where computing stands for all kinds of information

processing, the development of natural computationalism have a poten-

tial to enrich computational studies in the same way as the explorations

in the computational universe hold a promise to provide computational

models applicable to the physical universe.

1 Evolving Ideas of Systèmes du Monde

Cosmogonies as accounts of the origin and the nature of the universe evolve
with growth of human knowledge through allegories, myths, models, theories and
paradigms. This development goes in parallel with the increase in the size of the
known universe – from immediate surroundings in the age of great myths, to the
earth, solar system, Milky Way, to astonishing 500 billion galaxies - according to
current state of knowledge. After a long history of mythopoethic and allegoric
accounts of the origins and functioning of the universe, Antiquity formulated
first natural philosophical and scientific theories. For Pythagoras, numbers were
the essence and the principle of the universe, while for Plato geometry was
fundamental. Plutarch (Convivialium disputationum, liber 8,2) reports: “Plato
said God geometrizes continually”. This was in modern times re-interpreted
by Gauss as “o theos arithmetizei,” or “God computes”, [20]. Irrespective of
the choice of arithmetic or geometry, the laws of the universe are governed by
mathematical principles, even though one is discrete and the other continuous.

Leibniz (1646-1716) with his philosophy of Monadology holds a special place
when it comes to the Systèmes du Monde. Monads were defined as elementary
automata constituting the complex world through communicating networks [14].
In the Section 18 of Monadology, Leibniz depicts a monad as follows: “All simple
substances or created Monads might be called Entelechies, for they have in them
certain perfection (echousi to enteles); and a certain self-sufficiency (autarkeia)
which makes them the sources of their internal activities and, so to speak, in-
corporeal automata.” Leibniz had visionary ideas about calculating machines,
he introduced binary notation and argued for the essential role of formal lan-
guages [1]. Wiener, in The Human Use of Human Beings, describes Leibniz as
a forerunner of cybernetics “Leibniz, dominated by ideas of communication, is
in more than one way the intellectual ancestor of the ideas of this book for he
was also interested in machine computation and automata.” ([25], p. 19). Ac-
cording to contemporary informational interpretation of [24], Leibniz’s monads
can be interpreted as information carriers programmed by divine code to change
informational contents of their internal states. The divine coding guaranteed
correspondence between the activities of monads and the world of phenomena.

Système du Monde of the Clockwork (mechanistic) universe is an example of
a flawlessly lawful scientifically-based universe, in the form of a perfect machine,
governed by the laws of physics. Laplace (1749-1827) believed that a Supreme
Intelligence, based on the laws of nature and on knowledge of the positions and
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velocities of all particles in the universe at any moment could infer the state
of the universe at any future or past time according to the laws of mechanics
discovered by Newton (1642-1727). Even though the universe-automaton is a
physical system, Galileo (1564-1642) [9] in his book The Assayer - Il Saggiatore,
points to vital connection between physics and mathematics, claiming that the
way to understand nature is through mathematics.

The mechanistic world is based on the following principles, Dodig Crnkovic
and Müller (2011) [4]:

M1 The ontologically fundamental entities of the physical reality are physical
structures (space-time & matter-energy) and change of physical structures
(dynamics).

M2 All the properties of any complex physical system can be derived from the
properties of its components.

M3 Change of physical structures is governed by laws.
M4 The observer is outside of the system observed.

Mechanistic models assume that the system is closed, isolated from the envi-
ronment, and laws of conservation (energy, mass, momentum, etc.) thus hold.
Environment, if modeled at all, is treated as a perturbation for the steady state
of the system.

The limits of a mechanistic universe and determinism were uncovered by the
increasing use of computers as tools of exploration, especially in the biological
world. What begins to emerge nowadays is a fundamentally new paradigm of not
only sciences but even a more general paradigm of the universe, comparable in
its radically novel approach with its historical predecessors the Mytho-poetical
Universe, the Universe of Ideal Mathematical Principles and the Mechanistic
Universe. This new paradigm is dubbed Info-Computational Universe; for the
details, see [3].

Our current understanding of the fundamentality of information and com-
putation for the structure and dynamics of the natural world, has led to an
articulation of the universe as a computer, a network of computational processes
on informational structures.

2 The Computing Universe – Naturalist
Computationalism

Will we find the whole of physics? I don’t know for sure. But I think at
this point it’s sort of almost embarrassing not to at least try.” (Wolfram
talk from the 2010 TED Conference)

The idea of computing nature (natural computationalism, pancomputational-
ism) is old, and in a general sense can be traced back to Leibniz. Among the
first contemporary researchers sharing computational view of nature are Kon-
rad Zuse, Edward Fredkin, Tommaso Toffoli and Stephen Wolfram, together
with Jürgen Schmidhuber, Seth Lloyd, Charles Seife, and Gregory Chaitin.
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Konrad Zuse was the first to suggest in 1967 that the physical behaviour of
the entire universe is being computed on a basic level, possibly on cellular au-
tomata, by the universe itself, which he referred to as “Rechnender Raum” or
Computing Space [28]. “The idea that space might be defined by some sort of
causal network of discrete elementary quantum events arose in various forms in
work by Carl von Weizsäcker (ur-theory), John Wheeler (pregeometry), David
Finkelstein (spacetime code), David Bohm (topochronology) and Roger Pen-
rose (spin networks). General arguments for discrete space were also sometimes
made–notably by Edward Fredkin, Marvin Minsky and to some extent Richard
Feynman–on the basis of analogies to computers and in particular the idea that
a given region of space should contain only a finite amount of information.” ([26],
p. 1026). Zuse had the idea of “going beyond quantum mechanics in discretizing
physics, a vision he shared with the late Einstein and many researchers, among
others Fredkin, Toffoli, Margolus, and Wolfram.” [20].

Wolfram [26], based on extensive studies of cellular automata, advocates for a
pancomputationalist view as a new dynamic kind of reductionism in which the
complexity of behaviors and structures found in nature are derived (generated)
from a few basic structures and processes:

I strongly suspect that the vast majority of physical laws discovered so
far are not truly fundamental, but are instead merely emergent features
of the large-scale behavior of some ultimate underlying rule. And what
this means is that any simplicity observed in known physical laws may
have little connection with simplicity in the underlying rule. So perhaps
in the end there is the least to explain if I am correct that the universe
just follows a single, simple, underlying rule.” ([26], p. 471)

Wolfram and Fredkin ([8]), in the similar vein as Zuse, assume that the universe
is, on a fundamental level, a discrete system. Following the principle that “the
ultimate model of physics is to be as simple as possible” Wolfram ([26], p. 475)
expects the features of the universe to emerge “purely from properties of space”.
This presupposes that space is the independent first principle. It is however
also possible that space-time and matter-energy emerge at once; that there is
no space without matter-energy. But in this context, this is a detail. The most
important is the expressive power, productivity and internal coherence of models,
and models can differ.

Moreover, even though discrete models possess many attractive features,
physics regularly uses both. Lesne [11], argues for the necessity of continuum
in physical modeling of the world. Here is the summary:

This paper presents a sample of the deep and multiple interplay between
discrete and continuous behaviours and the corresponding modellings in
physics. The aim of this overview is to show that discrete and continuous
features coexist in any natural phenomenon, depending on the scales of
observation. Accordingly, different models, either discrete or continuous



3 Turing and the Computing Nature 315

in time, space, phase space or conjugate space can be considered. ([11],
p.185)

However the computing universe (natural computationalism) does not critically
depend on the discreteness of the models of the physical world. There are digital
as well as analog, discrete and continuous-state models as well as computers. On
a quantum-mechanical level, the universe performs, on characteristically dual
wave-particle objects, both continuous and discrete computation, Lloyd [12].

3 Turing and the Computing Nature

Not only Leibniz can be seen as a predecessor of natural computationalism,
Turing can be added to the list as well, based on his conviction that machines
(can be made that) can think and on his work on unorganized machines (neural
networks) and morphogenesis.

Turing is well known in the first place for his contributions to the theory
of computation, computer science, (Turing machine model) Turing ([23, 22]),
and artificial intelligence (Turing test), but for his biographer Hodges, Turing is
ultimately a natural philosopher:

He thought and lived a generation ahead of his time, and yet the features
of his thought that burst the boundaries of the 1940s are better described
by the antique words: natural philosophy. ([10], p.3)

It is important to notice that Turing’s natural philosophy goes further than
Galileo’s view about the language of nature:

Philosophy [i.e. physics] is written in this grand book – I mean the uni-
verse – which stands continually open to our gaze, but it cannot be
understood unless one first learns to comprehend the language and in-
terpret the characters in which it is written. It is written in the language
of mathematics, and its characters are triangles, circles, and other geo-
metrical figures, without which it is humanly impossible to understand
a single word of it; without these, one is wandering around in a dark
labyrinth.” ([9], p.237)

Computing differs from mathematics in that computers not only calculate num-
bers, but more importantly produce real time behaviors. Turing studied a variety
of natural phenomena and proposed their computational modeling. He made a
pioneering contribution in the elucidation of connections between computation
and intelligence and his work on morphogenesis provides evidence for natural
philosophers’ approach.

Turing’s paper on morphogenesis proposed a chemical model as the basis
of the development of biological patterns, Turing [21]. He did not originally
claim that the physical system producing patterns actually performs computa-
tion through morphogenesis. Nevertheless, from the perspective of contemporary
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natural computationalism and particularly info-computationalism we can argue
that morphogenesis is a process of morphological computing [6].

Physical process, though not computational in the traditional sense, presents
natural (unconventional), physical, morphological computation. An essential el-
ement in this process is the interplay between the informational structure and
the computational process – information self-structuring.

The process of computation implements physical laws which act on informa-
tional structures. Through the process of computation, structures change their
forms, as argued in [4]. All computation on some level of abstraction can be
viewed as morphological computation – a form-changing/form-generating pro-
cess on informational structures [6].

4 Generation of Form by Morphogenetic and
Morphological Computing

With this background it becomes understandable that we need no in-
telligent design of complex structures, but only very simple rules for
local elements that generate global structures during their evolution.
([14], p.9)

Generation of form can be studied by cellular automata based on rules defining
updated configurations of a grid of cells, and equivalent rules for other simple
programs, but it can also be studied in physical systems undergoing morpho-
genesis or metamorphoses. In such systems underlying physical laws express
themselves as a computation causing changes of existing forms. This process
has been studied in robotics and nano-systems [13], and recently even on the
macroscopic scales in materials and architectureas computing matter and mate-
rial computation [15], but it deserves more attention as a basic phenomenon of
form generation in physical matter, especially intricate in living systems.

