

Lecture Notes in Computer Science 7702
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Roberto Baldoni Paola Flocchini
Ravindran Binoy (Eds.)

Principles of
Distributed Systems
16th International Conference, OPODIS 2012
Rome, Italy, December 18-20, 2012
Proceedings

13

Volume Editors

Roberto Baldoni
Università degli Studi di Roma “La Sapienza”
Dipartimento di Informatica, Automatica e Gestionale "Antonio Ruberti"
Via Ariosto 25, 00168 Rome, Italy
E-mail: baldoni@dis.uniroma1.it

Paola Flocchini
University of Ottawa
School of Electrical Engineering and Computer Science
800 King Edward Street, K1N 6N5, Ottawa, ON, Canada
E-mail: flocchin@site.uottawa.ca

Ravindran Binoy
Virginia Technical University
Electrical and Computing Engineering Department
302 Whittemore Street, Blacksburg, VA 24061, USA
E-mail: binoy@vt.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35475-5 e-ISBN 978-3-642-35476-2
DOI 10.1007/978-3-642-35476-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012953317

CR Subject Classification (1998): C.2.4, C.2, F.2, D.2, I.2.11, G.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

OPODIS, the International Conference on Principles of Distributed Systems, is
an international forum for the exchange of state-of-the-art knowledge on dis-
tributed computing and systems among researchers from around the world. The
16th edition of OPODIS was held during December 18–20, 2012, in Rome, Italy.

Papers were sought soliciting original research contributions to the theory,
specification, design, and implementation of distributed systems. In response to
the call for papers, 89 submissions were received, out of which 24 papers were
accepted, after a rigorous reviewing process that involved 31 Program Committee
members and at least three reviews per paper.

We would like to thank the Program Committee members, as well as the ex-
ternal reviewers, for their fundamental contribution in selecting the best papers.

In addition to the technical papers, the program included three invited presen-
tations by: Giuseppe Ateniese (Sapienza University of Rome), Pierre Fraigniaud
(University of Paris 7), and Antony Rowstron (Microsoft Research Cambridge).

This event would not have been possible without the technical support of
Adriano Cerocchi and the administrative support of Carola Aiello and Gabriella
Caramagno. We would like to express our gratitude to our sponsors and par-
ticularly to Sapienza University of Rome, Over Technologies, and the Sapienza
Research Center of Cyber Intelligence and Information Security.

December 2012 Roberto Baldoni
Paola Flocchini

Binoy Ravindran

Organization

Program Committee

Bjorn Andersson Polytechnic Institute of Porto, Portugal
James Aspnes Yale, USA
Hagit Attiya Technion, Israel
Roberto Baldoni University of Rome “La Sapienza”, Italy
Xavier Defago Japan Advanced Institute of Science and

Technology (JAIST)
Carole Delporte-Gallet University of Paris Diderot, France
Stefan Dobrev Slovak Academy of Sciences, Bratislava,

Slovakia
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Paola Flocchini University of Ottawa, Canada
Hacene Fouchal Université de Reims Champagne-Ardenne,

France
Shelby Funk University of Georgia, USA
Vijay Garg University of Texas at Austin, USA
David Ilcinkas LaBRI, CNRS & Université de Bordeaux,

France
Boris Koldehofe University of Stuttgart, Germany
Eric Koskinen New York University, USA
Fabian Kuhn University of Freiburg, Germany
Xu Li University of Waterloo, Canada
Bernard Mans Macquarie University, Australia
Alessia Milani University of Bordeaux 1-IPB, France
Sotiris Nikoletseas University of Patras and CTI, Greece and

The Netherlands
Marina Papatriantafilou Chalmers University of Technology, Sweden
Marta Patiño Universidad Politecnica de Madrid, Spain
Giuseppe Prencipe Università di Pisa, Italy
Leonardo Querzoni Università degli Studi di Roma “La Sapienza”,

Italy
Binoy Ravindran Virginia Tech, USA
Paulo Romano INESC-ID, Portugal
Nicolas Schiper Cornell University, USA
Michael Spear Lehigh University, USA
Sebastien Tixeuil Université Pierre et Marie Curie, France
Roman Vitenberg University of Oslo, Norway
Jennifer Welch Texas A&M University, USA

VIII Organization

Wenyuan Xu University of South Carolina, USA
Masafumi Yamashita Kyushu University, Japan
Shmuel Zaks Technion, Israel

Additional Reviewers

Abdurusul, Kudireti
Alglave, Jade
Ayaida, Marwane
Balasubramanian, Bharath
Barbalace, Antonio
Benzing, Andreas
Bernard, Thibault
Bonnet, François
Bonomi, Silvia
Bridgman, John
Callau-Zori, Mar
Carabelli, Ben
Casteigts, Arnaud
Chang, Yen-Jung
Chatterjee, Bapi
Chung, Hyun Chul
Cohen, Asaf
Devismes, Stephane
Drachsler, Dana
Fauconnier, Hugues
Fernandez Anta, Antonio
Fodor, Viktoria
Fouchal, Hacene
Fu, Zhang
Georgiadis, Giorgos
Golab, Wojciech
Gulisano, Vincenzo
Harris, Tim
He, Liang
Herlihy, Maurice
Hung, Wei-Lun
Johnen, Colette
Kamei, Sayaka
Kamiyama, Naoyuki
Kijima, Shuji
Klasing, Ralf
Koutsopoulos, Andreas
Kralovic, Rastislav
Larsson, Andreas

Le Merrer, Erwan
Li, Ximing
Liang, Xiaohui
Liu, Zhenhua
Mei, Yongguo
Michael, Maged
Michail, Othon
Nesterenko, Mikhail
Nikolakopoulos, Ioannis
Ottenwälder, Beate
Pagli, Linda
Peluso, Sebastiano
Platania, Marco
Potop-Butucaru, Maria
Provensi, Lucas
Raptopoulos, Christoforos
Ridge, Tom
Rinetsky, Noam
Samanta, Roopsha
Santoro, Nicola
Setty, Vinay
Sharma, Shantanu
Singh, Abhishek
Sohier, Devan
Sorriente, Claudio
Steffenel, Luiz Angelo
Tan, Yongmin
Tariq, M. Adnan
Travers, Corentin
Tripp, Omer
Tudor, Valentin
Viglietta, Giovanni
Viqar, Saira
Wade, Ahmed
Widder, Josef
Widmayer, Peter
Xu, Miao
Yamauchi, Yukiko

The Cloud Was Tipsy and Ate My Files!

(Invited Talk)

Giuseppe Ateniese

Department of Computer Science
Sapienza - University of Rome
ateniese@di.uniroma1.it

Cloud computing is shaping the future of computer science and it is affecting the
way we perform business and operate daily. Our entire digital life is stored on
remote storage servers such as Amazon S3, Microsoft Azure, Google, iCloud, etc.
Our emails, pictures, calendars, documents, music/video playlists, and generic
files are readily available, anytime and anywhere.

Not everyone, however, is ready to move to the Cloud. Businesses and orga-
nizations are still reluctant to outsource their databases for fear of losing control
on their files or, worse, releasing sensitive information to third parties. While
encryption can help, it is not yet clear how to operate efficiently on encrypted
data stored remotely. In addition, encrypted data can still be intentionally lost
or damaged.

In Cloud storage, the major stumbling block is that there is no local copy of
data anymore. Thus, there is nothing in our hands that can be used to check
against the version of our files stored remotely. This is somehow exacerbated by
the fact that outsourced data could be very large and thus impossible to retrieve
in its entirety. In this scenario: How can we be certain that Cloud providers are
storing the entire database intact, even portions that are rarely accessed? Can
we check the integrity of files without downloading them from the Cloud?

In this invited talk, we will provide answers to the questions above. We will
introduce some novel cryptographic tools that allow users to check the integrity
of their files in the Cloud while keeping local storage and bandwidth consump-
tion essentially constant. These new cryptographic primitives are efficient and
scalable and may help persuade skeptics to adopt full-fledged Cloud computing
solutions.

Distributed Local Decision and Verification

(Invited Talk)

Pierre Fraigniaud�

CNRS and University Paris Diderot, France

Abstract. Distributed decision refers to the task in which every pro-
cess pi, i = 1, . . . , n, is given some input xi, and the processes have
to collectively decide whether x = (x1, . . . , xn) satisfies some prescribed
property, i.e., belongs to some language L. For instance, one may want to
decide whether the xis provide a proper coloring of the actual network,
or one may want to decide whether the xis are all identical, and equal to
a proposed value. A typical application of distributed decision is actually
distributed checking, in which the processes have to check whether the
result of a computation performed by some black box is correct. In the
above examples, the issue was checking proper coloring, and checking
consensus.

Distributed verification refers to the task in which every process pi

is given some input xi, together with a certificate yi, and the processes
have to collectively verify, with the help of the certificate y = (y1, . . . , yn),
whether x = (x1, . . . , xn) belongs to some language L, in the following
sense: if x ∈ L then there must exist y such that the processes collectively
accept x; and if x /∈ L then for every y the processes must collectively
reject x. A typical application of distributed verification is to certify the
correctness of some data structure, e.g., x is a spanning tree of the actual
network.

This talk will survey our recent results about distributed decision and
distributed verification. It will mostly focus on the LOCAL model. In
this latter context, one expects each node to take its decision after having
inspected just a restricted neighborhood around itself in the network. If
time permits, the talk will also provide a brief survey of recent results in
other distributed models, including the CONGEST model, the wait-free
model, and mobile agent computing.

� Additional support from ANR project DISPLEXITY, and INRIA project GANG.

Converged Data Centers

(Invited Talk)

Antony Rowstron

Microsoft Research, Cambridge, UK

Abstract. We have been exploring what happens when you take the best
ideas from distributed systems, networking, high-performance comput-
ing (HPC) and recent advances in hardware and apply them to commod-
ity data center clusters. The motivation is that as a distributed systems
builder I have often had to build distributed systems that need to han-
dle problems that are really simply consequences of design choices of the
underlying hardware platform. When running distributed systems across
the Internet it is hard to change the hardware platform, but when running
inside a data center it is very feasible. This led us to start build a number
of different clusters with very different properties from the clusters tradi-
tional used in data centers.

The talk will use two motivating examples to demonstrate the con-
cepts. The first example is the based on the CamCube project which
explores using different interconnects, inspired by the HPC world, to
run distributed applications like Map Reduce. The second example is
looking at how hardware trends should be changing the way we think of
implementing some services in the data center. This should be driving
us to close the gap between hardware and software, leading to converged
data centers.

Table of Contents

FixMe: A Self-organizing Isolated Anomaly Detection Architecture
for Large Scale Distributed Systems . 1

Emmanuelle Anceaume, Erwan Le Merrer, Romaric Ludinard,
Bruno Sericola, and Gilles Straub

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel
Tasks . 16

Björn Andersson and Dionisio de Niz

Range Queries in Non-blocking k -ary Search Trees 31
Trevor Brown and Hillel Avni

On the Polling Problem for Social Networks . 46
Bao-Thien Hoang and Abdessamad Imine

Non-deterministic Population Protocols . 61
Joffroy Beauquier, Janna Burman, Laurent Rosaz, and
Brigitte Rozoy

Stochastic Modeling of Dynamic Distributed Systems with Crash
Recovery and Its Application to Atomic Registers . 76

Silvia Bonomi, Andreas Klappenecker, Hyunyoung Lee, and
Jennifer L. Welch

When and How Process Groups Can Be Used to Reduce the Renaming
Space . 91

Armando Castañeda, Michel Raynal, and Julien Stainer

Electing a Leader in Multi-hop Radio Networks . 106
Bogdan S. Chlebus, Dariusz R. Kowalski, and Andrzej Pelc

Tree Exploration by a Swarm of Mobile Agents . 121
Jurek Czyzowicz, Andrzej Pelc, and Mélanie Roy

Crash Resilient and Pseudo-Stabilizing Atomic Registers 135
Shlomi Dolev, Swan Dubois, Maria Gradinariu Potop-Butucaru, and
Sébastien Tixeuil

Directed Graph Exploration . 151
Klaus-Tycho Förster and Roger Wattenhofer

Lattice Completion Algorithms for Distributed Computations 166
Vijay K. Garg

XIV Table of Contents

Optimal Broadcast in Shared Spectrum Radio Networks 181
Mohsen Ghaffari, Seth Gilbert, Calvin Newport, and Henry Tan

Attack-Resilient Multitree Data Distribution Topologies 196
Sascha Grau

On the Complexity of Distributed Broadcasting and MDS Construction
in Radio Networks . 209

Tomasz Jurdzinski and Dariusz R. Kowalski

On the Impact of Identifiers on Local Decision . 224
Pierre Fraigniaud, Magnús M. Halldórsson, and Amos Korman

Black Hole Search and Exploration in Unoriented Tori
with Synchronous Scattered Finite Automata . 239

Euripides Markou and Michel Paquette

Algorithms for Partial Gathering of Mobile Agents in Asynchronous
Rings . 254

Masahiro Shibata, Shinji Kawai, Fukuhito Ooshita,
Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Causality, Influence, and Computation in Possibly Disconnected
Synchronous Dynamic Networks . 269

Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis

Wait-Free Stabilizing Dining Using Regular Registers 284
Srikanth Sastry, Jennifer L. Welch, and Josef Widder

Node Sampling Using Random Centrifugal Walks . 300
Andrés Sevilla, Alberto Mozo, and Antonio Fernández Anta

Physarum-Inspired Self-biased Walkers for Distributed Clustering 315
Devan Sohier, Giorgos Georgiadis, Simon Clavière,
Marina Papatriantafilou, and Alain Bui

Wait-Free Linked-Lists . 330
Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank

Byzantine Chain Replication . 345
Robbert van Renesse, Chi Ho, and Nicolas Schiper

Author Index . 361

FixMe: A Self-organizing Isolated Anomaly

Detection Architecture for Large Scale
Distributed Systems

Emmanuelle Anceaume1, Erwan Le Merrer2, Romaric Ludinard3,
Bruno Sericola3, and Gilles Straub2

1 IRISA / CNRS, France
firstname.name@irisa.fr

2 Technicolor Rennes, France
firstname.name@technicolor.com

3 Inria Rennes - Bretagne Atlantique, France
firstname.name@inria.fr

Abstract. Monitoring a system is the ability of collecting and analyz-
ing relevant information provided by the monitored devices so as to be
continuously aware of the system state. However, the ever growing com-
plexity and scale of systems makes both real time monitoring and fault
detection a quite tedious task. Thus the usually adopted option is to focus
solely on a subset of information states, so as to provide coarse-grained
indicators. As a consequence, detecting isolated failures or anomalies is
a quite challenging issue. In this work, we propose to address this issue
by pushing the monitoring task at the edge of the network. We present a
peer-to-peer based architecture, which enables nodes to adaptively and
efficiently self-organize according to their “health” indicators. By exploit-
ing both temporal and spatial correlations that exist between a device
and its vicinity, our approach guarantees that only isolated anomalies
(an anomaly is isolated if it impacts solely a monitored device) are re-
ported on the fly to the network operator. We show that the end-to-end
detection process, i.e., from the local detection to the management op-
erator reporting, requires a logarithmic number of messages in the size
of the network.

1 Introduction

The number of IP-enabled devices keeps on growing in a steady manner, often
reaching millions of units managed by a single operator. If those devices are able
to provide a service to the user in their intended running state, deviations in be-
havior or hardware/software problems are generally detected offline by human
intervention. The technical barrier for efficient online monitoring and analysis
is the size of the devices set to operate, together with the huge amount of pa-
rameters and states to consider. Network operators deploy helpdesk in order to
support their customers when they are facing problems. In the last years the
cable and telecom industry have developed different remote management stan-
dards [1] to better support the helpdesk operator via dedicated protocols and

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 E. Anceaume et al.

tools. As a consequence, the helpdesk operation represents an important part
of the overall operating cost of a network provider. Reducing the number of
calls as well as their duration is an important key for every network operator to
sustain profitability and reduce the total cost of ownership. Nevertheless both
telecom and cable industries came up with client-server architectures where a
single server (or a farm of servers) is in charge of managing a set of devices. Such
architectures are typically used for management tasks (e.g., service provisioning,
device firmware upgrading) rather than for real time monitoring activities, essen-
tially because of scaling issues. Indeed, the massive scale we are considering calls
for efficient monitoring algorithms. A first option is to gather all the devices logs
in a single place, and to analyze collected data using for instance the MapReduce
paradigm [2] to detect the causes of the anomalies. This nevertheless implies a
significant detection latency and processing cost at the cloud architecture level.

The second option is to push monitoring procedures on devices. Actually,
standardized procedures exist at devices level to autonomously trigger asyn-
chronous alarms in presence of anomalies. However, these procedures are never
used for practical reasons. Indeed if the cause of the anomaly lies in the network
itself (e.g., at routers, links or data center outages) this may impact a very large
number of devices, and thus letting thousands of impacted devices reporting
the problem to the helpdesk operator may quickly become a disaster due to the
volume of generated messages. On the other hand, it is of utmost importance
to minimize the overall network footprint by giving each device the capability
to self distinguish network-based anomalies from isolated ones – anomalies that
only impact the device itself – so that only isolated anomalies are reported on
the fly to the helpdesk. This is the problem that we address in this paper. Specif-
ically, we propose a novel distributed monitoring tool, called FixMe, that enjoys
the following properties.

– FixMe is self-managing: all the monitored devices self-organize according to
their “health” indicators so that they can detect any correlation between
their state and the one of their neighbors,

– FixMe is dynamic: (i) monitored devices may join the system or may be
removed from it at any time, and (ii) there is no assumption regarding the
QoS repartition of the monitored nodes (i.e., we do not assume that the
repartition is uniform),

– FixMe does not rely on any complex bootstrap procedure. In contrast to
most of the monitoring tools, devices do not need to be prearranged into a
predefined number of clusters (as required for in instance in k-means based
solutions),

– FixMe is scalable: the end-to-end detection process, i.e. from the local detec-
tion to the management operator reporting, requires a logarithmic number
of messages.

The remaining of the paper is organized as follows. Section 2 provides an overview
of existing monitoring approaches. Section 3 presents the model of the system,
and defines the addressed problem. Section 4 describes the FixMe overlay and

FixMe: A Self-organizing Isolated Anomaly Detection Architecture 3

its associated operations, while in Section 5 its efficiency is analyzed. Section 6
describes the algorithm that solves the addressed problem. Section 7 concludes
and presents future works.

2 Related Work

This Section provides an overview of the existing techniques used in large scale
systems to continuously and automatically monitor time-varying metrics. The
authors in [3] exploit temporal and spatial correlations [4,5,6] among groups
of monitored nodes to decrease monitoring communication costs, i.e., the cost
incurred by the periodic reporting of the updated metrics values from the mon-
itored nodes to the management node. The idea is to prevent any reporting
message from occurring when such a reporting would contain metrics values
that could be directly inferred by the management node. This is achieved by
giving each monitored node the capability to locally detect whether the current
values of its monitored metrics are in accordance with predicted ones (through
Kalman filters tools [7] installed at both monitored nodes and the management
node), and by gathering nodes into clusters (such that, for each monitored met-
ric, a set of clusters group together nodes that share correlated values of the
considered metric according to the Pearson correlation coefficient). At clusters
level, an elected leader is in charge of communicating with the management sys-
tem when the current metric values of its group members differ from each others.
Although close to our objectives, the main drawback of this solution lies on the
centralized clustering process. All the nodes of the system are continuously or-
ganized into clusters computed through the k-means algorithm exclusively run
by the management node, which is a clear impediment to the scalability of
their approach. Other works aim at minimizing the processing cost for contin-
uous monitoring [8,9,10] in the light of the theoretical results of [11], however
similarly to [3], all these approaches suffer from a centralized handling of the
clustering process.

In contrast, our objective is a fine-grain detection tool capable of accurately
and efficiently detecting isolated events. As will be described in the remaining
of the paper, we combine clustering and structured peer-to-peer architectures to
tend toward this objective.

3 Model of the System

We consider a set of N nodes that communicate among each other through the
standard synchronous message-passing model. Each node in the system is as-
signed a unique random identifier derived from a standard hash function (e.g.
MD5, SHA-1). Each node has access to D services numbered 1, . . . , D. At any
time t, the QoS of each service is locally measured with an end-to-end perfor-
mance measurement function

Qi : {1, . . . , N} × N −→ [ai, bi]

(p, t) �−→ Quality of service i at node p at time t

4 E. Anceaume et al.

Without loss of generality we suppose that the QoS range [ai, bi] of service i is
equal to [0, 1]. We define the position of a node p at time t by the vector Q(p, t)
defined as

Q(p, t) = (Q1(p, t), . . . , QD(p, t)). (1)

For each monitored service i = 1, . . . , D, we split interval [0, 1] into ni disjoint

intervals [x
(j−1)
i , x

(j)
i), 1 ≤ j ≤ ni, with x

(0)
i = 0 and x

(ni)
i = 1, the last interval

being closed. Integer ni is a parameter of the system. These ni intervals can be
thought as ni QoS classes of service i. For instance, one can consider a division of

[0, 1] for service i such that |x(j)
i −x

(j−1)
i | ≥ |x(j+1)

i −x
(j)
i |. Such a division could be

used to reflect the increasing sensitivity of users regarding QoS variations. A user
is more sensitive to a very small variation of a high QoS than to a large variation of
a low QoS. Without loss of generality, we suppose a regular division into identical

length intervals and we define ρi = |x(j)
i − x

(j−1)
i | = 1/ni. In the following these

intervals are named buckets (a more precise definition is given in Section 4).
In addition to the functions Q1, . . . , QD, each node has access to D anomaly

detection functions A1, . . . , AD. At each time t, each function Ai is fed with the
sequence of the �i ≥ 1 last QoS values Qi(p, t− �i+1), . . . , Qi(p, t) and provides
some meaningful prediction of what should be the next QoS value. Note that �i
is a parameter of Ai. These functions are implemented to cope with the specific
variations of their input values, and thus different kinds of anomaly detection
functions exist, ranging from a simple threshold based functions, to more sophis-
ticated ones like the Holt-Winters forecasting or Cusum method. In this paper,
we suppose that the output of these anomaly detections are boolean. At time t,
Ai(p, t) = true if the sequence Qi(p, t− �i + 1), . . . , Qi(p, t) is considered as an
anomaly, it is false otherwise. Implementation of both Qi and Ai functions are
out of the scope of the paper.

Finally, suppose that a node locally detects an anomaly whose origin comes
from a network/service dysfunction or failure. Then this anomaly will have an
impact on the QoS of other nodes, and thus these nodes will locally detect it.
On the other hand, we suppose that if a node locally detects an anomaly whose
origin is local (hardware or software), then this anomaly will only impact its
QoS, and thus no other nodes will be impacted by this specific anomaly.

Prior to defining the addressed problem, let us consider the following simple
scenario presented in Fig. 1. The QoS of a single service monitored by two nodes
a and b is represented by interval [0, 1]. At time t the quality positions Q(a, t) and
Q(b, t) of both nodes lie in bucket j, while at time t+ 1, at least one of the two
nodes experience a QoS change. Five situations can be observed. In situations
(1), (2) and (4) node a is the only node that observes a QoS change. In situation
(1), this change does not push a position outside bucket j, while in situation (2)
and (4) it does. However in both situations (1) and (2), the anomaly detection
function A1(a, t+1) = false, thus a does not consider this move as an anomaly,
therefore does not do any more investigation. In the other hand, in situation (4),
A1(a, t+1) = true, and thus node a triggers a FixMe message. Now observe the
two last situations (3) and (5). Both nodes observe a QoS change considered as
an anomaly by their function A (i.e., A1(a, t+1) = A1(b, t+1) = true). However

FixMe: A Self-organizing Isolated Anomaly Detection Architecture 5

t

t+ 1

FixMe AlertsNo FixMe Alerts

j

a
b

(1)

j

a
b

(2)

jk

a
b

(3)

jk

a
b

(4)

jk

a
b

(5)

jk �

a
b

Fig. 1. Isolated anomaly detection of one monitored service. Node a triggers FixMe
message in both cases (4) and (5), while node b triggers it only in case (5).

in situation (3) the QoS degradation is the same for both nodes (Q(a, t+1) and
Q(b, t + 1) lie in bucket k) and thus neither a nor b consider this anomaly as
isolated, while in situation (5) Q(a, t+1) and Q(b, t+1) respectively lie in buckets
k and �. Thus both nodes trigger a FixMe message. We now formally define the
problem we address in this work.

Definition 1 (The Isolated Anomaly Detection Problem). Let
S = {1, . . . , N} be the set of monitoring nodes, and an additional node named the
management operator with which any of the N nodes communicate. Let St

j,k ⊆ S
be such that ∀p ∈ St

j,k, p has moved from bucket j to bucket k from time t− 1 to
time t and there exists a service i such that Ai(p, t) = true. Then at time t+1,
an alert is raised at the management operator if and only if |St

j,k| ≤ τ , with τ a
parameter of the system. In Fig. 1, τ = 1.

4 FixMe Framework

4.1 Rationale

In this Section, we describe how we address the Isolated Anomaly Detection
problem in a distributed system composed of N monitored nodes. FixMe frame-
work orchestrates the monitored nodes into an overlay network, named in the
following FixMe overlay. An overlay network is actually a virtual network built on
top of the physical network within which nodes communicate among each other
along the edges of the overlay by using the communication primitives provided
by the underlying network (e.g. IP network service). The algorithms nodes use
to choose their neighbors and to route their messages define the overlay topol-
ogy. The topology of unstructured overlays conforms with random graphs (i.e.,
relationship among nodes are mostly set according to a random process which
reveals to be inefficient to find a particular node or set of nodes in the overlay).
On the other hand, structured overlays build their topology according to struc-
tured graphs (e.g., tree, torus, hypercube). Most of the structured overlays are

6 E. Anceaume et al.

based on Distributed Hash Tables (e.g., [12,13]). The efficiency and scalability
of all these proposed DHTs rely on the uniform distribution of the nodes in the
identifiers space at the expense of breaking the application logic. This is why,
for specific applications such as streaming applications, broadcast spanning trees
structures, that support the application-level broadcast, have been proposed [14].
Our concern is to exploit the QoS relationship among monitored nodes, which
make all the aforementioned solutions non adapted. As a consequence, we pro-
pose to organize nodes so that at any time t the neighbors of any node p are the
nodes q whose QoS (i.e. Q(q, t)) are closer to the QoS of p (i.e. Q(p, t)). The
description of such an organization is done in Section 4.2. From the application
point of view, three operations are provided by the system: the lookup, the
join, and leave operations that allow nodes to respectively find a position in
the overlay, join the overlay or leave it. From the topological structure point of
view, two operations are provided: the split and merge operations that guaran-
tee the scalability of FixMe overlay when some regions of the overlay become too
dense or too sparse. All these operations are described in Section 4.3. Finally,
when too many monitored nodes share exactly the same QoS (or equivalently sit
at the same position in the overlay), nodes within the bucket self-organize into
an hypercube as described in Section 4.4.

4.2 Overview of FixMe Overlay

The FixMe overlay is a virtual multi-dimensional cartesian coordinate space on a
multi-torus. The entire coordinate space is tessellated into a collection of buckets.
A bucket is the cartesian product of D intervals of respective length ρ1, . . . , ρD
(cf. Fig. 2, where FixMe overlay is made of 162 buckets). When a node p joins

FixMe at time t, p joins the bucket which corresponds to its quality position
(or simply its position) Q(p, t). When a bucket is populated by more than Smin

nodes this bucket is called a seed. The entire coordinate space is dynamically
partitioned into distinct zones, named cells, such that a cell contains at most
one seed (cf. Fig. 2, where FixMe overlay on the left is made of four cells, and
the one on the right is made of five cells). More formally,

Definition 2 (Cell). A cell is defined as an hyper-rectangle of buckets, among
which at most one is a seed. A cell is fully and uniquely characterized by a set
of 2D buckets called the corners of the cell, sorted using the lexicographic order.

Figure 2 shows these different elements for D = 2 and ρ1 = ρ2 = 1/16. The
buckets are elementary squares, the seeds are represented by the black squares,
and the cells are depicted by the coloured rectangles. Note that neither cell 4
(on the figure on the left) nor cell 5 (on the figure on the right) have a seed. The
reasons will be detailed in the following.

4.3 FixMe Operations

Lookup operation. We describe how a node locates the seed that is in charge of
a given bucket b through the lookup operation. In FixMe, routing is exclusively

FixMe: A Self-organizing Isolated Anomaly Detection Architecture 7

1
2

1

1
2

1

O
x

y

Seed

Cell3′s hook

Cell1 Cell2

Cell3 Cell4

1
2

1

1
2

1

O
x

y

Cell1 Cell2

Cell3

Cell4 Cell5

Fig. 2. FixMe overlay before (on the left) and after (on the right) a split operation

handled by seeds. Each seed maintains a routing table that contains an entry for
each of its 2D neighboring seeds in the coordinate space. An entry contains the
IP address and the virtual coordinate of the seed. A lookupmessage contains the
destination coordinates. Using the neighbor coordinate, a seed routes a lookup

message toward its destination using a simple greedy forwarding to the neighbor
seed that is closest to the destination address. CAN [12] uses this routing to
cross its zones. However, as such the lookup operation needs to cross in aver-
age O(DN1/D) zones. We combine the multidimensional routing of CAN with
Chord-fashioned long-range neighbors [13,15] to improve the lookup operation
cost. Specifically, in addition to its 2D neighboring seeds, each seed associates a
location key to each neighbor seed of its routing table. Hence, if the seed coordi-
nates are (x1, . . . , xd, . . . , xD), then the +ith (respectively the −ith) key location
for the dth axis is defined by (x1, . . . , x(d,+i), . . . , xD), where x(d,+i) = xd +2iρd
(respectively x(d,−i) = xd − 2iρd). In addition, the distance between the seed
and the location key is bounded by Rd where Rd is a system parameter cor-
responding to the absolute farthest location to be accessed in one hop in the
dth axis. Each seed s also maintains a predecessors table that contains couples
(s′, l), where s′ is a seed pointing on location l in s cell. The predecessors table is
used when a split or merge operation are triggered to update the predecessors
routing table.

Join operation. When some new node p wants to join the system at time t, it
contacts some node q already in the system. This bootstrap node q sends a lookup
request for the incoming node position Q(p, t) to find the seed s responsible for
the cell in which p must be inserted. Once p gets s address, it asks s to join

the bucket that matches its position Q(p, t). If that bucket is the seed s itself,
then the procedure described in Section 4.4 is run. Otherwise, s updates its cell
routing table by inserting p address and its position Q(p, t). Similarly, p keeps a
pointer to s (as described above, routing is handled by seeds, thus p only needs
to point to s). Now, if the number of nodes that sit in p bucket exceeds Smin

8 E. Anceaume et al.

Algorithm 1. p.join(t,q=None)

1 begin
2 if q = None then
3 q ← getBootstrapNode() ;
4 end
5 seed ← q.lookup(Q(p,t));
6 if p ∈ seed then
7 seed.insert(p);
8 else
9 bucket ← seed.findBucket(p);

10 bucket.insert(p);
11 if | bucket |≥ Smin then
12 cells ← seed.split(bucket);
13 end

14 end

15 end

Algorithm 2. cell.merge(bucket)

Data: bucket such that| bucket |< Smin

1 begin
2 seed ← cell.seed;
3 seed.addOrphanCell(bucket.cell);
4 seed.mergeSiblingsCells();
5 seed.notifyPredecessors(bucket.cell);

6 end

Algorithm 3. cell.split(bucket)

Requires: | bucket |≥
Smin ∧ ¬bucket.isSeed()

Ensures : bucket.isSeed()
1 begin
2 matchingCell ← findCell(bucket);
3 if matchingCell ∈ orphanCells then
4 bucket.cell ← matchingCell;
5 orphanCells.remove(matchingCell);

6 else
7 matchingCell.split(bucket);
8 end
9 bucket.notifyPredecessors(matchingCell);

10 bucket.updateRoutingTable();
11 bucket.setSeed(True);

12 end

Algorithm 4. p.leave()

1 begin
2 bucket ← p.bucket;
3 isSeed ← bucket.isSeed();
4 bucket.removePeer(p);
5 if isSeed ∧ | bucket |< Smin then
6 bucket.setSeed(False);
7 cell ← bucket.cell.getHook();
8 cell.merge(bucket.cell);

9 end

10 end

then this bucket becomes a seed, and a split operation is triggered by s (see
below). The pseudo-code of the join operation is presented in Algorithm 1.

Split operation. A cell splits into two smaller cells when the population of
one of its buckets exceeds Smin nodes and the cell has already one seed. The cell
splits along the dimension that corresponds to the largest distance between the
two seeds. More precisely, let s1 and s2 be the two seeds whose coordinates are

s1 = (x
(1)
1 , . . . , x

(1)
D) and s2 = (x

(2)
1 , . . . , x

(2)
D). Let i0 = argmax1≤i≤D |x

(1)
i −x

(2)
i |.

Then the cell is split along the hyperplane orthogonal to i0 axis and passing

through the point 	(x(1)
i0

+x
(2)
i0

)/2ρi0
ρi0ei0 where ei0 is the D dimensional vector
with ei0(i) = 1{i=i0}. Both seeds s1 and s2 update their respective cell routing
tables to point to the nodes whose bucket falls in respectively s1 and s2 cells, as
well as their routing table to point to their respective neighboring seeds. Figure 2
depicts the split operation of cell 1.

Leave operation. Let p be a node, c be the cell node p sits in, and s be the seed in
charge of c. When node p leaves the overlay (either voluntarily or not) then seed
s simply discards p from its cell routing table. As presented in Algorithm 4, if p
was sitting in s and the population of s undershoots Smin nodes, then p departure
provokes the merging of cell c with another cell c′ as described in the sequel.

FixMe: A Self-organizing Isolated Anomaly Detection Architecture 9

Prior to describing the merge operation, we introduce the notion of cell hook
represented in Fig. 2 by black triangles.

Definition 3 (Cell hook). Let c be a cell in a D-dimensional FixMe overlay.
Each corner of c has 2D neighbors buckets. The hook of c is the first bucket (in
the lexicographic order) of these neighboring buckets that does not belong to c.

Proposition 1. For a non-initial cell, the hook exists and is unique.

Proof. Consider a cell c. By definition of a cell, c has 2D corners. Each corner has
2D neighboring buckets. Among these neighboring buckets, the set B of buckets
belonging to a neighboring cell has � elements, with � ∈ {0} ∪ {D, . . . , 2D}. If c
is the initial cell, � = 0 and thus B = ∅. Otherwise, c has at least one neighbor.
In this case, B = ∅ and thus the hook exists. By definition, it is the first element
of B in the lexicographic order. Thus it is unique.

Merge operation. A cell c mergeswith one of its neighbors c′ when the population
of its seed undershoots Smin nodes, and thus reverts to a default bucket. The cell
c′ with which c merges is determined as follows. If both c and c′ share at least
one face (we say that both cells are sibling), then both c and c′ merge together in
a single cell c′. On the other hand, if c has no sibling, then the cell that contains
c hook takes in charge cell c. Thus a single seed may be in charge of several cells.
In Fig. 2 on the right, the seed of cell 2 is also in charge of cell 5.

4.4 Self-organizing Nodes in Dense Seeds

In the context of QoS monitoring, it is not unusual to observe that a very large
number of nodes perceive a quite similar QoS for a set of services. In such cases,
FixMe would show cells with very dense seeds, that is seeds with a quite large
number of nodes. Thus to keep the scalability property of FixMe, we propose
to self-organize these nodes into a structured graph so that the routing cost
among them remains logarithmic in their population size. Any structured graph
proposed in the literature can be chosen. In this work we use PeerCube [16]
essentially because each vertex of the hypercube gather from Smin to Smax nodes,
which makes this cluster-based DHT highly robust to churn. Thus, in FixMe
overlay as shown in Fig. 3, all the seeds are organized as follows. The first Smin

nodes that are in a seed form the root of the hypercube, and upon new nodes
arrivals, the dimension of the hypercube increases [16]. From the point of view
of the neighboring seeds of any other seed s, only the root of the hypercube is
visible.

5 Analysis

In this section, we evaluate the complexity of FixMe operations. There is trade-
off between the number of seeds in the overlay and the number of nodes in
the seeds. The two distributions that illustrate this trade-off are the uniform

10 E. Anceaume et al.

Fig. 3. FixMe cell-layer overlay and the embedded clusterized overlays

distribution and the Dirac one. The Uniform distribution maximizes the seeds
number, and the Dirac distribution, which concentrates all the nodes in the same
bucket, maximizes the dimension of the underlying hypercube.

Proposition 2. The seed routing table has 2
D∑

d=1

	log2(Rd/ρd)
 entries.

Proof. As explained in Section 4.3, the distance between the cell centre and

each entry x(d,k) of the routing table is bounded by Rd. Let K
(d)
+ = max{k ≥

1 | |xd − x(d,+k)| ≤ Rd} and let K
(d)
− = max{k ≥ 1 | |xd − x(d,−k)| ≤ Rd}. Since

|xd−x(d,+k)| = |xd−x(d,−k)| = 2kρd, we have K
(d)
+ = K

(d)
− = 	log2(Rd/ρd)
. Let

K(d) be this common value. For each dimension d, the routing table has 2K(d)

entries. Thus, the routing table has
D∑

d=1

2K(d) = 2
D∑

d=1

	log2(Rd/ρd)
 entries.

Proposition 3 (Node join). If an incoming node is inserted in a seed then,
the insertion complexity is Θ(logH), with H the number of nodes populating the
underlying hypercube.

Proof. If the incoming node belongs to the seed, there is no change in the cell
layer. Thus, the complexity of this operation is only driven by the insertion in
the underlying hypercube. It is well known that the complexity of this operation
is Θ(logH), where H is the number of nodes in the underlying hypercube.

Proposition 4 (Cell split). If an incoming node insertion leads to a seed
creation then, the complexity of this operation is O(D).

FixMe: A Self-organizing Isolated Anomaly Detection Architecture 11

Proof. As previously seen, the insertion of a node p might lead to a split
operation (cf. join operation). This operation triggers only one write operation
in the routing table of the concerned seed s1. From the created seed s2 point of
view, node p is inserted in the hypercube root node. This operation is performed
in constant time. Nevertheless, seed s2 needs to build its routing table that

will contain its neighboring seeds. As the routing table has 2

D∑
d=1

	log2(Rd/ρd)

entries, and as seed s1 is necessarily a neighbor of s2, then s2 routing table

creation will generate 2

D∑
d=1

	log2(Rd/ρd)
 − 1 lookup operations.

Proposition 5 (Node leave). The leave of a node without topological change
requires Θ(log(H)) messages number, with H the number of nodes in the under-
lying hypercube.

Proof. When a node leaves its bucket, it is simply removed from its cluster
in the underlying hypercube. Two cases are possible: either its cluster remains
sufficiently populated, or its cluster has to merge with another one. In the former
case, the cluster nodes simply update their view of the cluster. In the later case,
Θ(log(H)) messages have to be sent to merge both clusters (See [16]).

When the hypercube has a single cluster populated by exactly Smin nodes (i.e.,
the root cluster), a node leave makes the seed undershoot its population lower
bound. Thus the corresponding cell c must merge with the cell containing c hook.

Proposition 6. Let c be a cell, and pi be the number of seeds that point to c
along the ith axis. We have

pi ≤ 2 log2(ni/2)

D∏
j=1,j 	=i

nj

Proof. Let �j be the length of cell c along the jth axis. In the case where each
neighboring bucket of c is a seed, c has at most �j/ρj immediate neighbors on

each side. Thus, we have pi ≤ 2K(i)

D∏
j=1,j 	=i

�j/ρj. As shown in Proposition 2, we

have K(i) = 	log2(Ri/ρi)
. Moreover, ∀i ∈ {1, . . . , D} we have Ri ≤ 1/2 since in
a torus unitary space, the farthest point is located at distance 1/2. By definition

ρi = 1/ni, thus we have pi ≤ 2 log2(ni/2)
D∏

j=1,j 	=i

nj�j. The space being unitary,

∀j ∈ {1, . . . , D} we have �j ≤ 1, and thus we get pi ≤ 2 log2(ni/2)

D∏
j=1,j 	=i

nj.

12 E. Anceaume et al.

Proposition 7 (Cell merge). If a cell merges, then the merge operation re-
quires at most
2DnD−1 log2(n/2) messages, with n = max1≤i≤D ni.

Proof. By assumption of the proposition, the size of the corresponding
seed s is equal to Smin. Thus, when a node leaves seed s, this triggers a
merge operation. The remaining nodes in s must contact the seed that will
take in charge their seedless cell, and notify their predecessors. The number

of predecessors p, which is given by p =

D∑
i=1

pi, satisfies by Proposition 6,

p ≤ 2
D∑
i=1

log2(ni/2)
D∏

j=1,j 	=i

nj. By definition of n, we have nD−1 ≥
D∏

j=1,j 	=i

nj , it

follows that p ≤ 2nD−1
D∑
i=1

log2(ni/2) and thus p ≤ 2DnD−1 log2(n/2).

Proposition 8. The Uniform distribution and the Dirac distribution give rise
to a lookup operation requiring O(logN) messages.

Proof. Suppose that the quality position of the nodes are uniformly dis-
tributed. Then the nodes will join fairly all the buckets. By construction, this
maximizes the number of seeds and minimizes the dimension of each underly-
ing hypercube. The dimensions of the hypercubes are equivalent and depend
on the expected population H in each one. For N large enough, each bucket
is a seed, and thus there are

∏D
i=1 ni seeds. Thus, since ni = 1/ρi, we have

H = N
∏D

i=1 ρi. As described in Section 4.3, a lookup operation is decom-
posed into three parts, namely, the hypercube traversal at the source of the
lookup operation, the cells traversal and, the hypercube traversal at the desti-
nation of the lookup operation). As shown in [16], the dimension of an hyper-
cube populated by H nodes equals to log(H/Smax). By setting Smax to logN ,
the number of messages required is equal to traverse an hypercube is equal to
log(N

∏D
i=1 ρi) − log logN = O(logN). The cells traversal requires O(D) mes-

sages. Thus the total number of messages required for a lookup operation is
O(logN).

Suppose now that the quality position of the nodes follows a Dirac distribu-
tion. Then all the nodes will join the same bucket. The overlay is thus equal to
the unique initial cell, and all the nodes belong to the same underlying hyper-
cube. Its dimension is maximal, and thus H = N . By an argument similar to
the previous one, the total number of messages required for a lookup operation
is O(logN).

6 Solving the Isolated Anomaly Detection Problem

We now propose an algorithm that solves the isolated anomaly detection prob-
lem. The algorithm, whose pseudo code is presented in Fig. 4, is cyclically run

FixMe: A Self-organizing Isolated Anomaly Detection Architecture 13

by any node p, and is made of the following three tasks. Briefly, in Task 1, node
p changes its position in FixMe overlay according to the QoS change of its mon-
itored services (if necessary). If this QoS change is diagnosed as an anomaly by
its function A, then p determines whether this anomaly is isolated or not (Task
2), and in the affirmative sends a FixMe message to the management operator
(Task 3).

Let r be the current round of the algorithm. In Task 1 node p computes its
current position Q(p, r). Let br be the bucket that corresponds to this position,
cr be the cell that contains br, and sr be the seed in charge of cell cr. If Q(p, r)
differs from p position at time r − 1 (we note br−1 the bucket that corresponds
to this position), then p leaves bucket br−1 and joins bucket br. If there exists
a service i for which Ai(p, r) = true then p runs Task 2. The goal of Task 2 is
to enable node p to determine whether there are other nodes in the overlay that
have experienced the same QoS change as p, that is, nodes that left bucket
br−1 at the beginning of round r − 1 and join bucket br at the beginning of
round r. This is achieved as follows. By construction of FixMe, an hypercube is
embedded in the seed s of each cell (see Section 4.4), and all the nodes in that
cell point to the cluster root of seed s (see Section 4.3). Let Hr be the hypercube
embedded in seed sr. Then p computes a random key h that depends on both
round r− 1 and its previous position br−1 (see line 14 of Algorithm 5), and asks
the node in Hr that is in charge of key h (by construction of any DHT, such a
node always exists) to increment a counter v (initially set to 0 at the beginning
of round r). After T time units, Task 3 starts. Node p reads counter v, and if it
strictly less than τ (i.e., no more than τ nodes have jump from bucket br−1 to
bucket br) then p sends a FixMe message to the management node, which ends
Task 3.

Theorem 1. Algorithm 5 solves the isolated anomaly detection problem.

Proof. The proof is made by contradiction. Suppose that at round r, (i) k ≤ τ
nodes experience the same change in their monitored qualities, (ii) such a change
is large enough to be diagnosed as an anomaly, and (iii) none of these k nodes
send a FixMe message at the end of the round r.

Let p be one of these nodes. At each round, p executes Algorithm 5, and in
particular round r. By assumption (i), p has experienced a quality change and
thus moves in the FixMe overlay from its current bucket b1 to the new one b2.
By assumption (ii), p runs Task 2, and thus the counter tracking jumps from b1
to b2 is incremented. By assumption (i) k − 1 other nodes proceed as p. Thus
at the end of Task 2, the counter value is less than or equal to τ . By Task 3,
p (and all the other k − 1 nodes) sends a FixMe message to the coordinator.
Which is a contradiction with assumption (iii). This completes the proof of the
theorem.

Proposition 9. Algorithm 5 described in Fig. 4 requires O(logN) messages.

Proof. Straightforward from Property 3.

14 E. Anceaume et al.

Algorithm 5. p.updatePosition(r:round)

Data: T: delay such that all nodes have moved to their new bucket (if
necessary).

Output : The positioning of p in the appropriate bucket, and the
sending of a FixMe message if p detects an isolated failure

1 begin
2 Task 1
3 r← r+1;
4 oldposition ← p.bucket ;
5 newposition ← Q(p,r);
6 newbucket ← p.lookup(newposition);
7 if newbucket 	= p.bucket then
8 p.leave();
9 p.join(r,p);

10 end

11 EndTask
12 if ∃i, 1 ≤ i ≤ D,Ai(p, r)=true then
13 Task 2
14 h ← H(oldposition, r − 1);
15 p.incrementValue(h);

16 EndTask
17 Wait Until T;
18 Task 3
19 n ← p.cell.seed.get(h);
20 if n ≤ τ then
21 send FixMe msg to Management Operator;
22 end

23 EndTask

24 end

25 end

Fig. 4. Isolated Anomaly Detection algorithm run by any node p

7 Conclusion

In this work, we have formalized the isolated anomaly detection problem. Such a
problem is recurrent in various large scale monitoring applications, and in partic-
ular in the cable and telecom industry where it is of utmost importance to make
the difference between isolated anomalies and network based anomalies. One of
the reasons being a financial one. In this context we have proposed the FixMe
tool that pushes monitoring to end devices, and by combining local algorithms
to detection functions provides a scalable and efficient solution to the isolated
anomaly detection problem. As a future work, we first plan to analyze the evo-
lution of FixMe in a stochastic model to study, in particular, the influence of the
distributions on the cells repartition and their sizes. The long term objective is
the implementation, and deployment of FixMe.

References

1. Broadband Forum: TR-069 CPE WAN Management Protocol Issue 1, Amend.4
(2011)

2. Rabkin, A., Katz, R.: Chukwa: a system for reliable large-scale log collection. In:
Proceedings of the International Conference on Large Installation System Admin-
istration, LISLA (2010)

FixMe: A Self-organizing Isolated Anomaly Detection Architecture 15

3. Zhao, Y., Tan, Y., Gong, Z., Gu, X., Wamboldt, M.: Self-correlating predictive
information tracking for large-scale production systems. In: Proceedings of the
International Conference on Autonomic Computing, ICAC (2009)

4. Desphand, A., Guestrin, E., Madden, S.: Model-driven data acquisition in sensor
networks. In: Proceedings of the International Conference on Very Large Databases,
VLDB (2002)

5. Krishnamurthy, S., He, T., Zhou, G., Stankovic, J.A., Son, S.H.: RESTORE: A
Real-time Event Correlation and Storage Service for Sensor Networks. In: Proceed-
ings of the International Conference on Network Sensing Systems, INSS (2006)

6. Vuran, M.C., Akyildiz, I.F.: Spatial correlation-based collaborative medium ac-
cess control in wireless sensor networks. IEEE/ACM Transactions on Networking
(TON) 14(2), 316–329 (2006)

7. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering 82(1), 35–45 (1960)

8. Xiong, X., Mokbel, M., Aref, W.: SEA-CNN: Scalable Processing of Continuous
K-Nearest Neighbor Queries in Spatio-Temporal Databases. In: Proceedings of the
IEEE International Conference on Data Engineering, ICDE (2005)

9. Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A Threshold-Based Algorithm
for Continuous Monitoring of K Nearest Neighbors. IEEE Transactions on Knowl-
edge and Data Engineering 17(11), 1451–1464 (2005)

10. Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitor-
ing over moving objects. IEEE Transactions on Knowledge and Data Engineer-
ing 20(9), 1205–1216 (2008)

11. Har-Peled, S., Sadri, B.: How fast is the k-means method? Algorithmica 41(3),
185–202 (2005)

12. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable
content-addressable network. In: Proceedings of the SIGCOMM Conference (2001)

13. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the SIGCOMM Conference (2001)

14. Lin, J.: Broadcast scheduling for a p2p spanning tree. In: Proceedings of the IEEE
International Conference on Communications (2008)

15. Kovacs, B., Vida, R.: An adaptive approach to enhance the performance of content-
addressable networks. In: Proceedings of the International Conference on Network
and Computer Science, ICNS (2007)

16. Anceaume, E., Ludinard, R., Ravoaja, A., Brasileiro, F.V.: Peercube: A hypercube-
based p2p overlay robust against collusion and churn. In: Proceedings of the IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, SASO
(2008)

Analyzing Global-EDF for Multiprocessor

Scheduling of Parallel Tasks

Björn Andersson and Dionisio de Niz

Software Engineering Institute, Carnegie Mellon University

Abstract. Consider the problem of scheduling a set of constrained-
deadline sporadic real-time tasks on a multiprocessor where (i) all
processors are identical, (ii) each task is characterized by its execution re-
quirement, its deadline and its minimum inter-arrival time, (iii) each task
generates a (potentially infinite) sequence of jobs and (iv) the execution
requirement of a job and its potential for parallel execution is described
by one or many stages with a stage having one or many segments such
that all segments in a stage have the same execution requirement and
segments in the same stage are permitted to execute in parallel and a
segment is only allowed to start execution if all segments of previous
stages have finished execution. We present a schedulability test for such
a system where tasks are scheduled with global-EDF. This schedulability
test has a resource-augmentation bound of two, meaning that if it is pos-
sible for a task set to meet deadlines (not necessarily with global-EDF)
then our schedulability test guarantees that all deadlines are met when
tasks are scheduled with global-EDF, assuming that the system analyzed
with our schedulability test is provided processors of twice the speed.

Keywords: Real-time systems, Scheduling, Multiprocessors, Multicores.

1 Introduction

Today, a multiprocessor implemented on a single chip (a.k.a multicore) is the
norm with the trend being that the number of processors on a chip increases
exponentially while the clock frequency stays constant. This trend makes it in-
creasingly common that the only way for a job requiring C units of execution to
be performed by its deadline D is to execute some of these C units of execution
in parallel. Therefore, we believe software practitioners benefit from a scheduling
theory allowing task parallelism and it should fulfill the following requirements:

R1. It should be possible to schedule tasks with short deadline but long mini-
mum inter-arrival time efficiently. The constrained-deadline sporadic model
is suitable for this. The rationale for this requirement is that many real-
time systems must perform processing to handle rare but critical events and
serving them with polling is very inefficient.

R2. It should offer a performance guarantee which should be as tight as possi-
ble. A suitable performance guarantee is the so-called resource augmentation

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 16–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel Tasks 17

Table 1. Summary of the state of art

Algorithm fulfills requirements has resource Comments
R1 R2 aug. bound

[1] No Yes 3.42 implicit deadline only
[2] No No
[3] G-EDF No Yes 4 implicit deadline only
[3] P-DM No Yes 5 implicit deadline only
[4] G-EDF Yes No soft real-time only
[6] G-EDF Yes No
[7] Yes No distributed system,

task migration is not allowed
[8,9,10] Yes No single processor only
This paper: G-EDF Yes Yes 2-1/m < 2 multiprocessor, task

migration is allowed.

bound. A scheduling algorithm A and corresponding schedulability analysis
S, together having resource-augmentation bound f has the property that if
it is possible that a task set will meet deadlines then the scheduling algo-
rithm A together with the schedulability test S guarantees that all deadlines
are met as well if given processors f times as fast. Clearly, the lower the
resource augmentation bound is, the better the performance is.

The research community has produced scheduling algorithms and schedulability
analyses for parallel tasks. Unfortunately, they do not fulfill the requirements
R1 and R2.

Therefore, in this paper, we present a new schedulability test that fulfills the
requirements R1 and R2. Specifically, we consider global-EDF and present a
schedulability analysis for it. With respect to R1, we note that our new schedu-
lability test considers the model constrained-deadline sporadic tasks. This model
of describing arrival times and deadlines is at least as general as the ones used
in all previously mentioned works on task scheduling with parallelism. With
respect to R2, we note that our new schedulability test has a resource aug-
mentation bound two; this is better than all previous works and it is the same
resource augmentation bound as the actual scheduling algorithm [11]. So from
the perspective of resource augmentation bound, it is impossible to create a
schedulability test for global-EDF that is better than the one we present in this
paper. The main idea of our new schedulability test is to use the schedulability
analysis framework previously proposed by Baruah et al. [12] for global-EDF
but modify it for parallel tasks.

The remainder of this paper is structured as follows. Section 2 presents the
system model. Section 3 defines the concept ff-dbf. Section 4 presents a schedu-
lability test. Section 5 proves the resource augmentation bound. Section 6 gives
conclusions.

18 B. Andersson and D. de Niz

2 System Model and Terminology

We assume that the computer system is composed of m processors each of speed
s and the software system is described by a task set τ where each task τi in τ is
characterized by Ti, Di and the values ci,j with the interpretation that the task
τi generates a (potentially infinite) sequence of jobs where the arrival time of
two consecutive jobs of the same task τi are separated by at least Ti and a job
of task τi needs to finish execution within at most Di time units after its arrival.

We describe the execution requirement of a task as a number of stages where
nstagesi denotes the number of stages of a job of task τi and nsegi,j denotes the
number of segments of stage j of a job of task τi. Two segments in a stage can
execute in parallel but they do not have to. In order for a segment in the j:th
stage of a job of task τi to finish, it must perform a certain number of units of
execution. This amount is called the execution requirement of the segment and
it is in [0, ci,j]. Segments of the first stage of a job of a task become eligible
when the job arrives. Segments of a later stage of the job become eligible when
all segments of all previous stages of the job have finished.

We assume that preemptive global-EDF is used to schedule tasks. It works
as follows. Let eligiblejobs(t) denote the set of jobs that have arrived at in-
stant t but not yet finished execution. Let eligiblesegments(t) denote the set
of segments that have arrived at instant t but not yet finished. Then, the
min(m, |eligiblesegments(t)|) highest priority segments in eligiblesegments(t) are
selected for execution on min(m, |eligiblesegments(t)|) processors at instant t. We
ignore preemption and migration costs and hence we do not specify which pro-
cessor a segment actually executes on at a given time. A job of task τi has its
absolute deadline Di time units after its arrival. Global-EDF assigns priorities
to jobs so that a job with earlier absolute deadline is given a higher priority
than a job with later absolute deadline. An eligible segment is assigned the same
priority as the job it was generated from.

We say that an assignment of values to the arrival times of jobs and execution
requirements of segments is legal if (i) it holds that for each two consecutive
jobs of the same task τi, the arrival times are separated by at least Ti time units
and (ii) for each job of task τi, for each stage j of the job, it holds for each of
the segments in the j:th stage, the execution requirement of the segment is in
[0, ci,j]. One legal assignment that we will find to be particularly important is
the ASAP-CMAX assignment which we define as follows (i) it holds that for
each two consecutive jobs of the same task τi, the arrival times are separated by
exactly Ti time units and (ii) for each job of task τi, for each stage j of the job,
it holds for each of the segments in the j:th stage, the execution requirement of
the segment is ci,j .

We say that a task set τ is S-schedulable if for each legal assignment of ar-
rival times and execution times it holds that all deadlines are met when the
scheduling algorithm S is used. Clearly, we are particularly interested in global-
EDF schedulability. A task set τ is feasible if for each legal assignment of arrival
times and execution times it holds that it is possible to create a schedule so that

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel Tasks 19

all deadlines are met. A task set τ is schedulable by S according to schedulability
test A if it holds that A proves that τ is S-schedulable.

We say that a segment executed for L time units on a processor of speed s
performs s*L units of execution. If a job is executing exactly d (where d ≥ 1)
segments in parallel in a time interval of duration L then we say that the job
performs d*s*L units of execution in the time interval and it performs s*L
units of elapsed execution in the time interval. For a time interval of duration
L where a job J executes with different degrees of parallelism, we can subdi-
vide the time interval into sub time intervals where in each sub time interval
the degree of parallelism of J is constant and calculate the number of units of
execution performed in these sub time intervals and then add them up; this
gives us the number of units of execution performed during the time interval of
duration L. If a job is executing exactly d (where d ≥ 1) segments in parallel in
a time interval of duration L such that during this time interval, no other job
executes then we say that the job performs d*s*L units of alone execution in this
time interval and it performs s*L units of alone elapsed execution in this time
interval.

We assume that Ti parameters are rational non-negative numbers; this assures
us that P=lcm(T1, T2, . . ., Tn) exist. We assume that Di, ci,j , and s are real
non-negative numbers. In order to simplify our discussion later in the paper, we
now introduce additional concepts. We define ηi and Ci as:

ηi =

nstagesi∑
j=1

(
�
nsegi,j
m

� ∗ ci,j
)

Ci =
∑nstagesi

j=1 (nseg ∗ ci,j) (1)

Intuitively, ηi denotes the number of elapsed units of execution performed by
a job of task τi for the case that the job executes with its maximum execution
time. And Ci denotes the number of units of execution performed by a job of
task τi for the case that each segment of the job executes with its maximum
execution time.

Let δi denote the elapsed density of task τi. Formally it is defined as: δi =
ηi/min(Di, Ti). Since we consider constrained-deadline sporadic tasks (where
∀τi ∈ τ : Di ≤ Ti), we obtain: δi = ηi/Di.

Lemma 1. Consider a task set τ . If there is a task τi in τ such that δi > s then
the task set τ is infeasible.

Proof. If δi > s then ηi/Di > s which can be rewritten as ηi/s > Di. Consider
the ASAP-CMAX assignment. Then, the expression ηi/s indicates the number
of time units that a job of τi must execute on a processor of speed s in order to
meet its deadline. Since this exceeds the deadline, it implies that a deadline is
missed.

Let δmax be defined as δmax = maxi=1..n δi. Let ui denote the utilization of task
τi. Formally, it is defined as ui = Ci/Ti. Let U be defined as: U =

∑n
i=1 ui.

Let idxt(τi) be a function that returns the index of task τi. Let task(J) denote

20 B. Andersson and D. de Niz

a function that takes a job as input and returns the index of the task that
generated the job J .

3 Defining FF-DBF

We define WJ(τi, t, s) as follows:

WJ(τi, t, s) =

⎧⎪⎨
⎪⎩

0 if t < 0

WJS(idxt(τi), t, 1, s) if 0 ≤ t <
ηidxt(τi)

s

Cidxt(τi)
if

ηidxt(τi)

s ≤ t

(2)

where

WJS(i, t, j, s)=

⎧⎨
⎩

t ∗m ∗ s if 0 ≤ t < bspi,j

bspi,j ∗m ∗ s+(t− bspi,j)∗(nsegi,j − �
nsegi,j

m ∗m) ∗ s if bspi,j ≤ t < spi,j

ci,j ∗nsegi,j+WJS(i, t− spi,j , j + 1, s) if spi,j ≤ t

(3)

where

bspi,j =
ci,j

s
∗ �

nsegi,j

m
 spi,j =

ci,j
s ∗ � nsegi,jm � (4)

Intuitively, WJ(τi, t, s) denotes the units of execution ”work” that a job of task
τi performs in a time interval of duration t such that (i) this job arrives when
this time interval begins and (ii) for each stage j of the job, it holds for each of
the segments in the j:th stage, the execution requirement of the segment is ci,j .
These equations express that we can compute WJ(τi, t, s) by iterating over all
stages (left-to-right order) and express the iteration recursively. Note that the
way WJ is defined, it considers just a single job. Also, note that a job of task
τi can perform more than WJ(τi, t, s) units of execution if there is a stage j of
the job, for which it holds that there is a segment in the j:th stage where the
execution requirement of the segment is less than ci,j .

Lemma 2. For each f>0, it holds that: WJ(τi, t, s) = WJ(τi, t ∗ f , s/f)

Proof. Follows from the definition of WJ.

Lemma 3. For each f≥1, it holds that: WJ(τi, t, s) ≤ WJ(τi, t, s ∗ f)

Proof. Follows from the definition of WJ.

Note that WJ(τi, t, s) is a step-wise linear function with respect to t. Therefore,
we define:

nhcWJ(τi, t, s) =

⎧⎪⎨
⎪⎩

0 if t < 0

nhcWJS(idxt(τi), t, 1, s) if 0 ≤ t <
ηidxt(τi)

s

Tidxt(τi)
if

ηidxt(τi)

s ≤ t

(5)

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel Tasks 21

and

nhcWJS(i, t, j, s) =

⎧⎨
⎩

bspi,j if 0 ≤ t < bspi,j

spi,j if bspi,j ≤ t < spi,j

spi,j + nhcWJS(i, t− spi,j , j + 1, s) if spi,j ≤ t

(6)

Intuitively, nhcWJ(τi, t, s) denotes the lowest value greater than t such that
the derivative of WJ with respect to t might change. Let qi(t) and ri(t) be
defined as

qi(t) = �
t

Ti
� ri(t) = t mod Ti (7)

Let us define ff − dbf(τi, t, v, s) as follows.

ff − dbf(τi, t, v, s) = qi(t) ∗ Ci + Ci −WJ(τi, (Di − ri(t)) ∗ v, s) (8)

Intuitively, ff − dbf(τi, t, v, s) indicates the number of units of execution that
jobs of task τi can perform in a time interval of duration t assuming that if there
is a job that arrives before the time interval and this job has a deadline after
the beginning of the time interval and it holds that this job performs exactly
(Di-ri(t))*v*s elapsed units of execution before the start of the time interval of
duration t.

Lemma 4. For each f>0, it holds that:

ff − dbf(τi, t, v, s) = ff − dbf(τi, t, v ∗ f, s/f) (9)

Proof. Follows from the definition of ff − dbf and WJ.

4 Schedulability Test

In this section, we will discuss two variants of our task model. The SEGSEQ-
variant refers to the model in Section 2 assuming that a segment must execute se-
quentially. Note that with this model, it is still possible for two or more segments
in a stage to execute in parallel or partially in parallel. The SEGPAR-variant
refers to the model in Section 2 assuming that a segment can be broken into any
number of subsegments — we assume that the breakup into subsegments is not
done under the control of the scheduling algorithm.

We say that time t is a decision instant of the SEGPAR-variant if (i) there
is a segment that arrives at time t or (ii) there is a subsegment that finishes
at time t. In the SEGPAR-variant, at a decision instant t, a segment is broken
into any number of subsegments so that the sum of the execution requirement of
these subsegments equals the remaining execution requirement of the segment.
A subsegment can be broken up into new subsegments just like a segment. Note
that even in the SEGPAR-variant, it still holds that a segment is only allowed
to start execution if all segments in the previous stage has finished. Figure 1
illustrates the two variants.

22 B. Andersson and D. de Niz

Fig. 1. An example of the SEGPAR and SEGSEG variants of our model. Consider a
task τi with nstagesi=3 and nsegi,1=1 and nsegi,2=2 and nsegi,3=1 and ci,1 = 2 and
ci,2 = 6 and ci,3 = 2. Each subfigure shows schedules that can be generated with each
variant model. A rectangle shows execution on a processor; if at a certain instant, there
are two rectangles, then it indicates that two segments execute on two processors in
parallel.

Definition 1. A task set is schedulable in the SEGPAR variant of our task
model if for all possible scenarios that can happen in this model, all deadlines
are met.

Definition 2. A task set is schedulable in the SEGSEQ variant of our task
model if for all possible scenarios that can happen in this model, all deadlines
are met.

Lemma 5. If a task set τ is schedulable in the SEGPAR variant of our task
model then task set τ is schedulable in the SEGSEQ variant of our task model.

Proof. Follows from the fact that each possible scenario in SEGPAR is also a
possible scenario in SEGSEQ.

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel Tasks 23

Lemma 6. Consider the SEGPAR variant of our task model. Consider a task
set and a time t where there is a job Jx released by task τtaskidx where the arrival
time of job Jx is Ax and the deadline of the job is Dx (with Dx = Dtaskidx) and
Ax<t and Ax+Dx > t. Assume that for the resulting schedule, it holds that when
job Jx executes, no other job executes. Let work alone elapsed([a,b], Jx) indicate
the number of alone elapsed units of execution that job Jx performed in a time
interval [a,b] and work([a,b], Jx) indicates the number of units of execution that
job Jx performed in a time interval [a,b). Let z be a non-negative number. We
claim that work alone elapsed([Ax, t), Jx) ≥ z*(t- Ax) implies work([t, ∞),
Jx) ≤ Ctaskidx-WJ(τtaskidx, z*(t- Ax)/s, s)

Proof. The proof is by contradiction. Suppose that the lemma would be false.
Then, it holds that it is possible that work alone elapsed([Ax, t), Jx) ≥ z*(
t- Ax) and work([t, ∞), Jx) > Ctaskidx-WJ(τtaskidx, z*(t- Ax)/s, s). We can
modify this scenario to set the execution requirement of each segment of Jx
to its maximum as specified by its ci,j parameters. In this way, the number of
segments of Jx that executes in [t, ∞) will increase or stay the same because
the segments of Jx executing before t will push later segments of Jx to start
later and some of them may be pushed into partially or fully execute in the time
interval [t, ∞). Also, for the segments of Jx that execute in [t, ∞) the number
of units of execution they perform will increase or stay the same. In addition,
the number of units of alone elapsed execution before t will increase or stay the
same. Hence, we obtain that:

work alone elapsed([Ax, t), Jx) ≥ z ∗ (t− Ax) (10)

and

work([t,∞), Jx) > Ctaskidx −WJ(τtaskidx, z ∗ (t − Ax)/s, s) (11)

and

execution requirement of each segment of Jx is its maximum as specified by ci,j parameters.(12)

Clearly, it holds that work([Ax, t), Jx) + work([t,∞), Jx) ≤ Ctaskidx. Applying
it on Equation 11 gives us:

work([Ax, t), Jx) < WJ(τtaskidx, z ∗ (t− Ax)/s, s) (13)

From Equation 10 and 12 we obtain

work([Ax, t), Jx) ≥WJ(τtaskidx, z ∗ (t− Ax)/s, s) (14)

This is a contradiction and hence the lemma is correct.

Lemma 7. Consider the SEGPAR variant of our task model. Consider a single
job Jx released by task τtaskidx that meets its deadline and whose absolute dead-
line is r′x time units after t and where the job arrives before t and the deadline
of the job is after t and such that before time t, job Jx performed at least z*(
Dx - r′x)/s elapsed units of execution. Assume that for the resulting schedule, it
holds that when job Jx executes, no other job executes. We claim that it holds
that job Jx performs at most: Ctaskidx-WJ(τtaskidx, z*(Dx - r′x)/s, s) units of
execution in the time interval [t, dx)

24 B. Andersson and D. de Niz

Proof. Follows from Lemma 6 and applying Ax + Dx - r′x = t.

Lemma 8. Consider the SEGPAR variant of our task model. Consider that
r′x ≤ rx and consider a single job Jx released by task τtaskidx that meets its
deadline and whose absolute deadline is r′x time units after t and where the job
arrives before t and the deadline of the job is after t and such that before time
t, job Jx performed at least z*(Dx - rx)/s alone elapsed units of execution.
Assume that for the resulting schedule, it holds that when job Jx executes, no
other job executes. We claim that it holds that job Jx performs at most: Ctaskidx-
WJ(τtaskidx, z*(Dx - rx)/s, s) units of execution in the time interval [t, dx)

Proof. Follows from Lemma 7 and the fact that the function WJ is monotonic
with respect to its second parameter.

Theorem 1. Consider the SEGPAR variant of our task model. If a task set τ
is global-EDF unschedulable on m processors of speed s then for each σ, σ ≥
δmax, there is a time interval of duration t ≥ 0 such that:

n∑
taskidx=1

ff − dbf(τtaskidx, t,
σ

s
, s) > (m− (m− 1) ∗

σ

s
) ∗ t ∗ s (15)

Proof. The proof is by contradiction. Suppose that Theorem 1 is false. Then
there must exist a task set τ that is global-EDF unschedulable in the SEGPAR-
variant on m processors of speed s and there exist a z, z ≥ δmax, such that for
each time interval of duration t ≥ 0 it holds:

n∑
taskidx=1

ff − dbf(τtaskidx, t,
z

s
, s) ≤ (m− (m− 1) ∗

z

s
) ∗ t ∗ s (16)

Hence, for this task set τ , there is a scenario (assignment of arrival times of
jobs and actual execution times of segments and their potential splitting into
subsegments) where a deadline is missed by global-EDF in the SEGPAR-variant
on m processors of speed s and there exist a z, z ≥ δmax, such that for each time
interval of duration t ≥ 0 it holds:

n∑
taskidx=1

ff − dbf(τtaskidx, t,
z

s
, s) ≤ (m− (m− 1) ∗

z

s
) ∗ t ∗ s (17)

Let t0 denote the first instant at which a deadline miss occurs. Let JOB1 denote
the job that misses a deadline at t0. If there are more than one job that missed a
deadline at time t0 then let JOB1 denote the highest priority job among the jobs
that missed a deadline at time t0. (Tie-breaking rule of global-EDF determines
that.) Let us delete all jobs with lower priority than JOB1. Since these jobs do
not impact the timeliness of JOB1, it still holds that JOB1 misses a deadline.
Also, observe that deleting these jobs does not impact δmax.

Let t1 denote job JOB1’s arrival time. Since (i) we consider the SEGPAR
model and (ii) a job can only be prevented from executing entirely if all m
processors are occupied executing jobs of higher priority, we can rearrange the

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel Tasks 25

Fig. 2. Packed SEGPAR Execution obtained from transformation

execution of higher-priority jobs such that either (C1) they execute on either
all the m processors simultaneously or (C2) they do not execute at all. We call
this rearrangement a Packed SEGPAR execution. One way to arrange this is by
splitting each segment into m equal parts and filling up all processors with each
part of a segment. This can be seen in Figure 2.

Because at each instant, the schedule satisfies either (C1) or (C2), we say
that the schedule in [t1,t0), satisfies the Packed SEGPAR execution property.
Note that with this rearrangement, there is no instant where a segment of JOB1

executes and a job of a higher-priority than JOB1 executes.
Hence, we have that there is a task set τ , for which there is a scenario (assign-

ment of arrival times of jobs and actual execution times of segments and their
potential splitting into subsegments) where a deadline is missed by global-EDF
in the SEGPAR-variant on m processors of speed s and there exist a z, z ≥
δmax, such that for each time interval of duration t ≥ 0 it holds:

n∑
taskidx=1

ff − dbf(τtaskidx, t,
z

s
, s) ≤ (m− (m− 1) ∗

z

s
) ∗ t ∗ s (18)

and where the Packed SEGPAR execution property holds for the schedule [t1,t0),
where t0 is the earliest time of a deadline miss and t1 is the arrival time of the
job that missed a deadline at time t0 and there are no jobs with deadline greater
than t0.

Since (by definition) job JOB1 misses its deadline, it follows that the number
of units of alone elapsed execution performed by JOB1 in the time interval [t1,
t0] is strictly less than τtask(JOB1). Since, z ≥ δmax ≥ δtask(JOB1) = ηtask(JOB1) /
Dtask(JOB1) and this can be rewritten as: z*Dtask(JOB1) ≥ ηtask(JOB1) and since
Dtask(JOB1) = t0- t1, we have: z*(t0-t1) ≥ ηtask(JOB1). Knowing that the number
of units of alone elapsed execution performed by JOB1 in the time interval [t1,
t0] is strictly less than ηtask(JOB1) and that z*(t0-t1) ≥ ηtask(JOB1) we obtain that
the number of units of alone elapsed execution performed by JOB1 in the time
interval [t1, t0] is strictly less than z*(t0-t1).

We generate a sequence of jobs with index k denoting the job in the sequence
with the earliest arrival time as follow:

26 B. Andersson and D. de Niz

for i := 2, 3, 4,. . .do

let JOBi denote a job that

arrives at some time instant before ti−1; let ti denote the arrival time of JOBi.

has a deadline after ti−1;

has not completed execution by ti−1; and

performed strictly less than z*(ti−1- ti), alone elapsed units of execution in

the time interval [ti, ti−1], that is, executed during [ti, ti−1] for strictly

less than z*(ti−1- ti)/s time units and during this time, no other jobs executed.

if there is no such job then k := i - 1 break (out of the loop) end if

end for

Let L denote the length of the interval [tk, t0), that is, L=t0-tk. For each i,
1 ≤ i ≤ k, let Wi denote the total amount of execution that occurs over the
interval [ti,ti−1). For each i, 1 ≤ i ≤ k, for each 1 ≤ taskidx ≤ n, let Wi,taskidx

denote the number of units of execution that a job of task τtaskidx performs in
the time interval [ti,ti−1). Note that Wi and WJ are different; Wi refers to a time
interval for a scenario when a deadline miss has occurred but WJ is a function
computed on static task parameters.

Lemma 1.1. ∀taskidx ∈ [1, n] : ff − dbf(τtaskidx, L, z/s, s) ≥
∑k

i=1 Wi,taskidx.

Proof: Recall that for all jobs that execute in [tk,t0) have deadlines at t0 or
earlier and hence all jobs that perform work during [tk,t0) have deadlines at t0
or earlier. Let us consider different cases:

Case 1: There is no job of task τtaskidx such that the job arrives before tk.
For this case, there are at most 	L/Ttaskidx
 jobs of τtaskidx with arrival time in
[tk,t0) and deadline in [tk,t0). Hence, we have: 	L/Ttaskidx
 ∗ Ctaskidx ≥∑k

i=1 Wi,taskidx. Applying the definition of ff − dbf on the left-hand side of this

inequality yields: ff − dbf(τtaskidx, L, z/s, s) ≥
∑k

i=1 Wi,taskidx. End of Case 1.

Case 2: There is a job of task τtaskidx such that the job arrives before tk.

Case 2.1: Of those jobs of task τtaskidx with arrival time before tk, none of them
have deadlines in [tk,t0).
With the same reasoning as in Case 1, we obtain that ff − dbf(τtaskidx, L, z/s, s)

≥
∑k

i=1 Wi,taskidx. End of Case 2.1.

Case 2.2: Of those jobs of task τtaskidx with arrival time before tk, at least one
of them has its deadline in [tk,t0).
Since we consider constrained-deadline sporadic tasks, it holds that there is ex-
actly one job of task τtaskidx such that the job has arrival time before tk and
deadlines in [tk,t0). Let LATEJtaskidx denote this job.

Case 2.2.1: The job LATEJtaskidx has finished execution at time tk.
With the same reasoning as in Case 1, we obtain that ff − dbf(τtaskidx, L, z/s, s)

≥
∑k

i=1 Wi,taskidx. End of Case 2.2.1.

Case 2.2.2: The job LATEJtaskidx has not finished execution at time tk.
Let ENTIREtaskidx denote the set of jobs of task τtaskidx with arrival time in

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel Tasks 27

[tk,t0) and deadline in [tk,t0). Clearly, LATEJtaskidx is not in ENTIREtaskidx.
Let WENTIREtaskidx denote the units of execution jobs in ENTIREtaskidx per-
form in [tk,t0). Let WLATEJtaskidx denote the units of execution that jobs in
LATEJtaskidx perform in [tk,t0). Clearly, WENTIREtaskidx ≤ |ENTIREtaskidx| *
Ctaskidx and WLATEJtaskidx ≤ Ctaskidx. Also, clearly, we have:

∑k
i=1 Wi,taskidx

= WLATEJtaskidx + WENTIREtaskidx.

Case 2.2.2.1: |ENTIREtaskidx| < qtaskidx(L)
From this case, we obtain that |ENTIREtaskidx| ≤ qtaskidx(L) -1 and using it gives

us that
∑k

i=1 Wi,taskidx≤(qtaskidx(L)−1)*Ctaskidx+Ctaskidx=(qtaskidx(L))*Ctaskidx.

Rewriting and relaxing gives us:
∑k

i=1 Wi,taskidx ≤ ff − dbf(τtaskidx, L, z/s, s).
End of Case 2.2.2.1.

Case 2.2.2.2: |ENTIREtaskidx| ≥ qtaskidx(L)
It is easy to see that it is impossible for |ENTIREtaskidx| > qtaskidx(L). Hence we
obtain that: |ENTIREtaskidx| = qtaskidx(L). Let ALATEJtaskidx denote the ar-
rival time of LATEJtaskidx. Let rLATEJtaskidx be the time from tk to the deadline
of LATEJtaskidx. Formally, this is expressed as: rLATEJtaskidx = ALATEJtaskidx
+ Dtaskidx - tk. From |ENTIREtaskidx| = qtaskidx(L), it follows from the defini-
tion of qi(L) and ri(L) that rLATEJtaskidx ≤ rtaskidx(L). Note that before time
tk, job LATEJtaskidx performed at least z*(Ctaskidx - rLATEJtaskidx)/s alone
elapsed units of execution (otherwise LATEJtaskidx would have been included
in the sequence generated by the algorithm above.). Also, note that because
of Case 2.2.2, we have that job LATEJtaskidx has not yet finished execution at
time tk. Hence, the assumptions in Lemma 8 are fulfilled. This gives us that it
holds that job LATEJtaskidx performs at most: Ctaskidx-WJ(τtaskidx, z*(Dtaskidx

- rtaskidx(L))/s, s) units of execution in the time interval [tk,∞). Since the time
interval [tk, t0) is in the time interval [tk,∞), it holds that that job LATEJtaskidx
performs at most: Ctaskidx-WJ(τtaskidx, z*(Dtaskidx - rtaskidx(L))/s, s) units of
execution in the time interval [tk, t0). Observing that there are qtaskidx(L) jobs
of task τtaskidx, each executing at most Ctaskidx units of execution in time in-
terval [tk,t0) we obtain task that τtaskidx performs at most qtaskidx(L) * Ctaskidx

+ Ctaskidx-WJ(τtaskidx, z*(Dtaskidx - rtaskidx(L))/s, s) units of execution during
the time interval [tk, t0]. End of Case 2.2.2.2.

Hence, for each of the cases, we obtain that the lemma is true.

Lemma 1.2.
∑n

taskidx=1 ff − dbf(τtaskidx, L, z/s, s) ≥
∑k

i=1 Wi.

Proof: Follows from adding the inequalities of Lemma 1.1 and observing that∑n
taskidx=1

∑k
i=1 Wi,taskidx =

∑k
i=1 Wi

Lemma 1.3. For each i, 1 ≤ i ≤ k , it holds that: Wi > (m− (m − 1) ∗ z/s) ∗
(ti−1 − ti) ∗ s.

Proof: Let x denote the total length of the time intervals over [ti,ti−1] during
which at least one segment of JOBi executes. By choice of job JOBi, it is the case
that: x < (ti-ti−1)*z/s By choice of job JOBi, it has not completed execution

28 B. Andersson and D. de Niz

by time instant ti−1. Hence, over [ti,ti−1), all m processors must be executing
whenever job JOBi does not execute any segment at all. Hence during [ti,ti−1),
the number of units of execution performed by jobs other than JOBi is at least:
m*(ti−1 - ti - x)*s. During the x time units that job JOBi executes, we know
that at least one processor was busy. Hence during this time, at least x*s units of
execution is performed. Adding it up gives us that:Wi ≥m*(ti−1 - ti - x)*s+ x*s
=m*(ti−1 - ti)*s - (m-1)*x*s > m*(ti−1 - ti)*s - (m-1)*(ti-ti−1)*(z/s)*s= (ti−1
- ti)*s*(m - (m-1)*(z/s)) = (m-(m-1)* (z/s))*(ti−1 - ti)*s. Hence, Lemma 1.3
is proved.

Using Lemma 1.3 and rewriting gives us:

k∑
i=1

Wi >
∑k

i=1(m− (m− 1) ∗ z/s) ∗ (ti−1 − ti) ∗ s =

(m− (m− 1) ∗ z/s) ∗ s ∗ (
∑k

i=1(ti−1 − ti)) =

(m− (m− 1) ∗ z/s) ∗ s ∗ L (19)

Combining Equation 19 with Lemma 1.2 gives us:

n∑
taskidx=1

ff − dbf(τtaskidx, L, z/s, s) > (m− (m− 1) ∗ z/s) ∗ s ∗ L (20)

But this contradicts Equation 18. Hence Theorem 1 is correct.

Theorem 2. Consider a task set τ with the SEGPAR-variant model scheduled
by global-EDF on a computer platform with m processors each of speed s. If there
is a σ, σ ≥ δmax, such that for each time interval of duration t ≥ 0 it holds that:

n∑
i=1

ff − dbf(τi, t,
σ

s
, s) ≤ (m− (m− 1) ∗

σ

s
) ∗ t ∗ s (21)

then task set τ is schedulable.

Proof. Follows from Theorem 1.

Theorem 3. Consider a task set τ with the SEGSEQ-variant model scheduled
by global-EDF on a computer platform with m processors each of speed s. If there
is a σ, σ ≥ δmax, such that for each time interval of duration t ≥ 0 it holds that:

n∑
i=1

ff − dbf(τi, t,
σ

s
, s) ≤ (m− (m− 1) ∗

σ

s
) ∗ t ∗ s (22)

then task set τ is schedulable.

Proof. Follows from Theorem 2 and Lemma 5.

5 Proving the Resource Augmentation Bound

Theorem 4. Consider a task set τ . Let Q denote 2-1/m. If τ is feasible on
m processors of speed s/Q then τ is global-EDF schedulable according to the
schedulability test of Theorem 3 on m processors of speed s.

Analyzing Global-EDF for Multiprocessor Scheduling of Parallel Tasks 29

Proof. The proof is by contradiction. Suppose that the theorem would be false.
Then there exist a task set τ such that τ is feasible on m processor of speed
s/Q but global-EDF is unschedulable according to the schedulability test of
Theorem 3 on m processors of speed s. Because of feasibility, Lemma 1 give us:

δmax ≤
s

Q
(23)

Because of feasibility, it holds that all deadlines are met for the ASAP-CMAX
assignment of arrival times and execution requirements. Hence, for all t such
that t > 0, it holds that:

n∑
i=1

ff − dbf(τi, t, 1,
s

Q
) ≤ m ∗

s

Q
∗ t (24)

Because Theorem 3 could not guarantee schedulability of global-EDF, we have
that for each σ, σ ≥ δmax, there is a t > 0 such that:

n∑
i=1

ff − dbf(τi, t,
σ

s
, s) > (m− (m− 1) ∗

σ

s
) ∗ t ∗ s (25)

Because of Equation 23, we can apply σ = s/Q on Equation 25 and using
Lemma 4 yields that there is a t > 0 such that:

n∑
i=1

ff − dbf(τi, t, 1,
s

Q
) > (m− (m− 1) ∗

1

Q
) ∗ t ∗ s (26)

Combing Equation 26 and Equation 24 yields:

(m− (m− 1) ∗
1

Q
) ∗ t ∗ s < m ∗

s

Q
∗ t (27)

Rewriting yields: Q<2-1/m. But this contradicts the definition of Q. Hence, it
holds that the theorem is true.

6 Conclusions

We have presented a new algorithm for performing schedulability analysis of
parallel tasks scheduled by global-EDF. This algorithm assumes the constrained-
deadline sporadic model which is at least as general as the ones used in previous
work and it has better resource augmentation bound than previously known
schedulability analyses.

The formulation of our new schedulability analysis in this paper states that a
condition is tested for all t and for all σ. That is an infinite number of inequalities
to check and it is therefore tempting to believe that the method is impractical.
One can use techniques in previous research [12] and our function nhcWJ(τi, t, s)
to show that the same result can be computed by checking only a finite number
of inequalities though.

30 B. Andersson and D. de Niz

7 Legal Notices

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering Institute, a federally funded
research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN AS-IS BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WAR-
RANTIES OF ANY KIND, EITHER EXPRESSEDOR IMPLIED, AS TO ANY
MATTER INCLUDING, BUTNOT LIMITEDTO,WARRANTYOFFITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RE-
SPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution.
DM-0000047

References

1. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling Parallel Real-Time Tasks on
Multi-core Processors. In: RTSS 2010 (2010)

2. Fauberteauy, F., Midonnety, S., Qamhiehy, M.: Partitioned Scheduling of Parallel
Real-time Tasks on Multiprocessor Systems. SIGBED Review (2011)

3. Saifullah, A., Agrawal, K., Lu, C., Gill, C.: Multi-core Real-Time Scheduling for
Generalized Parallel Task Models. In: RTSS 2011 (2011)

4. Cong, L., Anderson, J.H.: Supporting Soft Real-Time DAG-Based Systems on Mul-
tiprocessors with No Utilization Loss. In: RTSS 2010 (2010)

5. Lupu, I., Goossens, J.: Scheduling of Hard Real-Time Multi-Thread Periodic Tasks.
In: RTNS 2011 (2011)

6. Kato, S., Ishikawa, Y.: Gang EDF Scheduling of Parallel Task Systems. In: RTSS
2009 (2009)

7. Jayachandran, P., Abdelzaher, T.: Reduction-based schedulability analysis of dis-
tributed systems with cycles in the task graph. Journal Real-Time Systems (2010)

8. Goddard, S.: On the Management of Latency in the Synthesis of Real-Time Signal
Processing Systems from Processing Graphs. PhD thesis (1998)

9. Gerber, R., Hong, S., Saksena, M.: Guaranteeing end-to-end timing constraints by
calibrating intermediate processes. In: RTSS 1994 (1994)

10. Audsley, N.C., Burns, A., Richardson, M.F., Wellings, A.J.: Data Consistency In
Hard Real-Time Systems. Informatica (1993)

11. Philips, C., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. In: STOC 1997 (1997)

12. Baruah, S.K., Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S.: Improved multi-
processor global schedulability analysis. In: Real-Time Systems (2010)

Range Queries in Non-blocking k-ary Search

Trees

Trevor Brown1 and Hillel Avni2

1 Dept. of Computer Science, University of Toronto
tabrown@cs.toronto.edu

2 Dept. of Computer Science, Tel-Aviv University
hillel.avni@gmail.com

Abstract. We present a linearizable, non-blocking k-ary search tree
(k-ST) that supports fast searches and range queries. Our algorithm
uses single-word compare-and-swap (CAS) operations, and tolerates any
number of crash failures. Performance experiments show that, for work-
loads containing small range queries, our k-ST significantly outperforms
other algorithms which support these operations, and rivals the perfor-
mance of a leading concurrent skip-list, which provides range queries that
cannot always be linearized.

1 Introduction and Related Work

The ordered set abstract data type (ADT) represents a set of keys drawn from
an ordered universe, and supports three operations: Insert(key), Delete(key),
and Find(key). We add to these an operation RangeQuery(a, b), where a ≤ b,
which returns all keys in the closed interval [a, b]. This is useful for various
database applications.

Perhaps the most straightforward way to implement this ADT is to employ
software transactional memory (STM) [13]. STM allows a programmer to specify
that certain blocks of code should be executed atomically, relative to one another.
Recently, several fast binary search tree algorithms using STM have been intro-
duced [7,2]. Although they offer good performance for Inserts, Deletes and
Finds, they achieve this performance, in part, by carefully limiting the amount
of data protected by their transactions. However, since computing a range query
means protecting all keys in the range from change during a transaction, STM
techniques presently involve too much overhead to be applied to this problem.

Another simple approach is to lock the entire data structure, and compute a
range query while it is locked. One can refine this technique by using a more fine-
grained locking scheme, so that only part of the data structure needs to be locked
to perform an update or compute a range query. For instance, in leaf-oriented
trees, where all keys in the set are stored in the leaves of the tree, updates to
the tree can be performed by local modifications close to the leaves. Therefore,
it is often sufficient to lock only the last couple of nodes on the path to a leaf,
rather than the entire path from the root. However, as was the case for STM,

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 31–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

32 T. Brown and H. Avni

a range query can only be computed if every key in the range is protected, so
typically every node containing a key in the range must be locked.

Persistent data structures [11] offer another approach. The nodes in a per-
sistent data structure are immutable, so updates create new nodes, rather than
modifying existing ones. In the case of a persistent tree, a change to one node
involves recreating the entire path from the root to that node. After the change,
the data structure has a new root, and the old version of the data structure
remains accessible (via the old root). Hence, it is trivial to implement range
queries in a persistent tree. However, significant downsides include contention at
the root, and the duplication of many nodes during updates.

Brown and Helga [9] presented a k-ST in which each internal node has k
children, and each leaf contains up to k − 1 keys. For large values of k, this
translates into an algorithm which minimizes cache misses and benefits from
processor pre-fetching mechanisms. In some ways, the k-ST is similar to a per-
sistent data structure. The keys of a node are immutable, but the child pointers
of a node can be changed. The structure is also leaf-oriented, meaning that all
keys in the set are stored in the leaves of the tree. Hence, when an update adds
or removes a key from the set, the leaf into which the key should be inserted, or
from which the key should be deleted, is simply replaced by a new leaf. Since the
old leaf’s keys remains unmodified, range queries using this leaf need only check
that it has not been replaced by another leaf to determine that its keys are all
in the data structure. To make this more efficient, we modify this structure by
adding a dirty-bit to each leaf, which is set just before the leaf is replaced.

Braginsky and Petrank [5] presented a non-blocking B+tree, another search
tree of large arity. However, whereas the k-ST’s nodes have immutable keys, the
nodes of Braginsky’s B+tree do not. Hence, our technique for performing range
queries cannot be efficiently applied to their data structure.

Snapshots offer another approach for implementing range queries. If we could
quickly take a snapshot of the data structure, then we could simply perform a
sequential range query on the result. The snapshot object is a vector V of data
elements supporting two operations: Update(i, val), which atomically sets Vi

to val, and Scan, which atomically reads and returns all of the elements of V .
Scan can be implemented by repeatedly performing a pair of Collects (which
read each element of V in sequence and return a new vector containing the
values it read) until the results of the two Collects are equal [1]. Attiya, et al.
[3] introduced partial snapshots, offering a modified Scan(i1, i2, ..., in) operation
which operates on a subset of the elements of V . Their construction requires
both CAS and fetch-and-add.

Recently, two high-performance tree structures offering O(1) time snapshots
have been published. Both structures use a lazy copy-on-write scheme that we
now describe.

Ctrie is a non-blocking concurrent hash trie due to Prokopec et al. [12]. Keys
are hashed, and the bits of these hashes are used to navigate the trie. To facilitate
the computation of fast snapshots, a sequence number is associated with each
node in the data structure. Each time a snapshot is taken, the root is copied and

Range Queries in Non-blocking k-ary Search Trees 33

its sequence number is incremented. An update or search in the trie reads this
sequence number seq when it starts and, while traversing the trie, it duplicates
each node whose sequence number is less than seq. The update then performs a
variant of a double-compare-single-swap operation to atomically change a pointer
while ensuring the root’s current sequence number matches seq. Because keys are
ordered by their hashes in the trie, it is hard to use Ctrie to efficiently implement
range queries. To do so, one must iterate over all keys in the snapshot.

The second structure, Snap, is a lock-based AVL tree due to Bronson et al. [6].
Whereas Ctrie added sequence numbers, Snap marks each node to indicate that
it should no longer by modified. Updates are organized into epochs, with each
epoch represented by an object in memory containing a count of the number of
active updates belonging to that epoch. A snapshot marks the root node, ends
the current epoch, and blocks further updates from starting until all updates
in the current epoch finish. Once updates are no longer blocked, they copy and
mark each node they see whose parent is marked. Like Ctrie, this pushes work
from snapshots onto subsequent updates. If these snapshots are used to compute
small range queries, this may result in excessive duplication of unrelated parts
of the structure.

If we view shared memory as a contiguous array, then our range queries are
similar to partial snapshots. We implement two optimizations specific to our data
structure. First, when we traverse the tree to perform our initial Collect, we
need only read a pointer to each leaf that contains a key in the desired range
(rather than reading each key). This is a significant optimization when k is large,
e.g., 64. Second, instead of performing a second Collect (which would involve
saving the parent of each leaf or traversing the tree again), we can simply check
the dirty-bit of each node read by the first Collect. As a further optimization,
range queries can return a sequence of leaves, rather than copying their keys into
an auxiliary structure.

Contributions of this work:

• We present a new, provably correct data structure, and demonstrate exper-
imentally that, for two very different sizes of range queries, it significantly
outperforms data structures offering O(1) time snapshots. In many cases, it
even outperforms a non-blocking skip-list, whose range queries cannot always
be linearized.

• We contribute to a better understanding of the performance limitations of the
O(1) time snapshot technique for this application.

The structure of the remainder of this paper is as follows. In Sec. 2, we describe
the data structure, how updates are performed, and our technique for computing
partial snapshots of the nodes of the tree. We give the details of how range
queries are computed from these partial snapshots of nodes in Sec. 3. A sketch
of a correctness proof is presented in Sec. 4. (The full version of this paper [8]
contains a detailed proof.) Experimental results are presented in Sec. 5. Future
work and conclusions are discussed in Sec. 6.

34 T. Brown and H. Avni

Sprouting Insertion

a c da c d b c d

a b c d

Insert(b)

Simple Insertion

a ca c a b c

Insert(b)

Pruning Deletion

b c d

b e f

b c d

b e f

Delete(b)

Simple Deletion

a b da b d a d

Delete(b)

Fig. 1. The four k-ST update operations

2 Basic Operations and Validate

The k-ST is a linearizable, leaf-oriented search tree in which each internal node
has k children and each leaf contains up to k−1 keys. Its non-blocking operations,
Find, Insert and Delete, implement the set ADT. Find(key) returns True

if key is in the set, and False otherwise. If key is not already in the set, then
Insert(key) adds key and returns True. Otherwise it returns False. If key
is in the set, then Delete(key) removes key and returns True. Otherwise it
returns False. The k-ST can be extended to implement the dictionary ADT,
in which a value is associated with each key (described in the technical report
for [9]). Although a leaf-oriented tree occupies more space than a node-oriented
tree (since it contains up to twice as many nodes), the expected depth of a key
or value is only marginally higher, since more than half of the nodes are leaves.
Additionally, the fact that all updates in a leaf-oriented tree can be performed
by a local change near the leaves dramatically simplifies the task of proving that
updates do not interfere with one another.

Basic k-ST Operations. These operations are implemented as in [9]. Find
is conceptually simple, and extremely fast. It traverses the tree just as it would
in the sequential case. However, concurrent updates can prevent its termination
(see [10]). Insert and Delete are each split into two cases, for a total of four
update operations: sprouting insertion, simple insertion, pruning deletion and
simple deletion (see Fig. 1). An Insert into leaf l will be a sprouting insertion
when l already has k− 1 keys. Since l cannot accommodate any more keys, it is
atomically replaced (using CAS) by a newly created sub-tree that contains the
original k− 1 keys, as well as the key being inserted. Otherwise, the Insert will
be a simple insertion, which will atomically replace l with a newly created leaf,
containing the keys of l, as well as the key being inserted. A Delete from leaf
l will be a pruning deletion if l has one key and exactly one non-empty sibling.
Otherwise, the Delete will be a simple deletion, which will atomically replace

Range Queries in Non-blocking k-ary Search Trees 35

snap b d e

a b e f

set dirty
snap b d e

a b e f

CAS pointer
snap b d e

a b e f

b c

Fig. 2. A Validate is in progress on the leaves containing a and b. Before it can check
the dirty bits of these leaves at line 2, an update Insert(c) sets the dirty bit of the
leaf containing b. After this, the Validate is doomed to return False. The Insert(c)
then changes its child pointer and finishes.

l with a newly created leaf, containing the keys of l, except for the key being
deleted. Note that if l has one key, then l will be empty after a simple deletion.
With this set of updates, it is easy to see that the keys of a node never change,
and that internal nodes always have k − 1 keys and k children.

The non-blocking progress property is guaranteed by a helping scheme that
is generalized from the work of Ellen et al. [10], and is somewhat similar to the
cooperative technique of Barnes [4]. Every time a process p performs an update
U , it stores information in the nodes it will modify to allow any other process to
perform U on p’s behalf. When a process is prevented from making progress by
another operation, it helps that operation complete, and then retries its own.

Validate. We include a validate subroutine, which is used in theRangeQuery

algorithm in Sec. 3. It is closely related to a partial snapshot operation when
memory is viewed as an array of locations. Validate takes as argument a se-
quence of pointers to leaves which were reached by following child pointers from
the root.

1 Validate(p1, p2, ..., pn) {
2 check the dirty bit of each leaf pointed to by an element of {p1, ..., pn}
3 if any dirty bit is True {
4 return False

5 } else {
6 return True

7 } }

The dirty field is a single bit included in each leaf l that is initially False, and
is irrevocably set to True just before any CAS that will remove or replace l.
(See Fig. 2 for an illustration of how a dirty bit causes a snapshot to retry.)
Thus, a False dirty bit in a leaf l that was visited in the tree implies that l
is in the tree. Hence, if each l ∈ {p1, ..., pn} satisfies l.dirty = False, then we
know each l was in the tree when the its dirty bit was read at line 2 by the
algorithm. Furthermore, since the keys of a node never change, l’s False dirty
bit means that all of the keys in l are in the tree. Hence, if Validate returns
True, all of the keys contained in the leaves in the snapshot are in the tree when
the Validate began. If Validate returns False, then there is a leaf that has
been or is in the process of being replaced.

36 T. Brown and H. Avni

8 type Node {
9 Key ∪ {∞} a1, ..., ak−1

10 }

11 subtype Internal of Node {
12 Node c1, ..., ck
13 }

14 subtype Leaf of Node {
15 boolean dirty

� (initially False)
16 }

17 RangeQuery(Key lo, Key hi) : List of Nodes {
� Precondition: lo, hi 	=∞, and lo ≤ hi

18 List snap := new List()

� DFS to populate snap with all leaves that could possibly contain a key in [lo, hi]
19 Stack s := new Stack()
20 s.push(root.c1)

21 while |s| > 0 {
22 Node u := s.pop()
23 if u is a Leaf then do snap.add(u)

� Determine which children of u to traverse
24 int i := 1
25 while i < k and u.ai ≤ lo { � Find first sub-tree that intersects [lo,∞)
26 i := i + 1
27 }
28 if i = 1 { � Boundary case: don’t test u.a0 below
29 s.push(u.ci)
30 i := i + 1
31 }
32 while i ≤ k and u.ai−1 ≤ hi { � Push sub-trees until all keys are in (hi,∞)
33 s.push(u.ci)
34 i := i + 1
35 } }

� Validate (check the nodes in snap have not changed)
36 if not Validate(snap) then retry (i.e., go back to line 18)

� Return all leaves in snap that contain some key in range [lo, hi]
37 List result := new List()
38 for each u in snap {
39 if at least one of u’s keys is in range [lo, hi] then do result.add(u)
40 }
41 return result
42 }

Fig. 3. Abridged type definitions and pseudocode for RangeQuery. RangeQuery

accepts two keys, lo and hi, as arguments, and returns all leaves that (a) were in the
tree at the linearization point, and (b) have a key in the closed interval [lo, hi].

3 Range Queries in a k-ST

An abridged description of the type definitions of the data structure and Java-
like pseudocode for the RangeQuery operation are given in Fig. 3. We borrow
the concept of a reference type from Java. In this psuedocode, variables of any
type E /∈ {int, boolean} are references to objects of type E. A reference x is like
pointer, but is automatically dereferenced when a field of the object is accessed
with the (.) operator, as in: x.field (which means the same as x->field in C).
References take on the special value Null when they do not point to any object.
(However, no field of any node is ever Null.)

We now take a high-level tour through the RangeQuery algorithm. The
algorithm begins by declaring a list snap at line 18 to hold pointers to all leaves
which may contain a key in [lo, hi]. In lines 19-35 the algorithm traverses the

Range Queries in Non-blocking k-ary Search Trees 37

tree, saving pointers in snap. It uses a depth-first-search (DFS), implemented
with a stack (instead of recursion), except that it may prune some of the children
of each node, and avoid pushing them onto the stack. The loop at line 25 prunes
those children that are the roots of sub-trees with keys strictly less than lo. The
loop at line 32 then pushes children onto the stack until it hits the first child
that is the root of a sub-tree with keys strictly greater than hi. Both of these
loops use the fact that keys are maintained in increasing order within each node.
It follows that all paths that could lead to keys in [lo, hi] are explored, and all
terminal leaves on these paths are placed in snap at line 23.

