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Abstract. We study two fundamental problems in the model of undi-
rected radio networks: broadcasting and construction of a Minimal Dom-
inating Set (MDS). The network is ad hoc, in the sense that initially
nodes know only their own ID and the IDs of their neighbors. For both
problems, we provide deterministic distributed algorithms working in
O(D

√
n log6 n) communication rounds, and complement them by a close

lower bound Ω(
√

Dn log(n/D)), where n is the number of nodes and D is
the radius of the radio network. Our work provides several novel algorith-
mic methods for overcoming the impact of collisions in radio networks,
and shrinks the gap between the lower and the upper bounds for the
considered problems from polynomial to polylogarithmic, for networks
with small (polylogarithmic) radius.

Keywords: radio networks, broadcasting, minimal dominating set, dis-
tributed algorithms.

1 Introduction

Radio Networks model a communication environment where simultaneous mes-
sage transmissions in a close proximity result in signal interference, and no mes-
sage is successfully delivered. This model has been successfully used since early
80s in the context of Local Access Networks, wireless networks, multi-bus and
multi-core topologies (c.f., [4,9]), for obtaining and analyzing many algorithmi-
cally non-trivial and applicable solutions. Even though some of them have been
later analyzed in more complex models, radio networks are still widely used for
their simplicity and suitability for design and (preliminary) analysis of commu-
nication algorithms.

In the radio network model, c.f., [4], the core assumption is that a transmitted
message reaches all neighbors of the transmitting node v, however it could be
successfully heard by a neighbor w only if w is not transmitting and v is the only
transmitting neighbor of w at a time. We consider the setting without collision
detection, i.e., the case when no neighbor transmits is indistinguishable from the
case when at least two neighbors transmit. We use notation n for the number
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of nodes in the network, D for the radius of the network (with respect to some
distinguished node, called a source), and N = poly(n) for the range of node ids.
We consider two fundamental problems: Broadcasting and construction of Mini-
mal Dominating Set (MDS). We seek for time-efficient deterministic distributed
solutions for these problems.

Previous results. Bar-Yehuda et al. [1] claimed that the time complexity of
deterministic broadcasting in ad hoc radio networks is Ω(n) even for networks
of radius 2. Kowalski and Pelc [10] proved that it is not the case: they showed
a deterministic algorithm that accomplishes broadcast in O(n2/3 logn) rounds
in any network of radius 2, and another algorithm that completes broadcast in
o(n) rounds in networks of radius o(log logn). On the other hand, a lower bound
Ω(Dn1/4) was proved in [10] for broadcasting in networks with radius D, which
proves an exponential gap between the overhead in this model and the model
with randomization, see the next paragraph. Brito and Vaya [3] improved this
bound to Ω(n1/2), still leaving the gap between the lower bound and the best
known upper bound of magnitude n1/6 logn.

The first efficient randomized solution in the ad hoc radio model, working in
expected time O(D logn + log2 n), was presented by Bar-Yehuda et al. [1]. A
lower bound Ω(D log(n/D)+ log2 n) on expected time of randomized broadcast
was given by Kushilevitz and Mansour [12], and the matching algorithm was
developed by Kowalski and Pelc [11] and by Czumaj and Rytter [8].

The problem of constructing a Minimal Dominating Set (MDS) is closely
related to Broadcasting in the model of radio networks, and many of the devel-
oped techniques and results for broadcasting also hold for MDS. In particular,
we are not aware of any separate result on the time complexity of MDS in radio
networks that would not be obtained in the context of broadcasting.

Our results. We strengthen the lower bound Ω(
√
n) on deterministic distributed

broadcasting for networks of radius 2 to Ω(
√
n logn), which justifies that the

complexity of the problem is asymptotically larger than
√
n. For D-hop net-

works, the lower bound takes the form of Ω(
√

Dn log(n/D)). These bounds are
easily extended to the problem of deterministic distributed construction of a
MDS. We also provide two broadcasting algorithms: one for networks with ra-
dius 2, which works in O(

√
n log6 n) communication rounds, and the other for

networks of radius D, working in O(D
√
n log6 n) rounds. The former algorithm

improves over the best known O(n2/3 logn) time broadcasting algorithm, and
thus shrinks the gap between the lower and upper bounds from polynomial to
polylogarithmic for networks of radius 2. The latter algorithm extends the range
of diameters admitting sublinear o(n)-rounds algorithms from o(log log n) to
polynomial, which is a double exponential improvement, c.f., [10]. It also shrinks
the gap between upper and lower bounds from polynomial to polylogarithmic
for networks of polylogarithmic radius. Finally, we show how to adapt these
algorithms for constructing a MDS in asymptotically same round complexity.