Despite the mathematical principle of computational equivalence1, in physical
nature there is a hierarchy of emergent processes on many levels of organiza-
tion exhibiting different physical behaviors. Based on the notion of computing
nature, where computing stands for all kinds of information processing, the de-
velopment of natural computationalism enriches our understanding of compu-
tation by computational studies of physical systems, in the similar way as the
explorations in the computational universe provide new models applicable to
the physical universe. The process goes in both directions – from the physical to
the models and the other way round [18].

1 “Almost all processes that are not obviously simple can be viewed as computations of
equivalent sophistication.” ([26], pp.5 and 716-717). “Almost any dynamical system
that doesn’t lead to random or transparently fixed or oscillatory behavior, is likely
to be a universal computer.” (Goertzel, Dynamical Psychology, 2002)
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5 Criticisms of the Computational Views of the Universe

In his article on Physical Computation for The Stanford Encyclopedia of
Philosophy, Gualtiero Piccinini [16] presents several critical arguments against
Pancomputationalism (Naturalist computationalism). The unlimited Pancom-
putationalism, the most radical version of Pancomputationalism, according to
Piccinini asserts that “every physical system performs every computation–or
at least, every sufficiently complex system implements a large number of non-
equivalent computations”. I argue these to be two substantially different claims.
The first one, that every system executes every computation, has little support
in physics and other natural sciences. Different sorts of systems perform differ-
ent sorts of dynamical behaviors. The second claim, that a sufficiently complex
systems implement a large number of different computations, is in accordance
with natural sciences and essentially different from the claim that every system
performs every computation [4].

As for the sources of Naturalist computationalism, Piccinini identifies several:
One source is “a matter of relatively free interpretation” which computation a

system performs. This may well be true of human computational devices like fin-
gers, pebbles, abacuses, and computers even though interpretations once chosen
are kept constant (thus no longer free), in order to allow social communication
of results.

Another source of Pancomputationalism is the causal structure of the physical
world. That claim goes one step further than the first one, actually searching for
the basis of “free interpretation”. We can freely chose systems used for calcula-
tion/computation, but the computational operations performed are predictable
because of the laws of physics which guarantee that physical objects behave in
the same way and according to physical laws so that we can predict and use
their behaviour for computation.

Info-computationalism is in the Piccinini scheme based on the third source:

A third alleged source of pancomputationalism is that every physical
state carries information, in combination with an information-based se-
mantics plus a liberal version of the semantic view of computation. Ac-
cording to the semantic view of computation, computation is the manip-
ulation of representations. According to information-based semantics, a
representation is anything that carries information. Assuming that ev-
ery physical state carries information, it follows that every physical sys-
tem performs the computations constituted by the manipulation of its
information-carrying states (cf. [19]). Both information-based semantics
and the assumption that every physical state carries information (in the
relevant sense) remain controversial.

The use of the word “manipulation” seems to suggest a conscious intervention,
while computation in general, as understood within the framework of Computing
Nature/Natural Computationalism/Pancomputationalism, is a natural dynam-
ical process that drives (through the physical interaction mechanisms) changes
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in informational structures. Notwithstanding Piccinini’s skepticism, there are
well established theories in computer science which do exactly the job of con-
necting computational processes and informational structures as suggested by
info-computationalism [4].

Recently, Piccinini made a substantial move in the direction of Natural Com-
putationalism by advocating, what he calls the modest view of the physical
Church-Turing thesis [17]. Here his claim in short is that not all of physical com-
putation is Turing-machine computable. This view agrees with our best knowl-
edge about Natural Computation today and it also brings us closer back to the
Turing’s work concerning unorganized machines with oracles (advice, learning).

Yet another interesting source of criticism towards Natural Computationalism
and in particular Info-Computationalism is expressed in [4]:

There might be a set of computing procedures that is larger than the one
defined by Church-Turing – and there is certainly a mathematical set of
computable functions larger than that computable by Turing machine
(e.g. that computable by Turing’s idea of his machine plus “oracle”). (...)
My understanding of ‘computer’, as suggested by [23], is that such ma-
chines characteristically go beyond mere calculators (like those already
invented by Leibniz and Pascal) in that they are universal; they can,
in principle, compute any algorithm, because they are programmable –
in this sense, Zuse’s Z3 was the first computer (1941). If this feature of
universality is a criterion for being a computer, then analog machines
do not qualify because they can only be programmed in a very limited
sense. (...) First, how can you guarantee that the notion of ‘computing’
you are using here is in any sense unified, i.e. one notion?” ([4], p.162.)

So in what way is physical computation/natural computation important? One of
the central questions within computing, cognitive science, AI and other related
fields is about computational modeling (and simulating) of intelligent behaviour.
What can be computed and how? It has become obvious that we must have richer
models of computation, beyond Turing machines, if we are to efficiently model
and simulate biological systems. What exactly can we learn from nature and
especially from intelligent organisms?

It has taken a more than sixty years from the first proposal of Turing test he
called the “Imitation Game”, described in Turing [22] p. 442, to the recent (2011)
IBM’s Watson machine winning Jeopardy by purely computational means. That
is just the beginning of what Turing believed one day will be possible – a con-
struction of computational machines capable of generally intelligent behavior as
well as the accurate computational modeling of natural world.

6 Computation vs. Universal Computation

Computation is a process that a physical system undergoes when processing in-
formation (computing). Computation as a phenomenon is studied within several
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research fields: theory of computation, including computability theory, physics,
biology, logic, and so on. It is worth noticing that the German, French and Italian
languages use the respective terms “Informatik”, “Informatique” and “Informat-
ica” (Informatics in English) to denote Computing, indicating close relationships
between computation and information. In [3] it is argued that information consti-
tute the structure, the fabric of the universe, while computation is synonymous
with physical process that, implementing physical laws, incessantly changes in-
formational structures.

The ability of a computer to perform universal computation (i.e. to process
not only input data but also the code describing any other computing machine)
is considered central. Here is the explanation given by [20]:

The notion of universal computation is robust in the sense that any
universal computer can emulate any other universal computer (regardless
of efficiency and overhead), so that it does not really matter which one is
actually implemented. (...) So, when it comes to their generic properties,
it is not really important whether automaton universes are modeled to
be Cellular Automata, Turing Machines, colliding billiard balls [8], or
biological substrates.

[7] notices:

This is also the disadvantage. It is hard to think about the properties
of the members of a class when each member can do everything. The
field of Computer Science has very few examples of useful or meaningful
analytic solutions as to what some digital system will or won’t do. On
the contrary, there is a celebrated proof that, in general, there are no
analytical shortcuts that can tell the future state of some general com-
putation any quicker than doing the computation step by step (this is
the so called “halting problem” for Turing Machines [23]). There are
normally no solutions in closed form. There is not yet any good
hierarchy of concepts that express complex behavior in terms
of simpler behavior, as is done in physics.” (Emphasis added)

This is the core of the problem: There is no hierarchy. In physics there is natural
encapsulation, so in principle separation between different levels of organization.
A meta-language is information compression of the level below. However,
discrete automata are all on the same organizational level, even though they
show temporal development. That is why a universal automaton, which as an
input takes arbitrary machine and executes its algorithm cannot do any better
than the machine itself, as it operates on the same information. The way to
make it possible for a universal machine to be more powerful is to first separate
levels of abstraction between metalevel (universal) and object level (particular
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algorithm). That is what is done in physics “for free” by self-organization based
on natural laws on different organization levels (spatial scales).

In general it is not necessary for computation belonging to different classes
of processes to be universal. Physical processes in quantum mechanics are dif-
ferent from processes in the classical clockwork universe and it is not a big
problem if they are modeled differently, by different classes of computers. That
is what present day physics does – it produces different theoretical frameworks
for different levels of organization – from quarks to galaxies. We have different
frameworks executed on the same sort of computer. In the future we can have
the same framework executed on different sorts of computers.

7 Questions beyond Present Computational Experiments

Even within the world of cellular automata, there are number of interesting
questions for future investigations. [14] propose:

Going beyond the numerical experiments of Steven Wolfram, it is argued
that cellular automata must be considered complex dynamical systems
in their own right, requiring appropriate analytical models in order to
find precise answers and predictions in the universe of cellular automata.
Indeed, eventually we have to ask whether cellular automata can be
considered models of the real world and, conversely, whether there are
limits to our modern approach of attributing the world, and the universe
for that matter, essentially a digital reality.

Instead of exploring cellular patterns from a phenomenological point of view [14]
apply analytical methodology like the one used in mathematical physics.

I would add some of questions that came to my mind when reading Wolfram’s
book. Here are some of them.

Cellular automata get updated synchronously. How about diachronic pro-
cesses? If they are modeling physical world as we know it, it should be possible
to model an event originated in the past (like a photon created in the Big Bang)
to interact with the informational structure in the contemporary universe (trig-
ger a detector today). How about non-local systems?

Cellular automata and simple programs have demonstrated surprisingly rich
expressive power in modeling self-organization and emergent properties in sys-
tems consisting of similar units but there are phenomena in nature that seem to
be radically different: How about interactions in totally heterogeneous systems?
Can they be reduced to the properties of the underlying grid?

How about evolution? How could evolution and development be implemented
in the world of cellular automata? [2] for example proposes constructive mech-
anisms to explain (the unavoidable) evolution from thermodynamic to antici-
patory (teleological) systems that are in agreement with natural computation
(physical computation).
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It is possible that computation on a mathematical level is “all or nothing”
(computational equivalence), but if we want to ascribe computational character-
istics to the physical world and explain its full complexity, we must admit that
there are hierarchical structures in physical systems that have complex systemic
properties. How could the architecture be build up out of form-generating algo-
rithms? In nature there is a hierarchical succession of levels of organization and
every higher level can be described by meta-language with respect to previous
level. How about second order algorithms, or algorithms changing algorithms?

Could that be that the underlying cellular automaton of the universe expands
producing expanding universe which we observe? What would that mean for the
properties of the automaton?

8 Conclusion: The Dream of Leibniz Coming True?

Could it be that someplace out there in the computational universe we
might find our physical universe? Will we find the whole of physics? ...
I think computation is destined to be the defining idea of our future.
(Stephen Wolfram, TED talk, filmed Feb. 2010)

Wolfram’s New Kind of Science is one of his closely interconnected projects that
can be understood in relation to the Leibniz’s quest for automation of reason in
a universal science, Mathesis universalis (1695). Leibniz’s characteristica univer-
salis was envisaged as algebra expressing conceptual thought by a formal system
based on the rules for symbolic manipulation of calculus ratiocinator. There are
two opposed interpretations of Leibniz’s calculus ratiocinator: the first is ana-
lytic view relating calculus to software and “algebra of logic”, and the second,
synthetic view, found in cybernetics, understands calculus ratiocinator as re-
ferring to a “calculating machine”. This duality may be seen as reflecting the
dichotomy between mathematical and physical view of computation.