RangeQuery then calls Validate (described in the previous section). If this
validation is successful, then each element of snap that points to a leaf containing
at least one key in [lo, hi] is copied into result by the loop at lines 38-40. The
range query can be modified to return a list of keys instead of nodes simply by
changing the final loop (since the keys of a node never change).

4 Correctness

We now provide a proof sketch. The interested reader can find the details of the
following results in the full version of this paper [8].

Observation 1. Apart from child pointers, nodes are never modified. To insert
or delete a key, Insert and Delete replace affected node(s) with newly created
node(s).

Lemma 2. If no Insert or Delete operations are executing, then there are
no dirty leaves reachable by following child pointers from root.

The proof of this lemma is quite laborious, but the intuition is simple. Leaves
only become dirty (have their dirty bit set) by an update (Insert or Delete)
right before the update executes a Child CAS, which changes a child pointer to
remove the leaf from the tree.

Next, we prove progress. Since RangeQuery does not write to shared mem-
ory, it cannot affect the correctness or progress of Find, Insert or Delete. The
proof in [9] still applies, and Find, Insert and Delete are all non-blocking.
Hence, it is sufficient to prove that, if a RangeQuery operation is performed,
it eventually terminates if no Insert or Delete operations are executing. If
a RangeQuery is being performed and no Insert or Delete operations are
executing then, by Lemma 2, RangeQuery will eventually encounter no dirty
leaf and, hence, will eventually terminate.

Theorem 3. All operations are non-blocking.

Definition 4. At any configuration C, let TC be the k-ary tree formed by the
child references. We define the search path for key a in configuration C to be
the unique path in TC that would be followed by the ordinary sequential k-ST
search procedure.

38 T. Brown and H. Avni

Definition 5. We define the range of a leaf u in configuration C to be the set
R of keys such that, for any key a ∈ R, u is the terminal node on the search
path for a in configuration C. (Consequently, if u is not in the tree, its range is
the empty set.)

To simplify the statements of upcoming results, we also make two more simple
definitions. A node is in the tree if it is reachable by following child pointers
from the root. A node is initiated if it has ever been in the tree.

Lemma 6. If an initiated leaf is not in the tree, then it is dirty.

This simple result follows from the fact that any leaf removed from the tree is
removed by a Child CAS, just prior to which the leaf’s dirty bit is set.

Lemma 7. If a key is inserted into or deleted from the range of a leaf u, and u
is in the tree just before the linearization point of the Insert or Delete, then
u is no longer in the tree just after the linearization point.

This lemma relies heavily on results from [9]. We first prove that a successful
update on key a must remove a leaf whose range contained a at the linearization
point of a Find which the update invokes. We then prove that this leaf’s range
must still contain a just before the update is linearized. Finally, we invoke the
k-ary search tree property to argue that a can only be in the range of one leaf
just before the update is linearized, which implies the result.

Now we can prove the correctness of RangeQuery. We linearize each com-
pleted invocation of RangeQuery immediately before performing Validate

for the last time.

Theorem 8. Each invocation of RangeQuery(lo, hi) returns a list containing
precisely the set of leaves in the tree that have a key in the range [lo, hi] at the
time the RangeQuery is linearized.

This final result is proved with the help of Lemma 6, Lemma 7, and the following
sub-claims:

(a) In every configuration C, every internal node has exactly k children and
satisfies the k-ary search tree property.

(b) The DFS in the first loop of RangeQuery traverses the relevant part of
the tree and adds every leaf it visits to snap.

(c) The only sub-trees that are not traversed by the DFS are those that cannot
ever contain a key in range [lo, hi].

5 Experiments

In this section, we present the results of experiments comparing the performance
of our k-ST (for k = 16, 32, 64) with Snap, Ctrie, and SL, the non-blocking,
randomized skip-list of the Java Foundation Classes. We used the authors’ im-
plementations of Snap and Ctrie. Java code for our k-ST is available on-line [8].

Range Queries in Non-blocking k-ary Search Trees 39

All of these data structures implement the dictionary ADT, where Insert(key)
returns False if an element with this key is already in the dictionary. For SL,
a RangeQuery is performed by executing the method subSet(lo, true, hi,

true), which returns a reference to an object permitting iteration over the keys
in the structure, restricted to [lo, hi], and then copying each of these keys into
an array. This does not involve any sort of snapshot, so SL’s range queries are
not always linearizable. For Snap, a RangeQuery is performed by following
the same process as SL: i.e., executing subSet, and copying keys into an array.
However, unlike SL, iterating over the result of Snap’s subSet causes a snapshot
of the data structure to be taken. Since keys are ordered by their hashed values
in Ctrie, it is hard to perform range queries efficiently. Instead, we attempt to
provide an approximate lower bound on the computational difficulty of comput-
ing RangeQuery(lo, hi) for any derivative of Ctrie which uses the same fast
snapshot technique. To do this, we simply take a snapshot, then iterate over the
first (hi−lo+1)/2 keys in the snapshot, and copy each of these keys into an array.
We explain below that (hi− lo+ 1)/2 is the expected number of keys returned
by a RangeQuery. To ensure a fair comparison with the other data structures,
our k-ST’s implementation of RangeQuery returns an array of keys. If it is
allowed to return a list of leaves, its performance improves substantially.

Our experiments were performed on two multi-core systems. The first is a
Fujitsu PRIMERGYRX600 S6 with 128GB of RAM and four Intel Xeon E7-4870
processors, each having 10 × 2.4GHz cores, supporting a total of 80 hardware
threads (after enabling hyper-threading). The second is a Sun SPARC Enterprise
T5240 with 32GB of RAM and two UltraSPARCT2+ processors, each having
8 × 1.2GHz cores, for a total of 128 hardware threads. On both machines, the
Sun 64-bit JVM version 1.7.0 3 was run in server mode, with 512MB minimum
and maximum heap sizes. We decided on 512MB after performing preliminary
experiments to find a heap size which was small enough to regularly trigger
garbage collection and large enough to keep standard deviations small. We also
ran the full suite of experiments for both 256MB and 15GB heaps. The results
were quite similar to those presented below, except that the 256MB heap caused
large standard deviations, and the total absence of garbage collection with the
15GB heap slightly favoured Ctrie.

For each experiment in {5i-5d-40r-size10000, 5i-5d-40r-size100, 20i-20d-1r-
size10000, 20i-20d-1r-size100}, each algorithm in {KST16, KST32, KST64, Snap,
Ctrie, SL}, and each number of threads in {4, 8, 16, 32, 64, 128}, we ran 3 trials,
each performing random operations on keys drawn uniformly randomly from
the key range [0, 106) for ten seconds. Operations were chosen randomly accord-
ing to the experiment. Experiment “xi-yd-zr-sizes” indicates x% probability of
a randomly chosen operation to be an Insert, y% probability of a Delete,
z% probability of RangeQuery(r, r + s), where r is a key drawn uniformly
randomly from [0, 106), and the remaining (100 − x − y − z)% probability of a
Find. Our graphs do not include data for 1 or 2 threads, since the differences
between the throughputs of all the algorithms was very small. However, we did
include an extra set of trials at 40 threads for the Intel machine, since it has 40

40 T. Brown and H. Avni

Sun UltraSPARC T2+

22 23 24 25 26 27

0

2

4

·106

5
i-
5
d
-4
0
r-
si
ze

1
0
0

22 23 24 25 26 27

0

0.5

1

·107

2
0
i-
2
0
d
-1
r-
si
ze

1
0
0

22 23 24 25 26 27

0

0.5

1

1.5

·105

5
i-
5
d
-4
0
r-
si
ze

1
0
0
0
0

22 23 24 25 26 27

0

1

2

·106

2
0
i-
2
0
d
-1
r-
si
ze

1
0
0
0
0

Intel Xeon E7-4870

22 23 24 25 26 27

0

2

4

6

8

·106

22 23 24 25 26 27

0

0.5

1

1.5

·107

22 23 24 25 26 27

0

2

4

6

·105

22 23 24 25 26 27

0

2

4

·106

Fig. 4. Experimental results for various operation mixes (in rows) for two machines
(in columns). The x-axes show the number of threads executing, and the y-axes show
throughput (ops/second). The Intel machine has 40 cores (marked with a vertical bar).

Range Queries in Non-blocking k-ary Search Trees 41

0 10−5 10−4 10−3 10−2 10−1

0

1

2

·107

probability of range query

th
ro

u
g
h
p
u
t

0 10−5 10−4 10−3 10−2 10−1

0

1

2

3
·107

probability of range query

Fig. 5. Sun (left) and Intel (right) results for experiment 5i-5d-?r-100 wherein we vary
the probability of range queries. Note: as we describe in Sec. 5, Ctrie is merely per-
forming a partial snapshot, rather than a range query. The Sun machine is running 128
threads, and the Intel machine is running 80 threads.

cores. Each data structure was pre-filled before each trial by performing random
Insert and Delete operations, each with 50% probability, until it stabilized
at approximately half full (500,000 keys). Each data structure was within 5%
of 500,000 keys at the beginning and end of each trial. This is expected since,
for each of our experiments, at any point in time during a trial, the last update
on a particular key has a 50% chance of being an Insert, in which case it will
be in the data structure, and a 50% chance of being a Delete, in which case
it will not. Thus, (hi − lo + 1)/2 is the expected number of keys in the data
structure that are in [lo, hi]. In order to account for the “warm-up” time an ap-
plication experiences while Java’s HotSpot compiler optimizes its running code,
we performed a sort of pre-compilation phase before running our experiments.
During this pre-compilation phase, for each algorithm, we performed random
Insert and Delete operations, each with 50% probability, for twenty seconds.
Our experiments appear in Fig. 4. Error bars are drawn to represent one stan-
dard deviation. A vertical bar is drawn at 40 threads on the graphs for the Intel
machine, marking the number of cores in the machine.

Broadly speaking, our experimental results from the Sun machine look similar
to those from the Intel machine. If we ignore the results on the Intel machine
for thread counts higher than 40 (the number of cores in the machine), then the
shapes of the curves and relative orderings of algorithms according to perfor-
mance are similar between machines. A notable exception to this is SL, which
tends to perform worse, relative to the other algorithms, on the Intel machine
than on the Sun machine. This is likely due to architectural differences between
the two platforms. Another Intel Xeon system, a 32-core X7560, has also shown
the same scaling problems for SL (see [9] technical report).

42 T. Brown and H. Avni

21 22 23 24 25 26

0

0.5

1

·107

degree of tree

th
ro

u
g
h
p
u
t

21 22 23 24 25 26

0

0.5

1

·107

degree of tree

Fig. 6. Sun (left) and Intel (right) results showing the performance of the k-ST for
many values of k, and for various operation mixes. The Sun machine is running 128
threads, and the Intel machine is running 80 threads.

We now discuss similarities between the experiments 5i-5d-40r-size100 and
20i-20d-1r-size100, which involve small range queries, before delving into their
details. The results from these experiments are highly similar. In both experi-
ments, all k-STs outperform Snap and Ctrie by a wide margin. Each range query
causes Snap (Ctrie) to take a snapshot, forcing all updates (updates and queries)
to duplicate nodes continually. Similarly, SL significantly outperforms Snap and
Ctrie, but it does not exceed the performance of any k-ST algorithm. Ctrie
always outperforms Snap, but the difference is often negligible. In these exper-
iments, at each thread count, the k-ST algorithms either perform comparably,
or are ordered KST16, KST32 and KST64, from lowest to highest performance.

Experiment 5i-5d-40r-size100 represents the case of few updates and many
small range queries. The k-ST algorithms perform extremely well in this case. On
the Sun machine (Intel machine), KST16 has 5.2 times (5.3 times) the through-
put of Ctrie at four threads, and 38 times (61 times) the throughput at 128
threads. The large proportion of range queries in this case allows SL, with its
extremely fast, non-linearizable RangeQuery operation, to nearly match the
performance of KST16 on the Sun machine.

Experiment 20i-20d-1r-size100 represents the case of many updates and few
small range queries. The k-STs are also strong performers in this case. On the
Sun machine (Intel machine), KST16 has 4.7 times (3.4 times) the throughput
of Ctrie at four threads, and 13 times (12 times) the throughput at 128 threads.
In contrast to experiment 5i-5d-40r-size100, since there are few range queries,
KST32 and KST64 do not perform significantly better than KST16. Similarly,
with few range queries, the simplicity of SL’s non-linearizableRangeQuery op-
eration does not get a chance to significantly affect SL’s throughput. Compared
to experiment 5i-5d-40r-size100, the throughput of SL significantly decreases, rel-
ative to the k-ST algorithms. Whereas KST16 only outperforms SL by 5.2% at

Range Queries in Non-blocking k-ary Search Trees 43

128 threads on the Sun machine in experiment 5i-5d-40r-size100, it outperforms
SL by 37% in experiment 20i-20d-1r-size100.

We now discuss similarities between the experiments 5i-5d-40r-size10000 and
20i-20d-1r-size10000, which involve large range queries. In these experiments, at
each thread count, the k-ST algorithms are ordered KST16, KST32 and KST64,
from lowest to highest performance. Since the size of its range queries is fairly
large (5,000 keys), Ctrie’s fast snapshot begins to pay off and, for most thread
counts, its performance rivals that of KST16 or KST32 on the Sun machine. How-
ever, on the Intel machine, it does not perform nearly as well, and its throughput
is significantly lower than that of SL and the k-ST algorithms. Ctrie always out-
performs Snap, and often does so by a wide margin. SL performs especially
well in these experiments, no doubt due to the fact that its non-linearizable
RangeQuery operation is unaffected by concurrent updates.

Experiment 5i-5d-40r-size10000 represents the case of few updates and many
large range queries. In this case, SL ties KST32 on the Sun machine, and KST16
on the Intel machine. However, KST64 outperforms SL by between 38% and 43%
on the Sun machine, and by between 89% and 179% on the Intel machine. On
the Sun machine, Ctrie’s throughput is comparable to that of KST16 between
4 and 64 threads, but KST16 outperforms Ctrie by 61% at 128 threads. KST64
outperforms Ctrie by between 44% and 230% on the Sun machine, and offers
between 3.1 and 10 times the performance on the Intel machine.

Experiment 20i-20d-1r-size10000 represents the case of many updates and few
large range queries. On the Sun machine, SL has a considerable lead on the other
algorithms, achieving throughput as much as 116% higher than that of KST64
(the next runner up). The reason for the k-ST structures’ poor performance rel-
ative to SL is two-fold. First, SL’s non-linearizable range queries are not affected
by concurrent updates. Second, the extreme number of concurrent updates in-
creases the chance that a range query of the k-ST will have to retry. On the
Intel machine, KST64 still outperforms SL by between 21% and 136%. As in
the previous experiment, Ctrie ties KST16 in throughput on the Sun machine.
However, KST64 achieves 127% (270%) higher throughput than Ctrie with four
threads, and 37% (410%) higher throughput at 128 threads on the Sun machine
(Intel machine).

As we can see from Fig. 5, in the total absence of range queries, Ctrie outper-
forms the k-ST structures. However, mixing in just one range query per 10,000
operations is enough to bring it in line with the k-ST structures. As the prob-
ability of an operation being a range query increases, the performance of Ctrie
decreases dramatically. Snap performs similarly to the k-ST structures in the ab-
sence of range queries, but its performance suffers heavily with even one range
query per 100,000 operations.

We also include a pair of graphs in Fig. 6 for the Intel and Sun machines,
respectively, which show the performance of the k-ST over many different values
of k, for each of the four experiments. Results for both machines are simi-
lar, with larger values of k generally producing better results. On both ma-
chines, the curve for experiment 20i-20d-1r-size100 flattens out after k = 24,

44 T. Brown and H. Avni

and 5i-5d-40r-size100 begins to taper off after k = 32. Throughput continues
to improve up to k = 64 for the other experiments. The scale of the graphs
makes it difficult to see the improvement in 5i-5d-40r-size10000 but, on the Sun
(Intel) machine, its throughput at k = 64 is 6 times (16 times) its throughput at
k = 2. This seems to confirm our belief that larger degrees would improve per-
formance for range queries. Surprisingly, on the Intel machine, experiment 20i-
20d-1r-size10000 sees substantial throughput increases after k = 24. It would be
interesting to see precisely when a larger k becomes detrimental for each curve.

6 Future Work and Conclusion

Presently, the k-ST structure is unbalanced, so there are pathological inputs
that can yield poor performance. We are currently working on a general scheme
for performing atomic, non-blocking tree updates, and we believe the results of
that work will make it a simple task to design and prove the correctness of a
balancing scheme for this structure.

Another issue is that, in the presence of continuous updates, range queries
may starve. We may be able to mitigate this issue by having the RangeQuery

operation write to shared memory, and having other updates help concurrent
range queries complete. It is possible to extend the flagging and marking scheme
used by the k-ST so that range queries flag nodes, and are helped by concurrent
updates. While this will likely alleviate starvation in practice, it is an imperfect
solution. First, it will not eliminate starvation, for the same reason that updates
in the k-ST are not wait-free. More specifically, if helpers assist in flagging all of
the nodes involved in a RangeQuery, they must do so in a consistent order to
avoid deadlock. Moreover, the nodes of the tree do not have parent pointers, so
only top-down flagging orders make sense. Therefore, it is possible to continually
add elements to the end of the range and prevent the RangeQuery from termi-
nating. Second, if range queries can be helped, we must answer questions such
as how helpers should avoid duplicating work when a RangeQuery involves
many nodes. Since nodes must be flagged in a consistent order by all helpers,
one cannot simply split helpers up so they start flagging at different nodes. One
possibility is to have helpers collaborate through a work-queue.

Despite the potential for starvation, we believe our present method of per-
forming range queries is practical in many cases. First, range queries over small
intervals involve few nodes, minimizing the opportunity for concurrent updates
to interfere. Second, for many database applications, a typical workload has
many more queries (over small ranges) than updates. For example, consider an
airline’s database of flights. Only a fraction of the queries to their database are
from serious customers, and a customer may explore many different flight options
and date ranges before finally purchasing a flight and updating the database.

It would be interesting to measure and compare the amount of shared memory
consumed by each data structure over the duration of a trial, as well as the
amount of local memory used by our range query algorithm.

In this work, we described an implementation of a linearizable, non-blocking
k-ary search tree offering fast searches and range queries. Our experiments show

Range Queries in Non-blocking k-ary Search Trees 45

that, under several workloads, this data structure is the only one with scalable,
linearizable range queries. When compared to other leading structures, ours
exhibits superior spatial locality of keys in shared memory. This makes it well
suited for NUMA systems, where each cache miss is a costly mistake.

Acknowledgements. We would like to thank Faith Ellen for her extensive help
in organizing and editing this paper. Our thanks also go out to the anonymous
OPODIS reviewers for their helpful comments. Finally, we thank Michael L.
Scott at the University of Rochester for graciously providing access to the Sun
machine. This research was supported, in part, by NSERC.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Afek, Y., Avni, H., Shavit, N.: Towards Consistency Oblivious Programming. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 65–79. Springer, Heidelberg (2011)

3. Attiya, H., Guerraoui, R., Ruppert, E.: Partial snapshot objects. In: Proc. 20th
Annual Symposium on Parallelism in Algorithms and Architectures, SPAA 2008,
pp. 336–343. ACM, New York (2008)

4. Barnes, G.: A method for implementing lock-free data structures. In: Proc. 5th
ACM Symposium on Parallel Algorithms and Architectures, pp. 261–270 (1993)

5. Braginsky, A., Petrank, E.: A lock-free b+tree. In: Proceedings of the 24th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2012, pp. 58–
67. ACM, New York (2012)

6. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: Proc. 15th ACM Symposium on Principles and Practice of Parallel
Programming, pp. 257–268 (2010)

7. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication:
high-performance concurrent sets and maps for stm. In: PODC, pp. 6–15 (2010)

8. Brown, T., Avni, H.: Range queries in non-blocking k-ary search trees,
http://www.cs.toronto.edu/~tabrown/kstrq

9. Brown, T., Helga, J.: Non-blocking k-ary search trees. In: Proc. 15th International
Conference on Principles of Distributed Systems, pp. 207–211 (2011), Complete
proof and code available at http://www.cs.toronto.edu/~tabrown/ksts, more
details in Tech. Report CSE-2011-04, York University

10. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proc. 29th ACM Symposium on Principles of Distributed Computing,
pp. 131–140 (2010), Full version in Tech. Report CSE-2010-04, York University

11. Okasaki, C.: Purely functional data structures. Cambridge University Press, New
York (1998)

12. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with
efficient non-blocking snapshots. To appear in Proc. 17th ACM Symposium on
Principles and Practice of Parallel Programming (2012)

13. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 1995, pp. 204–213. ACM, New York (1995)

http://www.cs.toronto.edu/~tabrown/kstrq
http://www.cs.toronto.edu/~tabrown/ksts

On the Polling Problem for Social Networks�

Bao-Thien Hoang and Abdessamad Imine

Lorraine University and INRIA Nancy – Grand-Est, France
{bao-thien.hoang,abdessamad.imine}@inria.fr

Abstract. We tackle the polling problem in social networks where the
privacy of exchanged information and user reputation are very critical.
Indeed, users want to preserve the confidentiality of their votes and to
hide, if any, their misbehaviors. Recent works [7,8] proposed polling pro-
tocols based on simple secret sharing scheme and without requiring any
central authority or cryptography system. But these protocols can be
deployed safely provided that the social graph structure should be trans-
formed into a ring-based structure and the number of participating users
is perfect square. Accordingly, devising polling protocols regardless these
constraints remains a challenging issue.

In this paper, we propose a simple decentralized polling proto-
col that relies on the current state of social graphs. More explicitly,
we define one family of social graphs and show their structures con-
stitute necessary and sufficient condition to ensure vote privacy and
limit the impact of dishonest users on the accuracy of the output
of the poll. In a system of N users with D ≤ N/5 dishonest ones
(and similarly to the works [7,8] where they considered D <

√
N),

a privacy parameter k enables us to obtain the following results: (i)
the probability to recover one vote of honest node is bounded by∑2k

m=k+1

(
D
N

)m
.
(
1
2

)2k+1−m; (ii) the maximum number of votes revealed
by dishonest nodes is 2D; and, (iii) the maximum impact on the output is
(6k + 4)D. Despite the use of richer social graph structures, we succeed
to detect the misbehaving users by manipulating verification procedures
based on shortest path scheme and routing tables. An experimental eval-
uation demonstrates that the dishonest coalition never affects the out-
come of the poll outside the theoretical bound of (6k + 4)D.

Keywords: Social networks, Polling protocol, Secret sharing, Privacy.

1 Introduction

In this work, we approach to one of the current practical, useful but sensitive
topic in Online Social Networks (OSN), the polling process. In general, polling
is the way to determine the most favorite choice amongst some options from
the participants. Each participant can distribute his preference by submitting
vote, and after aggregating all votes, the majority option will be chosen as the
final result. For instance, one company of mobile phone has just launched a
new product and may want to ask customers whether or not its features are
� Funded by ANR Streams project.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 46–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Polling Problem for Social Networks 47

comfortable, and user will choose one option between “Yes” or “No”. We here
consider simply a binary polling with only two options “+1” or “-1” for the
concerning question.

The main objective in such a polling protocol is performing a secure and
accurate process to sum up the initial votes with the presence of dishonest users,
who try to bias the final result and reveal the votes of honest ones. The polling
problem is simple but it takes an important role in incorporating user’s opinion
online. Thus, currently, there are some studies and solutions for this problem in
two approaches, centralized and distributed networks. In the centralized OSN, a
central server is used to collect the users’ votes and sum up all values to obtain
output. Facebook Pool1 and Doodle2 are well illustrative examples. However,
this approach suffers from server failures and particularly privacy problems: it
is not guaranteed the central server will not bias and disclose the user votes.

In our work, we are interested in polling protocol based on decentralized OSN,
where privacy of user is improved as information is not concentrated in one place.
Recently, Guerraoui et al. [7,8] proposed, DPol, a simple decentralized polling pro-
tocol based on secret sharing scheme (without using cryptography) where both
honest and dishonest participants are considered. In DPol, participants care about
their reputation. Indeed, they do not want their votes to be disclosed nor their
misbehaviors, if any, to be publicly exposed. To dissuade user misbehaviors, dis-
tributed verification procedures are manipulated to detect with a non-zero proba-
bility these misbehaviors and enable honest users to tag profile of dishonest ones.
Moreover, DPol ensures privacy of votes and final result accuracy by limiting the
impact of dishonest users. However, DPol has practically some disadvantages.
Firstly, DPol relies on a structured overlay, cluster-ring-based structure, which is
on top and really apart from the normal social graph. It does not take into account
the social links among users in the sense that it builds the uniform distribution of
users into groups. This is not practical as we have to target a special case using no-
tion of group instead of reserving the normal structure of the graph. This construc-
tion would be necessarily based on centralized solution. Hence we lose the benefit of
a fully decentralized polling protocol. Second, the number of users should be a per-
fect square number such that one graphwithN users are divided into

√
N groups of

size
√
N . It should be noted designing decentralized polling protocol without cryp-

tography and constraints (overlay structure and perfect square number of users)
imposed in [7,8] remains a challenge problem.

Contributions. Our objective is to keep the natural property of the graph in the
sense user and social links should be preserved, and each individual can perform
the voting process privately and securely without resorting to the group division.

Inspired from [7,8], first, we propose a design of a simple decentralized polling
protocol that uses social graphs. Second, we describe properties required for the
social graph to ensure the correctness of the protocol. Furthermore, we cover
a general case for the graph topology on which the protocol can run properly.
Despite the use of richer social graph structures, one node can receive/send so
1 http://apps.facebook.com/opinionpolls/
2 http://www.doodle.com/

48 B.T. Hoang and A. Imine

many duplicated messages from/to other nodes. This can lead to flooding the
local storage. By thoroughly using the graph structure, our protocol enables one
node to deal with only necessary messages. Instead of accepting all messages, a
node stores only the ones passed by the optimal paths. To prevent user misbe-
haviours, we introduce verification procedures based on shortest path scheme and
routing tables. Using the same notion of privacy parameter k in [7,8], we get the
following results in a system of size N with D dishonest users: one vote of honest
node is recovered with the probability at most

∑2k
m=k+1

(
D
N

)m
.
(
1
2

)2k+1−m; and
up to 2D votes can be revealed by the dishonest coalition, and the impact from
the dishonest coalition to the final result is at most (6k + 4)D. We validate our
solution with a performance evaluation which shows that our protocol is accu-
rate and close to the theoretical average impact, that is 4k+ 2α+ 2, where α is
the proportion of users correctly voting. Our result encourages the use of polling
protocol without transforming the social graphs into other overlay structures.

Outline. This paper is organized as follows. Section 2 describes our polling
model, and introduces a family of social graphs. Section 3 presents our polling
protocol with its correctness properties, establishes formally the relation between
the protocol and the family of social graphs, and analyses different complexities
to perform the polling. Section 4 illustrates our experimental results. We review
related work in Section 5 and conclude the paper with future research direction
in Section 6. Proofs for the correctness of our solution are given in [14].

2 Polling and Social Network Models

This section introduces what are ingredients of polling models and presents the
graph models to describe social networks. It should be noted that we consider
the same assumptions like the work [7,8].

2.1 Polling Model

The polling problem consists of a system with N uniquely identified nodes repre-
senting users of a social network. Each participant un (or simply, n) expresses its
opinion by giving a vote vn ∈ {−1, 1}. After collecting the votes of all nodes, the
expected outcome is

∑
n vn. In this work, we consider the following assumptions:

Each node is able to communicate with its neighbors (e.g., direct friends),
and is either honest or dishonest. The honest node completely complies with
the protocol and takes care about its privacy and reputation in the sense that
the vote value is not disclosed. All dishonest nodes can form a coalition to get the
full knowledge of the network and try to do everything to achieve these goals
without being detected: (i) bias the result of the election by promoting their
votes or changing the values they received from other honest nodes; (ii) infer
the opinions of other nodes. However, they also want to protect their reputation
from being affected. In order to unify the opinions and not give compensating
effects, all dishonest nodes make the single coalition D of size D. Nevertheless,
they are still selfish in the sense that each dishonest node prefers to take care
about its own reputation to covering up each other.

On the Polling Problem for Social Networks 49

In order to prevent and reduce the incorrect behaviors, there is an activity
affected to profile of concerned node. In particular, if node u is detected as
misbehavior one by v then u’s profile is tagged with statement “u has been
detected bad behavior by v” and in v’s profile has statement “u is bad guy”.
Furthermore, we do not take into account the situation that dishonest nodes
wrongfully blame honest ones, or do Sybil attacks and spam since that kinds
of misbehavior can be detected by some tools or several existing systems such
as SybilLGuard[17], SybilLimit [16], [11,15] (for filtering wrongful blames), and
[11,13] (for mitigating spam).

2.2 Social Network as a Graph Models

We present the social network in our problem as the form of models of social
graph. In this section, firstly, we define the terms and notations of graph used
throughout our work. Later, we demonstrate the family of graphs including the
ideal case (network without dishonest nodes) and normal case (network with the
presence of dishonest nodes).

Notations. Let G = (V,E) be an undirected graph where V = {u0, u1, ..., uN−1}
is a set of uniquely identified nodes of size N , and E is an edge set. Each node
is either honest or dishonest. We represent H(X) and D(X) as the set of honest
nodes and dishonest nodes of size D = |D(X)| in graph X . For a node un ∈ V , let
us identify the following notations: dn as a degree (a number of neighbors) of un;
R(un) (or simply, Rn) as the set of neighbors of un; Fn and Qn (Fn,Qn ⊆ Rn)
are respectively set of neighbors that un sends and receives messages.

Paths and Distances. Given two nodes u, v ∈ V , they can connect directly or
not. We denote by function e(u, v) this kind of relation, namely, e(u, v) = 1 if
there is a link between u and v, otherwise e(u, v) = 0.

A path p of length l ∈ N in the graph is an ordered sequence of l + 1 nodes
such that there exists an edge connecting two consecutive nodes in the sequence:
p = 〈uk1 , uk2 , . . . , ukl+1

〉 with uki ∈ V , e(uki , uki+1) = 1, 1 ≤ i ≤ l. We write l(p)
to refer the length of path p, i.e., number of the edges of p. As e(uki , uki+1) = 1
then l(〈uki , uki+1〉) = 1. If path p contains only one node, l(p) = 0.

For two nodes u, v ∈ V , let p(u, v) be a path connecting between u and v and
Pa(u, v) be the set of all such paths. We write x ∈ p(u, v) if path p(u, v) contains
node x. For two paths p(u1, v1), p(u2, v2), we define the intersection of them as
follows: p(u1, v1) ∩ p(u2, v2) = {x ∈ V | x ∈ p(u1, v1) and x ∈ p(u2, v2)}.

Additionally, each node is either honest or dishonest. Thus, to transmit mes-
sages between two nodes u and v, it is important to consider the honesty prop-
erty of each node (i.e., checking whether node is honest or dishonest) in the
paths connecting them. Particularly, if u and v are directly connected, i.e.,
e(u, v) = 1, we should investigate the honesty property of u and v. The trans-
mission is secure only if they are all honest and is unsecured in other case. If
e(u, v) = 0, we should examine all paths connecting between u and v. For a path
p(u, v) = 〈u ≡ uk1 , uk2 , ..., ukm ≡ v〉 (where e(uki , uki+1) = 1, 1 ≤ i ≤ m− 1), we
have to check honest property of each intermediate node uki . The transmission
in that path is secure only if all nodes are honest and we call it “honest path”.

50 B.T. Hoang and A. Imine

If there exists at least one honest path between u and v, it guarantees the correct
information from u (or v) will approach to v (or u).

For a graph G, there exists, for all pairs of honest nodes u, v, at least one
honest path between them, then G is called “honest graph”.

Shortest Paths. We illustrate by pS(u, v) and PaS(u, v) the shortest path and
the set of all shortest paths between two nodes u and v. In [6], a simple but fast
and accurate algorithm for the approximation of shortest paths between pair of
nodes in the real-world graph is presented. We can use this method to determine
the shortest paths and distances between two nodes. The length of the shortest
path between u and v, is denoted by δ(u, v), i.e., δ(u, v) = l(pS(u, v)).

Graph Model. So far, we presented the polling model in which participants are
either honest or dishonest. Like [7,8], we use a predefined parameter k ∈ N (this
parameter will be detailed in section 3.1) to present the features of our social
graphs. Let G = (V,E) be a social graph with the following properties:

Property 1 (Pg1). dn ≥ 2k + 1 and |Fn| = |Qn| = 2k + 1, for every un ∈ V .

Property 2 (Pg2). G is a honest graph, i.e., for every honest nodes u, v, there
exists a path p(u, v) containing only intermediate honest nodes.

Property 3 (Pg3). D < N/2.

From these properties, we characterize two families of graphs:

(i) G1 = {G | D(G) = ∅ and G satisfies Pg1}.
(ii) G2 = {G | D(G) = ∅ and G satisfies Pg1 , Pg2 and Pg3}.

Graphs in G1 contain no dishonest nodes and in G2 are normal graphs with the
existence of dishonest nodes. According to Property Pg1 , each node has a set of
receivers (Fn) and a set of senders (Qn) to establish communication and they
have the same size and may be disjoint. Property Pg2 ensures each honest node
always obtains one correct version of data from other honest ones. Property Pg3

enables us to limit the control of dishonest users in the whole system.

3 Protocol

In this section, we first present our polling protocol and give some properties of
this protocol. We assume there is no crash and message loss.

3.1 Description

Generally, the polling protocol includes three phases (see Algorithm 1): (i) Shar-
ing, (ii) Broadcasting and (iii) Aggregating. Phase Sharing describes the gen-
eration, distribution of a set of shares of each node to its neighbors as well as
collecting these shares from its neighbors. In the Broadcasting phase, each node
broadcasts messages containing the total shares, which are collected in the Shar-
ing phase, to its direct and indirect neighbors. The last phase, Aggregating, shows
the process that each node decides data received from other nodes and computes
the final outcome.

On the Polling Problem for Social Networks 51

Algorithm 1. Polling algorithm at node un, n ∈ {0, 1, ..., N − 1}
Input:
vn: A vote of node, value in {−1, 1}
dn: degree of node
k : privacy parameter
Rn: set of direct neighbors
Fn: set of neighbors to send shares
Qn: set of neighbors to receive shares

Variables:
cn: collected data, cn = 0
Cn: set of possible collected data
Cn[{0, 1, ...,N − 1} → ∅]

hn: set of final choosing collected data
hn[{0, 1, ...,N − 1} → ⊥]

Γn: routing table
Γn[{0, 1, ...,N − 1} → ∅]

Output: result

Algorithm
1 Share(vn, Fn) | ReceiveShareEvent
2 Broadcast(n, cn, 1, Rn) | ReceiveDataEvent
3 Aggregate()

Procedure Share(vn, Fn)
4 Pn ← ∅

5 for i← 1 to k do
6 Pn ← Pn ∪ {vn} ∪ {−vn}
7 end
8 Pn ← Pn ∪ {vn}
9 μn ←rand Pn

10 for i← 0 to 2k do
11 send(SHARE, μn[i],Fn[i])
12 end

Procedure ReceiveShareEvent(SHARE, p, r)
13 if (r ∈ Qn ∧ p ∈ {−1, 1}) then
14 cn ← cn + p
15 end

Procedure Broadcast(n, cn, ln, Rn)
16 foreach (r ∈ Rn) do
17 send(DATA, n, cn, ln, r)
18 end

Procedure ReceiveDataEvent(DATA, s, cs, ls)
from neighbor identity t

19 if (s = n or ls > δL(s, n)) then exit
20 if (cs /∈ Cn[s]) then
21 νs ← cs
22 Cn[s]← Cn[s] ∪ {cs}
23 Broadcast(s, νs, ls + 1, Rn � {t})
24 else
25 νs ← ⊥
26 end
27 Γn[s]← Γn[s] ∪ {(t, cs, νs, ls)}

Procedure Aggregate()

28 result ← 0
29 for s← 0 to N − 1 do
30 if (s 	= n) then
31 hn[s]← CheckInconsistency(s)
32 else
33 hn[s]← cn
34 end
35 result← result + hn[s]
36 end

Procedure CheckInconsistency(s)

37 if (|Cn[s]| = 1) then
38 return Cn[s][0]
39 else
40 return correct value after verifying Γ [s]

of neighbors
41 end

Sharing. In this phase, each node un contributes its opinion by sending a set
of shares expressing its vote vn ∈ {−1, 1} to its neighbors. We inspired the
sharing scheme proposed in [4] to generate shares. Namely, un generates 2k + 1
shares Pn = {p1, p2, ..., p2k+1} where pi ∈ {−1, 1}, i = 1, 2, ..., 2k + 1 includ-
ing: k + 1 shares of value vn, and k shares of opposite vn’s value. Later it
generates randomly a permutation of Pn, and sends these 2k + 1 messages to
2k + 1 direct neighbors. Lines 4–12 in Algorithm 1 describe this phase. Node
also receives exactly 2k + 1 messages from its direct neighbors. We can target
this strict number of nodes in the set of receivers and senders by the follow-
ing approach: each node un will determine all possible receiver sets Fn ⊆ Rn

such that |Fn| = 2k + 1 by choosing 2k + 1 arbitrary elements from Rn, i.e.,
Fn = {mn1 ,mn2 , ...,mn2k+1

}, ∀mni ∈ Rn. Node un also knows all other pos-
sible set Fp of any other node up. From this it can identify all possible tuples
of N sets of the form (F0,F1, ...,FN−1). For each tuple (F0,F1, ...,FN−1), it
will check whether the following condition is satisfied: each element mni ∈ Fn,

52 B.T. Hoang and A. Imine

0 ≤ n < N must belong to exactly other 2k sets Fi1 , Fi2 , ..., Fi2k , n = ij ,
j = 1, 2, ..., 2k. If there exists a tuple (F0,F1, ...,FN−1) fulfilled above con-
ditions, the requirement about number of receivers and senders at each node
will be satisfied. For instance, specially, each node un defines the set of re-
ceivers Fn = {u(n+1) mod N , u(n+2) mod N , . . . , u(n+2k+1) mod N} of size 2k + 1.
Besides, wee see that Qn = {u(n−1) mod N , u(n−2) mod N , . . . , u(n−2k−1) mod N} of
size 2k + 1.

After all nodes collect 2k+1 shares from its neighbors, and sums into collected
data cn (lines 13–15 in Algorithm 1), this phase is complete. Figures 1 illustrates
an example of the protocol for k = 1. Figure 1a presents desired vote of each
node, whereas Figure 1b depicts the sharing phase at node A. Node A would like
to vote +1, thus, it generates a set of 2k+1 = 3 shares {+1,−1,+1} which total
equals to vA = 1. Figure 1c shows node A collects the shares from its neighbors
and computes the collected data cA = 3.

�A

1
E

C

��
B

F

1
D

M

1
K

N
1 �� 1 ��

(a) Desired vote of each node

�

+1

A

��
−1

��
+1

��
E B D K

(b) Sharing phase

E

+1
��

B
+1

��

D K

+1
��

A
��
3

(c) Sharing phase (cont.)

E

		

�
����

����	

ΓE [A] = {(A, 3, 3, 1), (B, 3,⊥, 2)}
CE [A] = {3}
hE [A] = 3

A

�
��
��
��
�

	

����������
	

B
���

�
�
�
�
��
��
	

��

C

(d) Broadcasting phase

Fig. 1. Polling algorithm for k = 1

Broadcasting. In this phase, each node un encapsulates the collected data cn
with its identity n and length counter ln, which expresses the length of the path
message has passed (initially, ln = 1), into message msg and disseminates it to
all neighbors (lines 2 and 16–18 in Algorithm 1). This action is depicted in Figure
1d. When un receives from ut message msg(s, cs, ls) emitted from the source us,
it performs the following actions (see ReceiveDataEvent() in Algorithm 1):

1. Loop detection: un checks contents of msg and detects the loop based on the
source’s identity (line 19 in Algorithm 1). If this message is the one un has
emitted earlier, i.e., s = n, then un simply drops the message and does not
need to inform ut. Otherwise, un accepts msg.

2. Message Forwarding: For a message passing the loop detection, un should
get data cs and forward to its friends except ut.

On the Polling Problem for Social Networks 53

We see that, naively approaching, un can receive cs from many disjoint paths
(without loop) connecting between us and un. However, the number of paths
can be blown up to exponential value. More specifically, the worst case is
when G is clique and one node has N − 1 friends. Each message passes
through all nodes in the network, and thus, the number of possible paths
between us and un is (N − 1)(N − 2)...1 = (N − 1)!. This motivates us to
find out an optimal solution to bound the number of messages emitted from
us that un should receive without losing any necessary information.

Instead of using naive approach, we propose other technique which is small
but very useful and much more optimal: node receives messages which passed
by paths with the limited length rather than accepting all. Here, for messages
broadcasting from us, we use bread-first expansion with the assumption that
transmitting message in one edge takes one time unit. Hence, we see that
firstly un receives messages from us in the shortest path pS(us, un), and then
from other paths of greater length. By the way, the content of messages can
be changed by some intermediate dishonest nodes in the path p ∈ Pa(us, un).
Thus, we should take care the intermediate nodes. For each intermediate
node x, it receives message from us in pS(us, x) first and from the longer
path later. Node un also receives message, which passed x, from the shortest
path pS(x, un) first and then from other longer paths p(x, un). Therefore, un

receives messages, which are broadcast from us and passed x, from the paths
with length δ(us, x) + δ(x, un) first, and from other longer paths later. To
take care of all possible changes in contents, un should receive all messages
which already passed all intermediate nodes. And so, the maximum length of
the paths passing message un should receive is maxx{δ(us, x) + δ(x, un)}.3
In case that for all node x, pS(us, x) and pS(x, un) have some common nodes
(different from x), un should not receive messages from the paths of length
δ(us, x) + δ(x, un) since they have a loop inside. It should receive messages
from paths of length δ(us, un) instead. So, we combine all of these results, and
define one value which un (resp. us) could use to determine the maximum
length of paths which deliver messages from us (resp. un) to un (resp. us)
as follows:

δL(us, un) =

{
maxx∈Usn

{δ(us, x) + δ(x, un)} if us = un ∧ |Usn| > 0

δ(us, un) otherwise
(1)

where Usn =
{
x ∈ V |x = us, un and ∃p1 ∈ PaS(us, x), p2 ∈ PaS(x, un) s.t.

p1 ∩ p2 = {x}
}
.

For message with ls ∈
[
δ(us, un), δL(us, un)

]
, node un accepts and does

the following activities, otherwise it simply eliminates that message. Line 19
in Algorithm 1 shows this verification.

The activities in the case ls ∈
[
δ(us, un), δL(us, un)

]
are as follows (lines

20–27 in Algorithm 1): un checks Cn[s], a set of possible values emitted from
the source with identity s, to determine whether cs is already presented in it.
If cs is not stored in Cn[s], un will add it into Cn[s], and then forward message

3 See [14, Lemma 5] for the correctness of this consideration.

54 B.T. Hoang and A. Imine

msg(s, νs, ls+1), where νs is value to be sent (in this case νs = cs), to other
direct neighbors except ut. All information about the messages from source
us is stored in the routing table Γn[s] which is used for checking inconsistency
later. This table contains the following fields: first field is neighbor identity
from which it received message (e.g., t), second one is the receiving value
(e.g., cs), third one is the value to be forwarded (e.g., νs), and last field is the
length of the path passing message from the source us (i.e., ls). In this case,
un adds tuple (t, cs, νs, ls) into Γn[s]. In other case that Cn[s] has value cs
inside, un does not need replicating that value in Cn[s], as well as forwarding
it to other friends as it already did earlier. It just stores information in the
routing table, by setting the sent value as null, i.e., νs = ⊥ (null).

Figure 1d depicts the process when node E receives message emitted from A.
When msg(A, 3, 1) with length 1 arrives to E, it stores cA = 3 into set of
possible collected data of source A, that is CE [A]. It then forwards msg(A, 3, 2)
with length 2 to B and C and adds a tuple (A, 3, 3, 1) into routing table of source
A, i.e., ΓE [A]. Notice that A also sends msg(A, 3, 1) to B with the same length
as the one to E, thus, B gets the same message and does the same actions like E.
Node E gets forwarded message with length 2 from B. Since that is the second
message having the same source and collected data, but higher length, E does
not forward it. Node E just inserts one more tuple (B, 3,⊥, 2) expressing the
information received from B into routing table ΓE [A].

Once there is no broadcasting messages in the network, this phase is over. Since
each node just sends and receives a finite number of messages, and all messages
eventually arrives, it is guaranteed this phase terminates correctly.

Aggregating. In this phase, un has to decide the collected data of other nodes
before calculating the final result. To make decision for node us, it checks |Cn[s]|
(lines 37–41 in Algorithm 1): if |Cn[s]| = 1, the single element in Cn[s] is chosen
as a correct collected data, otherwise there exists an inconsistency and it should
do the verification: requesting all routing tables Γ [s] of neighbors and indirect
neighbors to check information received and forwarded by them. If one node is
detected that it already sent different values of its data or its receiving infor-
mation, then an alarm is raised and that node is tagged in its profile. By doing
this, un also gets the correct collected data of source us.4 So, in any case, un

achieves the correct copy of collected data of source us. It then stores that value
as one item hn[s] in the array hn, which contains collected data of other nodes,
and adds into result (lines 29–36 in Algorithm 1). After checking and summing
up all collected data of nodes (including its own collected data cn), un obtains
the final result (that is result = cn +

∑
i	=n hn[i]).

For instance, we consider Figure 1d again. From formula (1), we see that
δL(A,E) = δ(A,B) + δ(B,E) = 2. After receiving message msg(A, 3, 2) from
node B, and updating routing table, node E makes final decision to choose value
from source A. As the set CE [A] is singleton, it will set h[A] = CE [A][0] = 3.
This value will be used to compute final outcome of polling later.
4 See [14, Lemma 8] and Section 3.3 for the detail of this verification.

On the Polling Problem for Social Networks 55

3.2 Properties of Protocol

In section 2.1, we already introduced the characteristics of the polling model.
It implies that our protocol should have some properties such that the system
can run correctly with (or without) the existence of dishonest nodes. Namely,
each honest node outputs the correct polling result, controls the impact from the
dishonest nodes, and not disclose its private information, whereas the dishonest
coalition could not control the polling process or fool an entire network without
being detected. In this section, we clarify those desirable properties by stating
what protocol should achieve with (or without) the existence of dishonest nodes
such as accuracy and privacy. We denote by u � x (or D � x, resp.) node u (or
coalition D, resp.) reveals vote x.

Privacy. The privacy property expresses the ability of the system to prevent the
private information from being leaked to the dishonest nodes. In other words,
the coalition could not reveal any information of particular honest node beyond
what it can deduce from its own vote, the output of computation and the shares
of votes.

Definition 1 (Privacy). The protocol is said private if the dishonest nodes
cannot learn anything about the vote of honest node. More formally, for any
honest node un with vote vn, there exists a negligible function ξ(k) such that:
Pr[D � vn] ≤ ξ(k).

Accuracy. We define the impact of dishonest nodes as the difference between
the output and the expected result. In our case, vote is either “+1” or “-1”, and
thus, with the system of N nodes, the maximum and minimum final results are
N and −N respectively. This implies the maximum difference amongst the final
outputs is 2N . As defined in [5], accuracy is given by the maximum impact with
respect to the maximum difference of the final outputs:

Λ =
1

2N
· max
n∈H(G)

Δ(resultn,
N−1∑
i=0

vi) (2)

where resultn is the output of the poll (see Algorithm 1). Here and through-
out this work, we denote by Δ(x, y) the difference between value x and y, i.e.,
Δ(x, y) = |x− y|.

Definition 2 (Accuracy). The protocol is said accurate if there exists a neg-
ligible function ξ(k) such that Λ ≤ ξ(k).

3.3 Protocol and Graph with Dishonest Nodes

We consider graphs of family G2 (see graph model on page 50) and analyze the
correctness (including privacy, accuracy and termination) of our protocol when
deployed with graphs of G2. Next we give spatial, message and time complexities.
Finally, we show properties of G2 are necessary and sufficient condition to ensure
the correctness of our protocol. All proofs are given in full details in [14].

56 B.T. Hoang and A. Imine

Privacy. When deploying protocol in graphs of family G2, we have the following
results: (i) A vote of one node is revealed with certainty if and only if k + 1
direct neighbors receive the shares corresponding to that vote (see [14, Lemma
3]); (ii) the probability that dishonest coalition reveals vote of a given honest
node is bounded by

∑2k
m=k+1

(
D
N

)m
.
(
1
2

)2k+1−m, protocol is private for k � N
or D � N (see [14, Lemma 4]); (iii) the maximum number of votes revealed by
coalition D is 2D with D ≤ N/5 (see [14, Corollary 1]).

Accuracy. We shows that in our protocol, there is no lost information in send-
ing/receiving messages by using shortest path scheme. Even in the network with
privacy conscious settings in which each node un has no knowledge to calcu-
late bounds for the path lengths between it and source us, our protocol can
be adapted by the following approach: in the broadcasting phase, node un does
action 2 without checking condition ls ∈

[
δ(us, un), δL(us, un)

]
(see [14, Lemma

5, Corollary 3]). In our protocol, one honest node affects at most 2k + 2 and
4k + 2 to the final result in the sharing and broadcasting phases, respectively.
And thus, the maximum impact from the dishonest coalition D is (6k + 4)D
(see [14, Lemmas 6-9] for more details). Moreover, the accuracy is preserved by
the verification process in the protocol. The final result of our protocol is based
on the information stored in Cn[s]. In normal case, this set contains one and
only one correct value. However, dishonest nodes can promote their votes by
modifying the content of the broadcast/forwarded messages and thus, Cn[s] can
contain distinct values. In that case, we start the verification process to get cor-
rect value (see [14, Lemma 8] for more details). For example, in Figure 2, node n
receives two values from source s, one directly from s (+3) and one from v (-3).
In this case n does not know whether s sent two different values or v modified
s’s value, and thus it asks for routing tables of its neighbors. As motivated in
Section 2.1, we do not take into account the Sybil attacks, spam, and wrongfully
blaming since these kinds of attacks are already detected by several practical
systems. Therefore, without Sybil attacks, dishonest nodes can change contents
of the message, except identity of the source and cannot create any forged mes-
sages containing identity of other nodes. Moreover, without wrongfully blame,
dishonest nodes cannot spoof incorrect routing table. In Figure 2a (and similar
explanation in Figure 2b), this situation cannot occur: s replies to n that s sent
to v value +3 (same as the one it sent to n). Otherwise, s will indirectly wrong-
fully accuse v as dishonest node, because according to information from s, v later
forwards to n different value from the one it received from s, and thus, v must
be dishonest and tagged. Actually, in a system that honest nodes are majority,
the probability for one dishonest nodes to be exposed when wrongly accusing
honest ones is high. Like in the example, if v is wrongly accused only by a small
number of nodes, the allegation would be in doubt and not be considered, and
the accuser s would be finally backfired. By the way, we do not allow this kind
of blame in the system, and assume that no node would like to be tagged as
dishonest which does not wrongly blame other nodes.

Termination. In the sharing phase, each node sends and receives a finite num-
ber of messages, that is 2k+1. In the broadcasting phase, each node un receives

On the Polling Problem for Social Networks 57

+3

s

n

−3 ��

−3

v

Cn[s] = {+3,−3}
��

(a) Case 1

+3

s

n

−3 ��

−3

v

Cn[s] = {+3,−3}
��

(b) Case 2

Fig. 2. Intention of the dishonest nodes

and forwards the finite number of messages from source us, because it just re-
ceives message passed by the path of length inside the interval

[
δ(s, n), δL(s, n)

]
,

not all messages departing from s. Moreover, as there is no loop, each phase ter-
minates correctly and the algorithm has a finite number of steps. Therefore, it
is guaranteed our protocol terminates.

Complexities. For a node un: the number of messages it sends and forwards is
O(N.D.dn + k), and the total space it must hold is O(N.D.dn). In addition, if
we assume the system is synchronous one (computation is performed under one
or many rounds), then the protocol operates in O(k+N2)rounds. The details of
these results are given in [14, Propositions 4-6]).

Main Result. From the results above about privacy, accuracy and termina-
tion, we observe that when deployed the protocol in the graphs of family G2,
the protocol performs correctly. Furthermore, considering a graph G, to deploy
correctly the protocol, G must satisfy the condition of the properties Pg1 , Pg2

and Pg3 (more details in [14, Theorem 2]). This implies the properties of G2 are
the necessary and sufficient condition for the polling protocol to be performed
correctly in the system containing dishonest nodes.

4 Experimental Evaluation

We perform this evaluation to analyse the correctness of the protocol by ob-
serving the difference between experiment output and the theoretical bounds. In
the experiments, we use UDP and asynchrony for exchanging messages without
crash or message loss. We implement protocol by using framework YALPS5 to
demonstrate the communication amongst nodes and facilitate the development
and testing of the applications. In our experiments, we consider the worst case for
the system: each dishonest node sends 2k+1 shares of value “-1” and converts all
receiving shares of “1” into ones of “-1”. Thus, it affects to the final result at most
6k+4 (including the impact of 2k+2 in the sharing phase and 2(2k+1) = 4k+2 in
the broadcasting phase). If we denote by α number of nodes voting “+1”, then the
expected result will be αN − (1−α)N = (2α− 1)N . So theoretically, the biased
final outcome should be inside the interval [(2α− 1)N − (6k + 4)D; (2α− 1)N].

We examine the experiment with same value of N and D as [7,8]. W.l.o.g.,
we consider α value in the interval [0.5, 1.0]. Figure 3 depicts our results for
5 http://yalps.gforge.inria.fr/

58 B.T. Hoang and A. Imine

-200

-100

 0

 100

 200

 300

 400

 0.5 0.6 0.7 0.8 0.9 1

R
es

ul
t

α

Average result
Expected result

Theoretical lower bound
Regression line

Theoretical biased result

(a) k = 1

-200

-100

 0

 100

 200

 300

 400

 0.5 0.6 0.7 0.8 0.9 1

R
es

ul
t

α

Average result
Expected result

Theoretical lower bound
Regression line

Theoretical biased result

(b) k = 2

Fig. 3. Experiment with N = 400, D = 19 to check the accuracy of protocol

the network with N = 400, D = 19 in two subcases k = 1 (in Figure 3a) and
k = 2 (in Figure 3b). In each test case, we compute the average output of all
nodes and represent it as a point in the figure. We see that all experimental
results are inside two theoretical bounds (thick-dashed line and dot-dashed line)
and the average impact from dishonest coalition is less than 6k + 4. Moreover,
there is no data point having the expected value. The reason we obtained this
consequence comes from the fact the amount of average impact depends on the
number of shares “+1” one dishonest node receives from neighbors. Namely, a
dishonest node gets average k + α shares of “+1” and turns into shares of “-1”,
and affects 2(k + α) in total. It also gives impact of value 2k + 2 in the sharing
phase. Consequently, the total impact is 2k+2+2(k+α) = 4k+2α+2 and the
average biased outcome is (2α− 1)N − (4k+ 2α+ 2)D (a thin-dotted line). We
try to fit our data points with a regression line a(2α− 1)− b(4k + 2α+ 2) and
obtain these values (depicted as a solid line in Figure 3): for k = 1: a = 385 and
b = 17, and for k = 2: a = 373 and b = 16. These parameters are quite accurate
comparing to conditions N = 400 and D = 19.

In Figure 3, we also discover that the impact from the dishonest nodes in case
k = 2 is greater than in case k = 1. This result is reasonable since we know
that the higher value k is, the higher privacy can be hold but the higher impact
dishonest nodes can enforce, and so, the worse the final outcome is. Besides, all
nodes output the correct results (or the final result greater than 0): for k = 1
when α ≥ 0.67, and for k = 2 when α ≥ 0.75. It means the dishonest nodes
confuse the majority of nodes for k = 1 when α < 0.67, and for k = 2 when
α < 0.75. Comparing to other recent polling protocols like [7,8], that value of α
in our experiment is similar to them.

5 Related Work

We present here some recent works related to distributed polling protocols. We
focus on the ones which are not based on any overlay structure and cryptographic

On the Polling Problem for Social Networks 59

technique. Secret sharing schemes with homomorphisms property in [1] can be
used for polling with respect to addition. Nevertheless, it does not give protection
for the initial shares with the existence of dishonest nodes, and thus, the final
result is likely impacted. Under the assumption about the majority of the honest
nodes in the system, Verifialable Secret Sharing Scheme (VSS) and Multi-party
Computation protocol (MPC) [12] privately compute the node’s shares and get
the output with small error. However, these techniques use cryptography and do
not control the initial input. Thus, a dishonest node can share an arbitrary data,
and bias the output. Other later researches based on MPC such as [2,3] have
improved the time and communication complexity, but they still use cryptogra-
phy. AMPC [10] provided users anonymity without using cryptography but this
structure used the notion of group. E-voting protocol [9], based on AMPC and
enhanced check vectors, is the information-theoretically secure protocol. But it
defines different roles for users and thus, is different from our direction.

DPol [7,8] is a simple distributed polling protocol in a social network without
using cryptography where nodes are concerned about their reputation. It en-
sures privacy and accuracy despite the presence of dishonest nodes by means of
combination of secret sharing and verification procedures. By the way, DPol also
remains some shortcomings. Firstly, DPol relies on a cluster-ring-based struc-
ture, which is on top and really apart from the social graph. It does not take
into account any social links between nodes in the sense that it uses the uniform
assignment of nodes to group. This is not practical as we have to target a special
one using notion of group instead of reserving the normal structure of the graph.
Moreover, the number of nodes should be a perfect square such that a graph
with N nodes can be divided into

√
N groups of size

√
N . On the contrary, we

propose a protocol deployed in a more general structure. We can observe that
the graphs of family G2 includes the overlay structure presenting DPol (see full
details in [14]). Likewise, AG-S3 [5] can be used for polling in a scalable and
secure way, but it uses the same structure as DPol.

6 Conclusion

In this paper, we proposed a design of a distributed polling protocol and defined
a family of social graphs. We proved the structures of our family of graphs con-
stitute necessary and sufficient condition to assure privacy and accuracy prop-
erties of the protocol with the presence of dishonest nodes. To detect dishonest
nodes’ misbehaviors, we presented verification procedures by using routing table
and shortest path scheme. Furthermore, a small but useful technique based on
shortest path scheme was introduced to prevent a node from receiving/sending
so many duplicated messages without losing any necessary information. Unlike
other works, we considered a protocol with a more general family of graphs, but
obtained some similar results. More specifically, we achieved the same maximum
number of votes that dishonest coalition can reveal, and the same impact from
the coalition to the final output. In the future work, we plan to design an effi-
cient polling protocol that can be deployed in the real-world network with the
presence of failure and message loss.

60 B.T. Hoang and A. Imine

References

1. Benaloh, J.C.: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer,
Heidelberg (1987)

2. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable Multi-
party Computation with Nearly Optimal Work and Resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

3. Damgård, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

4. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive Birds:
Privacy in Population Protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 329–342. Springer, Heidelberg (2007)

5. Giurgiu, A., Guerraoui, R., Huguenin, K., Kermarrec, A.-M.: Computing in Social
Networks. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS,
vol. 6366, pp. 332–346. Springer, Heidelberg (2010)

6. Gubichev, A., Bedathur, S.J., Seufert, S., Weikum, G.: Fast and accurate estima-
tion of shortest paths in large graphs. In: CIKM, pp. 499–508 (2010)

7. Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M.: Decentralized Polling
with Respectable Participants. In: OPODIS, pp. 144–158 (2009)

8. Guerraoui, R., Huguenin, K., Kermarrec, A.-M., Monod, M., Vigfusson, Y.: Decen-
tralized polling with respectable participants. J. Parallel Distrib. Comput. 72(1),
13–26 (2012)

9. Malkhi, D., Margo, O., Pavlov, E.: E-voting without ’Cryptography’ (Extended
Abstract). In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 1–15. Springer, Hei-
delberg (2003)

10. Malkhi, D., Pavlov, E.: Anonymity without ‘Cryptography’ (Extended Abstract).
In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 117–135. Springer, Heidel-
berg (2002)

11. Mislove, A., Post, A., Druschel, P., Gummadi, P.K.: Ostra: Leveraging trust to
thwart unwanted communication. In: Crowcroft, J., Dahlin, M. (eds.) NSDI, pp.
15–30. USENIX Association (2008)

12. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Johnson, D.S. (ed.) STOC, pp. 73–85.
ACM (1989)

13. Sirivianos, M., Kim, K., Yang, X.: Socialfilter: Introducing social trust to collabo-
rative spam mitigation. In: INFOCOM, pp. 2300–2308 (2011)

14. Thien, H.B., Imine, A.: On the Polling Problem for Social Networks. Research
Report RR-8055, INRIA (2012)

15. Tran, D.N., Min, B., Li, J., Subramanian, L.: Sybil-resilient online content voting.
In: Rexford, J., Sirer, E.G. (eds.) NSDI, pp. 15–28. USENIX Association (2009)

16. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social
network defense against sybil attacks. IEEE/ACM Trans. Netw. 18(3), 885–898
(2010)

17. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.D.: Sybilguard: defending
against sybil attacks via social networks. IEEE/ACM Trans. Netw. 16(3), 576–
589 (2008)

Non-deterministic Population Protocols

Joffroy Beauquier1,2, Janna Burman1,2, Laurent Rosaz1, and Brigitte Rozoy1,2

1 LRI, Université Paris Sud XI, France
2 INRIA Saclay - Ile de France, Grand Large project

{jb,burman,rozoy,rosaz}@lri.fr

Abstract. In this paper we show that, in terms of generated output lan-
guages, non-deterministic population protocols are strictly more powerful
than deterministic ones. Analyzing the reason for this negative result, we
propose two slightly enhanced models, in which non-deterministic pop-
ulation protocols can be exactly simulated by deterministic ones. First,
we consider a model in which interactions are not only between cou-
ples of agents, but also between triples and in which non-uniform initial
states are allowed. We generalize this transformation and we prove a
general property for a model with interactions between any number of
agents. Second, we simulate any non-deterministic population protocol
by a deterministic one in a model where a configuration can have an
empty output.

Non-deterministic and deterministic population protocols are then
compared in terms of inclusion of their output languages, that is, in
terms of solvability of problems. We present a transformation realizing
this inclusion. It uses (again) the natural model with interactions of
triples, but does not need non-uniform initial states. As before, this re-
sult is generalized for the natural model with interactions between any
number of agents.

Note that the transformations in the paper apply to a whole class of
non-deterministic population protocols (for a proposedmodel), in contrast
with the transformations proposed in previousworks, which apply only to a
specific sub-class of protocols (satisfying a so called “elasticity” condition).

1 Introduction

Population protocols have been introduced [2] as a computation model (of func-
tions or predicates) for asynchronous networks of simple (anonymous, resource
limited) mobile agents, interacting pairwise. A characterization of what can be
computed in this model is given in [4], namely the first order predicates in
Presburger arithmetic. There, the protocols are assumed to be deterministic,
meaning that, when two agents interact, there is a unique executable transition.
The computational power of non-deterministic population protocols has been
only partially studied in [1,5].

The question concerning the comparison, in terms of computability and ex-
pressiveness, of deterministic and non-deterministic machines is a natural ques-
tion in all computation models. Concerning population protocols, this question
appears at different levels.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 61–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 J. Beauquier et al.

As population protocols were originally introduced in the context of function
and predicate computation [2], at the first level, the question is whether or
not deterministic and non-deterministic population protocols compute the same
functions and the same predicates (in the sense of [2,4]).

The second level concerns expressiveness in general. Some common method
to define any problem (and not only a problem of function or predicate com-
putation) is to define a set of (correct) execution sequences (see, e.g., [10]). An
execution of a population protocol generates an output sequence, each configu-
ration being associated to an output value. Thus, a problem can be also defined
by the set of (correct) output sequences. Then, a population protocol can be de-
fined to solve a problem, if its (non-empty) set of output sequences is included in
the set of output sequences characterizing the problem.1 At this level, the ques-
tion is whether or not non-deterministic population protocols solve the same
family of problems as the deterministic ones. In other words, are they equiva-
lent in terms of the problems they can solve? This issue is not only theoreti-
cal. Indeed, implementing non-determinism is usually made by randomization.
However, non-determinism is not randomization. Why using randomization, if
a deterministic solution for the same problem is available? At the same time,
designing a non-deterministic solution is sometimes easier and more elegant than
the equivalent deterministic one. Thus, the availability of automatic transform-
ers of non-deterministic protocols into deterministic ones, could be of some help
for a developer. Note that such transformers are generally a by-product of the
study on expressiveness.

The third level concerns the generating power of population protocols. In finite
automata and language theory, a label is associated to each transition, so that an
execution generates a word, and an automaton produces a language. The Rabin
and Scott construction [9] shows that, in terms of generated languages, non-
deterministic and deterministic finite automata are equivalent, both generating
the family of regular languages. However, language theory is related to program-
ming language analysis and compilation, so its tools and outcomes hardly apply
in a model of mobile agents. For instance, the definitions of non/determinism in
population protocols are very different. Even if the rules defining a population
protocol are deterministic, the resulting global transition system is not, because
of the unpredictable interactions assumed between the agents. What is more rel-
evant for the study of the generating power of population protocols is to consider
and compare (for equivalence or inclusion) the generated languages of output
sequences.

To motivate the study on this third level, note that proving inclusion of the
output language of a protocol in the output language of another one implies that
the former protocol solves the same problem as the latter. This may appear use-
ful in practice, as already explained before in context of solvability of problems.

1 One can see the terms “problem”, “output sequence” and “solving a problem” as
equivalent to the terms “behavior”, “output trace” and “implementing a behavior”,
respectively. These terms are used in the literature about population protocols as
well (see, e.g., [5,7]).

Non-deterministic Population Protocols 63

At the same time, having equivalence of generated output languages can be also
of practical help. For instance, if an implementation of a deterministic version of
a protocol is preferable to that of a non-deterministic one (e.g., due to some de-
velopment cost reasons), it can be useful and even necessary to have the same set
of output sequences generated by the corresponding deterministic protocol. For
instance, one reason may be efficiency in terms of time complexity. That is, e.g.,
the average complexity or the complexity of prevalent execution scenarios could
be much better when concerning the larger set of executions/output sequences.
Another reason may be the necessity to perform statistics over the whole set
of execution/output sequences that can be generated by the non-deterministic
protocol. Thus, it will be helpful to study whether the deterministic version of
the protocol generates the same language.

Now, we summarize what is already known and what are the new results in
this paper about population protocols in terms of the three types of questions
explained above. First, the question about the computational power (in terms of
predicate or function computability) of non-deterministic population protocols
has been already raised in [3]. One can consider it received an answer in [1],
where it is actually only stated that the non-deterministic population protocols
compute exactly the Presburger predicates, exactly like the deterministic ones.2

In the context of problem solvability in general, (rather than in the context of
computability of predicates or functions), [5] proves that the protocols solving
the, so called, elastic problems (elastic behaviors, in terms of [5]), have a deter-
ministic counterpart solving the same problem. To define elastic problem, first,
define the repetition closure of a sequence t as the set of sequences obtainable
from t by repeating each element of t one or more times. Extend this definition
to a set of sequences O by taking the union of repetition closures of every se-
quence t ∈ O. Then, O is said elastic if it is closed by repetition closure. An
elastic problem is a problem characterized by an elastic set of output sequences.
Note however that this result of [5] does not imply that the output language
of the deterministic counterpart is included in the output language of the given
non-deterministic protocol. Still, one can deduce the following different result
for some smaller class of protocols that we call strongly elastic.

A population protocol is strongly elastic, if for every rule (p, q) → (p′, q′)
of the protocol, there is an idempotent rule (p, q) → (p, q). Then, it can be
easily deduced from [5] that, if a problem is elastic and if there exists a strongly
elastic non-deterministic population protocol solving this problem, then there
exists a transformation giving a deterministic population protocol solving the
same problem and moreover, with an output language included in the output
language of the non-deterministic protocol.

However, the transformation in [5] does not provide the equality between the
output languages of the strongly elastic non-deterministic population protocol
and of its deterministic transformed version. In this paper, we study a way to

2 In some unpublished submitted version, one can find only the sketch of proof of the
statement. There, the proof uses a transformation technique also used in [5] and one
can understand how a complete equivalence proof would use this transformation.

64 J. Beauquier et al.

obtain such an equality for population protocols in general (Sec. 3). Unfortu-
nately, we come with a counter example (Sec. 3.1). When studying carefully the
reason for this negative result, it appears that a natural way for simulating the
non-determinism in the transitions of a non-deterministic population protocol is
to use the non-determinism in the interactions between the agents. The negative
result comes from the fact that, when there are not enough possible interactions
between agents, a high degree of non-determinism in the transitions cannot be
simulated.

In order to circumvent this negative result, we propose (in Sec. 3.2) to increase
the number of possible interactions by allowing interactions between more than
two agents. Without changing the total number of agents, this allows more non-
determinism. As a matter of fact, we prove that a non-deterministic population
protocol with pairwise interactions can be exactly simulated by a deterministic
population protocol with three agent interactions, under the assumption that
the initial states of the agents may be different. We show how this result can be
generalized to k agent interactions, for any integer k > 1.

A second attempt to obtain equality of output languages consists in modifying
slightly the definition of what can be an output value of a configuration (Sec. 3.3).
Thus, an empty output value for a configuration is introduced such that, when it
appears in the output sequence, it is taken as an identity element. We show that,
in this extended model, the equality of output languages of non-deterministic
and deterministic population protocols is obtained.

The results about equality of output languages yield also results about in-
clusion. However, we try to weaken the assumptions (that are made to obtain
equality) in order to obtain stronger results about inclusion. It happens that,
when considering interactions with more than two agents, we do not need non-
uniform initial agent states, as we assume to obtain equality (see Sec. 4). This
involves that, if the model does not restrict the number of agents in the interac-
tions, non-deterministic and deterministic population protocols are equivalent,
in terms of solvability of problems.

Due to the lack of space, some of the proofs are omitted or sketched. Complete
proofs can be found in the extended version of this paper [6].

2 Basic Model and Notations

As a basic model, we use the model of population protocols, as defined in [5,7].
A population Â consists of a set A of n agents together with a weakly connected
directed graph G(A, E). An agent represents a finite state sensing device and n
is unknown to the agents. G(A, E) is called the interaction (or communication)
graph, where E ⊆ A × A. An edge (u, v) ∈ E represents the possibility of a
communication (an interaction) between u and v in which u is the initiator and
v is the responder.

Population protocols can be modeled as transition systems. Thus, each agent is
represented by the same finite transition system. The states of agents are from a
finite set Q. Each agent has a constant input value and different agents may have

Non-deterministic Population Protocols 65

different input values. For simplicity and as we assume constant input values, we
consider the inputs as a part of the state of an agent. There is an output value
associated to each state of an agent. A transition function δ maps each element
of Q × Q to a subset of Q × Q. Let (p, q) ∈ Q × Q. If (p′, q′) ∈ δ(p, q), then
(p, q)→ (p′, q′) is called a transition, and (p, q)→ δ(p, q) is called a rule. When,
two agents u, in state p, and v, in state q, interact (meet), respectively playing
the roles of initiator and responder, they execute a transition (p, q) → (p′, q′)
such that (p′, q′) ∈ δ(p, q). As a result, u changes its state from p to p′ and v from
q to q′. It is possible that p = p′ and/or q = q′. The transition function and the
protocol are deterministic, if δ(p, q) always contains just one pair of states (in
other words, if each rule provides just one transition). Otherwise, if |δ(p, q)| =
k > 1, δ and the protocol are said non-deterministic (then u, v execute one of
the k transitions in δ(p, q) chosen non-deterministically). Let us call k the degree
of non-determinism of the rule (p, q)→ δ(p, q). Let d = max(p,q)∈Q×Q{|δ(p, q)|}
be the degree of non-determinism of δ and of the protocol. For simplicity, for any
non-deterministic protocol, if for some (p, q) ∈ Q×Q, |δ(p, q)| < d, we duplicate
some pairs of states in δ(p, q) in order to obtain |δ(p, q)| = d. Thus, w.l.o.g., we
assume that ∀(p, q) ∈ Q×Q, |δ(p, q)| = d.

A population protocol is also a finite transition system whose states are called
configurations. A configuration is a mapping C : A → Q. A subset of configura-
tions C0 defines the initial configurations. We say that C goes to C′ via pair (inter-

action) π = (u, v), denoted C
π→ C′, if the pair (C′(u), C′(v)) is in δ(C(u), C(v))

and for all w ∈ A\{u, v}, C′(w) = C(w). We say that C can go to C′ in one step

(or C′ is reachable in one step from C), denoted C → C′, if C
π→ C′ for some

edge π ∈ E. If there is a sequence of configurations C = C0, C1, . . . , Ck = C′,
such that Ci → Ci+1 for all i, 0 ≤ i < k, we say that C′ is reachable from C,

denoted C
∗→ C′.

An execution is an infinite sequence of configurations C0, C1, C2, . . . such that
C0 ∈ C0 and for each i, Ci → Ci+1. The output of a configuration C is the multi-
set of the output values of agents in C. The output word (or the output trace) of
an execution e = C0, C1, C2 . . . is a sequence O0, O1, O2, . . . resulting from the
concatenation of the successive outputs of the configurations of e. That is, for
all i ≥ 0, Oi is the output of the configuration Ci. The set of output words of a
protocol P is called the (generated) output language of the protocol and denoted
by L(P).

Let P1 and P2 be two protocols with sets of states Q1 and Q1×Q′ respectively,
for some set Q′. For a state s2 = [s1 s′] ∈ Q1 × Q′ of P2, where s1 ∈ Q1

and s′ ∈ Q′, ΠP1(s2) = s1. That is, ΠP1(s2) denotes the state of P1 which is
the projection of s2 on P1 (in other words, which is the mapping of s2 to the
state component of P1). We extend the notation of Π in the natural way to
configurations, sets of states or configurations, rules, transitions and executions.

A problem is defined by some conditions on executions, or equivalently by
the sub-set of the executions that satisfy the conditions. As an output word
associated to an execution can be defined to be the execution sequence itself (by
defining the output of each agent as being the whole state), a problem can be

66 J. Beauquier et al.

well defined by giving conditions only on output words. Thus, w.l.o.g. and for
the sake simplicity, we assume that a problem is defined by conditions on output
words, i.e., by a sub-set B of output words. A population protocol is said to solve
a problem, if and only if the set of its output words O is non-empty and each
output word o ∈ O satisfies the conditions defining the problem, i.e., o ∈ B or
equivalently, O ⊆ B (see, e.g., [10]).

The transition graph G(P, Â) of a protocol P running in population Â is
a directed graph whose nodes are all possible population configurations and
whose edges are all possible transitions on those nodes. A strongly connected
component of a directed graph is final iff no edge leads from a node in the
component to a node outside.

As originally for population protocols, we assume a strong fairness condition
on the executions that is called global fairness. An execution is said globally fair,
if for every two configurations C and C′ such that C → C′, if C occurs infinitely
often in the execution, then C′ also occurs infinitely often in the execution.

3 Results about Equality of Output Languages

In this section, we study the strong relation of equality between the sets of output
languages of deterministic and non-deterministic population protocols. First, we
give a negative result (Theorem 1, Sec. 3.1) showing that in the basic model of
Sec. 2, in terms of the equality between the sets of generated output languages,
non-deterministic protocols are more powerful. Then, in sections 3.2 and 3.3, we
propose two model extensions that allow to circumvent this negative result.

3.1 A Negative Result

The following example provides some simple preliminary intuition for the re-
sult stated in Theorem 1 below. Consider a population of two agents in the
initial configuration (q0, q0) and the non-deterministic protocol P with two rules
(q0, q0) → {(q0, q0), (q1, q1)} and (q1, q1) → (q0, q0). Assume that the output of
an agent in P is its state. Then, each output word is an infinite concatenation
of the output sequences of the form (q0, q0)

k, (q1, q1), for any positive integer k.
Thus, P has an output language of infinite size. However, the output language
of any deterministic protocol executing on two agents (with finite states) has a
finite size. This example proves the theorem below for two agent populations.
Note that the same argument is wrong in larger populations, since then, in-
tuitively, there exists a non-determinism in the choice of interactions that can
lead to an infinite output language size. In the proof of the theorem, we give an
example that works for a population of any size n.

Theorem 1. Given a population of size n, the set of output languages of non-
deterministic population protocols strictly contains the corresponding set of de-
terministic population protocols.

Non-deterministic Population Protocols 67

Proof. It consists in exhibiting an example of a non-deterministic protocol whose
output language is not equal to the output language of any deterministic protocol.

Consider a population of n agents and a non-deterministic population protocol
P . Let t = n · (n − 1). Let P to have a single non-deterministic rule (p0, p0) →
{(p1, p1), (p2, p2), . . . , (pt+1, pt+1)}, and t+1deterministic rules (p1, p1)→ (p0, p0),
(p2, p2) → (p0, p0), . . . , (pt+1, pt+1) → (p0, p0). Let oi be the output value asso-
ciated to a state pi. We choose oi = pi. The initial configuration of P is C0 =
(p0, p0, . . . , p0). Note that the output of C0 is the multi-setM0 = {p0, p0, . . . , p0}.
Assume, for the sake of contradiction, that there is a deterministic population pro-
tocol P ′ such that L(P ′) = L(P).

In P , consider all the prefixes of execution of a type e = (C0, C). There
are exactly t + 1 different configuration output prefixes corresponding to these
execution prefixes. Now, consider the concatenation of two such prefixes e e ,
which is also a prefix of a possible execution in P . The number of different
configuration output prefixes for e e is (t + 1)2, and more generally, for the
concatenation of k prefixes of e , the number is (t+1)k. Denote by Hk the set of
these output prefixes (|Hk| = (t + 1)k). Since L(P ′) = L(P), all the prefixes in
Hk are also output prefixes of P ′. However, if P ′ has a single configuration with
output {p0, p0, . . . , p0} = M0, P

′ can “generate” only t output prefixes of length
2, starting from C0. More generally, P ′ can “generate” only tk output prefixes
composed by concatenation of k output prefixes of length 2, starting from C0.
The number t = n · (n − 1) is the maximum number of different pairs of states
that n agents can have (with the distinction between initiator and responder).

Thus, since |Hk| = (t+ 1)k > tk, but L(P ′) = L(P), P ′ has necessarily more
than one configuration with output {p0, p0, . . . , p0} = M0. Assume then that P ′

has r different configurations with output M0. Each of them “generates” at most
tk different concatenated (k times) output prefixes of length 2 starting with C0.
That is, P ′ can “generate” at most r · tk different such output prefixes. However,
since L(P ′) = L(P), r · tk must be at least as large as (t+1)k. This involves that

r is at least as large as (t+1)k

tk
and that, for every integer k ≥ 1. A contradiction

arises from the fact that r is bounded by the number of the configurations of P ′

which is finite. ��

An immediate corollary from the proof of Theorem 1, is that one of the reasons
for the theorem correctness is the assumption that each agent in population
protocols has only a finite size state. One can also notice that the negative
result comes from the fact that, when there are not enough possible interactions
between agents, a high degree of non-determinism in the transitions cannot be
simulated by any deterministic protocol. That is why, increasing the number of
agents in an interaction, as in Sec. 3.2, allows to overcome the negative result.

3.2 Equality with Interactions of More than Two Agents

One way to increase the degree of non-determinism through the interactions of
agents is to consider a more general population protocol model, where the in-
teractions concern more than only two agents. The issue of considering such a

68 J. Beauquier et al.

generalization was raised already in [2], but to our knowledge, it was not dealt in
the literature in the context of non-deterministic protocols as in this work.Thus,
to obtain the desired equality of output languages, we consider interactions in-
volving more than two agents. Roughly, the idea is to assign a different inte-
ger from [1, d] to each agent, where d is the degree of non-determinism of the
given non-deterministic protocol. Then, we simulate deterministically the kth

(k ∈ [1, d]) choice of a non-deterministic transition between two agents u and v,
by an interaction between three agents u, v and an agent holding the integer k.

Let us denote by PPk the model of population protocols in which possible
interactions are between k agents or less. The definition of PPk follows the
definition of the basic model of population protocols in Sec. 2. However, for PPk,
we should generalize the definition of the transition function δ and the notion
of initiator and responder. During an interaction of k′ agents, u1, u2, . . . , uk′ ,
2 ≤ k′ ≤ k, we say that u1 is the initiator, u2 is the primary responder, u3 is
the secondary responder, and so on. Now, δ maps each element in Qk′

, for each
2 ≤ k′ ≤ k, to a subset of Qk′

. We first prove the following result.

Theorem 2. Consider a non-deterministic population protocol P1 with the de-
gree of non-determinism d. Let Â, be any population with n ≥ d + 2 and a
complete interaction graph. Given a protocol P1 executing on Â in PP2 (the ba-
sic model of Sec. 2), there exists a deterministic population protocol P2 executing
on Â in PP3 (with d + 2 non-uniform initial states)3 and generating the same
output language as P1.

The proof consists in, first, constructing for any population protocol P1 a deter-
ministic population protocol P2 and then, in proving that L(P1) = L(P2). Thus,
we first construct P2. As explained in Sec. 2, we assume, w.l.o.g., that all the
rules of P1 have the same degree d of non-determinism. The state of an agent
in P2 is a couple [p c], where p is a state of P1 (p is the projection of [p c] on
P1, denoted ΠP1([p c]) = p), and c is an input value of P2 which is an integer
in [1,m],m = d + 2. The purpose of c is to serve as a switch value to decide
deterministically, in P2, on a transition of a non-deterministic rule of P1. For
every initial configuration C0 of P1, there is one initial configuration C′0 of P2

such that ΠP1(C
′
0) = C0. We make an important assumption about the input

value c. During an execution, each value in [1,m] is the input value c of at least
one agent (in all this section, we assume n ≥ m). The output of the state [p c] in
P2 is the output of p in P1. To each rule (p, p′)→ {(p1, p′1), (p2, p′2), ..., (pd, p′d)}
of P1, the construction associates three types of deterministic rules of P2:

i. For c in [1, d], ([p c1], [p
′ c2], [q c])→ ([pc c1], [p

′
c c2], [q c])

ii. For c1 in [1, d], ([p c1], [p
′ c2])→ ([pc1 c1], [p

′
c1 c2])

iii. For c in {d+ 1, d+ 2}, ([p c1], [p
′ c2], [q c])→ ([pc2 c1], [p

′
c2 c2], [q c])

3 Note that this assumption cannot be used to assign identifiers to agents, if n� d+2.
As for population protocols, it is generally assumed that n� |Q|, that implies that
n� d+ 2. In any case, we show in the sequel (Sec. 4) that this assumption can be
dropped to obtain a weaker property of inclusion for the output languages.

Non-deterministic Population Protocols 69

The intuition behind the rules of P2 is, for any pair of states (p2, p
′
2) with

ΠP1(p2, p
′
2) = (p, p′), to be able to simulate any possible transition in the set

δ(p, p′) of P1, and this by executing only one transition of P2. For obtaining
the equality of output languages, it is important to be able to execute exactly
one transition for this purpose.4 Thus, the rule of type i. serves to execute a

projected transition (p, p′)
(u,v)→ (pc, p

′
c), for two agents u, v, in the case where

there exists another agent holding the switch input value c. Otherwise, the rules
of type ii. and iii. are provided for the case where the same “needed” switch
value is unique and held either by the initiator or by the primary responder
(respectively). Below, we prove the equality of the output languages of P1 and
P2. For that, we first prove the following basic lemma that actually validates the
intuitive ideas explained above.

Lemma 1. Let C2 be a configuration of the deterministic protocol P2 given by
the construction above. Let C1 = ΠP1(C2) and let C′1 be any configuration of P1

such that C1 → C′1. Then, there exist a configuration C′2 of P2 and C2 → C′2
such that C′1 = ΠP1(C

′
2).

Proof. Let C′1 be reachable from C1 by executing a transition (p, p′)→ (pi, p
′
i),

corresponding to the ith choice in δ(p, p′). As C1 is a projection of C2, in C2,
there are two agents, one in a state [p cp], and another one in a state [p′ cp′]. If
cp = i, then applying rule ii. of P2, in configuration C2, gives a configuration C′2
whose projection is C′1. Otherwise, if cp′ = i, then, by the construction of P2,
there are at least two agents with switch value equal to either d + 1 or d + 2.
Then, rule iii. can be applied in C2, which results in configuration C′2 whose
projection is C′1. In case neither cp, nor cp′ is equal to i, there is at least one
additional agent with a switch value equal to i. Then, rule i. can be applied in
C2, which results in configuration C′2 whose projection is C′1. Thus, in all cases,
C′2 is reachable from C2. ��

Proof (of Theorem 2). To prove the theorem, we first show that given any glob-
ally fair execution e2 of P2, its projection e1 = ΠP1(e2) is a globally fair execution
of P1 and thus the output word of e2 is in the output language of P1. Then, we
show that for every globally fair execution e1 of P1, there is a globally fair exe-
cution of P2 whose projection on P1 is e1 and thus, the output word of e1 is in
the output language of P2.

Thus, let e2 be a globally fair execution of P2. The projection e1 = ΠP1(e2)
is an execution of P1, since, by construction, the projection of each transition
of P2 is a transition of P1. In the following, we show that e1 is globally fair.
Let C1 be a configuration of P1 appearing infinitely often in e1, and let C′1
be a configuration reachable in one step from C1, C1 → C′1. Then, since e1 is
the projection of e2, there are infinitely many configurations appearing in e2,
whose projection is C1. Thus and by the finiteness of the states of the agents,

4 Note, however, that by changing the model definitions, e.g., for the output words of
a protocol, as in Sec. 3.3, it is possible to drop this requirement when still having
the equality of output languages for non/deterministic protocols.

70 J. Beauquier et al.

there is such a configuration C2, appearing infinitely often in e2. By Lemma
1, a configuration C′2 of P2 whose projection is C′1 is reachable from C2 in one
step. As e2 is globally fair, C′2 appears infinitely often in e2. Thus C′1 appears
infinitely often in e1. That proves that e1 is globally fair.

Now consider a globally fair execution e1 of P1. Consider the prefix of e1
of length r, er1, for some integer r ≥ 1 and assume (by induction on r) that
there exists a segment er2 , prefix of an execution of P2, with projection er1 on
P1 (the basis of the induction, for r = 1, holds by construction). Assume that
er+1
1 = (er−11 , C1, C

′
1) and er2 = (er−12 , C2). By Lemma 1, a configuration C′2 of P2

whose projection is C′1 is reachable from C2 in one step. Thus, there is a prefix
of an execution of P2, e

r+1
2 , whose projection on P1 is er+1

1 . Thus, by induction,
an execution e2 whose projection is e1 can be built. As e1 is globally fair and as
the switch values are constant, e2 is also globally fair. ��
The result of Theorem 2 can be generalized for any k.

Theorem 3. Consider any population Â with n ≥ d + k2 and complete in-
teraction graph. For any non-deterministic population protocol on Â in PPk,
there exists a deterministic population protocol on Â in PPk+1 (with d + k2

non-uniform initial states) with the same output language.

Proof Sketch. For the general case, we propose two kinds of transformation pro-
tocols in PPk+1. One, denoted P3, is a generalization of the protocol P2 (given
above for k = 2). Thus, in P3, for any k > 1, m = d+ k2. During any execution,
each value in [1,m] is the input value c of at least one agent. To each rule of P1,
(p1, p2, . . . , pk′) → {(p11, p12, . . . , p1k′), (p21, . . . , p2k′), . . . , (pd1, . . . , pdk′)}, for
2 ≤ k′ ≤ k, the construction associates two types of deterministic rules of P3:

i. For c in [1, d],
([p1 c1], [p2 c2], . . . , [pk′ ck

′
], [q c])→ ([pc1 c1]), [pc2 c2], . . . , [pck′ ck

′
], [q, c])

ii. For c in [d+ x · k + 1, d+ x · k + k] and for any integer x, 0 ≤ x < k′,
([p1 c1], [p2 c2], . . . , [p′k ck

′
], [q c])→ ([pcx1 c1], [pcx2 c2], . . . , [pcxk′ ck

′
], [q c])

Another transformation protocol to simulate the non-deterministic protocol P1,
denoted P ′3, differs from P3 by the value of m, the conditions on the inputs
and by the transition function δ. Thus, for P ′3, m = d. During any execution,
each value in [1,m] is the input value c of at least k+1 agents. To each rule of P1,
(p1, p2, . . . , pk′) → {(p11, p12, . . . , p1k′), (p21, . . . , p2k′), . . . , (pd1, . . . , pdk′)}, for
2 ≤ k′ ≤ k, the construction associates the following deterministic rule of P ′3:
([p1 c1], [p2 c2], . . . , [pk′ ck

′
], [q c])→ ([pc1 c1], [pc2 c2], . . . , [pck′ ck

′
], [q c]). To see

the correctness of the transformations, notice that Lem. 1 holds also for P3 and
P ′3. That is, given any configuration C3 of the transformed protocol (P3 or P ′3)
and its projection C1 on P1, for any C′1 such that C1 → C′1, there exists a con-
figuration C′3 such that C3 → C′3, and C′1 = ΠP1(C

′
3). The rest of the correctness

proof follows the proof of Theorem 2.5 ��
5 The required memory for an agent in P3 is larger than the one in P ′

3. However, when
k� d, P3 may be more advantageous. In this case, the state space requirements for
the two transformations differ only slightly, though the minimum number of agents
required by P ′

3 may be much larger than the one of P3.

Non-deterministic Population Protocols 71

3.3 Equality by Simulation with Empty Outputs

Theorem 1 states that there is no Rabin and Scott -like construction for popu-
lation protocols, at least with the original definitions of [5,7]. We note that the
negative property strongly depends on the definition of what an output value
can be. We think this definition can be changed, without reappraisal of the basic
model of population protocols. In the sequel, we investigate the way of modify-
ing the definition of the output of a configuration, in order to get an equivalence
result for the output languages. The idea we develop is to consider an empty
output ε for a configuration, serving as an identity element in the monoid gen-
erated by output values of configurations. That is, we allow the empty output
ε to be a possible output value for a configuration such that for any segment of
an output word o, (o, ε) = (ε, o) = o.

Intuitively, this idea of introducing empty outputs in the model can be help-
ful in the following way. For instance, assume that agents, in the deterministic
protocol (simulating the non-deterministic one), hold different integers used as
a switch to indicate one of the possible non-deterministic choices. These switch
values can be changed by the protocol. A problem arises when an agent u in a
state p, holding the switch value c, interacts with an agent v in a state q, but the
non-deterministic choice c′ has to be simulated to obtain a specific output word
(to obtain equality of output languages with the non-deterministic protocol). In
this situation, one would like to perform some transitions (called null-transitions,
in the sequel) to obtain a configuration where the switch value c′ is in u and
the rest of the states of u and v stays unchanged. However, the outputs of the
intermediary configurations reached by these null-transitions are repetitions of
the same value. This may result in an output word that is not in the output lan-
guage of the corresponding non-deterministic protocol. With empty outputs, it
is possible to remove such repetitions of the same output and obtain the equality
of the output languages. Notice that a difficulty comes from the fact that the
same configuration can be reached either by a null or a non-null-transition. In
the first case, it is required to output the empty output, but not in the second.

Theorem 4. In terms of generated output languages, the non-deterministic and
the deterministic population protocols are equivalent in the model allowing empty
outputs for configurations.

To prove the theorem, we present a general technique to transform the rules of
any non-deterministic population protocol P1 into the deterministic rules of a
population protocol P3, in the model with empty outputs. Next, we prove that
L(P1) = L(P3) (see Theorem 5). The transformation we propose, denoted D,
takes as an input a protocol P1 and another deterministic transformation D′.
It is required that D′ applied to P1, denoted D′(P1), results in a deterministic
protocol P2 satisfying conditions defined in Property 1 below. We write P2 =
D′(P1) and P3 = D(D′(P1)). In the sequel, we show that there exists such a
transformation D′, e.g., the transformation presented in [5] (see Lem. 2). Recall
that this transformation (in [5]) only applies to some sub-class of protocols and

72 J. Beauquier et al.

does not provide the equality of languages for non/deterministic protocols even
for this sub-class.

We use the following definitions to state Property 1 and to define D. Let P and
P ′ be two protocols with sets of states Q and Q×Q′′ respectively, for some set
Q′′. A transition t of P ′, (p, q)→ (p′, q′), is called a (P -)null-transition, if (p, q) =
(p′, q′), but ΠP (p, q) = ΠP (p

′, q′). Two consecutive and different configurations
C1, C2 in an execution of P ′ are called (P -)similar, if C2 is obtained from C1 by
a P -null-transition (that is, ΠP (C1) = ΠP (C2)).

Property 1. Let P1 be any non-deterministic population protocol with a set of
states Q1. Protocol P2 is said to satisfy Property 1, if it satisfies the following
conditions:

1. The protocol P2 is a deterministic protocol with a set of states Q1 ×Q′, for
some set Q′. The projection of the rules of P2 on P1, is the set of rules of P1.

2. The output of a configuration C in P2 is the output of the configuration
ΠP1(C) of P1.

3. For every initial configuration C0 of P1, there is one initial configuration C′0
of P2 such that ΠP1(C

′
0) = C0.

4. For every two configurations C,C′ of P2, if C → C′, then C = C′.
5. Let C2 be a configuration of P2 such that C1 = ΠP1(C2). Let C′1 be a

configuration of P1 such that C1 → C′1. Then, there exists a configuration

C′2 such that C2
∗→ C′2 and ΠP1(C

′
2) = C′1. In addition, C′2 is reachable

from C2 using a finite number of null transitions of P2, except for the last
transition that results in C′2.

Definition of the transformation D. The main idea of the transformation
D is to simulate P2 = D′(P1) (satisfying Property 1) while eliminating the effect
of the P1-null-transitions of P2 in the output words. This is done by introducing
empty outputs, for obtaining the equality of output languages. Now, we define
the protocol P3 = D(P2). Let Q1 and Q2 = Q1×Q′ be the sets of states of P1 and
P2, respectively. Starting from P2, we build a deterministic population protocol
P3, which has a lot of similarities with P2, but differs mainly in the definition
of states (configurations) and configuration outputs. The set of states of P3 is
Q3 = Q2 × Q2. Then, a configuration of P3 can be viewed as a pair (C∗, C)
of configurations of P2. For every transition (rule) of P2, (p, q) → (p′, q′), D
associates a transition ([p∗ p], [q∗ q]) → ([p p′], [q q′]) of P3. Thus, iff C → C′

in P2, then (C∗, C) → (C,C′) in P3. In an execution of P3, a component C∗

of a configuration (C∗, C) can be viewed as the previous configuration in the
corresponding execution of P2, and C can be viewed as the actual configuration.
The reason of doing that is to be able to locate P1-similar configurations in
an execution (resulting from the null-transitions in P2) and “eliminate” their
output from the output word. Thus, the output of a configuration (C∗, C) is
defined to be the empty output ε, if C∗ and C are P1-similar. Otherwise, the
output of (C∗, C) is the output of C in P2 (which is the output of ΠP1(C) in P1,
by Property 1). For every initial configuration C0 of P2, (C0, C0) is the initial
configuration of P3.

Non-deterministic Population Protocols 73

Due to the lack of space, the formal proof of the following theorem is omitted
and can be found in [6].

Theorem 5. Consider a population protocol model allowing empty outputs for
configurations. Let P1 be any non-deterministic population protocol and a proto-
col P2 = D′(P1) (satisfying Property 1). Let P3 = D(P2). Then, L(P1) = L(P3).

Lemma 2. Given any non-deterministic population protocol P1 and the trans-
formation D′ presented in [5], D′(P1) = P2 is a deterministic protocol satisfying
Property 1.

Proof. All conditions of Property 1, except the last, trivially hold for P2, by the
construction of D′ in [5]. Condition 5 holds by lemmas 3.1 and 3.2 in [5] and
the fact that the statements of these lemmas are achieved by executing P1-null-
transitions only, as it is shown in their proofs. ��

4 Inclusion with Interactions of More than Two Agents

In this section, we consider the weaker requirement of inclusion of output lan-
guages of non/deterministic protocols. A natural way to obtain that is, like in
Sec. 3.2, to allow interactions with three (or more) agents. The idea is to use
the secondary responder with a required switch value to be always able to exe-
cute deterministically any possible transition of the non-deterministic transition
function. It appears that, when only inclusion is required (in contrast with Sec.
3.2), it is not necessary for the switch values to be initially distinct. Indeed, we
provide a protocol (Protocol 1 below) that, starting from a symmetrical initial
configuration, distributes the different switch values between the agents. The
idea of Prot. 1 is to generalize a (circulating) leader election population protocol
proposed in [1] to manage several (instead of one) leader marks (which we call
here tokens). Note that Prot. 1 cannot be used to obtain equality.

Thus, we propose a deterministic protocol Prot. 1 that distributes tokens of
m (n ≥ m ≥ 1) different types (represented by integers in [1,m]) between n
agents. By Lem. 3 proven in [6], eventually, there is exactly one token of each
type and every agent holds at most one token.6

It is assumed that there are at least m agents and that initially, each agent
holds one token of each type. Note that these initial states are uniform and the
protocol works in any PPk model, for any integer k > 1.

Lemma 3. Eventually, in each configuration reached by an execution of Prot. 1,
there is exactly one token of each type and every agent holds at most one token.

6 Note that the property given by the lemma does not state that eventually the same
token stays with the same agent. On the contrary, the protocol ensures that the
tokens are always exchanged between the agents (lines 2-3). This makes the protocol
work for populations with interaction graph of any topology.

74 J. Beauquier et al.

Protocol 1. To distribute m tokens of different types between n agents

Initialization:
Every agent x has a set Tx = {t1, t2, . . . , tm} of m ≥ 1 different tokens. For every
pair of agents x, y, Tx = Ty .

1: when an initiator x interacts with a primary responder y do
2: if (Tx ∩ Ty) = ∅

∧
|Tx| = |Ty | then

3: T ′ ← Tx, Tx ← Ty, Ty ← T ′ // exchange the tokens
4: // distribute the tokens
5: if (Tx ∩ Ty) �= ∅

∧
(T ′ ← (Tx ∩ Ty) = {t′1, t′2, . . . , t′|T ′|}) then

6: Ty ← Ty \ {t′1, t′2, . . . , t′� |T ′|
2

�
}

7: if |T ′ > 1| then
8: Tx ← Tx \ {t′� |T ′|

2
�+1

, . . . , t′|T ′|}
9: if (Tx ∩ Ty) = ∅

∧
(dif ← |Tx| − |Ty|) > 1 ∧ (Tx = {tx1 , tx2 , . . . , tx|Tx|}) then

10: sizex ← |Tx|, sizey ← |Ty|
11: Tx ← {tx1 , . . . , tx� dif

2
�+sizey

}
12: Ty ← Ty ∪ {tx� dif

2
�+sizey+1

, . . . , txsizex}

Now, given a non-deterministic population protocol P1 in PP2 (or in PPk, for
any integer k > 1), we build a deterministic version PDI of P1 (given by Protocol
2 below) such that L(PDI) ⊆ L(P1) (see Theorem 6). That is, the deterministic
protocol PDI solves the same problems as P1. To build PDI, we combine Prot. 1
with protocol P2 (for PP3), or with its generalization P3 (for PPk+1), constructed
in Sec. 3.2. In the following, either of these protocols is denoted by P ∗. In Sec.
3.2, P ∗ is constructed in such a way that L(P1) = L(P ∗). For that, in particular,
non-uniform initial states are assumed by the transformations in Sec. 3.2. Here,
to achieve only inclusion, we can drop this assumption with the help of Prot. 1.

Thus, the composition PDI is obtained by taking the Cartesian product of
the state sets of Prot. 1 and P ∗, and by updating the states for each protocol
independently. The output of a configuration C in PDI is the output of the
configuration ΠP∗(C) in P ∗.

Theorem 6. Consider any population Â with n ≥ d + k2 and with complete
interaction graph. Let P1 be a non-deterministic population protocol in PPk (for
any integer k > 1) on population Â. Then, the protocol PDI, given by Pro-
tocol 2, is the deterministic version of P1 on Â in the model of PPk+1 such
that L(PDI) ⊆ L(P1). That is, the deterministic protocol PDI solves the same
problems for Â, in PPk+1, as the non-deterministic protocol P1, in PPk.