Previous sublinear time deterministic algorithms for broadcasting propagated
messages layer-by-layer in such a way that each node followed its own sched-
ule, sometimes coordinated by the source. These method incurred a substantial
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communication overhead on each hop. We introduce more complex clustering
mechanism of bipartite graphs, which allows to form collaborative groups of
nodes, with the goal to inform their neighbors, c.f., Phase 3 of algorithm A1.
We show how to efficiently build such clusters and simultaneously maintain
short intra- and inter-cluster communication schedules, all in a deterministic
distributed way. This clustering combined with a greedy schedule of selecting
nodes with certain properties and with the centralized schedule of Chlamtac-
Weinstein [5], results in substantial improvement of time complexity, especially
for shallow networks (i.e., networks of small diameter). An example of novel algo-
rithmic techniques used for efficient clustering is a new way of constructing trans-
mission schedules, by taking a product of selectors and adaptively maintained
minimum ID of cluster nodes, which results in a large portion of inter-cluster
point-to-point successful communication.

Due to space limit, themissing proofs are deferred to the full version of the paper.

2 Preliminaries

We consider radio networks defined as an undirected connected reachability
graph G(V,E) whose nodes have distinct labels belonging to the set [N ] =
{1, . . . , N}, where N is polynomially large with respect to the number of sta-
tions n = |V |; both n and N are known to all stations prior the computation. In
the broadcasting problem, a distinguished node with label 1 is called a source.
We define the radius D of a network as the largest distance from the source to
any node of the network, where distance between nodes denotes the length of
the shortest path connecting them. Initially each node has no knowledge about
the topology of the underlying network, except of the information about IDs of
its neighbors — we call it local knowledge.

It is assumed that time is divided into discrete time steps, called rounds, all
nodes start simultaneously, they have access to the central clock, and work in
rounds. A message sent at round t by a node u is sent to all its neighbors. How-
ever, a neighbor v of u receives this message if u is its only neighbor transmitting
in round t. If v does not receive any message at time t, then either none of its
neighbors has transmitted at round t, or at least two have. However, v is not able
to distinguish between these two events; such model characteristic is typically
called a model with no collision detection.

Communication protocol. A communication protocol specifies — for each node
v ∈ [N ], the set of neighbors of node v, each round t and all messages received
by node v before round t — whether node v transmits a message at round t, and
if yes, what is the content of this message. The goal of any broadcast protocol
is to deliver a message originally stored in the source, also called the broadcast
message or the source message, to all nodes of the network, by transmitting and
successful receptions of this message along the underlying radio network. We say
that a station is informed at time t of an execution of a broadcasting protocol if
that station received the broadcast message until round t, and it is uninformed
otherwise. We consider a non-spontaneous model, i.e., a node (except the source)
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may act as a transmitter only if it has received a message earlier. We assume
that each time a station sends a message, it encloses its ID and information
containing its whole history of communication (from which one can deduce its
knowledge about the network). Our algorithms, however, will use only at most
polynomial, in n, number of bits, in addition to the source message.

Graph-based notation. Throughout this paper, N denotes the range of identifiers
of nodes, n is the actual size of the graph of the network. Each time we refer to
a symmetric graph G(V,E), we mean the graph with unique identifiers in the
range [N ] of its nodes. Given a symmetric graph G(V,E), ΓG(v) denotes the set
of neighbors of v in G, and dG(v) = |ΓG(v)| (the subscript G is omitted when it
is clear from the context). For a graph G(V,E) with distinguished source node
s, Li ⊂ V denotes the set of nodes in distance i from s (thus, in particular,
L0 = {s} and L1 is equal to the set of neighbors of s). Moreover, we denote
ni = |Li| for each i ≥ 0. A dominating set in graph G is a set of nodes such
that every node in the network is in this set or has a neighbor in this set. A
dominating set is minimal if after removing any node from it the resulting set
would not be dominating.

Selectors. We use combinatorial structures, called selectors, which play crucial
role in many deterministic communication algorithms for radio networks. We
say that a family F = (F1, . . . , Ff ) of sets hits a set X if |Fi ∩X | = 1 for some
i ∈ [f ]. Moreover F hits X at x if Fi ∩X = {x} for some i ∈ [f ].

Definition 1. A family F = (F1, . . . , Ff ) of subsets of [N ] is a (N, k, r)-selector
if for any set X ⊆ [N ] of size k there is X ′ ⊆ X of size min{r + 1, k} such that
F hits X at each element of X ′.

We say that f is the size of a family F = (F1, . . . , Ff ). Several (almost) tight
bounds on the size of optimal selectors have been established for various pa-
rameters, c.f., [7,2,6]. For our lower bound arguments, we need the following
result.

Theorem 1. [7] Let F be a (N, k, 1)-selector, where N > 2 and 2 ≤ k ≤ n/64.
Then, |F| ≥ k

24 log
N
k .

On the other hand, we apply the following upper bound in our algorithm(s) for
broadcasting in radio networks.