The development of formal systems, Hilbert’s program and the development
of programmable computational machinery all contributed to the gradual real-
ization of the formalization project of Leibniz. However, at the same time the
development of human knowledge run into increasing fragmentation and special-
ization which has reached alarming proportions. So, for example, at present no
individual can have general knowledge of physics broad enough to cover all its
different fields – from string theory to astrophysics.

Wolfram’s project, contrary to the general division into disparate knowledge
compartments, runs towards common synthetic framework using tools of formal
reasoning and Mathematica as calculus ratiocinator, achieving a wide-ranging
synthesis of knowledge. Adding Wolfram|Alpha’s capability to accumulate and
compute general knowledge, this project bears a resemblance to the ambitions
of Mathesis universalis, and brings renewed renaissance optimism about the
human capability to know the world based on natural laws, with computation
as an organizing principle of all knowledge.



322 Chapter 21. Wolfram and the Computing Nature

References

[1] Davis, M.: The Universal Computer: The Road from Leibniz to Turing. WW

Norton (2000)

[2] Deacon, T.: Incomplete Nature: How Mind Emerged from Matter. W.W. Norton

& Company, New York (2011)

[3] Dodig-Crnkovic, G.: Investigations into Information Semantics and Ethics of Com-

puting. Mälardalen University Press (2006)

[4] Dodig-Crnkovic, G., Müller, V.: A Dialogue Concerning Two World Systems:

Info-Computational vs. Mechanistic. In: Dodig-Crnkovic, G., Burgin, M. (eds.)

Information and Computation. Series in Information Studies. World Scientific

Publishing Co. (2011)

[5] Dodig-Crnkovic, G.: Info-Computational Philosophy of Nature: An Informational

Universe with Computational Dynamics. In: Brier, S., Thellefsen, T., Sørensen,

B., Cobley, P. (eds.) From First to Third via Cybersemiotics, the Festschrift for

Prof., p. 97. CBS Copenhagen, Denmark (2011)

[6] Dodig-Crnkovic, G.: Info-computationalism and Morphological Computing of In-

formational Structure. In: Simeonov, P., Smith, L., Ehresmann, A. (eds.) Integral

Biomathics, PART II: Mathematics and Computation. Series on Computational

Intelligence and Complexity (2012)

[7] Fredkin, E.: Finite Nature. In: Proceedings of the XXVIth Recontre de Moriond,

pp. 283–297 (1991)

[8] Fredkin, E.: Digital Mechanics: An Information Process Based on Reversible Uni-

versal Cellular Automata. Physica D 45, 254–270 (1990)

[9] Galileo, G.: The Assayer. English Trans. Drake, S.: Discoveries and Opinions of

Galileo, pp. 237–238 (1957, 1623)

[10] Hodges, A.: Turing. A Natural philosopher. Phenix, London (1997)

[11] Lesne, A.: The discrete versus continuous controversy in physics. Mathematical

Structures in Computer Science 17, 185–223 (2007)

[12] Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes on

the Cosmos. Knopf, New York (2006)

[13] MacLennan, B.J.: Models and Mechanisms for Artificial Morphogenesis, Natural

Computing. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds.) Proceedings

in Information and Communications Technology (PICT). Springer series, vol. 2,

pp. 23–33. Springer, Tokyo (2010)

[14] Mainzer, K., Chua, L.O.: The Universe as Automaton: From Simplicity and Sym-

metry to Complexity. Springer-Verlag Berlin and Heidelberg GmbH & Co. (2011)

[15] Menges, A. (ed.): Material Computation – Higher Integration in Morphogenetic

Design, Architectural Design, vol. 82(2). Wiley Academy, London (2012)

[16] Piccinini, G.: Computation in physical systems. The Stanford Encyclopedia of

Philosophy, Fall 2010 ed. Stanford University (2010),

http://plato.stanford.edu/

[17] Piccinini, G.: The Physical Church-Turing Thesis: Modest or Bold? British Jour-

nal for the Philosophy of Science 62(4), 733–769 (2011)

[18] Rozenberg, G., Kari, L.: The many facets of natural computing. Communications

of the ACM 51, 72–83 (2008)

[19] Shagrir, O.: Why We View the Brain as a Computer. Synthese 153(3), 393–416

(2006)

http://plato.stanford.edu/


References 323

[20] Svozil, K.: Computational universes. Chaos, Solitons & Fractals 25(4), 845–859

(2005)

[21] Turing, A.M.: The Chemical Basis of Morphogenesis. Philosophical Transactions

of the Royal Society of London. Series B, Biological Sciences 237(641), 37–72

(1952)

[22] Turing, A.M.: Computing Machinery and Intelligence. Mind LIX(236), 433–460

(1950)

[23] Turing, A.M.: On Computable Numbers with an Application to the Entschei-

dungsproblem. Proceedings London Math. Soc., series 2 43, 544–546 (1936)

[24] Uchii, S.: An Informational Interpretation of monadology (2009) (Preprint),

http://philsci-archive.pitt.edu/4635/

[25] Wiener, N.: The Human Use of Human Beings: Cybernetics and Society. Da Capo

Press (1988)

[26] Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

[27] Zuse, K.: Calculating space. MIT technical translation AZT-70-164-GEMIT. MIT

(Proj. MAC), Cambridge, MA (1970)

[28] Zuse, K.: Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig (1969)

http://philsci-archive.pitt.edu/4635/


Chapter 22

A New Kind of Philosophy:

Manifesto for a Digital Ontology

Jacopo Tagliabue

Department of Philosophy, Università San Raffaele, Milan, Italy, and
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Abstract. Stephen Wolfram’s ambitious “A New Kind of Science”

(NKS) re-thinks and re-builds almost every scientific field in the light

of the study of cellular automata and their emergent behavior. A little

known fact among professional philosophers is that there is plenty of

room for philosophy too in NKS: on the one hand, Wolfram’s core argu-

ments require sophisticated conceptual analysis to be properly assessed

and evaluated; on the other, it is pretty clear that Wolfram himself re-

gards NKS as the obvious premise for a “A New Kind of Philosophy”.

In this contribution, we shall focus mainly on the second part of NKS

philosophical import; in particular, we take Wolfram’s own analysis as a

starting point to explore the answer to the following question: do philoso-

phers need digital philosophy? Our answer will be “yes”, for Wolfram’s

own reasons and more. First, we argue that philosophy as a whole may

benefit from the unorthodox intuitions delivered by the systematic study

of CA; second, we outline three promising areas of research for this new

kind of philosophy, highlighting that a digital approach to substantial and

methodological issues may bring very interesting consequences for many

contemporary debates in the discipline. Finally, we place digital philoso-

phy into the wider context of contemporary sciences (computer science,

Artificial Intelligence and cognitive sciences), arguing that a genuine in-

terdisciplinary approach would help tackling in new ways the greatest

challenges of these fields.

1 Introduction

Stephen Wolfram’s ambitious “A New Kind of Science” (hence NKS) explicitly
calls for a radical revision of pretty much every scientific field1: the details of
the story (and arguably the strength of the argument) vary from field to field,
but the discoveries made by Wolfram by studying cellular automata (hence CA)
are the core of the whole book. While CA are well-known among scientists since
the Eighties (invented by John Von Neumann in the Fifties [28], though it is
fair to acknowledge Wolfram himself2 for much of the popularity of the field

1 For an overview, see the introductory section of [31].
2 See for example [29] and [30].

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 325–339.
DOI: 10.1007/978-3-642-35482-3_22 © Springer-Verlag Berlin Heidelberg 2013
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thereafter), they are not as popular among professional philosophers, even if
many computability concepts are now part of any serious practitioner’s toolkit.
This is very unfortunate, since there is plenty of room for philosophy in NKS: on
the one hand, NKS’s boldest conclusions and claims rest on fairly sophisticate
notions from epistemology (what can we know?), philosophy of science (how
should we judge a scientific paradigm?) and even metaphysics (what is the nature
of computational phenomena?); on the other, it is pretty clear that Wolfram
himself regards “A New Kind of Science” as the obvious premise for a “A New
Kind of Philosophy”:

Among them [the fundamental issues philosophers address] are ques-
tions about the ultimate limits of knowledge, free will, the uniqueness
of the human condition and the inevitability of mathematics. Much has
been said over the course of philosophical history about each of these.
Yet inevitably it has been informed only by current intuitions about
how things are supposed to work. But my discoveries in this book lead
to radically new intuitions.3

In this contribution, we shall focus mainly on the second aspect of NKS’ philo-
sophical import4. In particular, we take Wolfram’s own analysis as a starting
point to explore the answer to the following question: do philosophers need dig-
ital, CA-inspired philosophy? (Spoiler alert: yes, they do, for Wolfram’s own
reasons and some more).

The paper is organized as follows: in Section I we sketch a theory of systematic
philosophy and in its relations with other forms of rational enquiry (mathemat-
ics and empirical science). In Section II we introduce NKS discoveries (“the
new intuitions”) and see how they can be fruitfully applied to existing debates
in contemporary philosophy. Finally, in Section III we shall argue that NKS
and CA provide much more than just new intuitions: they provide philosophers
with new tools that may help shape the discipline and change its place in the
world.

2 What Is Philosophy?

To outsiders - and even to insiders, from time to time - philosophical disputes
seem puzzling: sometimes what is at issue is not that clear (what is a possible
world, anyway?5), sometimes it is hard to understand why we should favor one

3 [31, p. 10].
4 The first - together with a philosophically friendly introduction to CA - is addressed
at length in [3].

5 Actually, the seemingly sci-fi notion of “possible world” is a fascinating theoretical
concept, useful in many branches of logic and philosophy. The locus classicus is [21];
for an up-to-date review, see [13].
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among many competing explanations (after all, there are supposedly crucial
“thought experiments” in philosophy - but they are not experiments in the sci-
entific sense, right?). To further complicate the matter, philosophers do not agree
on a definition, since the scope and method of the discipline are themselves mat-
ter of dispute within the discipline. Without the ambition of settling the issue
once and for all, I shall propose a working definition (which I take to be rela-
tively uncontroversial) that will be used in what follows to better understand
the importance of Wolfram’s remarks and CA for philosophy.