Proof. In the composition PDI, P ∗ reads the variables of Prot. 1 (the content
of the set of tokens T), on each interaction (lines 5,7, Prot. 2). However, Prot.
1 neither reads, nor writes in the variables of P ∗. Thus, for PDI, the condi-
tions of a fair composition [8,10] holds, as well as Lem. 3. Thus and by line 8,
eventually, the requirement of P ∗ on the switch values c is satisfied. That is, even-
tually, each value in [1,m] is the value c of at least one agent. Thus, eventually,

Non-deterministic Population Protocols 75

Protocol 2. PDI - deterministic transformation in PPk+1 with uniform initial
states
Initialization:

Initialize the variables of Prot. 1 and the switch variable cx of P ∗ to 1 (cx ← 1, for
every agent x ∈ A). Initialize the projection of states of PDI on P ∗ as in P ∗.

1: when interaction occurs do
2: 〈execute transition of Prot. 1〉
3: 〈execute transition of P ∗〉
4: for all agent x in the interaction do
5: if |Tx| > 1 then
6: cx ← 1
7: else if Tx = {ti} then
8: cx ← i

Lem. 1 holds for the projection of PDI on P ∗. Then, by Lem. 1, exactly as in
the proof of Theorem 2, one proves that given any globally fair execution e4 of
PDI, ΠP1(e4) is a globally fair execution of P1. Then, the output word of e4 is
in the output language of P1. ��

Acknowledgments. The authors would like to thank the reviewers for their
thoughtful comments and suggestions.

References

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably
Computable Properties of Network Graphs. In: Prasanna, V.K., Iyengar, S.S., Spi-
rakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer,
Heidelberg (2005)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC, pp. 290–299 (2004)

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. DC 18(4), 235–253 (2006)

4. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. DC 20(4), 279–304 (2007)

5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. TAAS 3(4) (2008)

6. Beauquier, J., Burman, J., Rosaz, L., Rozoy, B.: Non-deterministic population
protocols (extended version). Technical Report hal-00736261, INRIA (2012)

7. Fischer, M., Jiang, H.: Self-stabilizing Leader Election in Networks of Finite-
State Anonymous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

8. Herman, T.: Adaptivity through Distributed Convergence. Ph.D. Thesis. Univer-
sity of Texas at Austin (1991)

9. Rabin, M.O., Scott, D.: Finite automata and their decision problems 3(2), 114
(1959)

10. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press (2000)

Stochastic Modeling of Dynamic Distributed

Systems with Crash Recovery and Its
Application to Atomic Registers

Silvia Bonomi1, Andreas Klappenecker2,
Hyunyoung Lee2, and Jennifer L. Welch2

1 Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy
2 Texas A&M University, College Station, TX 77843–3112, USA

Abstract. In a dynamic distributed system, processes can join and leave
the system. We consider such a system in which processes are subject to
crash failures from which they may recover. Assuming a stochastic model
for joining, leaving, crashing, and recovering of processes, we provide a
probabilistic analysis of the long-term behavior of the system. As an
example of the utility of our modeling, we provide a specification and
implementation of an atomic register in such a system. The dynamic
nature of the system can cause all active processes to leave or crash,
leaving the system in a dormant state. We analyze the average time
spent in dormant states that can give us some insight into the behavior
of the register system.

Keywords: Stochastic Modeling, Dynamic Distributed System, Dynamic
Atomic Register.

1 Introduction

Dynamic distributed systems are characterized by the evolution of a set of pro-
cesses over time. Processes can join the system, participate in the computation,
and subsequently leave. Examples of such systems include data centers, peer-
to-peer systems, ad hoc networks, battery powered sensor networks, and many
more. Due to the dynamic nature of the system, one cannot, in general, precisely
predict the number of processes that will be in the system at a given time. How-
ever, it is often possible to give a stochastic model that describes the joining and
leaving behavior of the processes.

The voluntary arrival and departure of processes is not the only source of
dynamicity. Additionally, hardware and software errors may cause processes to
crash. Obviously, one cannot precisely predict the occurrence of, say, a hardware
failure. However, one can often give a fairly accurate stochastic model for such
failures in this case as well. Since it is often possible to find a remedy for the
crash (for instance, by replacing a faulty device by a new one or by rebooting a
computer), we allow for recovery from crashes.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 76–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Stochastic Modeling of Dynamic Distributed Systems 77

In this paper, we give a comprehensive stochastic model for joining, crash-
ing, recovering, and leaving of processes using a two-dimensional continuous-
time Markov model. Even though higher-dimensional Markov models often resist
analysis, we succeed in this case by determining its stationary distribution. This
allows us to determine the average time the system spends in dormant states
without active processes.

Our model is a good fit for distributed shared storage systems. Distributed
storage systems often have to deal with large fluctuations in load; for example,
the number of replicas can be increased to perform local reads efficiently and can
be decreased in periods of low load to reallocate resources. Furthermore, if the
processes are prone to crash, it makes sense to increase the number of replicas
in an effort to preserve the system state. As an example of the utility of our
model, we study a simple distributed shared storage system, i.e., a multi-writer
multi-reader atomic register. We propose a definition of atomicity that is tailored
for dynamic systems, provide the algorithms for joining, reading, writing, and
leaving, and give their correctness proofs. We also determine the average time
that the system spends in a dormant state during which a register might lose its
state.

2 Related Work

Churn Models. The study of the churn phenomenon has received much atten-
tion in recent years, especially in the context of peer-to-peer networks. Inspired
by real traces showing high churn rates and short session times in file-sharing
peer-to-peer systems (e.g. [6] and [12]), some probabilistic models of the session
time have been presented [12] trying to mathematically represent the evolution
of a peer-to-peer network. Many studies have been carried out to model and eval-
uate the resiliency of an overlay network with respect to the continuous arrival
and departure of processes. In particular, Poisson-based models for arrival and
departure have been considered [19], [16] as well as non-exponential distribution
for the lifetime [18].

All these models provide a probabilistic distribution on the number of pro-
cesses in the network but they do not consider the possibility of a recovery after
a failure, i.e., leaves are passive and considered equivalent to failures and a pos-
sible recovery is addressed as a new join. This modeling choice is motivated by
the fact that in an overlay maintenance protocol, the state of the computation
depends on the current composition of the network and it evolves over time as
a consequence of the churn; thus, there is no need to consider explicitly a re-
covery procedure as it is equivalent to a new join. Our model is instead suitable
for applications that maintain a global state independent of the membership of
the system (e.g., the value of a register does not depend on the replicas that
implement the memory) and that can benefit from having different procedures
for crash recovery.

In [7], the authors studied how to reduce the effect of the churn on a dis-
tributed computation by intelligently selecting nodes running the application.

78 S. Bonomi et al.

In [1,21] infinite arrival models are presented, which capture the evolution of
the network removing the constraint of having a predefined and constant size n.
However such models do not give any indication how the joins or the leaves
happen. More recently, other models have been proposed to take into account
the process behavior by considering deterministic distributions [15], [5] on the
join and leave of nodes to make the analysis more tractable.

Registers in Churn Prone Environments. Several recent works (e.g., [2],
[9], [10], [11], [20]) address the implementation of registers in a dynamic dis-
tributed system characterized by quiescent1 churn. In [20], a Reconfigurable
Atomic Memory for Basic Object (RAMBO) is presented. RAMBO works on
top of a distributed system where processes can join and fail by crashing. In
RAMBO, the notion of churn is abstracted by a sequence of configurations.

In [2] Aguilera et al. showed that a crash-resilient atomic register can be
emulated without consensus and thus in a fully asynchronous distributed system,
provided that the number of reconfigurations is finite, and hence the churn is
quiescent. In this work, churn is assumed to be confined in specific time intervals
(reconfigurations) under the assumption that a minority of process departures
occur in such intervals.

In [4], the problem of building a regular register in a distributed system prone
to non-quiescent churn is considered. In particular, [4] shows that it is not possi-
ble to implement a regular register in a fully asynchronous system if the churn is
non-quiescent. Moreover, it provides two algorithms that solve the problem both
in a synchronous and in a partially synchronous system as soon as the churn rate
satisfies specific constraints.

In [14], the notion of a dynamic regular register, i.e. a regular register that
can lose its current state for a while due the to effect of churn, is introduced.
In more detail, a dynamic regular register behaves as a regular register as long
as at least one active process is in the system with the current state of the
register; if all the active processes leave, then the state of the register is lost until
processes again join and a write occurs. In this paper, we extend the probabilistic
model considered in [14] by explicitly taking into account failures and possible
recoveries.

In [3], Attiya et al. presented sharing memory atomically and robustly in
failure-prone asynchronous distributed systems, but without taking the churn
into consideration.

3 System Model

We consider a crash-prone dynamic distributed system in which processes con-
tinually enter and leave and are subject to repeated crashes from which they
can recover. Processes communicate with each other through a broadcast ser-
vice. We assume that processes have access to perfectly synchronized clocks and

1 Churn is said to be quiescent if there exists a time after which arrivals and departures
from the system stop long enough to allow the progress of the computation.

Stochastic Modeling of Dynamic Distributed Systems 79

that there is a bound, known to the processes, on the message delays. If process
p sends message m at time t using the broadcast service and if p stays in the
system throughout the time interval [t, t + δ], then for every process q that is
also in the system throughout the time interval [t, t+ δ], q receives m at exactly
time t + δ. In addition, if any process q that stays in the system throughout
[t, t+ δ] receives a broadcast message m at time t+ δ, then every process r that
stays in the system throughout [t, t + δ] receives m at time t + δ, regardless of
the behavior of the sending process p 2.

When a process enters the system, it executes a join protocol, after which it
is considered active. An active process may decide to leave the system, at which
time it executes a leave protocol. An active (or joining) process might crash at
some point, and a crashed process might recover; in the latter case, the process
executes a recovery protocol in order to become active again.

We divide the computation into eras with active processes and dormant peri-
ods without active processes. Specifically, let A(t) denote the number of active
processes at time t. We assume that at time 0 there are no active processes,
A(0) = 0. If t > 0 is a time with some active processes, A(t) > 0, then the era
containing t is the time interval [tb, te) with

tb := sup{s|s < t and A(s) = 0} and te := inf{s|s > t and A(s) = 0}.

Between two eras is a dormant period without active processes.

4 The Dynamic Model

Our goal is to model the number of active and crashed processes at any given time
in the system. We will use a two-dimensional Markov process for this purpose. In
general, it can be extremely challenging to analyze a higher-dimensional Markov
process, often leading to mathematical problems whose solution seems to elude
anyone.

Two-dimensional Markov Process. Let N0 denote the set of nonnegative integers
and P := N0 ×N0 the set of pairs of nonnegative integers.

The dynamics of the active and crashed processes can be modeled by a two-
dimensional Markov process. Indeed, let XA(t) and XC(t) respectively denote
the number of active and crashed processes at time t. Then

{(XA(t), XC(t)) : t ≥ 0}

is a continuous-time Markov process with states in P.
We assume that processes arrive following a Poisson process with rate λ > 0.

A joining process will either become active with probability pJA or immediately

2 A message service that provides only an upper bound δ on the delivery time can
easily be transformed into one with a precise delivery time δ because of the perfectly
synchronized clocks: the sender tags each message with the sending clock time t and
the recipient delays processing of the message until its clock reads t+ δ.

80 S. Bonomi et al.

crash with probability pJC , independent of other processes. Therefore, the exter-
nal arrival of active processes is governed by a Poisson process with rate λpJA,
and the external arrival of crashed processes is governed by a Poisson process
with rate λpJC .

We assume that the time T that an active process stays in the system until it
either leaves or crashes is exponentially distributed with parameter μA, written
shortly as T ∼ exp(μA). An active process will leave with probability pAL or
crash with probability pAC , independently of other processes. Applying Bernoulli
sampling to the time of the active process yields that the time TL until the
process leaves satisfies TL ∼ exp(μApAL), and the time TC until the process
crashes satisfies TC ∼ exp(μApAC). Thus, the time T until an active process
either leaves or crashes is indeed given by T = min{TL, TC}, as T ∼ exp(μA) =
exp(μApAL + μApAC).

Similarly, we assume that the time T ′ that a crashed process stays in the
system is exponentially distributed with parameter μC . A crashed process will
either recover with probability pCA or leave with probability pCL. Thus, the time
T ′R until a crashed process recovers is exponentially distributed with parameter
μCpCA, and the time T ′L until a crashed process passively leaves is exponentially
distributed with parameter μCpCL.

Given these assumptions, we can now summarize the entire Markov process. A
state of this Markov process is given by a pair x = (a, c) of nonnegative integers,
where a denotes the number of active processes and c denotes the number of
crashed processes. We assume that the transition rates from one state to the
next are exponentially distributed with the following transition rates:

q((a, c), (a+ 1, c)) = λpJA =: ι,

q((a, c), (a, c+ 1)) = λpJC =: κ,

q((a, c), (a− 1, c)) = aμApAL =: a μ,

q((a, c), (a, c− 1)) = cμCpCL =: c ν,

q((a, c), (a− 1, c+ 1)) = aμApAC =: aα,

q((a, c), (a+ 1, c− 1)) = cμCpCA =: c β,

q((a, c), (a, c)) = −
∑

y∈P q((a, c), y), and 0 otherwise. We will use the index-free
abbreviations α = μApAC for the crashing rate, β = μCpCA for the recovery rate,
μ = μApAL for the active leaving rate parameter, ν = μCpCL for the passive
leaving rate parameter, ι = λpJA for the joining rate of active processes, and
κ = λpJC for the joining rate of crashing processes. The state transitions are
illustrated in Fig. 1.

Ergodicity. A continuous-time Markov chain on the countable state space P =
N0 × N0 is called ergodic if and only if there exists a probability measure π
sastisfying the balance equations

π(x)
∑
y∈P

q(x, y) =
∑
y∈P

π(y)q(y, x)

Stochastic Modeling of Dynamic Distributed Systems 81

�� ��

�� �	

a+ 1, c− 1

(a+1)μ

��

(a+1)α

��

κ
���� ��

�� �	

a+ 1, c

(a+1)μ

��

(a+1)α

��

κ
��

cν
��

�� ��

�� �	

a+ 1, c+ 1

(a+1)μ

��

(c+1)ν

��

�� ��

�� �	

a, c− 1

aμ

��

ι

��

aα

��

κ
���� ��

�� �	

a, c

ι

��

aμ

��

aα

��

cβ

��

κ
��

cν
��

�� ��

�� �	

a, c+ 1

ι

��

aμ

��

(c+1)β

��

(c+1)ν

��

�� ��

�� �	

a− 1, c− 1

ι

��

κ
���� ��

�� �	

a− 1, c

ι

��

cβ

��

κ
��

cν
��

�� ��

�� �	

a− 1, c+ 1

ι

��

(c+1)β

��

(c+1)ν

��

Fig. 1. The state transitions of the two-dimensional Markov chain describing the dy-
namics of the number of active and crashed processes. All transitions concerning the
state (a, c) are shown.

for all x in P. A probability distribution π satisfying the balance equations
is called the stationary distribution. Loosely speaking, the balance equations
equate the probabilities that “flow out” of the state x with the probabilities
that “flow in”. In our case, the balance equations are given by

π(a, c)
(
ι+ κ+ aα+ aμ+ cν + cβ

)
= π(a− 1, c)ι+ π(a, c− 1)κ

+ π(a+ 1, c− 1)(a+ 1)α+ π(a+ 1, c)(a+ 1)μ

+ π(a, c+ 1)(c+ 1)ν + π(a− 1, c+ 1)(c+ 1)β

(1)

as one can verify by inspecting Fig. 1. The border cases π(0, c) and π(a, 0) can
be dealt with by setting π(−1, b) = 0 and π(b,−1) = 0 for all b.

The stationary distribution π of a Markov chain determines the long-term
behavior of the chain,

π(a, c) = lim
t→∞

Pr[(XA(t), XC(t)) = (a, c)].

Therefore, it is of considerable interest to determine the stationary distribution
of our Markov chain.

Stationary Distribution. Our next goal is to show that our Markov process is
ergodic by explicitly calculating its stationary distribution. It will be convenient
to first determine the total arrival rate λA of active processes and the total
arrival rate λC of crashed processes.

82 S. Bonomi et al.

The total arrival rate λA of active processes is given by the sum of the rate of
newly joining processes that become active and the rate of active processes that
recover from crashes,

λA = ι+ λCpCA. (2)

Similarly, the total arrival rate λC of crashed processes is given by the sum of the
rate of newly joining processes that immediately crash and the rate of already
active processes that crash,

λC = κ+ λApAC . (3)

Solving the system of linear equations resulting from (2) and (3) yields

λA =
ι+ κpCA

1− pACpCA
and λC =

ιpAC + κ

1− pACpCA
. (4)

Theorem 1. The stationary distribution of our Markov process is given by

π(a, c) = exp(−λA/μA)
1

a!

(
λA

μA

)a

exp(−λC/μC)
1

c!

(
λC

μC

)c

, (5)

where a and c are nonnegative integers.

Proof. Since π is the product measure of a Poisson measure with mean λA/μA

and a Poisson measure with mean λC/μC , it is in particular a probability mea-
sure. It remains to show that π satisfies the balance equations.

Let us first assume that a > 0 and c > 0. The left hand side of (1) can be
simplified as follows:

π(a, c)
(
ι+ κ+ aα+ aμ+ cν + cβ

)
= π(a, c)(λ + μAa+ μCc).

We will show next that the right hand side of (1) can be simplified to the same
form when π is of the form (5). The definition of π implies the following equalities:

π(a+ 1, c) = π(a, c)
λA

μA(a+ 1)
, π(a, c+ 1) = π(a, c)

λC

μC(c+ 1)
,

π(a− 1, c) = π(a, c)
μAa

λA
, π(a, c− 1) = π(a, c)

μCc

λC
,

π(a+ 1, c− 1) = π(a, c)
λAμCc

μA(a+ 1)λC
, π(a− 1, c+ 1) = π(a, c)

λCμAa

μC(c+ 1)λA
.

Substituting these equations in the right hand side of (1) yields

π(a− 1, c)ι+ π(a, c− 1)κ+ π(a+ 1, c− 1)(a+ 1)α

+ π(a+ 1, c)(a+ 1)μ+ π(a, c+ 1)(c+ 1)ν + π(a− 1, c+ 1)(c+ 1)β

= π(a, c)

(
μAa

λA
ι+

μCc

λC
κ+

λAμCc

μA(a+ 1)λC
(a+ 1)α

+
λA

μA(a+ 1)
(a+ 1)μ+

λC

μC(c+ 1)
(c+ 1)ν +

λCμAa

μC(c+ 1)λA
(c+ 1)β

)
= π(a, c)

(
μAa

λA
ι+

μCc

λC
κ+

λAμCc

λC
pAC + λApAL + λCpCL +

λCμAa

μCλA
μCpCA

)

Stochastic Modeling of Dynamic Distributed Systems 83

where the definitions and canceling common factors were used in the latter equal-
ity. It follows from (2) and (3) that λCpAC = λA− ι and λApAC = λC − κ hold.
Applying these equations to the third and last terms in the previous displayed
equation and removing canceling terms, we get

π(a, c) (μCc+ μAa+ λApAL + λCpAL) .

Using (4) and simplification shows that λApAL + λCpAL = λ. Therefore, we can
conclude that

π(a, c) (μCc+ μAa+ λApAL + λCpAL) = π(a, c) (λ+ μAa+ μCc) .

This shows that for our choice of π, the balance equations are satisfied when
a > 0 and c > 0.

A similar calculation shows that the balance equations also hold in the border
cases (when a = 0 or c = 0).

Even though space constraints do not allow us to elaborate, we note that the
curious product form of the stationary distribution can be explained using the
theory of queuing networks [8].

Corollary 2. The average time spent in a dormant period converges almost
surely to exp(−λA/μA).

Proof. The system is dormant when there are no active processes. LetΔ : P→ R
denote the characteristic function of dormant states, that is, Δ(0, c) = 1 for all c,
and Δ(a, c) = 0 for all a > 0. Then∑

(a,c)∈P
π(a, c)Δ(a, c) = exp(−λA/μA)

∑
c∈N0

exp(−λC/μC)
1

c!

(
λC

μC

)c

= exp(−λA/μA).

It follows from the ergodic theorem [22, Sect. 5.5] that the average time spent
in the dormant period satisfies

Pr

[
lim
t→∞

1

t

∫ t

0

Δ(XA(s), XC(s))ds = exp(−λA/μA)

]
= 1,

which proves our claim.

The preceding corollary indicates that the fraction of time during which the
system has no active processes is significant, with the exact value depending on
the arriving, recovering, and leaving rate of processes.

5 Dynamic Atomic Register

As an example to show the utility of the modeling and analysis in the previous
section, we now consider the problem of providing a shared register in a dynamic
system with crashes and recoveries. We first give a specification of such a register
and then present the algorithm together with its analysis.

84 S. Bonomi et al.

5.1 Specification

Processes work together to implement a shared read-write register by replicat-
ing the state across the processes. An active process can invoke read and write
operations on the simulated register. We use ⊥ to indicate a default value of the
register. The desired consistency condition is atomicity [17], also known as lin-
earizability [13]. In our model atomicity means that each execution must satisfy
the following properties:

[A1] There exists a bound B such that if an operation is invoked at time t by
process p and p is active throughout the time interval [t, t + B], then the
operation completes.

[A2] Let CW be the set of completed write operations and V R be the set of
read operations that return a non-default value. There exists a subset IW of
the incomplete write operations and a total order on IW ∪ CW ∪ V R such
that (i) each read in the total order returns the value of the latest preceding
write in the total order, and (ii) the total order respects the real-time order
in the execution of non-overlapping operations.

[A3] A read invoked at time t in an era [tb, te) can return the value ⊥ only if
there is no completed write in the time interval [tb, t) and the first process to
become active in this era did not receive any non-default values upon joining
or recovering.

We call such a register a dynamic atomic register. When restricted to a single era
after the first write, the definition of an atomic register in a dynamic distributed
system coincides with the familiar definition of an atomic register in a static
distributed system. However, the value of the register can be lost at the end of
an era, and be replaced by the default value ⊥.

5.2 Implementation

Each process pi keeps a local variable vali that stores (a replica for) the current
value of the simulated register. Associated with the register value is a timestamp
tsi, which consists of an ordered pair of a clock time and the process id. The
process also has a boolean variable activei indicating whether it is active.

When a process enters the system, it executes a join protocol: First it broad-
casts an inquiry message and waits 2δ time, during which, after each δ time
elapses, it broadcasts an update message with its value and timestamp. When-
ever a process receives an inquiry message, it broadcasts an update message
with its value and timestamp. Whenever the joining process receives an update

message with a larger timestamp than its own during its waiting interval, it
updates its own value and timestamp to those in the message. (Timestamps are
compared lexicographically.) At the end of the 2δ waiting interval, the process
becomes active. (A simple optimization is for update messages to be broadcast
only if the sender’s val variable is not ⊥.)

Once a process is active, it can handle read and write requests on the simulated
register. A read is done locally, by simply returning the value in the process’ local

Stochastic Modeling of Dynamic Distributed Systems 85

register variable. A write is done by setting the first component of the timestamp
to the current time, broadcasting the value to be written together with the new
timestamp in an update message, waiting δ time before updating its register
variable to the written value, and completing the write operation. Whenever a
process receives an update message with a larger timestamp than its own, it
updates its own value and timestamp to those in the message.

Processes are subject to unannounced crashes and it is possible for a process
to recover from a crash. When a process recovers from a crash, it executes a
recovery protocol, which is exactly the same as the join protocol. Processes,
whether active or crashed, leave the system silently, without notifying other
processes.

See Algorithm 1 for the pseudocode; none is given for reacting to a crash
event, as the process simply becomes nonresponsive and loses all its state. If a
process receives multiple messages at the same time, it handles them in increas-
ing order of the sender’s id. We assume that local processing time is negligible
compared to δ.

Algorithm 1. Dynamic Atomic Register Algorithm for Process pi
1: when join or recover is invoked at pi:
2: vali := ⊥, tsi := (−1, i), activei := false,
3: broadcast(inquiry); wait(δ)
4: broadcast(update 〈vali, tsi〉); wait(δ)
5: broadcast(update 〈vali, tsi〉); activei := true

6: return done

7:
8: when (inquiry) is received from pj : broadcast(update 〈vali, tsi〉)
9:
10: when (update 〈v, ts〉) is received from pj :
11: if tsi < ts then (vali, tsi) := (v, ts) end if
12:
13: when read() is invoked: return vali
14:
15: when write(v) is invoked:
16: tsi := (clock time, i)
17: broadcast(update 〈v, tsi〉); wait(δ)
18: vali := v
19: return ack

5.3 Analysis of Register Algorithm

In this section we argue that our algorithm implements a dynamic atomic reg-
ister. First, notice that each read occurs locally, without any waiting time, and
each write takes exactly δ time. Thus setting B = δ satisfies condition [A1] of
the definition of dynamic atomicity.

We now consider condition [A2]. Fix an execution of the algorithm. Let V R
be the set of reads that return non-⊥ in the execution and CW be the set of

86 S. Bonomi et al.

completed writes in the execution. Consider any read r in V R. Let v be the
value returned by r, let ts be the timestamp associated with v, and let ω(r) be
the write that created the pair (v, ts). Let IW be {ω(r) : r ∈ V R}\CW ; i.e., we
consider exactly those incomplete writes that wrote a value that was returned
by some read in the execution.

Order the operations in the set IW ∪ CW ∪ V R by their associated times-
tamps, breaking ties by putting a write with timestamp ts before all reads with
timestamp ts and ordering all reads with the same timestamp in the same order
that they occur in the execution (since reads are instantaneous, they do not
overlap each other). We show this total order satisfies the conditions [A2.i] and
[A2.ii].

Condition [A2.i] holds by the construction of the total order: each write has
a unique timestamp, each read is associated with the timestamp of exactly one
write, and each read with a given timestamp occurs after the associated write
occurs and is separated from it only by other reads.

To show condition [A2.ii], consider two operations op1 and op2 such that op1
ends before op2 begins in the execution. We do a case analysis to show that op1
appears in the total order before op2.

Case 1: Suppose op1 and op2 are both reads. If they have the same timestamp,
then the construction of the total order ensures they appear in the correct order.
Suppose they have different timestamps. The nature of the broadcast primitive
together with the code that compares timestamps before updating ensures that
every process updates its replica in the same order and at the same times. Thus
it must be that op1’s timestamp is less than that of op2. Thus the corresponding
write for op1 occurs in the total order before the corresponding write for op2,
and op1 appears in the total order before op2.

Case 2: Suppose op1 and op2 are both writes. Their timestamps are the clock
times when they are invoked. Since clocks are perfectly synchronized, the times-
tamp for op1 is less than the timestamp for op2, and thus op1 appears in the
total order before op2.

Case 3: Suppose op1 is a read and op2 is a write. Since the timestamp for op2
is the time when it is invoked, this timestamp must be larger than that of op1.
Thus in the total order op1 occurs before op2.

Case 4: Suppose op1 is a write and op2 is a read. Since op1 lasts δ time and op2
starts after op1 completes, the process executing op2 has received the update

message from op1 before op2 begins. Thus the timestamp for op2 is at least that
of op1, and op1 appears before op2 in the total order.

Finally, we consider condition [A3], which limits the situations in which a read
can return ⊥. We need the following lemma about the efficacy of the join/recover
operation in keeping the register value alive during an era.

Lemma 3. Suppose at time t in era [tb, te) an active process pi has vali = ⊥.
Then for all times t′ ∈ [t, te), every process pj that is active at time t′ has
valj = ⊥.

Stochastic Modeling of Dynamic Distributed Systems 87

Proof. Suppose in contradiction there is a time when Lemma 3 is violated and
let t′ be the earliest such time. In other words, at t′, there is some active process
pj that has valj = ⊥ but there is an earlier time t < t′ in the same era at which
some process pi has vali = v, where v = ⊥. The only timestamp associated with
the value ⊥ is −1, and −1 is only associated with ⊥ (as we assume that clock
values are nonnegative). Thus during an interval of time in which a process is
active, it never changes its val variable from non-⊥ to ⊥. Therefore t′ must be
the time at the end of an execution of join/recover for pj when it sets activej to
true, and pj entered the system at time t′ − 2δ. It follows that pj never receives
an update message with a non-⊥ value during this join/recover.

We organize the remaining proof by a case analysis. It might be helpful to
consult Fig. 2 for an illustration of the various cases.

Case 1: When pi receives pj ’s inquiry message, at time t′ − δ, pi is active.
Then pi broadcasts its value-timestamp pair in an update message which is
received by pj at time t′. Since we have argued that pj never receives a non-⊥
value, pi must not yet have the value v. So pi receives the value v between t′− δ
and t. The only way that pi receives a value is via an update message. Since
update messages are broadcast and since both pi and pj are in the system for
the δ interval of time preceding the arrival of this update(v) at pi, pj must also
receive the update(v) message. Contradiction.

Case 2: When pi receives pj’s inquiry message, at time t′ − δ, pi is not active.
Since pi is active at time t < t′, though, pi must be doing a join/recovery at time
t′− δ. Let s be such that pi is joining throughout [s−2δ, s], where t′− δ < s ≤ t.

Case 2.1: pi receives an update(v) message in the interval [s−2δ, s−δ). Then pi
broadcasts update(v) at time s−δ, with s−δ > t′−2δ. Since both pi and pj are
in the system throughout the time interval [s− δ, s], pj receives the update(v)
message from pi at time s, with t′ − δ < s < t′, contradiction.

Case 2.2: pi receives an update(v) message at some time in the interval [s −
δ, t′ − δ). Then when pi receives pj ’s inquiry message at t′ − δ, pi responds by
broadcasting update(v), which is received by pj at time t′, contradiction.

Case 2.3: pi receives an update(v) message at some time s′ in the interval
[t′−δ, t]. Since pi and pj are both in the system throughout the interval [s′−δ, s′],
pj also receives the update(v) message at s′, with s′ ≤ t < t′, contradiction.

Suppose a read r, which occurs at time t inside era [tb, te), returns ⊥. Let pi be
the process executing r. By Lemma 3, since only active processes execute reads
and pi returns vali, it must be that at all previous times in the era, every active
process has its val variable equal to ⊥. Thus no write completes during [tb, t)
and the first process to become active in this era never receives a non-⊥ value
during its join/recovery. We conclude that [A3] holds.

The discussion above proves:

Theorem 4. Algorithm 1 implements a dynamic atomic register.

88 S. Bonomi et al.

t’t’-δt’-2δ ⊥

pi

pj

v

join()

active

active

⊥

UPDATE (v)
delivered in [t’-δ, t’]

UPDATE (v) sent in
[t’-2δ, t’- δ]

INQUIRY() UPDATE(⊥)

t’t’-δt’-2δ

pi

pj

v

ss-δs-2δ

join()

join() active

active Case 2.1

UPDATE (v) delivered
in [s-2δ, s- δ]

UPDATE (v)
delivered in
[s-δ, t’- δ)

v
Case 2.2

UPDATE (v)
delivered in [t’- δ, t]

Case 2.3
v

INQUIRY() UPDATE (v)

t

UPDATE (v)

Fig. 2. The top figure illustrates Case 1: pi is active when it receives pj ’s inquiry. The
bottom figure illustrates Case 2: pi is not active when it receives pj ’s inquiry. Case 2.1
represents that pi is in the first δ time of its join when it receives update(v) and it
broadcasts update(v) by line 4 of Algorithm 1. Case 2.2 is that pi is after the first
δ time of its join but before it gets pj ’s inquiry when it receives update(v) and it
broadcasts update(v) by line 8 of Algorithm 1 upon receipt of pj ’s inquiry. Case 2.3
is that pi gets update(v) after it has received pj ’s inquiry.

Stochastic Modeling of Dynamic Distributed Systems 89

We can augment the analysis of the algorithm in the preceding theorem by
recalling the result in Corollary 2, which quantifies how long the system will
have no active processes. For the atomic register application, having no active
processes means that the simulated register has no state. Thus any application
using the register must be able to handle such a situation.

6 Conclusions

We introduced a stochastic model for dynamic distributed systems that com-
prises join and leave as well as crash and recovery. Although modeling the
crashing processes separately from processes leaving the system significantly
complicates the stochastic model, the distinction is quite useful, as the crash
rates and the leaving rates of processes usually differ significantly.

In general, it is often undesirable for a dynamic distributed system to lose its
state. Our stochastic model might be helpful when making predictions about the
probability of the start of a dormant period within the next t seconds. Therefore,
the stochastic model can enable one to save the state of the system to a non-
volatile medium before such state loss happens.

Even though dynamic distributed systems have been in widespread practical
use, the development of the underlying theory of such systems has begun rather
recently. We defined a notion of an atomic register that is compatible with a
churn-prone environment. We gave algorithms that implement such a dynamic
register and proved their correctness.

It would be desirable to extend the stochastic analysis to understand other
aspects of the behavior of systems with churn. For instance, what is the prob-
ability of having fewer active processes than crashed processes? The general
framework of our stochastic analysis can be extended to handle other distribu-
tions of joining, leaving, crashing, and recovering. Future work includes the best
way to implement the dynamic atomic register when relaxing the assumptions
about the synchronized clocks and the broadcast service.

Acknowledgements. This research was supported in part by NSF grant CCF
1018500 and NSF grant 0964696. We would like to thank the anonymous referees
for helpful comments.

References

1. Aguilera, M.: A pleasant stroll through the land of infinitely many creatures.
SIGACT News 35(2), 36–59 (2004)

2. Aguilera, M., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. J. ACM 58(2), 7:1–7:32 (2011)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

4. Baldoni, R., Bonomi, S., Kermarrec, A., Raynal, M.: Implementing a Register in
a Dynamic Distributed System. In: 29th International Conference on Distributed
Computing Systems, ICDCS 2009 (2009)

90 S. Bonomi et al.

5. Baldoni, R., Bonomi, S., Raynal, M.: Implementing a Regular Register in an Even-
tually Synchronous Distributed System Prone to Continuous Churn. IEEE Trans-
action on Parallel Distributed Systems 23(1), 102–109 (2012)

6. Bhagwan, R., Savage, S., Voelker, G.M.: Understanding Availability. In: Kaashoek,
M., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 256–267. Springer, Heidel-
berg (2003)

7. Brighten, G., Shenker, S., Stoica, I.: Minimizing churn in distributed systems.
In: Proceedings of the 2006 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, SIGCOMM 2006, pp. 147–
158. ACM, New York (2006)

8. Chen, H., Yao, D.: Fundamentals of Queueing Networks – Performance, Asymp-
totics, and Optimization. Springer, New York (2001)

9. Chockler, G., Gilbert, S., Gramoli, V., Musial, P., Shvartsman, A.: Reconfigurable
distributed storage for dynamic networks. Journal Parallel Distributed Comput-
ing 69(1), 100–116 (2009)

10. Gilbert,S.,Lynch,N.,Shvartsman,A.:Ramboii:Rapidlyreconfigurableatomicmem-
ory for dynamic networks. In: International Conference on Dependable Systems and
Networks, DSN 2003, p. 259. IEEE Computer Society, Los Alamitos (2003)

11. Gilbert, S., Lynch, N., Shvartsman, A.: Rambo: a robust, reconfigurable atomic
memory service for dynamic networks. Distributed Computing 23, 225–272 (2010)

12. Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., Zahorjan, J.: Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload. In: Proceed-
ings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP
2003, pp. 314–329. ACM, New York (2003)

13. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-
jects. ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)

14. Klappenecker, A., Lee, H., Welch, J.L.: Dynamic Regular Registers in Systems
with Churn. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976,
pp. 296–310. Springer, Heidelberg (2011)

15. Ko, S., Hoque, I., Gupta, I.: Using tractable and realistic churn models to analyze
quiescence behavior of distributed protocols. In: Proceedings of the 2008 Sympo-
sium on Reliable Distributed Systems, SRDS 2008, pp. 259–268. IEEE Computer
Society, Washington, DC (2008)

16. Krishnamurthy, S., El-Ansary, S., Aurell, E., Haridi, S.: A Statistical Theory of
Chord Under Churn. In: van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp.
93–103. Springer, Heidelberg (2005)

17. Lamport, L.: On interprocess communication, Part I: Models, Part II: Algorithms.
Distributed Computing 1(2), 77–101 (1986)

18. Leonard, D., Yao, Z., Rai, V., Loguinov, D.: On lifetime-based node failure and
stochastic resilience of decentralized peer-to-peer networks. IEEE/ACM Transac-
tion on Networking 15(3), 644–656 (2007)

19. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: Proceedings of the Twenty-First Annual Symposium on Princi-
ples of Distributed Computing, PODC 2002, pp. 233–242. ACM, New York (2002)

20. Lynch, N., Shvartsman, A.A.: RAMBO: A Reconfigurable Atomic Memory Service
for Dynamic Networks. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 173–
190. Springer, Heidelberg (2002)

21. Merritt, M., Taubenfeld, G.: Computing with Infinitely Many Processes. In: Her-
lihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 164–178. Springer, Heidelberg
(2000)

22. Resnick, S.: Adventures in Stochastic Processes. Birkhäuser, Boston (1992)

When and How Process Groups Can Be

Used to Reduce the Renaming Space

Armando Castañeda1,	,		, Michel Raynal2,3, and Julien Stainer2

1 Department of Computer Science, Technion, Haifa 32000, Israel
2 Institut Universitaire de France

3 IRISA, Université de Rennes, 35042 Rennes Cedex, France
armando@cs.technion.ac.il, {raynal,julien.stainer}@irisa.fr

Abstract. Considering the M -renaming problem and process groups,
this paper investigates the following question: Is there a relation between
the number of groups and the size of the new name space M? This
question can be rephrased as follows: Can the initial partitioning of the
processes into m groups allows the size of the renaming space M to be
reduced, and if yes, how much?

This paper answers the previous questions. Let n denote the number of
processes. Assuming that the processes are initially partitioned into m =
n − � non-empty groups, such that each process knows only its identity
and its group number, the paper first presents a wait-free M -renaming
algorithm whose size of the new name space is M = n + 2� − 1. For
n
2
< m ≤ n− 1 (i.e. 1 ≤ � < n

2
), we have M < 2n− 1, which shows that,

when the number of groups is greater than n
2
, groups allow to circumvent

the renaming lower bound in read/write systems.Then, on the lower bound
size, the paper shows that there are pairs of values (n,m) such that there
is no read/write wait-free M -renaming algorithm for which M ≤ 2n − 2.
This impossibility result breaks our hope to have a renaming algorithm
providing a new name space whose size would decrease “regularly” as the
number of groups increases from 1 to n. Finally, the paper considers the
case where each group includes at least s processes. This algorithm shows
that, when m is such that n

s+1
< m < n

s
, there is an M -renaming algo-

rithm where M = 3n− (s+1)m− 1 = n(2− s)+ (s+1)�− 1. Hence, the
paper leaves open the following question: For any n and s = 1, does the
predicate m > n

2
define a threshold on the number of groups which allows

the 2n− 2 lower bound on the renaming space size to be bypassed?

Keywords: Asynchronous read/write model, Crash failure, Distributed
computability, Process group, Renaming problem, Snapshot object, Wait-
freedom.

1 Introduction

The renaming problem In the M -renaming problem, n asynchronous processes
with distinct initial names belonging to a large name space [1..N], n << N , have

� This work was partially done while the first author was at IRISA-INRIA in Rennes.
�� Supported in part at the Technion by an Aly Kaufman Fellowship.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 91–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

92 A. Castañeda, M. Raynal, and J. Stainer

to cooperate in order to choose distinct new names in a smaller new name space
[1..M], M < N . This problem has initially been introduced to investigate a non-
trivial problem that (differently from consensus) can be solved in asynchronous
read/write memory systems prone to any number of process crashes [4].

Since its introduction, lots of papers have been devoted to this problem
(see [12] for an introductory survey). The most important results associated
with the renaming problem concern the smallest value of M that can be at-
tained. More precisely, it is shown in [7,10] that for an infinite number of values
of n, M = 2n − 1 is the lower bound on the size of the new name space. For
the other values of n, there exists a wait-free algorithm that solves M -renaming
with M = 2n − 2 [11]. Here we are interested in bypassing the lower bound
M = 2n − 1 for those values of n for which there is no M -renaming wait-free
algorithm with M < 2n− 1.

Bypassing the limits. Several approaches have been investigated to circumvent
the previous lower bound on the value of M . One consists in considering a
computation model reacher than the base read/write model. As an example, it
is possible to rename in an optimal new name space M = n, as soon as the
shared memory provides processes with a test&set operation [12].

In the k-set agreement problem, 1 ≤ k ≤ n − 1, each process proposes a
value and has to decide a value such that at most k distinct values are decided
and a decided value is a proposed value. Relations between the k-set agreement
problem and the renaming problem have been investigated in [14,15,17] where
it is shown that processes can rename in a new name space whose size is M =
n+k−1 if they have access to k-set agreement objects. It is shown in [16] that, for
any value of n, (n−1)-set agreement can be used to implement (2n−2)-renaming
while the opposite is impossible when n is odd.

Another approach to circumvent the M = 2n − 1 lower bound consists in
weakening the termination property of the renaming problem. It is shown in [21]
that (n+ k − 1)-renaming can be solved in all runs such that, after some finite
time, at most k processes execute concurrently (this behavioral assumption is
called k-obstruction-freedom).

In the (g,M)-group renaming [13] problem the processes are partitioned into
g groups and it is required that processes in distinct group decide distinct new
names, however it is allowed that processes in the same group decide (not nec-
essarily) the same name. Upper and lower bounds of the (g,M)-group renaming
problem are shown in [2,3].

Content of the paper. This paper considers the case where processes are initially
given some additional information, but not so much (providing each process with
its new name would make the problem trivial!). More precisely, each process be-
longs to a group, and it knows only the name of its group and the number of
groups. This type of additional information has already been indirectly inves-
tigated for two specific cases. More specifically, it is shown in [16], that if the
processes are initially split into two non-empty groups, then, for any value of n,
(2n − 2)-renaming is solvable. At the other extreme, it is shown in [20] that if

When and How Groups Can Be Used to Reduce Space 93

the processes are arbitrarily split into (n − 1) non-empty groups, then, for any
value of n, (n+ 1)-renaming is solvable.

This paper addresses the case where the processes are initially partitioned into
several non-empty groups. Assuming m groups, one may conjecture (in the light
of [16,20]) that processes in the group i, 1 ≤ i ≤ m, could rename in 2qi− 1 new
names, where qi is the number of processes in the group i, giving rise to a new
name space whose size would be

∑m
i=1(2qi − 1) = 2n−m (since

∑m
i=1 qi = n).

Unfortunately, as shown in the paper, this intuition is incorrect, when considering
the large class of comparison-based algorithms, i.e., algorithms in which processes
can only compare their initial identities (to the best of our knowledge, all known
renaming algorithms in the literature are comparison-based). This is mainly due
to the fact that the size of the groups remain unknown to the processes (processes
know only that no group is empty).

More generally, the paper addresses the case where the processes are split
into m = n − � non-empty groups, where 1 ≤ m ≤ n, hence 0 ≤ � ≤ n − 1.
To facilitate the presentation, we sometimes use n − � (with 0 ≤ � ≤ n − 1) to
denote the number m of groups. It has the following contributions.

– Assuming that the processes are arbitrarily split into m = n − � groups,
where 1 ≤ � < n

2 , and each process knows the value m, the paper first
presents a read/write wait-free (n+ 2�− 1)-renaming algorithm.
Let us observe that, as

(
1 ≤ � < n

2

)
⇒ (n + 1 ≤ n + 2� − 1 ≤ 2n − 2), it

follows that this algorithm allows for a renaming space smaller or equal to
2n− 2 when � < n

2 , i.e., when the number of groups m > n
2 .

– The paper then focuses on lower bounds results. It shows that there are pairs
of values (n,m) for which there is no read/write wait-free comparison-based
(2n−2)-renaming algorithm. This shows that there are cases in which groups
are useless when one wants to bypass the M = 2n− 1 lower bound.

– Then, the paper considers the case where the minimal number of processes
in each group (denoted s ≥ 1) is known by each process (the groups can
be of distinct sizes). It shows that, when m is such that n

s+1 < m ≤ n
s ,

there is an algorithm solving (3n − (s + 1)m − 1)-renaming if n = ms and
((2s− 1)m)-renaming if n = ms.
As (n < (s + 1)m) ⇒ (3n − (s + 1)m − 1 < 2n − 1) and

(
(s > 1) ∧ (n =

ms)
)
⇒
(
(2s−1)m = 2n−m < 2n−1

)
, it follows that, under the constraint

n < (s + 1)m ≤ n +m, the knowledge of s by the processes allows the size
of the new name space to still be reduced even if m ≤ n

2 .

We use algebraic topology techniques for proving the lower bound results. The
upper bounds are complemented with numerical experiments. It is important to
stress that the research in this paper differs from [2,3,13] in the requirement that
processes in the same group must decide distinct new names, contrary to [2,3,13]
in which processes in the same group may decide the same new name.

Roadmap. The paper is made up of 6 sections. Section 2 presents the basics of
the computation model. Section 3 presents and proves correct an (n + 2� − 1)-
renaming algorithm, that assumes the processes are initially partitioned into

94 A. Castañeda, M. Raynal, and J. Stainer

m = (n − �) groups. Section 4 proves the impossibility of (2n − 2)-renaming
for some (n,m) pairs of values. Section 5 extends the algorithm presented in
Section 3 to the more general case where the minimal group size s can be greater
than one, and this value is known by each process. Finally, Section 6 concludes
the paper.

2 Computation Model

Due to space limitations and the fact that this model is widely used in the
literature, we do not explain it in detail. We restate only its aspects that are
important for the paper.

Read/write wait-free system model. This paper considers the usual asynchronous,
wait-free shared memory system where at most n − 1 out of n ≥ 2 processes
p1, . . . , pn can fail by crashing. Processes communicate by accessing single-writer/
multi-reader (SWMR) atomic registers. The subscript i is called the index of pi.
Each process pi has a private input, denoted idi which is its initial name. It is
known by the processes that no two of them have the same initial name.

A participating process is a process that takes at least one step in the consid-
ered run. Those that take a finite number of steps are faulty (sometimes called
crashed), the others are correct (or non-faulty). A non-participating process is
a faulty process. The algorithms designed for this computation model have to
work despite up to n− 1 faulty processes (wait-free algorithms [18]).

Index-independent algorithm. Generally speaking, in an index-independent algo-
rithm, indexes are used only for addressing purposes, namely, when a process pi
writes a value to an array of SWMR registers A, its index is used to deposit the
value in A[i], and when pi reads A, it gets back a vector of n values, where the
jth entry of the vector is associated with pj . Moreover, such a read of A appears
as if it has been executed atomically (an atomic snapshot object can be built
from read/write registers [1]). The processes cannot use indexes for computation.

Formally, an algorithm A is index-independent if the following holds for every
run r and every permutation π() of the process indexes. Let rπ be the run
obtained from r by permuting the input values according to π() and, for each
step, the index i of the process that executes the step is replaced by π(i). Then
rπ is a run of A. Consider a permutation π() such that π(i) = j. The index-
independence ensures that pj behaves in rπ exactly as pi behaves in r: it decides
the same thing in the same step. In an index-independent algorithm, if the output
of pi in r is v, then the output of pπ(i) in rπ is v, i.e., the output of a process
does not depend on indexes, it depends only on the inputs (ids), and on the
interleaving.

Comparison-based algorithm. Intuitively, an algorithm A is comparison-based if
processes use only comparisons (<,=, >) on their inputs (here, initial names).
More formally, let us consider the ordered inputs i1 < i2 < · · · < in of a run

When and How Groups Can Be Used to Reduce Space 95

r of A and any other ordered inputs j1 < j2 < · · · < jn. The algorithm A is
comparison-based if the run r′ obtained by replacing in r each i
 by j
, 1 ≤ � ≤ n
(in the corresponding process), is a run of A. Notice that each process decides
the same output in both runs, and at the same step. In other words, the decisions
in r and r′ are the same because the relative order of the inputs is the same.

Note that a comparison-based algorithm is not necessarily index-independent
and an index-independent algorithm is not necessarily comparison-based.

The M -renaming task. In the M -renaming task on n processes [4], each process
pi starts with a distinct identity idi from a set {1, . . . , N}, N ≥ 2n− 1, and has
to decide a value in such a way that the following properties are satisfied. (a)
Termination: each correct process decides a value; (b) Validity: a decided value
belongs to {1, . . . ,M}; (c) Uniqueness: No two processes decide the same value.

Here we consider a version of the renaming task in which processes are given
extra information: the processes are initially partitioned into m groups, 1 ≤ m ≤
n− 1. More formally, each process pi starts with a pair (idi, gidi) such that (1)
idi ∈ {1, . . . , N}; (2) gidi ∈ {1, . . . ,m}; (3) for every pair (i, j): i = j ⇒ idi =
idj ; (4) |{gidi : 1 ≤ i ≤ n}| = m and (5) ∀gid ∈ {1, . . . ,m} : ∃i ∈ {1, . . . , n} :
gidi = gid.

3 From (n − �) Non-empty Groups to (n + 2�− 1)-Renaming

Principles of the algorithm. The idea that underlies the algorithm is simple: if
a group has a single process, then this process inherits the name of its group.
Otherwise, the processes in non-singleton groups compete to obtain new names
from a common space name.

Global and local variables. The processes communicate with a snapshot object
denoted STATE[1..n]. For any i, STATE[i] is made up of three fields (each
initialized to ⊥): STATE[i].prop is the new name value currently proposed by
pi; STATE[i].id is its initial name, and STATE[i].gid its group name.

Each process pi manages two main local variables: propi which contains its
current new name proposal, and snapi which is a local array where pi saves the
last value it has obtained from the snapshot object STATE.

Algorithm. The algorithm is described inFigure 1. It is inspired from the read/write
wait-free (2n− 1)-renaming algorithm described in [6]. Its main difference lies in
the way is defined the sequence of integers from which a process extracts its next
new name proposal (this is the sequence denoted freei in Figure 1).

When a process invokes new name(idi, gdi), it first considers its group name as
its new name proposal (line 1), and informs the other processes (line 3). It then
takes a snapshot of STATE[1..n] (line 4), and decides its current name proposal
if it is the only process with this proposal (lines 5-6). Let us observe that, as
m+ � = n, no process in a singleton group proposes a new name ≥ n− �+ 1.

If pi discovers that it is not in a singleton group, it has to define a new proposal.
To that end, pi computes (from its point of view as defined by snapi) first the set

96 A. Castañeda, M. Raynal, and J. Stainer

operation new name(idi, gidi) is
(1) propi ← gidi;
(2) while true do
(3) STATE [i]← 〈propi, idi, gidi〉;
(4) snapi ← STATE .snapshot();
(5) if (∀ j �= i : snapi [j].prop �= propi)
(6) then return (propi)
(7) else let function gcardi(g) = |{j : snapi [j].gid = g}|;
(8) namespacei ← {g : gcard(g) > 1} ∪ {n− l + 1, . . . , n+ 2l − 1};
(9) let propsi = {snapi [j].prop : snapi [j].prop ∈ namespacei};
(10) let freei = namespacei \ propsi ;
(11) let compi = {snapi [j].id : snapi [j].prop ∈ namespacei};
(12) let ri = rank of idi in compi ;
(13) propi ← the rith integer in the increasing sequence freei
(14) end if
(15) end while.

Fig. 1. From m = (n− �) non-empty groups to (n+ 2�− 1)-renaming (1 ≤ � < n
2
)

namespacei containing the identifiers of the groups with more than one process
and the new names that are not group identifiers ({n − l + 1, . . . , n + 2l − 1})
(line 8) from which pi will extract its new name proposal. Then, pi gathers the
proposals of names that belong to namespacei (line 9) in order to obtain the
set freei of free names from namespacei (line 10). It extracts compi, the set
of identifiers of processes proposing a name in namespacei (let us notice that,
compi does not contain processes that belongs to a singleton group). Finally,
pi computes its new name proposal propi according to the rank of its initial
name in the set of competing processes compi (lines 12-13). Then, pi restarts
competing at line 3.

Theorem 1. Assuming that the processes are initially partitioned into m = n−�
groups (1 ≤ m ≤ n−1), and each process knows initially only its identity and its
group number, the algorithm of Figure 1 is a read/write wait-free (n + 2� − 1)-
renaming algorithm.

Due to lack of space, the correctness proof of the algorithm is not presented.
Let us observe that, while the algorithm works for any � ∈ {1, ..., n − 1}, it is
not interesting when n

2 < � ≤ n− 1, i.e., when the number of groups m is such
that 1 ≤ m = n− � < n

2 . This is because, in these cases, the algorithm does not
provide a renaming such that M < 2n− 1.

4 Is It Possible to Do Better?

As explained in the Introduction, we could hope that the initial partitioning
of n processes into m groups, allows the processes in group i to independently
rename into a space of size 2qi − 1 (qi is the number of processes in the group),

When and How Groups Can Be Used to Reduce Space 97

in order to obtain a new name space of size
∑m

i=1(2qi− 1) = 2n−m. Theorem 2
shows this is not true, for the large class of comparison-based based algorithms.
More formally, Theorem 2 shows that there are pair of values (n,m) such that
it is not even possible to bypass the lower bound M = 2n− 1.

This section then focus on the case in which the number of groups has the
form m = n − �, where 1 ≤ � < n

2 . Theorem 3 contains a lower bound that
complements that n+2�− 1 upper bound proved by the algorithm presented in
the previous section. .

The proof of of Theorem 3 is based on the known topological approach to
distributed computing [8,19,22]. We assume the reader is familiar with this ap-
proach.

Theorem 2. Let x ≥ 2, n = px a prime power, and 1 ≤ y < x. Let us assume
that the n processes are initially partitioned into px−y groups. Then, there is no
read/write, wait-free, comparison-based (2n− 2)-renaming algorithm.

Proof. Suppose there exists such an algorithm A. We use the known topological
approach to distributed computing for proving A cannot exist. In particular, we
use a similar idea to the one in [10], where it is proved that the weak symmetry-
breaking (WSB) problem on n′ processes is not read/write, wait-free solvable if
n′ is a prime power.

Let In−1 and On−1 be the input and output complexes of the (2n − 2)-
renaming task on n processes. Consider the protocol complex An−1 of A. It is
known An−1 is a chromatic, connected and orientable (n − 1)-pseudomanifold
[5,8,19,22]. Since A solves (2n− 2)-renaming, it induces a color-preserving, sim-
plicial map δ : An−1 → On−1 such that for every input simplex σ ∈ In−1,
δ(An−1(σ)) ⊆ �(σ), where � is the recursive map relating In−1 and On−1.
Such a map represents the decisions of the processes in A: δ(v) is the decision
of the process corresponding v.

Using δ we define a binary coloring b over An−1: for every vertex v of An−1,
b(v) = δ(v) mod 2. An−1 cannot have monochromatic (n− 1)-simplexes under
b because (1) the space [1, . . . , 2n− 2] has exactly n− 1 odd names and exactly
n−1 even names, and (2) δ is simplicial and color-preserving, hence every (n−1)-
simplex of An−1 is mapped to an (n − 1)-simplex of On−1, which has distinct
output names at its vertexes.

Now recall that the n = px processes are initially split into n
py = px−y groups.

Without loss of generality, let 0, . . . , px−y − 1 be those groups. Consider the
input simplex σn−1 ∈ In−1 defined as follows. In σn−1 each group has exactly

py processes: for every process pi ∈ Π = {p0, . . . , pn−1}, gidi =
⌊

i
py

⌋
and idi =

px−y+
⌊

i
py

⌋
+(i mod py). Note that for each pi, idi > px−y−1 ≥ gidi; moreover,

for any two processes pi and pj

gidi < gidj ⇒ idi < idj. (1)

98 A. Castañeda, M. Raynal, and J. Stainer

For the rest of the proof, let us fix σn−1 and the subcomplexAn−1(σn−1) ofAn−1

(the subcomplex containing all reachable executions starting from σn−1). For

simplicity, let Ân−1 denoteAn−1(σn−1). As already explained, Ân−1 cannot have
monochromatic (n− 1)-simplexes. We will show that the fact A is comparison-

based induces symmetry properties on the binary coloring b of Ân−1. As we
shall see, those properties imply Ân−1 has at least one monochromatic (n− 1)-
simplex under b, hence such a symmetric binary coloring b cannot exist, from
which follows A does not exist.

Consider now a connected, orientable and chromatic (n− 1)-pseudomanifold
Bn−1, with a binary coloring. In [10] it is proved that the number of monochro-
matic (n−1)-simplexes, #R, of Bn−1 totally depends on its boundary, bd(Bn−1)
(Lemmas 33 and 35). Let us suppose Bn−1 corresponds to the subcomplex con-
taining all reachable executions of a read/write, wait-free algorithm B starting
from an input (n− 1)-simplex τn−1. What is also showed in [10] is that for each
proper face ρ of τn−1, i.e., ρ ∈ bd(τn−1), there is an integer rρ such that

#R = 1 +
∑

ρ∈bd(τn−1)

rρ.

Roughly, #R is on function of the boundary of Bn−1, which is bd(Bn−1) =
∪ρ∈bd(τn−1)Bn−1(ρ). Thus each ρ ∈ bd(τn−1) “adds something” (namely, rρ) to
the value #R. (we do not discuss where the value 1 in the equation comes from;
this is not relevant for our purposes and demands to get into details.)

Now, if the algorithm B is comparison-based, then, for any two proper i-faces
ρ and ρ′ of τn−1, if the inputs of the processes follow the same relative order in
ρ and ρ′, respectively, then rρ = rρ′ . Intuitively, since the inputs follow the same
relative order, the decisions of the processes in Bn−1(ρ) and Bn−1(ρ′) must be the
same (since processes only use comparison operations), which implies rρ = rρ′

(this value is denoted r[ρ]). Thus, for each dimension i, 0 ≤ i ≤ n − 2, the i-
faces of τn−1 are split into equivalence classes: each equivalence class contains
i-faces in which the inputs follow the same relative order. In this way, #R has
the following form, where size([ρ]) denotes the size of class [ρ]:1

#R = 1 +

n−2∑
i=0

∑
for each class [ρ] in dim i

r[ρ] × size([ρ]). (2)

Consider again the complex Ân−1 and the input simplex σn−1. So, we have
the number of monochromatic (n − 1)-simplexes of Ân−1, #R, has the form
in Equation (2). In what follows we prove that for each equivalence class [ρ],
size([ρ]) is divisible by p (recall that n = px), from which follows that #R =
1 + p × λ, for some integer λ. Therefore, #R = 0 because there is no integer λ

1 For the WSB task studied in [10], there is only one equivalence class for each
dimension i, hence #R = 1 +

∑n−2
i=0

(
n

i+1

)
ri, since τn−1 has

(
n

i+1

)
faces of

dimension i.

When and How Groups Can Be Used to Reduce Space 99

such that p× λ = −1, and hence Ân−1 must have at least one monochromatic
(n− 1)-simplex, which is a contradiction.

As already mentioned, two i-faces of σn−1 belong to the same equivalence
class if and only if the inputs follow the same relative order. We formalize this
as follows.

Consider an i-face ρ of σn−1. Each process pi in ρ has a tuple (idi, gidi) as
input. Given two tuples (idi, gidi) and (idj , gidj), we say (idi, gidi) < (idj , gidj)
if and only if idi < idj and gidi < gidj; similarly, (idi, gidi) ≤ (idj , gidj) if and
only if idi < idj and gidi = gidj.

Let v0, . . . , vi the inputs of the processes in ρ (so each vj is a pair (idj , gidj)).
Due to Equation (1), v0, . . . , vi can be reordered v̂0, . . . , v̂i such that there exist
0 ≤ s1 < . . . < sg ≤ i such that

v̂0 ≤ · · · ≤ v̂s1 < v̂s1+1 ≤ · · · ≤ v̂s2 < · · · < v̂sg+1 ≤ · · · ≤ v̂i.

This is a group-order of the inputs v0, . . . , vi. Note that g+1 corresponds to the
number of distinct groups in ρ, i.e., g + 1 = |{vj .gidj : vj ∈ ρ}|.

Let us consider now two i-faces ρ and ρ′ of σn−1 and let v0, . . . , vi and
u0, . . . , ui be the inputs of the processes in ρ and ρ′, respectively. Faces ρ and
ρ′ belong to the same equivalence class if and only if there exist group-orders
v̂0, . . . , v̂i and û0, . . . , ûi such that for every 0 ≤ k < � ≤ i, v̂k < v̂
 if and only if
ûk < û
.

p0

p2

p3

p1

(2, 0)

(3, 0)

(4, 1)

(5, 1)

DIM 0

p0

p1

p2

p3

DIM 2

p0 − p1

p2 − p3

p0 − p2

p0 − p3

p1 − p2

p1 − p3

DIM 1

p0 − p1 − p2

p0 − p1 − p3

p0 − p2 − p3

p1 − p2 − p3

Fig. 2. Input simplex of dimension 3 (p0 and p1 belong to group 0, while p2 and p3
belong to group 1)

To conclude the proof of the theorem, we prove that size([ρ]) is divisible by
p, for every proper face ρ of σn−1. Figure 2 depicts an example of this for n = 22

processes and 2 groups. Processes p0 and p1 belong to group 0 while p2 and p3
belong to group 1. Figure 2 shows the equivalence classes for each dimension.

Consider any proper i-face ρ of σn−1. Let g1, . . . , gs be the groups that appear
in ρ (hence s distinct groups appear in ρ). Let ĝ1, . . . , ĝs be a reorder of g1, . . . , gs
such that ĝ1 < · · · < ĝs. Let #ĝj denote the number of processes in ρ that belong
to group ĝj . Thus, [ρ] contains every i-face of σn−1 (and only those faces) in
which s groups appear and, for all j, 1 ≤ j ≤ s, the j-th group contains #ĝj
processes.

We identify two cases:

100 A. Castañeda, M. Raynal, and J. Stainer

1. s = px−y, namely all groups appear in ρ. Due to the fact that in σn−1 every
group has exactly py processes, it follows [ρ] contains(

#ĝ1
py

)(
#ĝ2
py

)
· · ·
(
#ĝpx−y

py

)
i-faces. Since ρ is a proper face of σn−1, there must be at least one group
ĝj such that #ĝj < py. It is not hard to see that p is factor of

(
#ĝj
py

)
, hence

size([ρ]) is divisible by p.
2. s < px−y, namely, not all groups appear in ρ. In this case [ρ] contains(

s

px−y

)(
#ĝ1
py

)(
#ĝ2
py

)
· · ·
(
#ĝpx−y

py

)
i-faces. It is easy to check that p is factor of

(
s

px−y

)
, thus size([ρ]) is divisible

by p. This concludes the proof of the theorem.

Theorem 3. Let n, � be integers such that � = 2x and � ≤ 	n2
 − 1. Let the n
processes be partitioned into n−� groups. Then, there is no read/write, wait-free,
comparison-based (n+ 2�− 2)-renaming algorithm.

Proof. The proof consists in showing that, if there exists an algorithm as the one
the theorem considers, then one can derive a read/write, wait-free, comparison-
based algorithm that solves the (2× 2�− 2)-renaming on 2� processes, where the
processes are initially split into � groups, which contradicts Theorem 2.

Suppose there is a read/write, wait-free and comparison-based algorithm A
that solves (n+2�−2)-renaming, where the n processes are initially split into n−�
groups. Consider an execution E in which only the n−2� processes p2
+1, . . . , pn
participate and decide; the processes start with the last ids in the input space
[1, . . . , N], and each process starts in a distinct group taken from the last n− 2�
groups in the space [1, . . . , n− �], namely [�+ 1, . . . , n− �].

At the end of E, processes p2
+1, . . . , pn decide n − 2� distinct names in the
space [1, . . . , n+ 2�− 2], hence there is a subspace Z of [1, . . . , n+ 2�− 2] with
2×2�−2 names that no process decided. Consider an extension E′ of E in which
the processes p1, . . . , p2
 are initially split into the � groups in [1, . . . , �]. In E′,
every deciding process decides a distinct name in Z. Therefore, using A and E
we can derive a read/write and wait-free algorithm B that solves (2 × 2� − 2)-
renaming on 2� processes, where the processes are arbitrarily split into � groups.
Moreover, B is comparison-based due to the fact that A is comparison-based.
This is a contradiction to Theorem 2.

5 When the Groups Have a Known Minimal Size s ≥ 1

The previous sections assume only that the groups are not empty (they constitute
a partitioning of the processes). What does happen if each group includes at
least s ≥ 1 processes, and the value s is initially known by the processes? Do
this additional information allows for a better renaming algorithm? Is m > n

2
still a threshold to have an M -renaming algorithm with M < 2n− 2? These are
the questions addressed in this section.

When and How Groups Can Be Used to Reduce Space 101

5.1 An Algorithm for Groups of Size at Least s

An algorithm answering the previous question is presented in Figure 3. According
to the values of n, m, and s, the size M of the new name space is the following:
M = m(2s − 1) if n = ms and M = 3n− (s + 1)m − 1 if ms < n < (m + 1)s.
Finally, when n ≥ m(s + 1), we have M ≥ 2n − 1, leading to a suboptimal
algorithm ((2n− 2)-renaming is wait-free solvable as soon as m ≥ 2). Hence, the
algorithm is interesting for n < m(s+ 1).

Principle of the algorithm. The algorithm is a generalization of the one presented
in Figure 1. Its principle is the following one.

Initially, the new name space [(g − 1)(2s − 1) + 1..g(2s − 1)] is statically
assigned to the processes of each group g, 1 ≤ g ≤ m. A process executes one
or two stages. The first stage lasts until a process decides a new name, or its
invocation of STATE .snapshot() returns it an array with more than s proposals
from processes of its own group.

When a process proceeds to the second stage (if it ever does), it computes,
from the value snapi returned by its last invocation of STATE .snapshot(), an
extended name space, which is composed of

– The name spaces [(g′ − 1)(2s− 1) + 1..g′(2s− 1)] initially attributed to the
groups g′ that contain at least s+ 1 processes, plus

– A common space starting at m(2s− 1) + 1.

Description of the algorithm. The lines with the same number in both algorithms
are the same. Line 1 which is suffixed by M has been slightly modified. The
lines numbered New8.1, until New8.7 are new lines replacing line 8 of the base
algorithm.

The main structure of the algorithm remains the same: a process pi repeatedly
writes in its dedicated register STATE [i] a triple containing propi, the new name
it proposes, plus its process and group identifiers (line 3). It then takes a snapshot
of the entire array (line 4) and decides if no other process proposes the same
name (lines 5-6).

If another process proposed the same new name as pi (they conflict), pi com-
putes a new proposal in a way that extends the one used in the base algorithm
(Figure 1). The function gcardi defined at line New8.1 computes, for a given
group identifier g, the number of processes that belong to that group and whose
writes appear in pi’s snapshot snapi. It is the current cardinal of group g from
pi’s point of view.

At line New8.1, pi checks if its group has more than s processes. If it is not
the case, it executes line New8.2, setting the variable namespacei (in which it
will choose its next proposal) to the set {(gidi−1)(2s−1)+1, . . . , gidi(2s−1)},
which is initially reserved for the group gidi. In the other case (at least s + 1
processes of pi’s group appear in its last snapshot value), pi sets namespacei to
the union of the name spaces initially reserved for groups that now have at least
s+ 1 processes (line New8.3), and the (non-reserved) remaining names (if any)
are added to this merged name space (lines New8.4-New8.5).

102 A. Castañeda, M. Raynal, and J. Stainer

Lines 9-13 are similar to the previous algorithm. pi first computes propsi, the
set of the names currently proposed in the previously chosen name space. It
then retrieves the complementary set freei of non-proposed names and the set
compi of identities of processes competing in the same new name space. Finally
pi determines its rank ri among them, and chooses the rith value of freei, the
ordered sequence of available names, as its new proposal.

operation new name(idi, gidi) is
(1.M) propi ← (gidi − 1)(2s − 1) + 1;
(2) while true do
(3) STATE [i]← 〈propi, idi, gidi〉;
(4) snapi ← STATE .snapshot();
(5) if (∀ j 	= i : snapi [j].prop 	= propi)
(6) then return (propi)
(7) else let function gcardi(g) = |{j : snapi [j].gid = g}|;
(New8.1) if

(
gcardi(gidi) ≤ s

)
(New8.2) then namespacei ← {(gidi − 1)(2s − 1) + 1, . . . , gidi(2s − 1)}
(New8.3) else namespacei ←

⋃
y∈{g:gcardi(g)>s}{(y − 1)(2s− 1) + 1, . . . , y(2s− 1)};

(New8.4) if (n 	= ms)
(New8.5) then namespacei ← namespacei∪

{m(2s− 1) + 1, . . . , 3n− (s + 1)m− 1};
(New8.6) end if
(New8.7) end if;
(9) let propsi = {snapi [j].prop : snapi [j].prop ∈ namespacei};
(10) let freei = namespacei \ propsi ;
(11) let compi = {snapi [j].id : snapi [j].prop ∈ namespacei};
(12) let ri = rank of idi in compi ;
(13) propi ← the rith integer in the increasing sequence freei
(14) end if
(15) end while.

Fig. 3. From m = (n− �) groups containing at least s processes to M -renaming where
M = m(2s− 1) for n = ms, and M =

(
3n− (s+ 1)m− 1

)
for ms < n < m(s+ 1)

5.2 The Size of the New Name Space

Size of the new name space Let us consider several cases according to the values
of n, m, and s.

– n = ms. We have then M = m(2s− 1) = 2n−m, and no process proceeds
to the second phase.

– n > ms. Let us consider two sub-cases.
• n < (s+1)m. We have then M = 3n−(s+1)m−1 (see below). Moreover,
as (n < (s+ 1)m)⇒

(
3n− (s+ 1)m− 1 ≤ 2n− 2

)
, there is a benefit in

knowing the value s.
• n ≥ (s+ 1)m. In this case, it is possible that all the processes enter the
second phase. When this occurs we have M ≥ 2n− 1, and the algorithm
has no added value.

Assuming ms < n < m(s + 1), let Gs be the number of groups that include
exactly s processes. It follows that the size of the new name space statically
reserved for these sGs processes isM1 = (2s−1)Gs. Moreover, the size of the new

When and How Groups Can Be Used to Reduce Space 103

name space for the processes that enter the second phase is M2 = 2(n−sGs)−1.
Hence, the total size of the new name space (composed of consecutive integers)
is M = M1 +M2 = (2s− 1)Gs + 2(n− sGs)− 1 = 2n−Gs − 1. By assumption,
we have Gs ≥ m− (n mod m) = m− (n−ms) = (s+ 1)m− n. It follows that
M ≤ 3n− (s+ 1)m− 1.

Consequently, the knowledge of s allows to solve (a) (n, (2s− 1)m)-renaming
when the n processes are partitioned into m groups of equal size s; (b) (n, 3n−
(s + 1)m − 1)-renaming when the n processes are partitioned into m groups of
minimal size s, and ms < n < m(s+ 1).

(most right)

(most left)

Fig. 4. Size of the renaming space according to m and s, for n = 25 (up) and n = 250
(bottom)

Numerical results. Curves associated with the value M = 3n − (s + 1)m −
1 provided by the previous algorithm are depicted in Figure 4. The x-axis is
associated with the number of groups m, while the y-axis is associated withe
size of the new name space M .

104 A. Castañeda, M. Raynal, and J. Stainer

The figure at the left considers n = 25 processes, 1 ≤ m ≤ 25, and 25 ≤M ≤
49. Each line corresponds to a value of s ∈ {1, 2, 3, 5, 8}. As an example, there
are two pairs of values (s,m) that provide us with M = 38 (i.e., M 120%n).
They are the pairs of integers (s = 1,m = 18) and (s = 2,m = 12). This
illustrates a tradeoff relating the number of groups m and their minimal size
s, when a maximal value is a priori imposed on M . The figure also shows in
which proportion increasing the minimal size of groups entails an increase in the
size M .

The figure at the right complements the figure at the left. It considers 10
times more processes, i.e., n = 250. The new point illustrated by this figure is
that more processes allow more values of s to be meaningful.

6 Conclusion

Considering the renaming problem, the aim of this paper was to investigate the
impact of process groups (and their minimal size) on the size of the renaming
space. Two main results have been presented. The first is an (n+2�−1)-renaming
algorithm, where the number of groups is m = n − �, 1 ≤ m ≤ n − 1. The
important observation is that, when n−1 ≥ m > n

2 (i.e., 1 ≤ � < n
2), n+2�−1 <

2n − 2. Hence, groups allow to circumvent the lower bound on the new name
space in read/write systems. The second result is an impossibility proof showing
that there are pairs (n,m) for which groups do not allow to bypass the 2n − 1
lower bound. An additional result is the extension of the algorithm to groups of
possibly different sizes, each containing at least s processes.

The paper leaves consequently open the following question: When considering
the additional computational power given to processes by an m-group partition-
ing, does the predicate m > n

2 defines a tight lower bound on the number of
groups to bypass the 2n− 2 lower bound on the size of the new name space for
all renaming algorithms (including those which are not comparison-based)?

Acknowledgments. This work has been partially supported by the French
ANR project DISPLEXITY devoted to the computability and complexity in
distributed computing.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., Gafni, E., Lieber, O.: Tight Group Renaming on Groups of Size g Is
Equivalent to g-Consensus. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp.
111–126. Springer, Heidelberg (2009)

3. Afek, Y., Gamzu, I., Levy, I., Merritt, M., Taubenfeld, G.: Group Renaming. In:
Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 58–72.
Springer, Heidelberg (2008)

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asyn-
chronous Environment. Journal of the ACM 37(3), 524–548 (1990)

When and How Groups Can Be Used to Reduce Space 105

5. Attiya, H., Rajsbaum, S.: The Combinatorial Structure of Wait-Free Solvable
Tasks. SIAM Journal on Computing 31(4), 1286–1313 (2002)

6. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics, 2nd edn., 414 pages. Wiley-Interscience (2004)

7. Attiya, H., Paz, A.: Counting-Based Impossibility Proofs for Renaming and Set
Agreement. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 356–370.
Springer, Heidelberg (2012)

8. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Result for t-Resilient Asyn-
chronous Computations. In: Proc. 25th ACM Symposium on Theory of Computing,
STOC 1993, pp. 91–100. ACM Press (1993)

9. Castañeda, A., Imbs, D., Rajsbaum, S., Raynal, M.: Renaming Is Weaker Than
Set Agreement But for Perfect Renaming: A Map of Sub-consensus Tasks. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 145–156. Springer,
Heidelberg (2012)

10. Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower
Bounds for Renaming: The Lower Bound. Distributed Computing 22(5-6), 287–
301 (2010)

11. Castañeda, A., Rajsbaum, S.: New Combinatorial Topology Upper and Lower
Bounds for Renaming: The Upper Bound. Journal of the ACM 59(1), 3 (2012)

12. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: an introduction. Elsevier Computer Science Review 5, 229–251 (2011)

13. Gafni, E.: Group-Solvability. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274,
pp. 30–40. Springer, Heidelberg (2004)

14. Gafni, E.: Renaming with k-Set-Consensus: An Optimal Algorithm into n + k – 1
Slots. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 36–44.
Springer, Heidelberg (2006)

15. Gafni, E., Mostéfaoui, A., Raynal, M., Travers, C.: From Adaptive Renaming to
Set Agreement. Theoretical Computer Science 410, 1328–1335 (2009)

16. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Renaming Is Weaker
Than Set Agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

17. Gafni, E., Raynal, M., Travers, C.: Test&set, Adaptive Renaming and Set Agree-
ment: a Guided Visit to Asynchronous Computability. In: 26th IEEE Symposium
on Reliable Distributed Systems, SRDS 2007, pp. 93–102. IEEE Computer Society
Press (2007)

18. Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1), 124–149 (1991)

19. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computabil-
ity. Journal of the ACM 46(6), 858–923 (1999)

20. Imbs, D., Rajsbaum, S., Raynal, M.: The Universe of Symmetry Breaking Tasks.
In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp.
66–77. Springer, Heidelberg (2011)

21. Imbs, D., Raynal, M.: On Adaptive Renaming under Eventually Limited Con-
tention. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS,
vol. 6366, pp. 377–387. Springer, Heidelberg (2010)

22. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement Is Impossible: The Topology
of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

Electing a Leader in Multi-hop Radio Networks�

Bogdan S. Chlebus1, Dariusz R. Kowalski2, and Andrzej Pelc3

1 Department of Computer Science and Engineering, University of Colorado Denver,
Denver, CO 80217, USA

2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
3 Département d’informatique, Université du Québec en Outaouais, Gatineau,

Québec J8X 3X7, Canada

Abstract. We consider the task of electing a leader in a distributed
manner in ad hoc multi-hop radio networks. Radio networks represent
the class of wireless networks in which one frequency is used for trans-
missions, network’s topology can be represented by a simple undirected
graph with some n nodes, and there is no collision detection. We give
a randomized algorithm electing a leader in O(n) expected time and
prove that this time bound is optimal. We give a deterministic algo-
rithm electing a leader in O(n log3/2 n

√
log log n) time. By way of ap-

plication, we show how to perform gossiping with combined messages in
O(n log3/2 n

√
log log n) time by a deterministic algorithm, and in O(n)

expected time by a randomized algorithm.

Keywords: radio network, leader election, distributed algorithm, gos-
siping, randomization, lower bound.

1 Introduction

Wireless networking involves diverse applications, standards and categorizations
of networks, which is reflected in the variety of algorithmic models of such net-
works. We consider an abstract model of synchronous wireless networks in which
one frequency is used for transmissions and any simple undirected connected
graph can represent a network topology. It is called the “graph model” of wire-
less networks or simply the “radio networks model.” This paper addresses the
task of electing a leader in a distributed manner in such radio networks that do
not have collision detection available and have arbitrary connected topologies.

Electing a leader is among the fundamental tasks in distributed computing [2].
The goal is to obtain the status of leader for precisely one node while every other
node is not a leader but gets to know the leader. We seek algorithms electing a
leader in which the above specification of the task holds in every execution. We

� The work of the first author was supported by the NSF Grant 1016847. The work of
the second author was Supported by the Engineering and Physical Sciences Research
Council [grant number EP/G023018/1]. The work of the third author was Supported
by a NSERC discovery grant and by the Research Chair in Distributed Computing
at the Université du Québec en Outaouais.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 106–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Electing a Leader in Multi-hop Radio Networks 107

also consider the communication problem of gossiping in which each node is ini-
tialized with an individual input rumor and the task for every node is to learn all
the rumors.

Each of our distributed algorithms can be executed in an arbitrary radio net-
work with the topology represented as a simple undirected connected graph. We
assume that a bound on the range of names of nodes and a bound on the size
of the network can be part of code but the nodes are not assumed to know the
network’s topology or even their neighbors; such protocols are usually referred to
as being for “ad hoc” networks. We assume that networks are synchronous. This
includes the assumption that the nodes start an execution of an algorithm simul-
taneously. Next, synchrony means that any execution is structured into rounds,
so that a transmission by a node in a round reaches every neighbor of the node
in this round. There is no collision detection available, which means that a node
obtains the same feedback by its hardware from the network in any round when
no neighbors transmit as in any round when at least two of the neighbors do.

Our results. We give a randomized algorithm to elect a leader in O(n) expected
time, and also prove that this time bound is optimal. The fastest previously
known randomized leader election algorithm for radio networks without colli-
sion detection worked in O(n log n) expected time; it was given by Czumaj and
Rytter [9]. The O(n) bound on the expected time of randomized leader election
demonstrates that randomization allows to improve time performance of leader
election in radio networks over deterministic algorithms; this is because there is
the Ω(n log n) lower bound on deterministic leader election in single-hop radio
networks without collision detection, given by Kowalski and Pelc [17].

We develop a deterministic algorithm for radio networks without collision
detection which elects a leader in O(n log3/2 n

√
log logn) time. This improves

upon the fastest previously known O(n log2 n log logn) time performance of the
algorithm given by Vaya [24].

As an application, we show how to perform gossiping in ad hoc radio net-
works with combined messages, that is, when a message can carry any number
of rumors. We give a deterministic gossiping algorithm of O(n log3/2 n

√
log logn)

time performance. This improves upon the fastest previously known algorithm
working in O(n log2 n log logn) time given by Vaya [24]. We give a randomized
gossiping algorithm of O(n) expected time. This demonstrates that randomiza-
tion may speed up gossiping, with respect to deterministic protocols in ad hoc
radio networks without collision detection, as there is the Ω(n logn) lower bound
on gossiping by deterministic algorithms in single-hop radio networks, given by
Kowalski and Pelc [17].

Due to space limit, the proofs are deferred to the full version of the paper.

Related work. A distributed algorithm for electing a leader in general wired net-
works, with the optimum message complexity, was given by Gallager et al. [11],
who built on the connection between message-optimal leader election and finding
a spanning tree in a network. Time optimality of finding a leader, and a span-
ning tree, in a distributed manner in general wired networks was subsequently

108 B.S. Chlebus, D.R. Kowalski, and A. Pelc

investigated by Awerbuch [3] and Garay et al. [12]. Electing a leader has been
also studied in special classes of wired networks. The case of complete networks
was considered by Afek and Gafni [1]. For the related work on electing a leader in
rings, see an exposition of this topic in the book by Attiya and Welch [2] and the
references therein. Leader election in general dynamic networks was considered
by Kuhn et al. [19].

The problem of electing a leader in multi-hop radio networks has been consid-
ered in the literature in four different settings, determined by whether collision
detection is available or not and whether algorithms are to be deterministic or
randomized. If collision detection is available, Kowalski and Pelc [17] showed that
a leader can be elected deterministically in O(n) worst-case time, which is opti-
mal when time performance is expressed as a function of n. Next we consider the
model without collision detection. There is the Ω(n logn) lower bound for deter-
ministic algorithms for this model [17], even for single-hop networks, showed by
applying the combinatorial bounds given by Clementi et al. [8]. A deterministic
algorithm for electing a leader can be structured to resort to an algorithm for
broadcasting. Vaya [24] proposed to use the algorithm for broadcasting in ra-
dio networks developed by De Marco [10], which operates in O(n log n log logn)
time, obtaining an algorithm to elect a leader in O(n log2 n log logn) time.

A randomized leader-election algorithm of O(n log n) expected time can be
obtained by combining a fast randomized broadcast with the paradigm of binary
search in a polynomial range of names. To this end, one can use randomized
algorithms of O(D log(n/D)+ log2 n) expected time in networks of diameter D,
given by Czumaj and Rytter [9] and by Kowalski and Pelc [16].

Single-hop radio networks, also known as multiple access channels, have been
investigated in two variants, with collision detection and without it. For the
model without collision detection, the analysis given by Clementi et al. [8] im-
plies that deterministic leader election can be accomplished in O(n logn) worst-
case time, which is optimal by the combinatorial bounds given there, see [17].
Regarding the expected-time complexity of randomized algorithms without col-
lision detection, Bar-Yehuda et al. [4] showed the O(log n) upper bound and
Kushilevitz and Mansour [20] showed the Ω(logn) lower bound. Leader election
for channels with collision detection was investigated by Willard [25], who gave
the O(log logn) expected-time randomized protocol and proved its optimality
in a restricted class of protocols; other protocols were given by Nakano and
Olariu [22]. Jurdziński et al. [15] studied energy consumption needed to elect a
leader in multiple access channels without collision detection.

Next we briefly survey the literature on distributed gossiping in radio net-
works. Vaya [24] gave a deterministic gossiping protocol with combined messages,
working in O(n log2 log logn) time, which improved upon the fastest previously
known algorithm by G ↪asieniec et al. [14] that worked in O(n log4 n) time. Czumaj
and Rytter [9] gave a randomized Las Vegas gossiping protocol of O(n log2 n)
expected-time performance for the model of general directed networks with com-
bined messages. Chlebus et al. [6] studied generalizations of multi-broadcast
and rumor gathering, when the number of rumors is arbitrary but messages are

Electing a Leader in Multi-hop Radio Networks 109

bounded. Chlebus et al. [7] gave a randomized algorithm and lower bounds for
the problem when a set of nodes needs to perform an instance of many-to-many
communication, with an upper bound on the distance of a pair of participants
as a parameter in performance bounds, for the model of combined messages. A
comprehensive survey of gossiping in radio networks was given by G ↪asieniec [13].

2 Preliminaries

There are n nodes in a network. Each node has a unique integer name assigned to
it. The nodes’ names are in the interval [0, N−1], for some positive integerN . We
call N the range of names. It is assumed that N = O(nγ), for a constant γ > 1,
which means that N is polynomial in n. We denote by η an upper bound on the
number of nodes n, that is, η ≥ n. It is assumed that η = Θ(n), which means
that η is an upper bound on the size of the network that is linear in n.

Some information is said to be known by a node when it can occur in a code
executed by the node. We assume that each node knows its own name. We seek
distributed algorithms for networks that are unknown or ad hoc, which means
that algorithms are expected to work for any connected graph topology, with a
range of names N and an estimate on the network’s size η being the only global
parameters of the network known to the nodes.

Communication proceeds in synchronous rounds. All the nodes begin execut-
ing an algorithm simultaneously. In each round, a node either listens ready to
receive transmissions from the neighbors or transmits itself.

For the task to elect a leader, we assume that a message can carry O(1) nodes’
names, which means carrying O(log n) bits. Regarding gossiping, there are two
models popular in the literature. One stipulates that a message can carry at
most one input rumor along with O(log n) auxiliary control bits; the model is
called of separate or bounded messages. The model of combined or unbounded
messages allows a message to carry up to n input rumors along with O(log n)
auxiliary control bits. We assume the model of combined messages for gossiping.

For randomized algorithms, we use the phrase with high probability (whp) to
mean with probability at least 1− n−c, for some constant c > 0.
Radio networks. We consider radio networks as a class of wireless networks in
which topologies are represented by undirected graphs and one radio frequency
is used for transmissions [5,18,23]. The graph representing a radio network’s
topology is called the reachability graph of the network; an edge represents the
ability of direct transmissions between its endpoints. A message transmitted by
a node reaches all its neighbors in the round of the transmission. A message
is said to be heard by a node when it is received successfully. A node hears a
message in a round precisely when the node acts as a receiver and exactly one
of its neighbors transmits in this round. If at least two neighbors of a node u
transmit simultaneously in a given round, then none of the messages is heard
by u and we say that a collision occurred at u. A node perceives a round as
“silence” when no neighbor transmits in this round. We work with the model of
radio networks without collision detection, in which a node cannot distinguish a
round of collision from one of silence solely by the feedback from the channel.

110 B.S. Chlebus, D.R. Kowalski, and A. Pelc

We use simple connected graphs to represent topologies of radio networks.
Given such a graph, the notation Γ (v) denotes the set of neighbors of a node v.
We let Γ (A) stand for the union of all the sets Γ (v), for v ∈ A, where A is any
set of nodes of the network. The degree of a node v is denoted by d(v). For any
two nodes v and u, we define the radio distance between v and u as the minimum
sum of the degrees of the nodes on a shortest path between v and u.

Selective families. A sequence F(m, k) = (F0, . . . , Fr−1), of sets of integers Fi ⊆
[0,m− 1], for 0 ≤ i < r, is an (m, k)-selective family if, for each set of integers
S ⊆ [0,m − 1] of at most k elements, there exists Fj ∈ F(m, k) such that
|Fj ∩ S| = 1. Such a selective family is said to be of length r. A selective family
determines a transmission schedule by using the sets in the selective family in a
round robin manner. We say that an (N, k)-selective family F = (F0, . . . , Fr−1)
is executed in a sequence of consecutive rounds, if the nodes transmitting in
round i are precisely those whose names are in Fk, where k and i are congruent
modulo r.

We will use the fact, proved by Clementi et al. [8], that, for any positive
integers m ≥ k, there exists an (m, k)-selective family of O(k log m

k) length. Let
α be a constant such that there exists an (N, k)-selective family of length at most
α · k logN , for any 1 ≤ k ≤ N . Here and elsewhere, the notation log x denotes
the binary logarithm log2 x.

Designated broadcast algorithm. Whenever we need to perform broadcasting
from a single source node, we use the algorithm developed by De Marco [10], to
which we refer as the designated radio broadcast in such a context. This algorithm
completes broadcasting in T (n,N) = O(n logN log logN) time, after initiation
by a source node, in any network with a connected reachability graph of at most n
nodes and with N as their range of names. We briefly describe how the algorithm
is structured. The source transmits only in the first round of an execution. When
a node receives the broadcast message, along with control bits representing the
number of rounds that have passed since the start of the broadcast execution,
then it becomes activated. An activated node immediately begins performing
transmissions according to a schedule that is determined only by the following:
this node’s name, the range of names N , the linear upper bound η on the size of
the network, which is used instead of n, and the round of activation of the node
as counting from the start of the execution.

Depth-first traversal. We use a protocol to traverse a radio network by a token
in a depth-first manner, which was developed by Kowalski and Pelc [16]. That
protocol, when initiated by a node, performs a depth-first traversal of the network
by a token in O(n log n) rounds, producing a depth-first spanning tree rooted
at the initiating node. When the token is to be forwarded from a node v to
one of its unvisited neighbors, then v and its neighbors need to identify one of
such unvisited nodes. There are two nodes that participate in this operation:
one is v and another is a neighbor of v which is referred to as the witness for v.
The witness for the initiating node needs to be selected first from among its
neighbors, while for any other node v, it is the node from which the node v got
the token that conveniently serves as the witness for v. To select an unvisited

Electing a Leader in Multi-hop Radio Networks 111

neighbor of a node v, when this is the initiating node, v invokes a binary search
among the names in [0, N − 1]. To implement such a binary search, v uses a
procedure Echov(w,A), where A is a set of neighbors of v and the witness w
does not belong to A. Executing Echov(w,A) takes two rounds and allows the
node v to distinguish between the following three cases: A = ∅, |A| = 1, and
|A| > 1. In a search for a neighbor, the set A initially consists of all the unvisited
neighbors and its size is halved by each subsequent call of Echo.

Revealing neighbors. For two neighbors v and w in a radio network, we say that
w is revealed to v when v knows w’s name. Node w gets revealed to v when
v hears the first message from w. Such a message is understood to bring the
sender’s name. We use a randomized procedure to reveal all the neighbors of
a node v. This procedure can be designed for a multiple access channel, as v
with its neighbors can simulate a channel for the v’s neighbors to transmit on
it, with a constant slowdown per transmission. The node v transmits a message
to notify its neighbors that revealing has started. Only the neighbors that v
does not know of participate in this revealing; let this set be denoted as A. We
assume that v knows at least one neighbor w which serves as witness. The node v
invokes Echov(w,A). If A = ∅ then v transmits a signal to terminate revealing.
If A is a singleton then v has already heard from v in a round of Echov(w,A)
so v also terminates revealing. If |A| > 1 then v continues with a simulation of
the algorithm for the multiple access channel developed by Martel [21], which
makes every member of A eventually heard by v; we refer to this algorithm as
the Martel’s protocol. Let k be the number of such unrevealed neighbors. The
Martel’s protocol takes at most c · (k + logn) rounds with high probability [21],
for some sufficiently large constant c.

3 Auxiliary Procedures

In this section we present four auxiliary procedures, three of them are deter-
ministic and one is randomized, that will serve as building blocks for our leader
election algorithms for radio networks.

3.1 Partial Multi Broadcast

Suppose that some generic information μ is known to every node from a set S.
We want the information μ to be disseminated across the network, with all the
nodes in S starting the process of dissemination simultaneously. We assume that
initially each node v of the network knows whether v itself belongs to S or not,
without necessarily knowing other elements of S. There is a parameter z, for
0 < z ≤ 1, known to all the nodes in S. The goal is for at least a fraction z
of all the nodes of the network to get to know μ by the end of the process. In
applications, this number z will be a function z = z(η) of η, converging to 0
with n growing to infinity.

The following procedure Partial Multi Broadcast(S, z) achieves this goal; the
numbers η andN known by the nodes are not listed among the parameters of this

112 B.S. Chlebus, D.R. Kowalski, and A. Pelc

procedure for brevity. In an execution, every node is either active or passive, this
status being subject to changes. All the nodes in S start as active. An execution
is structured to consist of two parts. In the first part, we use the designated radio
broadcast algorithm as follows. In the beginning, the nodes in S set the source
message to μ and the global execution time counter to 2. The intuition is that
this process will mimic a scenario when there is a conceptual source connected
only to the nodes in S that has just sent message μ to the nodes in S in the
conceptual (preceding) round 1. Starting from this point, all the nodes execute
the designated radio broadcast, as specified in Section 2. The first part ends in
round T (zη,N), where T (k,N) is the upper bound on time performance of the
designated broadcast in networks of at most k nodes, for k ≤ η. This is followed
by the second part, in which each node in S executes three times, one by one,
an (N, η)-selective family of length αη logN = Θ(n log n). For an execution of
this procedure, the set of nodes that receive a message from some node in S is
denoted WS .

Lemma 1. Consider Partial Multi Broadcast(S, z) executed with z such that 0 <
z ≤ 1 and z = o(1). Then the execution has these properties:

(i) |S ∪WS | ≥ zn,
(ii) all the nodes of distance at most 3 from the set S end up in WS,
(iii) termination occurs in O(zn logn log logn) rounds.

3.2 Ultra-Selectors and Combined-Ultra-Selectors

Following [6], we define an (N, a, ε)-ultra-selector to be a sequence of sets such
that for any set A ⊆ [0, N − 1] of a size that is at most a but greater than a/2
there is at least an ε fraction of the sets in the sequence that share precisely
one element with A, for a given 1 ≤ a ≤ N and 0 < ε < 1. The number of
sets in the sequence is the length of the ultra-selector. A sequence obtained by
concatenating (N, a/2i, ε)-ultra-selectors, for i = 0, 1, . . . , log a, is an (N, a, ε)-
combined-ultra-selector.

Lemma 2. There exists an (N, a, ε)-combined-ultra-selector of length at most
4βa log(2N/a), for some β ≥ 2 depending on ε.

Lemma 3. For any numbers a and ε such that 1 ≤ a < N and 0 < ε ≤ 1/32, if
S is an (N, a, ε)-combined-ultra-selector then, for any set A ⊆ [0, N − 1] with at
most a elements, at least ε log(2N/a) sets in S share a single element with A.

3.3 Multiple DFS Traversals

We introduce a method to traverse a radio network, which is an extension of
the DFS traversal. The idea is to have many nodes simultaneously launch to-
kens to perform independent DFS traversals. A token carries with it a list of the
visited nodes. Each node maintains its record of the names already visited by

Electing a Leader in Multi-hop Radio Networks 113

passing tokens, and the list of its known neighbors. We limit the time available
for such traversals in advance, so that some executions may fail to have all the
nodes visited, even if there is only one token in the network at a time. Our
ultimate goal is to guarantee that after a logarithmic number of executions of
this procedure with a single token, some of them will accomplish a DFS traversal,
and, moreover, all nodes can recognize such an execution.

Procedure Multi DFS Traversal(N, b,R) operates as follows. Let R be a subset
of nodes, each with a unique neighbor designated as witness. Each node knows
whether it belongs to R or not, without knowing the other elements of R. Each
node v in R knows its witness and the witness of v knows v. Each node in R
initiates a DFS traversal by launching a token. A token’s traversal terminates
at the latest when it returns back to its originator and there are no more of its
neighbors to visit, but it may terminate earlier when the token gets destroyed
by a visited node. An execution of Multi DFS Traversal(N, b,R) takes precisely b
rounds. The details are as follows.

There are two parallel threads. A node participates in executing one thread
at a time. Additionally, a token-dropping mechanism is applied on top of the
two threads.

The first thread. This thread takes care of sending messages with tokens. Each
token carries the following information: the name of the initiator, the number of
token’s hops from node to node, the number of visited nodes without multiplic-
ities, and the maximum name of a visited node. Every node visited by a token
stores a record of the information carried by the token.

A node may know only some of its neighbors in a round of an execution, but
it keeps discovering them by hearing the tokens they pass from one to another,
and also learning which neighbors have already been visited. This mechanism
allows the token to carry only a logarithmic number of control bits, instead of
the whole list of the visited nodes. A node’s neighbor is unvisited when the node
has not heard yet that this neighbor has received the token. If a node holding a
token knows some of its still unvisited neighbors, then it forwards the token to
the unvisited neighbor with the smallest name, with an acknowledgment arriving
back in the following round. Upon getting an acknowledgment, the sender erases
the token from its local memory. The recipient becomes the token’s holder after
acknowledging receipt. If a node holding a token does not know of any unvisited
neighbor, then the node passes control to the second thread and expects that
that thread will compute the next destination of the token.

The second thread. This thread takes care of checking whether there is a neighbor
not visited yet by this token. Such a neighbor cannot be known by the node
holding the token. Checking for being visited is accomplished by executing the
procedure of searching for a neighbor (see Section 2, Depth-first traversal). If
the search returns that there is no such a neighbor then the token is forwarded
to the parent. If the search for a neighbor finds an unvisited node, then the
thread returns this neighbor. After this control goes back to the first thread
which continues forwarding the token.

114 B.S. Chlebus, D.R. Kowalski, and A. Pelc

Rules to drop tokens. The above two threads guarantee that the token visits
all nodes and returns to its source in case when there is just single token, that
is, when |R| = 1, and an execution is sufficiently long, say, b = Θ(η logN) =
Θ(n log n); see [16]. When there is no leader, it is not immediately clear how to
choose a singleton set R in a distributed way. Our approach is to allow for |R| > 1
and consider a logarithmic number of execution of the procedure, when sets R
are selected according to some combined-ultra-selector. A motivation for this is
to increase a chance that in some of these executions the sets R are singletons,
so a DFS traversal will be completed. This is combined with having executions
of the procedure take only b = Θ(η) = Θ(n) rounds.

In order to deal with the case |R| > 1, an additional mechanism to drop
tokens is used along the two threads described above. Its purpose is to provide
safety when multiple tokens exist simultaneously. As we will show, the property
of eventual DFS traversal can be achieved by considering only runs when the
sets R are singletons. Every time when either another token is discovered in a
newly visited node or there is some inconsistency with the feedback received
from overheard messages, as compared to what is expected if there were just a
single token, then the token is abandoned. This means that the node holding
the token changes its status to one not holding this token while this fact is not
communicated to the neighbors nor the token forwarded to them.

Next we summarize the four ways in which a node can dispose of a token:

1) The node passes the token to a neighbor through the first thread.
2) The node has just received the token through the first thread and it has a

record of some other token visiting before.
3) A state inconsistent with just one token being around occurs in the search-

ing procedure of the second thread, that is, either no witness node is heard or a
node recorded as visited or outside of the current range of search is heard.

4) The node hears two silences in the first step of a sub-routine used to search
for an unvisited neighbor in the second thread, when executing the echo pro-
cedure, which indicates that there are at least two such neighbors, while no
neighbor is returned in this execution of the subroutine.

A node v in R completes Multi DFS Traversal(N, b,R) successfully if its token
returns to v by round b since its launching and, upon such a return, the neighbors
of v have been already visited. In applications, an execution of Multi DFS Traver-
sal(N, b,R) may not be completed successfully by any node in R. We perform
Multi DFS Traversal(N, b,R) multiple times leveraging the property that each
execution increases the nodes’ knowledge about their neighbors.

Lemma 4. Let R(i) be singleton sets, for i ≤ 1
64 logN . There is a constant g > 8

such that in the executions of procedure Multi DFS Traversal(N, gη,R(i)), carried
out consecutively for i ≤ 1

64 logN , the unique element in R(1
64 logN) completes

its execution successfully after having visited all the nodes.

We remark that Lemma 4 holds even if the executions of procedure Multi -
DFS Traversal(N, gη,R(i)), for i ≤ 1

64 logN , are separated by some other runs
with sets R such that |R| > 1. Intuitively, this is because the knowledge about

Electing a Leader in Multi-hop Radio Networks 115

neighbors does not decrease in the executions with |R| > 1, and it suffices to
have an inductive-type of argument work.

3.4 Randomized Multiple DFS Traversals

We will use a randomized modification of procedure Multi DFS Traversal. It will
be also executed multiple times, to have the nodes accumulate knowledge of their
neighbors. This procedure is called Rand Multi Tree Search(η,R).

Procedure Rand Multi Tree Search(η,R) is executed as follows:
Each node is equipped with a subset of its neighbors, by which we mean that it

knows the names of neighbors in this subset. All the nodes in R have the status
visited and revealed. In the beginning, a witness for each node in R needs to be
identified. This is accomplished by each node in R notifying its neighbors, which
triggers executing a fixed (N, η)-selective family of length cη logN = O(n log n),
for some constant c > 0; see [8].

We want the nodes in R launch tokens that will then explore the network, but
not necessarily in a DFS manner. Instead of applying an O(logN) procedure of
selecting the next node, or checking that there is no revealed neighbor, as we did
in the deterministic setting, we proceed as follows.