Theorem 2. [2] For any integers N ≥ k ≥ r ≥ 1, there exists a (N, k, r)-

selector of size O(min(N, k2

k−r+1 log
N
k )).

Though the above result is only existential, efficient algorithms constructing

(N, k, r)-selectors of size O(min(N, k2

k−r+1polylog(N))) are known as well [6].

Corollary 1. For any integers N ≥ k ≥ 1 and a real constant ε > 0, there
exists a (N, k, (1 − ε)k)-selector of size O(min(N, k log N

k )).

For our purposes, we need a bit stronger property defined below.
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Definition 2. A family F = (F1, . . . , Ff ) of subsets of [N ] is a linear (N, k, 1−
ε)-selector if for any set X ⊆ [N ] such that k/2 < |X | ≤ k, there is X ′ ⊆ X of
size at least min(|X |, (1− ε)|X |+ 1) such that F hits X at each element of X ′.

Thus, on one hand, definition of linear selectors concerns only the case where
r = (1−ε)k in general selectors. On the other hand, we require that the property
of being hit by F at many elements holds not only for sets of size k but for all
sets of size in the range (k/2, k]. Using Corollary 1, one can easily prove the
following statement.

Corollary 2. For any integers N ≥ k ≥ 1 and a real constant 1 > ε > 0, there
exists a linear (N, k, 1− ε)-selector of size O(min(N, k log(N/k))).

(A,B)-broadcast protocol under known topology of graph G(A ∪ B,E). Let A
and B be disjoint subsets of V such that all nodes in A have the same message
M . Then a protocol which makes message M known to all nodes v ∈ B having
a neighbor in A is called (A,B)-broadcast protocol.

Theorem 3. [5] Let a radio network be modeled by a graph G(V,E), where IDs
of stations belong to [N ], and let A,B ⊂ V be such that A ∩B = ∅, all nodes in
A have the same message M and they know the topology of the subgraph of G
spanned on A ∪B (i.e., the graph G(A ∪B,E ∩ (A ∪B)2)). Then the elements
of A can compute (A,B)-broadcast protocol that informs all nodes in B in time
O(log2 N).

Communication schedules. An (oblivious) communication schedule of length f
is a family of sets S = (S1, . . . , Sf ), where Si ⊆ [N ] for every i ∈ [f ]. The length
of such communication schedule is denoted by |S| = f . An execution of the
communication schedule S is a protocol in which station v transmits in round j
iff v ∈ Sj . An execution of the communication schedule S = (S1, . . . , Sf) for r
rounds is a communication protocol in which station v transmits in round j ∈ [r]
iff v ∈ S1+(j−1) mod f , i.e., we apply the communication schedule which consists
of consecutive repetitions of S. An execution of the communication schedule S
on the set X (for r rounds) is a protocol in which station v transmits in round
j ∈ [|S|] (resp., j ∈ [r]) iff v ∈ X ∩ Sj (resp., v ∈ X ∩ S1+(j−1 mod |S|)).

3 Lower Bound

In this section we prove a lower boundΩ(
√
n logn) for deterministic broadcasting

with local knowledge on networks with radius 2, and its generalized version
Ω(

√
Dn log(n/D)) for network of radius D.

Theorem 4. Every deterministic broadcasting protocol for networks of radius 2
works in time Ω(

√
n logn).
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The idea of the proof is as follows.1 Consider a class of networks of radius 2,
in which nodes in the middle layer are not connected among themselves and are
conceptually partitioned into groups. Some groups are connected to a single node
in the last layer, some do not have any neighbor in the last layer. Assume that the
size of a single group is around k, for some k ≤ n. In order to choose a successful
transmitter from a random group (to inform their unique neighbor in the last
layer) without help of the source, a lower bound Ω(k log(N/k)) applies, c.f., [7].
On the other hand, there are Θ(n/k) groups, and intuitively the source could
not help all the groups (by speeding-up the process of obtaining a successful
transmission) in time asymptotically smaller than n/k, provided it can help one
group at a time. We show formally that no other faster scenario could happen
except the combination of the two described above. Therefore, all nodes in the
last layer obtain the source message in time asymptotically not smaller than
mink≤n max{k log(N/k), n/k}, which is Ω(

√
n logn) for k =

√
n/ logn. One

could concatenate the above construction and repeat the arguments Θ(D) times,
by putting the source node of the next radius 2 component in the last informed
node of the previously built part of the network. Here, network layers have size
Θ(n/D), and optimal parameter k should be set to k =

√
n/(D log(n/D)), in

order to get broadcasting time of Ω(D
√

(n/D) log(n/D)) = Ω(
√

nD log(n/D)).

Corollary 3. Every deterministic protocol requires Ω(
√

Dn log(n/D)) rounds
to accomplish broadcast on networks with local knowledge and radius D.