As philosophers6, we are committed to come up with a list of basic entities and
simple rules out of which everything we “see” – atoms, people, galaxies, math-
ematical objects, moral values, mental states – can be built. Non-philosophers7

can easily imagine the work as some sort of reverse-LEGO: you start with the
whole model in front of you and the task is to compile the list of items that
were in the LEGO kit in the first place, together with the assembly manual (the
world we live in is a hell of a LEGO model, so it is no wonder that philosophers
are fighting all the time about which items should make the final list). As it
is stated, our game raises an immediate objection: isn’t it sciences (and espe-
cially physics) that tell us what the fundamental features of reality are? if so,
why bother with philosophy at all? To understand why we need philosophy and
sciences alike, it is important to understand what kind of LEGO bricks philoso-
phers are after. While it is physics that tells us, say, that particle X ’s behavior
is causing event E, it is philosophy that tells us what “causing” means: sure,
the fact that E is caused by X is grounded in some physical features of our
world, but unfortunately this does not account for the concept of causation in
its full generality8. In other words, sciences presuppose a concept - causation -
whose fundamental structure is not explained by science: upon reflection, this is
not strange at all, since science and physics also presuppose summation, whose
fundamental structure is explained by mathematics, and implications, whose
fundamental structure is explained by logic.

Philosopher’s LEGO model is thus made by the most important qualitative
features of our world (like causation, identity, morality, rationality, and so on),
the concepts we use in science and everyday reasoning to make sense of what
happens around us9. So the question becomes: among these concepts, can we
single out a minimal set of fundamental ones to which we can reduce all the

6 Caveat : this is especially true for ontology, which is in some sense the most funda-
mental branch of philosophy (a view that can be traced back to Aristotle) and the
one - as we shall see - which may benefit the most from CA (not that I am partial,
but incidentally, it is also my area of specialization).

7 Non-philosophers may wish to consult [8] which is a gentle introduction to the field
written for non-specialists.

8 As a small illustration, consider: “Inflation caused unemployment”. How would you
even begin to explain this relation using physics?

9 Saying that an account of causation is not that important will not do for obvious
reasons - for example, the fact that causation is at the heart of responsibility, a
founding notion of our society.
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others? To further drive this point home, consider the following screenshots
from Conway’s famous CA10, the Game of Life:

t0 t1 t2

CA practitioners will recognize a so-called glider floating in the space. A
software may surely help us calculate where the glider will be after n time-steps
in the universe evolution; but what is the correct description of the situation
from an ontological perspective? Take the two following characters:

A is a philosopher who agrees with a commonsensical account: we are seeing
one object moving in the space.

B is a philosopher who says that no object is moving: she insists that there are
no composite objects, just atomic cells. Since cells do not move, movement
is impossible.

Of course, both philosophers can agree with the software calculation, since the
LEGO model they see is exactly the same; however, the qualitative notions they
employ in their descriptions differ a lot11: only for A cells can be combined to
form further “emergent” objects, so that only in A’s universe things may be
created and destroyed. If this seems a rather unimportant fact concerning Life,
just substitute “gliders in a CA” with “persons in our universe”: are we real (or,
which is the same, can we die)12?

Now that we hopefully have some idea of the scope of philosophy, it is time
to address two crucial questions regarding its method: how did A and B reach
their conclusion? How should we decide between competing theories?

To answer these questions, imagine playing the reverse-LEGO game again
(say, with a LEGO cathedral). You have the model in front of you - you can-
not break it, you cannot touch it - and all you can observe are the model’s
macroscopic features: you see the church’s spires and gothic gargoyles, but you

10 See [1]. For a demonstration of Life amazing capabilities, a quick Internet search
will give the desired result.

11 Of course, another philosopher, C, may argue that this is just a “semantical dis-
pute”, a problem with words, not with the world’s fundamental structure. This is
a respectable position, drawing on complex background in the methodology of on-
tology and metaphysics, but we shall not pursue it here (see [7] for a collection of
works in metametaphysics). It is worth noting that metaphysical skepticism is itself
a philosophical position - and one whose practitioners usually end up explaining in
philosophy journals.

12 In the example several philosophical topics are intertwined: for an introduction to
the themes of composition see [6]; for the metaphysics of change see [25].
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can’t see how they have been built. There are countless LEGO kits compatible
with the model (i.e. they are such that you can have countless indistinguishable
cathedrals starting with different kits), so how do you choose13?

A first, obvious desideratum is conceptual economy. “Less is more”, “Occam’s
razor”, “Lex parsimoniae”, “Simplex sigillum veri”14 are all effective slogans for
this principle, stating that we should favor simpler theories (theories with fewer
primitive or undefined notions) over more complex ones when the explicative
power is the same. In our case, we could try to solve the LEGO model by repro-
ducing the cathedral with the fewest possible brick types: we start with just one
type (say, the smaller LEGO brick) and then we introduce others only if we can-
not continue with what we have already included. If we do the job with rigor, we
should end up with the smallest possible list of fundamental brick types.

Unfortunately, while this makes much sense in our example, it overlooks two
crucial points in solving the game: first, we do not know the “smaller LEGO
brick” to begin with; second, it may be very hard to judge when we cannot
continue with what we already have in the list anymore. To appreciate the former
difficulty, it is enough to note that our evidence is compatible with a very simple
assumption: the model is built from a unique giant brick cathedral-shaped; if we
did not know that LEGO does not produce cathedral-shaped bricks, we could
not rule out this hypothesis. To appreciate the latter problem, we point out
that even in the presence of a complete kit, we may still be unable to assemble
the cathedral: the pieces are all there, but without enough ingenuity, we simply
cannot make them work - so we may be tempted to introduce ad-hoc pieces to
complete the model.

In both cases, our search for a solution heavily relies on intuitions15: we have
a strong intuition that the cathedral is a composite object and we have a strong
intuition that the smaller LEGO brick, by itself, is not enough to produce the
church’s spires and gothic gargoyles16. But where do intuitions come from? For
the most part from common sense and science. This is why philosophy may
strongly benefit from a detour in other fundamental disciplines: physics and
mathematics, in particular, provide us with new intuitions that often correct
commonsensical arguments. To take a famous example, for centuries the infinite
was considered to be without any interesting structure: thanks to Cantor, many

13 As we shall remark, this is also a problem for different scientific theories explaining
the same set of facts (the so-called “underdetermination problem”, see [26]).

14 Literally, “Simplicity is the mark of Truth”.
15 See also the wise words in [20, pp. ix-xi], and [15, pp. 13-15].
16 In many respects, this image is an oversimplification: in particular, no two theories in

general explain (equally well) exactly the same set of phenomena, so the final judg-
ment is a trade-off between theoretical simplicity and explanatory power - a balance
which may be itself matter of philosophical debate (that is why we will never run out
of work). It is worth emphasizing that almost any “fundamental” discipline shares
the problem: for example, competing “theories of everything” in physics are not
judged over experiments, but over theoretical considerations of conceptual economy
and intuitions of what may be a possible fundamental layer of reality.
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of us have now changed our intuitions into a more robust conception of infinite,
allowing a very rich and interesting structure (some may still believe that there
are strictly more integers than even numbers; but we know better); in other
words, things we believed possible turn out to be impossible, and vice versa. Of
course this is not to say that physics and mathematics may solve philosophical
puzzles by themselves, since, as we have seen, the structures investigated by
philosophy are somewhat presupposed by both. However, while philosophers
sometimes declare from the armchair the impossibility of X just because our
imagination does not yet cover X, good science has always been doing a great
job in broadening our horizons. To the extent that CA are good science, it should
not be surprising we have so much to learn from them.

3 A New Kind of Intuitions

As we have seen philosophy is, in a strong sense, dependent upon intuitions
(together with theoretical considerations of simplicity, explanatory power, etc.)
Therefore, when science challenges previously held intuitions, we should expect
our philosophical perspectives to be challenged as well. In a nutshell, this is also
Stephen Wolfram’s idea when he claims that the “discoveries in this book [NKS]
lead to radically new intuitions”[31, p. 10]. What these discoveries and these
intuitions are is obvious to any reader of NKS, however a quick review of the
book’s main themes may be useful as a reference17:

NKS1) Simple rules may produce very complex behavior: contrary to what
we think, complex behavior does not require a rich ontology to begin with
(pretty much as with LEGO, it is astonishing the complexity you can achieve
with a tiny set of primitives).

NKS2) Computation is everywhere: computational phenomena are not limited
to computers; in some sense, computation is the most fundamental process
in reality, one to which everything else is to be reduced.

NKS3) Universal computation is much more widespread than what we think:
many systems, when investigated through the lens of computability, turn out
to be equivalent in a precise mathematical sense (i.e. they all can compute
the same set of functions and this set comprises every possible computable
function ).

NKS4) The ability to predict the world is severely constrained by (NKS3): once
a system is proved equivalent to a Universal Turing Machine (UTM), it can
be shown that no algorithmic procedure can accurately predict its behavior –
we can only run a simulation and wait for the result to be computed step by
step. This, in turn, highlights the importance of computer-assisted discovery
in any area of rational enquiry.

17 Caveat : the list is not meant to be exhaustive nor to be the list Wolfram himself
would have written; however it nicely summarizes the most important points for
what follows. Moreover, while some claims can be held independently from the
other, they are most compelling when presented as a single world view.
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NKS5) Digital universes’ behavior is phenomenologically rich: in particular,
digital universes may be indistinguishable from continuous counterparts due
to their ability of hosting an incredible variety of patterns at different levels
of granularity.

Taken together, (NKS1)-(NKS5) are a strong challenge to our intuitions.
Granted, some of these claims are not new to philosophers around the globe:
see, for example, the survey in [23] regarding (NKS2), or consider the following,
striking declaration from Dan Dennett:

Every philosophy student should be held responsible for an intimate
acquaintance with the Game of Life. It should be considered an essential
tool in every thought-experimenter’s kit, a prodigiously versatile gen-
erator of philosophical important examples and thought experiments of
admirably clarity and vividness.18

However, it is fair to say that NKS as a whole constitutes an exceptionally strong
case for what Ed Fredkin called the “Finite Nature Hypothesis”:

Finite Nature is a hypothesis that ultimately every quantity of
physics, including space and time, will turn out to be discrete and fi-
nite; that the amount of information in any small volume of space-time
will be finite and equal to one of a small number of possibilities. (...) We
take the position that Finite Nature implies that the basic substrate of
physics operates in a manner similar to the workings of certain special-
ized computers called cellular automata.19

To appreciate an original contribution of NKS to philosophy, let us analyze
Wolfram’s approach to the problem of free will. What is the riddle of free will?
We would like all of the following statements to be true, but (here is the trick)
it seems they cannot be possibly all true:

1. The physical world is deterministic20 and causally closed21 (i.e.: only physical
events may cause physical events).

2. The world physical state at tn together with the laws of nature is sufficient,
for each m, for any physical state at tn+m.

3. If we have free will, for each action A we have freely deliberated and per-
formed, we could have done otherwise.

4. We have free will.

18 [11, p. 37].
19 [14, p. 116].
20 At the level relevant to explain our actions – say, the level of biological processes

in the brain. Of course, physics may not be deterministic at its bottom level (say,
quantum reality), but it is obscure how this fact would vindicate freedom of the will.