A node in R treats itself as a root, in that it has no parent, while every other
node sets the node from which it received the token for the first time as its
parent. When a node v is visited for the first time, or if it is a node in R in
the beginning of the execution, it reveals all its known neighbors to the other
neighbors, if any, by transmitting the known neighbors’ names one by one.

Each node keeps a record of all its revealed neighbors and of the visited ones.
A node v marks its neighbor w as visited if v receives a message with the token
sent by w; in such a situation, the node v does not have to be the intended
recipient of the message and the token.

Each time we need to verify if there is an unvisited neighbor of a node then
procedure Echo is used.

Rand Multi Tree Search(η,R) is executed repeatedly so that a node may re-
ceive a token multiple times. All these executions keep up performing the Mar-
tel’s protocol. If a node v receives the token and all of its neighbors have already
been revealed, for instance, when the node receives the token either again after
releasing it before or during the first token’s visit but after completing the exe-
cution of the Martel’s protocol, then v sends the token to the unvisited neighbor
of the smallest name. If there is no unvisited neighbor then v passes the token to
its parent, in case it has a parent, otherwise it is considered as having completed
the first part, in case the node v is in R. The root waits a suitable Θ(η) = Θ(n)
number of rounds, so that all the other tokens disappear, and then sends a token
with its name to follow the route of its token from the first part. This second
part also takes Θ(η) = Θ(n) rounds.

When |R| > 1 then a node handling a token eliminates it each time a situation
impossible for a single token occurs at a node handling the token, similarly as
in the deterministic algorithm Multi DFS Traversal, so that at most one token
survives. The resulting tree may not be a DFS tree but it still spans the graph.

116 B.S. Chlebus, D.R. Kowalski, and A. Pelc

4 Randomized Election

In this section we show how a leader can be elected by a randomized distributed
algorithm in the optimal expected Θ(n) time. An execution of the algorithm is
divided into epochs. A node iterates such epochs until it elects a leader.

Algorithm Randomized Leader Election

Repeat the following epochs, from (a) through (d), until a leader is elected:

Sub-epoch (a): Each node chooses to be a candidate in the current epoch with
probability 1/η independently from the other nodes.

Sub-epoch (b): Each node selects a random number r from [0, 4η− 1] and trans-
mits its name in the r-th round of the sub-epoch. In the remaining rounds,
the node just listens. At the end, each node has a set, possibly empty, of
these names of its neighbors that were heard in this sub-epoch.

Sub-epoch (c): Procedure Rand Multi Tree Search(η,R) is executed for the set R
of candidates. Each node is equipped with a subset of its neighbors computed
in Sub-epoch (b).

Sub-epoch (d): If a candidate receives its token back, the it launches the token
again to perform the same traversal as in the previous sub-epoch (c). The
token carries the candidate’s name. At the end of this sub-epoch, each node
that received the token, including the node that originated the token, elect
the node whose name is carried by the token as the leader.

The sub-epochs have the following precisely determined duration: (a) takes one
round; (b) takes 4η rounds; (c) takes takes 2η + 2cη = O(n) rounds, where
ck + log η is the complexity of the Martel’s protocol on the multiple access
channel with k active nodes to be revealed; (d) takes 2η rounds.

Lemma 5. During Sub-epoch (b), the following holds whp for any node v:
(i) if v has at most logn neighbors in the graph, then all these neighbors are

heard by v;
(ii) if v has more than logn neighbors then at least logn+1 of them are heard

by v.

Lemma 6. When procedure Rand Multi Tree Search(η,R) is executed in Sub-
epoch (c) then the following gets accomplished whp:

(i) at most one node from R gets elected and a DFS spanning tree rooted at
this node is built;

(ii) exactly one node in R is selected if R is a singleton;
(iii) termination occurs in O(n) rounds.

Theorem 1. Algorithm Randomized Leader Election elects a leader in O(n) ex-
pected time. The algorithm builds a tree rooted at the leader as a byproduct.

We show that the expected time of algorithm Randomized Leader Election is
optimal.

Theorem 2. There is no randomized algorithm electing a leader in o(n) expected
number of rounds in all n-node networks.

Electing a Leader in Multi-hop Radio Networks 117

5 Deterministic Election

We develop a deterministic algorithm electing a leader in O(n log3/2 n
√
log logn)

time.
We begin with an auxiliary algorithm that works in two stages. First, a set of

representatives is selected locally, each being the node with the largest name in
a suitable subgraph. The next stage is to elect one leader among the represen-
tatives.

An execution of the algorithm is considered as having terminated when all
the nodes had become aware that the task of electing a leader is completed. This
strong termination property is what defines the time performance.

Our algorithm is executed with a parameter 0 < z ≤ 1 to be specified later in
order to optimize the time complexity.

The following is the underlying idea on which the algorithm is based:
First, procedure Partial Multi Broadcast is used to select a set R of at most 1

z
nodes called representatives. Each representative selects one neighbor, to serve
as a witness, in order to start algorithm Multi DFS Traversal(N, gη, ·) from this
representative, where g > 8 is the constant from Lemma 4. Next, we com-
bine algorithm Multi DFS Traversal(N, gη, ·) with a specific transmission sched-
ule, called ultra-selector, in order to perform consecutive executions of procedure
Multi DFS Traversal(N, gη, ·) starting from different subsets of the set of repre-
sentatives. More precisely, the ith time segment is reserved to execute algorithm
Multi DFS Traversal(N, gη, Fi) starting from the representatives in Fi, for consec-
utive sets Fi in the ultra-selector. Due to the suitable properties of ultra-selectors,
at least 1 in 32 of these executions will result in the subsets of representatives
being singletons. This will enable algorithm Multi DFS Traversal(N, gη, Fi) to be
completed correctly in all these executions, and moreover, one of them completes
a DFS tour of the network and elects a leader.

The novelty of our approach is in selecting each representative locally as a node
with the largest name in some subgraph, without performing full communication
in the network. After this first stage has been accomplished, we still need to elect
one leader among the representatives in the second stage.

Algorithm Deterministic Leader Election(z)

Stage 1: Electing representatives.
This stage proceeds through logN + 1 epochs of equal length. Each node starts
as active. Epoch i begins by executing Partial Multi Broadcast(Si, z), where Si

is the set of those nodes active in the beginning of epoch i that have bit 1 in
the ith position of the binary representation of their name. Epoch i continues by
executing Partial Multi Broadcast(S′i, z), where S′i is defined as the set of nodes
that received a message in the first part of epoch i, that is, during the execution
of Partial Multi Broadcast(Si, z). In both parts, the same default message is used
by all nodes. At the end of epoch i, if the bit 0 is in the ith position of the binary
representation of its name, then the node that received a message during epoch i
becomes inactive. Active nodes become representatives at the end of this stage.

118 B.S. Chlebus, D.R. Kowalski, and A. Pelc

Stage 2: Electing a leader by representatives.
We proceed in two sub-stages:
Sub-stage 2.a: Each representative chooses a witness among its neighbors.

An (N, η)-selective family of αη logN = O(n log n) length is executed,
in which every node participates and transmits just its name. After the
family’s execution is over, each representative transmits its name and
the name of its witness.

Sub-stage 2.b: The representatives combine executing an (N, 1
z , 1/32)-combined-

ultra-selector with procedure Multi DFS Traversal so as to select as leader the
node with the largest name.

This sub-stage proceeds through a epochs, where a is the length of a given
(N, 1

z , 1/32)-combined-ultra-selector F = {F1, . . . , Fa}. Epochs have the
same length, equal to twice the upper bound on the length of procedure
Multi DFS Traversal. In epoch i, procedureMulti DFS Traversal(N, gη,Ri)
is run, where Ri is the set of representatives that are in Fi and the con-
stant g > 8 is from Lemma 4. Every token that succeeds in a run repeats
its run in the consecutive gη rounds, called confirming rounds, in order to
announce that it succeeded. If there are no such tokens, then the nodes
stay idle during these gη rounds. A node’s name heard last during the
confirming rounds is understood as the leader’s name by a node.

Regarding Sub-stage 2.a: The definition of an (N, η)-selective family guarantees
that each representative hears a single neighbor in some round of executing
a selective family, and the first such a neighbor becomes the witness of this
representative. A transmission by a representative informs its witness that it has
been chosen. As the representatives are sufficiently far away from each other, by
the properties of Partial Multi Broadcast, all their transmissions are heard.

Regarding Sub-stage 2.b: The number a is O(1z logN), by Lemma 2. Note that
confirming rounds may not suffice for a token to cover the whole network.

Lemma 7. Consider an execution of algorithm Deterministic Leader Election(z).
Upon completion of Stage 1 the number of representatives is between 1 and 1

z .
The distance between any two representatives in the network is at least 4.

Algorithm Deterministic Leader Election is defined as Deterministic Leader Ele-
ction(z) in which we substitute 1√

log η log log η
as the value of the parameter z.

Theorem 3. Algorithm Deterministic Leader Election produces a leader within
O(n log3/2 n

√
log logn) time.

6 Gossiping

We now show an application of our leader election algorithms to obtain fast
gossiping algorithms in the model of combined messages. Initially, each node of
the network has a rumor and the goal is to make all rumors known to all nodes.

Electing a Leader in Multi-hop Radio Networks 119

A message can contain an arbitrary number of rumors and additionally O(log n)
control bits. The algorithm resorts to a subroutine to elect a leader and produce
a spanning tree rooted at this leader. The bird’s-eye view of the algorithm:

Algorithm Gossip

Part 1 : Elect a leader and produce a spanning tree rooted at the leader.
Part 2 : Send a token along the spanning tree, to gather all the rumors at the

visited nodes and bring them to the leader.
Part 3 : Send a token again along the spanning tree, to disseminate the rumors

among the nodes.

In this algorithm, we use either the deterministic or the randomized algorithms
for leader election. In the randomized case, the leader attempts to build a span-
ning tree. The leader applies Rand Multi Tree Search, with just one source. We
want to be certain that a tree has been constructed. To this end, the leader
launches a token which traverses the tree and verifies in each visited node if
there is a neighbor omitted from the tree, by using procedure Echo. When such
an omitted node is located then it is attached as a neighbor in the tree to the
node hosting the token at the moment.

Theorem 4. The instantiation of algorithm Gossip with deterministic leader
election terminates in O(n log3/2 n

√
log logn) time. The instantiation of algo-

rithm Gossip with randomized leader election terminates in O(n) expected time.

7 Conclusion

We presented fast distributed algorithms for electing a leader and for gossip-
ing with combined messages. The bounds for the randomized case are tight.
Regarding deterministic solutions for these problems, we give algorithms of
O(n log3/2 n

√
log logn) time performance, while Ω(n logn) is the greatest known

lower bound. How to close this gap is a natural open question.

References

1. Afek, Y., Gafni, E.: Time and message bounds for election in synchronous and
asynchronous complete networks. SIAM J. on Computing 20(2), 376–394 (1991)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, 2nd edn. John Wiley (2004)

3. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election and related problems. In: Proceedings of the 19th ACM
Symposium on Theory of Computing, STOC, pp. 230–240 (1987)

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. Journal of Computer and System Sciences 45(1), 104–126 (1992)

5. Censor-Hillel, K., Gilbert, S., Kuhn, F., Lynch, N.A., Newport, C.C.: Structur-
ing unreliable radio networks. In: Proceedings of the 30th ACM Symposium on
Principles of Distributed Computing, PODC, pp. 79–88 (2011)

120 B.S. Chlebus, D.R. Kowalski, and A. Pelc

6. Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient Distributed Com-
munication in Ad-Hoc Radio Networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part II. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011)

7. Chlebus, B.S., Kowalski, D.R., Radzik, T.: Many-to-many communication in radio
networks. Algorithmica 54(1), 118–139 (2009)

8. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks
of unknown topology. Theoretical Computer Sciences 302(1-3), 337–364 (2003)

9. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. Journal of Algorithms 60(2), 115–143 (2006)

10. De Marco, G.: Distributed broadcast in unknown radio networks. SIAM Journal
on Computing 39(6), 2162–2175 (2010)

11. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and Sys-
tems 5(1), 66–77 (1983)

12. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM J. on Computing 27(1), 302–316 (1998)

13. G ↪asieniec, L.: On Efficient Gossiping in Radio Networks. In: Kutten, S., Žerovnik,
J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 2–14. Springer, Heidelberg (2010)

14. G ↪asieniec, L., Pagourtzis, A., Potapov, I., Radzik, T.: Deterministic communication
in radio networks with large labels. Algorithmica 47(1), 97–117 (2007)

15. Jurdziński, T., Kuty�lowski, M., Zatopiański, J.: Efficient algorithms for leader elec-
tion in radio networks. In: Proceedings of the 21st ACM Symposium on Principles
of Distributed Computing, PODC, pp. 51–57 (2002)

16. Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Dis-
tributed Computing 18(1), 43–57 (2005)

17. Kowalski, D.R., Pelc, A.: Leader Election in Ad Hoc Radio Networks: A Keen
Ear Helps. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 521–533. Springer,
Heidelberg (2009)

18. Kuhn, F., Lynch, N.A., Newport, C.C., Oshman, R., Richa, A.W.: Broadcasting
in unreliable radio networks. In: Proceedings of the 29th ACM Symposium on
Principles of Distributed Computing, PODC, pp. 336–345 (2010)

19. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC, pp. 513–522 (2010)

20. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in
radio networks. SIAM Journal on Computing 27(3), 702–712 (1998)

21. Martel, C.U.: Maximum finding on a multiple access broadcast network. Informa-
tion Processing Letters 52(1), 7–15 (1994)

22. Nakano, K., Olariu, S.: A survey on leader election protocols for radio networks. In:
Proceedings of the International Symposium on Parallel Architectures, Algorithms
and Networks, I-SPAN, pp. 63–68 (2002)

23. Newport, C.C., Lynch, N.A.: Modeling radio networks. Distributed Comput-
ing 24(2), 101–118 (2011)

24. Vaya, S.: Faster gossiping in bidirectional radio networks with large labels. CoRR
abs/1105.0479 (2011)

25. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access
channel. SIAM Journal on Computing 15(2), 468–477 (1986)

Tree Exploration by a Swarm of Mobile Agents

Jurek Czyzowicz	, Andrzej Pelc		, and Mélanie Roy

Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec J8X 3X7, Canada

{jurek,pelc}@uqo.ca, hugomel@vianet.ca

Abstract. A swarm of mobile agents starting at the root of a tree has to
explore it: every node of the tree has to be visited by at least one agent.
In every round, each agent can remain idle or move to an adjacent node.
In any round all agents have to be at distance at most d, where d is a
parameter called the range of the swarm. The goal is to explore the tree
as fast as possible.

If the topology of the tree is known to the agents, we establish optimal
exploration time for any range d and give an optimal exploration algo-
rithm. The formula for the optimal exploration time of a tree by a swarm
of agents depends on the range of the swarm and on the characteristics of
the tree. If the tree is unknown, the quality of an exploration algorithm
A is measured by comparing its time to that of the optimal algorithm
having full knowledge of the tree. The ratio between these times, maxi-
mized over all starting nodes and over all trees, is called the overhead of
algorithm A. Overhead 2 is achieved when the swarm executes a DFS,
remaining together all the time. We show that this overhead cannot be
improved, for any range d.

Keywords: algorithm, exploration, swarm of mobile agents, tree.

1 Introduction

1.1 The Model and the Problem

A swarm of mobile agents starting at some node of the tree, called its root, has
to explore the whole tree: every node of the tree has to be visited by at least
one agent. Agents move in synchronous rounds: in every round, each agent can
remain idle or move to an adjacent node. It is required that in any round every
pair of agents be at distance at most d, where d ≥ 0 is an integer parameter
called the range of the swarm. This is motivated by a possible need of the agents
for maintaining fast communication at all stages of the exploration. The time of
an exploration algorithm is the number of rounds until the last node of the tree
is visited by some agent. The goal is to explore the tree as fast as possible.

We consider two scenarios. In the first one, all agents have complete knowledge
of the tree, i.e., they have a labeled isomorphic copy of it. In this case the

� Supported in part by NSERC grant.
�� Supported in part by NSERC grant and by the Research Chair in Distributed Com-

puting of the Université du Québec en Outaouais.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 121–134, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 J. Czyzowicz, A. Pelc, and M. Roy

algorithm is centralized and the goal is to achieve the shortest time for this
particular tree. In the second scenario the topology of the tree is unknown. We
assume that all nodes have distinct labels, and all ports at a node v are numbered
1,..., deg(v). Hence an agent can recognize nodes that it has already visited and
edges that it has already traversed. However, it cannot tell the difference between
edges incident to its current position that it has not yet explored, i.e., it does not
know the other ends of such edges. If the agent decides to use such an unexplored
edge, the actual choice of the edge belongs to the adversary, as we are interested
in worst-case performance.

Fix a range d of the swarm. For a given exploration algorithm A not knowing
the topology of the tree, the time τ(A, T, v) of this algorithm run on a tree T
from a starting node v is the worst-case number of rounds until the visit of the
last node, taken over all of the above choices of the adversary. On the other
hand, opt(T, v) is the time of an optimal algorithm having complete knowledge
of the tree. For a given tree T and a given starting node v, a natural measure
of quality of an exploration algorithm A not knowing the topology is the ratio
τ(A, T, v)/opt(T, v) of its time to that of the optimal algorithm having complete
knowledge of the tree, cf. [9]. This ratio represents the relative penalty payed by
the algorithm for the lack of knowledge of the environment. The value

O(A) = supT∈Tmaxv∈T
τ(A, T, v)
opt(T, v)

,

where T is the class of all trees, is called the overhead of algorithm A. It is the
maximum relative penalty described above, over all starting nodes in all trees.
The lower the overhead of an exploration algorithm, the closer is its performance
(in the worst case) to that of the optimal algorithm having full knowledge of the
environment.

Let DFS be any depth-first-search algorithm in the tree, executed by all agents
staying together during the whole exploration. Since, for any tree T with e edges
and any starting node v , we have τ(DFS, T, v) ≤ 2e (depth-first search traverses
each edge at most twice), and opt(T, v) ≥ e (every edge has to be traversed at
least once), it follows that the overhead of DFS is at most 2.

1.2 Our Results

If the topology of the tree is known to the agents, we establish optimal ex-
ploration time for any range d and any tree, and give an optimal exploration
algorithm. The formula for the optimal exploration time of a tree by a swarm
of agents depends on the range of the swarm and on the characteristics of the
tree. If the tree is unknown, we show that there is no exploration algorithm with
overhead smaller than 2, for any range d. Hence DFS has always optimal over-
head. We also observe that for known topology, the size of the swarm sufficient
to execute the optimal algorithm is equal to the number of leaves in the tree.
On the other hand, for unknown topology, the best overhead can be achieved by
a single agent regardless of the range d.

Due to space constraints, proofs of several lemmas are omitted.

Tree Exploration by a Swarm of Mobile Agents 123

1.3 Related Work

Algorithms for graph exploration by mobile agents (often called robots) have
been intensely studied in recent literature. A lot of research is concerned with
the case of a single robot exploring the graph. In [1,3,4,8,14] the robot explores
strongly connected directed graphs and it can move only in the direction from
head to tail of an edge, not vice-versa. In particular, [8] investigates the minimum
time of exploration of directed graphs, and [1,14] give improved algorithms for
this problem in terms of the deficiency of the graph (i.e., the minimum number of
edges to be added to make the graph Eulerian). Many papers, e.g., [9,12,13,20]
study the scenario where the explored graph is undirected and the robot can
traverse edges in both directions. In [20] it is shown that a graph with n nodes and
e edges can be explored in time e+O(n). In some papers, additional restrictions
on the moves of the robot are imposed. It is assumed that the robot has either
a restricted tank [5], forcing it to periodically return to the base for refueling,
or that it is tethered, i.e., attached to the base by a rope or cable of restricted
length [13]. In [9] the authors investigate the problem of how the availability of
a map influences the efficiency of exploration. When the map is not available,
the quality of the algorithm is measured by its overhead, as we do in the present
paper.

In all the above papers, except [4] which deals with randomized algorithms,
exploration is performed by a single robot. Deterministic exploration by many
robots has been investigated mostly in the context when moves of the robots are
centrally coordinated. In [18], approximation algorithms are given for the collec-
tive exploration problem in arbitrary graphs. In [2] the authors construct approx-
imation algorithms for the collective exploration problem in weighted trees. On
the other hand, in [17] the authors study the problem of distributed collective
exploration of trees of unknown topology. The robots performing exploration
start in the same node and can directly communicate with each other. As op-
posed to our scenario, no bound on the distances between the robots is assumed.
Exploration of arbitrary anonymous graphs by a team of robots communicating
through whiteboards has been studied in [7].

Another stream of research [6,15,16,19] concerned deterministic graph explo-
ration by very weak robots that cannot communicate directly with each other
and cannot leave any marks on nodes but have very strong perception capabili-
ties: they can perceive the entire environment, i.e., see the whole graph with the
locations of other robots in it. Probabilistic exploration in the ring in the above
model has been the object of investigation in [10,11].

2 Exploration of a Known Tree

In this section we present an optimal algorithm for exploration of a known tree T
by a swarm of mobile agents with range d ≥ 0. All agents start at the root r of
the tree. A leaf of a tree is any node of degree 1 other than the root. We denote
by n the number of nodes in the tree and by h its height, i.e., the largest distance

124 J. Czyzowicz, A. Pelc, and M. Roy

from the root to a leaf. For any node v of the tree we denote by Tv the subtree
of T rooted at v and consisting of all descendants of v in T . Let dist(u, v) denote
the distance between nodes u and v in the tree. For any node v of the tree and for
any integer x ≥ 0, we denote by Γx(v) the set of nodes at distance at most x from
v. We use the notation Γ (v) for Γ1(v). Since the description and analysis of the
algorithm depend on the parity of the range d, we divide the presentation into two
subsections, corresponding to d even and d odd. We first present the algorithms
assuming that the number of agents is unlimited. In particular, we use the instruc-
tion expand(v), for a node v currently occupied by agents to mean that the set of
agents occupying node v in some round is partitioned in such a way that subsets of
this set occupy all nodes of Γ (v) in the next round. For this to be possible, there
must be sufficiently many agents in each considered set during the execution of
the algorithm. We will later show that our algorithms can be modified to work in
the same time using only m agents, where m is the number of leaves in the tree.

2.1 Even Range

In this section we assume that the range d is even: d = 2ρ for some non-negative
integer ρ. We start with the following well-known observation concerning the
case d = 0, which corresponds to the exploration of the tree by a single agent. In
this case the optimal algorithm is any depth-first-search traversal of the tree for
which the last-visited leaf is a deepest one. This algorithm takes time 2(n−1)−h.
To see that this is optimal, notice that in any exploration algorithm the agent
must traverse at least twice every edge except those on the branch to the last
visited leaf, and all edges of this branch must be traversed at least once. We
call this algorithm SA (for Single Agent). (Strictly speaking, there may be many
such algorithms, depending on the order of exploration of children of each node:
we choose some canonical order.)

Consider any d = 2ρ, for ρ > 0. We say that an exploration algorithm by a
swarm with range d is a kernel algorithm, if in any round k ≤ ρ the set of nodes
occupied by agents in round k is Γk(r), and for any round k > ρ there exists a node
ck, called the kernel in round k, such that the set of nodes occupied by agents in
round k is Γρ(ck). Intuitively, in a kernel algorithm, the set of occupied nodes first
grows around the root to the maximum size allowed by the range. In the following
rounds the kernel moves in the tree. In each round all nodes that can be occupied
by agents (without violating the range) are occupied by them.

In order to describe our algorithm, we define the following subtree T ′ of the
tree T .

Definition 1. Fix a positive integer ρ. Let L be the set of nodes v for which the
subtree Tv has height ρ. Let T ′ be the subtree of T which results from deleting all
edges of trees Tv, for v ∈ L, and all nodes of these trees except the root v ∈ L of
each of them.

We are now ready to describe the algorithm.

Tree Exploration by a Swarm of Mobile Agents 125

Algorithm Even-Range(d)
Let ρ = d/2. The algorithm consists of two phases: forming the swarm and
exploration. If ρ ≥ h, only the first phase is executed. During rounds 1, . . . , h,
for all occupied nodes v the procedure expand(v) is executed. Upon completion
of this phase all nodes are explored. If ρ < h, the first phase lasts ρ rounds:
during rounds 1, . . . , ρ, for all occupied nodes v the procedure expand(v) is
executed. At this point the swarm is formed, all nodes in Γρ(r) are occupied
and the exploration phase starts. Let cρ = r be the kernel in round ρ. In the
exploration phase the kernel of the swarm executes algorithm SA in the tree T ′.
More precisely, in round ρ + i the kernel of the swarm is the node which the
single agent occupies in round i of the algorithm SA executed for the tree T ′.
It remains to describe the behavior of the agents. Suppose that in round k the
kernel is the node ck = v and in round k+1 the kernel is the node ck+1 = w. Let
F be the set of nodes u such that dist(v, u) = ρ and dist(w, u) = ρ−1. Let R be
the set of nodes u such that dist(v, u) = ρ and dist(w, u) = ρ+1. In round k+1
agents in a node u ∈ R move to its unique neighbor u′ such that dist(w, u′) = ρ,
and for all nodes u ∈ F the procedure expand(u) is executed. Agents in all other
nodes remain idle. This proceeds until algorithm SA is completed in the tree T ′

by the kernel.
The following lemma establishes correctness of Algorithm Even-Range(d) and

its execution time.

Lemma 1. Let d be a non-negative even integer and let T be a tree of height h
with n nodes. Let X be the number of nodes v for which the subtree Tv rooted at v
has height smaller than d/2. Then upon completion of Algorithm Even-Range(d)
all nodes of T are explored. If h ≤ d/2, the execution time is h. If h > d/2, the
execution time is 2(n−X − 1)− h+ d.

Proof. If h ≤ d/2, then after h rounds of the first phase each node of the tree
is visited by some agent of the swarm. Hence we may assume h > d/2. Since
the kernel of the swarm visits the entire tree T ′ (it executes algorithm SA for
this tree) and every node of T is at distance at most d/2 from some node in
T ′, we conclude that all nodes of T are visited upon completion of Algorithm
Even-Range(d). The time of execution is equal to the sum of the time of forming
the swarm and of executing algorithm SA on the tree T ′. The first is d/2 and
the second is 2(n′ − 1)− h′, where n′ is the number of nodes of T ′ and h′ is the
height of T ′. We have n′ = n−X and h′ = h − d/2. Hence the total execution
time of Algorithm Even-Range(d) for h > d/2 is d/2+2(n−X−1)−(h−d/2) =
2(n−X − 1)− h+ d.

We now turn attention to the optimality of Algorithm Even-Range(d). Optimal-
ity is straightforward for h ≤ d/2, hence assume h > d/2. We first show that
for any exploration algorithm A by a swarm with even range d there exists a
kernel algorithm A′ with the same range whose execution time is equal to that of
A. For round k ≥ 1, let Nk be the set of nodes occupied in round k by the agents

126 J. Czyzowicz, A. Pelc, and M. Roy

executing algorithm A and let N ′k be the set of nodes occupied in round k by
the agents executing algorithm A′. Given A, the algorithm A′ is described as
follows.

Let ρ = d/2. In rounds k = 1, . . . , ρ, for all occupied nodes u the procedure
expand(u) is executed. We have N ′ρ = Γρ(r). In all rounds k ≤ ρ the kernel is
r. Consider a round k ≥ ρ and suppose that this is not the last round of A. Let
ck = v be the kernel of A′ after round k. We define the kernel ck+1 after round
k+1. If Nk+1 ⊆ N ′k then ck+1 = ck. Otherwise, let Z = Nk+1 \N ′k and let Y be
the set of nodes in Nk adjacent to some z ∈ Z. Let w be the unique neighbor of
ck for which there exists a node y ∈ Y , such that dist(ck, y) = dist(w, y)+1. We
put ck+1 = w. This completes the definition of the kernel. The moves of agents
are defined as in Algorithm Even-Range(d). More specifically, let F be the set
of nodes u such that dist(v, u) = ρ and dist(w, u) = ρ − 1. Let R be the set of
nodes u such that dist(v, u) = ρ and dist(w, u) = ρ+1. In round k+1 agents in
a node u ∈ R move to its unique neighbor u′ such that dist(w, u′) = ρ, and for
all nodes u ∈ F the procedure expand(u) is executed. Agents in all other nodes
remain idle.

The above described algorithm A′ is a kernel algorithm. By definition of A′,
its execution time is equal to that of A. In order to prove its correctness, it is
enough to observe that Nk ⊆ N ′k, for any round k. This follows by induction,
since N ′k = Γρ(ck), for k ≥ ρ.

In view of the above, in the proof of optimality of Algorithm Even-Range(d) it
is enough to consider kernel algorithms. Hence the following lemma establishes
optimality of Algorithm Even-Range(d).

Lemma 2. Let d be a non-negative even integer and let T be a tree of height h
with n nodes. Let X be the number of nodes v for which the subtree Tv rooted at
v has height smaller than d/2.
1. If h ≤ d/2, then every kernel exploration algorithm by a swarm with range d
has execution time at least h.
2. If h > d/2, then every kernel exploration algorithm by a swarm with range d
has execution time at least 2(n−X − 1)− h+ d.

Lemmas 1 and 2 imply the following theorem:

Theorem 1. Algorithm Even-Range(d) is a correct and optimal algorithm for
exploring a given tree by a swarm of mobile agents with even range d.

2.2 Odd Range

In this section we assume that the range d is odd: d = 2ρ + 1 for some non-
negative integer ρ. We first give the algorithm and its analysis for the special
case of d = 1 and then show how this can be generalized for an arbitrary odd
range d.

Range d = 1. Consider the algorithm SA for the tree T , starting at the root
r. Let (v0, v1, . . . , vk), where v0 = r, be the sequence of nodes of T , such that vi

Tree Exploration by a Swarm of Mobile Agents 127

is the node visited in round i by the agent executing SA. Since every leaf of the
tree is visited exactly once, this sequence induces an order of the leaves of T . Let
(f1, . . . , fm) be the subsequence of (v0, v1, . . . , vk) consisting of leaves. A leaf fi
will be called odd (even), if i is odd (even). Consider the sequence (i1, i2, . . . , im),
such that fj = vij . We partition the sequence (0, 1, . . . , k) of indices into disjoint
segments [0, . . . , i1], [i1 + 1, . . . i2], ..., [im−1 + 1, . . . , im]. We call a segment odd
if it finishes with the index of an odd leaf and even if it finishes with the index
of an even leaf.

Algorithm Range-One
In round 1 all agents are partitioned into two non-empty subsets, called head
and back. The head goes to node v1 and the back remains at the root v0. In
every round i, for 1 ≤ i < k, the head is in node vH(i) and the back is in node
vB(i), where indices H(i) and B(i) are defined as follows:

H(i+ 1) =

⎧⎨⎩
1 if i = 0
H(i) + 1 if vH(i)+1 is not an even leaf
H(i) + 3 if vH(i)+1 is an even leaf

B(i + 1) =

⎧⎨⎩
0 if i = 0
B(i) + 1 if vB(i)+1 is not an odd leaf
B(i) + 3 if vB(i)+1 is an odd leaf

In order to establish the correctness of Algorithm Range-One we will need the
following technical lemma.

Lemma 3. For any round i ≥ 1 the following properties are satisfied.

1. If H(i) is in an odd segment, then B(i) = H(i)− 1.
2. If H(i) is in an even segment, then B(i) = H(i) + 1.
3. H(i) is not an index of an even leaf, and B(i) is not an index of an odd leaf.
4. H(i) and B(i) belong to the same segment.

We are now ready to prove the correctness and optimality of Algorithm Range-
One.

Theorem 2. Algorithm Range-One is correct.

Proof. The proof is split into four claims. The first three claims show that all
moves of agents are legal and the fourth claim shows that all nodes of the tree
are visited.

Claim 1. vB(i+1) is adjacent to vB(i).
By Lemma 3 B(i) is not an index of an odd leaf. We have two cases.

Case 1. B(i) is not an index of an even leaf
If B(i) + 1 is not an index of an odd leaf, we have B(i + 1) = B(i) + 1,

hence vB(i+1) is adjacent to vB(i). If B(i) + 1 is an index of an odd leaf we
have vB(i) = vB(i)+2. By definition, vB(i)+3 is adjacent to vB(i)+2. Hence vB(i)+3

128 J. Czyzowicz, A. Pelc, and M. Roy

is adjacent to vB(i). By the algorithm, B(i + 1) = B(i) + 3. Hence vB(i+1) is
adjacent to vB(i).
Case 2. B(i) is an index of an even leaf

Hence B(i)+1 is not an index of a leaf. By the algorithm, B(i+1) = B(i)+1.
Hence vB(i+1) is adjacent to vB(i). This completes the proof of Claim 1.
Claim 2. vH(i+1) is adjacent to vH(i).

The proof is analogous to that of Claim 1.
Claim 3. vH(i) and vB(i) are adjacent, for any round i ≥ 1.

By Lemma 3, if H(i) is in an odd segment, then B(i) = H(i)− 1 and if H(i)
is in an even segment, then B(i) = H(i) + 1. Hence in both cases nodes vH(i)

and vB(i) are adjacent.
Claim 4. Every node of the tree T is visited by some agent.

By the algorithm, the head visits all odd leaves and the back visits all even
leaves, hence all leaves are visited. Exploration of all leaves implies exploration
of all nodes.

In order to prove the optimality of Algorithm Range-One, we first establish its
execution time.

Lemma 4. The execution time of Algorithm Range-One is 2n−m−h−1, where
n is the number of nodes of the tree, m is the number of leaves, and h is the
height of the tree.

Proof. Let T be the tree resulting from the original tree T by removing even
leaves f2, f4, . . ., as well as the incident edges. The execution time of Algorithm
Range-One in the tree T is equal to the execution time of algorithm SA in the
tree T , where the head simulates actions of the single agent in SA.

Case 1. The number m of leaves of the tree T is even; m = 2b.
The last visited leaf fm is even, hence it is visited by the back. At the end, the

head is at distance h−1 from the root. The execution time is 2(n′−1)− (h−1),
where n′ = n− b is the number of nodes of tree T . Hence the execution time is
2(n′ − 1)− (h− 1) = 2(n− b− 1)− (h− 1) = 2n−m− h− 1.
Case 2. The number m of leaves of the tree T is odd; m = 2b+ 1.

The last visited leaf fm is odd, hence it is visited by the head. At the end,
the head is at distance h from the root. The execution time is 2(n′ − 1) − h,
where n′ = n− b is the number of nodes of tree T . Hence the execution time is
2(n′ − 1)− h = 2(n− b− 1)− h = 2n−m− h− 1.

In the optimality proof we will also use the following lemma.

Lemma 5. In an optimal algorithm with range d = 1 two consecutive leaves
cannot be visited by the same agent.

The following lower bound, together with Lemma 4, shows that Algorithm
Range-One is optimal.

Lemma 6. Any algorithm to visit a tree T by a swarm of agents with range 1
must use time at least 2n −m − h − 1, where n is the number of nodes of the
tree, m is the number of leaves, and h is the height of the tree.

Tree Exploration by a Swarm of Mobile Agents 129

Proof. Consider an optimal algorithm A. Order all leaves by their first visit
according to A. Let g1, . . . , gm be this order. By Lemma 5, the same agent
cannot visit consecutive leaves. Hence, without loss of generality, some agent a
visits odd leaves and some other agent b visits even leaves (with respect to this
order). Let T ∗ be the tree resulting from removing from T all even leaves gi with
their incident edges. Hence a visits the entire tree T ∗. If m is odd, m = 2b + 1,
the number of nodes in T ∗ is n′ = n − b and hence visiting the entire tree
T ∗ by agent a must take time at least 2(n′ − 1) − h = 2n − m − h − 1. If m
is even, m = 2b, the last visited leaf is visited by agent b. At this time agent
a is at distance at least h − 1 from the root. The number of nodes in T ∗ is
n′ = n − b and hence visiting the entire tree T ∗ by agent a must take time at
least 2(n′ − 1)− (h− 1) = 2n−m− h− 1.

Theorem 2, Lemma 4 and Lemma 6 imply:

Theorem 3. Algorithm Range-One is a correct and optimal algorithm for ex-
ploring a tree by a swarm of mobile agents with range 1.

Odd Range d > 1. We now show how Algorithm Range-One can be trans-
formed to work for any odd range d > 1. In essence, the relation between the
general case of the odd range and the case of range 1 is similar to the relation
between the general case of the even range and the case of a single agent, the
latter being equivalent to range 0.

Consider any d = 2ρ+ 1, for ρ > 0. We say that an exploration algorithm by
a swarm with range d is a kernel algorithm, if in round 1 the agents occupy the
root r and an adjacent node s, in any round 1 + k, for k = 1, 2, . . . , ρ, the set of
nodes occupied by agents is Γk(r)∪Γk(s), and for any round k > ρ+1 there exist
adjacent nodes uk and vk, where the set {uk, vk} is called the kernel in round
k, such that the set of nodes occupied by agents in round k is Γρ(uk) ∪ Γρ(vk).
Intuitively, in a kernel algorithm for an odd range, the set of occupied nodes first
grows to two nodes, the root and some adjacent node, then grows around these
two nodes to the maximum size allowed by the range, and then in the following
rounds the kernel moves in the tree and in each round all nodes that can be
occupied by agents (without violating the range) are occupied by them.

In order to describe our algorithm, we use the subtree T ′ of the tree T de-
scribed in Definition 1. We are now ready to describe the algorithm.

Algorithm Odd-Range(d)
Let ρ = 	d/2
 and let D be the diameter of the tree T . If D ≤ d then during
rounds 1, . . . , h, for all occupied nodes v the procedure expand(v) is executed.
After round h all nodes are explored. If D > d, the algorithm consists of two
phases: forming the swarm and exploration. The first phase lasts ρ+1 rounds. Let
s be the first node other than the root r, visited in the execution of Algorithm
Range-One on the tree T ′. In the first round of the first phase all nodes are
partitioned into two subsets and one subset remains at r, while the other occupies
s. In rounds 2, 3, . . . , ρ + 1, for all occupied nodes v the procedure expand(v)

130 J. Czyzowicz, A. Pelc, and M. Roy

is executed. At this point the swarm is formed, all nodes in Γρ(r) ∪ Γρ(s) are
occupied and the exploration phase starts.

Let {uρ+1, vρ+1}, where uρ+1 = r and vρ+1 = s be the kernel in round ρ+ 1.
In the exploration phase the kernel of the swarm executes Algorithm Range-One
in the tree T ′. More precisely, in round ρ+ i the kernel of the swarm is composed
of two adjacent nodes which are occupied by the agents in round i of Algorithm
Range-One executed for the tree T ′. It remains to describe the behavior of the
agents. Suppose that in round k the kernel is the set {u, v} and in round k + 1
the kernel is the set {v, w}. (Notice that in Algorithm Range-One the sets of
nodes occupied by the agents in consecutive rounds have intersection of size 1.)
Let F be the set of nodes z such that dist(z, v) = ρ and dist(z, w) = ρ − 1.
Let R be the set of nodes z such that dist(z, u) = ρ and dist(z, v) = ρ + 1. In
round k + 1 agents in a node z ∈ R move to its unique neighbor z′ such that
dist(z′, v) = ρ, and for all nodes z ∈ F the procedure expand(z) is executed.
Agents in all other nodes remain idle. This proceeds until Algorithm Range-One
is completed in the tree T ′ by the kernel.

The following lemma establishes correctness of Algorithm Odd-Range(d) and
its execution time.

Lemma 7. Let d be a positive odd integer, d = 2ρ + 1, and let T be a tree of
height h and diameter D. Let T ′ be the subtree of T described in Definition 1.
Let n′ be the number of nodes of T ′, m′ the number of leaves of T ′ and h′ = h−ρ
the height of T ′.

Upon completion of Algorithm Odd-Range(d) all nodes of T are explored. If
D ≤ d, then the execution time is h. If D > d, then the execution time is
ρ+ 2n′ −m′ − h′ − 1.

The proof of optimality of Algorithm Odd-Range(d) is similar to that for Algo-
rithm Even-Range(d). For D ≤ d optimality is straightforward, hence we may
assume D > d. Similarly as before we show that for any algorithm A with odd
range d there exists a kernel algorithm A′ with the same range, whose execution
time is equal to that of A. The construction of A′ from A is analogous to the
case of even range. Then using Lemma 2 we show that every kernel algorithm
must use time at least ρ+2n′−m′−h′−1, where n′, m′ and h′ are as in Lemma
7. The proof of this part is similar to that of Lemma 2. This implies optimality
of Algorithm Odd-Range(d). Hence we get:

Theorem 4. Algorithm Odd-Range(d) is a correct and optimal algorithm for
exploring a given tree by a swarm of mobile agents with odd range d > 1.

Algorithms Even-Range(d), Range-One, and Odd-Range(d) for d > 1 cover all
cases of exploration of a known tree by a swarm of agents. We showed that they
are all correct and optimal.

2.3 The Number of Agents

We finally consider the problem of the number of mobile agents sufficient to
perform exploration by a swarm of agents in optimal time. In the description of

Tree Exploration by a Swarm of Mobile Agents 131

our algorithms we used procedure expand(v), that required partitioning the set
of agents located at the node v in a given round and dispatching the subsets of
agents to the neighboring nodes in the next round. Implemented naively, this
approach would require an exponential number of agents. However, we now show
how our optimal algorithms can be modified to be executed by a swarm of agents
whose size is equal to the number of leaves.

Let {f1, . . . , fm} be the set of leaves of the given tree T , and suppose that
there are m agents in the swarm. Let {a1, . . . , am} be the set of agents. Consider
any optimal algorithm A of exploring the tree T with a given range d. For
any round i of the execution of the algorithm, let Si denote the set of nodes
occupied by agents in round i. We construct the algorithm A′ with the same
range d as follows. In round i of A′ agent aj is located in the unique node v(i, j)
of Si closest to leaf fj . Since for any i and j nodes v(i, j) and v(i + 1, j) are
either equal or adjacent, the moves of agents satisfying the above condition are
possible to execute. Since by definition, for any i the set Si has diameter at most
d, algorithm A′ respects the range d of the swarm. Since algorithm A explores
the entire tree T , so does A′. In fact the leaf fj is visited by agent aj in this
algorithm. Since the execution time of A and A′ is the same, algorithm A′ is
optimal by optimality of A.

3 Exploration of an Unknown Tree

In this section we consider exploration of an unknown tree by a swarm of mobile
agents. As mentioned in the introduction, in this scenario a natural measure of
quality of an exploration algorithm is its overhead. The main result of this section
shows that, for any range d, there is no exploration algorithm by a swarm with
range d that has overhead smaller than 2. Hence depth-first-search, in which all
agents move together, has optimal overhead.

Theorem 5. Every exploration algorithm for trees by a swarm of agents with
range d ≥ 0 has overhead at least 2.

Proof. Consider any exploration algorithm A by a swarm with range d. We will
show that it must have overhead at least 2, even when restricted to the class of
lines, i.e., trees with two leaves. Call one of the directions of the line with respect
to the starting node the right direction and the other the left direction. Assume
that the starting node is at 0 and positive numbers are right of 0 while negative
numbers are left of 0. There are three possible cases for the initial part of the
run of A before an endpoint is reached for the first time, corresponding to three
types of algorithms (cf. [9]):

Type 1
There exist two infinite strictly increasing sequences (a1, a2, ...) and (b1, b2, ...)
of natural numbers, such that, first some agent reaches a1, then some agent
reaches −b1, then some agent reaches a2, then some agent reaches −b2, etc. until
an endpoint is reached for the first time.

132 J. Czyzowicz, A. Pelc, and M. Roy

Type 2
There exist two strictly increasing sequences (a1, a2, ..., ai) and (b1, b2, ..., bi−1) of
natural numbers, such that, first some agent reaches a1, then some agent reaches
−b1, then some agent reaches a2, then some agent reaches −b2, etc. then some
agent reaches ai, and then some agent goes left till the endpoint.
Type 3
There exist two strictly increasing sequences (a1, a2, ..., ai) and (b1, b2, ..., bi) of
natural numbers, such that, first some agent reaches a1, then some agent reaches
−b1, then some agent reaches a2, then some agent reaches −b2, etc. then some
agent reaches ai, then some agent reaches −bi, and then some agent goes right
till the endpoint.

We will show that each of the above three types of exploration algorithms has
overhead at least 2. We may assume that d ≥ 1, as for d = 0 exploration by a
swarm is equivalent to exploration by a single agent and in this case the result
follows from [9].

Algorithms of type 1.
Let α = 4d − 3. Let k be such that ak+1, bk ≥ α. Let a = ak+1, b = bk and let
the line Ln be [−b−1,−b, ..., 0, ..., a, a+1]. The line has length n = a+b+2. We
have τ(A, Ln, 0) ≥ 4b+3a−α. Indeed, by the time the rightmost agent reaches
point a, it already made at least 2b + a − 2d steps. Then the leftmost agent
makes at least a+ b− d additional steps, by regularity. Now the leftmost agent
is at distance 1 from the left endpoint, and the right endpoint is yet unexplored.
Hence at least n+ 1− d = a+ b− d+ 3 additional steps are needed, for a total
of at least 4b+ 3a− 4d+ 3 = 4b+ 3a− α steps.

On the other hand, opt(Ln, 0) = 2a + b + 2 − 2d if b ≥ a, and opt(Ln, 0) =
2b+a+2−2d if a ≥ b. Hence opt(Ln, 0) ≤ 2a+b if b ≥ a, and opt(Ln, 0) ≤ 2b+a
if a ≥ b.

Case 1. a ≥ b.
In this case we have: a ≥ α, hence 4b + 3a − α ≥ 4b + 2a = 2(2b + a), which
implies

τ(A, Ln, 0)

opt(Ln, 0)
≥ 4b+ 3a− α

2b+ a
≥ 2.

Case 2. b ≥ a.
In this case we have: b ≥ α, hence 2b − α ≥ a, hence 4b + 3a − α ≥ 2b + 4a =
2(b+ 2a), which implies

τ(A, Ln, 0)

opt(Ln, 0)
≥ 4b+ 3a− α

b+ 2a
≥ 2.

This proves O(A) ≥ 2 for algorithms of type 1.

Algorithms of type 2.
It is enough to show that, for any ε > 0, there exists a line Ln, and a position
of the starting node v in it, such that

C(A, Ln, v)

opt(Ln, v)
≥ 2− ε.

Tree Exploration by a Swarm of Mobile Agents 133

Fix an ε > 0, and the index i given by the algorithm (the index of the last turn
left before going indefinitely left, until the endpoint is reached). Let a = ai. Let
n be such that

2n+ a− 1− 3d

n+ a− 1− 2d
≥ 2− ε.

(Such an integer n exists, since, for any fixed a and d, this fraction converges to
2 as n grows.) Let k = n−a−1. Let the line Ln be [−k,−k+1, ..., 0, ..., a, a+1].
The line has length n. We have τ(A, Ln, 0) ≥ 2n+a−1−3d. Indeed, by the last
turn left of the leftmost agent before going indefinitely left, this agent makes at
least a−d steps. Then it makes at least n−1−d steps to reach the left endpoint,
and still at least n − d steps have to be made by the rightmost agent to reach
the right endpoint, yet unexplored.

On the other hand, opt(Ln, 0) ≤ n+ a+ 1− 2d. Hence we have

τ(A, Ln, 0)

opt(Ln, 0)
≥ 2n+ a− 1− 3d

n+ a+ 1− 2d
≥ 2− ε.

This proves O(A) ≥ 2 for algorithms of type 2. For algorithms of type 3 the
proof is analogous to that for type 2. Thus we have shown that O(A) ≥ 2 for all
exploration algorithms.

4 Conclusion

We showed algorithms to explore a known tree by a swarm of agents with an
arbitrary range d in optimal time. We also showed that for an unknown tree
the overhead of DFS (which can be executed by a single agent) is the smallest
possible for any range d of the exploring swarm. When the tree is known, we
observed that there is an optimal algorithm using only m agents, where m is
the number of leaves in the tree. Two open questions follow from our research.
The first is: what is the minimum number of agents in a swarm with range d
that are sufficient to explore a given tree in optimal time? The second question
concerns generalizing our results for arbitrary graphs; more precisely, construct
an optimal algorithm to explore a given graph by a swarm of agents with range
d in optimal time. Note that in the scenario of unknown graphs the fact that
the overhead of DFS is the best possible remains valid for arbitrary graphs, as
the overhead of DFS is 2 for the class of all graphs as well.

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Com-
put. 29, 1164–1188 (2000)

2. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing
of two traveling salesmen on a tree. Discr. Appl. Math. 68, 17–32 (1996)

3. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a
pebble: exploring and mapping directed graphs. In: Proc. 30th Ann. Symp. on
Theory of Computing, STOC 1998, pp. 269–278 (1998)

134 J. Czyzowicz, A. Pelc, and M. Roy

4. Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn
unlabeled directed graphs. In: Proc. 35th Ann. Symp. on Foundations of Computer
Science, FOCS 1994, pp. 75–85 (1994)

5. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment.
Machine Learning 18, 231–254 (1995)

6. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network Exploration by Silent
and Oblivious Robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp.
208–219. Springer, Heidelberg (2010)

7. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theoretical Computer Science 385, 34–48
(2007)

8. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. of Graph The-
ory 32, 265–297 (1999)

9. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical
Computer Science 326, 343–362 (2004)

10. Devismes, S.: Optimal exploration of small rings. In: Proc. 3rd Int. Workshop on
Reliability, Availability, and Security, WRAS 2010 (2010)

11. Devismes, S., Petit, F., Tixeuil, S.: Optimal Probabilistic Ring Exploration by
Semi-synchronous Oblivious Robots. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO
2009. LNCS, vol. 5869, pp. 195–208. Springer, Heidelberg (2010)

12. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. Journal of Algorithms 51, 38–63 (2004)

13. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph ex-
ploration. In: Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms, SODA
2001, pp. 807–814 (2001)

14. Fleischer, R., Trippen, G.: Exploring an Unknown Graph Efficiently. In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidel-
berg (2005)

15. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without mem-
ory: tree exploration by asynchronous oblivious robots. Theoretical Computer Sci-
ence 411, 1544–1557 (2010)

16. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing Without Communi-
cating: Ring Exploration by Asynchronous Oblivious Robots. In: Tovar, E., Tsigas,
P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Hei-
delberg (2007)

17. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
Networks 48, 166–177 (2006)

18. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM J. Comput. 7, 178–193 (1978)

19. Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal Deterministic Ring Explo-
ration with Oblivious Asynchronous Robots. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010)

20. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algo-
rithms 33, 281–295 (1999)

Crash Resilient and Pseudo-Stabilizing

Atomic Registers�

Shlomi Dolev1, Swan Dubois2, Maria Gradinariu Potop-Butucaru3,
Sébastien Tixeuil4

1 Ben-Gurion University of the Negev, Israel
dolev@cs.bgu.ac.il
2 EPFL, Switezerland
swan.dubois@epfl.ch

3 UPMC Sorbonne Universités, France
4 UPMC Sorbonne Universités & IUF, France

{maria.potop-butucaru,sebastien.tixeuil}@lip6.fr

Abstract. We propose a crash safe and pseudo-stabilizing algorithm for
implementing an atomic memory abstraction in a message passing sys-
tem. Our algorithm is particularly appealing for multi-core architectures
where both processors and memory contents (including stale messages
in transit) are prone to errors and faults. Our algorithm extends the
classical fault-tolerant implementation of atomic memory that was orig-
inally proposed by Attiya, Bar-Noy, and Dolev (ABD) to a stabilizing
setting where memory can be initially corrupted in an arbitrary manner.
The original ABD algorithm provides no guaranties when started in such
a corrupted configuration. Interestingly, our scheme preserves the same
properties as ABD when there are no transient faults, namely the lin-
earizability of operations. When started in an arbitrarily corrupted initial
configuration, we still guarantee eventual yet suffix-closed linearizability.

Keywords: Fault-Tolerance, Pseudo-Stabilization, Atomic Register.

1 Introduction

Distributed computing theory has proven extremely relevant in the daily practice
of current networked systems. The important properties in today’s distributed
systems include availability, reliability, serviceability, and fault-tolerance. The
multi-core systems for example have to be able to mask the unexpected yet

� The research of the first author has been supported by the Ministry of Science and
Technology, the Institute for Future Defense Technologies Research named for the
Medvedi, Shwartzman and Gensler Families, the Israel Internet Association, the
Lynne and William Frankel Center for Computer Science at Ben-Gurion University,
Rita Altura Trust Chair in Computer Science, Israel Science Foundation (grant
number 428/11), Cabarnit Cyber Security MAGNET Consortium and MAFAT.

The research of the other authors has been supported in part by ANR project
SHAMAN.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 135–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

136 S. Dolev et al.

possible faults of processors and memory transient errors. In these architectures
applying the classical technique consisting in restarting the system anytime an
error or a fault occurs (at least once a day in current systems, but at least once
every few minutes –or even seconds– in forecast exascale supercomputers) at-
tains the limits both in terms of energy cost and the time spent in rebooting
the system. In these particular systems, fault recovery mechanisms that rely
on the paradigm that combines self-stabilization and fault-tolerance techniques
at the application level are particularly appealing. Self-stabilization [8] is a ver-
satile technique that permits forward recovery from any kind of transient fault
(i.e. there exists a point in the execution after which there is no fault), while
Fault-tolerance [15] is traditionally used to mask the effect of a limited num-
ber of permanent faults. Providing core building blocks for application designers
(such as atomic memory construction) that are highly resilient to various kinds
of failures is essential for the next generation of those systems. However, mak-
ing distributed systems tolerant to both transient and permanent faults proved
difficult [3,17] as impossibility results are expected in many cases.

Related Works. In the context of self-stabilization, the simulation of an atomic
single-writer single-reader shared register in a message-passing system was pre-
sented in [12]. This simulation does not address the multiple readers case, and
does not consider that crash faults of processors may occur in the system dur-
ing execution. More recent work [11,19] focused on self-stabilizing simulation
of shared registers using shared registers with weaker properties than atom-
icity, and still do not consider crash faults. Self-stabilizing timestamps imple-
mentations using single writer multiple readers atomic registers were suggested
in [1,13], and assume that there already exists a shared memory abstraction.
Most related to our work are [2], where a crash-fault tolerant and “practically”
stabilizing scheme for simulating atomic memory in a message passing system
is presented. There, practically means that after stabilization, the linearizability
is guaranteed for practically infinite time (say time required for a process to
execute 264 steps). Still, in every infinite execution suffix of [2], linearizability is
violated infinitely often, leaving open the question of suffix-closed linearizability
guaranteeing algorithms that are both stabilizing and crash resilient.

Our contribution. In this paper, we answer positively to the open question of [2].
In more details, we propose a crash-safe and pseudo-stabilizing algorithm for
implementing an atomic memory abstraction in a message passing system (pro-
vided that the writer does not crash before the first “stabilized” read, see below).
Pseudo-stabilization guarantees that, starting from any configuration, any exe-
cution contains a suffix satisfying linearizability. Hence, pseudo-stabilization is
stronger than practical stabilization since we ensure the closure of linearizability.

Our algorithm extends the classical fault-tolerant implementation of atomic
memory that was originally proposed in [4] to a stabilizing setting where mem-
ory can be initially corrupted in an arbitrary manner. Note that the original
algorithm of [4] provides no guarantees when started in such corrupted config-
uration. Interestingly, we preserve the same properties as the [4] scheme when

Crash Resilient and Pseudo-Stabilizing Atomic Registers 137

there are no transient faults, namely the linearizability of the operations. Ad-
ditionally, when started in a corrupted initial configuration the algorithm still
guarantees eventual yet suffix closed linearizability.

In the current paper, the writer has the major responsibility for updating the
last value, unlike [4] where readers assist each other to spread the most up-to-
date value. Note that when the system is started in an arbitrary configuration
and the writer is crashed before the stabilization, this cascade-like update may
lead to executions where the specification is never verified unless an additional
mechanism is used. In [2] we used an epoch-based technique in order to cir-
cumvent this drawback. However, the solution proposed in [2] respects a weaker
specification (i.e., practically stabilization) while the current work respects the
pseudo-stabilization specifications.

2 Model and Definitions

This section is devoted to the presentation of the background of this paper. First,
we present the distributed system and fault-tolerance model in Sections 2.1 and
2.2, we specify formally our problem in Section 2.3. Finally, we present in details
the ABD simulation on which our protocol is built in Section 2.4.

2.1 Message Passing Model

A message-passing distributed system consists of n vertices (a.k.a. processes),
v0, v1, v2, . . . , vn−1, connected by communication links through which messages
are sent and received. Two vertices connected through a communication link are
referred in the following as neighboring vertices. The communication graph of
the distributed system is assumed to be fully connected (i.e. any pair of vertices
are neighboring vertices).

We assume in the following that the capacity of each communication link is
bounded and that its capacity is c packets (i.e. low level messages). We assume
that c is known to the protocol. Note that in the scope of self-stabilization, where
the system copes with an arbitrary starting configuration, the initial content of
each communication link may be arbitrary.

The channels are unreliable and non-FIFO (i.e. packets may not follow the
FIFO order and may be lost). Additionally, their delivery time is unbounded -
the system is asynchronous. That is, any non lost packet is received in a finite
but unbounded time. Each communication link is weakly fair in the sense that
if the sender sends infinitely often a packet on the channel, then the receiver
receives this packet an infinite number of time. Sending a packet to a channel
whose capacity is exhausted (i.e. the channel already contains c packets) results
in losing a packet (either a packet already in the channel or the packet being
sent).

As we deal with arbitrary initial corruptions, a channel may initially contain
up to c ghost packets (i.e. packets that have never been sent and contain arbitrary
content).

138 S. Dolev et al.

A vertex is modeled by a state machine that executes steps. Channels are
modeled as sets (rather than queues to reflect the non-FIFO order). For example,
the c-bounded channel (i, j) (used to send messages from vi to vj) is modeled
by a c-sized set denoted by sij .

In each step, a vertex changes its local state (i.e. the state of its local memory),
and executes a single communication operation, which is either a send operation
or a receive operation. The communication operation changes the state of an
attached channel. In case the communication operation is a send operation from
vi to vj then sij is a union of sij in the previous state with the sent packet. If the
obtained union does not respect the bound |sij | ≤ c then an arbitrary message in
the obtained union is deleted. In case the communication operation is a receive
operation of a (non null) packet m (m must exist in sji of the previous state),
then m is removed from sji. A receive operation by pi from pj may result in a
null packet even when the sji is not empty, thus allowing unbounded delay for
any particular packet. Packet losses are modeled by allowing spontaneous packet
removals from the set.

A configuration of the system is the product of the local states of processes
in the system and of their incident channels. An execution is a sequence of
configurations, σ = (γ1, γ2, . . .) such that γi, i > 1, is obtained from γi−1 when
at least one process in the system executes a step. We assume that executions
are fully asynchronous.

Finally, we assume that the distributed system is simultaneously subject to
transient (i.e. of finite duration) faults and to (permanent) crash faults (i.e.
faults in which affected processes stop to execute steps). The number of crash
faults is bounded by a constant f . Transient faults may be arbitrary in nature
but there exists a point of the execution after that they no longer occur. Hence,
we assumed that the processes local state and channels contents are arbitrary
in the initial configuration of the system (and that transient faults no longer
corrupt the system during the execution).

2.2 Pseudo-Stabilization and Fault-Tolerance

In this paper, we focus on joint tolerance to transient and crash faults. The clas-
sical approach for such a tolerance is fault-tolerant self-stabilization (FTSS for
short) [3,17] that ensures that the distributed system stabilizes to its specification
in a finite time from any arbitrary initial configuration in spite of crash faults.
This strong fault tolerance property leads to numerous impossibility results, see
e.g. [5]. Hence, we choose in this paper a weaker fault tolerance definition, called
pseudo-stabilization [6], in which any execution contains a suffix satisfying the
specification. Note that, contrarily to self-stabilization, it is not required that
this suffix is reached in a finite time.

Definition 1 (Fault-tolerant pseudo-stabilization [7]). A distributed pro-
tocol π is f -fault-tolerant and pseudo-stabilizing (f -ftps for short) for specifica-
tion spec if and only if starting from any arbitrary configuration every execution
of π involving at most f crashed vertices has a suffix satisfying spec.

Crash Resilient and Pseudo-Stabilizing Atomic Registers 139

u

v

�Time

op1

op2

op3

op4 op5

Fig. 1. In this example, op1 happens before op2 while op3 is concurrent with op2, op4,
and op5. Operation op2 and op4 are consecutive.

u

v

�Time

w1 w2

r1 r2

Fig. 2. If r2 returns the value written by w1 and r1 returns the value written by w2,
we have a new/old inversion

2.3 Problem and Specification

In this paper, we emulate an atomic register on top of a message passing system.
Registers have been introduced by Lamport [20,21] as a model of communication
between vertices of a distributed system. A register is a variable (over a domainD)
sharedby all vertices of the distributed system that provides two operations: a read
operation that returns the value of the register to the invoking vertex and a write
operation that allows the invoking vertex tomodify the value of the register. Given
a register, we call readers the vertices that are able to invoke the read operation of
the register and writers the vertices that are able to invoke the write operation of
the register. In the following, we consider only single-writer registers. As readers
of a register may be distinct from its writer, read and write operations may be
interleaved in some executions of the distributed system. Then, wemust clarify the
result of read operations in such cases. Lamport [20,21] distinguishes three types
of registers according to read operation properties: safe, regular and atomic. In the
following, we focus on the strongest one, the atomic register.

Note that read and write operations on the register are not instantaneous.
Each operation starts when a vertex invokes it and ends when it returns. We say
that an operation op1 happens before an operation op2 if op1 ends before op2
starts. Two operations op1 and op2 are concurrent if they satisfy: op1 does not
happen before op2 and op2 does not happen before op1. Two operations op1 and
op2 are consecutive if op1 is the most recent operation that happens before op2.
See Figure 1 for an illustration. We introduce now new/old inversions. Consider
two consecutive read operations r1, r2 and two consecutive write operations w1,
w2 such that r1 is concurrent with both w1 and w2 and r2 is concurrent only
with w2 (see Figure 2). We say that a new/old inversion occurs when r2 returns
the value written by w1 and r1 returns the value written by w2.

140 S. Dolev et al.

The writer that is supplied with two operations: read and write while other
vertices, the readers, are supplied with only one operation: read. Each read
invocation needs no parameter and returns a value from D, the domain of the
register. Each write invocation needs a parameter from D and returns no value.
We say that a value v is written to the register when the operation write(v)
returns. Intuitively, an atomic register is a register such that all its read and
write operations appear as if they have been executed sequentially, this sequential
total order respecting the real time order of the operations. More formally, we
can define it as follows.

Specification 1 (specARS). An execution σ satisfies specARS if and only if it
complies with the following two properties:

Regularity: Each read operation returns either the value written by the most
recent write operation that happens before it or a value written by a concurrent
write operation.

No new/old Inversion: If a read operation r returns a value written by a
concurrent write operation w then no read operation that happens after r returns
a value written by a write operation that happens before w.

2.4 The ABD Simulation

This section aims to present in details the fault-tolerant single-writer multi-
reader atomic register ABD simulation provided by Attiya, Bar-Noy, and Dolev
[4]. Their assumptions on the distributed system follow. They assume a complete
identified communication graph (i.e. each process has a distinct identifier) and
an asynchronous distributed system subject to a minority of crash faults (that
is, 2n > f). Vertex v0 (also denoted w in the sequel) is the writer (that is, it can
invoke both the write and the read operation) while vertices from v1 to vn−1 are
readers (that is, they can invoke the read operation only).

In the following, we present only the bounded ABD simulation (the unbounded
version makes use of natural numbers to label values of the register and can be
easily derived from the bounded version). In this simulation, the authors assume
the existence of a sequential bounded labeling system [18]. Israeli and Li defined
in [18] time-stamps as “numerical labels which enable a system to keep track of
temporal precedence relation among its data elements”. Labels are elements of
a set enhanced with a total antisymmetric binary relation (to compare labels)
and a function to compute a new label given a set of existing labels.

The ABD simulation works as follows. First, they define a communication
primitive, called Communicate, that ensures the communication by quorum.
This primitive broadcasts a given message to all vertices and waits until getting
an acknowledgment for a majority of them (it is always possible since at most n

2−
1 vertices may crash in any execution). Note that this communication primitive
is designed to deal with the properties of the considered message passing model
(non reliable and non FIFO communication links).

A label (from the sequential bounded labeling system) is associated to each
value of the register. As the labeling system is bounded, the writer must take in

Crash Resilient and Pseudo-Stabilizing Atomic Registers 141

account all existing labels in the distributed system before computing a new one
to ensure correctness. Indeed, the new label does not depend only of the writer
label as in the unbounded version. Note that the set of gathered labels may be
greater and contains obsolete labels.

To reach this goal, the Write operation operates as follow. The writer collects
(via the primitive Communicate) the existing labels in the distributed system
(readers send labels that they have for the writer and the most recent labels that
they have sent to other vertices). The writer computes then a new label greater
than each label it collected. The problem is that the primitive Communicate
ensures only the collect from a majority of vertices. In consequence, any correct
vertex must ensure that its labels are stored at a majority (at least) of vertices
at any time. In this way, the writer is able to gather all existing labels when it
collects labels from any majority.

To this end, whenever a vertex adopts a new label (that it believes to be the
maximum label of the writer), it invokes a procedure Record that stores this
label and all the recent labels it has sent to other vertices using the primitive
Communicate. A vertex receiving a recording message simply stores all the
labels in its memory. In response to a query from the writer, a reader sends all
labels it has stored. This implies that no label may be lost (since a majority of
vertices stores these labels). Note that, to avoid chain reaction where a recording
message causes other recording messages, vertices ignore the labels carried by
recording messages even if their label is greater than their current writer label.

However, when the environment faces both crashes and transient corruptions
of the memory the ABD simulation fails to satisfy its specification. This fact is
due to the building blocks that compose the ABD simulation: the communication
primitive and the labeling scheme and also to the way the labels are included in
the viable set. First, the primitive Communicate is not resilient to an arbitrary
initial content of communication links. Second, the underlying labeling scheme
used by the ABD simulation may be unable to compute a new label greater
than the existing ones when started in an arbitrary configuration. Finally, the
ABD simulation itself cannot deal with arbitrary initialization of labels since
some initially corrupted labels may remain unknown to the writer and may be
included infinitely often in the Read function decision sets.

The next section presents two recent achievements in the area of self-stabiliza-
tion that allow us to bypass the problems related to the communication primitive
and the labeling scheme. Section 4 extends the ABD simulation in order to
manage also corrupted labels that have not been generated by the scheme itself
but are present in the system due to some transient memory corruptions.

3 Necessary Tools

3.1 Data-Link Protocol

This section sums up the contributions of [10] in which we provided a data-link
protocol that ensures optimal fault resiliency above bounded, non-reliable but

142 S. Dolev et al.

fair, non-FIFO communication channels. The main goal is to provide a com-
munication protocol between two vertices that allows us to neglect the actual
characteristics of the communication channel. The specification we provide in
this paper is borrowed from [22] but we adapt it to the stabilizing context. In
particular, we introduce the idea to bound the number of lost, duplicated, ghost
and re-ordered messages by some constants.

Consider a system of two vertices vi and vj . A distributed application needs to
send some messages from vi to vj . We say that the application layer of vi sends
a message when it requests the communication protocol to carry this message to
vj . This message is delivered to vj when the communication protocol releases this
message to the application layer of vj . A ghost message is a message delivered
to vj whereas vi did not send it previously (due to the arbitrary content of
communication channels in the initial configuration). A duplicated message is
a message that is delivered several times to vj whereas vi sent it only once. A
message is lost when vi sends it but vj never delivers it. A messagem is reordered
when it is delivered to vj before a message m′ whereas m has been sent after m′

by vi. Intuitively, the goal of a data-link protocol is to provide a communication
black box that ensures there is no lost, duplicated, ghost, or reordered messages
during any execution. In the sequel, we formally specify the data-link problem.

Specification 2 (Data-link communication). For any non negative integers
α, β, γ, and δ, the (α, β, γ, δ)-Stabilizing Data-Link communication over
c-bounded channels satisfies the following properties starting from an arbitrary
configuration (with vi and vj being respectively the sender and the receiver) for
any execution σ:

- α-Loss: The first α messages sent by vi (in the worst case) may be lost.
- β-Duplication: The first β messages delivered to vj (in the worst case) may
be duplicated ones.
- γ-Creation: The first γ messages delivered to vj (in the worst case) may be
ghost messages.
- δ-Reordering: The first δ messages delivered to vj (in the worst case) may be
reordered.

In [10], we proved that it is impossible to perform a (α, β, γ, δ)-Stabilizing Data-
Link communication with β = 0, γ = 0, or δ = 0. We also provided a data-link
protocol (called SDL) that achieves this optimal fault-resiliency.

In the following of this paper, we reuse this data-link protocol that provides
to each vertex several functions. For each neighbor vj , a vertex vi is supplied
with two functions: SDL-Sendj(m) that allows vi to send messages to vj using
SDL and DeliverMessagei(m) that allows vi to receive messages sent by vj
using SDL.

3.2 Bounded Labeling Scheme

To the best of our knowledge, any existing bounded labeling system including the
scheme used in the ABD simulation ([18,9,16]) does not tolerate corrupted initial

Crash Resilient and Pseudo-Stabilizing Atomic Registers 143

Algorithm 1. PSARS: FTPS single-writer multi-reader atomic register simu-
lation (read operation for any vertex vi, write operation for the writer w = v0).

Variables:
Li: a matrix n × n with the following constraints:
- For any j 	= k, the element Li[j, k] contains two fields: Li[j, k].sent and Li[j, k].ack. The first
field is the last label that vj sent to vk in the last Read operation of vj known at vi. The second
field contains the last label known at vi sent by vj to vk when vj replied to the vk label request.
- For any j, the element Li[j, j] has two fields. The field Li[j, j].value provides information on
the last label of the writer known by vj . The second field Li[j, j].conflict gives information on a
label that conflicts with the current label of a vertex and that may be not known at the writer.
label seti: a set of labels
Functions:
MaxLabel: returns the maximum label (according to ≺) of the label set supplied as parameter if
it exists, ⊥ otherwise
Next: returns a label greater than (according to ≺) any label of the set given as parameter
PickValue: returns an arbitrary element of any circuit (according to ≺) of the label set supplied
as parameter if possible, ⊥ otherwise

Readi()

01: label seti :=ReadQuorumi(read)
02: if MaxLabel(label seti) 	= ⊥ then
03: if Li[i, i].value ≺MaxLabel(label seti)
04: Li[i, i].value :=MaxLabel(label seti)
05: Li[i, i].conflict := ⊥
06: WriteQuorumPromotei()
07: WriteQuorumRecordi()
08: return Li[i, i].value
09: else
10: Li[i, i].conflict :=PickValue(label seti)
11: WriteQuorumRecordi()
12: return abort

Write0()

01: label set0 := ReadQuorum0(write)
02: L0(0, 0).value := Next(label set0)
03: WriteQuorumPromote0()

configurations. We defined and provided in [2] for the first time a stabilizing
bounded labeling system: for any subset of at most k labels, there exists a label
that dominates each label of the subset. In this way, we are ensured that a
stabilizing bounded labeling system can deal with any arbitrary initialization
since it is always possible to compute a label greater than the existing ones. We
can define formally a stabilizing bounded labeling system in the following way:

Definition 2 (Stabilizing bounded labeling system). A k-stabilizing
bounded labeling system (k ≥ 2) is a triplet (L,≺, next) where L is a finite
set, ≺ is a total antisymmetric binary relation over L and next is a function
next : Lk → L such that:

∀L′ ⊆ L, |L′| ≤ k ⇒ ∀� ∈ L′, � ≺ next(L′)

4 Our FTPS Simulation

This section proposes our extension to the ABD simulation that can tolerate,
in addition to permanent crash faults, any transient memory corruption. We
present a fault-tolerant pseudo-stabilizing single-writer multi-reader atomic reg-
ister simulation over the message passing model. As far as we know, it is the first

144 S. Dolev et al.

time when a simulation with such strong guarantees is designed. Note that our
previous work, [2], proposed a simulation that satisfies a weaker property than
the pseudo-stabilization. That is, in each infinite run of system the atomicity
specification is violated infinitely often. The significant amelioration of our cur-
rent simulation stems from guaranteeing that each infinite run of the system has
an infinite suffix where the atomicity specification is satisfied. First, we describe
our distributed protocol in Section 4.1. We prove its correctness and provide its
space complexity in Section 4.2.

4.1 Distributed Protocol

As we previously claimed, our distributed protocol is the pseudo-stabilizing ver-
sion of the ABD simulation presented in details in Section 2.4. In this section,
we explain first the differences between our simulation and the ABD simulation.
Then, we present formally our distributed protocol. Note that, for the sake of
simplicity, we ignore the actual value of the register and we concentrate only on
the label associated to it (as in [4]).

Recall that we assume an asynchronous distributed system simultaneously
subject to transient and (permanent) crash faults (with a maximal number of
crashed vertices f such that 2n > f). The communication graph is complete and
identified. One vertex is distinguished to be the writer. We denote this vertex
by w = v0. Vertices from v1 to vn−1 are readers. We also assume that any
pair of vertices are able to communicate using the data-link protocol defined in
Section 2. More precisely, if a vertex vi has a message m to send to vj , it invokes
SDL-Sendj(m). The data-link protocol delivers this message to vj by invoking
DeliverMessagei(m). Finally, we assume the existence of a stabilizing bounded
labeling system as the one described in Section 2. This labeling system provides
a set of labels L and two functions. The first one,Next, computes a label greater
than (according to ≺) any label of the set given as parameter. The second one,
MaxLabel, returns the maximum label (according to ≺) of the label set supplied
as parameter if this maximum exists, ⊥ otherwise. Note that MaxLabel returns
⊥ when there exists a circuit in the set of labels supplied as parameter (that is,
there exists a subset of labels �0, . . . , �t such that �0 ≺ �1 ≺ . . . ≺ �t ≺ �0).

Our distributed protocol makes use of a similar data structure as the ABD
simulation. Each vertex vi stores an n × n label matrix Li. For any j = k, the
element Li[j, k] contains the same fields as in the ABD simulation: Li[j, k].sent
and Li[j, k].ack. The ith row Li[i] is updated dynamically by vi according to
messages it sends while other rows Li[j] (j = i) are updated by messages that
vi received from vj (that is, Li[j] is the latest view of vi on Lj[j]). Each element
Li[i, j] (for j = i), contains two fields: Li[i, j].sent and Li[i, j].ack that store
respectively the last label that vi sent to vj and the last label acknowledged by
vj to vi.

The only difference with the ABD simulation matrix is that, for any j, the
element Li[j, j] contains now two fields: Li[j, j].value and Li[j, j].conflict. The
field Li[j, j].value provides the last label of the writer known by vj . In particular
Li[i, i].value contains the last label of the writer that the vi is aware. Note that

Crash Resilient and Pseudo-Stabilizing Atomic Registers 145

this field is equivalent to the field Li[j, j] of the ABD simulation. The second
field Li[j, j].conflict gives information on a label that conflicts with the current
label of a vertex and that may be not known at the writer. This field is used to
avoid that some initially corrupted label remains unknown to the writer but is
included infinitely often in Read function decision set.

Our distributed protocol is composed of two primitives: Read (for any vertex)
and Write (only for the writer v0). When a reader vi invokes its Read primitive,
it collects first the labels of at least a majority of vertices and computes the
maximum with MaxLabel. Two cases can appear:
1) MaxLabel returns a label. This value (if it exceeds the current label of the
reader) is recorded in the distributed system in order to refresh the views of the
other vertices on the last label of vi. Note that, after the reception of this new
value, a vertex updates the corresponding entry in its matrix. Vertex vi finishes
its Read operation by promoting its value in the distributed system. Upon the
reception of the value to be promoted, the vertex vj compares its current label
with the label of the received value. If its local value is obsolete (the local label
is less than the received label), then vj adopts the new value and pushes it in
the distributed system.
2) MaxLabel returns bottom whenever the maximum cannot be computed
(when the set of collected labels contains a circuit). Then, the Read operation
aborts. The circuit in the label set may have been introduced either by a cor-
rupted label present in the system at the initialization or by the writer that
computed the next label based on partial information from the non stabilized
system. Then, the reader changes its Li[i, i].conflict field to one of the labels
that form a circuit. The idea is to help in revealing all the corrupted labels.
Indeed, the conflicting value is then recorded in the matrices of a majority of
vertices that prevents such conflicting values to disturb furtherRead operations.
This case is the main difference with the ABD simulation.

The Write operation is similar to the one of the ABD simulation. When the
writer invokes this primitive, it first collects the latest labels in the system (by
asking any majority of vertices), then computes its next label using the Next
function. Finally it starts a promotion of the new value in the distributed system.

Algorithms 1 and 2 provide the formal implementation of our fault-tolerant
pseudo-stabilizing single-writer multi-reader atomic register simulation.

4.2 Proof of Correctness

This section is devoted to the proof of the fault-tolerant pseudo-stabilization of
PSARS for specARS . According to properties of our data-link protocol described
in Section 2, we know that any execution has an infinite suffix in which no
ghost, duplicated or re-ordered messages are delivered (since there is only a finite
number of communication links in the distributed system). We can conclude that
any execution has an infinite suffix in which any delivered message was actually
sent. For the sake of simplicity, we consider only such suffixes of executions
in the sequel of this proof. Note that this assumption does not restrict the
generality of the proof since we want to prove the pseudo-stabilization of our

146 S. Dolev et al.

Algorithm 2. PSARS : Auxiliary functions (for any vertex vi).

Notations:
For any j, the notation Li[j] represents the jth row of the matrix Li.
Variables:
return seti : a set of labels
read answeri: array of n booleans
record answeri: array of n booleans
promote answeri: array of n booleans

ReadQuorumi(type)

01: read answeri := [0, 0, . . . , 0]
02: read answeri[i] := 1
03: return seti := ∅
04: foreach j ∈ {0, . . . , n − 1} \ {i} do
05: SDL-Sendj(Inquiry(type))
06: while |{j, read answeri[j] = 1}| ≤ n/2 do
07: wait
08: return (return seti)
—————————————————————–
upon DeliverMessagej(Inquiry(type))
09: if type =′ read′ then
10: SDL-Sendj(Answer Read(Li[i, i]))
11: Li[i, j].ack := Li[i, i].value
12: WriteQuorumRecordi()
13: else
14: SDL-Sendj(Answer Write(Li))
—————————————————————–
upon DeliverMessagej(Answer Read(Lj [j, j])
15: Li[j, j] := Lj[j, j]
16: read answeri[i] := 1
17: return seti := return seti ∪ Li

—————————————————————–
upon DeliverMessagej(Answer Write(Lj))
18: Li[j] := Lj [j]
19: read answeri[i] := 1
20: return seti := return seti ∪ Li ∪ Lj

WriteQuorumPromotei()

01: promote answeri := [0, 0, . . . , 0]
02: promote answeri[i] := 1
03: foreach j ∈ {0, . . . , n− 1} \ {i} do
04: SDL-Sendj(Promote(Li[i, i]))
05: while |{j, promote answeri[j] = 1}| ≤ n/2
06: wait
07: foreach promote answeri[j] 	= 0 do
08: Li[i, j].sent := Li[i, i].value
—————————————————————
upon DeliverMessagej(Promote(Lj[j, j]))
10: if Li[i, i].value ≺ Lj[j, j].value then
11: Li[i, i] := Lj[j, j]
12: WriteQuorumRecordi()
13: SDL-Sendj(Ack Promote())
—————————————————————
upon DeliverMessagej(Ack Promote())
14: promote answeri[j] := 1

WriteQuorumRecordi()

01: record answeri := [0, 0, . . . , 0]
02: record answeri[i] := 1
03: foreach j ∈ {0, . . . , n− 1} \ {i} do
04: SDL-Sendj(Record(Li[i])
05: while |{j, record answeri[j] = 1}| ≤ n/2
06: wait
—————————————————————
upon DeliverMessagej(Record(Lj[j])
07: Li[j] := Lj[j]
08: SDL-Sendj(Ack Record())
—————————————————————
upon DeliverMessagej(Ack Record())
09: record answeri[j] := 1

distributed protocol (that is, only the existence of an infinite suffix satisfying the
specification, not the finiteness of a prefix that does not satisfy the specification).

The main difficulty in proving our atomic register simulation comes from the
presence of corrupted labels (due to the arbitrary initialization of matrices) in
the distributed system that may disturb the good functioning of the distributed
protocol.

The key idea of our proof is to show that the writer includes in its decision set
(records) all the viable labels in the system (defined below). A label � is viable
and in the responsibility of vertex vi if it satisfies one of the following properties:

- Li[i, i].value = � or Li[i, i].conflict = �
- Li[i, k].sent = � or Li[i, k].ack = �

Crash Resilient and Pseudo-Stabilizing Atomic Registers 147

- there is a vertex vj such that Lj[i] contains � in one of the fields sent, ack,
value or conflict.

A viable label is recorded if this label is stored in the writer matrix or the
matrix of any majority of vertices. In the following, we show that any label in
the responsibility of a vertex eventually becomes recorded. Note that once a label
is stored in the matrix of the writer or in the matrix of a majority of vertices,
this label is included in the computation of the new label of the writer and it
does not generate new conflicts.

This observation motivates the following necessary assumption for the fault-
tolerant pseudo-stabilization of PSARS: if the writer crashes in an execution,
then this crash must happen after the first stabilized Write invocation (that
is, a Write invocation during which the label set supplied to Next includes
all the viable labels in the distributed system). In other words, an execution
has an infinite suffix that satisfies specARS if the writer does not crash during
this execution or if the writer crashes after the first stabilized Write invoca-
tion (we cannot provide any properties in the contrary case). In the sequel of
this section, we consider only such executions. Otherwise, corrupted labels may
generate incoherent read outputs. Note that when started in a correct state this
assumption is not necessary and the behavior of our simulation is exactly the
same as the ABD’s simulation. Also note that the ABD simulation cannot cope
with corrupted labels.

Lemma 1. Any execution of PSARS has an infinite suffix where every Read
invocation does not abort if n > 2f .

Lemma 2. Any execution of PSARS has an infinite suffix where, for any ver-
tex, the labels in its responsibility become recorded either at the writer or in a
majority, or are never included in the label set of a read operation if n > 2f .

From now, a viable label refers only to labels that do not stay forever out of the
computation.

Lemma 3. Any execution of PSARS has an infinite suffix that satisfies the
regularity property of specARS if n > 2f .

Proof. Let σ be an infinite execution of PSARS. Following Lemma 1 and
Lemma 2, σ contains an infinite suffix, σ′, where no Read invocation aborts
and any Write operation includes in its decision set all the viable labels in the
distributed system. By contradiction, assume there is a vertex vi such that its
Read invocations return an obsolete label infinitely often in σ′.

That is, there exists a Read invocation r by vi such that the label returned
by r is either a corrupted label or a label corresponding to a previous write but
not the most recent. In σ′, r returns the output value of MaxLabel invoked
over the set of labels returned by ReadQuorum.

Let w1 and w2 be two Write operations such that w1 happens before w2

and r. Since w1 happens before r then the label computed by w1 is promoted
and recorded in at least a majority of vertices and is greater than any label in

148 S. Dolev et al.

the distributed system. When r starts invoking ReadQuorum two cases may
appear: (i) w2 did not modify the writer label and did not start the promotion
of the new label via WriteQuorumPromote or (ii) w2 executed WriteQuo-
rumPromote. In the first case, w1’s label is the largest label in the distributed
system. When r invokes the ReadQuorum, it gets w1’s label (otherwise w1

is not terminated) and returns this label. Hence, r cannot return a value older
than the one written by w1. In the second case, some vertices contacted during
the ReadQuorum execution may send the w1’s label, other vertices the w2’s
label. Since the label computed in w2 is greater than the label computed in w1,
MaxLabel invoked in r returns w2’s label. Hence, r returns the last written
value, that contradicts its construction.

Lemma 4. Any execution of PSARS has an infinite suffix that satisfies the no
new/old inversion property of specARS if n > 2f .

Proof. Let σ be an execution of PSARS. Following Lemmas 1 and 3, σ has an
infinite suffix, σ′, that satisfies the regularity property of specARS and in which
any Read invocation does not abort. In the following, we prove that σ′ does not
violate the new/old inversion property of specARS .

Consider two Write operations w1 and w2 in σ′ such that w1 happens before
w2. Consider also two Read operations r1 and r2 such that r1 happens before
r2 and w1 happens before r1 (following the transitivity of the relation “happens
before”, w1 also happens before r2). Assume that r1 and r2 are concurrent with
w2 and that a new/old inversion happens. That is, r1 returns the label �2 written
by w2 and r2 returns the label �1 written by w1.

Since r1 happens before r2, then r1 executes the following actions (before the
start of r2): it modifies its local label to �2, it also executes WriteQuorumPro-
mote in order to help w2 to push its label in the distributed system and finally
it executes WriteQuorumRecord in order to inform the distributed system on
its new value. Since WriteQuorumPromote returns before r1 finishes, then
the label �2 is already adopted by at least a majority of vertices. That is, since
�2 " �1 (w1 happens before w2), then �2 replaces �1 in the matrices of at least
a majority of vertices and also a majority of vertices proceeds to the record of
their new label.

We assumed r2 returns �1. Since r1 happens before r2 then r2 starts its Read-
Quorum after r1 returned, in particular after r1 completed its WriteQuo-
rumPromote operation. This implies that �2 is the label adopted by at least
a majority of vertices and at least one vertex in this majority responds while r2
invokes its ReadQuorum. That is, r2 collects at least one label �2 and since
�2 " �1, r2 should return this value. This contradicts the assumption r2 returns
�1. It follows that σ

′ satisfies the no new/old inversion property of specARS .

Lemma 5. PSARS requires O(n5× log2(n)) bits per vertex. Consequently, the
total amount of memory on the distributed system is in O(n6 × log2(n)) bits.

Proof. Note that the set label set which is the input of Next contains 2n3 labels.
Hence, following [2], one label needs O(n3× log2(n)) bits to be stored. Since any
vertex must store 2n2 labels, we have the result.

Crash Resilient and Pseudo-Stabilizing Atomic Registers 149

Theorem 1. PSARS is a f -ftps distributed protocol for specARS provided that
n > 2f and that the writer can crash only after its first stabilized Write invo-
cation. It requires O(n6log2(n)) bits of memory on the whole distributed system.

5 Conclusion

We presented a distributed solution for implementing a shared register in a
network where processors communicate by exchanging messages. To our knowl-
edge, this is the first such construction to be both pseudo-stabilizing and fault
tolerant. Note that our simulation verifies also the eventual linearizability spec-
ification [14,23]. Differently from the eventual linearizable simulations proposed
so far our simulation tolerates initial corrupted memory. Also, we do not reorder
operations nor maintain locally the history of the system execution.

We expect future research to tackle the following open issues. A generalization
to the multi-writer (and multi-reader) case looks challenging. Indeed, previous
transformers for the crash fault model do handle memory corruption, and the
multiplicity of writers enable the possibility that fake writers (i.e. stale writer
identifiers) are initially present in the network.

References

1. Abraham, U.: Self-stabilizing timestamps. Theoretical Computer Science 308(1-3),
449–515 (2003)

2. Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Prag-
matic Self-stabilization of Atomic Memory in Message-Passing Systems. In: Défago,
X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 19–31. Springer,
Heidelberg (2011)

3. Anagnostou, E., Hadzilacos, V.: Tolerating Transient and Permanent Failures (Ex-
tended Abstract). In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188.
Springer, Heidelberg (1993)

4. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. Journal of the ACM 42(1), 124–142 (1995)

5. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self stabilization: impos-
sibility results and solutions using self-stabilizing failure detectors. IJSS 28(11),
1177–1187 (1997)

6. Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-stabilization.
DC 7(1), 35–42 (1993)

7. Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Stabilizing leader election in
partial synchronous systems with crash failures. JPDC 70(1), 45–58 (2010)

8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control.
CACM 17(11), 643–644 (1974)

9. Dolev, D., Shavit, N.: Bounded concurrent time-stamping. SIAM J. on
Comp. 26(2), 418–455 (1997)

10. Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing data-link over
non-fifo channels with optimal fault-resilience. IPL 111(18), 912–920 (2011)

11. Dolev, S., Herman, T.: Dijkstra’s Self-Stabilizing Algorithm in Unsupportive En-
vironments. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp.
67–81. Springer, Heidelberg (2001)

150 S. Dolev et al.

12. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE TPDS 8(4), 424–440 (1997)

13. Dolev, S., Kat, R.I., Schiller, E.M.: When consensus meets self-stabilization.
JCSC 76(8), 884–900 (2010)

14. Fekete, A., Gupta, D., Luchangco, V., Lynch, N., Shvartsman, A.: Eventually-
serializable data services. TCS 220(1), 113–156 (1999)

15. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. Journal of ACM 32(2), 374–382 (1985)

16. Gawlick, R., Lynch, N., Shavit, N.: Concurrent Timestamping Made Simple. In:
Dolev, D., Rodeh, M., Galil, Z. (eds.) ISTCS 1992. LNCS, vol. 601, pp. 171–183.
Springer, Heidelberg (1992)

17. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance (preliminary
version). In: PODC 1993, pp. 195–206 (1993)

18. Israeli, A., Li, M.: Bounded time-stamps. DC 6(4), 205–209 (1993)
19. Johnen, C., Higham, L.: Fault-Tolerant Implementations of Regular Registers by

Safe Registers with Applications to Networks. In: Garg, V., Wattenhofer, R.,
Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 337–348. Springer, Hei-
delberg (2008)

20. Lamport, L.: On interprocess communication. Part i: Basic formalism. DC 1(2),
77–85 (1986)

21. Lamport, L.: On interprocess communication. Part ii: Algorithms. DC 1(2), 86–101
(1986)

22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
23. Serafini, M., Dobre, D., Majuntke, M., Bokor, P., Suri, N.: Eventually linearizable

shared objects. In: PODC 2010, pp. 95–104 (2010)

Directed Graph Exploration

Klaus-Tycho Förster and Roger Wattenhofer

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland

{k-t.foerster,wattenhofer}@tik.ee.ethz.ch

Abstract. We study the problem of exploring all nodes of an unknown
directed graph. A searcher has to construct a tour that visits all nodes,
but only has information about the parts of the graph it already visited.
The goal is to minimize the cost of such a tour. In this paper, we present
upper and lower bounds for both the deterministic and the randomized
online version of exploring all nodes of directed graphs. Our bounds are
sharp or sharp up to a small constant, depending on the specific model.
Essentially, exploring a directed graph has a multiplicative overhead lin-
ear in the number of nodes. If one wants to search for just a node in
unweighted directed graphs, a greedy algorithm with quadratic multi-
plicative overhead can only be improved by a factor of at most two. We
were also able to show that randomly choosing a starting point does not
improve lower bounds beyond a small constant factor.

Keywords: online algorithms, graph exploration, mobile agents and au-
tonomous robots.

1 Introduction

The hotel concierge promised that this tourist attraction is easy to find, just a
short drive in your car, and she was right. However, how do you now get back
to your hotel, in this cursed city full of one-way streets? After finally being back
at your hotel, totally exhausted, you have a hunch that one-way streets render
navigation more difficult, but is it true?!

In this paper we quantitatively analyze navigation problems in unknown di-
rected graphs from a worst-case perspective. We present a whole flurry of tight
upper and lower bounds, showing that directed graphs exhibit a penalty in the
order of the number of nodes of the graph.

Navigation problems in directed graphs are not restricted to the playful in-
troductory example of one-way streets. Staying in the car context, if we are for
instance interested in minimizing gasoline cost, any hill-side city becomes di-
rected, as driving downhill is virtually free, whereas driving uphill may incur a
high cost. As such, when applying a cost measure, edges of a graph must often
be represented by two directed edges with an appropriate cost.

The most important applications for investigating navigation in directed
graphs are however beyond street networks. In computer networks, for instance,

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 151–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

152 K.-T. Förster and R. Wattenhofer

directed graphs have for instance been studied in the context data aggregation
[29], routing [33], or traversing social networks [34]. Brass et. al. [7] compared
the exploration of directed graphs to exploring the state space of a finite au-
tomaton, where the states are nodes and the transitions are edges. Deng and
Papadimitriou [15] proposed the exploration of directed graphs as a model for
learning, for example for a newborn: current states can be detected by sensor
information (like eyes or ears) and possible actions leading to other states are
known, but it is not known what the situation will be at a not yet explored state.
And last not least, exploring an unknown graph is considered one of the funda-
mental problems in robotics [11,25]. Because of all these applications, directed
graph exploration will be the main focus in this paper. In addition, we look at
other navigation problems, such as searching for a node, which turn out to be
related to exploration.

1.1 Model

We only consider the common model of strongly connected directed graphs
[1,14,15,25,30], since a searcher else might get stuck right away (Section 8).
We call a graph explored, if a searcher starting from some node s has visited all
nodes and returned to s. The cost of such an online exploration tour is measured
by the total sum of the weight of the traversed edges. It is allowed (and might be
necessary) to visit nodes multiple times, but if we traverse an edge again it costs
the same as for the first time. The competitive ratio of a tour is measured by
the ratio of the cost of the tour divided by the cost of a tour of minimum cost.
The competitive ratio of an algorithm is measured by the largest competitive
ratio of all tours generated over all input graphs. For randomized algorithms, it
is the largest expected competitive ratio.

For ease of notation, in the remainder of our paper a graph G = (V,E) has
|V | = n ≥ 6 nodes and |E| = m edges. All nodes have unique IDs, and all
edges have non-negative weights. A searcher has unlimited computational power
and memory and may only traverse edges from tail to head. Upon arriving at a
node v, the following information is made available: all outgoing incident edges
including their weight, plus the IDs (cf. [27,31]) of the corresponding nodes
at the head of these edges. Graph exploration is an online problem since only
partial information about the graph is available [9,10]. For other exploration
models, e.g. unique edge names or information about incoming edges, we refer to
Section 8.

1.2 Results

In our paper we give the first matching lower and upper bounds for the com-
petitive exploration of an unknown directed graph. Our results are sharp for
both the weighted and the unweighted case. For randomized exploration, our
results only have a gap of less than four. We prove similar results for various
commonly used graph classes, like planar or complete graphs or bounding dif-
ferent parameters like degree or diameter. We also discuss changes in the model,

Directed Graph Exploration 153

like randomly choosing a starting position or more powerful searchers. We are
able to show that in all these cases, the exploration of unknown directed graphs
has a multiplicative overhead of Θ(n).

In a similar fashion, searching for a single node has Θ(n2) overhead if all edges
have unit weight (see Section 6). Furthermore, we look at the impact of randomly
choosing a starting point. It turns out that even the best possible starting node
can decrease any lower bound only by a factor of at most four.

To the best of our knowledge, sharp results regarding deterministic and ran-
domized exploration of directed graphs have not yet been published. We sum-
marize our main results in Table 1.

Table 1. Short overview of our main results: In the weighted general case we only need
to use two different edge weights to achieve the bounds. A randomized starting node
can only decrease our lower bounds by a factor of four.

��������������type of graph
competitivity

lower bound upper bound multiplicative gap

(deterministic) general*c n− 1 n− 1 sharp

(randomized) general*+c n
4

n− 1 ≤ 4

(determ.) unweighted general* n
2
+ 1

2
− 1

n
n
2
+ 1

2
− 1

n
sharp

(random.) unweighted general* n
8
+ 3

4
− 1

n
n
2
+ 1

2
− 1

n
≤ 4

(deterministic) euclidean planar n− 2− ε̄ n− 1 ≤ 1.25 + ε

(randomized) euclidean planar n
4
− ε̄ n− 1 ≤ 4 + ε

(d.) unit weight euclidean planar n
4
+ 1

2
− 2

n
n
2
+ 1

2
− 1

n
≤ 2

(r.) unit weight euclidean planar n
8
+ 3

4
− 1

n
n
2
+ 1

2
− 1

n
≤ 4

* also applies to planar graphs and graphs that satisfy the triangle inequality

c also applies to complete graphs and graphs with any diameter from 1 to n− 1

+ also applies to graphs with any maximum incoming/outgoing degree from 2 to
n− 1 and to graphs with any minimum incoming/outgoing degree from 1 to n− 1

2 Related Work

The offline variant, i.e. where all information about the graph is available to the
algorithm, of directed graph exploration is the asymmetric travelling salesperson
problem, where it is allowed to visit nodes multiple times. Unlike the undirected
case, there is no known polynomial approximation algorithm with constant ap-
proximation ratio [3]. An approximation ratio of O(log n) was achieved in [22],
the constant was improved over time, e.g. [8,28]; the best result known to us
is 2

3 log2 n [19]. There exists a result of O(log n/ log logn) for the randomized

154 K.-T. Förster and R. Wattenhofer

case [2]. If only the edge weights 1 and 2 are allowed, it is approximable with a
ratio of 17/12 [37], with a NP-hard lower bound of 2805/2804− ε [18]. An online
variant of asymmetric TSP is as follows: A searcher knows the graph, but the
nodes to visit get determined during the runtime by an adversary [3].

More closely related to the online exploration of all nodes of directed graphs
is the online exploration of all nodes of undirected graphs. While a greedy algo-
rithm achieves a competitive ratio of Θ(log n) [35], it is not known if a constant
competitive ratio for general graphs is possible [31]. For cycles there is an algo-

rithm with a sharp competitive ratio of 1+
√
3

2 , while for trees depth-first search
is optimal [32]. Recently, the best known lower bound for general graphs was im-
proved from 2− ε [32] to 5/2− ε [16]. For planar graphs a sophisticated variant
of depth-first search named ShortCut by Kalyanasundaram and Pruhs achieves
a competitive ratio of 16 [27]. Their result was recently extended for graphs of
genus g to 16(1 + 2g) [31]. If there are just k different edge weights, there ex-
ists an algorithm with competitive ratio 2k [31]. Fleischer et. al. considered the
problem of searching just for a node instead of a tour in [23]. They model their
searcher as “blind”, meaning that it can only sense the outgoing edges, but not
any incoming edges or adjacent neighbors. They use the example of a modified
clique to show a lower bound on the cost of Ω(n2) for unit weights, since a blind
searcher might visit nearly all edges.

Another related problem is the exploration of all edges of a strongly connected
directed graph. Here the difficulty of the problem depends on another parameter,
introduced by Kutten [30]: the eulerian deficiency d of a graph, which is the
minimum amount of edges that need to be added to make the graph eulerian.
A graph is eulerian, if there exists a path that visits all edges exactly once. If
a graph is eulerian, then it can be traversed in an online fashion with at most
2m edge traversals [14], which directly implies at most 4m edge traversals in the
undirected case, see for example [1]. For d = 1, a ratio of 4 is optimal [15]. An
upper bound only dependent polynomially in d for the directed case was given
by Fleischer and Trippen [25], their algorithm is O(d8)-competitive. There exists
also a lower bound of Ω(d)-competitivity for the deterministic case and a lower
bound of Ω(d

log d)-competitivity for the randomized case [14,15]. Furthermore,
graph exploration has also been considered with restricted memory models or
multiple searchers, see for example [4,6,12,13,17,20,21].

There seems to be no known randomized algorithm for the exploration of
graphs (wether it be just nodes or edges) that gives better bounds than the
known deterministic algorithms. Experimental studies of randomized algorithms
for exploring all edges and nodes of a strongly connected directed graph have
been done in [24].

The similar sounding term graph searching, which was first discussed by
Breisch and Parsons (cf. [5]), stands for another problem: A number of agents
has to capture an intruder, or as formulated in the original papers, a party of
searchers has to find a person lost in a cave. For an overview of other online
navigation tasks we refer to [10].

Directed Graph Exploration 155

3 Lower Bounds for General Graphs

We note that in this section we only use the weights 0 and 1 in the weighted
case for lower bounds. If only integers of size at least one are allowed as edge
weights, then analog results can be achieved by replacing 0 with 1 and 1 with
�1/ε� for arbitrarily small ε > 0. Furthermore, the unique names of nodes in
the remainder of the paper are just fixed for the convenience of the reader, an
adversary can permute them in any way it desires – therefore an online algorithm
can derive no further information from just the unique name of an unexplored
node. Also the graphs used in the lower bounds are planar and satisfy the triangle
inequality.

3.1 Deterministic Online Algorithms

Theorem 1. No deterministic online algorithm can achieve a better competitive
ratio on exploring all nodes of strongly connected directed weighted graphs than
n− 1.