4 Broadcasting Algorithm in Networks of Radius 2

In this section we develop algorithm A1, whose complexity differs from the lower
bound by only a polylogarithmic multiplicative factor. It will also be a sub-
routine for the protocol broadcasting in networks of any radius, c.f., Section 5.

4.1 Description of Algorithm A1

Testing and election subroutines. First we define two auxiliary problems for a
radio network G(V,E) with distinguished source s, where each station knows its
neighbors. Recall that Lk denotes the set of nodes at distance k from the source.
Assume that a set of stations A ⊆ Lk is defined such that each station has a
unique key in range [R], for some R such that logR = O(log n), and it knows
whether it belongs to A. However, no station knows which other stations belong
to A. The k-layer emptiness testing problem is to learn whether A is empty, that
is, all nodes in

⋃k
i=0 Li should know at the end of the protocol whether A = ∅.

The k-layer election problem is to decide whether A is empty and, if A �= ∅, to
choose the element in A with the largest value of the key. That is, all nodes in⋃k

i=0 Li should know at the end of the protocol either that A = ∅ or the ID of
the element of A with the largest key.

1 Although the general framework of the proof is similar to the one in [3], we analyze
slightly different class of networks to obtain an additional factor

√
log n in the lower

bound formula.
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Theorem 5. [10] Consider a symmetric radio network with distinguished source
node s and with no collision detection where each station knows its neighbors. Then,

1. there exists a protocol of time O(1) solving 1-layer emptiness testing;
2. there exists a protocol of time O(log n) solving 1-layer election problem.

Introduction to algorithm A1. Below, we present an algorithmA1 broadcasting in
networks of radius 2. It consists of four Phases. Each time we check in algorithm
A1 whether a subset of L1 is empty or we choose an element of this subset, the
appropriate protocol for 1-layer emptiness or 1-layer election from Theorem 5 is
applied. Notice that, when one node v from L1 is chosen, it can pass any message
M to all elements of L1 ∪ {s} in two rounds: first v sends this message to the
source s, then s sends M to all elements of L1.

During execution of algorithm A1 we conceptually delete, or remove, some
nodes from the network, which means that these nodes are switched off (i.e.,
become idle) in the following parts of the algorithm. Therefore, all references to
the network graph, layers L1, L2 and to the sets of neighbors of nodes (i.e., to
Γ (v) and d(v), for a station v) in the following description of the algorithm will
be made with respect to the values of these parameters after removal of deleted
nodes and edges adjacent to them from the network reachability graph. Each
time we will remove nodes from the network during Phases 1 and 4 of algorithm
A1, all nodes in L1, as well as the source s, will be aware of this fact and will
send this information in their messages. However, in general, it is sufficient that
non-removed neighbors of a removed node v know about the deletion of v (this
issue becomes nontrivial in Phase 3).

High-level description of A1. The idea of the algorithm is as follows. We gradu-
ally decrease the size of the network graph by removing some nodes from it, i.e.,
by deciding that some nodes remain idle and do not participate in the further
part of the algorithm; each station is aware whether it is removed or not. How-
ever, an invariant will be maintained that a node from L1 can be removed only
when all its neighbors in L2 are informed, and a node from L2 can be removed
only when it is informed already. Next we describe Phases 1-4.

Phase 1. Using 1-layer election we first eliminate all nodes from L1 that have
at least

√
n neighbors in L2. More precisely, we delete some nodes from L1,

together with their neighbors in L2, such that in the resulted graph (i.e., after
these deletions), no node in L1 has more than

√
n neighbors in L2. Since each

such node eliminates at least
√
n nodes from the graph, and since it can be

chosen in O(log n) rounds (see Theorem 5), Phase 1 requires O(
√
n logn) rounds.

Moreover, thanks to connection to the source, all stations from L1 are aware of
the deleted nodes, and therefore they know their neighborhood in the remaining
network graph.

Phase 2. When there are no more nodes in L1 with at least
√
n (remaining)

neighbors in L2, we cannot continue choosing the remaining nodes in L1 sequen-
tially (to inform their neighbors in L2), since this might require ω(

√
n) rounds.
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Instead, some nodes in L2 can be informed in parallel. To this aim, we execute a
sequence of linear (N, 2i, 1/2)-selectors, for consecutive i = 0, 1, . . . , (1/2) logn,
on nodes in L1, which ensures that all stations from L2 of degree at most

√
n

are informed (Phase 2), c.f., Corollary 2. Indeed, if X is a set of neighbors of a
node v and 2i−1 < |X | ≤ 2i, then at least half of neighbors of v will be heard by
v during the execution of (N, 2i, 1

2 )-selector. Hence, the degrees of all stations
from L2 which were not informed are larger than

√
n after Phase 2.

Phase 3. If stations from L1 knew which of their neighbors are not informed, we
could choose sequentially (as we will do later in Phase 4) stations from L1 with
the largest number of uninformed neighbors in L2 and remove them from the
graph together with their neighbors. Such a process would inform all stations
in O(

√
n logn) rounds, since we can benefit from the fact that removed stations

from L2 “eliminate” many edges of the graph (recall that their degrees are larger
than

√
n).