21 See for example [17] for a discussion of this claim and its relation to the mind/matter
debate.
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(1) is an empirical statement: if tomorrowwe discover that biology is not determin-
istic or that non-physical entities (like ghosts or Greek goddesses) may influence
physical events, we will find that (1) is indeed false. However, for scientists and
philosophers holding (1) is tantamount as holding a naturalistic perspective on
the world – so, it will better be true. (2) is a conceptual truth, the definition of
determinism: if the world is deterministic, the big bang and the physical laws ne-
cessitate the evolution of the entire universe. (3) is basic conceptual analysis: part
of what it means to have free will is to not be necessitated when one is acting.
Finally, (4) is an intuitive truth: we do feel we are free – moreover, we arguably
assign moral responsibility based on this assumption (i.e., you’re a good person
because you made a good action when instead you could have made a bad one).

The crucial question is therefore: how is the tension between (2) and (3) to be
explained? Some believes that the intuition is correct: there is a tension and it
cannot be resolved: a deterministic world is not compatible with us being free22;
so, if (1) stays, it turns out that free will is like unicorns and chimeras, i.e. a
fictional entity. Many philosophers, however, contend that the tension can be
explained away, giving us all the free will we desire; interestingly enough, Daniel
C. Dennett, one of the most important contemporary thinkers in this tradition,
employs CA to argue that you cannot infer that your actions are unavoidable
from the fact that the basic physics is deterministic23. Stephen Wolfram attempts
his own analysis starting from (NKS1)-(NKS5):

From the discoveries in this book it finally now seems possible to
give an explanation for this [free will]. And the key, I believe, is the
phenomenon of computational irreducibility.24

Computational irreducibility is precisely captured by (NKS4): although a system
follows definite underlying laws, “its overall behavior can still have aspects that
fundamentally cannot be described by reasonable laws”25. Pretty much as atoms
in a CA, our neurons follow simple rules; however, whenever a system reaches
a threshold in its computational complexity, we simply “cannot readily make
predictions about the behavior of the system”26: we attribute free will to humans
because there is no way to accurate predict their behavior, so that the concept
of freedom fills the explanatory gap between the micro-level and the macro-
phenomena27. According to Wolfram, CA play a leading role in providing a

22 See [27] for an excellent starting point to the contemporary discussion.
23 See [12, pp. 40-44]. For a philosophical discussion in the context of CA, see [3].
24 [31, p. 750].
25 [31, p. 750].
26 [31, p. 751].
27 Fellow philosophers may indeed argue that Wolfram’s claim is that there is no real

free will, just an epistemic limitation we call “free will”. We leave to the informed
reader to decide whether this position is a version of “compatibilism” or some form
of “eliminativism”.
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new framework to understand the phenomenon: while explanations from chaos
theory and quantum randomness have been recently proposed, “nothing like this
is actually needed”28: thanks to the new kind of science, we have now a precise
model of how the explanatory gap works. Good science has shown us once more
how to crack a riddle (how unpredictability arises from micro-determinism) we
previously didn’t understand29.

4 Philosophy in a Digital World

Notwithstanding the importance of other NKS themes for existing philosophical
discussions30, we wish to further pursue Wolfram’s claim about the global philo-
sophical import of CA. As Andrew Ilachinski points out, CA can be fruitfully
used as “conceptual vehicles for studying pattern formation and complexity”31:
if philosophy can be thought of some kind of reverse-engineering of reality’s
structure, CA are a most precious conceptual lab to explore emergent behavior
in its purest form. In particular, we shall explore three different ways in which
CA may improve the method of philosophy as it is actually practiced – all of
them are expansions of Wolfram’s core idea on the import of CA-based intuitions
for knowledge in general.

4.1 Reverse-Engineering Reverse-LEGO

A first obvious point in the “New kind of philosophy” Manifesto is the use
of digital universes (say, Rule 110 or The Game of Life) to model existing
philosophical theories: what happens, in other words, if we let ourselves apply
philosophical reasoning in a world whose starting kit is known a priori? As we
have seen before32, CA may provide the purest environment in which different
intuitions may be vividly tested and theories may be compared: while CA per se
(just as mathematics and physics) cannot solve, say, the metaphysical problem
of change, observing the arguments involved in the dispute in the context of a
digital universe may help bring some clarity to the whole debate.

Moreover, philosophical proposals have been developed in connection with
our everyday reality, but it is not always clear how to assess them due to the
intricate network of concepts and intuitions that come in play when we observe
the complex world we live in - maybe, simpler yet rich worlds, may help. As an
example, consider the following two sentences:

28 [31, p. 752].
29 Of course, Wolfram’s argument hardly settles the issue once and for all. However, it’s

very important to recognize how the creative, yet rigorous application of a scientific
discovery to a conceptual problem may help us see previously unnoticed connections.

30 For example, the nature of space and time [31, pp. 481-496] and the metaphysics of
computation [31, pp. 637-714].

31 [16, p. 7].
32 The reader may also wish to recall Daniel Dennett’s remarks in the previous section.
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L1 All gold spheres are less than a mile in diameter.

L2 All uranium spheres are less than a mile in diameter.

They are both true generalizations about our physical world, yet they differ in
an important respect: (L2), but not (L1), is what we would regard (as scientists)
as a true law of nature, something connected to the deep structure of the world
and not the result of a sum of accidental facts. What is this difference grounded
upon? Or - which is pretty the same - what is, generally speaking, a law of nature?
Obviously, it is not the logical form of a sentence that makes it a law: (L1) and
(L2) are both universally quantified statements involving physical features of our
world. So what is it33?

Under a popular account, natural laws are the true generalizations contained
in the best deductive system describing our world34. What does that mean? Take
the long and somewhat confusing Book-Of-The-World, containing all the facts
about the evolution of our Universe (say, things like the Big Bang, the Halley
comet, the Solar System, exhaustively described in the appropriate scientific
language). We can hope to systematize this vast knowledge of particular facts
with several possible axiomatic systems, competing for the best trade-off between
simplicity, strength, predictive power, etc.: some are conceptually simple, but
not enough powerful to deliver the content of the Book-Of-The-World, some are
powerful, but at the cost of many axioms and primitive notions35. Suppose the
system with the best trade-off is S : then, the natural laws of the world are all
and only the true generalizations contained in S ’s axioms or theorems. Going
back to our earlier case, we can see how the account elegantly manages to solve
the problem: since, presumably, S contains axioms concerning elements’ stability
and decay but not axioms concerning an upper bound to gold spheres’ diameter,
just (L2) can be derived from S - and that is why it is a law of nature.

Apart from purely conceptual considerations36, a striking difficulty with such
an account is that, textbook examples aside, no one has the slightest idea of
how this system S may look like. Actually, the situation is even worse than that:
no one has the slightest idea of how competing systems may look like, how the
alleged trade-off may present itself, what strategies we may use to judge them.
So, apart from purely conceptual considerations, we may still have the doubt that
the theory is not (as we philosophers love to say) extensionally adequate, i.e.,
sometimes it fails to recognize a law in a lawful generalization and/or sometimes
it says that an unlawful generalization is a law.

33 See [5] for a general introduction.
34 See [19], [22], drawing from ideas presented in [24].
35 To avoid problems of language specificity, it is usually added the constraint that the

predicates in the system stand for “natural properties” (which is another technical
term that may benefit from a CA modeling). For the purpose of the present discus-
sion, it is just important to note that systems are in some way normalized before
the comparison.

36 Such as the fact that, generally, the world is supposed to be the way it is because of
the laws governing its evolution, not the other way around.
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Digital universes such as Life may be very helpful: we can easily (so to speak)
compile the relevant Book-Of-The-World and then ask ourselves: What is the
best system that can generate this amazingly rich universe? Arguably, if we
take as axioms the initial conditions of a Life’s run plus Life’s fundamental
dynamics, we should obtain a simple and strong system capable of generating all
the particular facts contained in the Book-Of-The-World. However, the system
as it is will not generate any easily recognizable laws about, say, the movement
of gliders under several conditions. Does this mean there are no laws concerning
gliders? Even if we acknowledge their “derivative”, emergent nature, this does
not mean we cannot exploit solid regularities to understand their behavior: why
should not these be bona fide laws? Again, if this seems a rather unimportant
fact concerning a CA, just consider the analogous question about our world: are
there laws in the special sciences (from biology, to psychology, to economics) or
are physical laws the only laws of nature, while anything else is, at best, a bunch
of ceteris paribus conditions, or plain accidental generalizations?37

Of course, there may well be theoretical merits in the view that Life’s laws
are just the basic facts about its micro-dynamics: this is not the place to further
discuss the issue, nor it is CA job to settle it. However, it is crucial to see how
rephrasing a theory in terms of CA may be helpful in seeing clearly the bold
consequences of some moves and the potential problems involved.

4.2 Developing and Debugging Philosophical Theories

As a second point in our Manifesto, we want to stress the importance of building
a rigorous philosophy of CA. Consider again a classical Life dynamics:

t1 t2 t4

In this case we have an eater (south-west) devouring a glider (traversing
the region in the lattice from north-east). It may seem perfectly legitimate to
say that this is an instance of causation, i.e. to assert that “The eater caused
the glider to disappear”. The corresponding counterfactual, in fact, seems true:
hadn’t the eater being present, the glider would have not disappeared (but would
have reached the south-west corner in a few time-steps). According to many
philosophers, this is good evidence that we have witnessed a causal interaction.

The concept of causation is one among the most crucial in understanding
our world - think for example about the importance of causal processes within
science. Of course, many philosophical accounts are available in the market to

37 For a more extended discussion of this point, see [3].
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explain this phenomenon: some38 take the causal relation as somehow primitive,
a brute, basic ingredient of our world. But here a rigorous ontology of the digital
universe may be very helpful, highlighting that the above instance of causation is
produced by the simple elements defining the Life universe - nothing more than
that, no strange “causal powers”, no magical relations (how do we know that?
Well, we built the very thing)39. All the concepts we have when we describe Life
dynamics are somehow sufficient to deterministically generate causal phenomena:
investigating how exactly this is possible is a challenging task that goes beyond
the scope of this contribution, yet this is a clear, paradigmatic example of how
an important philosophical concept may benefit from a systematic investigation
of CA philosophical features40.