Proof. Consider the graph in Figure 1. A searcher using any deterministic online
algorithm starting at node vn cannot differentiate between the nodes v1,v2,. . .,
vn−1, they all look the same, since it can only see the outgoing edges from vn
and the nodes at the end of these edges. In the worst case, the searcher chooses
to visit the node vn−1 first, then is forced to go back to vn, then to visit vn−2
and so on, until it visits v1 and then returns to vn. The cost of this route is n−1,
while an optimal tour first visits v1 and then goes to vn, inducing a total cost
of just 1. This yields a competitive ratio of n − 1 for any deterministic online
algorithm. ��

vnv1

v2

v3

vn−1

vn−2

vn−3

0

0

0

0

0

0

0

0

00

0

1

0

Fig. 1. In this graph the starting node s is vn in the lower middle of the image. A
deterministic algorithm can get tricked into first visiting vn−1, then vn−2 and so on.

156 K.-T. Förster and R. Wattenhofer

3.2 Randomized Online Algorithms

A randomized searcher can explore the graph in Figure 1 with much lower ex-
pected costs: In average it chooses a node in the ”middle” of the so far yet un-
visited nodes when being at vn, therefore visiting the starting node only about
O(ln(n))-times. However, we can reach nearly the same lower bounds with the
graph from Figure 2 as in the deterministic case:

Theorem 2. No randomized online algorithm can achieve a better competi-
tive ratio on exploring all nodes of strongly connected directed weighted graphs
than n

4 .

Proof. Consider the graph in Figure 2 and let the number of nodes n be even. If
one wants to consider odd n, then the same results can be achieved by removing
the node vn

2
and updating the graph accordingly. Let us assume a searcher

using any randomized online algorithm starting from vn visits a node vi, with
1 ≤ i ≤ n

2 − 2, for the first time: then it cannot differentiate the two outgoing
edges. An adversary can choose the IDs so that a good edge is picked with
a probability of at most p = 0.5. Thus the decisions at the nodes v1 to vi−1
do not yield any useful information about how to pick the outgoing edges at vi.
Therefore the expected amount of choosing a wrong outgoing edge is 0.5

(
n
2 − 2

)
.

A wrongly chosen edge when visiting vi for the first time induces a cost of 1, since
the searcher has to follow the unique way back to vi, traversing the edge from
vn−1 to vn with cost 1. This results in an expected cost of 0.5

(
n
2 − 2

)
= n

4 − 1
to explore the node vn

2−1. Once reaching the node vn
2−1 for the first time, the

searcher is forced to go back to vn, resulting in another cost of 1. Since an optimal
tour has a cost of 1, this yields the lower bound of n

4 . ��

vn v1 v2 v3 vn
2

−2 vn
2

−1

vn
2

vn
2

+1vn−4vn−3vn−2vn−1

0 0 0 00 0

0

0

0

00

0001

0 0 0

Fig. 2. In this graph the starting node s is vn in the upper left corner. Upon arriving
at each of the nodes v1, v2, . . . vn

2
−2 for the first time, a randomized algorithm gets

tricked into taking the wrong edge with probability at least 0.5. If n is odd, then the
lower right node vn

2
can be removed to achieve the lower bound.

3.3 Starting Node

While the examples of the graphs in the Figures 1 and 2 lead to a high lower
bound for the competitive ratio, this is only true because the online algorithm is

Directed Graph Exploration 157

forced to start at the node vn. Starting at node v1 in Figure 1 or at node vn
2
in

Figure 2 leads to a competitive ratio of 1. If the starting node were to be chosen
randomly, the expected ratio is O(

√
n) for both cases. This raises the question

if a random starting node can lead to a better competitive ratio. However this
is not the case, there is still a lower bound of Ω(n):

Theorem 3. Even if taking the best result from all possible n starting nodes, no
deterministic online algorithm can achieve a better competitive ratio on exploring
all nodes of strongly connected directed weighted graphs than n/4. The same holds
for randomized online algorithms with a competitive ratio of n/16.

Proof. We start with the deterministic case. We again take the graph from Figure
1, but draw it two times as G and G′ with their respective starting nodes vn
and v′n. We now connect these graphs by adding an edge from vn to v′n and
back, both with weight 0 – resulting in a graph G′′ with 2n nodes. Without
loss of generality we can assume that a starting node from G′ is chosen. No
deterministic online algorithm can achieve a better worst-case cost on exploring
G than n − 1, since the old graph G can only be entered by the edge from v′n
to vn. On the other hand, the graph G′ can be explored with a cost of just 1.
An optimal offline algorithm will just have a cost of 2 for exploring the whole
graph, no matter what starting node is chosen. Since the graph has 2n nodes,
this leads to a lower bound of n/4. We can apply the same arguments to the
randomized case using the graph in Figure 2, giving a lower bound of n/16. ��

4 Upper Bounds for General Graphs

In the undirected case, it is not known yet if there is an algorithm with a better
competitive ratio than O(log n) [35]. A greedy approach reaches this competitive
ratio of O(log n) [35], but the same algorithm has a competitivity of Ω(log n)
even on planar unweighted graphs [26]. Thanks to our strong lower bounds, a
greedy algorithm has a sharp competitive ratio in the directed case:

Theorem 4. A greedy algorithm achieves a competitive ratio of n − 1 for ex-
ploring all nodes of strongly connected directed weighted graphs.

Proof. Given any graph G = (V,E), let us fix an optimal tour OPT . The tour
OPT can be viewed as a concatenation of n paths, that visit the nodes of the
graph in the following order: s = vo0 , v

o
1 , v

o
2 , . . . , v

o
n−1, v

o
n = s. We name the path

from voi to voi+1 as wo
i+1 with 0 ≤ i ≤ n− 1. The walk W o

i,j from voi to voj (with
voi = voj) in OPT consists of the concatenation of wo

i+1, w
o
i+2, . . . , w

o
j for i < j

or of wo
i+1, w

o
i+2, . . . , w

o
n, w

o
1, . . . , w

o
j−1, w

o
j for i > j. For each W o

i,j with i = j it
holds that W o

i,j is the concatenation of at most (n − 1) different paths wo
r with

1 ≤ r ≤ n. Let us assume the greedy algorithm proceeds as follows: upon reach-
ing a node vgk for the first time, find a shortest path wg

k+1 from the current node
to a unknown node vgk+1 in the outgoing neighborhood of the so far explored
nodes. This path wg

k+1 has at most the weight of the concatenated paths from

158 K.-T. Förster and R. Wattenhofer

vgk to vgk+1 in OPT . Let us assume it has heavier weight: then there is a cheaper
path from vgk to vgk+1 that also visits another not yet explored node vq before
visiting vgk+1. However by the choice of vgk+1, then vq is the same node as vgk+1,
which leads to a contradiction. If we sum this up for all n paths wg

1 , . . . , w
g
n−1

from the greedy algorithm plus the shortest path wg
n from vgn−1 to s = vgn, a first

simple upper bound is n · |OPT |. However, each path wo
r with 1 ≤ r ≤ n from

OPT only gets used at most (n− 1) times in the upper bound. This leads to an
upper bound of (n − 1) · |OPT | on the cost of a tour produced by the greedy
algorithm. ��

A combination of Theorem 1, 2 and 4 yields the following corollary:

Corollary 1. The result of Theorem 4 cannot be improved by any other deter-
ministic online algorithm. For randomized online algorithms, only a improve-
ment by a factor of at most 4 is possible.

Furthermore, the authors of [16] also studied the problem of advice complexity
for exploring undirected graphs. They showed that there is a family of graphs
where a searcher needs to be given at least Ω(n ln(n)) bits of information (from
an all-knowing outside source before starting) to explore the graphs with optimal
cost. We note that a greedy algorithm in any directed or undirected graph can
solve the graph exploration problem optimally with O(n ln(n)) bits. We apply
the arguments from above and give a list of the nodes from an optimal tour
OPT in the order they first appear in OPT to the searcher. Since the ID of
every node is of size O(ln(n)) bits, the lower bound of Ω(n ln(n)) from [16] is a
sharp bound of Θ(n ln(n)) bits for both directed and undirected graphs.

5 Unweighted Graphs

An unweighted graph is a graph where the edges have no edge weights, i.e. the
cost is the same for all edges. For our purposes, this is the same as assigning the
edge weight 1 to every edge. The lower bounds are lower, but we will see that
the upper bounds also go down:

Theorem 5. No online algorithm can achieve a better competitive ratio on ex-
ploring all nodes of strongly connected directed unweighted graphs than n

2 +
1
2−

1
n

(deterministic) or n
8 + 3

4 −
1
n (randomized) .

Proof. Consider the graph in Figure 1 for the deterministic case and assign all
edges a weight of 1. A deterministic online algorithm starting at vn first visits
vn−1, then vn−2 etc. in the worst case. Exploring vn−1 and going back to vn
has a cost of 2, for vn−2 it is 3, . . ., for v1 it is n. Summed up this yields

2+3+ . . .+n = n2

2 + n
2 − 1 . Since an optimal tour has cost n, this gives a lower

bound for the competitive ratio of n
2 + 1

2 −
1
n .

Consider the graph in Figure 2 for the randomized case and assign all edges
an edge weight of 1. Now we can apply the same argument as in the weighted
case, but the induced cost by each wrong decision is not 1, but 4 for v1, 6 for

Directed Graph Exploration 159

v2, . . ., n − 2 for vn
2
−2. Since the previous decisions are useless for the current

decision, each of these wrong decisions happens with a probability of at least 0.5.
Furthermore, independently of these decisions, the last exploration tour starting
at vn will visit all nodes exactly once in this example. This gives a lower cost

bound of 0.5
((

n
2 − 2

)2
+ 3
(
n
2 − 2

))
+ n = n2

8 + 3n
4 − 1 . An optimal tour has

cost n, resulting in a lower bound for the competitive ratio of n
8 + 3

4 −
1
n . ��

Theorem 6. A greedy algorithm achieves a competitive ratio of n
2 + 1

2 −
1
n for

exploring all nodes of strongly connected directed unweighted graphs.

Proof. We prove this upper bound by summing up the costs to reach the first
newly explored node, the second newly explored node, . . ., the (n − 1)th (and
last) newly explored node. Let us assume that, beside the starting node, we have
explored (k− 2) additional nodes and have just reached the (k− 1)th new node
vk−1 for the first time. Since the graph is strongly connected, there is always at
least one new node reachable from the current node in the neighborhood of the
so far explored subgraph – unless every node has been visited already. If we pick
the new node vk as a unexplored one we can reach with as few edge-traversals
as possible, then we induce a cost of at most k. A shortest path from vk−1 to
vk will by definition not include another unexplored node vu, since then vu had
been chosen as vk. Furthermore, the path will not include any node twice. This
gives an upper bound of k for the length of the path from vk−1 to vk. In order
to get back to the starting node once all nodes are explored, a shortest path can
again visit at most all other n−2 nodes before reaching the starting node, giving
an upper bound of n− 1 for this last path. If we sum this up we get an upper

bound of 1+2+3+ . . .+(n−2)+(n−1)+(n−1) = −1+
n∑

i=1

i = n2

2 + n
2 −1 . An

optimal tour has cost at least n, giving a competitive ratio of at most (n
2

2 +n
2−1)/

n = n
2 + 1

2 −
1
n . ��

Combining the results of Theorem 5 and Theorem 6 yields:

Corollary 2. The result of Theorem 6 cannot be improved by any other deter-
ministic online algorithm. For randomized online algorithms, only a improve-
ment by a factor of at most 4 is possible.

6 Searching a Node

Instead of generating a tour, one can also change the model, and find just one
specific node v and then stop. However an adversary can place this node in such
a way that it is found last. The searcher does not need to return to the start,
but searching for a node is still costly:

Theorem 7. Searching for a node in strongly connected directed weighted graphs
has an arbitrarily large competitive ratio for any deterministic or randomized
online algorithm and can induce arbitrarily large additive costs.

160 K.-T. Förster and R. Wattenhofer

Proof. We start with the deterministic case. In Figure 1, a node vn+1 can be
added that is connected to v1 with two edges of weight 0. Since an optimal
algorithm finds this node with cost 0, any deterministic node search algorithm
has an arbitrarily bad competitive ratio, since it induces positive costs. The same
holds for randomized algorithms if the same construction is applied at node vn

2−1
in Figure 2. We can apply the same thought for arbitrarily large additive costs
by replacing the edge weight of 1 with an arbitrarily large value. ��

If we consider the model of unit weight edges, then the situation changes:

Theorem 8. Any online algorithm for searching a node in strongly connected

directed unweighted graphs has a lower bound of (n−1)2
4 − (n−1)

4 − 1
2 (deterministic)

or (n−1)
4 + 1

2 + 2
(n−1) (randomized) for its competitive ratio.

Proof. An optimal offline algorithm has a cost of 2 to find vn+1 in the modified
graph from Figure 1 with unweighted edges (vn to v1 to vn+1). Any deterministic
online algorithm finds vn+1 last in the worst case, producing a cost of at least

(see the proof of Theorem 5) n2

2 + n
2 − 1 − n. The searcher does not have to

go back to the start, so (−n) is added at the end. Since this graph has (n + 1)
nodes, a lower bound for the competitive ratio of any deterministic node search

algorithm is (n−1)2
4 − (n−1)

4 − 1
2 .

For the randomized case we use the modified graph from Figure 2 and search
for the node vn

2
. An optimal algorithm finds vn

2
after n

2 steps (vn to v1 . . . to
vn

2−1 to vn+1). Any randomized algorithm needs at least an expected cost of

(see the proof of Theorem 5) n2

8 −
n
4 − 1 + n

2 . This leads to a competitive ratio

of
(

n2

8 + n
4 − 1

)
/n
2 = n

4 −
2
n + 1

2 . ��

For an upper bound we can again use the greedy algorithm:

Theorem 9. A greedy algorithm searching for a node in strongly connected di-

rected unweighted graphs has a competitive ratio of n2

4 −
n
4 .

Proof. A greedy algorithm finds the searched node last in the worst case with

a cost of at most n2

2 −
n
2 (see the proof of Theorem 6). If the node were to be

directly reachable from the starting node, then an online algorithm can find it
in one step. Therefore we can use 2 as the minimal cost needed for an offline
algorithm when computing an upper bound for the competitive ratio. This leads

to a competitive ratio of n2

4 −
n
4 . ��

Combining Theorem 8 and Theorem 9 yields the following corollary:

Corollary 3. Any deterministic online algorithm searching for a node in strongly
connected directed unweighted graphs can improve the competitive ratio of a greedy
algorithm by a factor of 3 at most.

Proof. The quotient of the upper and lower bounds from Theorem 9 and 8 for
n ≥ 4 (for n ≤ 3 any node search takes two steps at most) has a global maximum
in the range n ∈ [4,∞) at n = 4 with value 3. ��

Directed Graph Exploration 161

Let us now come back to the situation mentioned at the start of our introduction.
How expensive can going back to your hotel be? Essentially, it is the same as
searching for a node – just that this node is the only one that has an outgoing
edge to your hotel. For the deterministic case, we again use the graph from
Figure 1 with unweighted edges. We add a hotel-node vh and add a directed
edge from vh to vn (the node with the tourist attraction) and one directed edge
from v1 to vh. Going back to your hotel is now the same as searching the node
v1 with one additional step back. The same construction can be used for the
randomized case with the graph from Figure 2 with unweighted edges. We add
a hotel-node vh and add an outgoing edge from vh to vn (again, the node with
the tourist attraction) and one outgoing edge from vn

2
to vh.

7 Lower Bounds for Special Cases

When we add directed edges with arbitrarily high weights to a given graph,
then using these edges in any online algorithm will not improve the weight of an
obtained tour. An online algorithm has now more information about the graph
(for example about the number of nodes), but we can add these edges in such
a way to our lower bound graphs in Figure 1 and 2 that the searcher gains
no useful information. For example, if we turn the graph from Figure 1 into a
complete graph by adding all missing edges with arbitrarily high weights, then
these new edges do not help a searcher on deciding what node to explore next
when visiting vn, since all possibilities look the same except for their ID – unless
the searcher decides to use an expensive edge. Due to space constraints, we omit
the proofs of the Theorems 10 and 11 in this section:

Theorem 10. For graphs of any diameter from 1 to n − 1 or complete graphs
with eulerian deficiency of d = 0, no online algorithm can achieve a better com-
petitive ratio on exploring all nodes of strongly connected directed weighted graphs
than n− 1 (deterministic) or n/4 (randomized).

We can apply the same line of thought to the graph in Figure 2:

Theorem 11. For graphs of any maximum (minimum) incoming/outgoing de-
gree from 2(1) to n−1, no online algorithm can achieve a better competitive ratio
on exploring all nodes of strongly connected directed weighted graphs than n/4.

A graph is called euclidean, if its nodes can be embedded into the euclidean
plane with the edge weights being equivalent to the length of the straight edge
in the embedding [36].

Theorem 12. No online algorithm can achieve a better competitive ratio on ex-
ploring all nodes of strongly connected directed weighted planar euclidean graphs
than n− 2− ε∗ (deterministic) or n/4− ε∗ (randomized) for any ε∗ > 0.

Proof. We again consider the graph in Figure 2 for the randomized case. If we
replace all edge weights with a fixed εr > 0, then it can be embedded as a
planar euclidean graph like shown in the figure. To reach the lower bound for

162 K.-T. Förster and R. Wattenhofer

competitivity, we replace both edge weights of the incoming and the outgoing
edge for vn−1 with 1/2. Now let us consider a circle with radius 1

2 through the
nodes vn and vn−2, with the nodes v1 and vn−3 not being inside the circle. If
we place vn−1 in the center of the circle, we have a proper planar euclidean
embedding of the constructed graph. By choosing εr to be small enough, for
example εr < ε∗/n2, we reach a lower bound of n/4− ε∗.

For the deterministic case we consider the graph in Figure 1. Let us fix a
εd > 0 and construct a cycle of radius εd with vn being in the center of the cycle
and placing the nodes v1 to vn−1 with distance εd/n on the cycle. Like in the
randomized case, we construct another circle of radius 1

2 through the nodes vn
and vn−2, with v1 and vn−3 not being inside the circle. We now place vn−1 in the
middle of that cycle, which means that the edge weights of both the incoming
and the outgoing edges are 1/2. We remove the edge from vn to vv−1, since it
has no longer the same weight than the other outgoing edges from vn. All other
edge weights are now ≤ εd. Notice that a deterministic algorithm can now only
be tricked n − 2 times. If we choose εd ≤ ε∗/n2, we reach a lower bound of
n− 2− ε∗. ��

A similar result also holds if all edge weights have to be of unit weight:

Corollary 4. No online algorithm can achieve a better competitive ratio on
exploring all nodes of strongly connected directed unit weight planar euclidean
graphs than n

4 + 1
2 −

2
n (deterministic) or n

8 + 3
4 −

1
n (randomized).

Proof. We use the graph from Figure 2 (see Theorem 5) and set all edge weights
to 1, which results in a unit weight euclidean planar graph. ��

8 Other Exploration Models

Unique Edge Names: Our results also hold if the searcher cannot see the
name of nodes at the end of incident outgoing edges, but just the unique name
of both incoming and outgoing edges. When two nodes vi and vj are visited by
the searcher, it knows the name of all incident edges for vi and vj , therefore
also the subgraph that is spanned by vi and vj . If the searcher is at a node vi
and does not know where an incident outgoing edge ends, then the node at the
end of that edge has not been explored yet. In other words, the searcher has
visited all nodes if and only if it knows where each edge ends and starts. Since
our greedy algorithms do not utilize node names when selecting the next node
to be explored, but just try to get to a unexplored node as cheap as possible, our
upper bounds still apply. This holds as well for our lower bound examples if we
use this modified exploration model: every time we trick any online algorithm
into making a wrong decision, we give a set of options to choose from that look
exactly the same for the online searcher.

Incoming Edges: Let us assume that the searcher does not just see the names
of the nodes at the end of incident outgoing edges, but also the names of the

Directed Graph Exploration 163

nodes at the other end of incident incoming edges. Our upper bound still applies,
since the algorithms can just choose to ignore that additional information. For
the lower bound however, we can no longer use the graphs from Figure 1 and
Figure 2. For example when starting on the graph in Figure 1, the node vn−1
now can be differentiated from the nodes v1, . . . , vn−2. Also when visiting vn−2,
the searcher can now differentiate vn−3 from v1, . . . , vn−4, since there is an edge
from vn−3 to vn−2. We can fix this problem by hiding this information with
adding additional nodes. For the example in Figure 1, we add n− 1 additional
nodes. For 1 ≤ i ≤ n − 1, remove the edge from vi to vi+1, add a new node
v+i between them and add a edge from vi to v+i and from v+i to vi+1. The edge
weights of the two new edges is one half of the edge weight of the removed edge.
This decreases the lower bound by a factor of less than 2. We fix the graph in
Figure 2 in a similar way. We add n

2 − 3 nodes between the nodes vn
2 +1 to vn−2.

For n
2 + 1 ≤ i ≤ n − 2, remove the edge from vi to vi+1 add a new node v+i

between them and add a edge from vi to v+i and from v+i to vi+1. The edge
weights of the two new edges are one half of the edge weight of the removed
edge. This decreases the lower bound by a factor of less than 1.5.

Connectivity: When exploring directed graphs (for both cases of just nodes
or nodes and edges), usually only strongly connected variants are considered,
see for example [1,14,15,25,30]. This ensures that every node is reachable from
the starting node and that the searcher can return to the starting node from ev-
ery node. If the directed graph is not strongly connected, then any deterministic
online algorithm can already get stuck after visiting the first new node, even
though an offline algorithm can visit every other node and just skip this one.
Similar graphs can be constructed for the randomized case. Consider a directed
cycle, where each node has an outgoing edge to the same node v – which has
outgoing degree of 0. The starting point is only reached again by the searcher
with a probability of (0.5)n−2 for n ≥ 3. Already for n = 12 this gives just a
chance of < 0.001 to return to the start.

Acknowledgements. We would like to thank the anonymous reviewers for
their helpful comments.

References

1. Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM J. Com-
put. 29(4), 1164–1188 (2000)

2. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(log
n/log log n)-approximation Algorithm for the Asymmetric Traveling Salesman
Problem. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, pp. 379–389. Society for Industrial and Applied
Mathematics, Philadelphia (2010)

3. Ausiello, G., Bonifaci, V., Laura, L.: The on-line asymmetric traveling salesman
problem. J. Discrete Algorithms 6(2), 290–298 (2008)

164 K.-T. Förster and R. Wattenhofer

4. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous graph exploration
without collision by mobile robots. Inf. Process. Lett. 109(2), 98–103 (2008)

5. Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents.
In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA 2002, pp. 200–209. ACM, New York (2002)

6. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.P.: The Power of a
Pebble: Exploring and Mapping Directed Graphs. Inf. Comput. 176(1), 1–21 (2002)

7. Brass, P., Gasparri, A., Cabrera-Mora, F., Xiao, J.: Multi-robot tree and graph ex-
ploration. In: Proceedings of the 2009 IEEE International Conference on Robotics
and Automation, ICRA 2009, pp. 495–500. IEEE Press, Piscataway (2009)

8. Bläser, M.: A new approximation algorithm for the asymmetric TSP with triangle
inequality. ACM Transactions on Algorithms 4(4), 47:1–47:15 (2008)

9. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

10. Bermann, P.: On-line Searching and Navigation. In: Fiat, A., Woeginger, G.J. (eds.)
Online Algorithms 1996. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998)

11. Burgard, W., Moors, M., Fox, D., Simmons, R.G., Thrun, S.: Collaborative Multi-
Robot Exploration. In: Proceedings of the 2000 IEEE International Conference on
Robotics and Automation, ICRA 2000, pp. 476–481. IEEE, San Francisco (2000)

12. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network Exploration by Silent
and Oblivious Robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp.
208–219. Springer, Heidelberg (2010)

13. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1-3), 34–48 (2007)

14. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph (Extended Abstract).
In: Proceedings of the 31st Annual Symposium on Foundations of Computer Sci-
ence, FOCS 1990, vol. I, pp. 355–361. IEEE Computer Society, St. Louis (1990)

15. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph The-
ory 32(3), 265–297 (1999)

16. Dobrev, S., Královic̆, R., Markou, E.: Online Graph Exploration with Advice. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278.
Springer, Heidelberg (2012)

17. Dynia, M., �Lopuszański, J., Schindelhauer, C.: Why Robots Need Maps. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer,
Heidelberg (2007)

18. Engebretsen, L.: An Explicit Lower Bound for TSP with Distances One and Two.
Algorithmica 35(4), 301–318 (2003)

19. Feige, U., Singh, M.: Improved Approximation Ratios for Traveling Salesperson
Tours and Paths in Directed Graphs. In: Charikar, M., Jansen, K., Reingold, O.,
Rolim, J.D.P. (eds.) APPROX and RANDOM 2007. LNCS, vol. 4627, pp. 104–118.
Springer, Heidelberg (2007)

20. Fraigniaud, P., Ilcinkas, D.: Digraphs Exploration with Little Memory. In: Diek-
ert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer,
Heidelberg (2004)

21. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

22. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12(1), 23–39
(1982)

Directed Graph Exploration 165

23. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive
Online Approximation of the Optimal Search Ratio. SIAM J. Comput. 38(3), 881–
898 (2008)

24. Fleischer, R., Trippen, G.: Experimental Studies of Graph Traversal Algorithms.
In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS,
vol. 2647, pp. 120–133. Springer, Heidelberg (2003)

25. Fleischer, R., Trippen, G.: Exploring an Unknown Graph Efficiently. In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidel-
berg (2005)

26. Hurkens, C.A.J., Woeginger, G.J.: On the nearest neighbor rule for the traveling
salesman problem. Oper. Res. Lett. 32(1), 1–4 (2004)

27. Kalyanasundaram, B., Pruhs, K.: Constructing Competitive Tours from Local In-
formation. Theor. Comput. Sci. 130(1), 125–138 (1994)

28. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation Algorithms
for Asymmetric TSP by Decomposing Directed Regular Multigraphs. In: Proceed-
ings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2003, pp. 56–65. IEEE Computer Society, Washington, DC (2003)

29. Kuhn, F., Oshman, R.: The Complexity of Data Aggregation in Directed Networks.
In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 416–431. Springer, Heidelberg
(2011)

30. Kutten, S.: Stepwise construction of an efficient distributed traversing algorithm
for general strongly connected directed networks or: Traversing one way streets
with no map. In: Computer Communication Technologies for the 90’s, Proceedings
of the Ninth International Conference on Computer Communication, ICCC 1988,
pp. 446–452. International Council for Computer Communication, Elsevier (1988)

31. Megow, N., Mehlhorn, K., Schweitzer, P.: Online Graph Exploration: New Results
on Old and New Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)

32. Miyazaki, S., Morimoto, N., Okabe, Y.: The Online Graph Exploration Problem
on Restricted Graphs. IEICE Transactions 92-D(9), 1620–1627 (2009)

33. Prakash, R.: Unidirectional links prove costly in wireless ad hoc networks. In: Pro-
ceedings of the 3rd International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications, DIALM 1999, pp. 15–22. ACM, New
York (1999)

34. Ribeiro, B.F., Wang, P., Murai, F., Towsley, D.: Sampling directed graphs with
random walks. In: Proceedings of the IEEE INFOCOM 2012, pp. 1692–1700. IEEE,
Orlando (2012)

35. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An Analysis of Several Heuristics
for the Traveling Salesman Problem. SIAM J. Comput. 6(3), 563–581 (1977)

36. Sedgewick, R., Vitter, J.S.: Shortest Paths in Euclidean Graphs. Algorithmica 1(1),
31–48 (1986)

37. Vishwanathan, S.: An Approximation Algorithm for the Asymmetric Travelling
Salesman Problem with Distances One and Two. Inf. Process. Lett. 44(6), 297–302
(1992)

Lattice Completion Algorithms for Distributed

Computations

Vijay K. Garg	

Parallel and Distributed Systems Lab,
Department of Electrical and Computer Engineering,

The University of Texas at Austin,
Austin, TX 78712

garg@ece.utexas.edu

http://www.ece.utexas.edu/~garg

Abstract. A distributed computation is usually modeled as a finite par-
tially ordered set (poset) of events. Many operations on this poset require
computing meets and joins of subsets of events. The lattice of normal
cuts of a poset is the smallest lattice that embeds the poset such that all
meets and joins are defined. In this paper, we propose new algorithms
to construct or enumerate the lattice of normal cuts. Our algorithms are
designed for distributed computing applications and have lower time or
space complexity than those of existing algorithms. We also show appli-
cations of this lattice to the problems in distributed computing such as
finding the extremal events and detecting global predicates.

1 Introduction

A distributed computation is usually modeled as a set of events ordered by the
partial order relation called the happened-before [Lam78] relation. This rela-
tion can be tracked using Mattern [Mat89] and Fidge’s vector clocks [Fid89]
which provide an efficient implicit representation of the poset of events that
happened in a distributed computation. There are numerous applications in dis-
tributed systems such as distributed debugging [CM91, GW94], and recovery
of distributed programs [SY85], that track the happened-before relation using
vector clocks.

Since the joins and meets are always defined for lattices but may not exist for
a general poset, there are many fundamental and practical advantages of working
with lattices rather than posets. Given any poset, there are usually two ways
to complete it — completion by consistent cuts (or ideals) and completion by
normal cuts. The lattice of consistent cuts captures the notion of consistent global
states in a distributed computation and has been discussed extensively in the
distributed computing literature [Mat89, CM91, GM01]. The lattice of normal

� Supported in part by the NSF Grants CNS-1115808, CNS-0718990, CNS-0509024,
and Cullen Trust for Higher Education Endowed Professorship.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 166–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lattice Completion Algorithms for Distributed Computations 167

cuts has not received much attention in distributed computing. For a poset P , its
completion by normal cuts, or Dedekind-Macneille (DM) completion, denoted
by LDM (P) is the smallest lattice that has P as its suborder [DP90]. Fig. 1(i)
shows a distributed computation with four events. Its completion by normal cuts
and consistent cuts is shown in Fig. 1(ii) and (iii), respectively.

The lattice of normal cuts is generally much smaller in size than the lattice
of consistent cuts. In the extreme case, the lattice of consistent cuts may be
exponentially bigger in size than the lattice of normal cuts. We show in this
paper that some global predicates can be detected on the lattice of normal cuts
instead of consistent cuts, thereby providing an exponential reduction in the
complexity of detecting them.

Fig. 1. (i) The original poset. (ii) Its lattice of normal cuts (iii) Its lattice of consistent
cuts.

In this paper, we also discuss algorithms for constructing and enumerating
LDM (P) for a distributed computation given as a finite poset P with implicit
representation (i.e., represented using vector clocks). There has been extensive
research in algorithms for the problems of DM-completion [NR99, NR02, GK98],
construction of concept lattices[Gan84], construction of maximal antichain lat-
tice [JRJ94], and construction of union-closed family of sets [NR99, NR02]. Our
work differs in principally two ways. First, our focus is on implicit representation
of posets and lattices. Most of the earlier work builds explicit cover relation of
the lattice, whereas we represent the lattice implicitly using vector clocks. We
note here that [Gar13] also uses vector clocks but for the lattice of maximal
antichains. Second, our work is targeted towards distributed computing traces.
For distributed computing traces, it is natural to assume that the number of
events generated by a single process is significantly more than the number of
processes, i.e., the width of the poset is much smaller than the height of the poset

168 V.K. Garg

corresponding to the computation. Also, most events in a distributed computa-
tion are internal to the process, i.e., they do not have any interaction with other
processes. The computational complexity of our algorithm is explicitly depen-
dent on the width of the poset, and the number of message receive events in a
distributed system.

There are principally two classes of algorithms for generation of lattices. In-
cremental algorithms take as input a poset P and its lattice completion L,
and output the lattice completion of the poset P extended with an element
x. The algorithms by Ganter and Kuznetsov [GK98] and Lourine and Raynaud
[NR99, NR02] fall in this class. These algorithms store the entire lattice. The
other class of algorithms, frequently used in concept analysis [GW97], only re-
quire enumeration of all elements of the concept lattice. They do not require
storage of the entire lattice (which may be exponentially bigger than the poset
itself). The algorithm by Ganter [Gan84] falls in this class. It enumerates all
elements of the lattice in a lexicographical order. To distinguish between these
two classes of lattice generation, we refer to the first class of algorithms as the
lattice construction and the second class of algorithms as the lattice enumer-
ation. In this paper, we propose algorithms for both lattice construction and
lattice enumeration adapted to distributed computations.

Table 1. Algorithms for Lattice Construction and Enumeration of Normal Cuts

Algorithm Incremental Time Complexity Space Complexity

Ganter and Kuznetsov [GK98] Yes O(mn3) O(mn log n)
Nourine and Raynaud[NR99, NR02] Yes O(mn2) O(mn log n)

Algorithm IDML [this paper] Yes O(rwm logm) O(mw log n)
BFS [this paper] No O(mw2(w + logwL)) O(wLw log n)
DFS [this paper] No O(mw3) O(hLw log n)

Lexical by Ganter [Gan84] No O(mn3) O(n log n)

Table 2. The notation used in the paper

Symbol Definition Symbol Definition

n size of the poset P m size of the normal cuts lattice L
w width of the poset P r number of elements with more than one lower cover
hL height of the lattice L wL width of the lattice L.

We first propose an incremental Dedekind-Macneille lattice construction algo-
rithm called IDML which compares favorably with the algorithms proposed by
Nourine and Raynoud [NR99, NR02] for distributed computing. Let the size of
the poset be n and the size of the DM-lattice bem, then the algorithm by Nourine
and Raynoud takes O(n2m) time. The IDML algorithm takes O(rwm logm)

Lattice Completion Algorithms for Distributed Computations 169

time where w is the width of the poset and r is the number of receive events in
the computation. For typical distributed computations, our algorithm has sig-
nificantly smaller time complexity. Moreover, Nourine and Raynoud’s algorithm
require building a special structure called a lexicographic tree with space com-
plexity O(mn log n). Our incremental algorithm uses a balanced binary search
tree of all the lattice elements with the space complexity O(mw logn).

For lattice enumeration, the existing algorithms use lexicographical enumer-
ation of the lattice [Gan84]. In this paper, we propose techniques for breadth-
first (BFS) and depth-first (DFS) enumeration of lattices. It is important to
note that the algorithms for BFS and DFS enumeration of lattices are different
from the standard graph-based BFS and DFS enumeration because our algo-
rithms cannot store the explicit graph corresponding to the lattice. Hence, the
usual technique of marking the visited nodes is not applicable. BFS-enumeration
and DFS-enumeration may be semantically more meaningful and useful in dis-
tributed computing than lexical enumeration. For example, while searching for
an event with a given property in a distributed computation, it is more use-
ful to find one at the lowest level of the lattice. Note that BFS, DFS and
lexical algorithms for enumeration of the lattice of consistent cuts (but not
for the lattice of normal cuts) have already been proposed in the distributed
computing literature. For example, BFS enumeration has been proposed by
Cooper and Marzullo [CM91], DFS enumeration by Alagar and Venkatesan
[AV01], and Lexical enumeration by Garg [Gar03]. Due to different structure
of these lattices, the technique for BFS and DFS enumeration is quite dif-
ferent. For example, the problem of determining if an element of the lattice
has already been enumerated is different for the two lattices. Table 1 summa-
rizes the time and space complexity of the lattice construction and enumeration
algorithms.

The ability to construct or enumerate the lattice of normal cuts has wide
applications in many areas. We discuss distributed computing applications in
Section 6. It has applications in other areas such as formal concept analysis
[GW97] but will not be discussed in this paper.

2 Background: Posets with Implicit Representation

We assume that the reader is familiar with the basic concepts of posets and
lattices [DP90]. A partially ordered set (or poset) is a pair P = (X,≤) where X
is a set and ≤ is a reflexive, antisymmetric, and transitive binary relation on X .
A subposet of P is a subset of X whose order relation is restriction of P to the
subset. If either x ≤ y or y ≤ x, we say that x and y are comparable; otherwise,
we say x and y are incomparable. For any two elements x and y, y covers x
if x < y and ∀z ∈ X : x ≤ z < y implies z = x. A subset Y ⊆ X is called
an antichain (chain), if every distinct pair of points from Y is incomparable
(comparable) in P . The width (height) of a poset is defined to be the size of a
largest antichain (chain) in the poset.

170 V.K. Garg

Given a subset Y ⊆ X , the meet of Y , if it exists, is the greatest lower bound
of Y and the join of Y is the least upper bound. An element is join-irreducible
(meet-irreducible) if it cannot be expressed as the join (meet) of other elements.
A poset P = (X,≤) is a lattice if joins and meets exist for all finite subsets of X .
It is a complete lattice if joins and meets exists for all subsets of X . The largest
element of a lattice is called the top element.

Let P be a poset with a given chain partition of width w. In a distributed
computation, P is the set of events executed under the happened-before relation
where a chain corresponds to a total order of events executed on a single process.
In such a poset, every element e can be identified with a tuple (i, k), the kth event
on the ith chain. In this paper, we keep the order relation implicit using vector
clock [Mat89] as explained next. For e ∈ P , let D[e], the down-set of e be the
elements in P , that are less than or equal to e. The set D[e] can equivalently be
captured using a vector e.V such that e.V [i] = j iff there are exactly j elements
on chain i that are less than or equal to e. It is easy to verify that e ≤ f iff
e.V ≤ f.V . Fig. 2(i) and (ii) show a poset and corresponding vector clocks.

A subset Q is a consistent cut (an order ideal) of P if it satisfies the constraint
that if f is in Q and e is less than or equal to f , then e is also in Q. For any
element e ∈ P , D[e] is always a consistent cut and is called a principal ideal.
Any consistent cut Q of P can be represented using a simple vector Q.V with
the interpretation that Q.V [i] = j iff exactly j smallest elements of chain i are
in Q. Note that we have used vectors for representing events as well as set of
events. Given two consistent cuts Q and R, their intersection (union) is simply
the component-wise minimum (maximum) of the vectors for Q and R.

Just as we have constructed vectors using the down-sets, we can also use the
dual up-sets. For e ∈ P , let U [e], the up-set of e be the elements in P , that are
greater than or equal to e. The notion of order filters which are duals of order
ideals can similarly be defined.

3 Lattice Completion of a Computation

In this section, we discuss lattice-completion of a computation via normal cuts.
Given Q ⊆ P , the set of lower bounds of Q, denoted by Ql is given by

{x ∈ P |∀e ∈ Q : x ≤ e}

In Fig. 1, {c, d}l = {a}. When Q is empty, Ql is trivially the entire set P .
When Q is singleton {e}, then it simply corresponds to D[e]. In general, we can
compute Ql using D as follows:

Ql = ∩e∈QD[e]

It is easy to verify that Ql is alway a consistent cut because D[e] is a consistent
cut for any e, and consistent cuts are closed under intersection. Similarly, the set
of upper bounds of Q, denoted by Qu can be computed. In Fig. 1, {a, b}u = {d}.
The set ({a, b}u)l = {a, b, d}.

Lattice Completion Algorithms for Distributed Computations 171

Definition 1 (Normal Cut). [DP90] A setQ ⊆ P is a normal cut if (Qu)l = Q.

We will use the simpler notation Qul for (Qu)l. It is easily shown [DP90] that
computing Qul for any Q ⊆ P is a closure operator, i.e., (1) Q ⊆ Qul (it is
extensive), (2) Q1 ⊆ Q2 ⇒ Qul

1 ⊆ Qul
2 (it is monotone) (3) (Qul)ul = Qul (it is

idempotent). It is easy to verify that principal ideals are always normal. Indeed,
if Q = D[e], then Qu = U [e] and Qul = D[e] = Q. Since normal cuts correspond
to a closure operator, they are closed under intersection.

Fig. 2. (i) The original poset. (ii) Equivalent representation using Vector Clocks (iii)
Its Lattice of normal cuts.

Definition 2 (Dedekind–MacNeille Completion of a Poset). For a given
poset P = (X,≤), the Dedekind–MacNeille completion of P is the poset formed
with the set of all the normal cuts of P under the set inclusion. Formally,

DM(P) = ({A ⊆ X : Aul = A},⊆).

For the poset in Figure 1(i), the set of all normal cuts is:

{{}, {a}, {b}, {a, c}, {a, b, d}, {a, b, c, d}}.
The poset formed by these sets under the ⊆ relation is shown in Figure 1(ii).
This new poset is a complete lattice. The meet of normal cuts is same as the set
intersection. The join of a set of normal cuts Q is defined as the meet of all the
normal cuts that that are greater than or equal to all the normal cuts in Q. For
example, the join of {a} and {b} is {a, b, d} because it is the meet of all normal
cuts which contain both {a} and {b}. Our original poset P is embedded in this
new structure such that x is mapped to the set D[x].

For the poset in Fig. 2, the lattice of normal cuts has 9 cuts:
{{}, {a}, {b}, {c}, {a, d}, {b, c}, {a, b, e, c}, {b, c, f}, {a, b, c, d, e, f}}. Figure 2(iii)
shows these 9 cuts in the vector clock representation. The lattice of consistent
cuts has 19 elements (not shown in the figure).

172 V.K. Garg

4 IDML: An Incremental Algorithm for Lattice
Completion

Let P be a poset and L be its Dedekind-Macneille lattice completion. In this
section, we present a new incremental algorithm for lattice completion in implicit
representation in which both P and L are represented using vectors. Suppose
that a new element x is added to P with the constraint that x is not less than
or equal to any of the existing elements. Our goal is to compute the lattice
completion, L′ of P ′ = P ∪ {x} given P and L. When P is a singleton, then its
completion is itself. By adding one element at a time in any linear order that
is consistent with the partial order, we can use the incremental algorithm for
lattice completion of any poset.

Our incremental strategy for the lattice completion is as follows. We show
that all the elements of L other than the top element of L are also contained in
L′. The top element of L would either be retained or modified for L′. Therefore,
except for the top, our algorithm will simply add elements to L to obtain L′.

Lemma 1. Let S be a normal cut of P = (X,≤) such that S = X. Then S is
also a normal cut of P ′ := P ∪ {x} where x is a maximal element of P ′.

Proof. Let T = Su in P . This implies that T l = S in P because S is a normal
cut of P . Since S = X , T is nonempty (because if T is empty, T l = X which is
not equal to S).

If S ⊆ D[x], then Su in P ′ equals T ∪ {x}. We need to show that Sul = S in
P ′, i.e., (T ∪{x})l = S in P ′. The set (T ∪{x})l = T l∩D[x]. Since x is a maximal
element, we know that x ∈ T l. Since T l = S and S ⊆ D[x], T l∩D[x] = S. Hence,
S is a normal cut of P ′.

If S ⊆ D[x], then Su in P ′ equals T . Since T is nonempty, and T l = S in P ,
we get that T l = S in P ′ as well. Hence, S is a normal cut of P ′.

Our algorithm for DM-construction is shown in Fig. 3. Whenever a new element
x arrives, we carry out three steps. In step 1, we process Y , the top element
of L; in step 2, we add a normal cut corresponding to the principal ideal of x;
and, in step 3, we process the remaining elements of L. The goal of step 1 is
to ensure that L′ has a top element. The goal of step 2 is to ensure that all
principal ideals of P ′ are in L′. The goal of step 3 is to ensure that L′ is closed
under intersection. In step 3, we first check if x covers more than one element.
If it does not, then we do not have to go over all normal cuts in L because of
the following claim.

Lemma 2. If x covers at most one element in P , then for any normal cut
W ∈ L, min(W,D[x]) ∈ L assuming {} ∈ L.

Proof. If x does not cover any element of P , then D[x] = {x} and W ∩D[x] = {}
which is assumed to be in L. Now suppose that x covers just one element y, then
D[x] = {x} ∪ D[y]. Therefore, W ∩ D[x] = W ∩ D[y]. Since both W and D[y]
are normal cuts of L, so is W ∩D[y].

Lattice Completion Algorithms for Distributed Computations 173

Input: a nonempty finite poset P , its DM-completion L, element x
Output: L′ := DM-completion of P ∪ {x}

D[x] := the vector clock for x;
Y := top(L);
newTop := max(D[x], Y);
// Step 1: Ensure that L′ has a top element

if Y ∈ P then L′ := L ∪ {newTop};
else L′ := (L− Y) ∪ {newTop};

// Step 2: Ensure that D[x] is in L′

if (D[x] �= newTop) then L′ := L′ ∪ {D[x]};
// Step 3: Ensure that all meets are defined

if x does not cover any element in P then
L′ := L′ ∪ {0}; // add zero vector

else if x covers more than one element in P then
for all normal cuts W ∈ L do

if min(W,D[x]) �∈ L′ then L′ := L′ ∪min(W,D[x]);

Fig. 3. Incremental Algorithm IDML for DM-construction

We now show the correctness of the algorithm, i.e., L′ is precisely the DM-lattice
for P ′.

Theorem 1. The algorithm IDML computes DM-completion of P ′ assuming
that L is a DM-completion of P .

Proof. We first show that all cuts included in L′ are normal cuts of P ′. In step
1, we add to L′ all cuts of L except possibly top(L), and max(D[x], Y). All
elements of L except possibly top(L) are normal cuts of P ′ from Lemma 1. The
cut max(D[x], Y) is a cut of P ′, because it includes all elements of P ′. In step
2, we add cut D[x] to L′ which is a normal cut of P ′ because it is a principal
ideal of P ′. In step 3, we only add cuts of the form min(W,D[x]). Since both
W and D[x] are normal cuts of P ′, and the set of normal cuts is closed under
intersection, we get that min(W,D[x]) is also a normal cut of P ′.

We now show that all normal cuts of P ′ are included in L′. Let S be a normal
cut of P ′. Let Q be the set of all principal ideals of P ′. By our construction,
L′ includes all principal ideals of P ′ (because of step 2). It is sufficient to show
that L′ is closed under joins and meets. Since we have the top element in L′,
it is sufficient to show closure under meets. Let S and T be two normal cuts in
L′. If both S and T are in L, then S ∩ T is in L and therefore also L′. Now,
assume that S ∈ L′ − L. Therefore, S = W ∩D[x] for some W ∈ L. If T ∈ L,
then S ∩ T = W ∩D[x] ∩ T = (W ∩ T) ∩D[x]. Since (W ∩ T) ∈ L, we get that
S ∩ T ∈ L′ because of step 3. If T ∈ L′−L, then it can be written as W ′ ∩D[x]
for some W ′ ∈ L. Therefore, S ∩ T = W ∩D[x]∩W ′ ∩D[x] = (W ∩W ′)∩D[x].
Since (W ∩W ′) ∈ L, we again get that S∩T ∈ L′. Since L′ contains all principal
ideals of P ′ and is closed under meet and join, we get that all normal cuts of P ′

are included in L′.

174 V.K. Garg

Note that our algorithm also gives an easy proof for the following claim.

Lemma 3. The number of normal cuts of P ∪ {x} is at most twice the number
of normal cuts of P plus two.

Proof. For every cut in L, we add at most one more cut in Step 3 of the algorithm.
Further, we add at most one cut in step 1 and one additional cut in Step 2.

We now discuss the time complexity of the IDML algorithm. Let m be the size of
the lattice L. The time complexity of the IDML algorithm is dominated by step
3. Assuming that L is kept in a sorted order (for example, in the lexicographically
sorted order) in a balanced binary search tree, the operation of checking whether
min(W,S) ∈ L can be performed in O(w logm), where w is the width of the poset
P ′. For any element for which we traverse the lattice L, we take O(wm logm)
time. If the element x covers only one element (or no elements), then we take
O(w logm) time. Suppose that there are r events in the poset that cover at
least two events. In a distributed computation, only receive events would have
this property. Then, to compute DM-Lattice of a poset P , we can repeatedly
invoke IDML algorithm in any total order consistent with P . Therefore, we can
construct DM-lattice of a poset P of width w with r elements of lower cover
of size at least two in O(rwm logm). The algorithm by Nourine and Raynoud
[NR99, NR02] takes O(n2m) time. Since n ≤ m ≤ 2n, our algorithm takes time
O(rwn log n) when m = O(n).

We also note here that given a poset P , to construct its DM-lattice, we
can restrict our attention to its subposet of irreducible elements because DM-
completion of P is identical to DM-completion of the subposet containing all its
join and meet irreducibles [DP90].

5 Traversal Based Algorithms for DM-Completion

In some distributed computing applications, we may be interested not in storing
the DM-Lattice but simply enumerating all the elements of the lattice or storing
only those elements of the lattice that satisfy a given property. Recall that the
size of the DM-Lattice may be exponential in the size of the poset in the worst
case. Algorithm IDML has space complexity of O(mw logn) to store the lattice
L (there are m elements in the lattice, and each element is represented using
a w dimensional vector of entries of size O(log n)). We now give an algorithm
BFS-DML that does not require storing the entire lattice.

5.1 Breadth First Search Enumeration of Normal Cuts

The algorithm BFS-DML views the lattice as a directed graph and generates
its elements in the breadth-first-order. It is different from the traditional BFS
algorithm on a graph because we do not store the graph or keep data that
is proportional to the size of the graph (such as the nodes already visited). Let
Layer(k) be the set of nodes in the graph that are at distance k from the bottom

Lattice Completion Algorithms for Distributed Computations 175

element of the lattice. Let wL be the size of the largest set Layer(k). Then, the
space required by BFS-DML is O(wLw logn).

The algorithm BFS-DML is shown in Figure 4. The set S is used to store the
set of nodes that have been generated but have not been explored yet. The set
is kept in a balanced binary tree so that it is easy to check if some element is
already contained in the set. We maintain the invariant that the set S contains
only the normal cuts of the poset P . The elements in the binary search tree are
compared using the function levelCompare shown in Fig. 4. For any vector a
corresponding to a consistent cut, the function a.sum() returns the number of
events in the consistent cut. At lines (1) and (2) of the function levelCompare, we
define a consistent cut to be smaller than the other if it has fewer elements. Lines
(3)-(5) impose a lexicographic order on all consistent cuts with equal number of
elements. As a result, the function levelCompare imposes a total order on the
set of all consistent and normal cuts.

The main BFS traversal of normal cuts, shown in lines (1) to (6), exploits
the fact that there is a unique least normal cut that contains any consistent cut.
The algorithm removes normal cuts from S in the levelCompare order. Let H
be the smallest vector in this order (line 2). It finds all consistent cuts reachable
from H by executing a single event e (line 4). We define an event e to be enabled
in H if H ∪ {e} is a consistent cut. It adds all normal cuts that corresponds to
“closure” of consistent cuts H∪{e} at line (5). We need to ensure that no normal
cut is enumerated twice. At line (6), we check if a normal cut is already part of
S. It can be shown that this check is sufficient to ensure that no normal cut is
enumerated twice (due to the definition of levelCompare and the BFS order of
traversal).

We now discuss the complexity of the BFS algorithm. At line (4), since there
are w processes, there can be at most w events enabled on any normal cut
H . Checking whether an event e is enabled in H requires that the events that
happened-before e in poset P are included in H . This check requires O(w) com-
parisons in the worst case (using vector clocks).

To find the smallest normal cut containing Q := H ∪{e}, we simply compute
Qul. Since f ≤ g is equivalent to U [g] ⊆ U [f], we can restrict our attention to
maximal elements of Q, i.e.,

Qu = ∩f∈maximal(Q)U [e].

Since P is represented using w chains, there are at most w maximal elements and
therefore we can compute Qu in O(w2) operations. We now take R := Qu and
compute Rl, again using O(w2) operations. Thus, step (5) can be implemented
in O(w2).

To check if the resulting normal cut K is not in S, we exploit the tree struc-
ture of S to perform it in O(w log |S|) which is O(w logwL) in the worst case.
Hence the total time complexity of Algorithm BFS is O(mw(w2 +w logwL)) =
O(mw2(w + logwL)). The main space complexity of the BFS algorithm is the
data structure S which is (wLw logn). Note that the size of S is proportional to
the size of the layer of the lattice in BFS enumeration (wL) and is much smaller
than the size of the lattice m used in the IDML algorithm.

176 V.K. Garg

Input: a finite poset P
Output: Breadth First Enumeration of elements of DM-completion of P
G := bottom element ;
S := Ordered Set of VectorClocks initially {G} with levelCompare order;

(1) while (S is notEmpty)
(2) H := remove the smallest element from S ;
(3) output(H);
(4) foreach event e enabled in H do;
(5) K := the smallest normal cut containing Q := H ∪ {e};
(6) if K is not in S , then add K to S ;

int function levelCompare(VectorClock a, VectorClock b)
(1) if (a.sum() > b.sum()) return 1;
(2) else if (a.sum() < b.sum()) return -1;
(3) for (int i = 0; i < a.size(); i++)
(4) if (a[i] > b[i]) return 1;
(5) if (a[i] < b[i]) return -1;
(6) return 0;

Fig. 4. Algorithm BFS-DML for BFS Enumeration of DM-Lattice

5.2 Depth First Search Enumeration of Normal Cuts

Another useful technique to enumerate elements of the lattice is based on the
depth first search order. In BFS enumeration, the storage required is proportional
to the width of the lattice whereas in DFS enumeration the storage required is
proportional to the height of the lattice. Given any poset with n elements, the
width of its lattice of normal cuts may be exponential in the size of the poset,
but the height is always less than or equal to n. Hence, the DFS enumeration
may result in exponential savings in space.

The algorithm for DFS enumeration is shown in Fig. 5. From any normal
cut, we explore all enabled events to find the normal cuts. There are at most w
enabled events and for each event it takes O(w2) time to compute the normal
cut K at line (3). Since we are not storing the enumerated elements explicitly,
we need a method to ensure that the same normal cut is not visited twice. For
example, in Fig. 1, the normal cut {a, b, d} is reachable from {a} as well as {b}.
Let pred(K) be the set of all normal cuts that are covered by K in the lattice.
We use the total order levelCompare defined in Section 5.1 on the set pred(K).
We make a recursive call on K from the normal cut G iff G is the maximum
normal cut in pred(K) in the levelCompare order. Line (4) finds the maximum
predecessor M using the traversal on the dual poset P d. The dual of a poset
P = (X,≤) is defined as follows. In the poset P d, x ≤ y iff y ≤ x in P . It is
easy to verify that S is a normal cut in P iff Su is a normal cut in P d. The
function get-Max-Predecessor, shown in Fig. 5 uses expansion of a normal cut in
the poset P d to find the maximum predecessor.

Lattice Completion Algorithms for Distributed Computations 177

Input: a finite poset P , starting state G
Output: DFS Enumeration of elements of DM-completion of P

(1) output(G);
(2) foreach event e enabled in G do
(3) K := smallest normal cut containing Q := G ∪ {e};
(4) M := get-Max-predecessor(K) ;
(5) if M = G then
(6) DFS-NormalCuts(K);

function VectorClock get-Max-predecessor(K) {
//takes K as input vector and returns its maximum predecessor normal cut

(1) H = MinimalUpperBounds(K); // H := Ku

(2) // find the maximal predecessor using normal cuts in the dual poset
(3) foreach event f enabled in the cut H in P d do
(4) tempf := H − {f}; // advance on event f in P d from cut H ;
(5) // get the set of lower bounds on tempf
(6) pred := MaximalLowerBounds(tempf) using H l;
(7) if (levelCompare(pred, maxPred) = 1) then maxPred = pred;
(8) return maxPred;

Fig. 5. Algorithm DFS-DML for BFS Enumeration of DM-Lattice

The function get-Max-predecessor works as follows. At line (1), we compute
H = Ku, which is the normal cut in P d corresponding to K. Our goal is to
compute all predecessors of K in P which corresponds to all successors of H
in P d. To find successors of H , we consider each event f enabled in H in P d.
At line (4), we compute the consistent cut tempf . The closure of tempf in P d

equals tempulf in P d. Equivalently, we can compute templuf in P . The closed set

templuf in P d corresponds to the closed set templulf in P . However, we know that

templulf is equal to templf . Therefore, by computing templf for each f enabled in

H , we get all the predecessors of K in P d. Since there can be w events enabled
in H in P d, and it takes O(w2) time to compute each predecessor, it would take
O(w3) to determine the maximum predecessor. However, since tempf and H
differ on a single event, we can compute templf using H l = K in O(w) time.
By this observation, the complexity of computing max-predecessor reduces to
O(w2), and the total time complexity to determine whether K can be inserted
is O(w2).

In line (5) of DFS-DML, we traverse K using recursive DFS call only if M
equals G. Since the complexity of step (3) and step (4) is O(w2), the overall
complexity of processing a normal cut G is O(w3) due to the foreach at line (2).
Since there are m normal cuts, we get the total time complexity of DFS-DML
algorithm as O(mw3).

The main space requirement of the DFS algorithm is the stack used for re-
cursion. Every time the recursion level is increased, the size of the normal cut
increases by at least 1. Hence, the maximum depth of the recursion is n. There-
fore, the space requirement is O(nw logn) bits because we only need to store

178 V.K. Garg

vectors of dimension w at each recursion level. Hence, the DFS algorithm takes
significantly less space than the BFS algorithm.

6 Applications of Normal Cuts in Distributed Systems

6.1 Finding the Meet and Join of Events

Suppose that there are two events x and y on different processes that correspond
to faulty behavior. It is natural to determine the largest event, z, in the compu-
tation that could have affected both x and y. The event z is simply the meet of
events x and y if it exists in the underlying computation. For example, in Fig.
2(a), suppose that the faulty events are {d, e}. In this case, the “root” cause of
faults of these events could be event a. In the vector clock representation, the
root cause is (1, 0, 0) in the DM-Lattice. Now consider the case when the set of
faulty events is {e, f}. In this case, the underlying computation does not have a
unique maximum event that affects both e and f . It can be seen in Fig. 2(a) that
both the events b and c could be the “root” cause of the events e and f . This is
exactly what we would get from the lattice of normal cuts. The largest normal
cut that is smaller than both events e with vector clock (1, 2, 1) and event f with
vector clock (0, 1, 2) equals the vector (0, 1, 1) which correctly identifies the set
of events that affect both e and f .

Dually, we may be interested in the smallest event z that happened-after a
subset of events. In a distributed system, an event z can have the knowledge
of event x only if x happened-before event z. If two events x and y happened
on different processes, the minimum event z that knows about both x and y
corresponds to their join.

6.2 Detecting Global Predicates in Distributed Systems

A global predicate on a distributed computation is a boolean function B defined
on the set of consistent cuts of the computation. If B is true on a consistent
cut G, then we denote it as B(G). The problem of detecting a global predicate
possibly : B corresponds to determining if there exists a consistent cut G in
the computation that satisfies B. The global predicate detection problem is NP-
complete [CG98] even for the restricted case when the predicate B is a singular
2CNF formula of local predicates [MG01]. The key problem is that the lattice
of consistent cuts LCGS may be exponential in the size of the poset. The lattice
of normal cuts, LDM of a poset P is a suborder of the LCGS (every normal cut
is consistent, but every consistent cut may not be normal). Its size always lies
between the size of the poset P and the size of the lattice of consistent cuts of P .
In particular, it may be exponentially smaller than LCGS. We now show that a
class of predicates can be efficiently detected by traversing the lattice of normal
cuts rather than LCGS.

The class of predicates we discuss are based on the idea of knowledge in a dis-
tributed system[HM84]. We define knowledge predicates based on the happened-
before relation. We use the notation G[i] to refer to events of G on process i.

Lattice Completion Algorithms for Distributed Computations 179

Definition 3. Given a distributed computation, or equivalently a poset (P,≤),
we say that every one knows the predicate B in the consistent cut G, if there
exists a consistent cut H such that H satisfies B and for every process i there
exists an event e in G[i] such that all events in H happened before e. Formally,
E(B,G) ≡ ∃H : B(H) ∧ ∀i∃e ∈ G[i] : ∀f ∈ H : f ≤ e.

We also define E(B) ≡ ∃G : E(B,G)

Intuitively, the above definition says that a predicate is known to everyone in
the system if every process has a consistent cut in its past in which B was true.
The definition captures the fact that in a distributed system, a process can know
about remote events only through a chain of messages.

We now show that instead of traversing LCGS we can traverse LDM to detect
E(B) for any global predicate B.

Theorem 2. Let B be any global predicate and G be a consistent cut such that
E(B,G). Then, there exists a normal cut N such that E(B,Nu).

Proof. Since everyone knows B in G, by the definition of “everyone knows”, we
get that there exists a consistent cut H ⊆ G such that B is true in H and every
process in G knows H . Let K be the set of all consistent cuts that know H . The
set is nonempty because G ∈ K. Furthermore, it is easy to show that the set K
is closed under intersection. The least element K of the set K corresponds to the
minimal elements of the filter Hu. Hence, we conclude that E(B,K).

Define N to be the consistent cut corresponding to Hul. It is clear that N is a
normal cut because it corresponds to the closure of H . Moreover, Nu = Hulu =
Hu = K. The first equality holds by the definition of N and the second equality
holds due to properties of u and l operators. Since K equals Nu, from E(B,K)
we get that E(B,Nu).

7 Conclusions and Future Work

We have proposed algorithms for the construction and enumeration of the lattice
of normal cuts of a poset of a distributed computation. We have also shown their
application to distributed computing.

It is clear that enumeration or construction of a lattice of size m in which
each element is represented using w logn bits requires Ω(mw logn) time. The
problem of finding an algorithm that matches the lower bound is open.

Acknowledgements. I am thankful to Bharath Balasubramanian for discus-
sions on the topic.

References

[AV01] Alagar, S., Venkatesan, S.: Techniques to tackle state explosion in global
predicate detection. IEEE Transactions on Software Engineering 27(8), 704–
714 (2001)

180 V.K. Garg

[CG98] Chase, C.M., Garg, V.K.: Detection of global predicates: Techniques and
their limitations. Distributed Computing 11(4), 191–201 (1998)

[CM91] Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proc.
of the Workshop on Parallel and Distributed Debugging, Santa Cruz, CA,
pp. 163–173 (May 1991)

[DP90] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge (1990)

[Fid89] Fidge, C.J.: Partial orders for parallel debugging. In: Proc. of the ACM
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,
vol. 24(1), pp. 183–194 (January 1989)

[Gan84] Ganter, B.: Two basic algorithms in concept analysis. Technical Report 831,
Techniche Hochschule, Darmstadt (1984)

[Gar03] Garg, V.K.: Enumerating global states of a distributed computation. In:
Intl Conf. on Parallel and Distributed Computing and Systems, pp. 134–139
(November 2003)

[Gar13] Garg, V.K.: Maximal antichain lattice algorithms for distributed computa-
tions. In: Proc. of Distributed Computing and Networking - 14th Interna-
tional Conference, ICDCN 2013 (January 2013)

[GK98] Ganter, B., Kuznetsov, S.O.: Stepwise Construction of the Dedekind-
MacNeille Completion. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998.
LNCS (LNAI), vol. 1453, pp. 295–302. Springer, Heidelberg (1998)

[GM01] Garg, V.K., Mittal, N.: On slicing a distributed computation. In: 21st Intnatl.
Conf. on Distributed Computing Systems, ICDCS 2001, pp. 322–329. IEEE,
Washington (2001)

[GW94] Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in dis-
tributed programs. IEEE Trans. on Parallel and Distributed Systems 5(3),
299–307 (1994)

[GW97] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations,
1st edn. Springer-Verlag New York, Inc., Secaucus (1997)

[HM84] Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. In: Kameda, T., Misra, J., Peters, J., Santoro, N. (eds.) PODC,
pp. 50–61. ACM (1984)

[JRJ94] Jourdan, G.-V., Rampon, J.-X., Jard, C.: Computing on-line the lattice of
maximal antichains of posets. Order 11, 197–210 (1994)

[Lam78] Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. of the ACM 21(7), 558–565 (1978)

[Mat89] Mattern, F.: Virtual time and global states of distributed systems. In: Proc.
of the Intl. Workshop on Parallel and Distributed Algorithms, pp. 215–226
(1989)

[MG01] Mittal, N., Garg, V.K.: On detecting global predicates in distributed compu-
tations. In: 21st Intnatl. Conf. on Distributed Computing Systems, ICDCS
2001, pp. 3–10. IEEE, Washington (2001)

[NR99] Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process.
Lett. 71(5-6), 199–204 (1999)

[NR02] Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices.
J. Exp. Theor. Artif. Intell. 14(2-3), 217–227 (2002)

[SY85] Strom, R.E., Yemeni, S.: Optimistic recovery in distributed systems. ACM
Trans. Comput. Syst. 3(3), 204–226 (1985)

Optimal Broadcast in Shared Spectrum Radio
Networks�

Mohsen Ghaffari1, Seth Gilbert2, Calvin Newport3, and Henry Tan3

1 MIT
ghaffari@mit.edu

2 National University of Singapore
seth.gilbert@comp.nus.edu.sg

3 Georgetown University
{cnewport,ztan}@cs.georgetown.edu

Abstract. This paper studies single hop broadcast in a single hop shared spec-
trum radio network. The problem requires a source to deliver a message to n re-
ceivers, where only a polynomial upper bound on n is known. The model assumes
that in each round, each device can participate on 1 out of C ≥ 1 available com-
munication channels, up to t < C of which might be disrupted, preventing com-
munication. This disruption captures the unpredictable message loss that plagues
real shared spectrum networks. The best existing solution to the problem, which
comes from the systems literature, requires O

(Ct
C−t

log n
)

rounds. Our algorithm,

by contrast, solves the problem in O
(C
C−t
� t
n
� log n

)
rounds, when C ≥ log n,

and in O
(C
C−t

log n · log log n
)

rounds, when C is smaller. It accomplishes this
improvement by deploying a self-regulating relay strategy in which receivers that
already know useful information coordinate themselves to efficiently assist the
source’s broadcast. We conclude by proving these bounds tight for most cases.

1 Introduction

Consider a wireless device, which we call the source, with a message to send to a group
of nearby devices, which we call the receivers. If this network had a dedicated com-
munication channel, the problem would be easily solved: the receivers could simply
wait on this channel for the source to broadcast its message. Unfortunately, in prac-
tice, this assumption almost never holds. Most wireless networking now takes place
in shared spectrum networks where a group of communication frequencies are shared,
in an uncoordinated manner, by multiple different networks, protocols, and unrelated
sources of interference. The 2.4 GHz band, for example, is used by 802.11, Bluetooth,
Zigbee, many different types of sensor network motes, cordless phones, baby moni-
tors, and some types of car alarm sensors. Not surprisingly, interference between these
competing devices is common [8].

The challenge faced by our source is now more pronounced. It can no longer use a
fixed channel to communicate, because that channel might be disrupted by other users
of the same spectrum. It must instead start sifting through the channels, seeking its
receivers amidst this churning sea of electromagnetic noise. This problem, which we
� This research was supported by Singapore NUS FRC grant R-252-000-443-133 and the Ford

Motor Company University Research Program.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 181–195, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 M. Ghaffari et al.

call Single-hop Shared-spectrum Broadcast (SSB), comes from the systems literature,
where it is well-studied [9–12, 16–21]. In practice, SSB algorithms are typically used
to send a session key from a master device to its slaves. This key can then be used
to configure more traditional disruption-resilient coding techniques such as frequency-
hopping spread spectrum (FHSS) or direct sequence spread spectrum (DSSS). A well-
known example of an SSB solution is the pairing protocol used by Bluetooth. (See [17]
for more on the practical motivation driving this problem.)

Results. Following the lead of past theory work on shared spectrum, we formally de-
scribe this setting using the t-disrupted network model [2–7, 13, 14], which assumes
devices have access to C ≥ 1 communication channels, with up to t < C disrupted
by outside sources of interference. In this model, in each round, each device chooses a
single channel on which to participate. The set of up to t disrupted channels is chosen
arbitrarily and can change from round to round.

The best existing SSB algorithm [20], when analyzed in this model, solves the prob-
lem in O

(Ct
C−t logn

)
rounds, with high probability (i.e., at least 1− 1/N , where N is a

known polynomial upper bound on n). In Section 3, we describe pandemic broadcast, a
pair of algorithms which solve the problem in O

(C
C−t�

t
n� logn

)
rounds, for C ≥ logn,

and in O
(C
C−t logn · log log n

)
rounds for smaller C. In the C ≥ logn setting, our solu-

tion is a factor of t faster than the existing solution when t ≤ n, and a factor of n faster
when t > n. For the small C setting, this advantage reduces only slightly to t/ log logn.
Finally, in Section 4, we prove our solutions optimal (within log logn factors) for most
relevant cases.

Because the SSB problem is drawn directly from the systems literature, our solutions
can be applied directly back to these systems, making it a good example of distributed
algorithm theory helping to improve real world wireless networks.

Intuition. The core insight driving our algorithm is that it exploits the parallelism in-
herent in having multiple available communication channels. The best existing solu-
tion [20] allows devices to only receive information from the source. In contrast, our
solutions, which we call Pandemic Broadcast Algorithms, allow devices to relay infor-
mation on behalf of the source, eventually converging on a state where there is a single
relayer per channel, on a constant fraction of the channels. In this state, the remaining
uninformed devices quickly learn new information.

The main challenge in implementing this idea is the unknown number of receivers.
If too few devices relay, then not much advantage is gained. On the other hand, if too
many devices relay, they clog the channels with collisions. The pandemic broadcast
algorithms overcome these issues with a self-regulating process, inspired by infectious
disease propagation. In more detail, the algorithms rely on two-stage infection. The
first stage aggressively infects receivers, turning them into relayers. It guarantees at
least C relayers, but may end up producing many more before it dies out. The second
stage has these relayers reduce their numbers back down to around C, allowing them to
efficiently infect the remaining receivers. This reduction relies on a pair of distributed
estimation subroutines, interesting in their own right. The first routine, which requires
at least logn channels, gains efficiency by moving estimation from the time domain to
the channel domain. In more detail, it uses logn channels to estimate the number of
relayers in a single round instead of using logn rounds to estimate the relayers using a

Optimal Broadcast in Shared Spectrum Radio Networks 183

single channel. The second routine, which works for small number of channels (and is
slightly slower), uses the source to emulate collision detection, allowing the relayers to
run an efficient estimation routine on a single (changing) channel.

Related Work. The SSB problem was introduced in [19], which described an algorithm
that delivers k ≥ 1 messages in O

(C2
C−tk logn

)
rounds.1 In [18, 20], erasure coding on

the packets, and more clever use of the channels when t was small, improved the re-
sult to O

(Ct
C−t (logn + k)

)
rounds. In this paper, we focus on the case where k = 1,

yieldingO
(Ct
C−t logn

)
as the most relevant comparable result. It was recently suggested

in [21] that relaying could be used to speed up SSB. However, the algorithms presented
in [21] make strong assumptions. The algorithm described here uses the general idea of
relaying from [21], but differs in essentially all other details. Concurrent to the series
of systems papers cited above, another series looked at solving SSB using uncoordi-
nated spread spectrum coding techniques [9–12,16]. This approach is less immediately
applicable as it requires modifications to the radio.

On the theory side, the shared spectrum model we use to study the SSB problem,
sometimes called the t-disrupted model, has been previously used to study all-to-all
gossip [5–7], pairwise node discovery [13], leader election [2, 3], and multihop broad-
cast (with collision detection) [4]. In [14], it was shown how to simulate a reliable
channel in this shared spectrum setting, simplifying the development and analysis of
reliable algorithms (though often at the cost of added time complexity). We underscore
that the t-disrupted model does a good job of describing real shared spectrum networks
by noting that it is cited in some of the systems SSB papers [19, 20].

The broadcast problem is well-studied in the the classical wireless model where de-
vices shares a single dedicated undisrupted channel. The seminal result of Bar-Yehuda
et al. [1], for example, solves broadcast in O((D + log n) logn) for a multihop net-
work of D hops, which is (near) optimal. The single hop broadcast problem, however,
is trivially solved in this undisrupted setting, as the distinguished source can broadcast
without disruption or contention. In our shared spectrum model, the broadcast algo-
rithm of [4] can be adapted to solve our problem in O

(C
C−t t logn log (n/t)

)
rounds,

assuming collision detectors and sufficiently large C. This solution, even though it uses
collision detectors (which our algorithms do not), is still a factor of t slower than ours
under comparable conditions.

2 Model and Problem

We model a single hop synchronous wireless network consisting of C ≥ 1 communi-
cation channels and n ≥ 2 devices. We assume each device runs the same randomized
algorithm, and we refer to each individual device executing this algorithm as a pro-
cess. All processes start an execution together in round 1. In each round, each process
i chooses a single channel c ∈ {1, ..., C} on which to participate. Concurrently, an
abstract interference adversary chooses up to t, 1 ≤ t < C, channels to disrupt.

1 The existing SSB papers cited here are from the systems literature and therefore do not analyze
the time complexity of their algorithms asymptotically, in the way that is standard for the the-
ory literature. We calculated the time complexities shown here based on how their algorithms
would perform in our formal model with our parameters.

184 M. Ghaffari et al.

We model this adversary as an arbitrary randomized algorithm that receives no inputs
during an execution. Therefore, its disruption strategy can be based on the algorithm
executed by the processes (if, for example, processes hard-code a frequency hopping
pattern in their definition, the adversary can disrupt that pattern). On the other hand, it
cannot base its disruption on the random bits used by processes during the execution or
the content of messages sent. This captures the reality of disruption in shared spectrum
networks which tends to fall somewhere between random and malicious.2

A process i participating on channel c during round r receives a message m if and
only if: (1) c is not disrupted in r; and (2) only one process broadcasts on c during
r, and it broadcasts m (i.e., concurrent broadcasts on a channel leads to collision). To
make our upper bound as strong as possible, we assume processes cannot distinguish
collisions, disruption, and silence. We assume that processes know t and a polynomial
upper bound on n, denoted N , but not n itself.

Formally, the SSB problem assumes a single source with a message to send to the
remaining processes, which we call receivers. We say an algorithm solves the SSB
problem in f(n, C, t) rounds if it guarantees that the source delivers the message to all
receivers in f(n, C, t) rounds, with high probability, i.e., probability at least 1− 1/n.

3 Upper Bounds

In this section, we describe and analyze a pair of SSB algorithms, called pandemic
broadcast algorithm 1 (PBA1) and pandemic broadcast algorithm 2 (PBA2). We use
PBA1 when C ≥ logN and PBA2 when C < logN , where N is the aforementioned
polynomial upper bound on n. In most real shared spectrum networks, C will be typi-
cally larger than logN , as such PBA2 is presented mainly for completeness.3 We begin,
in Section 3.1, by describing these algorithms for the case where t ≤ 0.05× C, which
we call the low-disruption regime. Later, in Section 3.2, we show how to simulate these
protocols, with an overhead factor of C

C−t , for the case where t > 0.05× C, which we
call the high-disruption regime.

3.1 Low-Disruption Regime

We begin by studying the case where no more than a constant fraction of the channels
can be disrupted concurrently. That is, in this section we assume t ≤ 0.05 × C. It
follows from this assumption that C ≥ 20t. Our algorithms only need the first 20t
channels so we assume without loss of generality that C = 20t. (Notice, there is nothing
special about the constant 0.05—or the other constants used in our upper bounds. We
fix specific values only to gain concreteness in the analyses that follow.)

2 For example, imagine your network is running a MAC protocol with a hard-coded frequency
hopping pattern. If an unrelated network nearby happens to run the same MAC protocol, it
will end up generating highly-correlated interference. This is more damaging than random
interference, but at the same time is not literally malicious.

3 For example, Bluetooth divides the 2.4 GHz shared spectrum network into 79 channels. Un-
less N is an exceptionally large overestimate, we can assume that C ≥ logN for such a
configuration.

Optimal Broadcast in Shared Spectrum Radio Networks 185

Algorithm 1. One phase of Pandemic Broadcast Algorithm Prototype, run @ process u

� odd rounds
1: select a channel uniformly at random, out of the first 20t channels.
2: if u ==source then
3: BROADCAST(m)
4: else
5: LISTEN

6: if received m then broadcasteru ← true

� even rounds
7: select a channel uniformly at random, out of the first 20t channels.
8: if broadcasteru then
9: with probability 0.2 do BROADCAST(m), otherwise LISTEN

10: else
11: LISTEN

12: if received m then broadcasteru ← true

To aid intuition, we begin by explaining a simplified SSB algorithm that we call
the pandemic broadcast prototype (PBP). This protocol assumes that C ≥ n/2 (a strong
assumption). We present it for the sake of exposition, as this strong assumption removes
several difficulties faced by the more general setting. Once we explain this algorithm we
move on to describing and analyzing our main upper bound results, PBA1 and PBA2,
which we present as generalizations of the prototype. As mentioned, we will generalize
these algorithms to work for more disruption (i.e., larger t) in Section 3.2.

Pandemic Broadcast Prototype. The PBP algorithm (detailed in Algorithm 1), works
as follows. In each round, each process is either a broadcaster or a receiver. Initially,
the source is the only broadcaster, but as processes receive the message from a broad-
caster, they too become broadcasters. The algorithm divides rounds into phases, each
consisting of two rounds. In all rounds, all processes choose their channels with uni-
form independent randomness, out of the first 20t channels. In the first round of a phase,
only the source broadcasts. In the second round of a phase, each broadcaster decides to
broadcast with independent probability 0.2. We prove the following:

Theorem 1. If t ≤ 0.05 × C and n
2 ≤ C, then the pandemic broadcast prototype

algorithm solves the SSB problem in O
(
t
n logn

)
rounds.

Proof. We consider the execution in three stages. For the first stage, we focus on the first
round of the phase, in which only the source broadcasts. As long as at least n

2 processes
remain as receivers, the probability, pr, that at least 1 receiver chooses the same channel
as the source is bounded as: 1− (1− 1

C)
n/2 ≥ 1− e−n/2C . Given that n

2 ≤ C, we have
n
C ≤ 2. It follows that the above probability is at least n

4C . Now, the channel chosen
by source is disrupted with probability at most t

C = 1
20 . Therefore, in each odd round,

with probability at least n
5C , at least one receiver receives the message from the source.

Hence, using a Chernoff bound, we get that after O(Cn logn) = O(t
n logn) rounds,

number of the broadcasters is Ω(log n).
For the second stage, we focus on the even rounds. For this, we prove that as long

as number of broadcasters is less than n/2, in every Θ(t
n) rounds, the number of the

broadcasters doubles with high probability. This, proves that after O(t
n logn) rounds,

the number of broadcasters is at least n
2 . To this end, consider an arbitrary even round

186 M. Ghaffari et al.

r and suppose that the set of broadcasters at this round is Br. For this round, we call
a channel active if at least one broadcaster selects it. We first show that, with high
probability, the number of active channels is at least |Br|

4 .

For each channel j, the probability that channel j is active is pjactive = 1 − (1 −
1
C)
|Br| ≥ 1 − e−

|Br |
C . Since |Br|

C ≤ n
C ≤ 2, we get that pjactive ≥

|B|
3C . Hence, overall,

the expected number of active channels is at least |Br|
3 . Moreover, note that for any

two channels j1 and j2, the two events of respectively j1 or j2 being active are nega-
tively correlated. This is because, for instance, given that j1 is not active, the number
of broadcaster distributed over other channels goes up which means that the probability
that j2 is active increases. One can easily generalize this argument and see that for any
subset S of channels, the probability of the event that all the channels in S are active
together is at most equal to the product of the probabilities of each of the channels in
S being active. Hence, because of this generalized form of negative-correlation, Cher-
noff bound holds in this case [15]. Therefore, since |Br| = Θ(log n), we can use the
Chernoff bound and infer that, with high probability, at least |Br|

4 channels are active.
Next, let us call a channel promising if it is active and the number of broadcasters

which chose it is at most 5. Using a simple pigeon-hole principle, we get that at most
|Br|
5 active channels have more than 4 broadcasters. Thus, at least |Br |

20 channels are
promising, with high probability.

Now we say a channel is good if (a) exactly one broadcaster transmits on it, (b) it
is not disrupted, (c) it has at least one receiver process listening to it. For a promising
channel j that has bj ∈ [1, 5] broadcasters on it, we have: First, the probability that (a)
holds, is at least 1

5 (1 −
1
5)

4 > 0.08. Second, the probability that (b) holds is at least
C−t
t ≥ 0.95. Finally, the probability that (c) holds is at least 1 − (1 − 1

C)
n−|Br| ≥

1 − e−
n−|Br|

C ≥ 1 − e−
n/2
C ≥ n

4C . Thus, we conclude that every promising channel
is good with probability at least Ω(nC). Moreover, we again have the generalized form
of negative correlation. For instance, for two promising channels j1 and j2, the events
of them being good are negatively correlated. This is because, for example if j1 is not
good, then we know that it lacks at least one of properties (a) to (c). But for j2, (a) holds
with probability at least 0.1, independent of what happens on j1, and also j1 lacking (b)
or (c) just makes j2 more likely to have (b) or (c), respectively.

Since there are at least |Br|
20 promising channels in round r, we get that, in round r,

the expected number of good channels is at least Θ(n|Br |
C). Similarly, since the num-

ber of broadcasters is non-decreasing, we see that in the Θ(Cn) = Θ(t
n) even rounds

starting with round r, the expected number of good channels is at least 2|Br|. Using a
Chernoff bound again, which holds because of the aforementioned generalized version
of negative correlation, and since |Br| = Ω(log n), we get that after Θ(t

n) rounds, at
least |Br| new broadcasters are recruited, with high probability. In other words, with
high probability, the number of broadcasters at least doubles in every Θ(t

n) rounds.
This completes the proof of the second stage.

Thus far, we have settled the cases of stages 1 and 2 and we know that afterO(t
n logn)

rounds, the number of broadcasters is at least n
2 . For the third stage, consider an arbi-

trary process v that remains a receiver by the end of second stage. We show that in
O(t

n logn) rounds after the second stage, v gets the message m with high probability.

Optimal Broadcast in Shared Spectrum Radio Networks 187

For this, similar to above we see that in each even round of third stage, at least n
40

channels are promising. Now in each such round, v chooses a channel at random. Thus
the probability that this channel is (i) promising, (ii) has exactly one broadcaster, and
(iii) is not disrupted is at least n/40

C × 1
5 (1 −

1
5)

4 × C−tC = Θ(nC) = Θ(nt). Thus, in
O(t

n logn) even rounds, v has received the message m with high probability. Hence,
by a union bound, by that time all the nodes have received it with high probability.

Generalizing the Prototype. We begin by asking what happens when we run PBP
for C < n/2. The first stage from our analysis still works, and in O(log n) rounds,
we recruit Ω(log n) receivers. In the second stage, however, the doubling process stops
when the number of broadcasters passes C, at which point they might start causing
collisions, slowing down future recruitment. This creates problems as now, in the third
stage of the analysis, the proof breaks down due to this contention.

To solve this problem, it would be sufficient to provide the broadcasters an estimate
B̃ of |B|, as they could then reduce their broadcast probability to minimize collisions,
regardless of their numbers (i.e., reducing down to around C broadcasters is optimal, as
this allows a constant number per channel). An easy way to determine B̃ is to try logn
exponentially growing guesses, one of which would be close to the actual size of B.
This approach, however, has a slow-down factor of Θ(log n), resulting in a Θ(log2 n)
factor in the time complexity—which is too slow.

To avoid this overhead we need more efficient estimation routines. In the next two
sections, we present two algorithms that generalize PBP by implementing efficient
broadcaster estimation routines: PBA1 and PBA2. The PBA1 algorithm assumes C >
logn and leverages this channel diversity to gain efficiency. The PBA2 algorithm, by
contrast, has fewer channels to work with. It leverages the presence of a distinguished
source (which breaks symmetry in an important way) to achieve an estimation that is
slower than PBA1, but still faster than the logn overhead of our simple suggestion from
above.

Pandemic Broadcast Algorithm 1. As mentioned, the PBA1 algorithm, detailed in Al-
gorithm 2, can be understood as a generalization of PBP. In more detail, we now in-
crease the size of a phase to include the following 5 rounds: The first two rounds are the
same as in PBP. In the next two rounds, broadcasters find an estimate of |B| that is in
[|B|4 , 4|B|], with at least a nonzero constant probability (described below). We are able
to accomplish this in only 2 rounds by moving guesses from logn consecutive rounds
to logn channels during the same round. In the final round, broadcasters sub-sample
themselves using this estimate and then, similar to the second round, broadcast in uni-
formly chosen channels. We show that O(� t

n� logn) phases are enough for delivering
the message to every process, yielding the total complexity of O(� t

n� logn) rounds.
The core novelty of PBA1, therefore, is the 2-round estimation subroutine. This rou-

tine consists of a test and a report segment. In the test segment, each broadcaster v
chooses one of the channels using an exponential probability distribution. Then broad-
caster v, having picked channel f , decides to transmit or listen with probability 0.5. In
this test segment, any broadcaster that listens to a channel f and receives a message on
that channel, estimates |B| to be 2f+1. In the report segment, all broadcasters choose

188 M. Ghaffari et al.

Algorithm 2. Pandemic Broadcast Algorithm 1, run @ broadcaster process u

1: for phase = 1 to Θ(log n) do

2: select a channel uniformly at random, out of the first 20t channels. � source’s broadcast round
3: if u ==source then
4: BROADCAST(m)
5: else
6: LISTEN

7: if received m then broadcasteru ← true

8: select a channel uniformly at random, out of the first 20t channels. � simple relaying round
9: if broadcasteru then

10: with probability 0.2 do BROADCAST(m), otherwise LISTEN

11: else
12: LISTEN

13: if received m then broadcasteru ← true

14: if broadcasteru then
15: est ← C; estimationFlag ← false � test segment of estimation
16: select random channel f (of source) from an exponential probability distribution
17: with probability 0.5 do BROADCAST(m) , otherwise LISTEN

18: if received message m then
19: est ← 2f+1; estimationFlag ← true

20: select channel 1 (of source). � report segment of estimation
21: if estimationFlag then
22: with probability 0.05 do BROADCAST(est), otherwise LISTEN

23: else
24: LISTEN

25: else � for receivers to keep them in synch with broadcasters
26: select a channel uniformly at random, out of the first 20t channels.
27: LISTEN

28: LISTEN

29: select a channel uniformly at random, out of the first 20t channels. � final relaying round
30: if broadcasteru then
31: with probability min { C

est , 0.2} do BROADCAST(m), otherwise LISTEN

32: else
33: LISTEN

34: if received m then broadcasteru ← true

the same channel, and every broadcaster that made an estimate in the previous segment
broadcasts their estimate. Any broadcaster that receives such an estimate adopts it as
their est of |B|. If a broadcaster learns no estimate, it uses the default value of C.

Intuitively, if |B| = 2f+1, then we expect a constant number of processes to choose
f , leading to a constant probability of a single process broadcasting and a small number
receiving its messages. Because the channel selection probabilities grow exponentially,
we can show that the probability that the same happens on other frequencies, sums to a
constant. Therefore, with a constant probability, we have a single process reporting an
estimate, and the estimate is correct.

A wrinkle here is that the adversary might choose to consistently jam the channel cor-
responding to the right estimate, or it might jam the reporting channel. To avoid this, we
recall that only broadcasters participate in this estimate. Therefore, all participants have
received a message from the source. We assume this message can contain sufficiently
many bits (or a seed to a pseudo-random number generator) so that in each round of the
estimation routine, the broadcasters can shift the channels (circular-shift) by a random

Optimal Broadcast in Shared Spectrum Radio Networks 189

amount, unknown to the adversary. In the pseudo-code of Algorithm 2, in the estimation
rounds, broadcasters choose their channels using the random shift provided by source
in the initial message. 4 Therefore, the probability that these key channels are disrupted
is the same as that of a random channel being disrupted. Formally, we prove:

Theorem 2. If t ≤ 0.05× C, and logn ≤ C, then the pandemic broadcast algorithm 1
solves the SSB problem O(� t

n� · logn) rounds.

Proof (Proof Outline). The analysis of the case where C ≥ n
2 is as done in Theorem 1,

by focusing only on the first two rounds of each phase, and noticing that in that case,
each phase has only 5 rounds. For this case, we proved time complexity of O(t

n · log n)
rounds in Theorem 1. On the other hand, for the case where C ∈ [logn, n

2], we show
that in O(log n) rounds, the message is delivered to every node. For this, we prove the
lemmas 1, 2, and 3. Please see the full paper for the proofs. We remark that, the main
change, where the effect of estimation part comes in, is studied in Lemma 3.

Lemma 1. If t ≤ 0.05 × C and C ∈ [logn, n
2], after O(log n) phases of PBA1, the

number of broadcasters is at least Θ(log n).

Lemma 2. If t ≤ 0.05 × C and C ∈ [logn, n
2], after O(log n) phases of PBA1, the

number of broadcasters is at least C.

Lemma 3. If t ≤ 0.05 × C and C ∈ [log n, n2], after O(log n) phases of PBA1, all
receivers receive the message m, with high probability.

Pandemic Broadcast Algorithm 2. If C ≤ logn, we no longer can assume that we
have at least logn channels and this prevents us from running the 2-round estimation
routine of PBA1. In this case, we use Pandemic Broadcast Algorithm 2 (PBA2). This
algorithm is divided into three explicit parts. In the first part, we grow the number of
broadcasters to at least C, in Θ(log n) rounds, using the PBP strategy. We then stop the
recruitment and move on to the second part, where we run a new estimation subroutine
that estimates the number of recruited broadcasters to within a factor of 2, with high
probability, in O(log n · log logn) rounds (detailed below). In the final part, we use
this estimate to sub-sample the broadcasters, by having each broadcaster now broadcast
with probabilitymin{ Cest , 0.2}. This part runs for Θ(log n) rounds, by the end of which
the remaining processes have all received the message with high probability. Formally,
this gives us the following:

Theorem 3. If t ≤ 0.05 × C and C ≤ n
2 , then the pandemic broadcast algorithm 2

solves the SSB problem in O(log n · log logn) rounds.

Returning to the algorithm details, notice that the first part of PBA2 is the same as
running Θ(log n) phases of PBP, and thus its correctness follows from Lemmas 1 and
2. Similarly, the third part is similar to running PBP with the addition that in the second

4 Because O(log n) rounds are sufficient to solve the problem, this would require O(log n log t)
total bits, which could fit under the standard assumption of messages holding a polylogarthmic
number of bits.

190 M. Ghaffari et al.

round of each phase, broadcasters decide to transmit with probability min{ Cest , 0.2},
where est is the estimate of |B| to within a factor of 2. An argument similar to that given
in proof of Lemma 3 establishes that Θ(log n) rounds are sufficient for all remaining
receivers to become broadcasters. Therefore, we are left to describe and analyze the
estimation part of the algorithm—which is where we turn our attention next.

Estimation Part of PBA2: We change the role of some broadcasters to mirrors us-
ing the following rule: the processes which received the message in the first Θ(log n)
rounds of part 1 become mirrors while the other processes which received the message
remain broadcasters 5. The constants in the asymptotic notations are selected such that,
with high probability, at least one mirror exists and there are at least C2 broadcasters.
The core idea is to estimate the number of broadcasters using the help of mirrors.

Theorem 4. If t ≤ 0.05×C and C ≤ n
2 , and there is at least one mirror, then Estimation

Algorithm (presented in Algorithm 4) produces a 2-approximation for the number of
broadcasters, with high probability and in O(log n · log logn) rounds.

In the Estimation Algorithm, our basic tool is a simple probabilistic comparison method
called ApproxCompare, which compares the number of broadcasters with a given thresh-
old X and outputs a response in form ‘larger’ or ‘smaller’. We say that the output is
correct in case it is ‘larger’ if the number of broadcasters is greater than 1.4X , and in
case it is ‘smaller’ if if the number of broadcasters is less than X/1.4. On the other
hand, if the number of broadcaster nodes is in [X/1.4, 1.4X], we do not expect any
guarantee from the output. Next, we explain this comparison method and show that its
output is correct with high probability. But before that, let us finish the story of the
estimation algorithm considering a black-box algorithm ApproxCompare. To get a 2-
estimation, it is enough to compare the number of broadcasters with thresholds 2i for
i ∈ [logN], using ApproxCompare. Moreover, we can use a binary search over these
thresholds, to speed up this process. The pseudo-code presented in Algorithm 4 realizes
this idea, with some special care about anomalies possible due to incomplete guaran-
tee of the aforementioned definition of correct output. The related correctness and the
time-complexity are studied in the proof of Theorem 4.

ApproxCompare Algorithm: As presented in Algorithm 3, ApproxCompare proce-
dure is comprised of 200 logn phases. Throughout these phases, both mirrors and
broadcasters always work on channel 1 (of the source). Each broadcaster has a vari-
able counter initially set to zero. In each phase, there are two rounds, namely a test
round and a report round. In the test round, the source transmits message m; also each
broadcaster transmits message m with probability pX = 1− 2−1/X and remains silent
otherwise. In this round, mirrors only listen. Then, in the report round, the source again
transmits message m. However this time, each mirror that did not receive a message
transmits and broadcasters all listen. Each broadcaster that does not receive a message
in the report round increments its counter. After all phases are finished, each broadcaster
outputs ‘larger’ if its counter is more than half of the number of phases, i.e., if it did not
receive anything back in the majority of report rounds. Otherwise, it outputs ‘smaller’.

5 This change remains in effect for the third part as well.

Optimal Broadcast in Shared Spectrum Radio Networks 191

Algorithm 3. ApproxCompare(X) — at process u

1: counter ← 0
2: for i:=1 to 200 logn do � Θ(logn) phases

3: if u == source then � Test Round
4: BROADCAST(m) on randomly shifted channel 1
5: else if broadcasteru then
6: with probability pX = 1− 2−1/X do
7: BROADCAST(m) on channel 1 (of source)
8: otherwise
9: LISTEN to channel 1 (of source)

10: else if mirroru then
11: LISTEN

12: if u == source then � Report Round
13: BROADCAST(m) on a randomly shifted channel 1
14: else if mirroru then
15: if received a message in test round then
16: BROADCAST(m) on channel 1 (of source)
17: else
18: LISTEN to channel 1 (of source)
19: else if broadcasteru then
20: LISTEN

21: if did not received a message then counter ← counter + 1

22: if counter ≥ 100 logn then
23: return ‘larger’
24: else
25: return ‘smaller’

Algorithm 4. Estimation Algorithm

1: upperLog ← logN
2: lowerLog← 0
3: while upperLog − lowerLog > 1 do

4: midLog = � lowerLog+upperLog
2

5: res1 ← ApproxCompare(2midLog−1)
6: res2 ← ApproxCompare(2midLog)
7: res3 ← ApproxCompare(2midLog+1)

8: switch (res1 , res2 , res3) do
9: case (*, ‘smaller’, ‘smaller’)

10: upperLog ← midLog

11: case (‘larger’, ‘larger’, *)
12: lowerLog ← midLog

13: case (‘smaller’, *, ‘larger’)
14: return 2midLog

15: default case:
16: return 2midLog

17: return 2lowerLog

192 M. Ghaffari et al.

Lemma 4. If t ≤ 0.05× C and C ≤ n
2 , and there is at least one mirror, then each call

to ApproxCompare procedure gives a correct response with high probability.

Proof. If the number of broadcasters is greater than or equal to 1.4X , then in the test
round of each phase, the probability that at least one broadcaster transmits is 1 − (1 −
pX)|B| ≥ 1 − (1 − pX)2X = 1 − 2−1.4 > 0.62. If in the test round of a given phase,
at least one broadcaster transmits, then the transmission of these broadcasters collides
with the transmission of the source and thus, mirrors receive no messages. Hence, in
the report round of that phase, mirrors all transmit and therefore, once again due to col-
lision with the source’s transmission, broadcasters receive no messages. In such a case,
broadcasters increment their counter. Hence, we get that if the number of broadcasters
is greater than or equal to 1.4X , in each test, the counter of each broadcaster is incre-
mented with probability at least 0.62. Using Hoeffding’s inequality, we can infer that
after 200 logn phases, with high probability, the counter of each broadcaster is greater
than 100 logn and therefore, response of the approximate comparison is ‘larger’.

On the other hand, if the number of broadcasters is less than or equal to X/1.4, then
in the test round of each phase, the probability that no broadcaster transmits is (1 −
pX)|B| ≥ (1 − pX)X/(2) = 2−1/1.4 > 0.60. If in the test round of a given phase, no
broadcaster transmits, then in that round, the mirrors receive the transmission of the
source with probability at least C−tC ≥ 0.95. In that case, in the report round, no mirrors
transmits and therefore, broadcasters receive the transmission of the source again with
probability at least C−tC ≥ 0.95. If all of these events happen, broadcasters do not incre-
ment their counter. Hence, we get that if the number of broadcasters is less than or equal
to X/1.4, in each test, the probability that counter of each broadcaster is incremented
is at most 1 − 0.6 × 0.95 × 0.95 < 0.45. Using Hoeffding’s inequality, we can infer
that after 200 logn phases, with high probability, the counter of each broadcaster is less
than 100 logn and therefore, response of the approximate comparison is ‘smaller’.

Proof (Proof of Theorem 4). First, for the time-complexity analysis, notice that there are
logn comparison thresholds and therefore, the binary search over these threshold values
as presented in Algorithm 4 requires just O(log logn) comparisons. Since each com-
parison takes Θ(log n) rounds, the total time complexity becomes Θ(log n · log logn).

Now, we analyse the correctness. Consider an arbitrary turn of the while loop in Al-
gorithm 4. We make three calls to ApproxCompare to take into account the fact that
when the number of broadcasters is within a 1.4 factor of the comparison threshold,
we do not get any guarantee from Lemma 4. Since 1.42 < 2, at most only one of the
three thresholds 2midLog−1, 2midLog, 2midLog+1 is within 1.4 factor of the number
of broadcasters. Thus, noting Lemma 4, we know that with high probability, the out-
put of at most one of the three calls to ApproxCompare in this turn is not true. The
case is clear if all the three responses are true. If only the response of the comparison
to 2midLog−1 is not true, then we know that the number of broadcasters is within a
1.4 factor of 2midLog−1 and thus, less than 2midLog. In this case, we get a response
of ‘smaller’ from the other two comparisons and therefore, following case presented in
line 9 of Algorithm 4, the binary search moves in the correct direction. Similarly, if only
the response of the comparison to 2midLog+1 is not true, then we know that the num-
ber of broadcasters is within a 1.4 factor of 2midLog+1 and thus, greater than 2midLog.

Optimal Broadcast in Shared Spectrum Radio Networks 193

In this case, we get response of ‘larger’ from the other two comparisons and therefore,
following case presented in line 11 of Algorithm 4, the binary search moves in the cor-
rect direction. In the last case, if the response to the comparison to 2midLog is not true,
then the number of broadcasters is within a 1.4 factor of 2midLog. In this case, Algo-
rithm 4 returns 2midLog as the final estimation, which is clearly a 2-factor estimation.
Finally, we know from Lemma 4 that with high probability, no other case happens.

3.2 High-Disruption Regime

In Section 3.1, we presented the PBA1 and PBA2 algorithms, which work when t is not
too large compared to C. Here we generalize for any t < C.

Our approach is to use Θ
(C
C−t
)

rounds to simulate one abstract round of PBA1 or

PBA2 (in particular, 3C
C−t rounds will prove sufficient). To simulate abstract round r of

one of these low-disruption algorithms, we first let broadcasters choose their channel,
and whether or not they broadcast, according to logic of the respective algorithm. They
then use these same fixed choices for the Θ

(C
C−t
)

simulation rounds that follow. In each
of these simulation rounds, these broadcasters permute their channels using the com-
mon random bits from the source message. Therefore, all broadcasters that choose the
same channel, will be on the same channel for all Θ

(C
C−t
)

rounds, but this channel will
randomly change from round to round. The receivers can continue to choose random
channels on which to receive, throughout this period.

We now prove that this simulation strategy allows PBA1 and PBA2 to work in the
high-disruption setting at the cost of slow down factor C

C−t .

Theorem 5. The pandemic broadcast algorithm 2, augmented with the simulation strat-
egy, solves the SSB problem in O(CC−t logn · log logn}) rounds, for C ≤ logn and
t < C; the pandemic broadcast algorithm 1, augemented with the simulation strategy,
solves the SSB problem in O(CC−t�

t
n� logn) rounds, for logn ≤ C and 1 ≤ t < C.

Proof. Consider abstract round r of one of these SSB algorithms augmented with the
simulation strategy. We fix the broadcasters channel and broadcast choices at the be-
ginning of this abstract round, and stick with these choices for the simulation rounds
that follow. Assume that these fixed choices include a channel c with either less than
or more than 1 broadcaster. In the low-disruption setting, no process would receive a
message on c. Notice that the same holds here for the Θ

(C
C−t
)

channels mapped to c
throughout the simulation rounds.