Unfortunately, we do not know whether the task of acquiring such a knowledge
by the considered stations in L1 is feasible in O(

√
n polylog(n)) rounds. However,

in Phase 3 we design a protocol which achieves similar goal with slightly relaxed
knowledge requirements. Namely, we require that in the sub-network remaining
after Phase 3, the nodes in L1 ∪L2 with degree smaller than

√
n constitute only

small isolated connected components (here by small we understand O(
√
n)) and

each station knows its whole component. This gives stations a knowledge about
uninformed neighbors in L2 and will allow informing all uninformed nodes in L2

(i.e., those with degrees at least
√
n) in O(

√
n logn) rounds later in Phase 4, by

using a greedy process similar to the one in Phase 1.
In order to trim the network graph to obtain the desired property at the end

of Phase 3, we keep building a specific clustering allowing efficient propagation
of knowledge inside each cluster, and simultaneously we uncover nodes that
gather large information about its surrounding (i.e., information about Ω(

√
n)

remaining nodes that are reachable through the intra-cluster communication in
O(

√
n polylog(n)) rounds). The uncovered node delivers the information about

its surrounding to all nodes in L1 via the source, and thus the nodes in this
surrounding also become uncovered. In the process of building the clustering, we
keep joining clusters in a way guarantying fast intra-cluster communication, until
they become big (and then uncovered) or isolated. Then, at the end of Phase 3,
a short O(log2 n) broadcasting schedule is designed locally for all nodes in L1

uncovered in Phase 3, so that they can successfully inform all their neighbors
in L2, among which some may be still not informed. (This follows from the fact
that some nodes in L1 are uncovered by another member of their clusters, as a
part of its surrounding, so they might not have had an opportunity to transmit
successfully.) The details of Phase 3 include several novel algorithmic techniques
and synchronization between them, and therefore they are deferred to the full
version of the paper. Below we describe a high-level idea of how the clusters are
joined and how uncovering is done.

Initially each node participating in Phase 3 constitutes a single cluster. Sup-
pose we are given a partition of participating nodes into connected clusters, each
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of them is not big and provides intra-cluster communication schedule that allows
exchanging point-to-point messages between any two nodes v, w in the cluster in
O(

∑
i≤k d(vi) polylog(n)) rounds, where v = v1, . . . , vk = w is a path between

v and w in the cluster. It can be argued that any two nodes in the cluster can
therefore communicate in O(

√
n polylog(n)) rounds. Consider a single node in

a cluster. It learns the minimum ID of nodes in its cluster in O(
√
n polylog(n))

rounds, and then it locally computes the product of its selector schedule and the
minimum ID. More precisely, the local transmission schedule of a node is defined
as follows: whenever the node belongs to the currently considered set in the se-
lector family, it performs a sequence of silences/transmissions corresponding to
the 0-1 representation of the hold minimum ID; otherwise it stays idle for logN
rounds. It can be shown that when using the obtained schedules, several clusters
exchange messages and join into bigger clusters, in O(

√
n polylog(n)) rounds.

This is because selectors combined with the minimum IDs of the clusters (to
which nodes belong) assure that a constant fraction of inter-cluster edges will
propagate a message successfully. After joining into bigger clusters, nodes inter-
leave their previous intra-cluster schedules with the newly computed ones, which,
as we will show, preserves the required property of fast intra-cluster communi-
cation with respect to the new clusters. This invariant assures that every such
joining operation lasts O(

√
n polylog(n)) rounds. Because after each of them a

constant fraction of inter-cluster edges become intra-cluster edges, this process
can be continued no more than logm = O(log n) times, where m is the num-
ber of edges in the graph. This gives O(

√
n polylog(n)) bound on the length of

joining processes in Phase 3.
The above joining process can be applied only to small clusters. Therefore,

once a surrounding of a node in L1 becomes big (i.e., the cluster itself has become
big after the last merge), it participates in the process of electing nodes in its
cluster such that each of them will cover Ω(

√
n) remaining nodes in the network

(we say that a node v covers other uncovered node if v has knowledge that this
node belongs to the network and it knows some edge adjacent to it). This is
done through the source by using election procedure, c.f., Theorem 5. After that
the uncovered parts of the network (which, as we will show, cover all newly
created big clusters), are conceptually removed from the graph of participating
nodes, and the joining process described above can be resumed with respect
to the remaining small clusters. The process of uncovering components takes
O(

√
n polylog(n)) rounds in total, by arguments similar to the one used for

Phase 1.
At the end of Phase 3, the remaining nodes switch to Phase 4, while the

nodes in L1 that have been uncovered (together with their neighbors) in Phase
3 compute a short O(log2 n) broadcast schedule to inform all their neighbors.
For this purpose, a centralized algorithm from [5] is applied, as all nodes in L1

share the same knowledge about uncovered nodes. All together: joining clusters,
uncovering components and final broadcast schedule, take O(

√
n polylog(n))

rounds.
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Phase 4. The source sequentially elects elements of L1 with largest remaining
neighborhoods.