Closely related to the idea of a “CA philosophy” is the idea of “philosophical
debugging”. “Debugging” is a familiar activity to practitioners in Computer
Science: in a nutshell, the idea is that, when an algorithm produces unexpected
results, we test it step by step to understand where (and why) things start to go
wrong. Consider a simple algorithm to calculate the factorial of some number,
say 10:

for (i = 1; i =< 10; i++)

{
int n = 1;

n = n * i;

}
return n;

If we run the algorithm, we would get 10 as the result of 10!, which is clearly
wrong. So where is the mistake? If we follow step by step the algorithm, we
notice that each time in our loop the variable n (the one storing the partial
result of the multiplications) is restarted to 1; obviously, we should declare it
outside the loop to get the intended computation:

int n = 1;

for (i = 1; i =< 10; i++)

{
n = n * i;

}
return n;

This is very nice, but, as philosophy is usually practiced, none of these beauti-
ful practices of error-checking is possible: we start with some assumptions, we

38 See for example the now very popular ”manipulability account” defended in [32].
39 Recall one of our earlier lesson: we should not declare the impossibility of X just

because our imagination does not yet cover X.
40 As a pioneering example of this attitude, see [2, Ch. 3].
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somehow get weird outcomes, but there is not always an easy way to tell when
we made a mistake in between.

CA are very precise mathematical objects: as such, they can support a very
precise philosophical structure, one which will be easy enough to translate into
your favorite programming language so that it may run on universe’s simulations.
In that way, we can use simulations as benchmark of our philosophical theory,
by letting the computer compute all the consequences of our assumptions (by
teaching it, so to speak, to see that reality through the lens of our theory). So,
if the simulation produces an eater devouring a glider and our theory does not
detect causation, we may stop the universe and check the reasoning as applied
to the situation to understand what is wrong - and fix it.

Probably, not all debates in contemporary metaphysics may be adequately
represented in a digital universe, but surely for many of them CA would provide
a new, exciting way to develop and test original accounts: so much for those who
think we cannot make experiments in philosophy.

4.3 Improving Ontology-Based A.I.

As a last area of interest, we mention briefly the potential benefit of a CA
philosophy to computer science, in particular to Artificial Intelligence. While, of
course, it is not known how exactly we can make a computer truly intelligent, we
have a pretty good idea of why it is, sometime, truly stupid - as anyone who uses a
smartphone to send messages well knows, the software sometimes suggests weird
words since it does not understand the context of the word, nor its meaning
(i.e. its relation to the actual world and other words). Information, per se, is
quite useless: the key to knowledge representation is structured (“semantic”)
information41.

One way to improve computers’ understanding is to teach them concepts and
relations, modeled in some formal language they can easily manipulate: that
is why over recent years formal ontology has been increasingly useful to solve
real business challenges42. Back to our philosophical debugging, we see that by
teaching lessons in ontology to our laptop we are arguably making it capable of
assigning (proto)-meaning to the words it uses to describe the digital universe.
If this is true, any progress we can make in the small, yet qualitatively rich
world of CA should be a potential contribution to the ongoing development of
applied ontologies. Moreover, since CA phenomena are particularly abstract, a
thorough understand of their philosophical significance may turn out to be of
great interest to a wider audience, comprising practitioners in computer science,
Artificial Intelligence and cognitive science.

If artificial minds are the next big thing43, a CA-inspired philosophy may
bring the field closer than ever to a great scientific revolution.

41 See [10].
42 See for example the works collected in [4].
43 As argued for example in [18].
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5 Conclusion

NKS – published ten years ago – was the exciting, groundbreaking exposition of
a new scientific paradigm, whose scope and success it is still too early to judge.
However, we argued at length that, independently of the specific claims made
in that book, the conceptual framework put forward by Wolfram is a lively,
engaging, challenging proposal to change (sometimes, radically) our habits of
thought.

Unfortunately, many philosophical issues directly connected with NKS could
not be discussed - first and foremost, a comparison between the philosophy of
emergent properties and the science of emergent computation44, which strikes
me as the most promising area for a new synthesis of tools and ideas. Hopefully,
the presented material would help philosophers understand the importance of a
direct acquaintance with NKS and digital universes in general; indirectly, we also
suggested that science would benefit from a better acquaintance with philosophy,
but a solid defense of this latter point need to be the focus of another work.

Up until the beginning of the 20th century, philosophers were often at the very
frontier of their time’s science, something which became less and less common
in the course of the century45. A New Kind of Philosophy may help them regain
that place in this century46.
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Abstract. What does Wolfram’s new kind of science (nksw) imply

about the decidedly non-new topic of free will versus determinism? I an-

swer this question herein. More specifically, I point out that Wolfram’s

nksw-based position on free will is centered on the nature of physical

laws, rather than formal logic; briefly rehearse the longstanding ontol-

ogy of main positions on free will versus determinism in the context of

physical laws; after a more detailed look at Wolfram’s position, regis-

ter agreement with him that in light of nksw, the belief that free will

is real and robust is to be expected, and is rational; but explain that

nksw provides no cogent rationalist basis for believing that we are in

fact free. I conclude by pointing out that in light of the foregoing, if we

are free, and can know that we are on the strength of what rationalists

demand (e.g., proof), nksw, while perhaps truly new, is truly incomplete.

In short, I show that Wolfram, on free will, is epistemologically insightful,

but metaphysically deficient.

1 Introduction

What does Wolfram’s (2002) [11] new kind of science (nksw) imply about the
decidedly non-new topic of free will versus determinism? I answer this question
herein. More specifically, I begin by briefly explaining that Wolfram’s nksw-
based position on free will is centered in physics and agentless computation, not
formal logic (§2); rapidly rehearse the immemorial, main positions on free will
versus determinism in connection with physical law (§3); sketch out in section 4
what it takes to provide a rationalist basis for a position on free will (or on any
subject, for that matter); after a more detailed look at Wolfram’s position (§5),
register agreement with him that in light of nksw, the belief that free will is real
and robust is to be expected, and is quite rational (§6); but explain that nksw
provides no cogent rationalist basis for believing that we are in fact free (§7).
I conclude (in §8) by pointing out that in light of the foregoing, if we are free,
and can know that we are on the strength of what rationalists demand (e.g.,
proof), nksw, while perhaps truly new, is truly incomplete. In short, I show that
Wolfram, on free will, is epistemologically right, but metaphysically deficient.

H. Zenil (Ed.): Irreducibility and Computational Equivalence, ECC 2, pp. 341–350.
DOI: 10.1007/978-3-642-35482-3_23 © Springer-Verlag Berlin Heidelberg 2013
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2 Wolfram on Free Will: A Physics-Based Orientation

Wolfram writes:

Ever since antiquity it has been a great mystery how the universe can follow

definite laws while we as humans still often manage to make decisions about

how to act in ways that seem quite free of obvious laws. (Wolfram (2002)

750; bolded text here and in quotes hereafter due to me, to serve subsequent

purposes)

Here Wolfram is pointing to a version of the free-will problem that involves
physical laws and causation. There are other versions of the problem that are
more abstract, and which steer clear of physical laws in favor of a priori reflec-
tion from the armchair (or its correlate in ancient Greece), and some of these
were also discussed in the distant past that Wolfram points to. A seminal ex-
ample is Aristotle’s famous consideration of a future sea battle, given in his De
Interpretatione, Chapter 9 (which can be found in [10]). Aristotle reflects on
whether tertium non datur (TND) holds, and brings that issue into focus by
asking whether TND holds with respect to

1. There will be a sea-battle tomorrow.
2. There will not be a sea-battle tomorrow.

Aristotle’s reasoning, which we needn’t assess, runs essentially as follows. If we
assume for the sake of argument that 1. is true, then clearly the proposition
expressed by this statement was true a week back, and a month back, and indeed
10,000 years back, ad indefinitum. But this is to say that it has always been
the case that there will be a sea-battle tomorrow — and hence it immediately
follows that all those human actions commonly associated with fighting a sea-
battle (including the decision to launch an attack in the first place), commonly
regarded to be up to us (= free), aren’t. Exactly parallel reasoning can be carried
out if the starting point is the assumption that 2. holds.

Aristotle’s discussion falls under the topic of logic and the mind, definitely
not, for instance, physics and the mind, and certainly nksw falls into the latter
domain. (Aristotle is read by some scholars as recommending rejection of TND
in favor of a three-valued logic, an idea that certainly had legs: some contem-
porary extensional logics, e.g. the heterogeneous logic underlying Barwise and
Etchemendy’s [1] Hyperproof system, add to true and false such values as un-
known.) After all, the central-to-nksw doctrine of computational irreducibility
ranges over the behavior, through time, of physical processes.

We turn now to consideration of the free-will problem from the standpoint
not of armchair reflection and abstract logic, but physical, or natural, laws.

3 The Ontology of Free Will vs. Determinism

The classical expression of the “physics-relevant” “free will problem” is given by
Chisholm’s [7]. Encapsulated, the problem as portrayed by him is as follows; we
shall call it ‘The Dilemma.’
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The Dilemma

(1) If determinism is true, then free will is an illusion; and yet on the other

hand, (2) if indeterminism is true, free will is an illusion. But since (3) either

determinism or indeterminism is true, it follows that (4) free will is indeed

chimerical.

To ease exposition, let’s use ‘D’ to denote determinism, and ’I’ to denote indeter-
minism. Indeterminism is understood to simply be the negation of determinism;
that is, I if and only if not-D. We thus see that (3) is an instance of a the-
orem in elementary deductive logic (viz., TND in either the propositional or
predicate calculi; perhaps Boole never considered the sea-battle!), and is hence
unassailable.

But we can be clearer. For Chisholm:1

D: Every event is caused (by the conjunction of physical laws and prior and
simultaneous events).

Hence, by elementary quantifier reasoning from the negation of determinism, we
have:

I: At least one event is uncaused.

There can be no doubt that the reasoning in The Dilemma is formally valid;
indeed, an obvious symbolization in the propositional calculus, and a formal
proof, effortlessly obtained, would quickly confirm that {(1), (2), (3)} deductively
entails (4). In addition, given even garden-variety accounts of event-causation,
it’s not hard to see that both (1) and (2) in The Dilemma are quite plausible.2

Take (1) first, and understand an event e to be caused just in case prior events,
combined with the relevant laws of nature, logically necessitate that e occurs.
Suppose now that e is an event that many would regard to be a strong candidate
for something humans freely bring about; for example, Smith’s raising his hand
to signal the launching of a battle. Suppose that this event happens at tn, and
that D is true. Then, given events holding before tn, at tn−1 let’s say, and laws of
nature that are of course completely beyond the control of Smith, it’s logically
necessary at tn−1 that Smith raise his hand to vote. Since this reasoning can
be iterated indefinitely, we will reach a snapshot of the universe at a time t�

eons before Smith’s existence which is such that, long into the future from that
timepoint, Smith absolutely must send the signal he does at tn. This fact is

1 And for others also seeking a rigorous statement of the free will problem; e.g., for
Zimmerman’s [12] and Bringsjord’s [2].