Now assume that these fixed choices include a channel c with exactly one broad-
caster. It follows that in our simulation of this abstract round, there will be at least one
simulation round where the channel mapped to c is undisrupted, with constant proba-
bility. This follows because in each such round, c is disrupted with probability at most
t
C . Therefore we experience at least one undisrupted simulation round with probability

at least 1− (t
C)

C
3C−t = 1− (1 − C−tC)

3C
C−t ≥ 1− 1

e3 > 0.95.
We are, therefore, in effect simulating our low-disruption algorithms in a new type

of network model where the adversary disrupts each channel with some independent
disruption probability of no more than 0.05. Though PBA1 and PBA2 were originally

194 M. Ghaffari et al.

analyzed in a model with an arbitrary adversary that jams up to t ≤ 0.05 × C chan-
nels, it is easy to verify that the same arguments work in the more well-behaved model
simulated here, in which we fix the interference adversary to choose its t ≤ 0.05 × C
channels randomly. Therefore, the same correctness holds under the same conditions,
in exchange for the slow down factor of Θ

(C
C−t
)

caused by the simulation rounds.

4 Lower Bounds

We now present our lower bounds. For the case where t = O(n), we can prove our so-
lution optimal (within log logn factors). This bound focuses on showing that it takes a
while for the source to choose a non-disrupted channel (clearly, broadcast cannot com-
plete before the source lands on a non-disrupted channel for the first time). For larger
t, the task gets more difficult. In this case, the � t

n� term in our time complexity be-
comes relevant. Proving this term necessary requires that we bound the behavior of the
receivers—a difficult task because they can potentially coordinate in advance of receiv-
ing the source message, creating dependencies that thwart straightforward lower bound
arguments. Below, we present the lower bound for this difficult case under the assump-
tions that we are in the low disruption regime and using regular algorithms [2, 3]: An
SSB algorithm is called regular if for each process u, there exists a probability distri-
bution πu over the channels, i.e., πu : {1, 2, . . . , C} → [0, 1], such that the following
holds: as long as u has not received the message, in each round r, process u does not
transmit and moreover, it selects the channel to which it listens to using the distribu-
tion πu. Once u receives the message, its behavior is no longer restricted. Note that all
our algorithms satisfy this regularity assumption. It is unclear whether it is the upper
or lower bound that would improve in the absence of these properties. We leave that
question as interesting future work. Please see the full paper for the proof.

Theorem 6. Every solution to the SSB problem requires Ω
(C
C−t logn

)
rounds. In the

low disruption regime, every regular algorithm for the SSB problem also requires
Ω
(C
C−t�

t
n� logn

)
rounds.

References

1. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop
radio networks: An exponential gap between determinism and randomization. Journal of
Computer and System Sciences 45(1), 104–126 (1992)

2. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader Election in Shared Spectrum Radio Net-
works. In: Proceedings of the International Symposium on Principles of Distributed Comput-
ing (2012)

3. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The wireless synchronization
problem. In: Proc. 28th Symp. on Principles of Distributed Computing, PODC, pp. 190–199
(2009)

4. Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging Channel Diversity to Gain
Efficiency and Robustness for Wireless Broadcast. In: Peleg, D. (ed.) DISC 2011. LNCS,
vol. 6950, pp. 252–267. Springer, Heidelberg (2011)

Optimal Broadcast in Shared Spectrum Radio Networks 195

5. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-channel Radio Net-
work: An Oblivious Approach to Coping with Malicious Interference (Extended Abstract).
In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)

6. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure Communication Over Radio Chan-
nels. In: Proceedings of the International Symposium on Principles of Distributed Computing
(2008)

7. Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-Resilient Information
Exchange. In: The Proceedings of the Conference on Computer Communication (2009)

8. Gummadi, R., Wetherall, D., Greenstein, B., Seshan, S.: Understanding and Mitigating the
Impact of RF Interference on 802.11 Networks. In: Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, SIGCOMM, pp. 385–396
(2007)

9. Jin, T., Noubir, G., Thapa, B.: Zero Pre-Shared Secret Key Establishment in the Presence of
Jammers. In: Proceedings of the International Symposium on Mobile Ad Hoc Networking
and Computing (2009)

10. Liu, A., Ning, P., Dai, H., Liu, Y.: USD-FH: Jamming-Resistant Wireless Communication
using Frequency Hopping with Uncoordinated Seed Disclosure. In: Proceedings of the IEEE
International Conference on Mobile Ad Hoc and Sensor Systems (2010)

11. Liu, A., Ning, P., Dai, H., Liu, Y., Wang, C.: Defending DSSS-Based Broadcast Communi-
cation Against Insider Jammers via Delayed Seed-Disclosure. In: Proceedings of the IEEE
Annual Computer Security Applications Conference (2010)

12. Liu, Y., Ning, P., Dai, H., Liu, A.: Randomized Differential DSSS: Jamming-Resistant Wire-
less Broadcast Communication. In: The Proceedings of the Conference on Computer Com-
munication (2010)

13. Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed Dating Despite Jammers.
In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS,
vol. 5516, pp. 1–14. Springer, Heidelberg (2009)

14. Newport, C.: Distributed Computation on Unreliable Radio Channels. Ph.D. thesis. MIT
(2009)

15. Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the
chernoff–hoeffding bounds. SIAM J. Comput. 26(2), 350–368 (1997),
http://dx.doi.org/10.1137/S0097539793250767

16. Pöpper, C., Strasser, M., Čapkun, S.: Jamming-Resistant Broadcast Communication without
Shared Keys. In: Proceedings of the USENIX Security Symposium (2009)

17. Popper, C., Strasser, M., Čapkun, S.: Anti-Jamming Broadcast Communication using Unco-
ordinated Spread Spectrum Techniques. IEEE Journal on Selected Areas in Communications
28(5), 703–715 (2010)

18. Slater, D., Tague, P., Poovendran, R., Matt, B.: A Coding-Theoretic Approach for Efficient
Message Verification over Insecure Channels. In: Proceedings of the ACM Conference on
Wireless Network Security (2009)

19. Strasser, M., Capkun, S., Popper, C., Čagalj, M.: Jamming-Resistant Key Establishment us-
ing Uncoordinated Frequency Hopping. In: IEEE Symposium on Security and Privacy (2008)

20. Strasser, M., Pöpper, C., Čapkun, S.: Efficient Uncoordinated FHSS Anti-Jamming Commu-
nication. In: Proceedings of the International Symposium on Mobile Ad Hoc Networking
and Computing (2009)

21. Xiao, L., Dai, H., Ning, P.: Jamming-Resistant Collaborative Broadcast Using Uncoordinated
Frequency Hopping. IEEE Transactions on Forensics and Security 7(1), 297–309 (2012)

http://dx.doi.org/10.1137/S0097539793250767

Attack-Resilient Multitree Data Distribution

Topologies

Sascha Grau	

Technische Universität Ilmenau, Germany
sascha.grau@tu-ilmenau.de

Abstract. We consider a scenario of information broadcast where a
source node distributes data in parallel over a fixed number of trees
spanning over a large audience of nodes. The trees used for data dis-
semination are called distribution topology. Particular implementations
of this scenario are peer-to-peer live streaming systems. Encoding data
partially redundant, nodes are satisfied as long as they receive packets
in at least a certain portion of trees. Otherwise, they are called isolated.

We study distribution topologies limiting the worst-case consequences
of attacks suddenly removing nodes from the trees. In particular, we aim
to minimize the maximum possible number of isolated nodes for each
number of removed nodes. We show necessary conditions on distribu-
tion topologies closely approximating this goal. Then, we demonstrate
that the attack-resilience of topologies adhering to these conditions is
characterized by specific matrices that have to be Orthogonal Arrays
of maximum strength. The computational complexity of finding such
matrices for arbitrary dimensions is a long-standing research problem.
Our results show that finding representatives of the studied distribution
topologies is at least as hard as this problem.

Keywords: network topologies, dependability, P2P, orthogonal arrays.

1 Introduction

In many applications data shall be reliably broadcast from a resource-restricted
source to a large audience of nodes. Applying multiple description coding [1]
or error-correcting codes [2], it is possible to split each block of data into k
subblocks, such that the reception of a certain portion of these subblocks al-
ready satisfies the participating nodes (i.e. they can restore the original data to
satisfactory degree).

Distributing each of the k subblocks from node to node over a distinct tree
rooted at the source, a data distribution system is obtained which is tolerant
to failures. Furthermore, the number of participants in such a system can scale
independently from resource restrictions of the source. Popular implementations
of such approaches can be found in peer-to-peer live streaming systems like [3–5].

� This work was supported by the Deutsche Forschungsgemeinschaft under grant num-
ber KU 658/10-2.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 196–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Attack-Resilient Multitree Data Distribution Topologies 197

Due to their spreading application and growing importance, such data distri-
bution systems are target of attacks. Abstracting from technical details, these
attacks can often be modeled as a removal of nodes from the system. The con-
sequences of such a removal can be measured as damage and depend on the
layout of the distribution topology, i.e., the trees used for data dissemination.
This motivated the study of distribution topologies minimizing the maximum
damage that is achievable on them.

Here, different measures of damage can be of interest. In the past, distribution
topologies minimizing notions of system-wide damage, like the global number of
disturbed source-to-node paths, have been identified [3, 6]. However, in many
applications a damage measure based on the user-perceived quality of the data
distribution service is more relevant. This corresponds to counting the number
of nodes that are no longer satisfied since they lost too many paths from the
source.

In the following, distribution topologies minimizing this kind of damage are
called attack-resilient. Despite their relevance, the author is not aware of any
analytical study of such topologies or of related network design problems based
on a similarly generalized concept of connectivity. Current applications resort
to following rules of thumb, as building ‘diverse trees’ [5]. Some insights for
scenarios considering random node removal instead of worst-case attacks were
obtained by simulation in [7].

Contribution. In this document, we introduce forward-stable distribution to-
pologies and show that they closely approximate attack-resilient topologies in
situtations where the number of nodes considerably exceeds the number of source
neighbors. This is a usual condition in applications of multitree data distribu-
tion topologies. We find necessary and sufficient requirements for forward-stable
topologies and show that they can be characterized by matrices representing
certain successor relations in the trees. By showing that these matrices have to
be Orthogonal Arrays of maximum possible strength, we discover connections
to design and coding theory. In particular, we show that the identification of an
efficient construction scheme for forward-stable topologies would solve several
long-standing open problems in these areas.

Structure of This Document. In Section 2, we specify our system model and for-
malize the notion of attack-resilient distribution topologies. Section 3 introduces
and motivates an alternative damage measure which is then used in Section 4
to define forward-stable distribution topologies. Their properties are studied in-
depth in the following Subsections. Finally, Section 5 concludes this document.

2 System Model and Attack-Resilient Topologies

In our system model, a source s distributes data to a set V = {1, . . . , n} of
nodes. Each block of data is encoded into k subblocks and a node is satisfied as
long as it receives more than k − z such subblocks, for a fixed z ∈ {1, . . . , k}
(see [1, 2] for suitable encoding schemes). Otherwise, the node is called isolated.

198 S. Grau

s

1

2 3 4

5

8

6 7

11

9 10 12

s

2

1 3

4

6

5 9 10

7

11 12

8

s

12

1 5 11

9

2 3 6

4

7 8 10

T1 T2 T3

Fig. 1. Attack X = {1, 6, 9} on this topology T ∈ T(12, 3, 3) leads to bT (X, 2) = 5
(attacked nodes gray, isolated nodes double-lined)

Each subblock is distributed over one of k distribution trees (also called stripes).
Those have node set {s} ∪ V , are rooted at s, and are directed towards the
leafs. A distribution topology is a k-tupel T = (T1, . . . , Tk) of stripes. The nodes
that are adjacent to the source in stripe Ti of T are the heads HTi . The nodes
HT =

⋃
i∈{1,...,k}H

T
i are the heads of T .

We assume that the maximum degree of source node s is limited to a value of
Ck, for C ∈ N and n ≥ Ck. The class of all distribution topologies with k trees,
node set V = {1, . . . , n} and source degree limit Ck is denoted as T(n,C, k).

The data distribution over a topology T ∈ T(n,C, k) can be disturbed in a
number of ways. In this document, we study the consequences of sudden removals
of nodes. Such events are common, especially in peer-to-peer systems with their
unreliable and vulnerable participants. Considering the worst-case, we assume
that the sets of removed nodes are the result of a malicious planning process.
For this reason, they are termed as attacks. Note that we do not account for
a removal of the source node, since it would always result in a non-functional
distribution topology. Furthermore, in practical applications it is usual to take
special measures to safeguard source functionality.

When a node v is removed from topology T , in each stripe Ti with
i ∈ {1, . . . , k}, the paths between s and all nodes in the subtree rooted at v
become disturbed. The set of nodes in this subtree is denoted as successor set
succTi (v) and contains v. For node sets X , we correspondingly define
succTi (X) =

⋃
v∈X succTi (v). Figure 2 gives an example.

Assuming that a node is isolated by the loss of at least z paths from the
source, the number of nodes isolated by attack X is counted as damage

bT (X, z) :=

∣∣∣∣ ⋃
I⊆{1,...,k},|I|=z

⋂
i∈I

succTi (X)

∣∣∣∣. (1)

Figure 1 shows an example in which nodes are isolated by the loss of at least 2
paths from the source.

Given an arbitrary class T(n,C, k), we are generally interested in finding
topologies T ∈ T(n,C, k) minimizing the maximum damage that can occur for
every possible number x of removed nodes and every value of threshold z. Note
that for x ≥ Cz, it is possible to remove all heads of z stripes (the ones with

Attack-Resilient Multitree Data Distribution Topologies 199

the least number of heads) and isolate all nodes. Hence, the maximum damage
on topologies in T(n,C, k) can only differ for x < Cz ≤ Ck. This leads to the
following definition.

Definition 1. A topology T ∈ T(n,C, k) is attack-resilient, if for all
z ∈ {1, . . . , k}, all x ∈ {1, . . . , Ck}, and all C ∈ T(n,C, k), it holds that

max
X⊆V,|X|=x

bT (X, z) ≤ max
X⊆V,|X|=x

bC(X, z).

3 An Approximative Damage Measure

The function bT (X, z) used to characterize attack-resilient topologies counts
nodes of two different kinds. On the one hand, it considers all removed nodes
in the set X . On the other hand, it counts nodes positioned in subtrees below
removed nodes in at least z stripes. Furthermore, there are nodes falling into
both categories. This superposition of different causes of damage complicates an
analyis. For this reason, we choose to study a slightly altered notion of damage.
At first, we define the forward successor set of a node v in stripe Ti of T :

succT→i (v) :=

{
succTi (v) , if |succTi (v)| > 1 or v ∈ HTi
∅ , otherwise.

(2)

It is equal to the successor set in most cases, but is empty if v is neither head
nor has children in Ti. Again, this definition extends to node sets:
succT→i (X) =

⋃
v∈X succT→i (v). Figure 2 provides an example.

For T ∈ T(n,C, k), z ∈ {1, . . . , k}, and attacks X ⊆ V , we define the corre-
sponding damage function as forward damage

bfT (X, z) :=

∣∣∣∣ ⋃
I⊆{1,...,k},|I|=z

⋂
i∈I

succT→i (X)

∣∣∣∣. (3)

Ti

s

1 2

4 5

7

3

6

(a) A tree Ti from a topology T

X succTi (X) succT→i (X)

{1} {1} {1}
{3} {3, 6} {3, 6}
{4} {4} ∅

{3, 5, 6} {3, 5, 6, 7} {3, 5, 6, 7}

(b) Successor and forward successor sets

Fig. 2. Different concepts of successor sets

200 S. Grau

Since it holds that succTi (X) = X ∪ succT→i (X), we observe that

bfT (X, z) ≤ bT (X, z) ≤ bfT (X, z) + |X |. (4)

The maximum value of both, possible damage and forward damage, is n on
each topology T ∈ T(n,C, k) if at least Cz nodes may be removed (removing
the heads of z stripes). Together with Equation (4), we obtain the following
theorem.

Theorem 1. For every topology T ∈ T(n,C, k), z∈{1, . . . , k}, andx∈{1, . . . , n},
it holds that

max
X⊆V
|X|=x

bfT (X, z) ≤ max
X⊆V
|X|=x

bT (X, z) ≤ max
X⊆V
|X|=x

bfT (X, z) + min(Cz − 1, x).

In applications of multitree data distribution topologies, we usually have n# Ck.
Furthermore, the maximum achievable forward damage for threshold z on each
topology T ∈ T(n,C, k) is in Ω(n

Cz) if at least z nodes are removed. Conse-
quently, with growing node numbers, the maximum possible forward damage
dominates the value of the maximum possible damage.

4 Forward-Stable Distribution Topologies

Theorem 1 motivates the study of distribution topologies minimizing maximum
forward damage for all numbers of removed nodes and thresholds z. In the
following, we will distinguish between different levels of this resilience concept
by restricting the possible sets of removed nodes. For this, we introduce the
t-restricted attacks χ(T , t) for each T ∈ T(n,C, k) and t ∈ {1, . . . , k}. An attack
X ⊆ V satisfies X ∈ χ(T , t), if there is a set I ⊆ {1, . . . , k} of t stripe indices
such that each v ∈ X either has forward successors in at least one of the stripes
I, or it has no forward successors at all. Thus, if topology T has inner-node
disjoint stripe trees, χ(T , t) is the set of all attacks containing inner-nodes from
at most t stripes and an arbitrary number of nodes that are leaf in all stripes.
The definition ensures that χ(T , t− 1) ⊆ χ(T , t) is true and that χ(T , k) equals
the power set P(V) of V . Furthermore, for each t ∈ {1, . . . , k}, the set χ(T , t)
contains all subsets of V that have cardinality up to t.

Now, we can define t-forward-stable and forward-stable distribution topolo-
gies.

Definition 2. A topology T ∈ T(n,C, k) is called t-forward-stable, if for all
z ∈ {1, . . . , k}, x ∈ {1, . . . , n}, and C ∈ T(n,C, k), it holds that

max
X∈χ(T ,t),|X|=x

bfT (X, z) ≤ max
X∈χ(C,t),|X|=x

bfC(X, z).

If T is t-forward-stable for all t ∈ {1, . . . , k}, it is called forward-stable.

Attack-Resilient Multitree Data Distribution Topologies 201

s

1

2 3 4

5

6 7 8 9

T1

s

2

1 3 4

6

5 7 8 9

T2

s

3

1 2 4

7

5 6 8 9

T3

Fig. 3. A distribution topology C ∈ T(9, 2, 3) as in the proof of Lemma 1

Consequently, a topology T is t-forward-stable, if it minimizes the maximum
possible forward damage that is achievable by t-restricted attacks (for all attack
cardinalities and thresholds z), while forward-stable topologies are t-forward-
stable for all possible values of t. As we have seen in Section 3, the latter closely
approximate attack-resilient topologies.

In the following, we show necessary and sufficient requirements for (t-)forward-
stable topologies. Furthermore, we give a notion of the computational complexity
of finding a forward-stable topology in a given class T(n,C, k). In particular, we
show that a corresponding oracle could be used to efficiently determine so-called
Orthogonal Arrays of given dimension and maximum strength. The latter is a
notorious problem in both design and coding theory [2, 8].

4.1 Basic Requirements

Lemma 1. A t-forward-stable topology T ∈ T(n,C, k) with t ∈ {1, . . . , k} has
the following properties:

1. ∀v ∈ V : |{i ∈ {1, . . . , k} | succT→i (v) = ∅}| ≤ 1
2. ∀v ∈ V : |

⋃
i∈{1,...,k} succ

T→
i (v)| ≤

⌈
n
C

⌉
Proof. We compare T with a topology C ∈ T(n,C, k) that has Ck distinct heads
in total and C heads per stripe. In each stripe i ∈ {1, . . . , k}, all nodes V \HCi
are leafs below the heads HCi . They are grouped such that each head h ∈ HCi
satisfies |succC→i (h)| ∈ {�n/C�, 	n/C
}. Figure 3 gives an example of such a
topology.

Since it is t-forward-stable with t ≥ 1, topology T should minimize the max-
imum possible forward-damage for attacks of cardinality 1 and all values of z.
However, if T lacks one of the mentioned properties, we show that, for certain z,
there are attacks of cardinality 1 on T that achieve more forward-damage than
any such attack can achieve on C:

1. Assume there is v ∈ V and two distinct stripes i, j ∈ {1, . . . , k},
such that succT→i (v) = ∅ and succT→j (v) = ∅. Then, it holds that

v ∈ succT→i (v) ∩ succT→j (v). In contrast, for all w ∈ V there is no pair i, j of

distinct stripes of C such that succC→i (w) ∩ succC→j (w) = ∅. It follows that

maxu∈V bfT ({u}, 2) ≥ 1 and maxu∈V bfC({u}, 2) = 0. Consequently, T is
not t-forward-stable.

202 S. Grau

2. Assume that ∃v ∈ V : |
⋃

i∈{1,...,k} succ
T→
i (v)| >

⌈
n
C

⌉
. For every topology

D ∈ T(n,C, k), the definition of forward damage guarantees that

max
X⊆V,|X|=1

bfD(X, 1) = max
u∈V

∣∣∣ ⋃
i∈{1,...,k}

succD→i (u)
∣∣∣. (5)

In C, this value is
⌈
n
C

⌉
, whereas it is higher in T . Again, T is not t-forward-

stable. ��

The first property ensures the construction of inner-node disjoint stripe trees.
The second one corresponds to a balanced distribution of successors to the heads
of each stripe. Both are frequent optimization goals in peer-to-peer live stream-
ing systems such as [4] and [3]. Note that topologies from T(n,C, k) with both
properties will have C unique heads per stripe.

Additionally, such topologies have another interesting property.

Lemma 2. Let T ∈ T(n,C, k) satisfy the requirements of Lemma 1. For
all z ∈ {1, . . . , k} and each X ⊆ V , there exists an attack Y ⊆ HT with
bfT (Y, z) ≥ bfT (X, z) and |Y | = min(|X |, Cz).

Proof. The stripe trees of topology T are inner-node disjoint. Therefore, the
node sets Vi := {v ∈ V | succT→i (v) = 0} for i ∈ {1, . . . , k} together with set
V0 := V \

⋃
i∈{1,...,k} Vi form a partition of V .

Since each Ti is a tree, it holds that succT→i (v) ⊆ succT→i (u) for each
v ∈ succT→i (u). Hence, for each stripe Ti the set {succT→i (v) | v ∈ Vi} is a
laminar family of sets. In particular, the forward successor sets of the heads HTi
are the only sets that are not subsets of others.

Now, let X ⊆ V be an arbitrary attack on T . If |X | ≥ Cz, then all nodes can
be isolated by attacking the (at most) Cz heads of z stripes with the smallest
number of heads. Otherwise, set X := X \ V0, and let

Y ′ := {h ∈ HT | ∃i ∈ {1, . . . , k}, v ∈ Vi ∩X : succT→i (v) ⊆ succT→i (h)}.

Due to the node partition and set laminarity, it holds that |Y ′| ≤ |X |. Fur-
thermore, we have ∀i ∈ {1, . . . , k} : succT→i (X) ⊆ succT→i (Y ′) and therefore
bfT (X, z) ≤ bfT (Y ′, z) for all z ∈ {1, . . . , k}. No superset Y ⊆ HT with Y ′ ⊆ Y
and |Y | = |X | can create less forward-damage. ��

We see, that on every topology with the properties given in Lemma 1, a maxi-
mum value of forward damage can always be achieved by removing only heads.
Consequently, the optimization of their forward successor sets is the key to find-
ing forward-stable topologies.

4.2 A Matrix Representation and Orthogonal Arrays

For every distribution topology T , there is a convenient matrix representation
of its heads’ forward successor sets.

Attack-Resilient Multitree Data Distribution Topologies 203

Definition 3. Let T ∈ T(n,C, k) be given. Using per stripe i ∈ {1, . . . , k} a
bijection σi : H

T
i → {1, . . . , |HTi |}, the matrix MT of forward successor sets of

the heads HT is an n× k matrix MT = (mvi), such that

mvi = σi(j)⇔ v ∈ succT→i (j).

For v ∈ V , MT [v] = (mv1, . . . ,mvk) denotes the v-th row of MT .

Consequently, the i-th entry of the v-th row of MT encodes the head supplying
node v in stripe i. Its numeric value is determined by bijection σi. As an example
for this definition, Figure 4(b) shows a matrix corresponding to the topology in
Figure 4(a).

Reusing the bijections σi from MT , we can also transform attacks on the
heads of T into sets of k-dimensional vectors. In their i-th position, these vectors
contain entries from {0, . . . , |HTi |}.

Definition 4. Let topology T ∈ T(n,C, k), matrix MT , and the the correspond-
ing bijections σi : H

T
i → {1, . . . , |HTi |} for i ∈ {1, . . . , k} be given.

The vector attack σ(X) for an attack X ⊆ HT contains each vector
y ∈ {0, . . . , Ck}k such that for all i ∈ {1, . . . , k} either σ−1i (yi) ∈ X or
(yi = 0) ∧ (X ∩HTi = ∅) is true.

Due to its definition, σ(X) will contain
∏k

i=1 min(1, |X ∩ HTi |) vectors. In
position i, such a vector either contains the value σi(h) for some h ∈ X ∩HTi or
the value 0 if X ∩HTi = ∅.

Using vector attacks, the forward damage bfT (X, z) of an attack X ⊆ HT

on T can be determined by counting row vectors of MT that are in Hamming
Distance at most k − z to an element of σ(X). With d(·, ·) as the Hamming
Distance function, we can write

bfT (X, z) =

∣∣∣∣∣ ⋃
I⊆{1,...,k},|I|=z

⋂
i∈I

succT→i (X)

∣∣∣∣∣
=
∣∣{v ∈ V

∣∣ ∃I ⊆ {1, . . . , k}, |I| = z, ∀i ∈ I : σ−1i (mvi) ∈ X
}∣∣

=
∣∣{v ∈ V

∣∣ ∃x ∈ σ(X) : d(M [v],x) ≤ k − z
}∣∣ . (6)

Figure 4(c) gives a graphical example.
Next, we introduce a special class of matrices, the Orthogonal Arrays [8].

Definition 5. For n, k, C ∈ N and t ∈ {0, . . . , k}, an n × k matrix M with
entries mvi ∈ {1, . . . , C} is called an Orthogonal Array OA(n, k, C, t) if in every
n× t submatrix M ′ consisting of t complete columns of M , each x ∈ {1, . . . , C}t
appears exactly λ := n

Ct times as a row.

An OA(n, k, C, t) is said to have strength t. It minimizes the maximum frequency
of a row vector in each of its t-column submatrices. Every Orthogonal Array of
strength t > 1 also has strength t − 1. The strength of a given n × k matrix is
computable in time O(n2k) [8, Chapter 4.4]. Figure 5 shows an OA(18, 3, 3, 2).

204 S. Grau

s

1

2 3 4

5

8

6 7

11

9 10 12

s

2

1 3

4

6

5 9 10

7

11 12

8

s

12

1 5 11

9

2 3 6

4

7 8 10

T1 T2 T3

(a) Attack X = {1, 6, 9} on topology T ∈ T(12, 3, 3) leads to bfT (X, 2) = 4 (at-
tacked nodes gray, nodes suffering forward-damage double-lined)

MT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 2
1 1 2
1 1 3
2 2 1
2 2 2
2 3 3
2 3 3
3 2 2
3 2 3
3 3 1
3 3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(b) MT for
σ1(1) = σ2(2) = σ3(12) = 1,
σ1(5) = σ2(6) = σ3(9) = 2 and
σ1(11) = σ2(7) = σ3(4) = 3

x

y

z

1

2

3
2

3

2

3

(c) Rows ofMT (dots) in Hamming dis-
tance ≤ 1 (snaked) from vector attack
σ(X) = {(1, 2, 2)} (circled) correspond
to nodes {2, 3, 6, 9}

Fig. 4. A distribution topology T , a corresponding matrix MT , and forward damage
due to the removal of node set X = {1, 6, 9} from T

Lemma 3. For every OA(n, k, C, t) M with n ≥ Ck and strength t ≥ 1, there
is a topology T ∈ T(n,C, k) with MT = M that satisfies the requirements of
Lemma 1.

Proof. We construct a suitable topology T of depth 2. For the use as heads HT ,
we determine the indices of Ck suitable rows of M . For this, construct a bipar-
tite graph G = ({1, . . . , n}∪̇({1, . . . , C} × {1, . . . , k}), E). Its node set contains
the nodes V = {1, . . . , n} of T and head positions (i, j). A head position (i, j)
corresponds to the role as i-th head in stripe j of T . The edge set E satisfies
{v, (i, j)} ∈ E ⇔M [v]j = i.

For each node u, let N(u) be the set of u’s neighbors in G. Since M has
k columns, each node v ∈ V satisfies |N(v)| = k. Since M has strength at
least 1, each head position (i, j) has |N((i, j))| = n/C. Due to Hall’s Theorem

Attack-Resilient Multitree Data Distribution Topologies 205

⎛⎝1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 2 1 3 3 1 2 1 3 2 3 2 1 2 3 1

⎞⎠
Fig. 5. Transpose of an OA(18, 3, 3, 2) with λ = 2

(cmp. [9]) there is a matching covering all head positions in G, if it holds that
∀S ⊆ {1, . . . , C} × {1, . . . , k} : |

⋃
u∈S N(u)| ≥ |S|. This is the case in G. For

each possible subset S of head positions, there are |S| ·n/C edges to nodes from
V . Since these |

⋃
u∈S N(u)| nodes have |

⋃
u∈S N(u)| · k edges in total and since

n/C ≥ k, we obtain

|S| · n
C
≤ |
⋃
u∈S

N(u)| · k ⇒ |S| ≤ |
⋃
u∈S

N(u)|. (7)

Hence, a maximum matching R in G connects each head position with a unique
node from V . For each {v, (i, j)} ∈ R, we use v as head in stripe Tj of T ,
define σj(v) := i, and set succTj (v) := {u ∈ V |M [u]j = i}. In each stripe of the
emerging topology T , every node is either head or child of a head. The matching
R guarantees that we have |HT | = Ck and that each head forwards in only one
stripe. The defined bijections σj with j ∈ {1, . . . , k} establish MT = M . Since
M is of strength at least 1, for all j ∈ {1, . . . , k} each head v ∈ HTj satisfies

|succT→j (v)| = n/C. All other forward successor sets are empty. ��

A matrix MT of high strength is beneficial for the forward-stability of T .

Theorem 2. A topology T ∈ T(n,C, k) is t-forward-stable, if it has the proper-
ties of Lemma 1 and MT is an OA(n, k, C, t).

Proof (sketch). For reasons of space, we can only give a proof sketch. See [10,
Theorem 5.3.14] for all details.

Given a topology T ∈ T(n,C, k), we call each vector x ∈ {0, . . . , Ck}k sat-
isfying ∀i ∈ {1, . . . , k} : xi ≤ |HTi | an attack distribution for T and say that an
attack X ⊆ HT follows x if ∀i ∈ {1, . . . , k} : |X ∩HTi | = xi holds.

If T has the properties given in Lemma 1 and MT has strength t, then for
each threshold z ∈ {1, . . . , k} the forward damage of all attacks X ∈ χ(T , t) on
T following the same attack distribution x is equal. Furthermore, the value of
this forward damage on T gives a lower bound on the average (and maximum)
forward damage of attacks following x on other topologies from T(n,C, k). Con-
sequently, for each z ∈ {1, . . . , k} and each C ∈ T(n,C, k) on which attacks with
distribution x exist, there is Y ∈ χ(C, t) following x with bfT (X, z) ≤ bfC(Y, z).

If there is no attack with distribution x on C, then a suitable distribution x′

can be found by adapting x with regard to the number of heads available in C.
Thus, for each C ∈ T(n,C, k) and each attack X ∈ χ(T , t), we can find an attack
Y ∈ χ(C, t) creating at least the same forward damage on C as X does on T .
Consequently, T is t-forward-stable. ��

206 S. Grau

Next, we show that the matrix MT of a forward-stable topology T ∈ T(n,C, k)
must necessarily be an Orthogonal Array of maximum possible strength.

Theorem 3. If an OA(n, k, C, t) exists, then for every t′-forward-stable distri-
bution topology T ∈ T(n,C, k) with t′ ≥ t, MT is an OA(n, k, C, t).

Proof. Topology T must have the properties listed in Lemma 1. Furthermore,
assume that T is not an OA(n, k, C, t). If T were t′-forward-stable, it had to
minimize maximum forward-damage for attacks of cardinality t and threshold
z = t. We show that under the above assumption, this is not the case. For this,
let C ∈ T(n,C, k) be a topology with the properties listed in Lemma 1 and MC

being an OA(n, k, C, t) (the existence of C is guaranteed by Lemma 3).
Set z = t and study the possible forward-damage of attacks of cardinality

t. Due to Lemma 2, it suffices to consider attacks removing only heads. Such
attacks may target heads from less than t different stripes. This would lead to
forward-damage of 0 on both T and C since they have inner-node disjoint stripes.
Alternatively, attacks can target one head from each stripe of a combination of t
stripes. In this case, the maximum possible forward-damage on T and C equals
the maximum row frequency in MT resp. MC over all possible restrictions to
t columns (cmp. Equation (6)). An attack achieving this damage contains the
heads corresponding to the entries in the respective columns of the most frequent
row vector. Since C is an OA(n, k, C, t) but T is not, this frequency is smaller on
C than on T . Hence, T is not t-forward-stable and, thus, not t′-forward-stable.

��

Summing up, this subsection has shown that – given the basic properties identi-
fied in Lemma 1 – the forward-stability of a distribution topology T ∈ T(n,C, k)
is characterized by its matrix MT . In particular, if an OA(n, k, C, t) exists, it
is necessary and sufficient that MT is such an Orthogonal Array to obtain a
t-forward-stable topology. To reach a maximum level of forward-stability, MT

must be an Orthogonal Array of maximum possible strength t. This observation
is used in Subsection 4.3 to provide a notion of the computational complexity of
finding forward-stable distribution topologies.

4.3 Hardness of Finding Forward-Stable Topologies

For given parameters n,C, k ∈ N, let t̂(n,C, k) be the maximum value t such that
an OA(n, k, C, t) exists. If t̂(n,C, k) is efficiently computable, it is also possible
to use binary search to efficiently determine extremal values for the parameter
k of Orthogonal Arrays.

However, resolving the computational complexity of finding such extremal pa-
rameters and finding Orthogonal Arrays featuring them are long-standing open
problems in design theory (cmp. [8, p.32]). A special case in coding theory is
the MDS conjecture [2, 11] which claims to specify the maximum length of MDS
codes. Its disputed part was first stated in 1955 [12].

We show that finding an efficient construction strategy for t-forward-stable
distribution topologies would resolve many of the above questions.

Attack-Resilient Multitree Data Distribution Topologies 207

Theorem 4. Let O be an oracle returning a t-forward-stable topology
T ∈ T(n,C, k) on input (n, k, C, t) if one exists.

– If one exists, an OA(n, k, C, t) can be constructed by one call to O plus
O(nk)-time post-processing.

– The function t̂(n, k, C) can be evaluated by �log(k)� calls to O plus O(n2k)-
time post-processing.

Proof. Due to the Theorems 2 and 3, there is a t-forward-stable topology
T ∈ T(n,C, k) if an OA(n, k, C, t) exists. In this case, MT must be an
OA(n, k, C, t). Using input (n, k, C, t), such a T is obtained by one call to O.
The information necessary to return the n × k matrix MT can be gathered by
a traversal of all stripe trees. This needs time O(nk).

Applying binary search, we need �log(k)� oracle calls to find the maximum
t′ ∈ {0, . . . , k} such that a t′-forward-stable topology T ∈ T(n,C, k) exists. By
Theorem 3, MT must be an OA(n, k, C, t̂(n, k, C)). The strength of MT can be
determined in time O(n2k). ��

In the light of these results, the goal of identifying efficient construction schemes
for forward-stable distribution topologies turns out to be a challenging task.
Advancements would lead to a breakthrough in multiple connected fields of
research.

Until then, it is possible to make use of the large number of constructions
and catalogues for Orthogonal Arrays that are already available [8]. However,
most of them are specific for certain parameter combinations and not of provably
maximum strength. All algorithmic approaches known to the author that try to
find Orthogonal Arrays with given parameters rely on metaheuristics and local
search schemes (e.g., [13, 14]).

5 Conclusion

In this document, we studied multitree data distribution topologies aiming to
minimize the maximum number of nodes that can be isolated by an attack. In
particular, this minimization should hold for every possible number of removed
nodes and every level of redundancy in data encoding. We introduced the notion
of forward-stable multitree data distribution topologies and showed that they
closely approximate this goal if the number of nodes considerably exceeds the
number of possible source neighbors. This is a common condition in applications
of the studied topologies.

We found basic requirements for forward-stable distribution topologies and
pointed out that the resilience of topologies adhering to these requirements is
captured by a matrix representation of their heads’ forward successor sets. We
showed that such a topology is t-forward-stable if its matrix is an Orthogonal
Array of strength t. Furthermore, the use of Orthogonal Arrays of maximum
strength is necessary for forward-stable topologies. This result allowed to connect
the problem of finding forward-stable topologies to long-standing open problems
in design and coding theory.

208 S. Grau

Since for higher numbers of nodes, attack-resilient and forward-stable topolo-
gies must be very similar, this also provides a notion of hardness of finding
attack-resilient distribution topologies. The identified topologies and results are
relevant for data distribution applications such as peer-to-peer live streaming
systems. Furthermore, the studied model could also be applied to certain data
aggregation tasks in wireless sensor networks.

References

1. Goyal, V.: Multiple description coding: compression meets the network. IEEE Sig-
nal Proc. Mag. 18(5), 74–93 (2001)

2. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Mathematical Library (1993)

3. Brinkmeier, M., Schaefer, G., Strufe, T.: Optimally DoS Resistant P2P Topologies
for Live Multimedia Streaming. IEEE T. Parall. Distr. 20(6), 831–844 (2009)

4. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh,
A.: Splitstream: high-bandwidth multicast in cooperative environments. SIGOPS
Oper. Syst. Rev. 37, 298–313 (2003)

5. Padmanabhan, V.N., Wang, H.J., Chou, P.A., Sripanidkulchai, K.: Distributing
streaming media content using cooperative networking. In: NOSSDAV 2002, pp.
177–186. ACM, New York (2002)

6. Grau, S., Fischer, M., Schäfer, G.: On the Dependencies between Source Neigh-
bors in Optimally DoS-stable P2P Streaming Topologies. In: IEEE International
Conference on Distributed Computing Systems 2011, ICDCS, pp. 121–130 (2011)

7. Dán, G., Fodor, V.: Stability and performance of overlay multicast systems em-
ploying forward error correction. Perform. Eval. 67, 80–101 (2010)

8. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Appli-
cations. Springer, New York (1999)

9. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2005)

10. Grau, S.: On the Stability of Distribution Topologies in Peer-to-Peer Live Stream-
ing Systems. PhD thesis, Technische Universität Ilmenau, Germany (2012)

11. Roth, R.M.: Introduction to Coding Theory. Cambridge University Press (2006)
12. Segre, B.: Curve razionali normali e k-archi negli spazi finiti. Ann. Math. Pura

Appl. (39), 357–359 (1955)
13. Nguyen, N.K., Liu, M.Q.: An algorithmic approach to constructing mixed-level

orthogonal and near-orthogonal arrays. Comput. Stat. Data An. 52, 5269–5276
(2008)

14. Xu, H.: An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays
with Mixed Levels and Small Runs. Technometrics 44, 356–368 (2002)

On the Complexity of Distributed Broadcasting

and MDS Construction in Radio Networks�

Tomasz Jurdzinski1 and Dariusz R. Kowalski2

1 Institute of Computer Science, University of Wroc�law, Poland
2 Department of Computer Science, University of Liverpool, United Kingdom

Abstract. We study two fundamental problems in the model of undi-
rected radio networks: broadcasting and construction of a Minimal Dom-
inating Set (MDS). The network is ad hoc, in the sense that initially
nodes know only their own ID and the IDs of their neighbors. For both
problems, we provide deterministic distributed algorithms working in
O(D

√
n log6 n) communication rounds, and complement them by a close

lower boundΩ(
√

Dn log(n/D)), where n is the number of nodes andD is
the radius of the radio network. Our work provides several novel algorith-
mic methods for overcoming the impact of collisions in radio networks,
and shrinks the gap between the lower and the upper bounds for the
considered problems from polynomial to polylogarithmic, for networks
with small (polylogarithmic) radius.

Keywords: radio networks, broadcasting, minimal dominating set, dis-
tributed algorithms.

1 Introduction

Radio Networks model a communication environment where simultaneous mes-
sage transmissions in a close proximity result in signal interference, and no mes-
sage is successfully delivered. This model has been successfully used since early
80s in the context of Local Access Networks, wireless networks, multi-bus and
multi-core topologies (c.f., [4,9]), for obtaining and analyzing many algorithmi-
cally non-trivial and applicable solutions. Even though some of them have been
later analyzed in more complex models, radio networks are still widely used for
their simplicity and suitability for design and (preliminary) analysis of commu-
nication algorithms.

In the radio network model, c.f., [4], the core assumption is that a transmitted
message reaches all neighbors of the transmitting node v, however it could be
successfully heard by a neighbor w only if w is not transmitting and v is the only
transmitting neighbor of w at a time. We consider the setting without collision
detection, i.e., the case when no neighbor transmits is indistinguishable from the
case when at least two neighbors transmit. We use notation n for the number

� This work was supported by the Engineering and Physical Sciences Research Council
[grant number EP/G023018/1].

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 209–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

210 T. Jurdzinski and D.R. Kowalski

of nodes in the network, D for the radius of the network (with respect to some
distinguished node, called a source), and N = poly(n) for the range of node ids.
We consider two fundamental problems: Broadcasting and construction of Mini-
mal Dominating Set (MDS). We seek for time-efficient deterministic distributed
solutions for these problems.

Previous results. Bar-Yehuda et al. [1] claimed that the time complexity of
deterministic broadcasting in ad hoc radio networks is Ω(n) even for networks
of radius 2. Kowalski and Pelc [10] proved that it is not the case: they showed
a deterministic algorithm that accomplishes broadcast in O(n2/3 logn) rounds
in any network of radius 2, and another algorithm that completes broadcast in
o(n) rounds in networks of radius o(log logn). On the other hand, a lower bound
Ω(Dn1/4) was proved in [10] for broadcasting in networks with radius D, which
proves an exponential gap between the overhead in this model and the model
with randomization, see the next paragraph. Brito and Vaya [3] improved this
bound to Ω(n1/2), still leaving the gap between the lower bound and the best
known upper bound of magnitude n1/6 logn.

The first efficient randomized solution in the ad hoc radio model, working in
expected time O(D logn + log2 n), was presented by Bar-Yehuda et al. [1]. A
lower bound Ω(D log(n/D)+ log2 n) on expected time of randomized broadcast
was given by Kushilevitz and Mansour [12], and the matching algorithm was
developed by Kowalski and Pelc [11] and by Czumaj and Rytter [8].

The problem of constructing a Minimal Dominating Set (MDS) is closely
related to Broadcasting in the model of radio networks, and many of the devel-
oped techniques and results for broadcasting also hold for MDS. In particular,
we are not aware of any separate result on the time complexity of MDS in radio
networks that would not be obtained in the context of broadcasting.

Our results. We strengthen the lower bound Ω(
√
n) on deterministic distributed

broadcasting for networks of radius 2 to Ω(
√
n logn), which justifies that the

complexity of the problem is asymptotically larger than
√
n. For D-hop net-

works, the lower bound takes the form of Ω(
√

Dn log(n/D)). These bounds are
easily extended to the problem of deterministic distributed construction of a
MDS. We also provide two broadcasting algorithms: one for networks with ra-
dius 2, which works in O(

√
n log6 n) communication rounds, and the other for

networks of radius D, working in O(D
√
n log6 n) rounds. The former algorithm

improves over the best known O(n2/3 logn) time broadcasting algorithm, and
thus shrinks the gap between the lower and upper bounds from polynomial to
polylogarithmic for networks of radius 2. The latter algorithm extends the range
of diameters admitting sublinear o(n)-rounds algorithms from o(log log n) to
polynomial, which is a double exponential improvement, c.f., [10]. It also shrinks
the gap between upper and lower bounds from polynomial to polylogarithmic
for networks of polylogarithmic radius. Finally, we show how to adapt these
algorithms for constructing a MDS in asymptotically same round complexity.

Previous sublinear time deterministic algorithms for broadcasting propagated
messages layer-by-layer in such a way that each node followed its own sched-
ule, sometimes coordinated by the source. These method incurred a substantial

On the Complexity of Distributed Broadcasting and MDS Construction 211

communication overhead on each hop. We introduce more complex clustering
mechanism of bipartite graphs, which allows to form collaborative groups of
nodes, with the goal to inform their neighbors, c.f., Phase 3 of algorithm A1.
We show how to efficiently build such clusters and simultaneously maintain
short intra- and inter-cluster communication schedules, all in a deterministic
distributed way. This clustering combined with a greedy schedule of selecting
nodes with certain properties and with the centralized schedule of Chlamtac-
Weinstein [5], results in substantial improvement of time complexity, especially
for shallow networks (i.e., networks of small diameter). An example of novel algo-
rithmic techniques used for efficient clustering is a new way of constructing trans-
mission schedules, by taking a product of selectors and adaptively maintained
minimum ID of cluster nodes, which results in a large portion of inter-cluster
point-to-point successful communication.

Due to space limit, themissing proofs are deferred to the full version of the paper.

2 Preliminaries

We consider radio networks defined as an undirected connected reachability
graph G(V,E) whose nodes have distinct labels belonging to the set [N] =
{1, . . . , N}, where N is polynomially large with respect to the number of sta-
tions n = |V |; both n and N are known to all stations prior the computation. In
the broadcasting problem, a distinguished node with label 1 is called a source.
We define the radius D of a network as the largest distance from the source to
any node of the network, where distance between nodes denotes the length of
the shortest path connecting them. Initially each node has no knowledge about
the topology of the underlying network, except of the information about IDs of
its neighbors — we call it local knowledge.

It is assumed that time is divided into discrete time steps, called rounds, all
nodes start simultaneously, they have access to the central clock, and work in
rounds. A message sent at round t by a node u is sent to all its neighbors. How-
ever, a neighbor v of u receives this message if u is its only neighbor transmitting
in round t. If v does not receive any message at time t, then either none of its
neighbors has transmitted at round t, or at least two have. However, v is not able
to distinguish between these two events; such model characteristic is typically
called a model with no collision detection.

Communication protocol. A communication protocol specifies — for each node
v ∈ [N], the set of neighbors of node v, each round t and all messages received
by node v before round t — whether node v transmits a message at round t, and
if yes, what is the content of this message. The goal of any broadcast protocol
is to deliver a message originally stored in the source, also called the broadcast
message or the source message, to all nodes of the network, by transmitting and
successful receptions of this message along the underlying radio network. We say
that a station is informed at time t of an execution of a broadcasting protocol if
that station received the broadcast message until round t, and it is uninformed
otherwise. We consider a non-spontaneous model, i.e., a node (except the source)

212 T. Jurdzinski and D.R. Kowalski

may act as a transmitter only if it has received a message earlier. We assume
that each time a station sends a message, it encloses its ID and information
containing its whole history of communication (from which one can deduce its
knowledge about the network). Our algorithms, however, will use only at most
polynomial, in n, number of bits, in addition to the source message.

Graph-based notation. Throughout this paper, N denotes the range of identifiers
of nodes, n is the actual size of the graph of the network. Each time we refer to
a symmetric graph G(V,E), we mean the graph with unique identifiers in the
range [N] of its nodes. Given a symmetric graph G(V,E), ΓG(v) denotes the set
of neighbors of v in G, and dG(v) = |ΓG(v)| (the subscript G is omitted when it
is clear from the context). For a graph G(V,E) with distinguished source node
s, Li ⊂ V denotes the set of nodes in distance i from s (thus, in particular,
L0 = {s} and L1 is equal to the set of neighbors of s). Moreover, we denote
ni = |Li| for each i ≥ 0. A dominating set in graph G is a set of nodes such
that every node in the network is in this set or has a neighbor in this set. A
dominating set is minimal if after removing any node from it the resulting set
would not be dominating.

Selectors. We use combinatorial structures, called selectors, which play crucial
role in many deterministic communication algorithms for radio networks. We
say that a family F = (F1, . . . , Ff) of sets hits a set X if |Fi ∩X | = 1 for some
i ∈ [f]. Moreover F hits X at x if Fi ∩X = {x} for some i ∈ [f].

Definition 1. A family F = (F1, . . . , Ff) of subsets of [N] is a (N, k, r)-selector
if for any set X ⊆ [N] of size k there is X ′ ⊆ X of size min{r + 1, k} such that
F hits X at each element of X ′.

We say that f is the size of a family F = (F1, . . . , Ff). Several (almost) tight
bounds on the size of optimal selectors have been established for various pa-
rameters, c.f., [7,2,6]. For our lower bound arguments, we need the following
result.

Theorem 1. [7] Let F be a (N, k, 1)-selector, where N > 2 and 2 ≤ k ≤ n/64.
Then, |F| ≥ k

24 log
N
k .

On the other hand, we apply the following upper bound in our algorithm(s) for
broadcasting in radio networks.

Theorem 2. [2] For any integers N ≥ k ≥ r ≥ 1, there exists a (N, k, r)-

selector of size O(min(N, k2

k−r+1 log
N
k)).

Though the above result is only existential, efficient algorithms constructing

(N, k, r)-selectors of size O(min(N, k2

k−r+1polylog(N))) are known as well [6].

Corollary 1. For any integers N ≥ k ≥ 1 and a real constant ε > 0, there
exists a (N, k, (1 − ε)k)-selector of size O(min(N, k log N

k)).

For our purposes, we need a bit stronger property defined below.

On the Complexity of Distributed Broadcasting and MDS Construction 213

Definition 2. A family F = (F1, . . . , Ff) of subsets of [N] is a linear (N, k, 1−
ε)-selector if for any set X ⊆ [N] such that k/2 < |X | ≤ k, there is X ′ ⊆ X of
size at least min(|X |, (1− ε)|X |+ 1) such that F hits X at each element of X ′.

Thus, on one hand, definition of linear selectors concerns only the case where
r = (1−ε)k in general selectors. On the other hand, we require that the property
of being hit by F at many elements holds not only for sets of size k but for all
sets of size in the range (k/2, k]. Using Corollary 1, one can easily prove the
following statement.

Corollary 2. For any integers N ≥ k ≥ 1 and a real constant 1 > ε > 0, there
exists a linear (N, k, 1− ε)-selector of size O(min(N, k log(N/k))).

(A,B)-broadcast protocol under known topology of graph G(A ∪ B,E). Let A
and B be disjoint subsets of V such that all nodes in A have the same message
M . Then a protocol which makes message M known to all nodes v ∈ B having
a neighbor in A is called (A,B)-broadcast protocol.

Theorem 3. [5] Let a radio network be modeled by a graph G(V,E), where IDs
of stations belong to [N], and let A,B ⊂ V be such that A ∩B = ∅, all nodes in
A have the same message M and they know the topology of the subgraph of G
spanned on A ∪B (i.e., the graph G(A ∪B,E ∩ (A ∪B)2)). Then the elements
of A can compute (A,B)-broadcast protocol that informs all nodes in B in time
O(log2 N).

Communication schedules. An (oblivious) communication schedule of length f
is a family of sets S = (S1, . . . , Sf), where Si ⊆ [N] for every i ∈ [f]. The length
of such communication schedule is denoted by |S| = f . An execution of the
communication schedule S is a protocol in which station v transmits in round j
iff v ∈ Sj . An execution of the communication schedule S = (S1, . . . , Sf) for r
rounds is a communication protocol in which station v transmits in round j ∈ [r]
iff v ∈ S1+(j−1) mod f , i.e., we apply the communication schedule which consists
of consecutive repetitions of S. An execution of the communication schedule S
on the set X (for r rounds) is a protocol in which station v transmits in round
j ∈ [|S|] (resp., j ∈ [r]) iff v ∈ X ∩ Sj (resp., v ∈ X ∩ S1+(j−1 mod |S|)).

3 Lower Bound

In this section we prove a lower boundΩ(
√
n logn) for deterministic broadcasting

with local knowledge on networks with radius 2, and its generalized version
Ω(
√
Dn log(n/D)) for network of radius D.

Theorem 4. Every deterministic broadcasting protocol for networks of radius 2
works in time Ω(

√
n logn).

214 T. Jurdzinski and D.R. Kowalski

The idea of the proof is as follows.1 Consider a class of networks of radius 2,
in which nodes in the middle layer are not connected among themselves and are
conceptually partitioned into groups. Some groups are connected to a single node
in the last layer, some do not have any neighbor in the last layer. Assume that the
size of a single group is around k, for some k ≤ n. In order to choose a successful
transmitter from a random group (to inform their unique neighbor in the last
layer) without help of the source, a lower bound Ω(k log(N/k)) applies, c.f., [7].
On the other hand, there are Θ(n/k) groups, and intuitively the source could
not help all the groups (by speeding-up the process of obtaining a successful
transmission) in time asymptotically smaller than n/k, provided it can help one
group at a time. We show formally that no other faster scenario could happen
except the combination of the two described above. Therefore, all nodes in the
last layer obtain the source message in time asymptotically not smaller than
mink≤n max{k log(N/k), n/k}, which is Ω(

√
n logn) for k =

√
n/ logn. One

could concatenate the above construction and repeat the arguments Θ(D) times,
by putting the source node of the next radius 2 component in the last informed
node of the previously built part of the network. Here, network layers have size
Θ(n/D), and optimal parameter k should be set to k =

√
n/(D log(n/D)), in

order to get broadcasting time of Ω(D
√

(n/D) log(n/D)) = Ω(
√

nD log(n/D)).

Corollary 3. Every deterministic protocol requires Ω(
√

Dn log(n/D)) rounds
to accomplish broadcast on networks with local knowledge and radius D.

4 Broadcasting Algorithm in Networks of Radius 2

In this section we develop algorithm A1, whose complexity differs from the lower
bound by only a polylogarithmic multiplicative factor. It will also be a sub-
routine for the protocol broadcasting in networks of any radius, c.f., Section 5.

4.1 Description of Algorithm A1

Testing and election subroutines. First we define two auxiliary problems for a
radio network G(V,E) with distinguished source s, where each station knows its
neighbors. Recall that Lk denotes the set of nodes at distance k from the source.
Assume that a set of stations A ⊆ Lk is defined such that each station has a
unique key in range [R], for some R such that logR = O(log n), and it knows
whether it belongs to A. However, no station knows which other stations belong
to A. The k-layer emptiness testing problem is to learn whether A is empty, that
is, all nodes in

⋃k
i=0 Li should know at the end of the protocol whether A = ∅.

The k-layer election problem is to decide whether A is empty and, if A = ∅, to
choose the element in A with the largest value of the key. That is, all nodes in⋃k

i=0 Li should know at the end of the protocol either that A = ∅ or the ID of
the element of A with the largest key.

1 Although the general framework of the proof is similar to the one in [3], we analyze
slightly different class of networks to obtain an additional factor

√
log n in the lower

bound formula.

On the Complexity of Distributed Broadcasting and MDS Construction 215

Theorem 5. [10] Consider a symmetric radio network with distinguished source
node s and with no collision detection where each station knows its neighbors. Then,

1. there exists a protocol of time O(1) solving 1-layer emptiness testing;
2. there exists a protocol of time O(log n) solving 1-layer election problem.

Introduction to algorithm A1. Below, we present an algorithmA1 broadcasting in
networks of radius 2. It consists of four Phases. Each time we check in algorithm
A1 whether a subset of L1 is empty or we choose an element of this subset, the
appropriate protocol for 1-layer emptiness or 1-layer election from Theorem 5 is
applied. Notice that, when one node v from L1 is chosen, it can pass any message
M to all elements of L1 ∪ {s} in two rounds: first v sends this message to the
source s, then s sends M to all elements of L1.

During execution of algorithm A1 we conceptually delete, or remove, some
nodes from the network, which means that these nodes are switched off (i.e.,
become idle) in the following parts of the algorithm. Therefore, all references to
the network graph, layers L1, L2 and to the sets of neighbors of nodes (i.e., to
Γ (v) and d(v), for a station v) in the following description of the algorithm will
be made with respect to the values of these parameters after removal of deleted
nodes and edges adjacent to them from the network reachability graph. Each
time we will remove nodes from the network during Phases 1 and 4 of algorithm
A1, all nodes in L1, as well as the source s, will be aware of this fact and will
send this information in their messages. However, in general, it is sufficient that
non-removed neighbors of a removed node v know about the deletion of v (this
issue becomes nontrivial in Phase 3).

High-level description of A1. The idea of the algorithm is as follows. We gradu-
ally decrease the size of the network graph by removing some nodes from it, i.e.,
by deciding that some nodes remain idle and do not participate in the further
part of the algorithm; each station is aware whether it is removed or not. How-
ever, an invariant will be maintained that a node from L1 can be removed only
when all its neighbors in L2 are informed, and a node from L2 can be removed
only when it is informed already. Next we describe Phases 1-4.

Phase 1. Using 1-layer election we first eliminate all nodes from L1 that have
at least

√
n neighbors in L2. More precisely, we delete some nodes from L1,

together with their neighbors in L2, such that in the resulted graph (i.e., after
these deletions), no node in L1 has more than

√
n neighbors in L2. Since each

such node eliminates at least
√
n nodes from the graph, and since it can be

chosen in O(log n) rounds (see Theorem 5), Phase 1 requires O(
√
n logn) rounds.

Moreover, thanks to connection to the source, all stations from L1 are aware of
the deleted nodes, and therefore they know their neighborhood in the remaining
network graph.

Phase 2. When there are no more nodes in L1 with at least
√
n (remaining)

neighbors in L2, we cannot continue choosing the remaining nodes in L1 sequen-
tially (to inform their neighbors in L2), since this might require ω(

√
n) rounds.

216 T. Jurdzinski and D.R. Kowalski

Instead, some nodes in L2 can be informed in parallel. To this aim, we execute a
sequence of linear (N, 2i, 1/2)-selectors, for consecutive i = 0, 1, . . . , (1/2) logn,
on nodes in L1, which ensures that all stations from L2 of degree at most

√
n

are informed (Phase 2), c.f., Corollary 2. Indeed, if X is a set of neighbors of a
node v and 2i−1 < |X | ≤ 2i, then at least half of neighbors of v will be heard by
v during the execution of (N, 2i, 1

2)-selector. Hence, the degrees of all stations
from L2 which were not informed are larger than

√
n after Phase 2.

Phase 3. If stations from L1 knew which of their neighbors are not informed, we
could choose sequentially (as we will do later in Phase 4) stations from L1 with
the largest number of uninformed neighbors in L2 and remove them from the
graph together with their neighbors. Such a process would inform all stations
in O(

√
n logn) rounds, since we can benefit from the fact that removed stations

from L2 “eliminate” many edges of the graph (recall that their degrees are larger
than

√
n).

Unfortunately, we do not know whether the task of acquiring such a knowledge
by the considered stations in L1 is feasible in O(

√
n polylog(n)) rounds. However,

in Phase 3 we design a protocol which achieves similar goal with slightly relaxed
knowledge requirements. Namely, we require that in the sub-network remaining
after Phase 3, the nodes in L1 ∪L2 with degree smaller than

√
n constitute only

small isolated connected components (here by small we understand O(
√
n)) and

each station knows its whole component. This gives stations a knowledge about
uninformed neighbors in L2 and will allow informing all uninformed nodes in L2

(i.e., those with degrees at least
√
n) in O(

√
n logn) rounds later in Phase 4, by

using a greedy process similar to the one in Phase 1.
In order to trim the network graph to obtain the desired property at the end

of Phase 3, we keep building a specific clustering allowing efficient propagation
of knowledge inside each cluster, and simultaneously we uncover nodes that
gather large information about its surrounding (i.e., information about Ω(

√
n)

remaining nodes that are reachable through the intra-cluster communication in
O(
√
n polylog(n)) rounds). The uncovered node delivers the information about

its surrounding to all nodes in L1 via the source, and thus the nodes in this
surrounding also become uncovered. In the process of building the clustering, we
keep joining clusters in a way guarantying fast intra-cluster communication, until
they become big (and then uncovered) or isolated. Then, at the end of Phase 3,
a short O(log2 n) broadcasting schedule is designed locally for all nodes in L1

uncovered in Phase 3, so that they can successfully inform all their neighbors
in L2, among which some may be still not informed. (This follows from the fact
that some nodes in L1 are uncovered by another member of their clusters, as a
part of its surrounding, so they might not have had an opportunity to transmit
successfully.) The details of Phase 3 include several novel algorithmic techniques
and synchronization between them, and therefore they are deferred to the full
version of the paper. Below we describe a high-level idea of how the clusters are
joined and how uncovering is done.

Initially each node participating in Phase 3 constitutes a single cluster. Sup-
pose we are given a partition of participating nodes into connected clusters, each

On the Complexity of Distributed Broadcasting and MDS Construction 217

of them is not big and provides intra-cluster communication schedule that allows
exchanging point-to-point messages between any two nodes v, w in the cluster in
O(
∑

i≤k d(vi) polylog(n)) rounds, where v = v1, . . . , vk = w is a path between
v and w in the cluster. It can be argued that any two nodes in the cluster can
therefore communicate in O(

√
n polylog(n)) rounds. Consider a single node in

a cluster. It learns the minimum ID of nodes in its cluster in O(
√
n polylog(n))

rounds, and then it locally computes the product of its selector schedule and the
minimum ID. More precisely, the local transmission schedule of a node is defined
as follows: whenever the node belongs to the currently considered set in the se-
lector family, it performs a sequence of silences/transmissions corresponding to
the 0-1 representation of the hold minimum ID; otherwise it stays idle for logN
rounds. It can be shown that when using the obtained schedules, several clusters
exchange messages and join into bigger clusters, in O(

√
n polylog(n)) rounds.

This is because selectors combined with the minimum IDs of the clusters (to
which nodes belong) assure that a constant fraction of inter-cluster edges will
propagate a message successfully. After joining into bigger clusters, nodes inter-
leave their previous intra-cluster schedules with the newly computed ones, which,
as we will show, preserves the required property of fast intra-cluster communi-
cation with respect to the new clusters. This invariant assures that every such
joining operation lasts O(

√
n polylog(n)) rounds. Because after each of them a

constant fraction of inter-cluster edges become intra-cluster edges, this process
can be continued no more than logm = O(log n) times, where m is the num-
ber of edges in the graph. This gives O(

√
n polylog(n)) bound on the length of

joining processes in Phase 3.
The above joining process can be applied only to small clusters. Therefore,

once a surrounding of a node in L1 becomes big (i.e., the cluster itself has become
big after the last merge), it participates in the process of electing nodes in its
cluster such that each of them will cover Ω(

√
n) remaining nodes in the network

(we say that a node v covers other uncovered node if v has knowledge that this
node belongs to the network and it knows some edge adjacent to it). This is
done through the source by using election procedure, c.f., Theorem 5. After that
the uncovered parts of the network (which, as we will show, cover all newly
created big clusters), are conceptually removed from the graph of participating
nodes, and the joining process described above can be resumed with respect
to the remaining small clusters. The process of uncovering components takes
O(
√
n polylog(n)) rounds in total, by arguments similar to the one used for

Phase 1.
At the end of Phase 3, the remaining nodes switch to Phase 4, while the

nodes in L1 that have been uncovered (together with their neighbors) in Phase
3 compute a short O(log2 n) broadcast schedule to inform all their neighbors.
For this purpose, a centralized algorithm from [5] is applied, as all nodes in L1

share the same knowledge about uncovered nodes. All together: joining clusters,
uncovering components and final broadcast schedule, take O(

√
n polylog(n))

rounds.

218 T. Jurdzinski and D.R. Kowalski

Phase 4. The source sequentially elects elements of L1 with largest remaining
neighborhoods.

The structure of Algorithm A1 is as follows:

Algorithm A1

Phase 1
While the set X = {v | v ∈ L1 and d(v) ≥ √n} is not empty:

1. choose v ∈ X with the largest ID, using the protocol for 1-layer election;
2. v transmits a message and informs L1 about Γ (v) via the source;
3. remove (Γ (v) ∩ L2) ∪ {v} from the graph.

Phase 2
Execute the sequence of linear (N, 2i, 1

2)-selectors, for consecutive i=0, 1, . . . , logn
2

on nodes of L1.

Phase 3
This phase removes some number of nodes from L1 and L2. As the result, we
obtain the network with properties (a)–(d) specified in Lemma 1.

Phase 4
While X = {v | v ∈ L1 and Γ (v) ∩ L2 = ∅} is not empty:

1. choose v ∈ {x ∈ L1 | |Γ (x) ∩ L2| = maxw∈L1 |Γ (w) ∩ L2|} with the largest
ID, using the protocol for 1-layer election and IDs (|Γ (x) ∩ L2|, x) with
lexicographic ordering;

2. v transmits a message and informs L1 about Γ (v) via the source;
3. remove (Γ (v) ∩ L2) ∪ {v} from the graph.

4.2 Analysis of Algorithm A1

Properties of Phases 1 and 2 are quite straightforward, therefore we will state
them later in the proof of the final theorem. Now we focus on the properties of
Phase 3, and based on them we analyze the complexity of Phase 4.

Lemma 1. Time complexity of Phase 3 is O(
√
n log6 n). Moreover, the graph

G(V,E) corresponding to the network at the end of Phase 3 satisfies:

(a) ΓG(v) ≤
√
n for each v ∈ L1;

(b) ΓG(v) >
√
n for each v ∈ L2;

(c) each station v ∈ L1 knows IDs of its neighbors from L2 in G;
(d) each station deleted from the network is informed.

Using the properties stated in Lemma 1 we can analyze time complexity of
Phase 4. Let E1(n) be maximum of time complexities of 1-layer emptiness test-
ing and 1-layer election problem. Although E1(n) = O(log n) according to Theo-
rem 5, we present complexity analysis of A1 explicitly specifying the number of
executions of election and emptiness testing, since we will apply this result for
broadcasting in networks with larger diameter.

On the Complexity of Distributed Broadcasting and MDS Construction 219

Proposition 1. All elements of L2 become informed after at most (2 n1√
n
+

1) logn executions of steps 1 − 3 of Phase 4, where n1 = |L1|. That is, time
complexity of Phase 4 is O((n1√

n
+ 1) · E1(n) log n).

Theorem 6. The algorithm A1 performs broadcasting in radio networks of ra-
dius 2 in time O(

√
n log6 n+ E1(n) · n1+n2√

n
· logn) = O(

√
n log6 n).

Proof. (Sketch) Since the above claimed time complexity of A1 corresponds
to the time complexity of Phase 3 stated in Lemma 1, it remains to analyze

Phases 1, 2 and 4. Time of Phase 2 is O(
∑(logn)/2

i=1 2i logn) = O(
√
n logn), ac-

cording to Corollary 2. Phase 1 consists of at most 1+n2/
√
n calls of the election

procedure, where n2 = |L2|, since each execution of the election (but the last
one) deletes at least

√
n stations from L2. Finally, time complexity of Phase 4

is O(E1(n) · logn · n1√
n
), as stated in Proposition 1.

As for correctness of Algorithm A1, it follows from Lemma 1 and the fact that
a node v ∈ L1 is deleted in Phase 1 or Phase 4 only when all its neighbors are
informed, while a node v ∈ L2 is deleted only when it is informed. ��

Finally, we make an additional observation, which will be useful for designing
an extension of protocol A1 to multi-hop networks.

Corollary 4. After execution of A1, the stations from L1 can build an (L1, L2)-
broadcast protocol working in time O(log2 n).

Proof. (Sketch) All nodes from L1 can compute an (L′1, L
′
2)-broadcast protocol

S1 of required size, where L′1 ⊆ L1 and L′2 ⊆ L2 are the nodes uncovered in
Phases 1, 3 and 4 (c.f., Theorem 3). The graph spanned on all remaining nodes
can be partitioned into connected components such that there are no edges
between these connected components in the original network, and each node
v knows its whole connected component G(v); it follows from the structure of
Phase 3, that only small components that cannot merge into bigger ones remain
at the end of this phase. Therefore, each node v can compute a (L1 ∩G(v), L2 ∩
G(v))-broadcast protocol. Since there are no edges between the components, the
schedules for all components can be executed simultaneously without causing
additional collisions, forming a new protocol S2. Concatenation of S1 and S2

gives a (L1, L2)-broadcast protocol working in time O(log2 n). ��

5 Broadcasting in Networks with Any Radius 1 ≤ D ≤ n

In this section we describe a deterministic algorithm accomplishing broadcast in
time O(D

√
n log6 n) on any network of radius D. The algorithm work in stages.

After the kth stage of the algorithm, for k ∈ [D], where D is the radius of the
network, the following properties will be satisfied:

(P1) All nodes from
⋃k

i=0 Li are informed and each node v ∈ Li, for i ≤ k,
knows its layer i.

220 T. Jurdzinski and D.R. Kowalski

(P2) For each i ∈ [k − 1], the protocol Sendi is constructed, which performs
(Li−1, Li)-broadcast in time O(log2 n), i.e., if all nodes in Li have the same
message M , the protocol Sendi makes M known to all nodes of Li+1 in time
O(log2 n).

(P3) For each i ∈ [k − 1], the protocol Testi is constructed which solves the
i-layer emptiness testing problem in time O(i log2 n).

The term “protocol is constructed” means here that each node knows its schedule
in some protocol solving the appropriate communication problem.

Observe that, after application of Algorithm A1, the above statements are
satisfied for k = 2 (i.e., (P1) follows from Theorem 6 and (P2) follows from
Corollary 4, and (P3) follows from Theorem 5). Assume that the above properties
are satisfied for k ≥ 2. First, we would like to show how the protocol Testk can
be build without any communication in the network, assuming Sendi and Testi

are known for i < k. Below, we assume that A ⊆ Lk is the set of stations for
which we test emptiness.

Procedure Testk(A)

1: nodes from Lk−2 execute protocol Sendk−2 with the same (arbitrary) mes-
sage M1; at the same time, each element of A ⊆ Lk sends a message M2 in
each of |Sendk−2| rounds different from M1, where |Sendk−2| denotes the
time of Sendk−2;

2: each station v ∈ Lk−1 which could not hear a message M1 from Lk−2 in the
preceding |Sendk−2| rounds belongs to the set A′;

3: execute Testk−1(A
′), let R be the result of this execution known to all

elements of Lk−1;
4: execute Sendk−1 with the message R.

Assume that time of Sendi is at most c1 log
2 n and time of Testi is at most

c2i log
2 n for each i < k and c2 > 2c1. Then, time of the above protocol is at

most 2c1 log
2 n + c2(k − 1) log2 n < c2k log

2 n which shows that time of Testk

is O(k log2 n).

Procedure Electk. Using the protocol Testk, one can build a protocol Electk

solving the kth layer election problem, i.e., chooses an element of A ⊆ Lk with
the largest key (keys are polynomial wrt n), provided A is not empty. Such a
protocol requires logn execution of Testk, since it gradually decreases A using
binary selection. Therefore, the complexity of protocol Electk is O(k log3 n).

Procedure Informk. Algorithm A1 relies on the fact that all elements of L1 are
connected to the source and therefore, once an element v ∈ L1 is elected, it can
pass any message M to all elements of L1 in two rounds (through the source).
We need a counterpart of this possibility in the case when a node v ∈ Lk for
k > 1 wants to pass a message M to all other elements of Lk. Such a message
can be first sent to the source in k− 1 rounds in the following way. Assume that
each station v stores prec(v), id of the station which informed v. In order to send
a message from v0 ∈ Lk to s in k rounds, vi = prec(vi−1) sends a message from

On the Complexity of Distributed Broadcasting and MDS Construction 221

Lk−i+1 to Lk−i in the ith round, for i ∈ [k]. Then, the message is transmitted
from the source to Lk by the application of Send0,Send1, . . . ,Sendk−1. We call
such a protocol Informk. Note that its time complexity is O(k log2 n) by (P2).

Algorithm Ak. Equipped with the protocols Sendk, Electk and Informk, we
are ready to transmit the broadcasted message from Lk to Lk+1. Namely, we
mimic the algorithm A1 in the following way:

(a) nodes from Lk work as the elements of L1 in A1;
(b) newly informed nodes and stations in Lk ∪Lk−1 work as the elements of L2

in A1 (nodes informed during this execution, which do not belong to Lk−1,
learn that they belong to Lk+1);

(c) each time emptiness of some subset of L1 should be checked in A1, the
procedure Testk is applied;

(d) each time an element from some subset of L1 should be chosen in A1, the
procedure Electk is applied;

(e) each time a message M from v ∈ L1 should be transmitted through the
source to the whole L1, the procedure Informk is used.

One subtle issue is that our presentation of Algorithm A1 utilized the fact that
nodes in layer L1 know which of their neighbors are in which layer. A corre-
sponding property may not be true after moving to the next layers. Therefore,
in order to apply algorithm A1, after the adaptation described in the above
items (a)–(e), for propagating the broadcast message from Lk to Lk+1, a few
more subtle technical fixes in Phase 3 are needed (they do not, however, change
the general structure of the algorithm and its analysis). Let Ak denote algorithm
A1 modified as described in (a)–(e).

Procedure Sendk. It can be argued that the knowledge about the nodes col-
lected during the execution of A1 is sufficient for designing a (L1, L2)-broadcast
protocol of size O(log2 n) (c.f., Corollary 4). This property generalizes to Ak,
since the information acquired by Lk about Lk+1 corresponds to the informa-
tion about L2 known to L1 during the execution of A1. That is, the nodes in
Lk can build a (Lk, Lk+1)-broadcast protocol Sendk of size O(log2 n) after the
execution of Ak. Thus, (P1)–(P3) are satisfied after the execution of Ak. Based
on the constructions of Ak,Testk,Sendk, and Electk, we obtain the following
broadcast algorithm B:

Algorithm B
1: The source sends the broadcasted message.
2: for k = 2, 3, . . . do
3: Execute Ak;
4: Build Testk,Sendk, and Electk;
5: Execute Testk(Lk) in order to check whether Lk is empty;
6: If Lk is empty, finish the algorithm.

Let us stress here that deletion of nodes in phases 1–4 of Ak applies only to the
execution of Ak — the deleted nodes are restored after that.

222 T. Jurdzinski and D.R. Kowalski

Theorem 7. Algorithm B completes broadcasting in time O(D
√
n log6 n) in any

n-node radio network of radius D.

Proof. (Sketch) The above discussion justifies the fact that properties (P1)-(P3)
are satisfied in consecutive stages defined by the for loop of algorithm B. More-
over,Electk works in time O(k log3 n) for each k, as discussed earlier. Therefore,
the number of rounds in the kth stage of the algorithm is

O

(√
n log6 n+ (k log3 n) · nk−1 + nk + nk+1√

n

)
,

due to Theorem 6 (recall that nodes from Lk−1 and Lk+1 play the role of L2 in
the execution of Ak).

The test of emptiness of Lk in line 6 guarantees that the algorithm finishes
its work only after informing all nodes in the Dth layer, where D is the radius
of the network (recall that, after execution of Testk on the set A, all elements

of
⋃k

i=1 Li know the result of the test).
Observe that each execution of Informk in Algorithm Ak (e.g., in step 2 of

Phase 1 or Phase 4), for k ∈ [D], is preceded by an execution of Electk. Hence,
the executions of Informk, for k ∈ [D], have no impact on the asymptotic com-
plexity of the algorithm (as the complexity of Informk is asymptotically smaller
than the complexity of Electk). Thus, the time complexity of algorithm B is

O

(
D ·

√
n log6 n+

D−1∑
k=1

k log3 n
nk−1 + nk + nk+1√

n

)
= O(D

√
n log6 n) . ��

6 From Broadcasting to Minimal Dominating Set

Observe that the lower bound Ω(
√
Dn log(n/D)) on broadcasting can be ex-

tended in a natural way to the problem of distributed construction of MDS,
since at least one node in the last component of the network used in the proof
of the lower bound on broadcasting (c.f., Theorem 4 and Corollary 3) must be
reached by the message initiated by the source. Indeed, otherwise all elements
of the last component must have decided whether they belong to MDS based
merely on the information about their neighbors in a graph, which is insufficient
for some network topologies.

Algorithms Ak and B could be used as black boxes to obtain MDS in a dis-
tributed way in asymptotically the same number of rounds. In the beginning, the
broadcasting algorithm B is run. It is enough to compute sets MDSk, being the
intersection of the final MDS with layer Lk of the network, after (and based on)
the execution of Ak, where k = 3i+1 for non-negative integers i not larger than
(D − 2)/3. Assume that the execution of algorithm Ak has just finished. First,
all nodes that end up Phase 3 in small components without outside neighbors,
apply a centralized greedy schedule to select a MDS for the component. Next,
nodes that were elected by the source during Phases 1, 3 and 4 check, one after
another in the reversed order to the one they were elected in the execution of Ak,

On the Complexity of Distributed Broadcasting and MDS Construction 223

whether they have neighbors that have not been dominated yet and whether they
have neighbors already selected to the dominating set; both checks are done by
using procedure Test. If the first question is answered affirmative or the second
one is answered negative, the node includes itself to the dominating set.

It follows directly from the properties of broadcasting and the above greedy
selection made from the broadcasting nodes, that the above algorithm computes
a dominating set, and no node can be removed without violating the domina-
tion property. In terms of round complexity, the MDS algorithm mimics some
operations that occurred in the original execution of the broadcast algorithm B,
and therefore its time complexity is (asymptotically) upper-bounded by the time
complexity of algorithm B. Thus the following result holds.

Theorem 8. Every distributed solution building a MDS requires Ω(
√

Dn log n
D)

rounds on some radio networks of radius D. There exists a distributed algorithm
constructing a MDS in O(D

√
n log6 n) on any radio network of radius D.

References

1. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

2. De Bonis, A., Ga̧sieniec, L., Vaccaro, U.: Generalized Framework for Selectors With
Applications in Optimal Group Testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 81–96. Springer,
Heidelberg (2003)

3. Brito, C.F., Vaya, S.: Improved lower bound for deterministic broadcasting in radio
networks. Theor. Comput. Sci. 412(29), 3568–3578 (2011)

4. Chlamtac, I., Kutten, S.: Tree-based broadcasting in multihop radio networks.
IEEE Trans. Computers 36(10), 1209–1223 (1987)

5. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in
multihop radio networks. IEEE Transactions on Communications 39(3), 426–433
(1991)

6. Chlebus, B.S., Kowalski, D.R.: Almost Optimal Explicit Selectors. In: Lískiewicz,
M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270–280. Springer, Hei-
delberg (2005)

7. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: SODA, pp. 709–718 (2001)

8. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. J. Algorithms 60(2), 115–143 (2006)

9. Goldberg, L.A., Jerrum, M., Leighton, F.T., Rao, S.: Doubly logarithmic commu-
nication algorithms for optical-communication parallel computers. SIAM J. Com-
put. 26(4), 1100–1119 (1997)

10. Kowalski, D.R., Pelc, A.: Time of deterministic broadcasting in radio networks
with local knowledge. SIAM J. Comput. 33(4), 870–891 (2004)

11. Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Dis-
tributed Computing 18(1), 43–57 (2005)

12. Kushilevitz, E., Mansour, Y.: An omega(d log (n/d)) lower bound for broadcast in
radio networks. SIAM J. Comput. 27(3), 702–712 (1998)

On the Impact of Identifiers on Local Decision�

Pierre Fraigniaud1,		, Magnús M. Halldórsson2,			, and Amos Korman		

1 CNRS and University Paris Diderot, France
2 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
{pierre.fraigniaud,amos.korman}@liafa.univ-paris-diderot.fr,

mmh@ru.is

Abstract. The issue of identifiers is crucial in distributed computing.
Informally, identities are used for tackling two of the fundamental diffi-
culties that are inherent to deterministic distributed computing, namely:
(1) symmetry breaking, and (2) topological information gathering. In the
context of local computation, i.e., when nodes can gather information
only from nodes at bounded distances, some insight regarding the role
of identities has been established. For instance, it was shown that, for
large classes of construction problems, the role of the identities can be
rather small. However, for the identities to play no role, some other kinds
of mechanisms for breaking symmetry must be employed, such as edge-
labeling or sense of direction. When it comes to local distributed decision
problems, the specification of the decision task does not seem to involve
symmetry breaking. Therefore, it is expected that, assuming nodes can
gather sufficient information about their neighborhood, one could get rid
of the identities, without employing extra mechanisms for breaking sym-
metry. We tackle this question in the framework of the LOCAL model.

Let LD be the class of all problems that can be decided in a constant
number of rounds in the LOCAL model. Similarly, let LD∗ be the class
of all problems that can be decided at constant cost in the anonymous
variant of the LOCALmodel, in which nodes have no identities, but each
node can get access to the (anonymous) ball of radius t around it, for any
t, at a cost of t. It is clear that LD∗ ⊆ LD. We conjecture that LD∗ = LD.
In this paper, we give several evidences supporting this conjecture. In
particular, we show that it holds for hereditary problems, as well as
when the nodes know an arbitrary upper bound on the total number
of nodes. Moreover, we prove that the conjecture holds in the context
of non-deterministic local decision, where nodes are given certificates
(independent of the identities, if they exist), and the decision consists in
verifying these certificates. In short, we prove that NLD∗ = NLD.

Keywords: Distributed complexity, locality, identities, decision prob-
lems, symmetry breaking, non-determinism.

� This work is supported by the Jules Verne Franco-Icelandic bilateral scientific
framework.

�� Additional support from ANR project DISPLEXITY, and INRIA project GANG.
��� Supported by Iceland Research Foundation grant-of-excellence 90032021.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 224–238, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Impact of Identifiers on Local Decision 225

1 Introduction

1.1 Background and Motivation

The issue of identifiers is crucial in distributed computing [2, 33]. Indeed, the
correct operation of deterministic protocols often relies on the assumption that
each processor u comes with with a unique identity, Id(u) [9]. Informally, in
network computing, such an identity assignment is crucial for tackling two of
the fundamental difficulties that are inherent to distributed computing, namely:
(1) symmetry breaking, and (2) topological information gathering.

The use of identities for tackling the above two difficulties is illustrated well in
the context of local algorithms [30, 32]. Indeed, in the LOCAL model [35], an al-
gorithm that runs in t communication rounds, assuming an identity assignment,
can be viewed as composed of two parts: first, collecting at each node u, the ball
B(u, t) of radius t around it (together with the inputs of nodes), and second,
deciding the output at u based solely on the information in B(u, t). To achieve
these two tasks, one should first obtain the ball B(u, t), which may not be pos-
sible if the underlying graph is anonymous (i.e., without identities). Moreover,
even if obtaining the ball is possible, e.g., if the structure of the graph allows it,
the absence of unique identities given to the nodes may prevent the algorithm
from breaking symmetry. For example, in the absence of unique identities, it is
impossible to design a distributed deterministic coloring algorithm, even for the
symmetric connected graph composed of two nodes only. In fact, to the best of
our knowledge, all algorithms in the LOCAL model are designed assuming the
presence of pairwise distinct identities or some other type of node-labeling or
edge-labeling, including, e.g., sense of direction [5, 22, 29, 31, 33, 34].

The seminal paper of Naor and Stockmeyer [33] provides an important insight
regarding the role of identities in local computation. Informally, they show that,
even though identities are necessary, in many cases the actual values of identities
is not crucial, and only their relative order matters. Specifically, [33] shows that
for a particular class of problems, called LCL (for Locally Checkable Languages),
if there exists a local algorithm that, for any identity assignment, constructs an
instance of a problem in LCL in constant number of rounds, then there exists
an order invariant1 algorithm for that problem that runs in the same number
of rounds. LCL restricts its concern to graphs with constant maximum degree,
and to problems with a constant number of inputs. The assumption on the size
of the inputs of problems in LCL was shown necessary in [21], by exhibiting
a natural problem that is locally checkable, has unbounded input size, can be
solved in 1 round with identities, but cannot be solved in constant time by any
order invariant algorithm. The role of identities can also be gauged by comparing
their impact to that of “orientation mechanisms”. For instance, Göös et al. [20]
have shown that for a large class of optimization problems, called PO-checkable

1 Essentially, an order invariant algorithm uses the actual values of the identities only
to impose an ordering between the nodes, that is, it behaves the same for any two
identity assignments that preserve the total order between the nodes. For more
details refer to [33].

226 P. Fraigniaud, M.M. Halldórsson, and A. Korman

problems, local algorithms do not benefit from any kind of identifiers: if a PO-
checkable optimization problem can be approximated with a local algorithm,
the same approximation factor can be achieved in anonymous networks if the
network is provided with a port-numbering and an orientation.

The discussion above involved distributed construction tasks, including, e.g.,
graph coloring [5, 29, 30, 33, 34], maximal independent set [30, 34], and maximal
matching [22, 31]. When it comes to distributed decision tasks [13, 14], symmetry
breaking issues do not however seem to play a role. Informally, a decision task
requires the nodes to “collectively decide” whether the given instance (i.e., a
graph with inputs to the nodes) satisfies some specific properties. For instance,
deciding coloring requires, given a colored graph, to check whether this graph is
properly colored. The meaning of “collectively decide” is as follows. On a legal
instance, all nodes should output “yes”, and on an illegal one, at least one node
should output “no”. Note that it is not really important whether this node is
unique or not; hence, this specification does not inherently require any symmetry
breaking. Therefore, assuming that each node u can obtain the ball B(u, t), it
makes sense that the assumption of having an identity assignment may not be
crucial for achieving correct decision.

1.2 Model and Objectives

We tackle the question of whether identities play a role in decision problems in
the framework of the aforementioned LOCAL model [35], which is a standard
distributed computing model capturing the essence of locality. Recall that, in
this model, processors are nodes of a connected network G = (V (G), E(G)),
have pairwise distinct identities, and have inputs. More formally, a configuration
is a triplet (G,x, Id) where G is a connected graph, every node v ∈ V (G) is
assigned as its local input a binary string x(v) ∈ {0, 1}∗, and Id(v) denotes
the identity of node v. (In some problems, the local input of every node is
empty, i.e., x(v) = ε for every v ∈ V (G), where ε denotes the empty binary
string). Processors are woken up simultaneously, and computation proceeds over
the input configuration (G,x, Id) in fault-free synchronous rounds during which
every processor exchanges messages of unlimited size with its neighbors in the
underlying network G, and performs arbitrary individual computations on its
data. In many cases, the running time of an algorithm is measured with respect
to the size n of G: the running time of an algorithm is defined as the maximum
number of rounds it takes to terminate at all nodes, over all possible n-node
networks. Similarly to [21, 33], we consider algorithms whose running time is
independent of the size of the network, that is they run in constant time.

Let B(u, t) be the ball centered at u, of radius t, excluding the edges be-
tween two nodes at distance exactly t from u. As mentioned before, without loss
of generality, any algorithm running in time t = O(1) in the LOCAL model
consists of:

1. Collecting (in t rounds) at every node u the structure of the ball B(u, t)
together with all the inputs x(v) and identities Id(v) of these nodes, and,

On the Impact of Identifiers on Local Decision 227

2. Performing some individual computation at every node. (Note that we do
not insist on efficient computations, as long as they involve functions that are
computable; Of course, in practice, we seek for polynomial-time algorithms,
but our results do not rely on this assumption).

We define the anonymous LOCAL model similarly to the LOCAL model, ex-
cept that nodes have no identities. More precisely, an input configuration in
the anonymous LOCAL model is just a pair (G,x). An algorithm running in
time t = O(1) in the anonymous LOCAL model consists of:

1. Getting at every node u a snapshot of the structure of the ball B(u, t) to-
gether with all the inputs of the nodes in this ball, and,

2. Performing some individual computation at every node.

Note that the anonymous LOCAL model does not explicitly involve communica-
tions between nodes. Instead, it implicitly assumes that the underlying network
supports the snapshot operation. Clearly, this model is not stronger than the
LOCAL model, and possibly even strictly weaker, since a node u can no longer
base its individual computation on the identities of the nodes in the ball B(u, t).
One can think of various other “anonymous” models, i.e., which do not involve
node identities. In particular, there is a large literature on distributed comput-
ing in networks without node identities, where symmetry breaking is enabled
thanks to locally disjoint port numbers (see, e.g., [18]). We consider the anony-
mous LOCAL model to isolate the role of node identities from other symmetry
breaking mechanisms.2 Our aim is to compare the power of the anonymous
LOCAL model with the standard LOCAL model in order to capture the impact
of identities on local distributed decision.

Recall from [13] that a distributed language is a decidable collection L of
configurations. (Since an undecidable collection of configurations remains unde-
cidable in the distributed setting too, we consider only decidable collections of
configurations). A typical example of a language is

Coloring = {(G,x) | ∀v ∈ V (G), ∀w ∈ N(v),x(v) = x(w)} ,

where N(v) denotes the (open) neighborhood of v, that is, all nodes at distance
exactly 1 from v. Still following the terminology from [13], we say that a dis-
tributed algorithm A decides a distributed language L if and only if for every
configuration (G,x), every node of G eventually terminates and outputs “yes”
or “no”, satisfying the following decision rules:

– if (G,x) ∈ L, then each node outputs “yes”;
– if (G,x) /∈ L, then at least one node outputs “no”.

2 In some sense, the anonymous LOCALmodel is the strongest model among all mod-
els without node identities. Indeed, there are network problems that can be solved
in the anonymous LOCAL model which cannot be solved in the aforementioned
model that is based on locally disjoint port numbers. A simple example is to locally
detect the absence of a 3-node cycle.

228 P. Fraigniaud, M.M. Halldórsson, and A. Korman

In the (non-anonymous) LOCAL model, these two rules must be satisfied for
every identity assignment. That is, all processes must output “yes” on a legal
instance, independent of their identities. And, on an illegal instance, at least
one node must output “no”, for every identity assignment. Note that this node
may potentially differ according to the identity assignment. Some languages
can be decided in constant time (e.g., Coloring), while others can easily be
shown not to be decidable in constant time (e.g., “is the network planar?”).
In contrast to the above examples, there are some languages whose status is
unclear. To elaborate on this, consider the particular case where it is required
to decide whether the network belongs to some specified family F of graphs. If
this question can be decided in a constant number of communication rounds,
then this means, informally, that the family F can somehow be characterized
by relatively simple conditions. For example, a family F of graphs that can be
characterized as consisting of all graphs having no subgraph from C, where C
is some specified finite set of graphs, is obviously decidable in constant time.
However, the question of whether a family of graphs can be characterized as
above is often non-trivial. For example, characterizing cographs as precisely the
graphs with no induced P4, attributed to Seinsche [36], is not easy, and requires
nontrivial usage of modular decomposition.

We are now ready to define one of our main subjects of interest, the classes
LD and LD∗. Specifically, LD (for local decision) is the class of all distributed
languages that can be decided by a distributed algorithm that runs in a constant
number of rounds in the LOCAL model [13]. Similarly, LD∗, the anonymous
version of LD, is the class of all distributed languages that can be decided by a
distributed algorithm that runs in a constant number of rounds in the anonymous
LOCAL model. By definition, LD∗ ⊆ LD. We conjecture that

LD∗ = LD.

In this paper, we provide several evidences supporting this conjecture. In ad-
dition, we investigate the non-deterministic version of these classes, and prove
that they coincide. More specifically, a distributed verification algorithm is a
distributed algorithm A that gets as input, in addition to a configuration (G,x),
a global certificate vector y, i.e., every node v of a graph G gets as input two
binary strings, an input x(v) ∈ {0, 1}∗ and a certificate y(v) ∈ {0, 1}∗. A verifi-
cation algorithm A verifies L if and only if for every input configuration (G,x),
the following hold:

– if (G,x) ∈ L, then there exists a certificate y such that every node outputs
“yes”;

– if (G,x) /∈ L, then for every certificate y, at least one node outputs “no”.

Again, in the (non-anonymous) LOCAL model, these two rules must be satisfied
for every identity assignment, but the certificates must be the same regardless of
the identities. We now recall the class NLD, for non-deterministic local decision,
as defined in [13]: it is the class of all distributed languages that can be verified in
a constant number of rounds in the LOCAL model. Similarly, we define NLD∗,

On the Impact of Identifiers on Local Decision 229

the anonymous version of NLD, as the class of all distributed languages that can
be verified in a constant number of rounds in the anonymous LOCAL model.
By definition, NLD∗ ⊆ NLD.

1.3 Our Results

In this paper, we give several evidences supporting the conjecture LD∗ = LD. In
particular, we show that it holds for languages defined on paths, with a finite set
of input values. More generally, we show that the conjecture holds for hereditary
languages, that is, languages closed under node deletion. Regarding arbitrary
languages, and arbitrary graphs, we prove that the conjecture holds assuming
that every node knows an upper bound on the total number of nodes in the
input graph. (This upper bound can be arbitrary, and may not be the same for
all nodes).

Moreover, we prove that equality between non-anonymous decision and anony-
mous decision holds in the context of non-deterministic local decision, where
nodes are given certificates (independent of the identities, if they exist), and
the decision consists in verifying these certificates. More precisely, we prove that
NLD∗ = NLD. This latter result is obtained by characterizing both NLD and
NLD∗.

1.4 Related Work

The question of how to locally decide (or verify) languages has received quite a
lot of attention recently. Inspired by classical computation complexity theory, it
was suggested in [13] that the study of decision problems may lead to new struc-
tural insights also in the more complex distributed computing setting. Indeed,
following that paper, which focused on the LOCAL model, efforts were made
to form a fundamental computational complexity theory for distributed decision
problems in various other aspects of distributed computing [13, 15–17].

The classes LD, NLD and BPLD defined in [13] are the distributed analogues
of the classes P, NP and BPP, respectively. The paper provides structural results,
developing a notion of local reduction and establishing completeness results. One
of the main results is the existence of a sharp threshold for randomization, above
which randomization does not help (at least for hereditary languages). More
precisely, the BPLD classes were classified into two: below and above the ran-
domization threshold. In [14], the authors show that the hereditary assumption
can be lifted if we restrict our attention to languages on path topologies. These
two results from [13, 14] are used in the current paper in a rather surprising
manner. The authors in [14] then “zoom” into the spectrum of classes below
the randomization threshold, and defines a hierarchy of an infinite set of BPLD
classes, each of which is separated from the class above it in the hierarchy.

The precise knowledge of the number of nodes n was shown in [13] to be of
large impact on non-deterministic decision. Indeed, with such a knowledge ev-
ery language can be decided non-deterministically in the model of NLD. We note,

230 P. Fraigniaud, M.M. Halldórsson, and A. Korman

however, that the knowledge of an arbitrary upper bound on n (as assumed here
in one of our results) seems to be a much weaker assumption, and, in particular,
will not suffice for non-deterministically deciding all languages. In the context
of construction problems, it was shown in [28] that in many case, the knowledge
of n (or an upper bound on n) is not essential.

The original theoretical basis for non-determinism in local computation was
laid by the theory of proof-labeling schemes (PLS) [19, 24–26] originally defined
in [26]. As mentioned, this notion resembles the notion of NLD, but differs in
the role identities play. Specifically, in PLS the designer of the algorithm may
base the certificates’ (called labels in the terminology of PLS) construction on
the given identity assignment. In contrast, in the model of NLD, the certificates
must be the same regardless of the identities of nodes. Indeed, this difference is
significant: while every language can be verified by a proof labeling scheme, not
every language belongs to NLD [13]. These notions also bear some similarities to
the notions of local computation with advice [7, 10–12], local detection [1], local
checking [4], or silent stabilization [8]. In addition, as shown later on, the notion
of NLD is related also to the theory of lifts or covers [2, 3].

Finally, the classification of decision problems in distributed computing has
been studied in several other models. For example, [6] and [23] study specific
decision problems in the CONGEST model. In [25], the authors study MST
verification in the PLS sense but under the CONGEST model of communication.
In addition, decision problems have been studied in the asynchrony discipline
too, specifically in the framework of wait-free computation [16, 17] and mobile
agents computing [15]. In the wait-free model, the main issues are not spatial
constraints but timing constraints (asynchronism and faults). The main focus of
[17] is deterministic protocols aiming at studying the power of the “decoder”,
i.e., the interpretation of the results. While this paper essentially considers the
AND-checker (since a global “yes” corresponds to all processes saying “yes”),
[17] deals with other interpretations, including more values (not only “yes” and
“no”), with the objective of designing checkers that use the smallest number of
values.

2 Deterministic Decision

We conjecture that LD = LD∗. A support to this conjecture is that it holds for
a large class of languages, namely for all hereditary languages, that is languages
closed under node deletion. For instance, Coloring and MIS are hereditary, as
well as all languages corresponding to hereditary graph families, such as planar
graphs, interval graphs, forests, chordal graphs, cographs, perfect graphs, etc.

Theorem 1. LD∗ = LD for hereditary languages.

To prove the theorem, it is sufficient to show that LD ⊆ LD∗ for hereditary
languages. This immediately follows from the statement and proof of Theo-
rem 3.3 in [13]. Indeed, let A be a non-anonymous local algorithm deciding L.

On the Impact of Identifiers on Local Decision 231

This deterministic algorithm is in particular a randomized algorithm, with suc-
cess probabilities p = 1 for legal instances, and q = 1 for illegal instance. That
is, algorithm A is a (1, 1)-decider for L, according to the definition in [13]. Since
L is hereditary, and since p2+q > 1, the existence of A implies the existence of a
specific deterministic anonymous local algorithm D for L. Indeed, the algorithm
D described in the proof of Theorem 3.3 in [13] is in fact anonymous: it simply
collects the ball B(u, t) of radius t around each node u for some constant t, and
u then decides “yes” or “no” according to whether B(u, t) ∈ L or not, regardless
of the identities.

A similar proof, based on Theorem 4.1 in [14], enables to establish the
following:

Theorem 2. LD∗ = LD for languages defined on the set of paths, with a finite
set of input values.

Another evidence supporting the conjecture LD = LD∗ is that it holds assum-
ing that nodes have access to a seemingly weak oracle. Specifically, this oracle,
denoted N, simply provides each node with an arbitrarily large upper bound on
the total number of nodes in the actual instance. (It is not assumed that all the

upper bounds provided to nodes are the same). We denote by LD∗N the class of
languages that can be decided by an anonymous local algorithm having access
to oracle N, and we prove the following:

Theorem 3. LD∗ ⊆ LD ⊆ LD∗N.

Proof. We just need to prove that LD ⊆ LD∗N. Let L ∈ LD, and let A be a
local (non-anonymous) algorithm deciding L. Assume that the running time of
A is t. We transform A into an anonymous algorithm A′ deciding L in time t,
assuming each node u in a given input G has an access to the oracle N, i.e., it
knows an arbitrary upper bound nu on the number of nodes in G. Algorithm
A′ works as follows. Each node u collects the ball B(u, t) of radius t around it.
Then, for every possible assignment of identities to the nodes of B(u, t) taken
from the range [1, nu], node u simulates the behavior of the non-anonymous
algorithm A on the ball B(u, t) with the corresponding identities. If, in one of
these simulations, algorithm A decides “no”, then A′ decides “no”. Otherwise,
A′ decides “yes”.

We now prove the correctness of A′. If the input (G,x) ∈ L, then A accepts
it for every identity assignment to the nodes of G. Therefore, since, for every
node u, every possible identity assignment to the nodes of the ball B(u, t) can
be extended to an identity assignment to all the nodes of G, all the simulations
of A by u return “yes”, and hence A′ accepts L as well. On the other hand, if
(G,x) /∈ L then A rejects it for every identity assignment to the nodes of G.
That is, for every identity assignment to the nodes of G, at least one node u
decides “no”. (Note that, this node u may be different for two different iden-
tity assignments). Let us fix one identity assignment Id to the nodes of G, in
the range [1, n], and let u be one node that decides “no” for Id. Let BId(u, t) be

232 P. Fraigniaud, M.M. Halldórsson, and A. Korman

the ball B(u, t) with the identities of the nodes given by Id. In A′, since u tries
all possible identity assignments of the ball B(u, t) in the range [1, nu] with
n ≤ nu, in one of its simulations of A, node u will simulate A on BId(u, t).
In this simulation, node u decides “no”, and hence algorithm A′ rejects L as
well. ��

Note that the inclusion LD ⊆ LD∗N holds when one imposes no restrictions on
the individual sequential running time. However, the transformation of a (non-
anonymous) local algorithm into an anonymous local algorithm as described in
the proof of Theorem 3 is very expensive in terms of individual computation.
Indeed, the number of simulations of the original local algorithm A by each
node u can be as large as

(
nu

nB

)
where nu is the upper bound on n given by

the oracle N, and nB is the number of nodes in the ball B(u, t). This bound
can be exponential in n even if the oracle provides a good approximation of

n (even if it gives precisely n). It would be nice to establish LD ⊆ LD∗N by
using a transformation not involving a huge increase in the individual sequential
computation time.

3 Non-deterministic Decision

In the previous section, we have seen several evidences supporting the conjecture
that LD∗ = LD, but whether it holds or not remains to be proved. In this section,
we turn our attention to the non-deterministic variants of these two classes, and
show that they coincide. More formally, we have:

Theorem 4. NLD∗ = NLD.