The structure of Algorithm A1 is as follows:

Algorithm A1

Phase 1
While the set X = {v | v ∈ L1 and d(v) ≥ √

n} is not empty:

1. choose v ∈ X with the largest ID, using the protocol for 1-layer election;
2. v transmits a message and informs L1 about Γ (v) via the source;
3. remove (Γ (v) ∩ L2) ∪ {v} from the graph.

Phase 2
Execute the sequence of linear (N, 2i, 1

2 )-selectors, for consecutive i=0, 1, . . . , logn
2

on nodes of L1.

Phase 3
This phase removes some number of nodes from L1 and L2. As the result, we
obtain the network with properties (a)–(d) specified in Lemma 1.

Phase 4
While X = {v | v ∈ L1 and Γ (v) ∩ L2 �= ∅} is not empty:

1. choose v ∈ {x ∈ L1 | |Γ (x) ∩ L2| = maxw∈L1 |Γ (w) ∩ L2|} with the largest
ID, using the protocol for 1-layer election and IDs (|Γ (x) ∩ L2|, x) with
lexicographic ordering;

2. v transmits a message and informs L1 about Γ (v) via the source;
3. remove (Γ (v) ∩ L2) ∪ {v} from the graph.

4.2 Analysis of Algorithm A1

Properties of Phases 1 and 2 are quite straightforward, therefore we will state
them later in the proof of the final theorem. Now we focus on the properties of
Phase 3, and based on them we analyze the complexity of Phase 4.

Lemma 1. Time complexity of Phase 3 is O(
√
n log6 n). Moreover, the graph

G(V,E) corresponding to the network at the end of Phase 3 satisfies:

(a) ΓG(v) ≤ √
n for each v ∈ L1;

(b) ΓG(v) >
√
n for each v ∈ L2;

(c) each station v ∈ L1 knows IDs of its neighbors from L2 in G;
(d) each station deleted from the network is informed.

Using the properties stated in Lemma 1 we can analyze time complexity of
Phase 4. Let E1(n) be maximum of time complexities of 1-layer emptiness test-
ing and 1-layer election problem. Although E1(n) = O(log n) according to Theo-
rem 5, we present complexity analysis of A1 explicitly specifying the number of
executions of election and emptiness testing, since we will apply this result for
broadcasting in networks with larger diameter.
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Proposition 1. All elements of L2 become informed after at most (2 n1√
n
+

1) logn executions of steps 1 − 3 of Phase 4, where n1 = |L1|. That is, time
complexity of Phase 4 is O(( n1√

n
+ 1) · E1(n) log n).

Theorem 6. The algorithm A1 performs broadcasting in radio networks of ra-
dius 2 in time O(

√
n log6 n+ E1(n) · n1+n2√

n
· logn) = O(

√
n log6 n).

Proof. (Sketch) Since the above claimed time complexity of A1 corresponds
to the time complexity of Phase 3 stated in Lemma 1, it remains to analyze

Phases 1, 2 and 4. Time of Phase 2 is O(
∑(logn)/2

i=1 2i logn) = O(
√
n logn), ac-

cording to Corollary 2. Phase 1 consists of at most 1+n2/
√
n calls of the election

procedure, where n2 = |L2|, since each execution of the election (but the last
one) deletes at least

√
n stations from L2. Finally, time complexity of Phase 4

is O(E1(n) · logn · n1√
n
), as stated in Proposition 1.

As for correctness of Algorithm A1, it follows from Lemma 1 and the fact that
a node v ∈ L1 is deleted in Phase 1 or Phase 4 only when all its neighbors are
informed, while a node v ∈ L2 is deleted only when it is informed. �
Finally, we make an additional observation, which will be useful for designing
an extension of protocol A1 to multi-hop networks.

Corollary 4. After execution of A1, the stations from L1 can build an (L1, L2)-
broadcast protocol working in time O(log2 n).

Proof. (Sketch) All nodes from L1 can compute an (L′
1, L

′
2)-broadcast protocol

S1 of required size, where L′
1 ⊆ L1 and L′

2 ⊆ L2 are the nodes uncovered in
Phases 1, 3 and 4 (c.f., Theorem 3). The graph spanned on all remaining nodes
can be partitioned into connected components such that there are no edges
between these connected components in the original network, and each node
v knows its whole connected component G(v); it follows from the structure of
Phase 3, that only small components that cannot merge into bigger ones remain
at the end of this phase. Therefore, each node v can compute a (L1 ∩G(v), L2 ∩
G(v))-broadcast protocol. Since there are no edges between the components, the
schedules for all components can be executed simultaneously without causing
additional collisions, forming a new protocol S2. Concatenation of S1 and S2

gives a (L1, L2)-broadcast protocol working in time O(log2 n). �

5 Broadcasting in Networks with Any Radius 1 ≤ D ≤ n

In this section we describe a deterministic algorithm accomplishing broadcast in
time O(D

√
n log6 n) on any network of radius D. The algorithm work in stages.