2 In a Newtonian framework, e.g., (1) and (2) are provable on axiomatizations of Newto-
nian mechanics. It’s beyond scope for the present chapter to discuss the status of such
formalizations, or formalizations of (1) and (2) in, say, quantum-mechanical frame-
works. Both (1) and (2) do seem quite plausible on Wolfram’s physico-computational
framework.
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inconsistent with the proposition that it’s up to Smith as to whether he raises
his hand or not, under any reasonable understanding of up-to-us-ness.

Now, the ontology of the immemorial free-will debate is derived from stances
on the truth or falsity of (1), (2), D, and I, and runs as follows:

The Ontology of the Free-Will Debate
Incompatibilism (1): D is compatible with our having free will; i.e., the

reasoning given above in favor of (1) is regarded to be compelling.

Compatibilism not-(1): D is compatible with our having free will.

Hard Determinism : D conjoined with incompatibilism.
Soft Determinism : D conjoined with compatibilism.

Not that it matters for the present essay, but Chisholm was a libertarian, as am
I. A defense of libertarianism is provided in [2]. In general, it’s safe to say that
incompatibilism is aligned with the common-sense and ubiquitous laic notion,
unabashedly affirmed herein, that the concept of up-to-us-ness is at the heart of
what it means to be free. If free will consists in our ability to perform actions
that are entirely up to us, then compatibilism, which must accept that free will
requires only that we do what we want to do, doesn’t seem to be tenable. This
is so because if our desires were pre-programmed into us by some other agent,
our acting in accord with our desires wouldn’t be up to us, but rather up to that
other agent.

4 Rationalism Encapsulated

We turn now again to Chisholm, who has provided a discrete continuum of epis-
temic “strength” [8]. Chisholm’s spectrum of the strength of a proposition for
a rational human mind is a nine-point one, and ranges from ‘certainly false’
at the negative end, to ‘certain’ at the positive end. At the halfway point are
propositions said to be counterbalanced. There are then four positive strength
factors working up from there: first probable, then beyond reasonable doubt, then
evident, and finally the aforementioned certain. Certain propositions include the
indubitable truths of formal logic (e.g., modus ponens, 0 �= 1, Peano Arithmetic,
etc.), and presumably “Cartesian” truths such as “I exist,” and “It seems to me
that I’m sad.” What kind of thing is evident? For the most part, the evident
would be populated by those propositions we affirm on the strength of direct
sense perception. For example, that there is a computer screen in front of me
when I’m typing out a sentence such as the present one is evident. This propo-
sition isn’t certain: you might be hallucinating, after all; but it’s — as we might
say — close to certain. You wouldn’t want to say, for example, while spying a
coffee cup in front of you, in perfect health and having not ingested recently any
mind-altering drugs . . ., that the proposition that there’s a cup in front of you
is merely beyond reasonable doubt: you want to say, instead, that you are well
within your epistemic “rights” in holding that it’s extremely likely that there’s
a cup before you. This, again, is the category of the evident.
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But moving down another Chisholmian notch in strength, we do in fact hit
beyond reasonable doubt —which of course famously coincides roughly with what
it takes in certain legal systems (e.g., that of the U.S.) to legally convict someone
of murder. That is, to convict someone of this kind of crime, the evidence must
make some such proposition as Jones is guilty beyond reasonable doubt. Finally,
note that to convict on this standard, it’s not sufficient to know that it’s merely
probable that Jones did it. Some proposition P being probable is the last notch
before we reach counterbalanced, which as you’ve no doubt anticipated entails
that a purely rational agent wouldn’t bet in favor of P , and wouldn’t bet against
it. A perfectly rational agent who is agnostic about some proposition P would
regard P to be counterbalanced.3

Armed with Chisholm’s spectrum, we can now offer a tolerably clear encap-
sulation of the rationalist standard for belief in positions on free will:

Rationalism The view that belief in weighty, philosophical proposition P

must be supported by deductive proofs or arguments, where the inferences

in this reasoning are each formally valid, and the premises are at least

probable.

This doctrine can be partitioned into at least a strong, moderate, and weak sub-
forms. Strong rationalism is the view (and as it happens, my view) that any
human person believing some weighty, philosophical P ought to have on hand
at least one outright proof of P ; that is, have on hand a formally valid chain
of deductive inference originating from premises that are each certain.4 The
doctrine of moderate rationalism holds that if Jones abides by this doctrine and
believes P , then Jones must have on hand at least one formally valid argument
for P whose premises P1, P2, . . . , Pn are each at least evident. And following suit
we can say that weak rationalism requires only that the premises involved in
deductive reasoning for the P in question are at least probable. Readers will no
doubt get the driving idea from the foregoing; the story would continue on, all
the way through an exceedingly fine-grained ontology of rationalism.5

3 What about the “negative” side of Chisholm’s continuum? Since neither the empiricist
nor the rationalist, if abiding by their respective programs for belief fixation, would
assent to propositions on the negative side of counterbalanced, we have no need here
to explore this epistemic terrain. Interested readers can consult [8], and a recent
“AI-ish” exploitation of Chisholm’s framework in [5].

4 Some readers will inevitably ask: “Is there any such thing?!” I’m well aware of the
fact that even some axioms in some axiomatic set theories are controversial, and
hence perhaps not certain. (Even the power-set axiom in ZFC has its detractors,
e.g.) Nonetheless, whatever one can deduce in deductively valid fashion from, say, 1
= 1, would be certain, and one would be well-advised to believe such a consequence.
For instance, 1 = 1 ∨ Q, for any proposition Q, would be an acceptable disjunction
for even a strong rationalist to believe.

5 For example, we could distinguish between the strength of inferential links in the
argument for P .
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5 Wolfram on Free Will: A More Careful Look

It’s now time to look in more detail at Wolfram’s treatment of free will in A
New Kind of Science. To do so, let’s pick up right after the short quote from
this book presented earlier in section 2. We read:

[F]rom the discoveries in this book it finally now seems possible to give an

explanation for [how the universe can follow definite laws while we as hu-

mans still often manage to make decisions . . . in ways that seem quite free

of obvious laws]. And the key, I believe, is the phenomenon of computational

irreducibility. For what this phenomenon implies is that even though a system

may follow definite underlying laws its overall behavior can still have aspects

that fundamentally cannot be described by reasonable laws. For if the evolu-

tion of the system corresponds to an irreducible computation then this means

that the only way to work out how the system will behave is essentially to

perform this computation—with the result that there can fundamentally be

no laws that allow one to work out the behavior more directly. And it is this, I

believe, that is the ultimate origin of the apparent freedom of human will. For

even though all the components of our brains presumably follow definite laws,

I strongly suspect that their overall behavior corresponds to an irreducible

computation whose outcome can never in effect be found by reasonable laws.

(Wolfram (2002) 750; bolded text due to me, to serve subsequent purposes)

We can quickly erect a modicum of logico-computational machinery to demon-
strate that Wolfram here is entirely correct.

Consider two human persons, Alice and Bob (Mb). We’ll assume that Mb is
a deterministic Turing machine (TM) based on the binary alphabet {0, 1} and
having two one-way tapes t1 and t2, one read/write head operating on each.6

Tape t1 enables perception for Mb: a symbol appearing on t1, and read, indicates
that that symbol is perceived by Mb. The other tape, t2, is used for “internal
thinking” on the part of Bob. To further fix our context, we assume that Bob’s
life unfolds in discrete time steps

t1, t2, t3, . . .

into the future, in accordance with the following pattern: Bob thinks for four
steps, then perceives (either 0 or 1, and the head on t1 then moves one square to
the right, and awaits the next datum from the external world) in one time step,
and then four in a row for thinking, and so on ad indefinitum. We write ‘CM

i ’ to

6 Wolfram is generally fond of depicting cellular automata rather than TMs (though
he does spend appreciable time on Register machines), and indeed he gives a fasci-
nating example of an “unpredictable” one in his principal discussion of free will: see
the graphic on p. 750 (2002). But no loss of generality or insight results from re-
stricting our attention to TMs. In addition, while I claim to have proved that human
persons can’t possibly be TMs, or indeed anything of the sort (e.g., see [3, 4]), for
the sake of exposition and argument we here ignore such reasoning, which makes the
identification of Bob with Mb palatable.
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refer to a configuration of TM M .7 Consider an equation schema E designed to
yield a configuration of Bob for any timepoint given as input; that is, consider:

f(tk) = Ck,

where the function f provides the “meat” of this equation, and is itself a Turing-
computable function.8

We are now in position to see that Wolfram, in the quote immediately above,
is right.

6 Wolfram Is Correct — Epistemologically

Suppose that we are interested in whether Alice believes Bob to have free will.
Not unreasonably, we shall stipulate the following epistemic principle E : a suffi-
cient condition for such a belief on the part of x about TM y is that despite x’s
having complete knowledge about the transition rules that determine the state
of y at tk given the state of y at tk−1, the “overall behavior” of y cannot be an-
ticipated by x. More precisely, we stipulate that despite knowledge of transition
rules, x does not, indeed cannot, predict, on the strength of an equation of the
form of E, the configuration that y will be in for some future timepoint. Next,
we shall agree with Wolfram that if x is in this position of ignorance about the
future states of y, then x will ascribe free will to y; that is, x will believe that y
has free will.

We can now prove that Wolfram is right with respect to Bob, as long as
we assume that Bob, qua TM, is for instance as complex as the impenetrable,
unpredictable 6-state machines which have never been predictable within the
confines of the Busy-Beaver Problem.9 Needless to say, Bob’s mind is unques-
tionably more complex that such TMs! The proof is trivial once we realize that
the Wolframian setup we have established implies that the following proposition
is now an easy lemma: ¬∃ff(tk) = CMb

k ,
From this lemma it follows directly by modus ponens on E that Alice believes

that Bob has free will. Since we have here fleshed out computational irreducibility
with respect to Bob, Wolfram’s reasoning is certified. Moreover, his reasoning,
given the account supplied above, is without question rationalist in nature —
since the inferences are deductively valid, and all premises appear to be at least
evident. In particular, given the framework set out in section 4, we can declare
that Wolfram has provided a case for the belief in free will that accords with the
standards of moderate rationalism.

7 The concept of a snapshot or configuration is standard in presentations of TMs. E.g.,
see [9].

8 I have shown that human mentation includes information-processing more powerful
than what a TM can reach [6], but I leave this aside in the present essay.