Proof. To prove NLD∗ = NLD, it is sufficient to prove NLD ⊆ NLD∗. To estab-
lish this inclusion, we provide a sufficient condition for NLD∗-membership, and
prove that it is a necessary condition for NLD-membership.

Let I = (G,x) and I ′ = (G′,x′) be two input instances. A homomorphism
from I to I ′ is a function f : V (G) → V (G′) that preserves the edges of G as
well as the inputs to the nodes. Specifically,

{u, v} ∈ E(G)⇒ {f(u), f(v)} ∈ E(G′),

and f maps every node u ∈ V (G) to a node f(u) ∈ V (G′) satisfying

x′(f(u)) = x(u).

For instance, assuming the nodes have no inputs, and labeling the nodes of the
n-node cycle Cn by consecutive integers from 0 to n − 1, modulo n, then the
map f : C8 → C4 defined by f(u) = u mod 4 is a homomorphism. The trivial
map g : C8 → K2 defined by g(u) = u mod 2, where K2 is the 2-node clique, is
also a homomorphism. To establish conditions for NLD- and NLD∗-membership,
we require the involved homomorphisms to preserve the local neighborhood of a
node, and define the notion of t-local isomorphism.

On the Impact of Identifiers on Local Decision 233

Let t be a positive integer. We say that I is t-local isomorphic to I ′ if and only if
there exists an homomorphism f from I to I ′ such that, for every node v ∈ V (G),
f restricted to BG(v, t) is an isomorphism from BG(v, t) to BG′(f(v), t). We call
such a homomorphism f a t-local isomorphism.

Note that a homomorphism is not necessarily a 1-local isomorphism. For in-
stance, the aforementioned map f : C8 → C4 defined by f(u) = u mod 4 is a
1-local isomorphism, but the map g : C8 → K2 defined by g(u) = u mod 2 is not
a 1-local isomorphism. To be a 1-local isomorphism, a homomorphism should
also insure isomorphism between the balls of radius 1. Also observe that any
t-local isomorphism f : G → G′ is onto (because if a node of G′ has no pre-
image, then neither do its neighbors have a pre-image, since homomorphisms
preserve edges, and so forth). To avoid confusion, it is thus useful to keep in
mind that, informally, a t-local isomorphism goes from a “larger” graph to a
“smaller” graph.

Definition 1. For positive integer t, we say that L is t-closed under lift if, for
every two instances I, I ′ such that I is t-local isomorphic to I ′, we have:

I ′ ∈ L ⇒ I ∈ L.

So, informally, Defintion 1 states that, for a language L to be t-closed under lift,
if a “smaller” instance I ′ is in L then any “larger” instance I that is a lift of I ′,
i.e., satisfying that I is t-local isomorphic to I ′, must also be in L. The following
lemma gives a sufficient condition for NLD∗-membership.

Lemma 1. Let L be a language. If there exists t ≥ 1 such that L is t-closed
under lift, then L ∈ NLD∗.

Proof. Let L be a language, and assume that there exists t ≥ 1 such that L is
t-closed under lift. We describe an anonymous non-deterministic local algorithm
A deciding L, and performing in t rounds. The certificate of each node v is
a triple y(v) = (i, G′,x′) where G′ is an n-node graph with nodes labeled by
distinct integers in [1, n] = {1, . . . , n}, i ∈ [1, n], and x′ is an n-dimensional
vector. Informally, the certificates are interpreted by A as follows. The graph G′

is supposed to be a “map” of G, that is, G′ is interpreted as an isomorphic copy
of G. The integer i is the label of the node in G′ corresponding to node v in G.
Finally, x′ is interpreted as the input of the nodes in G′.

The algorithm A performs as follows. Every node v gets BG(v, t), the ball of
radius t around it; hence, in particular, it collects all the certificates of all the
nodes at distance at most t from it. Then, by comparing its own certificate with
the ones of its neighbors, it checks that the graph G′, and the input x′ in its
certificate, are identical to the ones in the certificates of its neighbors. It also ver-
ifies consistency between the labels and the nodes in its ball of radius t. That is,
it checks whether the labels and inputs in the certificate of the nodes in BG(v, t)
are as described by its certificate. Whenever a node fails to pass any of these
tests, it outputs “no”. Otherwise it output “yes” or “no” according to whether
(G′,x′) ∈ L or not, respectively. (This is doable because we are considering
languages that are decidable in the usual sense of sequential computation).

234 P. Fraigniaud, M.M. Halldórsson, and A. Korman

We show that A performs correctly. If (G,x) ∈ L, then by labeling the nodes
in G by distinct integers from 1 to |V (G)|, and by providing the node v la-
beled i with y(v) = (i, G,x), the algorithm A output “yes” at all nodes, as
desired. Consider now a instance I = (G,x) /∈ L. Assume, for the purpose of
contradiction that there exists a certificate y leading all nodes to output “yes”.
Let f : V (G) → V (G′) be defined by f(v) = i where i is the label of v in
its certificate. Since y passes all tests of A, it means that (1) y(v) = (i, G′,x′)
where the instance I ′ = (G′,x′) is the same for all nodes, (2) f restricted to
BG(v, t) is an isomorphism from BG(v, t) to BG′(f(v), t), for every node v, and
(3) (G′,x′) ∈ L. In view of (2), I is t-local isomorphic to I ′. Therefore, (3)
implies that I = (G,x) ∈ L, because L is t-closed under lift. This is in con-
tradiction with the actual hypothesis (G,x) /∈ L. Thus, for each certificate y,
there must exist at least one node that outputs “no”. As a consequence, A is a
non-deterministic algorithm deciding L, and thus L ∈ NLD∗. &

The following lemma shows that the aforementioned sufficient condition for
NLD∗-membership is a necessary condition for NLD-membership.

Lemma 2. Let L be a language. If L ∈ NLD, then there exists t ≥ 1 such that
L is t-closed under lift.

Proof. Let L be a language in NLD, and let A be a non-deterministic (non-
anonymous) local algorithm deciding L. Assume, for the purpose of contradiction
that, for any integer t ≥ 1, L is not t-closed under lift. That is, for any t, there
exist two input instances I, I ′ such that I is t-local isomorphic to I ′, with I /∈ L
and I ′ ∈ L. Assume that A runs in t rounds. Without loss of generality, we can
assume that t ≥ 1. Let I = (G,x) /∈ L and I ′ = (G′,x′) ∈ L satisfying I is
t-local isomorphic to I ′. Since I ′ ∈ L, there exists a certificate y′ such that when
A is running on I ′ with certificate y′, every node output “yes” for every identity
assignment. Since I is t-local isomorphic to I ′, there exists an homomorphism
f : I → I ′ such that, for every node v ∈ G, f restricted to BG(v, t) is an
isomorphism from BG(v, t) to BG′(f(v), t). Let y be the certificate for I defined
by y(v) = y′(f(v)). Consider the execution of A running on I with certificate y,
and some arbitrary identity assignment Id.

Since A performs in t rounds, the decision at each node v is taken according to
the inputs, certificates, and identities in the ball BG(v, t), as well as the structure
of this ball. By the nature of the homomorphism f , and by the definition of certifi-
cate y, the structure, inputs and certificates of the ball BG(v, t), are identical to
the corresponding structure, inputs and certificates of the ball BG′(f(v), t). Balls
may however differ in the identities of their nodes. So, let v0 be the node in G de-
ciding “no” for (G,x) with certificate y. There exists such a node since I /∈ L.
Let v′0 = f(v0), and assign the same identities to the nodes in BG′(v′0, t) as their
corresponding nodes in BG(v0, t). Arbitrarily extend this identities to an identity
assignment Id′ to the whole graph G′. By doing so, the two balls are not only iso-
morphic, but every node in BG(v0, t) has the same input, certificate and identity
as its image in BG′(v′0, t). Therefore, the decision taken by A at v0 ∈ G under Id

On the Impact of Identifiers on Local Decision 235

is the same as its decision at v′0 ∈ G′ under Id′. This is in contradiction to the fact
that v0 decides “no” while v′0 decides “yes”. &
Lemmas 1 and 2 together establish the theorem. ��

The proof of Lemma 1 also provides an upper bound on the size of the certificates
for graph languages in NLD, that is, for languages in NLD with no input. (This
includes, e.g., recognition of interval graphs, and recognition of chordal graphs).
Indeed, given L ∈ NLD, Algorithm A in the proof of Lemma 1 verifies L using
a certificate at each node which is essentially an isomorphic copy of the input
instance (G,x), with nodes labeled by consecutive integers in [1, n]. If L is a
graph language, then there is no input x, and thus the size of the certificates
depends only on the size of the graph. More precisely, we have:

Corollary 1. Let L ∈ NLD be a graph language. There exists an algorithm
verifying L using certificates of size O(n2) bits at each node of every n-node
graph in L.

We now argue that the above bound is tight, that is, we prove the following.

Proposition 1. There exists a graph language L ∈ NLD such that every algo-
rithm verifying L requires certificates of size Ω(n2) bits.

Proof. Recall that [26] showed that there exists a graph language for which every
proof labeling scheme (PLS) requires labels of size Ω(n2) bits (the proof of this
latter result appears in a detailed version [27]). Still in the context of PLS, [19]
showed that this lower bound holds for two natural graph families: specifically,
[19] showed that verifying symmetric graphs requires labels of size Ω(n2) bits,
and verifying non-3 colorable graphs requires almost the same size of labels,
specifically, Ω(n2/ logn) bits. Note that the certificate size required for verifying
a language in NLD is at least as large as the minimum label size required for
verifying the language via a proof labeling scheme. Unfortunately, however, one
cannot obtain our claim directly from the aforementioned results since it turns
out that neither of the two graph languages (namely, symmetric graphs and
non-3 colorable graphs) belongs to NLD.

We therefore employ an indirect approach. Specifically, consider a graph G.
We say that H is a seed of G if there exists a 1-local isomorphism from G to H .
Suppose F is a family of graphs. Let Seed-F denote the family of graphs G, for
which there exists a seed of G that belongs to F . Then, by definition, Seed-F is
1-closed under lift. Indeed, assume that there is a 1-local isomorphism g from G′

to G, and let H ∈ F be a seed of G that belongs to F . Then let f be the 1-local
isomorphism from G to H . We have that f ◦ g is a 1-local isomorphism from
G′ to H , because, for every u ∈ V (G′), BG′(u, 1) is isomorphic to BG(g(u), 1),
which in turn is isomorphic to BH(f(g(u)), 1). Thus H is also a seed of G′. Seed-
F is therefore in NLD. Now, in the proof of corollary 2.2 in [27], the authors
construct, for every integer n, a family Fn of n-node graphs that requires proof
labels of size Ω(n2). Note that for every prime integer n′, a graph G of size n′

236 P. Fraigniaud, M.M. Halldórsson, and A. Korman

belongs to Fn′ if and only if it belongs to Seed-Fn′. Therefore, there exists a
graph language, namely, Seed-Fn, that requires certificates of size Ω(n2) bits (at
least for prime n’s). ��

4 Conclusion

Again, in this paper, we provide some evidences supporting the conjecture LD∗ =
LD. For instance, Theorem 3 shows that if every node knows any upper bound
on the number of nodes n, then all languages in LD can be decided in the
anonymous LOCAL model. One interesting remark about the LOCAL model
is that it is guaranteed that at least one node has an upper bound on n. This
is for instance the case of the node with the largest identity. In the anonymous
LOCAL model, however, there is no such guarantee. Finding a language whose
decision would be based on the fact that one node has an upper bound on n
would disprove the conjecture LD∗ = LD. Nevertheless, it is not clear whether
such a problem exists.

In this paper, we also prove that NLD∗ = NLD, that is, our conjecture holds
for the non-deterministic setting. It is worth noticing that [13] proved that there
exists an NLD-complete problem under the local one-to-many reduction. It is
not clear whether such a problem exists for NLD∗. Indeed, the reduction in the
completeness proof of [13] relies on the aforementioned guarantee that, in the
LOCAL model, at least one node has an upper bound on n.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self stabilization. Theoretical Computer Science 186(1-2), 199–230 (1997)

2. Angluin, D.: Local and Global Properties in Networks of Processors. In: Proc.
Twelfth ACM Symp. on Theory of Computing, STOC, pp. 82–93 (1980)

3. Amit, A., Linial, N., Matousek, J., Rozenman, E.: Random lifts of graphs. In: Proc.
12th ACM-SIAM Symp. on Discrete Algorithms, SODA, pp. 883–894 (2001)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Checking
and Correction. In: Proc. IEEE Symp. on the Foundations of Computer Science,
FOCS, pp. 268–277 (1991)

5. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in delta) time.
In: Proc. 41st ACM Symp. on Theory of Computing, STOC, pp. 111–120 (2009)

6. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed
Approximation. In: Proc. 43rd ACM Symp. on Theory of Computing, STOC (2011)

7. Dereniowski, D., Pelc, A.: Drawing maps with advice. Journal of Parallel and
Distributed Computing 72, 132–143 (2012)

8. Dolev, S., Gouda, M., Schneider, M.: Requirements for silent stabilization. Acta
Informatica 36(6), 447–462 (1999)

9. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. on Programming Languages and Systems 5,
66–77 (1983)

On the Impact of Identifiers on Local Decision 237

10. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with
Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Ju-
rdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242.
Springer, Heidelberg (2007)

11. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Communication algorithms with advice. J.
Comput. Syst. Sci. 76(3-4), 222–232 (2008)

12. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice.
In: Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures, SPAA,
pp. 154–160 (2007)

13. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: Proc. 52nd
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 708–
717 (2011)

14. Fraigniaud, P., Korman, A., Parter, M., Peleg, D.: Randomized Distributed Deci-
sion, http://arxiv.org/abs/1207.0252

15. Fraigniaud, P., Pelc, A.: Decidability Classes for Mobile Agents Computing. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer,
Heidelberg (2012)

16. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-Free
Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer,
Heidelberg (2011)

17. Fraigniaud, P., Rajsbaum, S., Travers, C.: Universal Distributed Checkers and
Orientation-Detection Tasks (submitted, 2012)

18. Fusco, E.G., Pelc, A.: Communication Complexity of Consensus in Anonymous
Message Passing Systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 191–206. Springer, Heidelberg (2011)

19. Göös, M., Suomela, J.: Locally checkable proofs. In: Proc. 30th ACM Symp. on
Principles of Distributed Computing, PODC (2011)

20. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In:
Proc. 31st Symposium on Principles of Distributed Computing, PODC (2012)

21. Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic Local Al-
gorithms, Unique Identifiers, and Fractional Graph Colouring. In: Even, G.,
Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 48–60. Springer,
Heidelberg (2012)

22. Hanckowiak, M., Karonski, M., Panconesi, A.: On the Distributed Complexity of
Computing Maximal Matchings. SIAM J. Discrete Math. 15(1), 41–57 (2001)

23. Kor, L., Korman, A., Peleg, D.: Tight Bounds For Distributed MST Verification.
In: Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science, STACS
(2011)

24. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
tributed Computing 20, 253–266 (2007)

25. Korman, A., Kutten, S., Masuzawa, T.: Fast and Compact Self-Stabilizing Verifi-
cation, Computation, and Fault Detection of an MST. In: Proc. 30th ACM Symp.
on Principles of Distributed Computing, PODC (2011)

26. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Comput-
ing 22, 215–233 (2010)

27. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Detailed version,
http://ie.technion.ac.il/~kutten/ps-links/ProofLabelingSchemes.ps

28. Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms:
Removing Assumptions Concerning Global Knowledge. In: Proc. 30th ACM Symp.
on Principles of Distributed Computing, PODC, pp. 49–58 (2011)

http://arxiv.org/abs/1207.0252
http://ie.technion.ac.il/~kutten/ps-links/ProofLabelingSchemes.ps

238 P. Fraigniaud, M.M. Halldórsson, and A. Korman

29. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc.
21st ACM Symp. on Parallel Algorithms and Architectures, SPAA, pp. 138–144
(2009)

30. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

31. Lotker, Z., Patt-Shamir, B., Rosen, A.: Distributed Approximate Matching. SIAM
J. Comput. 39(2), 445–460 (2009)

32. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15, 1036–1053 (1986)

33. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

34. Panconesi, A., Srinivasan, A.: On the Complexity of Distributed Network Decom-
position. J. Algorithms 20(2), 356–374 (1996)

35. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
36. Seinsche, D.: On a property of the class of n-colorable graphs. J. Combinatorial

Theory, Ser. B 16, 191–193 (1974)

Black Hole Search and Exploration

in Unoriented Tori with Synchronous
Scattered Finite Automata

Euripides Markou1,	 and Michel Paquette2,		

1 Department of Computer Science and Biomedical Informatics,
University of Central Greece, Lamia, Greece

emarkou@ucg.gr
2 Department of Computer Science, Vanier College, Montréal, Canada

michel.paquette@vaniercollege.qc.ca

Abstract. We consider the problem of locating a black hole in a syn-
chronous, anonymous, and unoriented torus network using mobile agents.
A black hole is a harmful network node that destroys any agent visit-
ing it without leaving any trace. The objective is to locate the black hole
using as few agents as possible. We present here an almost optimal deter-
ministic algorithm for synchronous (partially) unoriented tori using five
scattered agents with constant memory and three identical tokens. We
also study the exploration problem of a safe (i.e., without black holes)
unoriented torus. While it has been previously shown that there is no
universal algorithm for one agent with constant memory and any con-
stant number of tokens which can explore all cubic planar graphs, we
give here the first algorithm which enables a finite automaton with two
tokens to explore (without termination detection) any totally unoriented
torus and we prove optimality on the number of tokens.

Keywords: Distributed Algorithms, Fault Tolerance, Black Hole Search,
Anonymous Networks, Mobile Agents, Finite State Automata.

1 Introduction

The exploration of an unknown graph by one or more mobile agents is a classical
problem initially formulated in 1951 by Shannon [23] and it has been extensively
studied since then (e.g., see [2,9,16]). In 1967, during a talk at Berkeley, Ra-
bin [21] conjectured that no finite automaton with a constant number of pebbles
(or tokens) can explore all graphs (a pebble is a marker that can be dropped at

� E. Markou has been co-financed by the European Union (European Social Fund-
ESF) and Greek national funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research
Funding Program: THALIS-UOA-GeomComp.

�� Part of this work was done during a visit from this author at the University of
Central Greece, financed by grants from the University of Central Greece and Cégep
International (Programme de soutien à la mobilité enseignante.)

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 239–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

240 E. Markou and M. Paquette

and removed from nodes). The first step towards a formal proof of Rabin’s con-
jecture is generally attributed to Budach [4], for an agent without pebbles. Blum
and Kozen [3] improved Budach’s result by proving that three agents cannot co-
operatively perform exploration of all graphs. In 1979, Kozen [19] proved that
four cooperative agents cannot explore all graphs. Finally, in 1980, Rollik [22]
gave a complete proof of Rabin’s conjecture. More precisely, Rollik proved that
no finite set of finite automata can cooperatively perform exploration of all cubic
planar graphs. Since a finite automaton is more powerful than a pebble (a pebble
does not have states, or a transition function), Rabin’s conjecture is a corollary
of Rollik’s theorem.

Recently, the exploration problem has also been studied in unsafe networks
which contain malicious hosts of a highly harmful nature, called black holes. A
black hole is a node which contains a stationary process destroying all mobile
agents visiting this node, without leaving any trace. In the Black Hole Search
(BHS) problem the goal for the agents is to locate the black hole within finite
time. In particular, at least one agent has to survive knowing all edges leading to
the black hole. Without the knowledge of the size of the network, the only way of
locating a black hole is to have at least one agent visiting it. However, since any
agent visiting a black hole vanishes without leaving any trace, the location of the
black hole must be deducted by some communication mechanism employed by
the agents. Four such mechanisms have been proposed in the literature: a) the
whiteboard model in which there is a whiteboard at each node of the network on
which the agents can leave messages, b) the pure token model where the agents
carry tokens which they can leave at nodes, c) the enhanced tokenmodel in which
the agents can leave tokens at nodes or edges, and d) the time-out mechanism
(only for synchronous networks) in which at least two agents gather at a node
u, and then one agent explores a new node and returns to u to inform the other
agents who wait.

The whiteboard model provides the most powerful inter-agent communication
mechanism. Since, in this model, access to a whiteboard is provided in mutual
exclusion, this model could also provide the anonymous agents with a symmetry-
breaking mechanism: if the agents start at the same node, they can get distinct
identities and then the distinct agents can assign different labels to all nodes.
Hence in this model, if the agents are initially co-located, both the agents and
the nodes can be assumed to be non-anonymous without any loss of generality.

In asynchronous networks and given that all agents initially start at the same
safe node, the Black Hole Search problem has been studied under the whiteboard
model (e.g., [11,12]), the enhanced token model (e.g., [10]) and the pure token
model (e.g., [1,14]). In these models it has been proven that the problem can
be solved with a minimal number of agents performing a polynomial number of
moves. It has been also shown that in an asynchronous network the number of
the nodes in the network must be known to the agents otherwise the problem
is unsolvable ([12]). If the graph topology is unknown, at least Δ+ 1 agents are
needed, where Δ is the maximum node degree in the graph ([11]). Furthermore
the network should be 2-connected. It is also not possible to answer the question

Black Hole Search and Exploration in Unoriented Tori with Scattered DFAs 241

of whether one black hole exists in the asynchronous network. With scattered
agents (not initially located at the same node) in asynchronous networks, the
problem has been investigated for the ring topology ([12]) and for arbitrary
topologies ([15]) in the whiteboard model while in the enhanced token model it
has been studied for rings ([13]) and for some interconnected networks ([24]).

The situation in synchronous networks is dramatically different. Under this
assumption, two co-located distinct agents can discover one black hole in any
graph (provided that the graph can be explored) by using the time-out mecha-
nism, without the need of whiteboards or tokens. Moreover the network does not
have to be 2-connected anymore, as in asynchronous networks, and furthermore
it is now possible to answer the question of whether a black hole actually ex-
ists or not in the network. No knowledge about the number of nodes is needed.
Hence, with co-located distinct agents, the issue is not the feasibility but the
time efficiency of black hole search. The issue of efficient black hole search has
been studied in synchronous networks without whiteboards or tokens, only using
the time-out mechanism (e.g., [7,8,17,18]) under the condition that all distinct
agents start at the same node. However when the agents are scattered in the
network, the time-out mechanism is not sufficient anymore: the agents have to
gather at the same node in order to use the time-out mechanism.

While the whiteboard model is commonly used in unsafe networks, the token
model has been mostly used in the exploration of safe networks. The pure token
model can be implemented with O(1)-bit whiteboards for a constant number
of agents and a constant number of tokens (since the only information which is
stored at a node’s whiteboard is the number of tokens placed at that node), while
the enhanced token model can be implemented having a O(logΔ)-bit whiteboard
on a node with degree Δ (since in that case the information stored at a node’s
whiteboard is the number of tokens placed at each port of that node). In the
whiteboard model, the capacity of each whiteboard is assumed to be of at least
Ω(log n) bits, where n is the number of nodes of the network (since in that case
the information stored at a whiteboard includes labels of nodes).

In all previous papers studying the Black Hole Search problem under a token
model apart from [1,6,5,14], the authors have used the enhanced token model
with agents having non-constant memory. The weakest pure token model has
been used in [1,14] for co-located agents with non-constant memory in asyn-
chronous networks. The first results for scattered agents with constant memory
and pure tokens appeared in [6] for synchronous unoriented rings and [5] for
synchronous oriented tori. In [5] it has been proven that three scattered agents
with constant memory and with two tokens each can locate the black hole in
any synchronous oriented torus.

2 Our Results

We study the Black Hole Search problem (BHS) for scattered identical anony-
mous agents with constant memory in synchronous anonymous unoriented torus

242 E. Markou and M. Paquette

networks under the pure token model. We use the same model as in [6,5] but
we focus on unoriented torus topologies. Throughout the paper we discuss four
cases of unoriented tori:

– type 0: the agents do not agree on anything regarding the orientation;
– type 1: the agents perceive orthogonal axes but they do not agree on which

axis is horizontal and which is vertical;
– type 2: the agents agree on which axis is horizontal and which is vertical, but

there is no consensus on the orientation of each axis;
– type 3: the agents agree on which axis is horizontal and which is vertical and

they also agree on the orientation in one of the axes.

For the BHS problem we show the results presented in Table 1:

Table 1. Summary of results for BHS in synchronous unoriented tori

Torus orientation # agents # tokens Black Hole Search

Type 0
any constant 1

Impossible
4 any constant

Type 1 or 2
4 any constant

Impossible
5 1
5 3 Algorithm UBHS5,3

Type 3
3 any constant

Impossible
4 1
5 3 Algorithm UBHS5,3

We also show the following results for the exploration problem of a safe unori-
ented torus:

– There is no universal algorithm for any constant number of agents with one
movable token solving the exploration problem (even without termination
detection) in all unoriented tori.

– There is a universal algorithm for the exploration (without termination de-
tection) of any unoriented torus (type 0) by one agent with constant memory
and two movable tokens.

This last result is optimal on the number of tokens and it is somewhat surprising
since it had been proven, in [22], that an agent with any constant number of
tokens cannot explore all cubic planar graphs. Although it has been proved in
[3] that exploration can be done with a constant number of tokens in partial
grids (grids with missing nodes and edges) with sense of direction, our result
shows that the impossibility result of [22] is not robust enough to resist in highly
structured graphs, like tori, without sense of direction.

Due to space limitations some proofs have been omitted and will appear in
the full version of the paper.

Black Hole Search and Exploration in Unoriented Tori with Scattered DFAs 243

3 Our Model

Our model consists of k ≥ 2 anonymous and identical mobile agents that are
initially placed at distinct nodes of an anonymous, synchronous torus network.
Each agent consistently evaluates direction across the torus (except in type 0
tori); agents do not necessarily evaluate the same directions for West, East, North
or South. In type 0 tori, we make no assumption on the way each direction is
interpreted. For type 1, 2, and 3 tori, however, we assume that each such function
evaluates West and East to be opposites on the same axis and orthogonal to
North and South (also opposites on the same axis). Each mobile agent has a
constant number t of identical pure tokens which can be placed at any node
visited by the agent. We call a token movable if it can be moved by any mobile
agent to any node of the network, otherwise we call the token unmovable in
the sense that, once released, it can occupy only the node in which it has been
released. A token at a given node is visible to all agents on the same node, but
is not visible to agents at other locations. While our negative results hold even
when the agents have the capability to communicate when they are at the same
node (which is the usual assumption in previous works), our protocol works even
when the agents cannot directly communicate at all, regardless of their location.
The agents follow the same deterministic algorithm and begin execution at the
same time, at the same initial state. At any single time unit, a mobile agent
occupies a node of the network and may 1) stay there or move to an adjacent
node, 2) detect the presence of one or more tokens at the node it is occupying and
3) release/take one or more tokens to/from the node it is occupying. When two
or more agents located at the same node attempt to see and/or change the node
configuration (release or take tokens) at the same time, they do it by mutual
exclusion. We give more details on the mutual exclusion mechanism, later in this
section.

Formally we consider a mobile agent as a finite Moore automaton A =
(S, S0, Σ, Λ, δ, φ), where S is a set of σ ≥ 2 states; S0 is the initial state; Σ
is the set of possible configurations an agent can see when it enters a node;
δ : S × Σ → S is the transition function; and φ : S → Λ is the output function.
Elements of Σ are triplets (D, x, y) where D ∈ {North, South, East, West} is the
direction through which the agent has arrived at the node, x is the number of
tokens at that node, and y is the number of tokens carried by the agent. Ele-
ments of Λ are triplets (A, s,M) where A ∈ {Put, Take} is the action performed
by the agent on the tokens, s is the number of tokens concerned by the action A,
and M ∈ {North, South, East, West, wait} is the move performed by the agent.

When two or more agents are on the same node and wish to operate at the
same time then the mutual exclusion mechanism guarantees that the agents one
by one evaluate functions δ, φ. The sequence δ, φ is atomic. The order by which
the agents evaluate their functions is handled by an adversary.

We assume that the memory of an agent is proportional to the number of bits
required to encode its states which we take to be Θ(log(|S|)) bits. Note that in
our algorithms all computations by the agents are independent of the size n×m
of the torus network. The agents have no knowledge of n,m. There is exactly

244 E. Markou and M. Paquette

one black hole in the network. An agent can start from any node other than
the black hole and no two agents are initially co-located (we say that they are
scattered). The agents’ initial locations and the black hole location are decided
by an adversary. Once an agent detects a link to the black hole, it marks the link
permanently as dangerous (i.e., disables this link). Since the agents do not have
enough memory to remember the location of the black hole, we require that at
the end of a black hole search scheme, all links incident to the black hole (and
only those links) are marked dangerous and that there is at least one surviving
agent. Each agent has the following primitives:

1. Walk(x): move to an adjacent node in direction x or through port x and
return the incoming port label.

2. Opposite(dir): return the direction opposite to dir.
3. Put(t): leave t tokens at the current node.
4. Read(): return the number of tokens at the current node.
5. Take(t): remove t tokens from the current node.

The mutual exclusion mechanism guarantees that two or more co-located agents
execute one by one a sequence containing Read, Put, Take actions.

4 Negative Results

In any correct algorithm for solving the Black Hole Search problem each node
apart from at most one of the network must be visited by at least one agent in
the worst case, since if there are two or more unvisited nodes, the agents cannot
decide which one is the black hole.

In [5] it has been proven that no finite team of agents can solve the BHS
problem in all oriented torus networks using any constant number of unmovable
tokens:

Theorem 1. [5] For any constant numbers k, t, there exists no algorithm that
solves BHS in all oriented tori containing one black hole and k scattered agents,
where each agent has a constant memory and t unmovable tokens.

Hence, as in the case of an oriented torus, a correct algorithm for the BHS
problem in an unoriented torus should use movable tokens.

4.1 Black Hole Search in a Torus of Type 3

Lemma 1. There is no universal algorithm solving the BHS problem in all syn-
chronous semi-oriented tori of type 3, using less than 4 scattered agents carrying
any constant number of tokens even when the agents have unlimited memory.

Proof. To locate a black hole, any BHS algorithm functioning with scattered
agents must move all agents by at least one node and must also force agents to
traverse multiple rings of the torus. Consider such a BHS algorithm. Suppose
(without loss of generality) that the agents agree on the horizontal orientation

Black Hole Search and Exploration in Unoriented Tori with Scattered DFAs 245

of the torus. Then an adversary can choose agents’ orientation on the vertical
direction and initial locations so that one agent will vanish into the black hole
while traveling horizontally and two more agents will fall into the black hole
while traveling vertically (without having met any tokens other than their own
tokens). Hence, a fourth agent is needed to compute where the black hole is
located.

In [5] it has been proven that three scattered agents carrying one token each can-
not solve the BHS problem in a synchronous oriented torus. The basic argument
in that proof is the following: either the agents stay ‘close’ to their tokens and
in that case they fail to explore the whole torus, or they go far from their tokens
(more than a constant number of steps), they manage to explore the torus and
meet the black hole but fail to leave a clear indication at nearby nodes for the
remaining agents. We argue similarly here and prove the following lemma.

Lemma 2. There is no universal algorithm which solves the BHS problem in
all synchronous semi-oriented tori of type 3, using less than 5 scattered agents
with one movable token each if the agents have constant memory.

Proof.(Sketch) Since in view of Theorem 1, solving the BHS problem with un-
movable tokens is impossible, a correct BHS algorithm should eventually instruct
the agents to leave their tokens down. This decision should be taken after a con-
stant number of steps (independent of the size of the torus) due to the constant
number of agents’ states. Moreover this decision has to be taken at the same
time for all agents since the agents are anonymous and start at the same state.

If agents always move a constant number of steps away from their tokens,
then an adversary can always select the size of the torus, the initial locations
of the agents and the black hole location, so that any agent will never meet a
token of another agent, another agent, or the black hole. Moreover the agents
will be eventually trapped visiting the same nodes and there will be nodes in
the torus which remain unvisited by any agent. Therefore in a correct algo-
rithm the agents should move more than a constant number of steps away from
their tokens. Suppose without loss of generality that the agents disagree on the
horizontal orientation. First consider the case in which the agents move more
than a constant number of nodes away from their own tokens in the horizontal
axis. Due to disagreement in the horizontal orientation, the adversary can force
two agents to vanish at the black hole at the same time leaving their tokens
more than a constant number of steps away from the black hole. The adversary
may also arrange that a third agent enters the black hole without having met
the others’ tokens and leaving its token somewhere more than a constant dis-
tance away from the black hole. The remaining case in which the agents move
more than a constant number of nodes away from their own tokens in the ver-
tical axis can be argued analogously. Hence in both cases a fourth agent may
now find a token other than its own token but cannot decide the black hole
location.

The above negative results also hold for tori of type 2, 1 or 0.

246 E. Markou and M. Paquette

4.2 Black Hole Search in a Torus of Type 2

When the agents agree only on which axis of the torus is horizontal and which
is vertical but they do not agree on their orientations (torus of type 2), then
analogously as in Lemma 1 we can show that:

Lemma 3. There is no universal algorithm solving the BHS problem in all syn-
chronous semi-oriented tori of type 2, using less than 5 scattered agents carrying
any constant number of tokens even when the agents have unlimited memory.

Proof. An adversary can choose agents’ orientation and initial locations such
that two agents will enter the black hole while traveling horizontally and another
two agents will vanish into the black hole while traveling vertically (without
having met tokens other than their own tokens). Then, a fifth agent is needed
to compute where the black hole is located.

With a similar reasoning as in the proof of Lemma 2 the following lemma
holds:

Lemma 4. There is no universal algorithm which solves the BHS problem in
all synchronous semi-oriented tori of type 2, using less than 6 scattered agents
with one movable token each if the agents have constant memory.

The above negative results also hold for tori of type 1 or 0.

4.3 Black Hole Search and Exploration in a Torus of Type 0

In a type 0 torus the agents do not agree on anything related to the orientation
of the torus. We however assume a local port labeling (i.e., port labels of incident
edges of a node are different), otherwise an agent is not capable even to visit all
neighbors of its current node. This port labeling is fixed by an adversary and is
not globally consistent (i.e., an agent which always exit nodes by port East does
not necessarily traverses a complete ring of the torus). We note that once a port
label is fixed by the adversary, it cannot be changed (i.e., the adversary cannot
change previously fixed port labels).

We show below (Theorem 2) that any constant number of scattered agents
with constant memory and one token cannot solve the BHS problem in all tori
of type 0. The idea of the proof is that the agents with only one token are
not able even to explore a safe torus (Lemma 6), leaving many nodes unvisited
(in contrast with semi-oriented safe tori, where only one agent with constant
memory and one token can visit all nodes of the torus). Hence an adversary can
place the black hole in one of the unvisited nodes and the agents are not able to
decide its location. We first prove the following lemma:

Lemma 5. There is no universal algorithm which solves the exploration problem
in all synchronous unoriented (safe) tori of type 0 using one agent with constant
memory and one movable token.

Black Hole Search and Exploration in Unoriented Tori with Scattered DFAs 247

Proof.(Sketch) Consider such an exploration algorithm for the sake of contra-
diction and let σ ≥ 2 be the number of states of the agent. An adversary assigns
port labels so that the agent can complete its first 2σ − 1 moves (i.e., in which
encounters 2σ states). The labels are assigned to ports so that for each edge the
pair of the two port labels is either (East, West) or (North, South).

Suppose the algorithm instructs the agent not to release its token during
this sequence p of 2σ states. Due to the σ number of different states, there is
at least one state which has been repeated in p. Consider the first state S∗

which is repeated and also has the following property: assuming u1, u2 to be
the nodes where the agent is located when it encounters state S∗ at times t1, t2
respectively (where t1 < t2), the entry port label to u2 is different than the exit
port label from u1. If there is no such state in p, this means that there is a
subsequence of p starting and ending at a state S′ with the agent locating at
the same node (basically in this subsequence the agent moves back and forth
traversing the same edge). Suppose that such a state S∗ exists. If u1 ≡ u2, then,
since the whole sequence of states and moves will be repeated, the agent visits
again and again the same nodes. Suppose that u1 = u2. Then the adversary can
arrange the port labels so that nodes u1, u2 are on the same horizontal ring. The
sequence of moves and states is repeated and if we call ui the node at which
the agent encounters state S∗ for the i−th time, then the adversary can arrange
the port labels so that nodes u2, u3 are on the same vertical ring (notice that
the distance d(u2, u3) will be equal to d(u1, u2)), nodes u3, u4 are on the same
horizontal ring, u4 is at the same vertical ring with u1 (since d(u3, u4) will be
equal to d(u1, u2)), and finally nodes u4, u5 are on the same vertical ring and
u5 ≡ u1 (since d(u4, u5) will be equal to d(u2, u3)). The agent has visited a total
number of at most 8σ − 1 different nodes and then it keeps visiting the same
nodes.

Suppose that the algorithm instructs the agent to release its token within the
first 2σ − 1 first moves. In fact this has to be done within the first σ moves
otherwise it will never be done. The agent continues moving without a token. If
the adversary can assign the port labels so that after another at most 8σ moves
the agent does not meet its token, then similarly as above, the agent passes twice
from the same node being at the same state and then keeps visiting the same
nodes. If the agent meets its token within 8σ moves then after at most σ+1 times
meeting its token will again meet its token being at the same state St. Between
those two repetitions of state St the agent has visited at most cσ2 nodes, where
c is a constant. After that the agent repeats this orbit but maybe on a different
area of the torus. However in an e.g., n× n torus, after at most n repetitions of
this orbit the agent will be at the same state and at the same node (meeting its
token) and therefore after that the agent will repeat everything visiting exactly
the same nodes. The agent has been visited at most O(n) nodes out of the n2

nodes of a n× n torus.

Generalizing the previous lemma, it can be shown that:

248 E. Markou and M. Paquette

Lemma 6. There is no universal algorithm which solves the exploration problem
in all synchronous (safe) unoriented tori of type 0 using any constant number k
of scattered agents with constant memory and one movable token each.

Hence, when there is a black hole in the torus network the adversary can place
it in one of the unvisited nodes and therefore the following theorem holds:

Theorem 2. There is no universal algorithm which solves the BHS problem in
all synchronous unoriented tori of type 0 using any constant number of scattered
agents with one movable token each if the agents have constant memory.

As we will discuss in the next section, an agent with constant memory and only
two tokens can explore (without stop) any unoriented torus of type 0.

In view of Lemma 3 and Theorem 2, any BHS algorithm for any type 0
unoriented torus would need at least five agents with two tokens each.

5 Positive Results

5.1 Exploration of an Unoriented Torus by a Finite Automaton

In the previous section we proved that any constant number of finite automata
with one token each cannot solve the black hole search problem in all unoriented
tori. The proof relies on Lemma 6 stating that there is no universal algorithm for
any team of a constant number of finite automata with one token each that can
explore all (safe) unoriented tori (type 0). This result is in agreement with the
well known result of Rollik which says that an agent with any constant number of
tokens cannot explore all cubic planar graphs ([22]). Hence a natural question is
whether an agent with two tokens would be able to explore all unoriented tori.
The answer is surprisingly positive. As we present in this section (Algorithm
Explore2Tokens), one agent with constant memory having only two movable
tokens can explore (perpetual exploration without stop) any type 0 unoriented
torus. This result shows that although a torus is already a non-planar graph
with degree 4, its special properties can be exploited by a not very complicated
algorithm which solves the exploration problem in such a weak model.

The basic idea of the algorithm is hidden in Function ExploreRing which
enables the agent to explore a whole ring of the torus, when the torus consists of
rings of at least 4 nodes1. The idea2 can be described as follows: The agent lo-
cated at a node u leaves a token down and selects a port leaving u and entering an
adjacent node v. Now in order to discover which node adjacent to v and different

1 Small tori containing rings of 2 or 3 nodes can be easily explored by traversing all
paths of length 2 or 3 as shown in Procedure SmallRing.

2 As it has been brought to our attention by the anonymous referees, the techniques
for local orientation of tori we use in the algorithm have some similarities with the
techniques presented in [20] for solving the Leader Election problem in unlabeled
tori using messages.

Black Hole Search and Exploration in Unoriented Tori with Scattered DFAs 249

Procedure SmallRing

1: //Take care the case of a torus with a ring of less than 4 nodes
2: Put(2)
3: for i← 2 to 3 do
4: Explore all paths of length i and return
5: if a token is found in more than 2 different paths then
6: Stop //the torus is i× i and has been already explored
7: if a token is found in exactly 2 paths starting at ports p1, p2 then
8: //the torus is i× n
9: loop

10: Move the tokens taking a port p = p1, p2
11: Explore all paths of length i and return
12: Let p1, p2 be the starting ports of paths with tokens
13: Take(2)

Algorithm Explore2Tokens

1: SmallRing //Take care the case of a torus with a ring of less than 4 nodes
2: //Any ring has at least 4 nodes
3: Vt ← ∅
4: C ← ∅
5: Choose a port Hs

6: loop
7: Hf ← ExploreRing(Hs)
8: if Hf = 0 then
9: Insert Hs in set C

10: if there is a new port not in C then
11: Choose a new port Hs /∈ C
12: Take(2)
13: else
14: Stop
15: else
16: Choose a port Vs = Hs, Hf , Vt

17: Vt ←Walk(Vs)
18: repeat
19: Move one step on the direction towards port m = Vt

20: Let m′ be the incoming port
21: Explore all paths of length 2 not starting with port m′ and return
22: until you found a token at a path ending at port Hs

23: Hs ← m
24: Traverse ports m′, Vt, Take(1) and traverse port Vs

250 E. Markou and M. Paquette

Function ExploreRing(Hs)

1: RingCompleted← FALSE
2: Put(2) //Ring start
3: p←Walk(Hs)
4: repeat
5: CorrectDir ← 0
6: while (There is an untraversed port p′ = p) AND (CorrectDir = 0) do
7: p′′ ←Walk(p′)
8: Explore all paths of length 2 not starting with port p′′ and return
9: if no token is found during this exploration then

10: CorrectDir ← p′

11: Walk(p′′) //Go back taking port p′′

12: RingCompleted← (CorrectDir = 0)
13: Walk(p)
14: if (RingCompleted) AND (you see two tokens) then
15: //The ring under exploration has 4 nodes
16: Return 0
17: else
18: Take(1) (the second token) and return
19: if ¬RingCompleted then
20: Put(1) //Leave the second token
21: p←Walk(CorrectDir) //Advance the exploration
22: until RingCompleted
23: repeat
24: Explore all paths of length 3 starting at ports different than p
25: until until you find a node with a token
26: Return the incoming port label

than u lies in the same (horizontal or vertical) ring of the torus with v and u
the agent tests all adjacent nodes of v (apart from u) to find a node w for which
all paths of length 2 starting at w and not passing from v do not end up at a
node with a token (i.e., node u). Then node u, v, w belong in the same ring of the
torus. By repeating this procedure, the agent can explore a ring. The exploration
of a ring finishes when the agent finds its (homebase) token which had been left
at the starting node. Then it can move tokens in the next ring and continue. In
that way the agent will eventually explore (without stop) the whole torus.

Theorem 3. Algorithm Explore2Tokens enables one agent with constant mem-
ory and two movable tokens to explore (without stop) any unoriented torus.

In view of Lemma 6, Algorithm Explore2Tokens is optimal with respect to the
number of agents and tokens it uses. The algorithm can be extended for solving
exploration with stop using three movable tokens.

Black Hole Search and Exploration in Unoriented Tori with Scattered DFAs 251

5.2 BHS in Semi-oriented Tori of Type 1

In this section, we state Algorithm UBHS5,3 which enables 5 scattered agents
with constant memory and 3 tokens each to locate the black hole in any torus of
type 1 (i.e., a torus in which the agents agree only on the orthogonal axes). Intu-
itively the algorithmworks as follows: Each agent leaves 2 of its tokens at its start-
ing node and explores its starting horizontal (perceived) ring using the Procedure
CautiousTestwith its last remaining token (leaves a token, walks to a neighbor at
a given direction and returns to pick up its token). Then moves the 2 (homebase)
tokens onto the next horizontal ring and repeats the procedure. Eventually, there
will be at least one and at most four agents entering the black hole and leaving at
an adjacent node 1 or 3 tokens. At least one of the remaining agents will find such
a configuration of 1 or 3 tokens (which we call a bad token configuration) and will
locate the (near by) black hole by calling Procedure LocalSearch.

Procedure LocalSearch: Suppose the agent arrives from a direction dir at a
node u where it finds a bad token configuration. This means that the black-hole
is at a node v which is adjacent to u. The agent takes the following actions:
If dir = East (dir = South) then the agent searches (using CautiousTest)
the adjacent nodes South and North (West and East) of u in this order; either
the agent vanishes leaving behind another bad token configuration or otherwise
decides that the black hole is East (South) of u respectively.

Algorithm UBHS5,3 (each agent, in parallel)

1: repeat
2: Put(2) //Start of ”ring scan”
3: count← 0
4: dir ← East
5: repeat
6: count← count+ 1
7: repeat
8: CautiousT est(1, dir)
9: Walk(dir)

10: t← Read()
11: until t > 0
12: Danger← BHConfig(t)
13: until ((count ≥ 5)OR(Danger))
14: if ¬Danger then
15: dir ← South
16: CautiousT est(1, dir) //try the next ring
17: Take(2) //remove the home base
18: Walk(dir)
19: Danger← BHConfig(Read())
20: until (Danger)
21: LocalSearch(dir)

252 E. Markou and M. Paquette

Theorem 4. Algorithm UBHS5,3 identifies a black hole in any type 1 torus
using 5 scattered agents with constant memory and 3 movable tokens each.

Algorithm UBHS5,3 can also solve the BHS problem in tori of type 2 or 3. For
tori of type 1 this algorithm is almost optimal since in view of Lemma 4, in such
tori the problem cannot be solved using 5 agents with 1 token.

6 Conclusion

We showed that any constant number of scattered agents with constant memory
and one movable token each cannot locate the black hole in all unoriented tori
(type 0) mainly due to the fact that it is impossible for the agents with just one
token to explore all such tori. However we also proved that one agent with con-
stant memory and just two movable tokens can explore all unoriented tori. This
result is optimal on the number of agents and tokens and has its own importance
since it has been shown ([22]) that an agent with any constant number of tokens
cannot explore all cubic planar graphs. It remains unclear whether a small team
of agents (at least 5 are needed) with constant memory and two movable tokens
each could solve the BHS problem in all unoriented tori. Since one agent with
two tokens can explore all tori of type 0, a negative answer to the above question
would need a different reasoning than in the one token scenario. We also showed
that four (five) scattered agents with constant memory and one token are not
able to locate a black hole in all semi-oriented tori of type 3 (2 or 1). We gave
an almost optimal algorithm which enables five scattered agents with constant
memory and three tokens each to locate the black hole in all semi-oriented tori
of type 1, 2 or 3. This algorithm can be transformed to work with five agents and
two tokens in all semi-oriented tori of type 3 (it will appear in the full version of
the paper). While we conjecture that a small team of scattered agents (at least
five) with constant memory equipped with a few tokens (at least two) would be
able to locate a black hole in all totally unoriented tori, a tight solution remains
an open question.

Aknowledgements. We wish to thank Dr. Shantanu Das for the discussion on
the exploration problem of an unoriented torus by a finite automaton. We also
wish to thank the anonymous referees for their helpful suggestions.

References

1. Balamohan, B., Dobrev, S., Flocchini, P., Santoro, N.: Asynchronous Exploration
of an Unknown Anonymous Dangerous Graph with O(1) Pebbles. In: Even, G.,
Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 279–290. Springer,
Heidelberg (2012)

2. Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn
unlabeled directed graphs. In: Proc. of 35th Annual Symp. on Foundations of
Computer Science, pp. 75–85 (1994)

3. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to
search than graphs). In: Proc. of 19th Symp. on Foundations of Computer Science,
pp. 132–142 (1978)

Black Hole Search and Exploration in Unoriented Tori with Scattered DFAs 253

4. Budach, L.: Automata and labyrinths. Mathematische Nachrichten 86(1), 195–282
(1978)

5. Chalopin, J., Das, S., Labourel, A., Markou, E.: Black Hole Search with Finite
Automata Scattered in a Synchronous Torus. In: Peleg, D. (ed.) DISC 2011. LNCS,
vol. 6950, pp. 432–446. Springer, Heidelberg (2011)

6. Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight Bounds for Scattered Black
Hole Search in a Ring. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011.
LNCS, vol. 6796, pp. 186–197. Springer, Heidelberg (2011)

7. Cooper, C., Klasing, R., Radzik, T.: Searching for Black-Hole Faults in a Network
Using Multiple Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 320–332. Springer, Heidelberg (2006)

8. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a
black hole. Fundamenta Informaticae 71(2,3), 229–242 (2006)

9. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. of Graph The-
ory 32(3), 265–297 (1999)

10. Dobrev, S., Flocchini, P., Královic, R., Santoro, N.: Exploring an Unknown Graph
to Locate a Black Hole Using Tokens. In: Navarro, G., Bertossi, L., Kohayakawa,
Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 131–150. Springer, Boston (2006)

11. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in ar-
bitrary networks: Optimal mobile agents protocols. Distributed Computing 19(1),
1–19 (2006)

12. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48, 67–90 (2007)

13. Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black
hole in an un-oriened ring with tokens. Int. J. of Foundations of Computer Sci-
ence 19(6), 1355–1372 (2008)

14. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal
black hole search with pebbles. Algorithmica 62(3-4), 1006–1033 (2012)

15. Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Map construction and explo-
ration by mobile agents scattered in a dangerous network. In: Proc. of IEEE Int.
Symp. on Parallel & Distributed Processing, pp. 1–10 (2009)

16. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
Networks 48, 166–177 (2006)

17. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation re-
sults for black hole search in arbitrary graphs. Theoretical Computer Science 384(2-
3), 201–221 (2007)

18. Kosowski, A., Navarra, A., Pinotti, C.M.: Synchronization Helps Robots to Detect
Black Holes in Directed Graphs. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.)
OPODIS. LNCS, vol. 5923, pp. 86–98. Springer, Heidelberg (2009)

19. Kozen, D.: Automata and planar graphs. In: Proc. of Fundamentals of Computa-
tion Theory, pp. 243–254 (1979)

20. Mans, B.: Optimal distributed algorithms in unlabeled tori and chordal rings. Jour-
nal of Parallel and Distributed Computing 46(1), 80–90 (1997)

21. Rabin, M.: Maze threading automata. Seminar talk presented at the University of
California at Berkeley (October 1967)

22. Rollik, H.: Automaten in planaren graphen. Acta Informatica 13, 287–298 (1980)
23. Shannon, C.E.: Presentation of a maze-solving machine. In: Proc. of 8th Conf. of

the Josiah Macy Jr. Found (Cybernetics), pp. 173–180 (1951)
24. Shi,W.:BlackHoleSearchwithTokens inInterconnectedNetworks. In:Guerraoui,R.,

Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg (2009)

Algorithms for Partial Gathering

of Mobile Agents in Asynchronous Rings�

Masahiro Shibata, Shinji Kawai, Fukuhito Ooshita,
Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Graduate School of Information Science and Technology, Osaka University
{m-sibata,s-kawai,f-oosita,kakugawa,masuzawa}@ist.osaka-u.ac.jp

Abstract. In this paper, we consider the partial gathering problem of
mobile agents in asynchronous unidirectional rings equipped with white-
boards on nodes. The partial gathering problem requires, for a given in-
put g, that each agent should move to a node and terminates so that at
least g agents should meet at the same node. The requirement for the par-
tial gathering is weaker than that for the ordinary (total) gathering, and
thus, we have interests in clarifying the difference on the move complexity
between them. We propose two algorithms to solve the partial gathering
problem. One algorithm is deterministic and assumes unique ID of each
agent. The other is randomized and assumes anonymous agents. The de-
terministic (resp., randomized) algorithm achieves the partial gathering
in O(gn) (resp., expected O(gn+ n log k)) total number of moves where
n is the ring size and k is the number of agents, while the total gath-
ering requires Ω(kn) moves. We show that the move complexity of the
deterministic algorithm is asymptotically optimal.

Keywords: distributed system, mobile agent, gathering problem, par-
tial gathering.

1 Introduction

1.1 Background and Our Contribution

A distributed system is a system that consists of a set of computers (nodes) and
communication links. In recent years, distributed systems have become large
and design of distributed systems has become complicated. As a way to design
efficient distributed systems, (mobile) agents have attracted a lot of attention
[1–10]. Agents simplify design of distributed systems because they can traverse
the system and process tasks on each node.

The gathering problem is a fundamental problem for cooperation of agents
[1–11]. The gathering problem requires all agents to meet at a single node in
finite time. The gathering problem is useful because, by meeting at a single
node, all agents can share information or synchronize behaviors among them.

� This work is supported in part by Grant-in-Aid for Scientific Research ((B)2030012,
(B)22300009, (B)23700056, (C)24500039) of JSPS.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 254–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings 255

Table 1. Proposed algorithms for the g-partial gathering problem in asynchronous
unidirectional rings

Model Algorithm 1 Algorithm 2

Unique ID Available Not available

Deterministic/Randomized Deterministic Randomized

Knowledge of k Not available Available

The total number of moves O(gn) O(n log k + gn)

In this paper, we consider a new variant of the gathering problem, called the
partial gathering problem. The partial gathering problem does not always require
all agents to gather at a single node, but requires agents to gather partially at
several nodes. More precisely, we consider the problem which requires, for given
input g, that each agent should move to a node and terminate so that at least
g agents should meet at the same node. We define this problem as the g-partial
gathering problem. Clearly, if k/2 < g ≤ k holds, the g-partial gathering problem
is equal to the ordinary gathering problem. If g ≤ k/2 holds, the requirement for
the g-partial gathering problem is weaker than that for the ordinary gathering
problem, and thus it seems possible to solve the g-partial gathering problem with
a smaller total number of moves. In addition, the g-partial gathering problem is
still useful because agents can share information and process tasks cooperatively
among at least g agents.

The contribution of this paper is to clarify the difference on the move com-
plexity between the gathering problem and the g-partial gathering problem. We
consider the g-partial gathering problem in asynchronous unidirectional rings
equipped with whiteboards on nodes. The contribution of this paper is summa-
rized in Table 1. First, we propose a deterministic algorithm to solve the g-partial
gathering problem for the case that agents have distinct IDs. This algorithm re-
quires O(gn) total number of moves. Second, we propose a randomized algorithm
to solve the g-partial gathering problem for the case that agents have no IDs
and agents know the number of agents. This algorithm requires O(n log k + gn)
total number of moves, while the total gathering requires Ω(kn) moves. The
two algorithms imply that the g-partial gathering problem can be solved in a
smaller total number of moves compared to the ordinary (total) gathering prob-
lem for both cases. In addition, we show that the total number of moves is Ω(gn)
for the g-partial gathering problem if g ≥ 2. This means the first algorithm is
asymptotically optimal in terms of the total number of moves.

1.2 Related Works

Many fundamental problems for cooperation of mobile agents have been studied
in literature. For example, the searching problem [7, 8], the gossip problem [9],
the election problem [10], and the gathering problem [1–11] have been studied.

In particular, the gathering problem has received a lot of attention and has
been extensively studied in many topologies, which include trees [1, 9], tori [1, 5],

256 M. Shibata et al.

and rings [1–4, 6–11]. The gathering problem for rings has been extensively stud-
ied because algorithms for such highly symmetric topologies give techniques to
treat the essential difficulty of the gathering problem such as breaking symme-
try. Actually, to solve the gathering problem, it is necessary to select exactly
one gathering node, i.e., a node where all agents meet. There are many ways
to select the gathering node. For example, in [1–6], agents leave marks (tokens)
on their initial nodes and select the gathering node based on every distance of
neighboring tokens. In [7, 8], agents have distinct IDs and select the gathering
node based on the IDs. In [11], agents can use random numbers and select the
gathering node based on IDs generated randomly. In [1, 9, 10], agents execute
the leader agent election and the elected leader decides the gathering node.

2 Preliminaries

2.1 Network Model

A unidirectional ring network R is a tuple R = (V, L), where V is a set of nodes
and L is a set of communication links. We denote by n (= |V |) the number of
nodes. Then, ring R is defined as follows.

– V = {v0, v1, . . . , vn−1}
– L = {vi, v(i+1) mod n | 0 ≤ i ≤ n− 1}

We define the direction from vi to vi+1 as a forward direction, and the direction
from vi+1 to vi as a backward direction.

In this paper, we assume nodes are anonymous, i.e., each node has no ID.
Every node vi ∈ V has a whiteboard and agents on node vi can read from and
write to the whiteboard of vi. We define W as a set of all states of a whiteboard.

2.2 Agent Model

Let A = {a1, a2, . . . , ak} be a set of agents. We consider two model variants.
In the first model, we consider agents that are distinct (i.e., agents have dis-

tinct IDs) and execute a deterministic algorithm. We model an agent as an
identical finite automaton (S, δ, sinitial, sfinal). The first element S is the set of
all states of agents, which includes initial state sinitial and final state sfinal. The
second element δ is the state transition function. Since we treat deterministic
algorithms, δ is described as δ: S ×W → S ×W ×M , where M = {1, 0} rep-
resents whether the agent makes a movement or not in the step. The value 1
represents movement to the next node and 0 represents stay at the current node.
Since rings are unidirectional, each agent only moves to its forward node. We
assume that agents move instantaneously, that is, agents always exist at nodes
(do not exist at links). Moreover, we assume that each agent cannot detect the
number of agents on its current node.

In the second model, we consider agents that are anonymous (i.e., agents have
no IDs) and execute a randomized algorithm. We model an agent similarly to

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings 257

the first model except for state transition function δ. Since we treat randomized
algorithms, δ is described as δ: S×W ×R→ S×W ×M , where R represents a
set of random values. In addition, we assume that each agent knows the number
of agents.

2.3 System Configuration

In an agent system, (global) configuration c is defined as a product of states of
agents, states of nodes (whiteboards), and locations of agents. We define C as
a set of all configurations. In initial configuration c0 ∈ C, we assume that no
pair of agents stay at the same node. We assume that each node vj has variable
vj .initial that indicates existence of agents in the initial configuration. If there
exists an agent on node vj in the initial configuration, the value of vj .initial is
one. Otherwise, the value of vj .initial is zero.

Let Ai be an arbitrary non-empty set of agents. When configuration ci changes

to ci+1 by the action of every agent in Ai, we denote the transition by ci
Ai−→ ci+1.

In ci, each aj ∈ Ai reads values written on its node’s whiteboard, executes local
computation, writes values to the node’s whiteboard, and decides whether aj
moves to the next node or stay the current node. In this consecutive sequence,
we say that aj takes one step. If multiple agents at the same node are included
in Ai, the agents take steps in an arbitrary order. When Ai = A holds for any
i, all agents take steps. This model is called the synchronous model. Otherwise,
the model is called the asynchronous model.

If sequence of configurations E = c0, c1, . . . satisfies ci
Ai−→ ci+1 (i ≥ 0), E

is called an execution starting from c0. Execution E is infinite, or ends in final
configuration cfinal where no agent can take a step.

2.4 Partial Gathering Problem

The requirement of the partial gathering problem is that, for a given input g,
each agent should move to a node and terminate so that at least g agents should
meet at the node. Formally, we define the g-partial gathering problem as follows.

Definition 1. Execution E solves the g-partial gathering problem when the fol-
lowing conditions hold:

– Execution E is finite.

– In the final configuration, for any node vj such that there exist some agents
on vj, there exist at least g agents on vj.

For the g-partial gathering problem, we have the following lower bound.

Theorem 1. The total number of moves required to solve the g-partial gathering
problem is Ω(gn) if g ≥ 2.

258 M. Shibata et al.

3 A Deterministic Algorithm for Distinct Agents

In this section, we propose a deterministic algorithm to solve the g-partial gath-
ering problem for distinct agents (i.e., agents have distinct IDs). The basic idea
to solve the g-partial gathering is that agents select a leader and then the leader
instructs other agents which node they meet at. However, since Ω(n log k) to-
tal number of moves is required to elect one leader [9], it is impossible to solve
the g-partial gathering in asymptotically optimal total number of moves (i.e.,
O(gn)). To overcome this lower bound, we select multiple agents as leaders by
executing leader agent election partially. By this behavior, our algorithm solves
the g-partial gathering problem in O(gn) total number of moves.

The algorithm consists of two parts. In the first part, agents execute leader
agent election partially and elect some leader agents. In the second part, leader
agents instruct the other agents which node they meet at, and the other agents
move to the node by the instruction.

3.1 The First Part

The aim of the first part is to elect leaders that satisfy the following properties:
1) At least one agent is elected as a leader, 2) At most 	k/g
 agents are elected
as leaders, and 3) There exist at least g−1 non-leader agents between two leader
agents. To attain this goal, we use a traditional leader election algorithm [12].
However the algorithm in [12] is executed by nodes and the goal is to elect exactly
one leader. So we modify the algorithm to be executed by agents, and then agents
elect at most 	k/g
 leader agents by executing the algorithm partially.

During the execution of leader election, the states of agents are divided into
the following three types:

– active: The agent is performing the leader agent election as a candidate of
leaders.

– inactive: The agent has dropped out from the candidate of leaders.
– leader: The agent has been elected as a leader.

First, we explain the idea of leader election by assuming that the ring is bidi-
rectional. The algorithm consists of several phases. In each phase, each active
agent compares its own ID with IDs of its left and right neighbor active agents.
More concretely, each active agent writes its ID on the whiteboard of its current
node, and then moves forward and backward to observe IDs of the forward and
backward active agents. If its own ID is the smallest among the three agents, the
agent remains active as a candidate of leaders. Otherwise, the agent drops out
from candidates of leaders and becomes inactive. By doing this, at least half ac-
tive agents become inactive in each phase. Consequently, after executing �log g�
phases, the number of active agents becomes at most 	k/g
. Then, from [12], the
number of inactive agents between two active agents is at least g− 1. Therefore,
all remaining active agents become leaders. Note that, during the execution of
the algorithm, the number of active agents may become one. In this case, the
active agent immediately becomes a leader.

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings 259

:

:

Fig. 1. An example for a g-partial gathering problem(k = 9, g = 3)

In the following, we implement the above algorithm in asynchronous unidirec-
tional rings. First, we apply a traditional approach [12] to implement the above
algorithm in a unidirectional ring. Let us consider the behavior of active agent
ah. In unidirectional rings, ah cannot move backward and so cannot observe the
ID of its backward active agent. Instead, ah moves forward until it observes IDs
of two active agents. Then, ah observes IDs of three successive active agents. We
assume ah observes id0, id1, id2 in this order. Note that id0 is the ID of ah. Here
this situation is similar to that the active agent with ID id1 observes id0 as its
backward active agent and id2 as its forward active agent in bidirectional rings.
For this reason, ah behaves as if it would be an active agent with ID id1 in bidi-
rectional rings. That is, if id1 is the smallest among the three IDs, ah remains
active as a candidate of leaders. Otherwise, ah drops out from the candidate
of leaders and becomes inactive. After the phase, ah assigns id1 to its ID if it
remains active as a candidate. For example, consider the initial configuration
in Fig. 1 (a). In figures, the number near each agent is the ID of the agent and
the box of each node represents the whiteboard. First, each agent writes its own
ID to the whiteboard on its initial node. Next, each agent moves forward until
it observes two IDs, and then the configuration is changed to the one in Fig. 1
(b). In this configuration, each agent compares three IDs. The agent with ID 1
observes IDs (1, 8, 3), and so it drops out from the candidate because the middle
ID 8 is not the smallest. The agents with IDs 3, 2, and 5 also drop out from
the candidate. The agent with ID 7 observes IDs (7, 1, 8), and so it remains
active as a candidate because the middle ID 1 is the smallest. Then, it updates
its ID to 1. The agents with IDs 8, 4, and 6 also remain active as candidates and
similarly update their IDs.

Next, we explain the way to treat asynchronous agents. To recognize the cur-
rent phase, each agent manages phase number. Initially, the phase number is
one, and it is incremented when each phase is completed. Each agent compares
IDs with agents that have the same phase number. To realize this, when each
agent writes its ID to the whiteboard, it also writes its phase number. That is,
at the beginning of each phase, active agent ah writes a tuple (phase, idh) to
the whiteboard on its current node, where phase is the current phase number and

260 M. Shibata et al.

idh is the ID of ah. After that, agent ah moves until it sees two IDs with the
same phase number as that of ah. Then, ah decides whether it remains active
as a candidate or becomes inactive. If ah remains active, it updates its own ID.
Agents repeat these behaviors until they complete the �log g�-th phase.

Pseudocode. The pseudocode to elect leader agents is given in Algorithm 1. All
agents start the algorithm with active states. The pseudocode describes the
behavior of active agent ah, and vj represents the node where agent ah currently
stays. If agent ah becomes an inactive state or a leader state, ah immediately
moves to the next part and executes the algorithm for an inactive state or a leader
state in section 3.2. Agent ah uses variables ah.id1, ah.id2, and ah.id3 to store
three IDs of three successive active agents. Note that ah stores its ID on ah.id1
and initially assigns its initial ID (ah.id) to ah.id1. Variable ah.phase stores the
phase number of ah. Agent ah also has variable ah.passed that indicates whether
it has been passed by an another agant. The initial value of ah.passed is zero.
Each node vj has variable (vj .phase, vj .id), where an active agent writes its
phase number and its ID. For any vj , variable (vj .phase, vj.id) is (0, 0) initially. In
addition, each node vj has variable vj .inactive. This variable represents whether
there exists an inactive agent on vj . That is, agents update the variable to keep
the following invariant: If there exists an inactive agent on vj , vj .inactive = 1
holds, and otherwise vj .inactive = 0 holds. Initially vj .inactive = 0 holds for
any vj . In Algorithm 1, ah uses procedure BasicAction(), by which agent ah
moves to node vj′ satisfying vj′ .phase = ah.phase.

We give the pseudocode of BasicAction() in Algorithm 2. In BasicAction(),
the main behavior of ah is to move to node vj′ satisfying vj′ .phase = ah.phase.
To realize this, ah skip nodes such that no agent initially exists (i.e., vj .initial =
0) or an inactive agent currently exists (i.e., vj .inactive = 1), and continue to
move until it reaches a node where some active agents start the same phase
(lines 2 to 4). In addition to this behavior, ah makes some behaviors to treat
asynchrony. If ah finds agent ax that has not yet started the algorithm on vj ,
ah makes ax drop out from candidates by setting vj .inactive = 1 (lines 5 to 8).
When ah notices that it has passed some active agents, ah waits until the agents
catch up with ah (lines 9 to 14). If the agent becomes inactive, ah continues to
move (lines 11 to 13). If ah has been passed by an another agant, ah move in the
ring until it observes IDs of two active agent and then become inactive (lines 11
to 13 of Algortithm 1 and lines 15 to 17 of Algorithm 2). During the algorithm,
it is possible that ah becomes the only one candidate of leaders. In this case, ah
immediately becomes a leader (lines 19 to 20).

We have the following lemma about Algorithm 1 [12].

Lemma 1. After executing Algorithm 1, the configuration satisfies the follow-
ing.

– There exists at least one leader agent.
– There exist at most 	kg
 leader agents.
– There exist at least g − 1 inactive agents between two leader agents.

In addition, we have the following lemma [12].

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings 261

Algorithm 1. The behavior of active agent ah (vj is the current node of ah)

1: set ah.phase = 1 and ah.id1 = ah.id
2: if vj .inactive = 1 then
3: // Some agents have passed ah before ah starts the algorithm.
4: become inactive
5: end if
6: set (vj .phase, vj .id) = (ah.phase, ah.id1)
7: BasicAction()
8: set ah.id2 = vj .id
9: BasicAction()
10: set ah.id3 = vj .id
11: if ah.passed = 1 then
12: set vj .inactive = 1 and become inactive
13: end if
14: if ah.id2 > min(ah.id1, ah.id3) then
15: set vj .inactive = 1 and become inactive
16: else
17: if ah.phase = �log g� then
18: become a leader
19: else
20: set ah.phase = ah.phase+ 1
21: set ah.id1 = ah.id2
22: end if
23: return to step 6
24: end if

Lemma 2. The total number of moves to execute Algoritm 1 is O(n log g).

3.2 The Second Part

In this section, we explain the second part, i.e., an algorithm to achieve g-partial
gathering by using leaders elected by the algorithm in section 3.1. Let leader
nodes (resp., inactive nodes) be the nodes where an agent becomes a leader
(resp., an inactive agent) in the first part. The idea of the algorithm is as follows:
First each leader agent ah writes 0 to the whiteboard on the current node. Then,
ah repeatedly moves and, whenever ah visits an inactive node, ah writes y mod g
to the whiteboard, where y is the number of inactive nodes ah has ever visited.
That is, ah writes 0, 1, . . . , g−1, 0, 1, . . . to the whiteboard on inactive nodes. This
number is used to instruct inactive agents where they should move to achieve g-
partial gathering. Agent ah continues this operation until it visits the node where
0 is already written to the whiteboard. Note that this node is a leader node. For
example, consider the configuration in Fig. 2 (a). In this configuration, agents a1
and a2 are leader agents. First, a1 and a2 write 0 to their current whiteboards,
and then they move and write numbers to whiteboards until they visit the node
where 0 is written on the whiteboard. Then, the system reaches the configuration
in Fig. 2 (b).

262 M. Shibata et al.

Algorithm 2. Procedure BasicAction() for ah
1: move to the forward node
2: while (vj .initial = 0) ∨ (vj .inactive = 1) do
3: move to the forward node
4: end while
5: if vj .phase = 0 then
6: set vj .inactive = 1
7: return to step 2
8: end if
9: if ah.phase > vj .phase then
10: wait until vj .phase = ah.phase or vj .inactive = 1
11: if vj .inactive = 1 then
12: return to step 2
13: end if
14: end if
15: if ah.phase < vj .phase then
16: set ah.passed = 1
17: end if
18: // ah reaches vj s.t. vj .phase = ah.phase.
19: if (vj .phase, vj .id) = (ah.phase, ah.id1) then
20: become a leader
21: end if

Fig. 2. The realization of partial gathering(g = 3)

Then, each non-leader agent (i.e., inactive agent) moves based on the leader’s
instruction, i.e., the number written to the whiteboard. More concretely, each
inactive agent moves to the node where 0 is written to the whiteboard. For ex-
ample, after the configuration in Fig. 2 (b), the system reaches the configuration
in Fig. 2 (c). Note that a node where 0 is written is a leader node or an inactive
node. If the node is an inactive node, g agents meet at the node. If the node is

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings 263

a leader node, it is possible that only less than g agents meet at the node. In
this case, the agents continue to move until they visit the next node where 0 is
written. By executing such operations, agents can solve the g-partial gathering
problem. For example, there exist only two agents on the node where a2 exists
in Fig. 2 (c). So the two agents continue to move until they visit the next node
where 0 is written (Fig. 2 (d)).

Pseudocode. In the following, we show the pseudocode of the algorithm. In this
part, states of agents are divided into the following three states

– leader: The agent instructs inactive agents where they should move.
– inactive: The agent waits for the leader’s instruction.
– moving: The agent moves to its gathering node.

In this part agents continue to use vj .initial and vj .inactive. Remind that
vj .initial = 1 if and only if there exists an agent at vj initially. Algorithm 1
assures vj .inactive = 1 if and only if there exists an inactive agent at vj . Note
that, since each agent becomes inactive or a leader at a node such that there
exists an agent initially, agents can ignore and skip every node vj′ such that
vj′ .initial = 0.

The pseudocode of leader agents is described in Algorithm 3. Variable ah.count
is used to count the number of inactive nodes ah visits (The counting is done
modulo g). The initial value of ah.count is 0. Variable vj .count is used for leader
agents to instruct inactive agents. That is, leader agent ah writes ah.count to
vj .count when it visits inactive node vj . For any vj , the initial value of vj .count
is ⊥. In asynchronous rings, leader agent ah may pass agents that still exe-
cute Algorithm 1. To avoid this, ah waits until the agents catch up with ah.
More precisely, when leader agent ah visits the node vj such that vj .initial = 1,
it passed such agents if vj .inactive = 0 and vj .count =⊥ hold. This is be-
cause vj .inactive = 1 should hold if some agent becomes inactive at vj , and
vj .count = 0 holds if some agent becomes leader at vj . In this case, ah waits
there until either vj .inactive = 1 or vj .count = 0 holds (lines 8 to 10). When
leader agent updates vj .count, an inactive agent on node vj becomes a moving
state (line 12). This behavior of inactive agents is given in the pseudocode of
inactive agents (See Algorithm 4). After a leader agent reaches the next leader
node, it becomes a moving agent to move to the node where at least g agents
meet (line 17). Note that variable ah.Bcount is used in the pseudocode for mov-
ing agents, and so we explain the variable later.

The pseudocode of moving agents is described in Algorithm 5. Moving agent
ah continues to move until it visits node vj such that vj .count = 0. When
ah visits such a node, it is possible that only less than g agents come to the
node like Fig. 2 (c). To solve this case, ah keeps the value of vl.count for the
previous inactive node vl as variable ah.Bcount. When ah visits node vj such
that vj .count = 0, if ah.Bcount = g − 1 holds, at least g agents come to vj .
Otherwise, less than g agents come to vj , and so ah moves to the next node vj′

such that vj′ .count = 0. Since there exist at least g − 1 inactive nodes between
two leader nodes, at least g agents meet at vj′ . Note that such additional moves

264 M. Shibata et al.

Algorithm 3. The behavior of leader agent ah (vj is the current node of ah)

1: set ah.count = 0, vj .count = ah.count and ah.count = ah.count + 1
2: move to the forward node
3: while vj .count �= 0 do
4: while vj .initial = 0 do
5: move to the forward node
6: end while
7: if (vj .inactive = 0) ∧ (vj .count =⊥) then
8: wait until vj .inactive = 1 or vj .count = 0
9: end if
10: if vj .inactive = 1 then
11: set vj .count = ah.count
12: // an inactive agent at vj becomes a moving state
13: set ah.count = (ah.count + 1) mod g
14: set ah.Bcount = vj .count
15: move to the forward node
16: end if
17: end while
18: become a moving state

Algorithm 4. The behavior of inactive agent ah (vj is the current node of ah)

1: wait until vj .count �=⊥
2: set ah.Bcount =⊥
3: become a moving state

Algorithm 5. The behavior of moving agent ah (vj is the current node of ah)

1: while vj .count �= 0 do
2: move to the forward node
3: if (vj .initial = 1) ∧ (vj .count =⊥) then
4: wait until vj .count �=⊥
5: end if
6: if vj .count �=⊥ then
7: set ah.Bcount = vj .count
8: end if
9: end while
10: if (ah.Bcount �= g − 1) ∧ (ah.Bcount �=⊥) then
11: set ah.Bcount = 0
12: move to the forward node
13: return to step 1
14: end if
15: terminate

are required only for leader nodes. If inactive node vj satisfies vj .count = 0,
at least g agents comes to vj . This means inactive agent ah on such vj does not
need to move, which is treated as ah.Bcount =⊥.

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings 265

:

:

Fig. 3. A randomized leader election for anonymous agents

In asynchronous rings, a moving agent may pass leader agents. To avoid this,
the moving agent waits until the leader agent catches up with it. More precisely,
if moving agent ah visits node vj such that vj .initial = 1 and vj .count =⊥, ah
passed a leader agent. To wait for the leader agent, ah waits there until the value
of vj .count is updated.

We have the following lemma about the algorithm in section 3.2.

Lemma 3. After the leader agent election, agents solve the g-partial gathering
problem in O(gn) total number of moves.

From Lemmas 2 and 3, we have the following theorem.

Theorem 2. When agents have distinct IDs, our deterministic algorithm solves
the g-partial gathering problem in O(gn) total number of moves.

4 A Randomized Algorithm for Anonymous Agents

In this section, we propose a randomized algorithm to solve the g-partial gath-
ering problem for the case of anonymous agents. The idea of the algorithm is
the same as that in section 3. Agents elect leader agents in the first part, and
the leader agents instruct the other agents where they move in the second part.
The difference from the algorithm in section 3 is that agents elect exactly one
leader by randomization in the first part. In the second part, we use the same
algorithm as that in section 3.

4.1 The First Part

In this subsection, we explain a randomized algorithm to elect one leader agent
from anonymous agents. Similarly to section 3, the state of each agent is either
active, inactive, or leader. Initially all agents are active. If an agent becomes
inactive or a leader, it immediately moves to the second part of the algorithm.

The algorithm consists of several phases. In each phase, each active agent
ah writes a random bit to the whiteboard and moves to the next node where
its forward agent af writes a random bit. Then, ah compares the random bit
of ah with that of af . If the random bit of ah is zero and the random bit of
af is one, ah drops out from candidates of the leader. Otherwise, ah remains

266 M. Shibata et al.

Algorithm 6. The behavior of active agent ah (vj is the current node of ah)

1: set ah.phase = 1 and ah.num = 0
2: if vj .inactive = 1 then
3: // Some agents pass ah before ah starts the algorithm.
4: become inactive
5: end if
6: set ah.r = 0 with probability 1/2

and ah.r = 1 with probability 1/2
7: set (vj .phase, vj .r) = (ah.phase, ah.r)
8: BasicAction2()
9: if ah.r = 0 and vj .r = 1 then
10: set vj .inactive = 1 and become inactive
11: end if
12: set ah.phase = ah.phase+ 1 and ah.num = 0
13: return to step 6

active as a candidate, and moves to the next phase. Since ah drops out with
probability 1/4 and at least one of ah and af remains active as a candidate,
eventually exactly one active agent remains active as a candidate by repeating
the phase. For example, consider the initial configuration in Fig. 3 (a). Numbers
on whiteboards are random bits written by the resident agents. Each agent moves
to the next node and then compares random bits. Because the random bit of
a1 is zero and the random bit of its forward agent a2 is one, a1 drops out from
the candidate of the leader. The other agents remain active as candidates and
update random numbers on the whiteboards (Fig. 3).

To execute the above algorithm, we treat asynchronous agents in the same way
as the algorithm in section 3.1. Each agent manages phase number to recognize
the current phase. Each agent writes its random bit together with its phase
number, and compares its random bit with an agent that has the same phase
number. In addition, since active agent ah may pass some other active agents,
ah waits in the same way until the agents catch up with ah.

Pseudocode. The pseudocode of active agents is described in Algorithm 6. Agent
ah stores its phase number in variable ah.phase and its random bit in variable
ah.r. Each node vj has variable (vj .phase, vj.r), where an active agent writes
its phase number and its random bit. For any vj , variable (vj .phase, vj.r) is
(0, 0) initially. In addition to these variables, ah manages ah.num to count the
number of inactive agents in each phase. If ah.num = k − 1 holds, ah is a
unique active agent and thus becomes a leader (This behavior is implemented
in BasicAction2()).

At the beginning of each phase, each ah generates a random bit and stores
it in ah.r. Then, it writes (ah.phase, ah.r) to variable (vj .phase, vj.r) at the
whiteboard of its current node vj . Since the forward active agent of ah also
writes a random bit to the whiteboard of its current node vf , agent ah com-
pares the two random bits when ah visits vf . In Algorithm 6, ah uses procedure
BasicAction2(), by which ah moves to node vj′ satisfying vj′ .phase = ah.phase.

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings 267

Algorithm 7. Procedure BasicAction2()

1: move to the forward node
2: while (vj .initial = 0) ∨ (vj .inactive = 1) do
3: if vj .inactive = 1 then
4: set ah.num = ah.num + 1
5: end if
6: move to the forward node
7: end while
8: if vj .phase = 0 then
9: set vj .inactive = 1 and ah.num = ah.num + 1
10: return to step 2
11: end if
12: if vj .phase �= ah.phase then
13: wait until vj .phase = ah.phase or vj .inactive = 1
14: if vj .inactive = 1 then
15: set ah.num = ah.num + 1
16: return to step 2
17: end if
18: end if
19: // ah reaches vj s.t. vj .phase = ah.phase.
20: if ah.num = k − 1 then
21: become a leader
22: end if

We give the pseudocode of BasicAction2() in Algorithm 7. The implementa-
tion is almost the same as that of BasicAction() in section 3.2. The difference
is that ah increments ah.num whenever ah sees inactive agents. If ah observes
k − 1 inactive agents, ah is a unique active agent and thus becomes a leader.

We have the following lemma about Algorithm 6.

Lemma 4. Algorithm 6 solves the leader agent election with O(n log k) expected
total moves.

4.2 The Second Part

In the second part of this algorithm, we use the same algorithm in section 3.2.
Since Algorithm 6 selects exactly one leader agent, the conditions in Lemma 1
hold for Algorithm 6. In addition, Algorithm 6 satisfies the following: 1) Each
agent becomes inactive or a leader at node vj such that vj .initial = 1, and
2) If there exists an inactive agent on vj , vj .inactive = 1 holds, and otherwise
vj .inactive = 0 holds. Since these are sufficient conditions to apply the algorithm
in section 3.2, we can execute the algorithm in section 3.2 after the algorithm in
section 4.1.

From Lemmas 4 and 3, we have the following theorem.

Theorem 3. When agents have no IDs, our randomized algorithm solves the
g-partial gathering problem in O(n log k + gn) expected total moves.

268 M. Shibata et al.

5 Conclusion

In this paper, we have proposed two algorithms to solve the g-partial gathering
problem in asynchronous unidirectional rings. The first algorithm is deterministic
and assumes distinct agents, and the second algorithm is randomized and assumes
anonymous agents. In the first algorithm, several agents are elected as leaders by
executing the leader agent election partially.On the other hand, in the second algo-
rithm, the unique leader is elected. After the leader election, leader agents instruct
the other agents where theymeet.We have showed that the first algorithm requires
O(gn) total moves, which is asymptotically optimal. One of future works is to pro-
pose a randomized algorithm for anonymous agents to solve the g-partial gather-
ing problem inO(gn) expected total moves. Another future work is to consider the
solvability of deterministic g-partial gathering, that is, we will clarify what initial
configurations are solvable and what complexity is required.

References

1. Kranakis, E., Krozanc, D., Markou, E.: The mobile agent rendezvous problem in
the ring. Synthesis Lectures on Distributed Computing Theory (2010)

2. G ↪asieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal Memory Rendezvous
of Anonymous Mobile Agents in a Unidirectional Ring. In: Wiedermann, J., Tel,
G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831,
pp. 282–292. Springer, Heidelberg (2006)

3. Kranakis, E., Santoro, N., Sawchuk, S.: Mobile agent rendezvous in a ring. In:
Distributed Computing Systems (2003)

4. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple Mobile
Agent Rendezvous in a Ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS,
vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

5. Kranakis, E., Krizanc, D., Markou, E.: Mobile Agent Rendezvous in a Synchronous
Torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006)

6. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.:
Mobile Agents Rendezvous When Tokens Fail. In: Kralovic, R., Sýkora, O. (eds.)
SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)

7. Dobrev, S., Flocchini, P., Prencipe, G., Nicola, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48, 67–90 (2007)

8. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple Agents RendezVous in
a Ring in Spite of a Black Hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

9. Suzuki, T., Izumi, T., Ooshita, F., Kakugawa, H., Msuzawa, T.: Move-optimal
gossiping among mobile agents. Theoretical Computer Science 393, 90–101 (2008)

10. Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election
of mobile agents: impact of sense of direction. Theory of Computing System 40,
143–162 (2007)

11. Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Randomized Rendezvous
of Mobile Agents in Anonymous Unidirectional Ring Networks. In: Even, G.,
Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 303–314. Springer,
Heidelberg (2012)

12. Peterson, G.L.: An O(n log n) unidirectional algorithm for the circular extrema
problem. TOPLAS 4, 758–762 (1982)

Causality, Influence, and Computation

in Possibly Disconnected Synchronous
Dynamic Networks�

Othon Michail1,2, Ioannis Chatzigiannakis1,2, and Paul G. Spirakis1,2

1 Computer Technology Institute & Press “Diophantus” (CTI), Patras, Greece
2 Computer Engineering and Informatics Department (CEID), University of Patras

{michailo,ichatz,spirakis}@cti.gr

Abstract. In this work, we study the propagation of influence and com-
putation in dynamic networks that are possibly disconnected at every in-
stant. We focus on a synchronous message passing communication model
with broadcast and bidirectional links. To allow for bounded end-to-end
communication we propose a set of minimal temporal connectivity con-
ditions that bound from the above the time it takes for information to
make progress in the network. We show that even in dynamic networks
that are disconnected at every instant information may spread as fast
as in networks that are connected at every instant. Further, we inves-
tigate termination criteria when the nodes know some upper bound on
each of the temporal connectivity conditions. We exploit our termination
criteria to provide efficient protocols (optimal in some cases) that solve
the fundamental counting and all-to-all token dissemination (or gossip)
problems. Finally, we show that any protocol that is correct in instan-
taneous connectivity networks can be adapted to work in temporally
connected networks.

Keywords: dynamic graph, mobile computing, worst-case dynamicity,
adversarial schedule, temporal connectivity, counting, information dis-
semination.

1 Introduction

Distributed computing systems are more and more becoming dynamic. The
static and relatively stable models of computation can no longer represent the
plethora of recently established and rapidly emerging information and commu-
nication technologies. In recent years, we have seen a tremendous increase in the
number of new mobile computing devices. Most of these devices are equipped
with some sort of communication, sensing, and mobility capabilities. Even the
Internet has become mobile. The design is now focused on complex collections of

� This work has in part been supported by the EU (ESF) and Greek national funds
through the Operational Programme “Education and Lifelong Learning” (EdLL),
under the title “Foundations of Dynamic Distributed Computing Systems” (FOCUS).

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 269–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

heterogeneous devices that should be robust, adaptive, and self-organizing, pos-
sibly moving around and serving requests that vary with time. Delay-tolerant
networks are highly-dynamic, infrastructure-less networks whose essential char-
acteristic is a possible absence of end-to-end communication routes at any in-
stant. Mobility may be active, when the devices control and plan their mobility
pattern (e.g. mobile robots), or passive, in opportinistic-mobility networks, where
mobility stems from the mobility of the carries of the devices (e.g. humans car-
rying cell phones) or a combination of both (e.g. the devices have partial control
over the mobility pattern, like for example when GPS devices provide route in-
structions to their carriers). Thus, it can vary from being completely predictable
to being completely unpredictable. Gossip-based communication mechanisms,
e-mail exchanges, peer-to-peer networks, and many other contemporary com-
munication networks all assume or induce some sort of high dynamicity.

The formal study of dynamic communication networks is hardly a new area
of research. There is a huge amount of work in distributed computing that deals
with causes of dynamicity such as failures and changes in the topology that are
rather slow and usually eventually stabilize (like, for example, in self-stabilizing
systems [Dol00]). However the low rate of topological changes that is usually
assumed there is unsuitable for reasoning about truly dynamic networks. Even
graph-theoretic techniques need to be revisited: the suitable graph model is now
that of a dynamic graph (a.k.a. temporal graph or time-varying graph) (see e.g.
[CFQS11]), in which each edge has an associated set of time-labels indicating
availability times. Even fundamental properties of classical graphs do not carry
over to their temporal counterparts. For example, Kempe, Kleinberg, and Ku-
mar [KKK00] found out that there is no analogue of Menger’s theorem (see e.g.
[Bol98] for a definition) for arbitrary temporal networks, which additionally ren-
ders the computation of the number of node-disjoint s-t paths NP-complete.
Even the standard network diameter metric is no more suitable and has to be
replaced by a dynamic/temporal version. In a dynamic star graph in which all
leaf-nodes but one go to the center one after the other in a modular way, any
message from the node that enters last the center to the node that never enters
the center needs n−1 steps to be delivered, where n is the size (number of nodes)
of the network; that is the dynamic diameter is n− 1 while, one the other hand,
the classical diameter is just 2 [AKL08] (see also [KO11]).

2 Related Work

Distributed systems with worst-case dynamicity were first studied in [OW05].
Their outstanding novelty was to assume a communication network that may
change arbitrarily from time to time subject to the condition that each instance
of the network is connected. They studied asynchronous communication and con-
sidered nodes that can detect local neighborhood changes; these changes cannot
happen faster than it takes for a message to transmit. They studied flooding
(in which one node wants to disseminate one piece of information to all nodes)
and routing (in which the information need only reach a particular destination

Causality, Influence, and Computation 271

node t) in this setting. They described a uniform protocol for flooding that ter-
minates in O(Tn2) rounds using O(log n) bit storage and message overhead,
where T is the maximum time it takes to transmit a message. They conjectured
that without identifiers (IDs) flooding is impossible to solve within the above
resources. Finally, a uniform routing algorithm was provided that delivers to the
destination in O(Tn) rounds using O(log n) bit storage and message overhead.

Computation under worst-case dynamicity was further and extensively stud-
ied in a series of works by Kuhn et al. in the synchronous case. In [KLO10], the
network was assumed to be T -interval connected meaning that any time-window
of length T has a static connected spanning subgraph (persisting throughout the
window). Among others, counting (in which nodes must determine the size of
the network) and all-to-all token dissemination (in which n different pieces of
information, called tokens, are handed out to the n nodes of the network, each
node being assigned one token, and all nodes must collect all n tokens) were
solved in O(n2/T) rounds using O(log n) bits per message, almost-linear-time
randomized approximate counting was established for T = 1, and two lower
bounds on token dissemination were given. Several variants of coordinated con-
sensus in 1-interval connected networks were studied in [KOM11]. [Hae11] is a
recent work that presents information spreading algorithms in worst-case dy-
namic networks based on network coding. An open setting (modeled as high
churn) in which nodes constantly join and leave has very recently been con-
sidered in [APRU12]. For an excellent introduction to distributed computation
under worst-case dynamicity see [KO11]. Two very thorough surveys on dynamic
networks are [Sch02, CFQS11].

Another notable model for dynamic distributed computing systems is the pop-
ulation protocol model [AAD+06]. In that model, the computational agents are
passively mobile, interact in ordered pairs, and the connectivity assumption is
a strong global fairness condition according to which all events that may al-
ways occur, occur infinitely often. These assumptions give rise to some sort of
structureless interacting automata model. The usually assumed anonymity and
uniformity (i.e. n is not known) of protocols only allow for commutative compu-
tations that eventualy stabilize to a desired configuration. Most computability
issues in this area have now been established. Constant-state nodes on a com-
plete interaction network (and several variations) compute the semilinear pred-
icates [AAER07]. Semilinearity persists up to o(log logn) local space but not
more than this [CMN+11]. If constant-state nodes can additionally leave and
update fixed-length pairwise marks then the computational power dramatically
increases to the commutative subclass of NSPACE(n2) [MCS11a]. For a very
recent introductory text see [MCS11b].

3 Contribution

In this work, we study worst-case dynamic networks that are free of any connec-
tivity assumption about their instances. Our dynamic network model is formally
defined in Section 4.1. We only impose some temporal connectivity conditions

272 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

on the adversary guaranteeing that another causal influence occurs within every
time-window of some given length, meaning that, in that time, another node first
hears of the state that some node u had at some time t (see Section 4.2 for a
formal definition of causal influence). Note that our temporal connectivity con-
ditions are minimal assumptions that allow for bounded end-to-end communica-
tion in any dynamic network including those that have disconnected instances.
Based on this basic idea, we define several novel generic metrics for capturing
the speed of information spreading in a dynamic network. In particular, we de-
fine the outgoing influence time (oit) as the maximal time until the state of a
node influences the state of another node, the incoming influence time (iit) as
the maximal time until the state of a node is influenced by the state of another
node, and the connectivity time (ct) as the maximal time until the two parts of
any cut of the network become connected. These metrics are defined in Section
5, where also several results that correlate these metrics are presented.

In Section 5.1, we present a simple but very fundamental dynamic graph
based on alternating matchings that has oit 1 (equal to that of instantaneous
connectivity networks) but at the same time is disconnected in every instance.
In Section 6, we exhibit another dynamic graph additionally guaranteeing that
edges take maximal time to reappear. That graph is based on a geometric edge-
coloring method due to Soifer for coloring a complete graph of even order n with
n− 1 colors [Soi09]. Similar results have appeared before but to the best of our
knowledge only in probabilistic settings [CMM+08, BCF09].

In Section 7, we turn our attention to terminating computations and, in par-
ticular, we investigate termination criteria in networks in which an upper bound
on the ct or the oit is known. By “termination criterion” we essentially mean
any locally verifiable property that can be used to determine whether a node
has heard from all other nodes. Note that we do not allow to the nodes any
further knowledge on the network; for instance, nodes do not know the dynamic
diameter of the network. In particular, in Section 7.1, we study the case in which
an upper bound T on the ct is known and we present an optimal termination
criterion that only needs time linear in the dynamic diameter and in T . Then, in
Section 7.2, we study the case in which an upper bound K on the oit is known.
We first present a termination criterion that needs time O(K ·n2). Additionally,
we establish that even the optimal termination criterion for the ct case does not
work in the oit case. These criteria share the fundamental property of hearing
from the past. We then develop a new technique that gives an optimal termina-
tion criterion (time linear in the dynamic diameter and in K) by hearing from
the future (by this we essentially mean that a node is interested for its outgoing
influences instead for its incoming ones). Additionally, we exploit throughout the
paper our termination criteria to provide protocols that solve the fundamental
counting and all-to-all token dissemination (or gossip) problems; in the former
nodes must determine the size of the network n and in the latter each node of
the network is provided with a unique piece of information, called token, and all
nodes must collect all n tokens. Then, we show that any protocol that is correct

Causality, Influence, and Computation 273

in 1-interval connected networks can be adapted to work in networks in which
an upper bound on the oit, the iit, or the ct is known.

Finally, in Section 8, we conclude and discuss some interesting future research
directions.

4 Preliminaries

4.1 The Dynamic Network Model

A dynamic network is modeled by a dynamic graph G = (V,E), where V is a
set of n nodes (or processors) and E : IN→ P(E′) (wherever we use IN we mean
IN≥1) is a function mapping a round number r ∈ IN to a set E(r) of bidirectional
links drawn from E′ = {{u, v} : u, v ∈ V }. 1 Intuitively, a dynamic graph G is
an infinite sequence G(1), G(2), . . . of instantaneous graphs, whose edge sets are
subsets of E′ chosen by a worst-case adversary. A static network is just a special
case of a dynamic network in which E(i + 1) = E(i) for all i ∈ IN. The set
V is assumed throughout this work to be static, that is it remains the same
throughout the execution.

We assume that nodes in V have unique identities (ids) drawn from some
namespace U (we assume that ids are represented using O(log n) bits) and that
they do not know the topology or the size of the network, apart from some
minimal necessary knowledge to allow for terminating computations (usually
an upper bound on the time it takes for information to make some sort of
progress). Any such assumed knowledge will be clearly stated. Moreover, nodes
have unlimited local storage (though they usually use a reasonable portion of
it).

Communication is synchronous message passing [Lyn96, AW04], meaning that
it is executed in discrete steps controlled by a global clock that is available to the
nodes and that nodes communicate by sending and receiving messages (usually
of length that is some reasonable function of n, like e.g. logn). We use the
terms round, time, and step interchangeably to refer to the discrete steps of the
system. Naturally, real rounds begin to count from 1 (e.g. “first round”) and we
reserve time 0 to refer to the initial state of the system. We assume that the
message transmission model is anonymous broadcast, in which, in every round r,
each node u generates a single message mu(r) to be delivered to all its current
neighbors in Nu(r) = {v : {u, v} ∈ E(r)} without knowing Nu(r).

In every round, the adversary first chooses the edges for the round; for this
choice it can see the internal states of the nodes at the beginning of the round.
At the same time and independently of the adversary’s choice of edges each
node generates its message for the current round. Note that a node does not
have any information about the internal state of its neighbors when generating
its messages. In deterministic algorithms, nodes are only based on their current
internal state to generate their messages and this implies that the adversary can
infer the messages that will be generated in the current round before choosing

1 By P(S) we denote the powerset of the set S, that is the set of all subsets of S.

274 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

the edges. In this work, we only consider deterministic algorithms. Each message
is then delivered to the sender’s neighbors, as chosen by the adversary; the nodes
transition to new states, and the next round begins.

4.2 Spread of Influence in Dynamic Graphs (Causal Influence)

Probably the most important notion associated with a dynamic network/graph
is the causal influence, which formalizes the notion of one node “influencing”
another through a chain of messages originating at the former node and ending
at the latter (possibly going through other nodes in between). We denote by
(u, t) the state of node u at time t and usually call it the t-state of u. The pair
(u, t) is also called a time-node. We use (u, r) � (v, r′) to denote the fact that
node u’s state in round r influences node v’s state in round r′. Formally:

Definition 1 ([Lam78]). Given a dynamic graph G = (V,E) we define an
order →⊆ (V × IN≥0)

2, where (u, r)→ (v, r + 1) iff u = v or {u, v} ∈ E(r + 1).
The causal order �⊆ (V × IN≥0)

2 is defined to be the reflexive and transitive
closure of →.

Obviously, for a dynamic distributed system to operate as a whole there must ex-
ist some upper bound on the time needed for information to spread through the
network. This is the weakest possible guarantee since without it global compu-
tation is impossible. An abstract way to talk about information spreading is via
the notion of the dynamic diameter. The dynamic diameter (also called flooding
time, e.g., in [CMM+08, BCF09]) of a dynamic graph, is an upper bound on the
time required for each node to causally influence (or, equivalently, to be causally
influenced by) every other node; formally, the dynamic diameter is the minimum
D ∈ IN s.t. for all times t ≥ 0 and all u, v ∈ V it holds that (u, t) � (v, t +D).
A small dynamic diameter allows for fast dissemination of information. In this
work, we do not allow nodes to know the dynamic diameter of the network. We
only allow some minimal knowledge (that will be explained in the sequel) based
on which nodes may infer bounds on the dynamic diameter.

A class of dynamic graphs with small dynamic diameter is that of T -interval
connected graphs. Formally, a dynamic graph G = (V,E) is said to be T -interval

connected, for T ≥ 1, if, for all r ∈ IN, the static graph Gr,T := (V,
⋂r+T−1

i=r E(r))
is connected [KLO10]; that is, in every time-window of length T , a connected
spanning subgraph is preserved.

Let us also define two very useful sets. We define by past(u,t′)(t) := {v ∈ V :
(v, t) � (u, t′)} [KOM11] the past set of a time-node (u, t′) from time t and by
future(u,t)(t

′) := {v ∈ V : (u, t) � (v, t′)} the future set of a time-node (u, t)
at time t′, for times 0 ≤ t ≤ t′. In words, past(u,t′)(t) is the set of nodes whose
t-state (i.e. their state at time t) has causally influenced the t′-state of u and
future(u,t)(t

′) is the set of nodes whose t′-state has been causally influenced by
the t-state of u. If v ∈ future(u,t)(t

′) we say that at time t′ node v has heard
of/from the t-state of node u. If it happens that t = 0 we say simply that v has
heard of u. Note that v ∈ past(u,t′)(t) iff u ∈ future(v,t)(t

′).

Causality, Influence, and Computation 275

For a distributed system to be able to perform global computation, nodes need
to be able to determine for all times 0 ≤ t ≤ t′ whether past(u,t′)(t) = V . If nodes
know n, then a node can easily determine at time t′ whether past(u,t′)(t) = V
by counting all different t-states that it has heard of so far. If it has heard the
t-states of all nodes then the equality is satisfied. If n is not known then various
techniques may be applied (which is the subject of this work). By termination
criterion we mean any locally verifiable property that can be used to determine
whether past(u,t′)(t) = V .

Remark 1. Note that any protocol that allows the nodes to determine whether
past(u,t′)(t) = V can be used to solve the counting and all-to-all token dissem-
ination problems. The reason is that if a node knows at round r that it has
been causally influenced by the initial states of all other nodes then it can solve
counting by writing |past(u,r)(0)| on its output and all-to-all dissemination by
writing past(u,r)(0) (provided that all nodes send their initial states and all nodes
constantly broadcast all initial states that they have heard of so far).

5 Our Metrics

As already stated, in this work we aim to deal with dynamic networks that are
allowed to have disconnected instances. To this end, we define some novel generic
metrics that are particularly suitable for capturing the speed of information
propagation in such networks.

5.1 The Influence Time

Recall that the guarantee on propagation of information resulting from instan-
taneous connectivity ensures that any time-node (u, t) influences another node
in each step (if an uninfluenced one exists). From this fact, we extract two novel
generic influence metrics that capture the maximal time until another influence
(outgoing or incoming) of a time-node occurs.

We now formalize our first influence metric. We define the outgoing influence
time (oit) as the minimum k ∈ IN s.t. for all u ∈ V and all times t, t′ ≥ 0 s.t.
t′ ≥ t it holds that

|future(u,t)(t′ + k)| ≥ min{|future(u,t)(t′)|+ 1, n}.