After the kth stage of the algorithm, for k ∈ [D], where D is the radius of the
network, the following properties will be satisfied:

(P1) All nodes from
⋃k

i=0 Li are informed and each node v ∈ Li, for i ≤ k,
knows its layer i.
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(P2) For each i ∈ [k − 1], the protocol Sendi is constructed, which performs
(Li−1, Li)-broadcast in time O(log2 n), i.e., if all nodes in Li have the same
message M , the protocol Sendi makes M known to all nodes of Li+1 in time
O(log2 n).

(P3) For each i ∈ [k − 1], the protocol Testi is constructed which solves the
i-layer emptiness testing problem in time O(i log2 n).

The term “protocol is constructed” means here that each node knows its schedule
in some protocol solving the appropriate communication problem.

Observe that, after application of Algorithm A1, the above statements are
satisfied for k = 2 (i.e., (P1) follows from Theorem 6 and (P2) follows from
Corollary 4, and (P3) follows from Theorem 5). Assume that the above properties
are satisfied for k ≥ 2. First, we would like to show how the protocol Testk can
be build without any communication in the network, assuming Sendi and Testi

are known for i < k. Below, we assume that A ⊆ Lk is the set of stations for
which we test emptiness.

Procedure Testk(A)

1: nodes from Lk−2 execute protocol Sendk−2 with the same (arbitrary) mes-
sage M1; at the same time, each element of A ⊆ Lk sends a message M2 in
each of |Sendk−2| rounds different from M1, where |Sendk−2| denotes the
time of Sendk−2;

2: each station v ∈ Lk−1 which could not hear a message M1 from Lk−2 in the
preceding |Sendk−2| rounds belongs to the set A′;

3: execute Testk−1(A
′), let R be the result of this execution known to all

elements of Lk−1;
4: execute Sendk−1 with the message R.

Assume that time of Sendi is at most c1 log
2 n and time of Testi is at most

c2i log
2 n for each i < k and c2 > 2c1. Then, time of the above protocol is at

most 2c1 log
2 n + c2(k − 1) log2 n < c2k log

2 n which shows that time of Testk

is O(k log2 n).

Procedure Electk. Using the protocol Testk, one can build a protocol Electk

solving the kth layer election problem, i.e., chooses an element of A ⊆ Lk with
the largest key (keys are polynomial wrt n), provided A is not empty. Such a
protocol requires logn execution of Testk, since it gradually decreases A using
binary selection. Therefore, the complexity of protocol Electk is O(k log3 n).

Procedure Informk. Algorithm A1 relies on the fact that all elements of L1 are
connected to the source and therefore, once an element v ∈ L1 is elected, it can
pass any message M to all elements of L1 in two rounds (through the source).
We need a counterpart of this possibility in the case when a node v ∈ Lk for
k > 1 wants to pass a message M to all other elements of Lk. Such a message
can be first sent to the source in k− 1 rounds in the following way. Assume that
each station v stores prec(v), id of the station which informed v. In order to send
a message from v0 ∈ Lk to s in k rounds, vi = prec(vi−1) sends a message from
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Lk−i+1 to Lk−i in the ith round, for i ∈ [k]. Then, the message is transmitted
from the source to Lk by the application of Send0,Send1, . . . ,Sendk−1. We call
such a protocol Informk. Note that its time complexity is O(k log2 n) by (P2).

Algorithm Ak. Equipped with the protocols Sendk, Electk and Informk, we
are ready to transmit the broadcasted message from Lk to Lk+1. Namely, we
mimic the algorithm A1 in the following way:

(a) nodes from Lk work as the elements of L1 in A1;
(b) newly informed nodes and stations in Lk ∪Lk−1 work as the elements of L2

in A1 (nodes informed during this execution, which do not belong to Lk−1,
learn that they belong to Lk+1);

(c) each time emptiness of some subset of L1 should be checked in A1, the
procedure Testk is applied;

(d) each time an element from some subset of L1 should be chosen in A1, the
procedure Electk is applied;

(e) each time a message M from v ∈ L1 should be transmitted through the
source to the whole L1, the procedure Informk is used.

One subtle issue is that our presentation of Algorithm A1 utilized the fact that
nodes in layer L1 know which of their neighbors are in which layer. A corre-
sponding property may not be true after moving to the next layers. Therefore,
in order to apply algorithm A1, after the adaptation described in the above
items (a)–(e), for propagating the broadcast message from Lk to Lk+1, a few
more subtle technical fixes in Phase 3 are needed (they do not, however, change
the general structure of the algorithm and its analysis). Let Ak denote algorithm
A1 modified as described in (a)–(e).