9 Wolfram provides an elegant, succinct description of the Busy-Beaver Problem:
((2002) 889 & 1144).
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7 Wolfram Is Wrong — Metaphysically

But there is a hitch here, a very serious one. In general, the hitch is that it doesn’t
follow from the fact that x believes some proposition that that proposition is
true. Some humans still believe that Earth is flat, after all. But how does this
specifically relate to the case at hand? If you look back to all the bolded parts
of the quotes from Wolfram’s ANKS, you’ll see, clear as day, that Wolfram has
proffered only an explanation for why humans, in general, believe that they have
free will. For example, we earlier saw this:

And it is this, I believe, that is the ultimate origin of the apparent freedom

of human will. For even though all the components of our brains presumably

follow definite laws, I strongly suspect that their overall behavior corresponds

to an irreducible computation whose outcome can never in effect be found by

reasonable laws. (Wolfram (2002) 750; again, bolded text due to me, to serve

present purposes)

This is just one example from many that I’ve pinpointed via bolded text, but
the situation, especially given the many other bolded words, should be clear as
day. If someone’s will is apparently free, it hardly follows that that will is in fact
free. Nowhere in ANKS does Wolfram even intimate that he maintains that our
decisions are in fact free.

But what we are ultimately concerned with is whether, in fact, at least some
of our decisions are truly up to us. On this issue, which is the real one, Wolfram
is deafeningly silent. Moreover, it would seem to be implausible that free will,
or up-to-usness, is in fact in place in the universe as conceptualized under nksw.
Why?

Well, think back to Alice and Bob. But we are now concerned not with whether
Alice, under reasonable physico-computational and epistemic assumptions, be-
lieves that Bob = Mb has free will; rather, we are interested in whether or not
Bob is in fact free. We have only two general factors that are relevant to this
question. And neither factor is of help to Wolfram on the question before us.

To see this, consider first the first factor: the one that served to support
Alice’s belief that Bob is free: namely, that relevant instantiations of equation
E for Bob’s future behavior are simply unavailable. But the unavailability of
equations of this form in no way rationalistically entails that Bob in fact is free.
For just because we can’t predict, for some future timepoint, what state Bob
will be in at it, doesn’t ensure that the state he is in at this timepoint is due to
the free operation of his own will. You may be unable to predict what general
configuration a puppet will be in to start the next act of a puppet show (because,
among other reasons, you are unfamiliar with the relevant choreography), but it
hardly follows from this inability that a puppet has free will.

And now what is the second factor? It’s that by all accounts the Wolframian
world-view seems to be inconsistent with up-to-us-ness. Notice that I don’t assert
this inconsistency; I claim only that there seems to be outright inconsistency. The
reason for my claim can be seen by turning yet again to the Alice-Bob scenario;
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specifically, to the fact that while Alice can’t predict what Bob’s configuration
will be in at an arbitrary future timepoint, Alice can predict the configuration
Bob will be in at tn if she knows the configuration he’s in at tn−1 (since, as
we legislated, she knows Bob’s transition rules). In short, nothing seems to be
up to Bob whatsoever: the state he is in at any given moment appears to be
entirely necessitated by the co-operation of transition rules (which are of course
directly analogous to causation in The Dilemma) and the input to them (i.e.,
the configuration at the moment immediately preceding). In sum, The Dilemma
could be recast within the Wolframian pan-computational framework, and would
thereby lose none of its original force; in fact it would gain in force.

8 Conclusion

To sum up, the situation is clear: A rational person (i.e., for us herein, a ra-
tionalist), having open-mindedly studied A New Kind of Science, and assumed
to have an understanding of the longstanding ontology of the free-will debate,
including specifically The Dilemma, will not be enlightened as to what the solu-
tion to that dilemma is. However, on the bright side, Wolfram can be credited
for his commendable scholarship, for the elegance of his discussion of free will,
and for a compelling argument in support of the proposition that if our world
is indeed computationally irreducible, human persons, when assumed to have
sufficiently refined cognitive capacities for perception and reasoning, will indeed
believe themselves to be free. The downside is that if we are free, and can know
that we are on the strength of supporting argumentation and/or proof of the
sort required by moderate rationalism, it follows that nksw is at best incomplete,
and at worst — if in fact the computationalism in nksw rules out up-to-us-ness
— incorrect.
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Afterword: Is All Computation?

The main goal of NKS is to understand nature through computation, and, in-
deed, mining the computational universe has produced remarkable results.

There are a number of indisputable facts about NKS. The book and its com-
panions (its website http://www.wolframscience.com/which includes the free
online and the iPad versions) have stimulated and motivated much research
and debate not only in computability and complexity, but also in mathemat-
ics, natural and social sciences and arts. More than 10,000 publications have
cited NKS, cf. Wolfram’s blog1. Most notable developments are contained in the
books [10, 16, 14, 20] and the articles in this present book. In science—where
new results supersede previous ones—this is arguably one of the most important
symptoms of a significant impact.

Many ideas and much material of NKS are still as cogent and relevant today as
they were ten years ago; see, for example, the experimental trend in mathematics
discussed in [6].

The book has attracted both vivid criticism and praise. Many 2002 reviews
were written in a quite emotional tone, mixing opinions about the scientific merit
of the ideas, results and methodology of the book, and S. Wolfram himself; see,
for example, the archives [11, 21]. Little relevant issues like the self-publication
of NKS and the apparent isolation of the author from the scientific community
have been discussed. Of course, there have been important exceptions: one is
Aaronson’s review [1]. Later, more scientific approaches prevailed, e.g. Neske’s
analysis of the Principle of Computational Equivalence, [17].

Last but not least, NKS motivated the design of two unique computation-
powered entities: Wolfram|Alpha2, the engine which can answer questions, do
mathematics and statistics, compute scientific data and facts3, and the com-
putable document format (cdf), an embedded knowledge container document4

which injects interactivity into the standard flat and lifeless document (pro-
cessed by the free Wolfram CDF player5, cdf documents promise to change the
way research, business, education, business and technical development are done).

Wolfram’s ‘Principle of Computational Equivalence’ (PCE) states that almost
all computational systems that are not obviously simple are equivalent to a
universal Turing machine. As the Church-Turing Thesis, PCE cannot be proved,

1 http://blog.stephenwolfram.com/2012/05/its-been-10-years-whats-happened

-with-a-new-kind-of-science/.
2 http://www.wolframalpha.com
3 New York Times reports that Apple’s voice-controlled personal assistant Siri accounts
for about 25% of the traffic handled by Wolfram|Alpha,
http://www.nytimes.com/2012/02/07/technology/

wolfram-a-search-engine-finds-answers-within-itself.html? r=2.
4 http://www.wolfram.com/cdf
5 http://www.wolfram.com/cdf-player

http://www.wolframscience.com/
http://blog.stephenwolfram.com/2012/05/its-been-10-years-whats-happened
-with-a-new-kind-of-science/
http://www.wolfram.com/cdf-player
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but can be possibly disproved (see also [5]). One way to collect evidence in
favour of PCE is to find more examples of s imple programs that exhibit complex
behaviour.

The last statement has different meaning depending upon the way we interpret
its terms: simple program and complex behaviour. ‘Complex behaviour’ can refer
to computational power: a program is complex if it is computational universal,
that is, it can simulate any other program. An example of universal simple
program is the “Rule 110” cellular automaton defined by the following simple
binary recurrence

pi+1,j = pi,j + pi,j+1 − (1 + pi,j−1) pi,j pi,j+1, i ≥ 0,

with an initial condition at i = 0, cf. [12]. If pi,j = 1 when cell (i, j) is coloured
black, and pi,j = 0 when it is white, then the ‘Rule 110’ cellular automaton
can generate complicated patterns even when run on obviously simple initial
conditions, such as a single black cell.

The quest for the smallest universal Turing machine has stimulated general-
isations of Turing original notion: various types of weak universality have been
proposed. Using non-periodic initial configurations (having the complexity of
a context free language) Smith [18] proved the weak universality of Wolfram’s
2-state 3-symbol Turing machine (the universality of ‘Rule 110’ implies the uni-
versality of a 2-state, 5-symbol Turing machine, a weaker result). Margenstern
[15] has constructed a family of weakly universal two-state cellular automata in
the hyperbolic plane.

‘Simple programs with complex behaviour’ can be illustrated by characteri-
sations in terms of small-size programs of complicated mathematical open prob-
lems. For example, the Riemann Hypothesis and the P = NP problem, two of
the seven open problems in the list of the Millennium Prize Problems stated by
the Clay Mathematics Institute in 2000, can be fully described by programs with
less than 3 kbits and 7 kbits, respectively (see [8]).

According to [7] three other definitions of simplicity of universality are possi-
ble. A prefix-free universal machine U is

– simple for Peano Arithmetic (PA) if PA can prove (given U ’s full description)
that “U is prefix-free and universal”: some but not all prefix-free universal
machines are simple for PA;

– n–simple for Zermelo–Fraenkel set theory with the axiom of choice (ZFC) if
ZFC can compute n digits and no more of the binary expansion of its halting
probability: for every n ≥ 1 there exists a prefix-free universal machine which
is n–simple for ZFC and there exists a universal machine which is not 1–
simple for ZFC;

– PA–simple for randomness if PA can prove that U ’s halting probability is
algorithmically random: every simple for PA prefix-free universal machine is
PA–simple for randomness, but the converse implication is an open problem.
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Can PCE be disproved? Any argument refuting the Church-Turing Thesis will
disprove PCE. But are there reasons to doubt the validity of the Church-Turing
Thesis? According to NKS, p. 1125, Note (d):

... starting in the 1950s a few physicists, notably Richard Feynman, asked
about fundamental comparisons between computational and physical
processes. But it was not until the 1980s–perhaps particularly follow-
ing some of my work–that it began to be more widely realized that
Church’s Thesis should best be considered a statement about nature
and about the kinds of computations that can be done in our universe.
The validity of Church’s Thesis has long been taken more or less for
granted by computer scientists, but among physicists there are still nag-
ging doubts, mostly revolving around the perfect continua assumed in
space and quantum mechanics in the traditional formalism of theoretical
physics (see page 730).

During the same time Turing [19] noted that

An interesting variant on the idea of a digital computer is a “digital
computer with a random element”. These have instructions involving
the throwing of a die or some equivalent electronic process; one such
instruction might for instance be, “Throw the die and put the-resulting
number into store 1000”.

A Turing machine augmented with a random oracle can trespass Turing’s barrier,
i.e. it can compute an incomputable function if the oracle is incomputable, [2].
These machines have been studied theoretically for a long time (see [13]), but
are there ways to actually build any of them? Quantum randomness certified
by Kochen-Specker theorem is strongly incomputable (see [9, 4]), so a Turing
machine working with a finite but unbounded supply of quantum random bits
generated in this way trespasses Turing’s barrier. Such a computational system
may disprove both the Church-Turing Thesis and PCE, hence the question is:
Can such a computational system be built? Blueprints for such systems have
been designed in [3, 4], but more is necessary to reach a conclusive answer.

Would the refutation of the Church-Turing Thesis and/or PCE falsify the
more philosophical statement: “all is computation”? Probably not.

Acknowledgement. We thank A. A. Abbott and H. Zenil for his comments
which improved the presentation.
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