Procedure Sendk. It can be argued that the knowledge about the nodes col-
lected during the execution of A1 is sufficient for designing a (L1, L2)-broadcast
protocol of size O(log2 n) (c.f., Corollary 4). This property generalizes to Ak,
since the information acquired by Lk about Lk+1 corresponds to the informa-
tion about L2 known to L1 during the execution of A1. That is, the nodes in
Lk can build a (Lk, Lk+1)-broadcast protocol Sendk of size O(log2 n) after the
execution of Ak. Thus, (P1)–(P3) are satisfied after the execution of Ak. Based
on the constructions of Ak,Testk,Sendk, and Electk, we obtain the following
broadcast algorithm B:
Algorithm B
1: The source sends the broadcasted message.
2: for k = 2, 3, . . . do
3: Execute Ak;
4: Build Testk,Sendk, and Electk;
5: Execute Testk(Lk) in order to check whether Lk is empty;
6: If Lk is empty, finish the algorithm.

Let us stress here that deletion of nodes in phases 1–4 of Ak applies only to the
execution of Ak — the deleted nodes are restored after that.
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Theorem 7. Algorithm B completes broadcasting in time O(D
√
n log6 n) in any

n-node radio network of radius D.

Proof. (Sketch) The above discussion justifies the fact that properties (P1)-(P3)
are satisfied in consecutive stages defined by the for loop of algorithm B. More-
over,Electk works in time O(k log3 n) for each k, as discussed earlier. Therefore,
the number of rounds in the kth stage of the algorithm is

O

(√
n log6 n+ (k log3 n) · nk−1 + nk + nk+1√

n

)
,

due to Theorem 6 (recall that nodes from Lk−1 and Lk+1 play the role of L2 in
the execution of Ak).

The test of emptiness of Lk in line 6 guarantees that the algorithm finishes
its work only after informing all nodes in the Dth layer, where D is the radius
of the network (recall that, after execution of Testk on the set A, all elements

of
⋃k

i=1 Li know the result of the test).
Observe that each execution of Informk in Algorithm Ak (e.g., in step 2 of

Phase 1 or Phase 4), for k ∈ [D], is preceded by an execution of Electk. Hence,
the executions of Informk, for k ∈ [D], have no impact on the asymptotic com-
plexity of the algorithm (as the complexity of Informk is asymptotically smaller
than the complexity of Electk). Thus, the time complexity of algorithm B is

O

(

D · √n log6 n+

D−1∑

k=1

k log3 n
nk−1 + nk + nk+1√

n

)

= O(D
√
n log6 n) . �

6 From Broadcasting to Minimal Dominating Set

Observe that the lower bound Ω(
√
Dn log(n/D)) on broadcasting can be ex-

tended in a natural way to the problem of distributed construction of MDS,
since at least one node in the last component of the network used in the proof
of the lower bound on broadcasting (c.f., Theorem 4 and Corollary 3) must be
reached by the message initiated by the source. Indeed, otherwise all elements
of the last component must have decided whether they belong to MDS based
merely on the information about their neighbors in a graph, which is insufficient
for some network topologies.

Algorithms Ak and B could be used as black boxes to obtain MDS in a dis-
tributed way in asymptotically the same number of rounds. In the beginning, the
broadcasting algorithm B is run. It is enough to compute sets MDSk, being the
intersection of the final MDS with layer Lk of the network, after (and based on)
the execution of Ak, where k = 3i+1 for non-negative integers i not larger than
(D − 2)/3. Assume that the execution of algorithm Ak has just finished. First,
all nodes that end up Phase 3 in small components without outside neighbors,
apply a centralized greedy schedule to select a MDS for the component. Next,
nodes that were elected by the source during Phases 1, 3 and 4 check, one after
another in the reversed order to the one they were elected in the execution of Ak,
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whether they have neighbors that have not been dominated yet and whether they
have neighbors already selected to the dominating set; both checks are done by
using procedure Test. If the first question is answered affirmative or the second
one is answered negative, the node includes itself to the dominating set.

It follows directly from the properties of broadcasting and the above greedy
selection made from the broadcasting nodes, that the above algorithm computes
a dominating set, and no node can be removed without violating the domina-
tion property. In terms of round complexity, the MDS algorithm mimics some
operations that occurred in the original execution of the broadcast algorithm B,
and therefore its time complexity is (asymptotically) upper-bounded by the time
complexity of algorithm B. Thus the following result holds.

Theorem 8. Every distributed solution building a MDS requires Ω(
√

Dn log n
D )

rounds on some radio networks of radius D. There exists a distributed algorithm
constructing a MDS in O(D

√
n log6 n) on any radio network of radius D.
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