Intuitively, the oit is the maximal time until the t-state of a node influences the
state of another node (if an uninfluenced one exists) and captures the speed of
information spreading.

Our second metric, the incoming influence time (iit), is similarly defined as
the minimum k ∈ IN s.t. for all u ∈ V and all times t, t′ ≥ 0 s.t. t′ ≥ t it holds
that |past(u,t′+k)(t)| ≥ min{|past(u,t′)(t)|+ 1, n}.

We can now say that the oit of a T -interval connected graph is 1 and that
the iit can be up to n − 2. However, is it necessary for a dynamic graph to be
T -interval connected in order to achieve unit oit? First, let us make a simple but
useful observation:

276 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

Proposition 1. If a dynamic graph G = (V,E) has oit (or iit) 1 then every
instance has at least �n/2� edges.

Proposition 1 is easily generalized as: if a dynamic graph G = (V,E) has oit (or

iit) k then for all times t it holds that |
⋃t+k−1

i=t E(i)| ≥ �n/2�. The reason is that
now any node must have a neighbor in any k-window of the dynamic graph (and
not necessarily in every round).

Now, inspired by Proposition 1, we define a minimal dynamic graph that at
the same time satisfies oit 1 and always disconnected instances:

The Alternating Matchings Dynamic Graph. Take a ring of an even num-
ber of nodes n = 2l, partition the edges into 2 disjoint perfect matchings A and
B (each consisting of l edges) and alternate round after round between the edge
sets A and B.

Proposition 2. The Alternating Matchings dynamic graph has oit 1 and any
node needs precisely n/2 rounds to influence all other nodes.

In the alternating matchings construction any edge reappears every second step
but not faster than this. We now formalize the notion of the fastest edge reap-
pearence (fer) of a dynamic graph.

Definition 2. The fastest edge reappearence (fer) of a dynamic graph G =
(V,E) is defined as the minimum p ∈ IN s.t., ∃e ∈ {{u, v} : u, v ∈ V } and
∃t ∈ IN, e ∈ E(t) ∩ E(t+ p).

Clearly, the fer of the alternating matchings dynamic graph described above is 2,
because no edge ever reappears in 1 step and all and always reappear in 2 steps. In
Section 6, by invoking a geometric edge-coloring method, we generalize this basic
contruction to a more involved dynamic graph with oit 1, always disconnected
instances, and fer equal to n−1. Note that the fer is always bounded from above
by a function of n.

5.2 The Connectivity Time

We now propose another natural and practical metric for capturing the tem-
poral connectivity of a possibly disconnected dynamic network that we call the
connectivity time (ct).

Definition 3. We define the connectivity time (ct) of a dynamic network G =
(V,E) as the minimum k ∈ IN s.t. for all times t ∈ IN the static graph (V,⋃t+k−1

i=t E(i)) is connected.

In words, the ct of a dynamic network is the maximal time of keeping the two
parts of any cut of the network disconnected. That is to say, in every ct-window
of the network an edge appears in every (V1, V2)-cut. Note that, in the extreme
case in which the ct is 1, every instance of the dynamic graph is connected and

Causality, Influence, and Computation 277

we thus obtain a 1-interval connected graph. On the other hand, greater ct allows
for different cuts to be connected at different times in the ct-round interval and
the resulting dynamic graph can very well have disconnected instances. For an il-
lustrating example, consider again the alternating matchings graph from Section
5.1. Draw a line that crosses two edges belonging to matching A partitioning the
ring into two parts. Clearly, these two parts communicate every second round
(as they only communicate when matching A becomes available), thus the ct is
2 and every instance is disconnected. We now provide a result associating the ct
of a dynamic graph with its oit.

Proposition 3. (i) oit ≤ ct but (ii) there is a dynamic graph with oit 1 and
ct = Ω(n).

Proof. (i) We show that for all u ∈ V and all times t, t′ ∈ IN s.t. t′ ≥ t it holds
that |future(u,t)(t′+ct)| ≥ min{|future(u,t)(t′)|+1, n}. Assume V \future(u,t)(t′) =
∅ (as the other case is trivial). In at most ct rounds at least one edge joins
future(u,t)(t

′) to V \future(u,t)(t′). Thus, in at most ct rounds future(u,t)(t
′) in-

creases by at least one.
(ii) Recall the alternating matchings on a ring dynamic graph from Section

5.1. Now take any set V of a number of nodes that is a multiple of 4 (this is
just for simplicity and is not necessary) and partition it into two sets V1, V2

s.t. |V1| = |V2| = n/2. If each part is an alternating matchings graph for |V1|/2
rounds then every u say in V1 influences 2 new nodes in each round and similarly
for V2. Clearly we can keep V1 disconnected from V2 for n/4 rounds without
violating oit = 1. ��

6 Fast Propagation of Information under Continuous
Disconnectivity

In Section 5.1, we presented a simple example of an always-disconnected dynamic
graph, namely, the alternating matchings dynamic graph, with optimal oit (i.e.
unit oit). Note that the alternating matchings dynamic graph may be conceived
as simple as it has small fer (equal to 2). We pose now, and answer to the
positive, an interesting question: Is there an always-disconnected dynamic graph
with unit oit and fer as big as n− 1?

Let us define a very useful dynamic graph coming from the area of edge-
coloring.

Definition 4. We define the following dynamic graph S based on an edge-
coloring method due to Soifer [Soi09]: V (S) = {u1, u2, . . . , un} where n = 2l,
l ≥ 2. Place un on the center and u1, . . . , nn−1 on the vertices of a (n − 1)-
sided polygon. For each time t ≥ 1 make available only the edges {un, um(0)} for
m(j) := (t−1+ j mod n− 1)+1 and {um(−i), um(i)} for i = 1, . . . , n/2−1; that
is make available one edge joining the center to a polygon-vertex and all edges
perpendicular to it.

278 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

Theorem 1. For all n = 2l, l ≥ 2, there is a dynamic graph of order n, with oit
equal to 1, fer equal to n− 1, and in which every instance is a perfect matching.
This is Soifer’s graph.

Note that Theorem 1 is optimal w.r.t. fer as it is impossible to achieve at the
same time unit oit and fer strictly greater than n− 1. To see this, notice that if
no edge is allowed to reappear in less than n steps then any node must have no
neighbors once every n steps.

7 Termination and Computation

We now turn our attention to termination criteria that we exploit to solve the
fundamental counting and all-to-all token dissemination problems. Keep in mind
that nodes have no a priori knowledge of the size of the network.

7.1 Nodes Know an Upper Bound on the ct: An Optimal
Termination Criterion

We here assume that all nodes know some upper bound T on the ct. We will
give an optimal condition that allows a node to determine whether it has heard
from all nodes in the graph. This condition results in an algorithm for counting
and all-to-all token dissemination which is optimal, requiring O(D + T) rounds
in any dynamic network with dynamic diameter D. The core idea is to have each
node keep track of its past sets from time 0 and from time T and terminate as
long as these two sets become equal. This technique is inspired from [KOM11],
where a comparison between the past sets from time 0 and time 1 was used to
obtain an optimal termination criterion in 1-interval connected networks.

Theorem 2 (Repeated Past). Node u knows at time t that past(u,t)(0) = V
iff past(u,t)(0) = past(u,t)(T).

Proof. If past(u,t)(0) = past(u,t)(T) then we have that past(u,t)(T) = V . The
reason is that |past(u,t)(0)| ≥ min{|past(u,t)(T)| + 1, n}. To see this, assume
that V \past(u,t)(T) = ∅. At most by round T there is some edge joining some
w ∈ V \past(u,t)(T) to some v ∈ past(u,t)(T). Thus, (w, 0) � (v, T) � (u, t) ⇒
w ∈ past(u,t)(0). In words, all nodes in past(u,t)(T) belong to past(u,t)(0) and at
least one node not in past(u,t)(T) (if one exists) must belong to past(u,t)(0).

For the other direction, assume that there exists v ∈ past(u,t)(0)\past(u,t)(T).
This does not imply that past(u,t)(0) = V but it does imply that even if
past(u,t)(0) = V node u cannot know it has heard from everyone. Note that
u heard from v at some time T ′ < T but has not heard from v since then. It can
be the case that arbitrarily many nodes were connected to no node until time
T − 1 and from time T onwards were connected only to node v (v in some sense
conceals these nodes from u). As u has not heard from the T -state of v it can be
the case that it has not heard at all from arbitrarily many nodes, thus it cannot
decide on the count. ��

Causality, Influence, and Computation 279

We now give a time-optimal O(D+ T)-round algorithm for counting and all-to-
all token dissemination that is based on Theorem 2.

Protocol A. All nodes constantly forward all 0-states and T -states of nodes
that they have heard of so far (the ids of the nodes accompanied with 0 and T
timestamps, respectively) and a node halts as soon as past(u,t)(0) = past(u,t)(T)
and outputs |past(u,t)(0)| for counting or past(u,t)(0) for all-to-all dissemination.

7.2 Known Upper Bound on the oit: Another Optimal Termination
Criterion

Now we assume that all nodes know some upper bound K on the oit.

7.2.1 Inefficiency of Hearing the Past
We begin by proving that if a node u has at some point heard of l nodes, then
u hears of another node in O(Kl2) rounds (if an unknown one exists).

Theorem 3. In any given dynamic graph with oit upper bounded by K, take a
node u and a time t and denote |past(u,t)(0)| by l. It holds that |{v : (v, 0) �
(u, t+Kl(l+ 1)/2)}| ≥ min{l+ 1, n}.

Proof. Consider a node u and a time t and define Au(t) := past(u,t)(0) (we only
prove it for the initial states of nodes but easily generalizes to any time), Iu(t

′) :=
{v ∈ Au(t) : Av(t

′)\Au(t) = ∅}, t′ ≥ t, that is Iu(t
′) contains all nodes in Au(t)

whose t′-states have been influence by nodes not in Au(t) (these nodes know new
info for u), Bu(t

′) := Au(t)\Iu(t′), that is all nodes in Au(t) that do not know
new info, and l := |Au(t)|. The only interesting case is for V \Au(t) = ∅. Since the
oit is at mostK we have that at most by round t+Kl, (u, t) influences some node
in V \Bu(t) say via some u2 ∈ Bu(t). By that time, u2 leaves Bu. Next consider
(u, t+Kl+1). In K(l− 1) steps it must influence some node in V \Bu since now
u2 is not in Bu. Thus, at most by round t+Kl+K(l− 1) another node, say e.g.
u3, leaves Bu. In general, it holds that Bu(t

′+K|Bu(t
′)|) ≤ max{|Bu(t

′)|−1, 0}.
It is not hard to see that at most by round j = t +K(

∑
1≤i≤l i), Bu becomes

empty, which by definition implies that u has been influenced by the initial state
of a new node. In summary, u is influenced by another initial state in at most
K(
∑

1≤i≤l i) = kl(l+ 1)/2 steps. ��

The good thing about the upper bound of Theorem 3 is that it associates the
time for a new incoming influence to arrive at a node only with an upper bound
on the oit, which is known, and the number of existing incoming influences which
is also known, and thus the bound is locally computable at any time. So, there is
a straightforward translation of this bound to a termination criterion and further
to an O(Kn2) algorithm for counting and all-to-all dissemination.

Note that the upper bound of Theorem 3 is loose. The reason is that if a dy-
namic graph has oit upper bounded by K then in O(Kn) rounds all nodes have
causally influenced all other nodes and clearly the iit can be at most O(Kn).

280 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

In fact, it is not hard to construct a dynamic graph that achieves this worst pos-
sible gap between the iit and the oit. On the other hand, the bound of Theorem
3 is optimal in the following sense: a node cannot obtain a better upper bound
based solely on K and l.

We now show that even the criterion of Theorem 2, that is optimal if an upper
bound on the ct is known, does not work in dynamic graphs with known an upper
bound K on the oit. In particular, we show that for any time t′ ∈ IN which can
only depend on K (otherwise it is fixed) there is a dynamic graph with oit upper
bounded by K, a node u, and a time t ∈ IN s.t. past(u,t)(0) = past(u,t)(t

′) while
past(u,t)(0) = V . In words, for any such t′ it can be the case that while u has
not been yet causally influenced by all initial states its past set from time 0
may become equal to its past set from time t′, which violates the termination
criterion of Theorem 2.

Theorem 4. For any time t′ (which can only depend on the upper bound K on
the oit) there is a dynamic graph with oit upper bounded by K, a node u, and a
time t ∈ IN s.t. past(u,t)(0) = past(u,t)(t

′) while past(u,t)(0) = V .

Proof. Let n be sufficiently large, that is n# t′, and for simplicity assume that
n is a multiple of 4. As in Proposition 3-ii, we can keep two parts V1, V2 of the
network, of size n/2 each, disconnected up to some time Ω(n). Let u ∈ V1. At
time t′ + 1 the adversary directly connects some node v ∈ V1 to all w ∈ V1.
Now v knows the t′-states (and of course also the 0-states) of all nodes in V1.
Then at time t′ + 2 the adversary connects v only to u and to some node in V2.
Clearly, at time t′+2, u learns the t′-states of all nodes in V1 (v inclusive) and it
holds that past(u,t′+2)(0) = past(u,t′+2)(t

′). Additionally, |past(u,t)(0)| = n/2⇒
past(u,t)(0) = V . ��

7.2.2 Hearing the Future
We now present an optimal protocol for counting and all-to-all dissemination
in dynamic networks with known an upper bound K on the oit, that is based
on the following termination criterion. By definition of oit, if future(u,0)(t) =
future(u,0)(t +K) then future(u,0)(t) = V . The reason is that if there exist un-
influenced nodes, then at least one such node must be influenced in at most K
rounds, otherwise no such node exists and (u, 0) must have already influenced all
nodes. So, a fundamental goal is to allow a node to know its future set. Note that
this criterion has a very basic difference from all termination criteria that have
so far been applied to worst-case dynamic networks: instead of keeping track
of its past set(s) and waiting for new incoming influences a node now directly
keeps track of its future set and is informed by other nodes of its progress. We
assume, for simplicity, a unique leader l in the initial configuration of the system
(we later drop this unnecessary assumption).

Protocol Hear from known. We denote by r the current round. Each node u
keeps a list Influ in which it keeps track of all nodes that first heard of (l, 0) (the
initial state of the leader) by u (u was between those nodes that first acquained

Causality, Influence, and Computation 281

(l, 0) to nodes in Influ), a set Au in which it keeps track of the Inflv sets that
it is aware of initially set to (u, Influ, 1), and a variable timestamp initially
set to 1. Each node u broadcast in every round (u,Au) and if it has heard of
(l, 0) also broadcasts (l, 0). Upon reception of an id w that is not accompanied
with (l, 0), a node u that has already heard of (l, 0) adds (w, r) to Influ to
recall that at round r it notified w of (l, 0) (note that it is possible that other
nodes also notify w of (l, 0) at the same time without u being aware of them;
all these nodes will write (w, r) in their lists). If it ever holds at a node u that
r > max(v 	=u,r′)∈Influ{r′}+K then u adds (u, r) in Influ (replacing any existing
(u, t) ∈ Influ) to denote the fact that r is the maximum known time until which
u has performed no further propagations of (l, 0). If at some round r a node u
modifies its Influ set, it sets timestamp← r. In every round, a node u updates
Au by storing in it the most recent (v, Inflv, timestamp) triple of each node
v that it has heard of so far (its own (u, Influ, timestamp) inclusive), where
the “most recent” triple of a node v is the one with the greatest timestamp
between those whose first component is v. Moreover, u clears multiple (w, r)
records from the Inflv lists of Au. In particular, it keeps (w, r) only in the
Inflv list of the node v with the smallest id between those that share (w, r).
Similarly, the leader collects all (v, Inflv, timestamp) triples in its own Al set.
Let tmax denote the maximum timestamp appearing in Al, that is the maximum
time for which the leader knows that some node was influenced by (l, 0) at that
time. Moreover denote by I the set of nodes that the leader knows to have
been influenced by (l, 0) 2. If at some round r it holds at the leader that for all
u ∈ I there is a (u, Influ, timestamp) ∈ Al s.t. timestamp ≥ tmax + K and
max(w 	=u,r′)∈Influ{r′} ≤ tmax then the leader notifies the other nodes about
termination for K · |I| rounds and then outputs |I| or I depending on whether
counting or all-to-all dissemination needs to be solved and halts.

The above protocol can be easily made to work without the assumption of
a unique leader. The idea is to have all nodes begin as leaders and make all
nodes prefer the leader with the smallest id that they have heard of so far. In
particular, we can have each node keep an Infl(u,v) only for the smallest v that
it has heard of so far. Clearly, in O(D) rounds all nodes will have sticked to the
node with the smallest id in the network.

Theorem 5. Protocol Hear from known solves counting and all-to-all dissem-
ination in O(D + K) rounds by using messages of size O(n logKn), in any
dynamic network with dynamic diameter D, and with oit upper bounded by some
K known to the nodes.

We defer for the full paper a protocol (inspired from a technique from [MCS12])
that solves counting and all-to-all dissemination in O(Dn2+K) rounds by using
messages of size O(logD+logn), in any dynamic network with dynamic diameter
D, and with oit upper bounded by some K known to the nodes.

2 Note that I can be extracted from Al by I = {v ∈ V : ∃u ∈ V , ∃timestamp, r ∈ IN
s.t. (u, Influ, timestamp) ∈ Al and (v, r) ∈ Influ}.

282 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

Finally, it is not hard to prove that protocols that are correct in 1-interval
connected networks carry over to networks in which an upper bound on the oit,
iit, or ct is known, with only a small delay being introduced in the process.

8 Conclusions

We studied for the first time worst-case dynamic networks that are free of any
connectivity assumption about their instances. To enable a quantitative study
we proposed some novel generic metrics that capture the speed of information
propagation in a dynamic network. We proved that fast dissemination and com-
putation are possible even under continuous disconnectivity. In particular, we
presented optimal termination conditions and protocols based on them for the
fundamental counting and all-to-all token dissemination problems.

There are many open problems and promising research directions related to
this work. An asynchronous communication model in which nodes can broad-
cast when there are new neighbors would be a very natural extension of the
synchronous model that we studied in this work. Note that in our work (and all
previous work on the subject) information dissemination is only guaranteed un-
der continuous broadcasting. How can the number of redundant transmissions be
reduced in order to improve communication efficiency? Is there a way to exploit
visibility to this end? Does predictability help? Finally, randomization will be
certainly valuable in constructing fast and symmetry-free protocols. We strongly
believe that these and other known open questions and research directions will
motivate the further growth of this emerging field.

References

[AAD+06] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Com-
putation in networks of passively mobile finite-state sensors. Distributed
Computing, 235–253 (March 2006)

[AAER07] Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational
power of population protocols. Distributed Computing 20(4), 279–304
(2007)

[AKL08] Avin, C., Koucký, M., Lotker, Z.: How to Explore a Fast-Changing World
(Cover Time of a Simple Random Walk on Evolving Graphs). In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132.
Springer, Heidelberg (2008)

[APRU12] Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust
and efficient computation in dynamic peer-to-peer networks. In: Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 551–569. SIAM (2012)

[AW04] Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations,
and advanced topics, vol. 19. Wiley-Interscience (2004)

[BCF09] Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dy-
namic graphs. In: Proceedings of the 28th ACM Symposium on Principles
of Distributed Computing, PODC 2009, pp. 260–269. ACM (2009)

Causality, Influence, and Computation 283

[Bol98] Bollobás, B.: Modern Graph Theory, corrected edn. Springer (July 1998)
[CFQS11] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-

Varying Graphs and Dynamic Networks. In: Frey, H., Li, X., Ruehrup,
S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer,
Heidelberg (2011)

[CMM+08] Clementi, A.E., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flood-
ing time in edge-markovian dynamic graphs. In: Proceedings of the
Twenty-Seventh ACM Symposium on Principles of Distributed Comput-
ing, PODC 2008, pp. 213–222. ACM, New York (2008)

[CMN+11] Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis,
P.G.: Passively mobile communicating machines that use restricted space.
Theor. Comput. Sci. 412(46), 6469–6483 (2011)

[Dol00] Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
[Hae11] Haeupler, B.: Analyzing network coding gossip made easy. In: Proceedings

of the 43rd Annual ACM Symposium on Theory of Computing, pp. 293–
302. ACM (2011)

[KKK00] Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference prob-
lems for temporal networks. In: Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, pp. 504–513 (2000)

[KLO10] Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic
networks. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, pp. 513–522. ACM, New York (2010)

[KO11] Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms.
SIGACT News 42, 82–96 (2011); Keidar, I. (ed): Distributed Comput-
ing Column

[KOM11] Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic
networks. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pp. 1–10 (2011)

[Lam78] Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21(7), 558–565 (1978)

[Lyn96] Lynch, N.A.: Distributed Algorithms, 1st edn. Morgan Kaufmann (1996)
[MCS11a] Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population pro-

tocols. Theor. Comput. Sci. 412(22), 2434–2450 (2011)
[MCS11b] Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Popula-

tion Protocols. In: Lynch, N.A. (ed.) Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool (2011)

[MCS12] Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Brief Announcement:
Naming and Counting in Anonymous Unknown Dynamic Networks. In:
Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 437–438. Springer,
Heidelberg (2012)

[OW05] O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic
graphs. In: Proceedings of the 2005 Joint Workshop on Foundations of
Mobile Computing, DIALM-POMC 2005, pp. 104–110 (2005)

[Sch02] Scheideler, C.: Models and Techniques for Communication in Dynamic
Networks. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285,
pp. 27–49. Springer, Heidelberg (2002)

[Soi09] Soifer, A.: The Mathematical Coloring Book: Mathematics of Coloring
and the Colorful Life of its Creators, 1st edn. Springer (2009)

Wait-Free Stabilizing Dining

Using Regular Registers�

Srikanth Sastry1,		, Jennifer L. Welch2,			, and Josef Widder3,†

1 CSAIL, MIT
Cambridge, MA - 02139, USA

2 Texas A&M University
College Station, TX - 77843, USA

3 Technische Universität Wien
Vienna, Austria

Abstract. Dining philosophers is a scheduling paradigm that deter-
mines when processes in a distributed system should execute certain
sections of their code so that processes do not execute ‘conflicting’ code
sections concurrently, for some application-dependent notion of a ‘con-
flict’. Designing a stabilizing dining algorithm for shared-memory sys-
tems subject to process crashes presents an interesting challenge: classic
stabilization relies on all processes continuing to execute actions forever,
an assumption which is violated when crash failures are considered. We
present a dining algorithm that is both wait-free (tolerates any num-
ber of crashes) and is pseudo-stabilizing. Our algorithm works in an
asynchronous system in which processes communicate via shared regu-
lar registers and have access to the eventually perfect failure detector
♦P . Furthermore, with a stronger failure detector, the solution becomes
wait-free and self-stabilizing. To our knowledge, this is the first such
algorithm. Prior results show that ♦P is necessary for wait-freedom.

1 Introduction

In shared-memory distributed systems, the code for a distributed application
at each process is a sequence of actions, certain sections of which — called
critical sections — are designated as needing to be executed indivisibly with
respect to the critical sections of application modules at certain other processes.
Actions at different processes might conflict, for instance, because they access a

� We would like to thank the reviewers for their suggestions in improving the paper.
�� This work is supported in part by NSF Award Numbers CCF-0726514, CCF-

0937274, and CNS-1035199, and AFOSR Award Number FA9550-08-1-0159. This
work is also partially supported by Center for Science of Information (CSoI), an
NSF Science and Technology Center, under grant agreement CCF-0939370.

��� Supported in part by NSF grant 0964696.
† Supported in part by the Austrian National Research Network S11403-N23 (RiSE)
of the Austrian Science Fund (FWF), and by the Vienna Science and Technology
Fund (WWTF) grant PROSEED.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 284–299, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Wait-Free Stabilizing Dining Using Regular Registers 285

shared resource or because the relative order of their execution results in a race
condition. Synchronizing such actions of distributed applications, that need to
occur without interference, is often delegated to scheduler that is implemented
as a solution to the dining philosophers problem (or dining, for short).

Dining is a scheduling paradigm in which critical-section actions at each pro-
cess may be in conflict with a static subset of processes in the system, and a
solution to the dining philosophers problem ensures that whenever a process is
executing its critical-section actions, no other conflicting process is executing its
respective critical-section actions.

Solutions to dining are well understood in ‘fault-free’ systems, in which all
the components behave according to their respective specification. However, in
the presence of faults — deviations of any component from its specification —
designing dining algorithms becomes challenging. In this paper, we focus on
solving dining in the presence of two distinct fault classes: transient faults and
crash faults. A transient fault occurs when the state of the system is corrupted
to an arbitrary state, and a crash fault occurs when a process ceases execution
without warning and never recovers.

Often, recovery from transient faults is achieved through stabilization [13],
which is a property that guarantees that from any arbitrary state, the system
is guaranteed to converge to a ‘safe’ state and operate henceforth in accordance
with its specification. A classic assumption for correctness in stabilizing systems
is that all processes continue executing actions to recover from an arbitrary state.
However, a crashed process ceases executing actions. This makes the intersection
of the two fault classes an interesting avenue for research.

Contribution.While existing solutions to dining are either stabilizing [1,2,5,23]
or wait-free (tolerate an arbitrary number of crashes) [28,30,9], to our knowledge,
there are none that are both. In this paper, we propose a distributed dining
algorithm that is pseudo-stabilizing and wait-free. The algorithm assumes the
existence of multi-reader single-writer regular registers and the eventually per-
fect failure detector ♦P . We remark that the above assumptions are modest
or even necessary: wait-free multi-reader single-writer regular register can be
constructed from wait-free dual-reader single-writer safe bits [17], and ♦P is
necessary for wait-free dining [29] in asynchronous systems. We see that if the
algorithm accesses the perfect failure detector, then it becomes wait-free and
self-stabilizing.

Organization. Background and related work is presented in Sect. 2. Section 3
describes the system model. Section 4 specifies two problems: mutual exclusion
and dining philosophers. Section 5 describes a wait-free pseudo-stabilizing mu-
tual exclusion algorithm, which is then used in the wait-free pseudo-stabilizing
dining algorithm described in Sect. 6. We conclude in Sect. 7.

286 S. Sastry, J.L. Welch, and J. Widder

2 Background and Related Work

Designing dining algorithms that are stabilizing or crash-tolerant, especially
wait-free, or both, has been an active area of research.

Crash Tolerant and Stabilizing Dining. There has been some prior in-
vestigations on constructing stabilizing dining algorithms that tolerate process
crashes. For instance, [24] provides a stabilizing dining algorithm that tolerates
(malicious) crashes, and in [26], the stabilizing dining algorithm tolerates byzan-
tine processes. However, in these algorithms, some correct processes could stall
even if one process crashes. In contrast, we focus on the stronger property of
wait-freedom which guarantees that all correct processes continue taking steps
despite arbitrary process crashes.

Self-stabilizing Dining. There has been a significant body of work [23,1,5,25]
which investigates self-stabilizing dining; however, these algorithms are not wait-
free. The algorithm presented in [2], in addition to being self-stabilizing, ensures
k-fairness1. However, the aforementioned algorithms assume that the low-level
shared-memory registers in the system satisfy read/write atomicity. In contrast,
we assume that we have regular registers, which are weaker than atomic regis-
ters. Furthermore, in all of the above algorithms, if some process crashes, other
processes are not guaranteed to continue taking actions; in other words, these
implementations are not fault-tolerant.

Crash-Tolerant Dining. There has been a lot of work in designing crash-
tolerant dining algorithms. However, in asynchronous systems, it is impossible
to design dining algorithms in which neighbors and neighbors’ neighbors of a
crashed process do not stall [7]; in other words, asynchronous systems cannot
guarantee a crash locality of less than 2. Achieving a smaller crash locality
requires some recourse to crash detection. Subsequently, [27] showed that with
access to sufficient crash detection ability, the crash locality of dining algorithms
can be reduced to 1. The results in [27] employed the eventually perfect failure
detector (♦P)2 [6].

Later ♦P is shown in [28,30] to be sufficient to achieve wait-freedom at the
expense of a weaker exclusion guarantee: ♦P-based dining algorithms may sched-
ule conflicting actions concurrently, but only finitely many times; that is, exclu-
sion is only eventual. The results in [29] demonstrate the necessity of the above
trade-off.

Failure Detectors. Intuitively, failure detectors [6] are oracles that may provide
hints about process crashes. Since, our goal is to implement wait-free and stabi-

1 A k-fair scheduler guarantees the following. For any process i, between any two
consecutive accesses to its respective critical section by i, no other process enters its
own respective critical section more than k times.

2 Briefly, the eventually perfect failure detector, or ♦P for short, may provide arbitrary
information to processes for some arbitrary, but finite, duration; however, eventually
(after some potentially unknown time), it provides perfect information about process
crashes.

Wait-Free Stabilizing Dining Using Regular Registers 287

lizing schedulers, the failure detectors that we employ must also be stabilizing.
Self-stabilizing implementations of failure detectors have been an area of active
research. In message passing systems, one of the first self-stabilizing implemen-
tations are for the perfect failure detector proposed in [21,20], but only when at
most one process crashes. Later, self-stabilizing algorithms for failure detectors
in the presence of multiple process crashes was proposed in [3] for systems that
have local clocks and have bounds on the relative messages delays. Subsequently,
[18] proposed time-free self-stabilizing implementations of failure detectors in a
similar system as [3], but where processes do not have local clocks. More recently,
in [8], Delporte-Gallet et al. propose a self-stabilizing implementation of the Ω
failure detector3.

For shared memory systems, Dolev et al. [15] propose a self-stabilizing imple-
mentation of the Ω failure detector in systems with unknown bounds on relative
process speeds. In [16], Fischer et al. implement and use a variant Ω called ‘Ω?’,
which eventually determines whether not there is a leader, to solve self-stabilizing
leader election in anonymous systems.

3 System Model

The system consists of a set of processes and a set of shared single-writer multi-
reader read/write regular [19] registers.

Processes. The system contains the set Π of n processes where each process
is a state machine. Each process has a unique incorruptible ID from the set
{0, . . . , n − 1} and is known to all the processes in the system. Since a process
ID uniquely determines a process, in the remainder of this paper, we refer to a
process and its ID interchangeably.

States and Private Variables. The state of the system (or, system state) is
determined by the state of each process and the state of each shared variable in
the system. In turn, the state of each process is determined by the set of private
variables at that process. A private variable at a process i accessible only to
process i and no other process may read or write to that variable. The states of
shared variables are discussed later.

Steps. The read and write operations of shared variables and the state changes
of processes are modeled by steps, which are of four types: invocation, response,
transition, and crash. The invocation and response steps are discussed when de-
scribing shared variables. Transition steps are discussed when describing actions.
Crash steps are discussed when describing faults.

Shared Variables. The system contains a set of shared variables that are regular
single-writer multi-reader registers. Each shared variable is a state machine that
interacts with the processes through read and write operations. Each operation

3 Briefly, the Ω failure detector outputs a process ID at each process infinitely of-
ten. Eventually, after some potentially unknown time, and forever thereafter, Ω is
guaranteed to output the ID of some unique correct processes.

288 S. Sastry, J.L. Welch, and J. Widder

consists of two steps: invocation by the process and response by the shared variable.
Each shared variable may be read by any processes in the system and is owned by
some unique fixed process. Only the owner of a shared variable may write to it.

Actions. The state change at each process is determined by a set of actions. Ac-
tions are guarded commands [12] which are of the form “{guard} → command”;
guard is a predicate on the state of the process, and command is a representation
of at most one shared memory operation followed by the new state of the process.

Precisely, each command is an ordered tuple that consists of either a read or
write operation and a transition step, or just a transition step. Recall that a
read (or write) operation consists of an invocation step followed by a response
step. In a transition step, a process may change its local state (by modifying
the value of private variables) based on the current state and value returned by
shared-memory operation in that action (if applicable).

Given an action A ≡ {guard} → command at a process i, in every state s
of the system in which guard is true, the action a is said to be enabled in s at i.
The algorithm that a process follows is described as a set of actions called program
actions.

Tasks are a partitioning of program actions at each process; a task t is simply
a set of program actions at a process. Each program action belongs to exactly
one task. The notion of tasks is useful in describing fair executions.

Faults. Processes are prone to crash faults. When a crash fault occurs at process
i, the process ceases taking steps without warning and never recovers. In effect,
when a crash fault occurs at a process i, it disables all the program actions at i.
A crash fault at each process i is modeled as an explicit action that consists of
a single crash step, but is assumed to not be a program action, and therefore,
it is not in any task. The crash fault action for each process i is continuously
enabled until it is executed; however, the action (for each process i) occurs at
most once. It is admissible for a process to never crash; that is, it is admissible
for a crash fault action to never occur.

Eventually Perfect Failure Detector. We assume that the system is aug-
mented with a self-stabilizing implementation of the eventually perfect failure de-
tector, or ♦P , for short. Informally, ♦P provides information about crash faults
to all the processes in the system in the form of a suspect list which contains
a set of processes; eventually, ♦P never suspects correct processes and always
suspects crashed processes. More precisely, we assume that each process i has
a private variable ♦Pi that contains a set of process IDs. ♦P is specified by a
set of actions, one action ai for each process i, where ai writes a value to ♦Pi

continually such that, eventually and permanently, ♦Pi contains exactly the set
of IDs of crashed processes.

Although we do not provide an explicit self-stabilizing implementation of ♦P
here, we remark that there are many existing self-stabilizing ♦P andΩ implemen-
tations (discussed in Sect. 2) that may be modified appropriately and employed

Wait-Free Stabilizing Dining Using Regular Registers 289

here. The choice of the implementation depends on the partial synchrony satisfied
by the underlying distributed system and is beyond the scope of this paper.

Executions. An execution describes the state evolution of a system as a (poten-
tially infinite) sequence α = S0, a1, S1, a2, . . . of alternating system states and
steps such that the following properties are satisfied. An execution may start
from any system state.

1. For each process i, the subsequence αi of α that consists of all the steps at
process i can be partitioned into a sequence of actions A1, A2, A3, Let
si.0 be the state of process i in S0. There exists a sequence si.1, si.2, . . . of
states of process i such that for every positive natural number x, action Ax

is enabled in state si.x−1 and applying Ax causes i to transition to state si.x.
2. In α, for each process i, no step at i follows a crash step at i.
3. For every shared register r, the sequence of invocation and response steps in

α for r satisfies the regularity property [19]. That is, every read operation
returns either the value written by latest preceding write or the value being
written by an overlapping write (if applicable).

4. For each correct process i, the sequence of values of ♦Pi during the execution
satisfies the properties of ♦P : eventually and permanently, ♦Pi contains
exactly the set of IDs of faulty processes.

An execution α is said to be a fair execution if it satisfies the following properties.
(1) If α is a finite execution, then no program action is enabled in the final state
of the system after executing α. (2) If α is an infinite execution, then for each
task t, either some enabled program action in t occurs infinitely often in α, or in
infinitely many states of α, no program action in t is enabled. Note that crash
actions are not in any task and, therefore, need not occur ‘fairly’.

In any execution α, the set of processes at which a crash fault occurs is said
to be faulty in α, and all the other processes are said to be correct in α. Each
process is said to be live until it crashes.

4 Dining and Mutual Exclusion

In this section, we describe the two problems which are the primary focus of this
article: dining philosophers and mutual exclusion.

Dining. The dining philosophers problem [22] is a scheduling problem that is
represented by an undirected graph G = (Π,E), called a conflict graph, where
the set Π of processes (called diners) denotes the set of vertices of the conflict
graph. The neighbors of each process i in G are denoted N(i). Each process
is assumed to know the conflict graph G. The state space of each process is
partitioned into four sets: thinking, hungry, eating, and exiting. A solution to
dining philosophers determines when a diner can transition from a hungry state
to an eating state, and from an exiting state to a thinking state. In order to
specify the dining philosopher’s problem, we assume that the diners satisfy a set
of ‘well-formedness’ properties defined next.

290 S. Sastry, J.L. Welch, and J. Widder

A diner is said to be well-formed iff (1) a diner becomes hungry only when
thinking, but may remain thinking forever, (2) a diner remains hungry until it
starts eating, and (3) a correct eating diner eventually exits.

An execution of the system which satisfies the well-formedness conditions is
said to be a well-formed execution.

A solution to dining philosophers is an algorithm A that satisfies the following
properties. (1) There exists a non-empty set of states, called start states in which
all the diners are thinking. (2) Furthermore, in every fair well-formed execution
that starts from a start state, the following properties are satisfied.

(a) Mutual exclusion: For each diner i, while i is live and eating, no live process
in N(i) is eating.

(b) Eventual Exit: If a correct diner is exiting, then eventually that diner is
thinking.

(c) Fairness: If some correct diner is hungry, then eventually that diner is eating.

Fix such an algorithm A. Let Es be the set of all fair well-formed executions
that start from some start state. Let Qsafe be the set of states that occur in any
execution in Es. The set Qsafe is said to be the set of safe states of A.

A dining philosophers algorithm A is said to be pseudo-stabilizing [4] and
wait-free if it guarantees that for any fair well-formed execution α (starting from
an arbitrary state), there exists a suffix of α in which mutual exclusion, eventual
exit, and fairness are satisfied regardless of the number of process crashes. A
is said to be self-stabilizing [11] and wait-free, if, in addition to being pseudo-
stabilizing and wait-free, it guarantees that every well-formed execution α that
starts from a safe state is the suffix of some execution in Es.
Mutual Exclusion. Mutual exclusion [10] is a degenerate case of the dining
philosophers problem in which the conflict graph is a complete graph. In the
mutual exclusion parlance, a thinking state is called a remainder state, a hungry
state is called a trying state, an eating state is called a critical (section) state,
and an exiting state is called an exiting state.

5 Wait-Free Pseudo-Stabilizing Mutual Exclusion

Our proposed wait-free pseudo-stabilizing dining algorithm is constructed in
three parts. In the first part, we construct a wait-free pseudo-stabilizing ring of
processes. In the second part, we deploy a modified version of Dijkstra’s mutual-
exclusion algorithm on the ring from part one. Finally, in the third part, we
construct a wait-free pseudo-stabilizing dining algorithm using a collection of
overlapping mutual exclusion instances. This section describes the first two parts

Wait-Free Pseudo-Stabilizing Ring. We use the eventually perfect failure
detector ♦P to construct a wait-free pseudo-stabilizing ring over an arbitrary
set Πr ⊆ Π of processes. The algorithm is straightforward. Each process i ∈ Πr

(locally) determines its predecessor j in the ring as follows. The predecessor
of i is a process j such that j is the largest ID smaller than i modulo n such

Wait-Free Stabilizing Dining Using Regular Registers 291

that j is in Πr and not suspected by ♦P . Precisely, the predecessor of i is
determined by the function pred as follows: pred(i) = j, where j ∈ Πr \♦Pi and
∀k ∈ N

+ : 0 < k < i− j (mod n) : i− k (mod n) /∈ Πr \ ♦Pi.
The correctness of the above algorithm is also straightforward. Eventually,

♦P suspects exactly the crashed processes, and provides the same output to all
the processes. Therefore, eventually all the live processes in Πr have a consistent
and accurate view of the processes that are live in Πr, and they converge to a
unique ring encompassing all the live processes in Πr.

Wait-Free Pseudo-Stabilizing Mutual Exclusion. We construct a wait-
free pseudo-stabilizing mutual exclusion algorithm for an arbitrary set Πr ⊆ Π
of processes as follows. The algorithm in [14] modifies Dijkstra’s self-stabilizing
mutual exclusion algorithm [11] for rings with read/write regular registers. Note
that Dijkstra’s algorithm (in [14] and [11]) requires some process be the ‘distin-
guished’ process whose actions are different from other processes. In our case, we
require this ‘distinguished’ process to be correct, and we require no other process
to be ‘distinguished’. Each process determines whether or not it is distinguished
by computing the following local function leader : Πr → {true, false}. For each
process i, leader(i) is true iff i = min(Πr \ ♦Pi).

Eventually, leader(i) is true only for the process i with the lowest ID among
the correct processes in Πl, and for all other processes i′, leader(i′) is false.
Thus, the function leader eventually determines a unique distinguished process
in Πr. Now we simply deploy the algorithm from [14] in the previously described
wait-free pseudo-stabilizing ring over Πr with multi-reader single-writer regular
registers with the modification that a process i behaves as the distinguished
process when leader(i) is true, and it behaves as a non-distinguished process
when leader(i) is false. Thus, we obtain a wait-free pseudo-stabilizing mutual
exclusion algorithm over the set Πr of processes.

The correctness and stability of the algorithm is straightforward and has been
omitted from this version of the paper.

We use multiple instances of the above algorithm in solving dining. For disam-
biguation, we adopt the following convention: an instance of the above algorithm
over a set Πx of processes is denoted MX x.

Note thatMX r interacts with clients at each process in Πr. We assume that
for each process i ∈ Πr,MX r contains a variable mutexi. The variable mutexi,
at each process i, can have one of four values: remainder, trying, critical, and
exiting. If mutexi is remainder, then process i is in its remainder section; if
mutexi is trying, then i is trying; if mutexi is critical, then i is in its critical
section; and if mutexi is exiting, then i has finished accessing its critical section
and exiting to the remainder section.

We denote the set of safe states for this algorithm as mutex safe states4. We
will use this notion of mutex safe states when arguing for the correctness of the
dining algorithm that is described next.

4 Note that we do not explicitly specify the set of safe states here; it is specified and
described in [14]. Here we merely assert its existence, which is sufficient for our
purposes.

292 S. Sastry, J.L. Welch, and J. Widder

6 Wait-Free Pseudo-Stabilizing Dining

In this section, we use multiple instances of the mutual exclusion algorithmMX
from Sect. 5 to construct a pseudo-stabilizing wait-free dining algorithm. The
algorithm is inspired by the HRA algorithm from [22].

6.1 Algorithm Description

Let G = (Π,E) be the conflict graph. Let R be the set of maximal cliques in G.
Let |R| be k. For convenience, let R = {Rx|x ∈ N

+ ∧ 0 < x ≤ k}. We assume
a total order on the cliques such that Rx is ordered before Ry iff x < y. For
each clique Rx, let Πx denote the set of processes (diners) in Rx. Each clique
Rx ∈ R represents a subset of resources to be accessed in isolation by diners
in Πx. Consequently, for each clique Rx, we associate an instance of the wait-
free pseudo-stabilizing mutual-exclusion algorithm MX x, and the participants
in MX x constitute the set Πx.

For each diner i, let Ci denote the set of all cliques Rx such that i ∈ Πx; that
is, diner i contends for exclusive access to the all the resources associated with
cliques in Ci.

Variables. For disambiguation, the variable mutexi in the mutual exclusion
instance MX x will be referred to as MX x.mutexi. Each diner has access to
the private variables MX x.mutexi, where Rx ∈ Ci. Finally, we introduce a
new private variable diningStatei for each diner i in the system. The variable
may contain one of the four values: thinking, hungry, eating, and exiting.
If diningStatei is thinking, then i is thinking, if diningStatei is hungry, then
i is hungry, and so on.

Three Functions. For each diner i, apart from the actions of algorithmMX x

for each Rx ∈ Ci, we introduce three additional actions denoted D.1–D.3 which
constitute a new task. Before describing the actions, we introduce three func-
tions csPrefix, currentMutex, and badSuffix which are used in specifying the
guards for the three actions.

Sequence Ci. Let Ci denote the sequence over all the cliques from Ci such that
a clique Rx precedes a clique Ry in Ci iff x < y.

Functions csPrefix and currentMutex. The function csPrefix(Ci) returns
the longest prefix of Ci such that, for each Rx in csPrefix(Ci),MX x.mutexi =
critical (i is in the critical section of MX x). The function currentMutex(Ci)
returns the first clique following csPrefix(Ci) in Ci, if such a clique exists; oth-
erwise, it returns ⊥.

Function badSuffix. The function badSuffix(Ci) is true iff there exists some
Rx in the suffix of Ci following currentMutex(Ci) such that MX x.mutexi is
either trying or critical (i is either trying or in the critical section of MX x).

An informal motivation for the foregoing functions follows. Upon becoming
hungry, each diner i starts trying in MX c = currentMutex(Ci), and when
i enters the critical section of MX c, MX c becomes a part of csPrefix(Ci).
Subsequently, i starts trying inMX c′ = currentMutex(Ci) which followsMX c

Wait-Free Stabilizing Dining Using Regular Registers 293

in Ci, and so on, until i is in the critical section of all MX instances in Ci. In
the absence of faults, while a diner i is hungry, i is in the critical section of all
MX instances in csPrefix(Ci) and in the remainder or exiting section of all
theMX instances in the suffix following currentMutex(Ci) in Ci. However, due
to a transient fault, it is possible for a diner i to be in a state in which i is
either trying or in the critical section of some MX instance in the suffix; when
this occurs, we say that the suffix is “bad”. This is captured by the predicate
badSuffix(Ci).
Actions. We introduce three new actions (that constitute a single new task) for
each process (diner) i in our proposed wait-free self-stabilizing dining algorithm.
The pseudocode is given in Fig. 1 and described next.

The first action, Action D.1, is enabled when the diner (say) i is either think-
ing or exiting, or badSuffix(Ci) is true. When Action D.1 is executed, it sets
each mutex variable that is not remainder to exiting and sets diningStatei to
thinking. That is, diner i is either in the remainder section or in the exit section
in all the mutual-exclusion instances. Note that this transition need not satisfy
the well-formedness condition of mutual-exclusion clients. For stabilization, it
is important to ensure that such well-formedness violations occur only finitely
many times in any execution.

The second action, Action D.2, is enabled when the diner i is hungry, i
is not in the critical section of all the associated mutual-exclusion instances
(csPrefix(Ci) = Ci), and badSuffix(Ci) is false. When Action D.2 is executed,
i starts trying in the mutual-exclusion instance of currentMutex(Ci).

The third action, Action D.3, is enabled when the diner i is hungry, and i is
in the critical section of all the associated MX instances (csPrefix(Ci) = Ci).
When Action D.3 is executed, diner i starts eating.

Note that the client of the dining service at each process is responsible for
transitioning from thinking to hungry and from eating to thinking.

6.2 Pseudo-Stabilization

In order to establish the pseudo-stabilization property, we have to define a set
of safe states for each process in the system. The system is said to be in a safe
state iff every mutual-exclusion instance is in a mutex safe state, and every live
diner is in a “diner-safe state”, as defined next.

A diner i is said to be in a diner-safe state if (1) badSuffix(Ci) is false, (2) if i
is eating, then everyMX instance at i is in its critical section, and (3) if i is think-
ing, then everyMX instance at i is either in its remainder section or is exiting.
Precisely, ¬badSuffix(Ci)∧((diningStatei = eating)→ (csPrefix(Ci) = Ci))∧
((diningStatei = thinking) → (∀Rx ∈ Ci :: (MX x.mutexi = remainder) ∨
(MX x.mutexi = exiting))) is true. The system is said to be in a diner-safe
state iff each live diner is in a diner-safe state.

Closure. We prove closure with respect to diner states in Lemma 4 using three
helper lemmas. Let s be an arbitrary state of the system executing the action
system from Fig. 1, where each mutual-exclusion instance is an instance ofMX .

294 S. Sastry, J.L. Welch, and J. Widder

private variable diningStatei
foreach Rx ∈ Ci:

variable MX x.mutexi Variable mutexi in instance MXx described in Sect. 5
/* Note that the client at process i sets diningStatei to “hungry” upon becoming hungry
and to “exiting” upon finishing eating. Client actions are not shown.
Also, the client is assumed to be “well-formed”. */
The three actions below constitute a single task

1 : {(diningStatei = thinking) ∨ (diningStatei = exiting)
∨(badSuffix(Ci))} −→ Action D.1

2 : foreach Rx ∈ Ci:
3 : if (MXx.mutexi �= remainder)
4 : MXx.mutexi ← exiting // If eating, then exit; if hungry, then abort.
5 : diningStatei ← thinking // Exit in all mutex instances, and start thinking

6 : {(diningStatei = hungry) ∧ (csPrefix(Ci) �= Ci)
∧(¬badSuffix(Ci))} −→ Action D.2

7 : Rx ← currentMutex(Ci) // If hungry and in the critical section of a prefix of
8 : if (MXx.mutexi = remainder) // cliques, then start trying in the mutex
9 : MX x.mutexi ← trying // associated with the next clique

10 : {(diningStatei = hungry) ∧ (csPrefix(Ci) = Ci)} −→ Action D.3
11 : diningStatei ← eating // Transit from hungry to eating

Fig. 1. Self-Stabilizing Wait-Free Dining. Action system at process i

Lemma 1. For any process i, if s.badSuffix(Ci) is false, then for each suc-
cessor s′ of s, s′.badSuffix(Ci) is false.

Lemma 2. For any process i, if (diningStatei = eating) → (csPrefix(Ci) =
Ci) is true in state s, then for any successor s′ of s, (diningStatei = eating)→
(csPrefix(Ci) = Ci)) remains true.

Lemma 3. For any process i, if (diningStatei = thinking) → (∀Rx ∈ Ci ::
(MX x.mutexi = remainder) ∨ (MX x.mutexi = exiting)) is true in state s,
then for any successor s′ of s, (diningStatei = thinking) → (∀Rx ∈ Ci ::
(MX x.mutexi = remainder) ∨ (MX x.mutexi = exiting)) remains true.

The proofs of the above three lemmas are straightforward. They consider each
possible successor s′ of s by considering each enabled action. By case analysis
for each such action, we confirm that the lemmas are true.

Closure, with respect to diner-safe states, follows from Lemmas 1, 2, and 3.
We have the following lemma.

Lemma 4. Every fair execution of the action system from Fig. 1, where each
mutual-exclusion instance is an instance of MX , satisfies closure (with respect
to diner-safe states): if the system eventually reaches a diner-safe state s, then
the suffix of the execution following s contains only diner-safe states.

Convergence. We prove convergence, with respect to diner safe states, in three
parts. First, we prove that if the system is in a state where for some correct

Wait-Free Stabilizing Dining Using Regular Registers 295

diner i, badSuffix(Ci) is true, then eventually, badSuffix(Ci) becomes false.
Next, we prove that if the system is in a state where, for some diner i, i is eating,
but csPrefix(Ci) = Ci, then eventually we reach a state where, if i is eating,
then csPrefix(Ci) = Ci. Finally, we show that the following. If the system is in
a state where, if some diner i is thinking, but in someMX instance i is neither
exiting nor in the remainder section, then we eventually reach a state in which
the following is true. If i is thinking, then in allMX instances (for i), i is either
exiting or in the remainder section.

For the following lemmas, fix α to be an arbitrary fair execution of the action
system from Fig. 1, where each mutual-exclusion instance is an instance ofMX .
For any given pair of states s and s′ in the system-state sequence associated α,
any if s′ occurs after s, then s′ is said to be a descendant of s.

Lemma 5. In α, for each correct diner i, if s.badSuffix(Ci) is true for some
state s, then there exists a descendant s′ of s such that s′.badSuffix(Ci) is false.

Proof sketch. Note that Action D.1 at i is enabled in state s and remains enabled
until executed. Upon executing Action D.1 at i, badSuffix(Ci) becomes false.

Lemma 6. In α, for each correct diner i, if the system is in a state s where
(diningStatei = eating) → (csPrefix(Ci) = Ci) is false, then, there exists a
descendant s′ of s in α, such that (diningStatei = eating)→ (csPrefix(Ci) =
Ci) is true, in s′.

Proof sketch. Note that i eats for finite durations in α. Since i is eating in state
s, there exists a descendant s′ of s in which i is not eating, and (diningStatei =
eating)→ (csPrefix(Ci) = Ci) is true, in s′. ��

Lemma 7. In α, for each correct diner i, if the system is in a state s where
(diningStatei = thinking) → (∀Rx ∈ Ci :: (MX x.mutexi = remainder) ∨
(MX x.mutexi = exiting)) is false, then there exists a descendant s′ of s in
α, such that (diningStatei = thinking) → (∀Rx ∈ Ci :: (MX x.mutexi =
remainder) ∨ (MX x.mutexi = exiting)) is true in s′.

Proof sketch. If i becomes hungry, then the lemma is satisfied. Otherwise, note
that Action D.1 at i is enabled in state s and remains enabled until executed.
Upon executing Action D.1 at i, we see that for each Rx in Ci Action D.1 sets
MX x.mutexi to either remainder or exiting. ��

Lemma 8. The action system from Fig. 1, where each mutual-exclusion in-
stance comprises an MX instance, satisfies convergence (with respect to diner-
safe states): from any arbitrary state, upon executing enabled program actions
from Fig. 1 and all theMX instances, the system eventually reaches a diner-safe
state.

The proof follows from Lemmas 5, 6, and 7.
Thus, we have shown pseudo-stabilization with respect to diner-safe states.

In order to complete the proof for pseudo-stabilization, we have to prove that

296 S. Sastry, J.L. Welch, and J. Widder

the action system in Fig. 1 in eventually well-formed. Note that Action D.3 does
not change the value of mutex variables, and Action D.2 changes a mutex vari-
able to trying from remainder, which satisfies mutual exclusion well-formedness
conditions. However, Action D.1 could set the mutex variables to trying from
exiting and violate the well-formedness condition. Therefore, it remains to show
that Action D.1 violates the well-formedness conditions only finitely many times.

Lemma 9. In any fair execution of the action system from Fig. 1, where each
mutual-exclusion instance comprises an MX instance, at each correct process
i, only finitely many occurrences of Action D.1 violate mutual exclusion well-
formedness conditions.

Proof sketch. From the pseudocode, we see that Action D.1 violates mutual
exclusion well-formedness conditions if line 4 is executed at a correct diner i
whenMX x.mutexi is trying for some rx ∈ Ci. From Lemmas 8 and 4, we know
that in any fair execution, eventually forever badSuffix(Ci) is false. Therefore,
eventually forever, when i executes Action D.1 diningStatei is either thinking
or exiting. However, from Lemmas 3 and 7, we know that when diningStatei
is thinking, MX x.mutexi is not trying. Finally, if i executes Action D.1 when
diningStatei is exiting, then recall that while i was eating (just prior to exiting)
csPrefix(Ci) is true. Consequently, when diningStatei is exiting, csPrefix(Ci)
is true; that is, MX x.mutexi is not trying. Therefore, at each correct process
i, only finitely many occurrences of Action D.1 violates mutual exclusion well-
formedness conditions. ��
Therefore, from Lemmas 4, 8, and 9, we establish pseudo-stabilization.

6.3 Correctness

We demonstrate safety and progress starting from a safe state after ♦P stops
falsely suspecting correct processes. The safety condition for wait-free dining is
that no two neighboring diners are live and eating concurrently. The progress
condition is that every correct hungry diner eventually eats.

Lemma 10. In any fair execution starting from a safe state, the action system
from Fig. 1, where each mutual-exclusion instance comprises an MX instance
satisfies safety: no two neighboring diners are live and eating concurrently.

Proof sketch. Let α be a fair execution starting from a safe state. Let α′ be
a suffix of α in which ♦P does not suspect live processes. Let i and j be two
live neighbors in some safe state s in α′ in which i is eating. Since i and j are
neighbors there exists clique Ry such that Ry ∈ Ci ∩ Cj . Since i is eating, we
know that MX y.mutexi = critical in s. From the mutual exclusion property,
we know that MX y.mutexj = critical in s. In other words, csPrefix(Cj) = Cj
in s. Therefore, j is not eating concurrently with i. ��

Lemma 11. In any fair well-formed execution starting from a safe state, the
action system from Fig. 1, where each mutual-exclusion instance comprises an
MX instance, satisfies progress: every correct hungry diner eventually eats.

Wait-Free Stabilizing Dining Using Regular Registers 297

Proof sketch. For contradiction, we assume that in some fair well-formed execu-
tion α of the system starting from a safe state, some hungry correct diner never
eats. If i is such a diner, then i must be trying for ever in some MX instance
Since MX x is wait-free, this implies that some correct neighbor j of i is in the
critical section of MX x forever. From Fig. 1, this means that for some other
clique Ry, y > x, j must be trying in MX y forever. Consequently, j is also
hungry forever. By the total order in which processes start trying in the MX
instances, x cannot be in the critical section of MX y. Therefore, some other
process k must be in the critical section ofMX y forever, and consequently, that
process k must be trying forever in some MX z, where z > y, (and therefore, k
must be hungry forever), and so on. Since there are only finitely many process
and finitely many MX instances, there must exist some process î that is (a)
hungry forever, (b) in the critical section of some MX ẑ , and (c) not trying in
any MX z′ , where z′ > ẑ. However, from Fig. 1, we see that this is impossible.
Thus, we have a contradiction. ��
From Lemmas 10 and 11, we establish correctness.

Theorem 1. The action system in Fig. 1, where each mutual-exclusion instance
is an MX instance, solves wait-free pseudo-stabilizing dining.

7 Discussion

Wait-Free Self-stabilizing Regular Registers. Our algorithm assumes that
the system contains wait-free self-stabilizing regular registers. We remark that
existing results from [17] may be used to construct wait-free self-stabilizing regu-
lar registers from wait-free self-stabilizing safe registers. Although results in [17]
construct atomic registers from regular registers, this construction is expensive
and uses unbounded counters.

Achieving Self-stabilization.Our proposed algorithm is wait-free and pseudo-
stabilizing, and not self-stabilizing, because starting from a safe state, if ♦P
falsely suspects a correct process, it could result in the system transitioning to an
unsafe state. Since ♦P eventually ceases such false suspicions, we are guaranteed
pseudo-stabilization. If we view a false suspicion by ♦P as a transient fault in
the system, then we see that our algorithm is, in fact, self-stabilizing as well.
Alternatively, if we replace ♦P with the perfect failure detector P [6] which
never suspects live processes and eventually and permanently suspects crashed
processes, our algorithm becomes self-stabilizing (in addition to being wait-free).

On Assuming ♦P. Recall that wait-free dining is unsolvable in asynchronous
systems. Consequently, we resort to using ♦P to achieve wait-freedom. In fact,
♦P is the weakest failure detector to solve wait-free dining under eventual exclu-
sion [29]. Therefore, assuming ♦P is necessary to solve wait-free self-stabilizing
dining in any (partially synchronous) shared-memory system.

Future Work. There are several ways in which our result can be extended.
For instance, if we can implement self-stabilizing ♦P in a partially synchronous

298 S. Sastry, J.L. Welch, and J. Widder

system with safe registers, then we can adapt our algorithm to solve wait-free
self-stabilizing dining with safe registers instead of regular registers. Another
avenue for improvement is in fairness. Our algorithm is weakly fair — every
hungry diner eventually eats, but could be overtaken unboundedly many times
by hungry neighbors. However, we know that ♦P is sufficient to solve eventually
bounded-fair dining [30]. It remains to be seen if we can solve wait-free stabilizing
dining with bounded fairness using ♦P .

References

1. Antonoiu, G., Srimani, P.K.: Mutual Exclusion Between Neighboring Nodes in an
Arbitrary System Graph Tree That Stabilizes Using Read/Write Atomicity. In:
Amestoy, P.R., Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D.
(eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 823–830. Springer, Heidelberg (1999)

2. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. Chicago Journal of Theortical Computer
Science 2002(1) (2002)

3. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impos-
sibility results and solutions using self-stabilizing failure detectors. International
Journal of Systems Science 28(11), 1177–1187 (1997)

4. Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-stabilization.
Distributed Computing 7(1), 35–42 (1993)

5. Cantarell, S., Datta, A.K., Petit, F.: Self-Stabilizing Atomicity Refinement Allow-
ing Neighborhood Concurrency. In: Huang, S.-T., Herman, T. (eds.) SSS 2003.
LNCS, vol. 2704, pp. 102–112. Springer, Heidelberg (2003)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

7. Choy, M., Singh, A.K.: Localizing failures in distributed synchronization. IEEE
Transactions on Parallel and Distributed Systems 7(7), 705–716 (1996)

8. Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Robust Stabilizing Leader Elec-
tion. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 219–233.
Springer, Heidelberg (2007)

9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual ex-
clusion in asynchronous systems with failure detectors. Journal of Parallel and
Distributed Computing 65(4), 492–505 (2005)

10. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
munications of the ACM 8(9), 569 (1965)

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

12. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

13. Dolev, S.: Self-Stabilization. MIT Press (2000)
14. Dolev, S., Herman, T.: Dijkstra’s Self-Stabilizing Algorithm in Unsupportive En-

vironments. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp.
67–81. Springer, Heidelberg (2001)

15. Dolev, S., Kat, R.I., Schiller, E.M.: When Consensus Meets Self-stabilization: Self-
stabilizing Failure-Detector, Consensus and Replicated State-Machine (Extended
Abstract). In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp.
45–63. Springer, Heidelberg (2006)

Wait-Free Stabilizing Dining Using Regular Registers 299

16. Fischer, M., Jiang, H.: Self-stabilizing Leader Election in Networks of Finite-
State Anonymous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

17. Hoepman, J.H., Papatriantafilou, M., Tsigas, P.: Self-stabilization of wait-free
shared memory objects. Journal of Parallel and Distributed Computing 62(5), 818–
842 (2002)

18. Hutle, M., Widder, J.: On the Possibility and the Impossibility of Message-Driven
Self-stabilizing Failure Detection. In: Tixeuil, S., Herman, T. (eds.) SSS 2005.
LNCS, vol. 3764, pp. 153–170. Springer, Heidelberg (2005)

19. Lamport, L.: On interprocess communication. Part II: Algorithms. Distributed
Computing 1(2), 86–101 (1986)

20. Line, J.C., Ghosh, S.: A methodology for constructing a stabilizing crash-tolerant
application. In: Proceedings of the 13th Symposium on Reliable Distributed Sys-
tems, pp. 12–21 (1994)

21. Line, J.C., Ghosh, S.: Stabilizing algorithms for diagnosing crash failures. In: Pro-
ceedings of the 13th Annual ACM Symposium on Principles of Distributed Com-
puting, p. 376 (1994)

22. Lynch, N.A.: Upper bounds for static resource allocation in a distributed system.
Journal of Computer and System Sciences 23(2), 254–278 (1981)

23. Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Inf. Process. Lett. 66(6),
285–290 (1998)

24. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes.
In: Proceedings of the 22nd International Conference on Distributed Computing
Systems, pp. 172–179 (2002)

25. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. Journal
of Parallel and Distributed Computing 62(5), 766–791 (2002)

26. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceed-
ings of the 21st IEEE Symposium on Reliable Distributed Systems, pp. 22–29
(2002)

27. Pike, S.M., Sivilotti, P.A.: Dining philosophers with crash locality 1. In: Proceed-
ings of the 24th IEEE International Conference on Distributed Computing Systems,
pp. 22–29 (2004)

28. Pike, S.M., Song, Y., Sastry, S.: Wait-Free Dining Under Eventual Weak Exclusion.
In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN
2008. LNCS, vol. 4904, pp. 135–146. Springer, Heidelberg (2008)

29. Sastry, S., Pike, S.M., Welch, J.L.: The weakest failure detector for wait-free dining
under eventual weak exclusion. In: Proceedings of the 21st ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 111–120 (2009)

30. Song, Y., Pike, S.M.: Eventually k-bounded wait-free distributed daemons. In:
IEEE International Conference on Dependable Systems and Networks, pp. 645–
655 (2007)

Node Sampling Using Random Centrifugal Walks

Andrés Sevilla1, Alberto Mozo2, and Antonio Fernández Anta3

1 Dpto Informática Aplicada, U. Politécnica de Madrid, Madrid, Spain
2 Dpto Arquitectura y Tecnología de Computadores, U. Politécnica de Madrid,

Madrid, Spain
{asevilla,amozo}@eui.upm.es

3 Institute IMDEA Networks, Madrid, Spain
antonio.fernandez@imdea.org

Abstract. Sampling a network with a given probability distribution has
been identified as a useful operation. In this paper we propose distributed
algorithms for sampling networks, so that nodes are selected by a special
node, called the source, with a given probability distribution. All these
algorithms are based on a new class of random walks, that we call Ran-
dom Centrifugal Walks (RCW). A RCW is a random walk that starts at
the source and always moves away from it.

Firstly, an algorithm to sample any connected network using RCW is
proposed. The algorithm assumes that each node has a weight, so that
the sampling process must select a node with a probability proportional
to its weight. This algorithm requires a preprocessing phase before the
sampling of nodes. In particular, a minimum diameter spanning tree
(MDST) is created in the network, and then nodes’ weights are efficiently
aggregated using the tree. The good news are that the preprocessing is
done only once, regardless of the number of sources and the number of
samples taken from the network. After that, every sample is done with
a RCW whose length is bounded by the network diameter.

Secondly, RCW algorithms that do not require preprocessing are pro-
posed for grids and networks with regular concentric connectivity, for the
case when the probability of selecting a node is a function of its distance
to the source.

The key features of the RCW algorithms (unlike previous Markovian
approaches) are that (1) they do not need to warm-up (stabilize), (2) the
sampling always finishes in a number of hops bounded by the network
diameter, and (3) it selects a node with the exact probability distribution.

1 Introduction

Sampling a network with a given distribution has been identified as a useful
operation in many contexts. For instance, sampling nodes with uniform prob-
ability is the building block of epidemic information spreading [13,12]. Simi-
larly, sampling with a probability that depends on the distance to a given node
[3,17] is useful to construct small world network topologies [14,7,2]. Other ap-
plications that can benefit from distance-based node sampling are landmark-less
network positioning systems like NetICE9 [16], which does sampling of nodes

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 300–314, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Node Sampling Using Random Centrifugal Walks 301

with special properties to assign synthetic coordinates to nodes. In a different
context, currently there is an increasing interest in obtaining a representative
(unbiased) sample from the users of online social networks [9]. In this paper we
propose a distributed algorithm for sampling networks with a desired probability
distribution.

Related Work. One technique to implement distributed sampling is to use gos-
siping between the network nodes. Jelasity et al. [12] present a general framework
to implement a uniform sampling service using gossip-based epidemic algorithms.
Bertier et al. [2] implement uniform sampling and DHT services using gossiping.
As a side result, they sample nodes with a distribution that is close to Klein-
berg’s harmonic distribution (one instance of a distance-dependent distribution).
Another gossip-based sampling service that gets close to Kleinberg’s harmonic
distribution has been proposed by Bonnet et al. [3]. However, when using gossip-
based distributed sampling as a service, it has been shown by Busnel et al. [5]
that only partial independence (ε-independence) between views (the subsets of
nodes held at each node) can be guaranteed without re-executing the gossip algo-
rithm. Gurevich and Keidar [11] give an algorithm that achieves ε-independence
in O(ns logn) rounds (where n is the network size and s is the view size).

Another popular distributed technique to sample a network is the use of ran-
dom walks [18]. Most random-walk based sampling algorithms do uniform sam-
pling [1,9], usually having to deal with the irregularities of the network. Sampling
with arbitrary probability distributions can be achieved with random walks by
re-weighting the hop probabilities to correct the sampling bias caused by the
non-uniform stationary distribution of the random walks. Lee et al. [15] propose
two new algorithms based on Metropolis-Hastings (MH) random walks for sam-
pling with any probability distribution. These algorithms provide an unbiased
graph sampling with a small overhead, and a smaller asymptotic variance of the
resulting unbiased estimators than generic MH random walks.

Sevilla et al. [17] have shown how sampling with an arbitrary probability
distribution can be done without communication if a uniform sampling service is
available. In that work, as in all the previous approaches, the desired probability
distribution is reached when the stationary distribution of a Markov process is
reached. The number of iterations (or hops of a random walk) required to reach
this situation (the warm-up time) depends on the parameters of the network and
the desired distribution, but it is not negligible. For instance, Zhong and Sheng
[18] found by simulation that, to achieve no more than 1% error, in a torus of
4096 nodes at least 200 hops of a random walk are required for the uniform
distribution, and 500 hops are required for a distribution proportional to the
inverse of the distance. Similarly, Gjoka et al. [10] show that a MHRW sampler
needs about 6K samples (or 1000-3000 iterations) to obtain the convergence to
the uniform probability distribution. In the light of these results, Markovian
approaches seem to be inefficient to implement a sampling service, specially if
multiple samples are desired.

302 A. Sevilla, A. Mozo, and A. Fernández Anta

Contributions. In this paper we present efficient distributed algorithms to
implement a sampling service. The basic technique used for sampling is a new
class of random walks that we call Random Centrifugal Walks (RCW). A RCW
starts at a special node, called the source, and always moves away from it.

All the algorithms proposed here are instances of a generic algorithm that uses
the RCW as basic element. This generic RCW-based algorithm works essentially
as follows. A RCW always starts at the source node. When the RCW reaches
a node x (the first node reached by a RCW is always the source s), the RCW
stops at that node with a stay probability. If the RCW stops at node x, then x
is the node selected by the sampling. If the RCW does not stop at x, it jumps
to a neighbor of x. To do so, the RCW chooses only among neighbors that are
farther from the source than the node x. (The probability of jumping to each of
these neighbors is not necessarily the same.) In the rest of the paper we will call
all the instances of this generic algorithm as RCW algorithms.

Firstly, we propose a RCW algorithm that samples any connected network
with any probability distribution (given as weights assigned to the nodes). Be-
fore starting the sampling, a preprocessing phase is required. This preprocessing
involves building a minimum distance spanning tree (MDST) in the network1,
and using this tree for efficiently aggregating the node’s weights. As a result
of the weight aggregation, each node has to maintain one numerical value per
link, which will be used by the RCW later. Once the preprocessing is completed,
any node in the network can be the source of a sampling process, and multiple
independent samplings with the exact desired distribution can be efficiently per-
formed. Since the RCW used for sampling follow the MDST, they take at most
D hops (where D is the network diameter).

Secondly, when the probability distribution is distance-based and nodes are at
integral distances (measured in hops) from the source, RCW algorithms without
preprocessing (and only a small amount of state data at the nodes) are proposed.
In a distance-based probability distribution all the nodes at the same distance
from the source node are selected with the same probability. (Observe that the
uniform and Kleinberg’s harmonic distributions are special cases of distance-
based probability distributions.) In these networks, each node at distance k > 0
from the source has neighbors (at least) at distance k− 1. We can picture nodes
at distance k from the source as positioned on a ring at distance k from the
source. The center of all the rings is the source, and the radius of each ring is
one unit larger than the previous one. Using this graphical image, we refer the
networks of this family as concentric rings networks. 2

The first distance-oriented RCW algorithm we propose samples with a distance-
based distribution in a network with grid topology. In this network, the source
node is at position (0, 0) and the lattice (Manhattan) distance is used. This grid

1 Using, for instance, the algorithm proposed by Bui et al. [4] whose time complexity
is O(n).

2 Observe that every connected network can be seen as a concentric rings network.
For instance, by finding the breadth-first search (BFS) tree rooted at the source,
and using the number of hops in this tree to the source as distance.

Node Sampling Using Random Centrifugal Walks 303

contains all the nodes that are at a distance no more than the radius R from the
source (the grid has hence a diamond shape3). The algorithm we derive assigns a
stay probability to each node, that only depends on its distance from the source.
However, the hop probabilities depend on the position (i, j) of the node and the
position of the neighbors to which the RCW can jump to. We formally prove
that the desired distance-based sampling probability distribution is achieved.
Moreover, since every hop of the RCW in the grid moves one unit of distance
away from the source, the sampling is completed after at most R hops.

We have proposed a second distance-oriented RCW algorithm that samples
with distance-based distributions in concentric rings networks with uniform con-
nectivity. These are networks in which all the nodes in each ring k have the same
number of neighbors in ring k − 1 and the same number in ring k + 1. Like the
grid algorithm, this variant is also proved to finish with the desired distribution
in at most R hops, where R is the number of rings.

Unfortunately, in general, concentric rings networks have no uniform connec-
tivity. This case is faced by creating, on top of the concentric rings network,
an overlay network that has uniform connectivity. In the resulting network, the
algorithm for uniform connectivity can be used. We propose a distributed algo-
rithm that, if it completes successfully, builds the desired overlay network. We
have found via simulations that this algorithm succeeds in building the overlay
network in a large number of cases.

In summary, RCW can be used to implement an efficient sampling service
because, unlike previous Markovian (e.g., classical random walks and epidemic)
approaches, (1) it always finishes in a number of hops bounded by the network
diameter, (2) selects a node with the exact probability distribution, and (3) does
not need warm-up (stabilization) to converge to the desired distribution. Addi-
tionally, in the case that preprocessing is needed, this only has to be executed
once, independently on the number of sources and the number of samples taken
from the network.

The rest of the paper is structured as follows. In Section 2 we introduce
concepts and notation that will be used in the rest of the paper. In Section 3
we present the RCW algorithm for a connected network. In Sections 4 and 5
we describe the RCW algorithm on grids and concentric rings networks with
uniform connectivity. In Section 6 we present the simulation based study of the
algorithm for concentric rings topologies without uniform connectivity. Finally,
we conclude the paper in Section 7.

2 Definitions and Model

Connected Networks. In this paper we only consider connected networks.
This family includes most of the potentially interesting networks we can find. In
every network, we use N to denote the set of nodes and n = |N | the size of that
set. When convenient, we assume that there is a special node in the network,
called the source and denoted by s. We assume that each node x ∈ N has
3 A RCW algorithm for a square grid is easy to derive from the one presented.

304 A. Sevilla, A. Mozo, and A. Fernández Anta

an associated weight w(x) > 0. Furthermore, each node knows its own weight.
The weights are used to obtain the desired probability distribution p, so that
the probability of selecting a node x is proportional to w(x). Let us denote
η =

∑
j∈N w(j). Then, the probability of selecting x ∈ N is p(x) = w(x)/η. (In

the simplest case, weights are probabilities, i.e., w(x) = p(x), ∀x and η = 1.)

RCW in Connected Networks. As mentioned, in order to use RCW to sample
connected networks, some preprocessing is done. This involves constructing a
spanning tree in the network and performing a weight aggregation process. After
the preprocessing, RCW is used for sampling. A RCW starts from the source.
When the RCW reaches a node x ∈ N , it selects x as the sampled vertex with
probability q(x), which we call the stay probability. If x is not selected, a neighbor
y of x in the tree is chosen, using for that a collection of hop probabilities h(x, y).
The values of q(x) and h(x, y) are computed in the preprocessing and stored at x.
The probability of reaching a node x ∈ N in a RCW is called the visit probability,
denoted v(x).

Concentric Rings Networks. We also consider a subfamily of the connected
networks, which we call concentric rings networks. These are networks in which
the nodes of N are at integral distances from s. In these networks, no node is
at a distance from s larger than a radius R. For each k ∈ [0, R], we use Rk = ∅
to denote the set of nodes at distance k from s, and nk = |Rk|. (Observe that
R0 = {s} and n0 = 1.) These networks can be seen as a collection of concentric
rings at distances 1 to R from the source, which is the common center of all
rings. For that reason, we call the set Rk the ring at distance k. For each x ∈ Rk

and k ∈ [1, R], γk(x) > 0 is the number of neighbors of node x at distance k− 1
from s (which is only 1 if k = 1), and δk(x) is the number of neighbors of node
x at distance k + 1 from s (which is 0 if k = R).

The concentric rings networks considered must satisfy the additional prop-
erty that the probability distribution is distance based. This means that, for all
k ∈ [0, R], every node x ∈ Rk has the same probability pk to be selected. We
assume that each node x ∈ Rk knows its own pk. These properties allow, in
the subfamilies defined below, to avoid the preprocessing required for connected
networks.
Grids. A first subfamily of concentric rings networks considered is the grid with
lattice distances. In this network, the source is at position (0, 0) of the grid, and
it contains all the nodes (i, j) so that i, j ∈ [−R,R] and |i| + |j| ≤ R. For each
k ∈ [0, R], the set of nodes in ring k is Rk = {(i, j) : |i|+ |j| = k}. The neighbors
of a node (i, j) are the nodes (i − 1, j), (i + 1, j), (i, j − 1), and (i, j + 1) (that
belong to the grid).
Uniform Connectivity. The second subfamily considered is formed by the con-
centric rings networks with uniform connectivity. These networks satisfy that

∀k ∈ [1, R], ∀x, y ∈ Rk, δk(x) = δk(y) ∧ γk(x) = γk(y). (1)
In other words, all nodes of ring k have the same number of neighbors δk in ring
k + 1 and the same number of neighbors γk in ring k − 1.

Node Sampling Using Random Centrifugal Walks 305

RCW in Concentric Rings Networks. The behavior of a generic RCW was al-
ready described. In the algorithm that we will present in this paper for concentric
rings networks we guarantee that, for each k, all the nodes in Rk have the same
visit probability vk and the same stay probability qk. A RCW starts from the
source. When it reaches a node x ∈ Rk, it selects x as the sampled vertex with
stay probability qk. If x is not selected, a neighbor y ∈ Rk+1 of x is chosen.

The desired distance-based probability distribution is given by the values pk,
k ∈ [0, R], where it must hold that

∑R
k=0 nk×pk = 1. The problem to be solved is

to define the stay and hop probabilities so that the probability of a node x ∈ Rk

is pk.

Observation 1. If for all k ∈ [0, R] the visit vk and stay qk probabilities are
the same for all the nodes in Rk, the RCW samples with the desired probability
iff pk = vk · qk.

3 Sampling in a Connected Network

In this section, we present a RCW algorithm that can be used to sample any
connected network. As mentioned, in addition to connectivity, it is required
that each node knows its own weight. A node will be selected with probability
proportional to its weight.

Preprocessing for the RCW Algorithm. The RCW algorithm for connected
networks requires some preprocessing which will be described now. This prepro-
cessing has to be done only once for the whole network, independently of which
nodes act as sources and how many samples are taken.

Building a spanning tree. Initially, the algorithm builds a spanning tree of the
network. A feature of the algorithm is that, if several nodes want to act as
sources for RCW, they can all share the same spanning tree. Hence only one
tree for the whole network has to be built. The algorithm used for the tree
construction is not important for the correctness of the RCW algorithm, but the
diameter of the tree will be an upper bound on the length of the RCW (and
hence possibly the sampling latency). There are several well known distributed
algorithms (see, e.g., [6] and the references therein) that can be used to build
the spanning tree. In particular, it is interesting to build a minimum diameter
spanning tree (MDST) because, as mentioned, the length of the RCW is upper
bounded by the tree diameter. There are few algorithms in the literature to build
a MDST. One possible candidate to be used in our context is the one proposed
by Bui et al. [4]. Additionally, if link failures are expected, the variation of the
former algorithm proposed by Gfeller et al. [8] can be used.

Weight aggregation. Once the spanning tree is in place, the nodes compute and
store aggregated weights using the algorithm of Figure 1. The algorithm executes
at each node i ∈ N , and it computes in a distributed way the aggregated weight
of each subtree that can be reached following one of the links of i. In particular,
for each node x that is in the set of neighbors of i in the tree, neighbors(i), the

306 A. Sevilla, A. Mozo, and A. Fernández Anta

1 task Weight_Aggregation(i)
2 if i is a leaf then
3 send WEIGHT(w(i)) to neighbor x
4 receive WEIGHT(p) from neighbor x
5 Ti(x) ← p
6 else
7 repeat
8 receive WEIGHT(p) from x ∈ neighbors(i)
9 Ti(x) ← p

10 foreach y ∈ neighbors(i) \ {x} do
11 if received WEIGHT(·) from neighbors(i) \ {y} then
12 send WEIGHT(w(i) +

∑
z∈neighbors(i)\{y} Ti(z)) to y

13 end foreach
14 until received WEIGHT(·) from every x ∈ neighbors(i)

Fig. 1. Weight aggregation algorithm. Code for node i.

algorithm computes a value Ti(x) and stores it at i. Let (i, x) be a link of the
spanning tree, then by removing the link (i, x) from the spanning tree there are
two subtrees. We denote by stree(x, i) the subtree out of them that contains
node x.

Theorem 1. After the completion of the Weight Aggregation algorithm (of Fig-
ure 1), each node i ∈ N will store, for each node x ∈ neighbors(i), in Ti(x) the
value

∑
y∈stree(x,i) w(y).

Proof. Consider stree(x, i) a tree rooted at x. We prove the claim by induction
in the depth of this tree. The base case is when the tree has depth 1. In this
case x is a leaf and, from the algorithm, it sends to i its weight w(x), which
is stored at i as Ti(x). If the depth is k > 1, by induction hypothesis x ends
up having in Tx(y) the sum of the weight of the subtree stree(x, y), for each
y ∈ neighbors(x)\ {i}. These values plus w(x) are added up and sent to i, which
stores the resulting value as Ti(x).

The values Ti(x) computed in this preprocessing phase will later be used by the
RCW algorithm to perform the sampling. We can bound now the complexity of
this process in terms of messages exchanged and time to complete. We assume
that all nodes start running the Weight Aggregation algorithm simultaneously,
that the transmission of messages takes one step, and that computation time is
negligible. The proof of the following theorem can be found in [19].

Theorem 2. The Weight Aggregation algorithm (of Figure 1) requires 2(n− 1)
messages to be exchanged, and completes after D steps, where D is the diameter
of the tree.

RCW Sampling Algorithm. In this RCW algorithm (Figure 2) any node can
be the source. The spanning tree and the precomputed aggregated weights are

Node Sampling Using Random Centrifugal Walks 307

1 task RCW (i)
2 when RCW_MSG(s) received from x
3 candidates ← neighbors(i) \ {x}
4 with probability q(i) = w(i)

w(i)+
∑

z∈candidates Ti(z)
do

5 select node i and report to source s
6 otherwise
7 choose a node y ∈ candidates with probability h(i, y)= Ti(y)∑

z∈candidates Ti(z)

8 send RCW_MSG(s) to y

Fig. 2. RCW algorithm for connected networks. Code for node i.

used by any node to perform the samplings (as many as needed). The sampling
process in the RCW algorithm works as follows. To start the process, the source
s sends a message RCW_MSG(s) to itself. When the RCW_MSG(s) message
is received by a node i from a node x, it computes a set of candidates for next
hop in the RCW, which are all the neighbors of i except x. Then, the RCW
stops and selects that node with a stay probability q(i) = w(i)

w(i)+
∑

z∈candidates Ti(z)

(Line 4). If the RCW does not select i, it jumps to a neighbor of i different from
x. To do so, the RCW chooses only among nodes y in the set of candidates (that
move away from s) using h(i, y) = Ti(y)∑

z∈candidates Ti(z)
as hop probability (Line 7).

Analysis. We show now that the algorithm proposed performs sampling with
the desired probability distribution.

Theorem 3. Each node i ∈ N is selected by the RCW algorithm with probability
p(i) = w(i)

η .

Proof. If a node i receives the RCW_MSG(s) from x, let us define candidates =
neighbors(i)\{x}, and T (i) = w(i)+

∑
z∈candidates Ti(z). We prove the following

stronger claim: Each node i ∈ N is visited by the RCW with probability v(i) =
T (i)
η and selected by the RCW algorithm with probability p(i) = w(i)

η .
We prove this claim by induction on the number of hops from the source s

to node i in the spanning tree. The base case is when the node i is the source
s. In this case x is also s, candidates = neighbors(s), and T (s) = η. Hence,
v(s) = T (s)

η = 1 and q(s) = w(s)
η , yielding p(s) = w(s)

η .
The induction hypothesis assumes the claim true for a node x at distance

k from s, and proves the claim for i which is at distance k + 1. We have
that Pr[visit i] = v(x) (1− q(x)) T (i)

T (x)−w(x) , where 1 − q(x) is the probabil-

ity of not selecting node x when visiting it, and T (i)
T (x)−w(x) is the probability

of choosing the node i in the next hop of the RCW. The stay probability of
x and i are q(x) = w(x)/T (x) and q(i) = w(i)/T (i), respectively (Line 4).
Then, v(i) = T (x)

η

(
1− w(x)

T (x)

)
T (i)

T (x)−w(x) = T (x)
η

(
T (x)−w(x)

T (x)

)
T (i)

T (x)−w(x) = T (i)
η

and Pr[select i] = v(i)q(i) = T (i)
η

w(i)
T (i) = w(i)

η .

308 A. Sevilla, A. Mozo, and A. Fernández Anta

4 Sampling in a Grid

If the algorithm for connected networks is applied to a grid, given its regular
structure, the construction of the spanning tree could be done without any com-
munication among nodes, but the weight aggregation process has to be done as
before. However, we show in this section that all preprocessing and the state
data stored in each node can be avoided if the probability distribution is based
on the distance. RCW sampling process was described in Section 2, and we only
redefine stay and hop probabilities. From Observation 1, the key for correctness
is to assign stay and hop probabilities that guarantee visit and stay probabilities
that are homogenous for all the nodes at the same distance from the source.

Stay Probability. For k ∈ [0, R], the stay probability of every node (i, j) ∈ Rk

is defined as
qk =

nk · pk∑R
j=k nj · pj

=
nk · pk

1−
∑k−1

j=0 nj · pj
. (2)

As required by Observation 1, all nodes in Rk have the same qk. Note that q0 = p0
and qR = 1, as one may expect. Since the value of pk is known at (i, j) ∈ Rk, nk

can be readily computed4, and the value of
∑k−1

j=0 nj · pj can be piggybacked in
the RCW, the value of qk can be computed and used at (i, j) without requiring
precomputation nor state data.

Hop Probability. In the grid, the hops of a RCW increase the distance from
the source by one unit. We want to guarantee that the visiting probability is the
same for each node at the same distance, to use Observation 1. To do so, we
need to observe that nodes (i, j) over the axes (i.e., with i = 0 or j = 0) have
to be treated as a special case, because they can only be reached via a single
path, while the others nodes can be reached via several paths. To simplify the
presentation, and since the grid is symmetric, we give the hop probabilities for
one quadrant only (the one in which nodes have both coordinates non-negative).
The hop probabilities in the other three quadrants are similar. The first hop
of each RCW chooses one of the four links of the source node with the same
probability 1/4. We have three cases when calculating the hop probabilities from
a node (i, j) at distance k, 0 < k < R, to node (i′, j′).
– Case A: The edge from (i, j) to (i′, j′) is in one axis (i.e., i = i′ = 0 or

j = j′ = 0). The hop probability of this link is set to hk((i, j), (i
′, j′)) =

i+j
i+j+1 = k

k+1 .
– Case B: The edge from (i, j) to (i′, j′) is not in the axes, i′ = i+1, and j′ = j.

The hop probability of this link is set to hk((i, j), (i + 1, j)) = 2i+1
2(i+j+1) =

2i+1
2(k+1) .

– Case C: The edge from (i, j) to (i′, j′) is not in the axes, i′ = i, and j′ = j+1.
The hop probability of this link is set to hk((i, j), (i, j + 1)) = 2j+1

2(i+j+1) =
2j+1
2(k+1) .

It is easy to check that the hop probabilities of a node add up to one.
4 n0 = 1, while nk = 4k for k ∈ [1, R].

Node Sampling Using Random Centrifugal Walks 309

Analysis. In the following we prove that the RCW that uses the above stay
and hop probabilities selects nodes with the desired sample probability.

Lemma 1. All nodes at the same distance k ≥ 0 to the source have the same
visit probability vk.

Proof. The proof uses induction. The base case is k = 0, and obviously vk = 1.
When k = 1, the probability of visiting each of the four nodes at distance 1 from
the source s is vi = 1−q0

4 , where 1− q0 is the probability of not staying at source
node. Assuming that all nodes at distance k > 0 have the same visit probability
vk, we prove the case of distance k + 1. Recall that the stay probability is the
same qk for all nodes at distance k.

The probability to visit a node x = (i′, j′) at distance k + 1 depends on
whether x is on an axis or not. If it is in one axis it can only be reached from
its only neighbor (i, j) at distance k. This happens with probability (case A)
Pr[visit x] = vk(1 − qk)

i+j
i+j+1 = vk(1 − qk)

k
k+1 . If x is not on an axis, it can be

reached from two nodes, (i′−1, j′) and (i′, j′−1), at distance k (Cases B and C).
Hence, the probability of reaching x is then Pr[visit x] = vk(1 − qk)

2(i′−1)+1
2(i′+j′) +

vk(1 − qk)
2(j′−1)+1
2(i′+j′) = vk(1 − qk)

k
k+1 . Hence, in both cases the visit probability

of a node x at distance k+1 is vk+1 = vk(1− qk)
k

k+1 . This proves the induction
and the claim.

Theorem 4. Every node at distance k ∈ [0, R] from the source is selected with
probability pk.

Proof. If a node is visited at distance k, it is because no node was selected at
distance less than k, since a RCW always moves away from the source. Hence,
Pr[∃x ∈ Rk visited] = 1 −

∑k−1
j=0 njpj . Since all the nk nodes in Rk have the

same probability to be visited (from the previous lemma), we have that vk =
1−

∑k−1
j=0 njpj

nk
. Now, since all the nk nodes in Rk have the same stay probability is

qk, the probability of selecting a particular node x at distance k from the source

is Pr[select x] = vkqk =
1−

∑k−1
j=0 njpj

nk

nkpk∑R
j=k njpj

= pk, where it has been used that

(1−
∑k−1

j=0 njpj) =
∑R

j=k njpj .

5 Sampling in a Concentric Rings Network with Uniform
Connectivity

In this section we derive a RCW algorithm to sample a concentric rings network
with uniform connectivity, where all preprocessing is avoided, and only a small
(and constant) amount of data is stored in each node. Recall that uniform con-
nectivity means that all nodes of ring k have the same number of neighbors δk
in ring k + 1 and the same number of neighbors γk in ring k − 1.

310 A. Sevilla, A. Mozo, and A. Fernández Anta

1 task RCW (x, k, δk, γk, pk)
2 when RCW_MSG(s, vk−1, pk−1, nk−1, δk−1) received:
3 nk ← nk−1

δk−1

γk
; vk ← nk−1

vk−1−pk−1

nk
; qk ← pk

vk

4 with probability qk do select node x and report to s
5 otherwise
6 choose a neighbor y in ring k + 1 with uniform probability
7 send RCW_MSG(s, vk, pk, nk, δk) to y

Fig. 3. RCW algorithm for concentric rings with uniform connectivity (code for node
x ∈ Rk, k > 0)

Distributed Algorithm. The general behavior of the RCW algorithm for these
networks was described in Section 2. In order to guarantee that the algorithm is
fully distributed, and to reduce the amount of data a node must know a priori, a
node at distance k that sends the RCW to a node in ring k+1 piggybacks some
information. More in detail, when a node in ring k receives the RCW from a
node of ring k− 1, it also receives the probability vk−1 of the previous step, and
the values pk−1, nk−1, and δk−1. Then, it calculates the values of nk, vk, and qk.
After that, the RCW algorithm uses the stay probability qk to decide whether
to select the node or not. If it decides not to select it, it chooses a neighbor in
ring k + 1 with uniform probability. Then, it sends to this node the probability
vk and the values pk, nk, and δk, piggybacked in the RCW.

The RCW algorithm works as follows. The source s selects itself with prob-
ability q0 = p0. If it does not do so, it chooses one node in ring 1 with uniform
probability, and sends it the RCW message with values v0 = 1, n0 = 1, p0,
and δ0. Figure 3 shows the code of the RCW algorithm for nodes in rings Rk

for k > 0. Each node in ring k must only know initially the values δk, γk and
pk. Observe that nk (number of nodes in ring k) can be locally calculated as
nk = nk−1δk−1/γk. The correctness of this computation follows from the uni-
form connectivity assumption (Eq. 1).

Analysis. The uniform connectivity property can be used to prove by induction
that all nodes in the same ring k have the same probability vk to be reached.
The stay probability qk is defined as qk = pk/vk. Then, from Observation 1, the
probability of selecting a node x of ring k is pk = vkqk. What is left to prove is
that the value vk computed in Figure 3 is in fact the visit probability of a node
in ring k.

Lemma 2. The values vk computed in Figure 3 are the correct visit probabilities.

Proof. Let us use induction. For k = 1 the visit probability of a node x in ring
R1 is 1−q0

n1
= 1−p0

n1
. On the other hand, when a message RCW_MSG reaches

x, it carries v0 = 1, n0 = 1, p0, and δ0 (Line 2). Then, v1 is computed as
v1 = n0

v0−p0

n1
= 1−p0

n1
(Line 3). For a general k > 1, assume the value vk−1 is the

correct visit probability of a node in ring k − 1. The visit probability of a node
in ring k is vk−1nk−1(1−qk−1)/nk, which replacing qk−1 = pk−1/vk−1 yields the
expression used in Figure 3 to compute vk (Line 3).

Node Sampling Using Random Centrifugal Walks 311

 0.01

 0.1

 1

 10

 45 60 75 90 180 360

av
er

ag
e

re
la

tiv
e

er
ro

r

angles

UNI RCW max
PID RCW max

UNI simulator max
PID simulator max

UNI RCW avg
PID RCW avg

UNI simulator avg
PID simulator avg

Fig. 4. UNI and PID scenarios without uniform connectivity

The above lemma, together with the previous reasoning, proves the following.

Theorem 5. Every node at distance k of the source is selected with probability pk.

6 Concentric Rings Networks without Uniform
Connectivity

Finally, we are interested in evaluating, by means of simulations, the performance
of the RCW algorithm for concentric rings with uniform connectivity when it is
used on a more realistic topology: a concentric rings network without uniform
connectivity. The experiment has been done in a concentric rings topology of 100
rings with 100 nodes per ring, and it places the nodes of each ring uniformly at
random on each ring. This deployment does not guarantee uniform connectivity.
Instead, the nodes’ degrees follow roughly a normal probability distribution. In
order to establish the connectivity of nodes, we do a geometric deployment. A
node x in ring k is assigned a position in the ring. This position can be given
by an angle α. Then, each network studied will have associated a connectivity
angle β, the same for all nodes. This means that x will be connected to all
the nodes in rings k − 1 and k + 1 whose position (angle) is in the interval
[α − β/2, α + β/2] (see Figure 7 in [19]). Observe that the bigger the angle β
is, the more neighbors x has in rings k − 1 and k + 1. We compare the relative
error of the RCW algorithm when sampling with two distributions: the uniform
distribution (UNI) and a distribution proportional to the inverse of the distance
(PID). We define the relative error ei for a node x in a collection C of s samples
as ei =

|fsimx−fx|
fx

, where fsimx is the number of instances of x in collection C
obtained by the simulator, and fx = px · s is the expected number of instances
of x with the ideal probability distribution (UNI or PID). We compare the error
of the RCW algorithm with the error of a generator of pseudorandom numbers.
For each configuration, a collection of 107 samples has been done.

Figure 4 presents the results obtained in the UNI and PID scenarios. In both
cases, we can see that the RCW algorithm performs much worse than the UNI

312 A. Sevilla, A. Mozo, and A. Fernández Anta

1 function AssignAttachmentPoints(x, k)

2 ap ← LCM(nk,nk+1)

nk

3 C ← Nk+1(x) /∗ neighbors of x in ring k + 1 ∗/
4 Ax ← ∅ /∗ Ax is a multiset ∗/
5 loop
6 choose c from C
7 send ATTACH_MSG to c
8 receive RESPONSE_MSG from c
9 if RESPONSE_MSG = OK then

10 ap ← ap− 1
11 add c to Ax /∗ c can be in Ax several times ∗/
12 else C ← C \ {c}
13 until (ap = 0) ∨ (C = ∅)
14 if (ap = 0) then return Ax

15 else return FAILURE

Angle % success
15 ◦ 0%
30 ◦ 0%
45 ◦ 3%
60 ◦ 82%
75 ◦ 99%
90 ◦ 100%
150 ◦ 100%
180 ◦ 100%
360 ◦ 100%

Fig. 5. Assignment Attachment Points (AAP) Function (left side). Success rate of the
AAP algorithm as a function of the connectivity angle (right side).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 75 90 150 180 360

av
er

ag
e

re
la

tiv
e

er
ro

r

angles

UNI RCW max
PID RCW max

UNI simulator max
PID simulator max

UNI RCW avg
PID RCW avg

UNI simulator avg
PID simulator avg

Fig. 6. UNI and PID scenarios without uniform connectivity, using the AAP algorithm

and PID simulators. The simulation results show a biased behavior of RCW
algorithm because the condition of Eq. 1 is not fulfilled in this experiment (i.e.
a node has no neighbors, or there are two nodes in a ring k that have different
number of neighbors in rings k − 1 or k + 1).
Assignment Attachment Points (AAP) Algorithm. To eliminate the errors ob-
served when there is no uniform connectivity, we propose a simple algorithm
to transform the concentric rings network without uniform connectivity into an
overlay network with uniform connectivity.

To preserve the property that the visit probability is the same for all the nodes
in a ring, nodes will use different probabilities for different neighbors. Instead of
explicitly computing the probability for each neighbor, we will use the following
process. Consider rings k and k+1. Let r = LCM (nk, nk+1), where LCM is the
least common multiple function. We assign r

nk
attachment points to each node

Node Sampling Using Random Centrifugal Walks 313

in ring k, and r
nk+1

attachment points to each node in ring k + 1. Now, the
problem is to connect each attachment point in ring k to a different attachment
point in ring k + 1 (not necessarily in different nodes). If this can be done, we
can use the algorithm of Figure 3, but when a RCW is sent to the next ring, an
attachment point (instead of a neighbor) is chosen uniformly. Since the number
of attachments points is the same in all nodes of ring k and in all nodes of ring
k+1, the impact in the visit probability is that it is again the same for all nodes
of a ring.

The connection between attachment points can be done with the simple algo-
rithm presented in Figure 5, in which a node x in ring k contacts its neighbors
to request available attachment points. If a neighbor that is contacted has some
free attachment point, it replies with a response message RESPONSE_MSG
with value OK, accepting the connection. Otherwise it replies to x notifying
that all its attachment points have been connected. The node x continues try-
ing until its r

nk
attachment points have been connected or none of its neighbors

has available attachment points. If this latter situation arises, then the process
failed. The algorithm finishes in O(maxk{nk}) communication rounds. (Note
that r ≤ nk · nk+1 and |C| ≤ nk+1). Combining these results with the analysis
of Section 5, we can conclude with the following theorem.

Theorem 6. Using attachment points instead of links and the distributed RCW-
based algorithm of Figure 3, it is possible to sample a concentric rings network
without uniform connectivity with any desired distance-based probability distri-
bution pk, provided that the algorithm of Figure 5 completes (is successful) in all
the nodes.

Figure 6 shows the results when using the AAP algorithm. As we can see, the
differences have disappeared. The conclusion is that, when nodes are placed
uniformly at random and AAP is used to attach neighbors to each node, RCW
performs as good as perfect UNI or PID simulators.

In general, the algorithm of Figure 5 may not be succesful. It is shown in the
table of Figure 5 (right side) the success rate of the algorithm for different con-
nectivity angles. It can be observed that the success rate is large as long as the
connectivity angles are not very small (at least 60◦). (For an angle of 60◦ the ex-
pected number of neighbors in the next ring for each node is less than 17.) For
small angles, like 15◦ and 30◦, the AAP algorithm is never successful. For these
cases, the algorithm for connected network presented in Section 3 can be used.

7 Conclusions

In this paper we propose distributed algorithms for node sampling in networks.
All the proposed algorithms are based on a new class of random walks called cen-
trifugal random walks. These algorithms guarantee that the sampling end after
a number of hops upper bounded by the diameter of the network, and it sam-
ples with the exact probability distribution. As future works we want to explore

314 A. Sevilla, A. Mozo, and A. Fernández Anta

sampling in dynamic networks using random centrifugal walks. Additionally, we
will investigate a more general algorithm that would also concern distributions
that do not only depend on the distance from the source.

References

1. Awan, A., Ferreira, R.A., Jagannathan, S., Grama, A.: Distributed uniform sam-
pling in unstructured peer-to-peer networks. In: HICSS. IEEE CS (2006)

2. Bertier, M., Bonnet, F., Kermarrec, A.M., Leroy, V., Peri, S., Raynal, M.: D2HT:
The best of both worlds, integrating RPS and DHT. In: EDCC. IEEE CS (2010)

3. Bonnet, F., Kermarrec, A.-M., Raynal, M.: Small-World Networks: From Theo-
retical Bounds to Practical Systems. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 372–385. Springer, Heidelberg (2007)

4. Bui, M., Butelle, F., Lavault, C.: A distributed algorithm for constructing a mini-
mum diameter spanning tree. J. Parallel Distrib. Comput. (May 2004)

5. Busnel, Y., Beraldi, R., Baldoni, R.: On the uniformity of peer sampling based on
view shuffling. Journal of Parallel and Distributed Computing (2011)

6. Elkin, M.: A faster distributed protocol for constructing a minimum spanning tree.
In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2004, Philadelphia, PA, USA (2004)

7. Fraigniaud, P., Giakkoupis, G.: On the searchability of small-world networks with
arbitrary underlying structure. In: Schulman, L.J. (ed.) STOC. ACM (2010)

8. Gfeller, B., Santoro, N., Widmayer, P.: A distributed algorithm for finding all best
swap edges of a minimum-diameter spanning tree. IEEE Trans. Dependable Secur.
Comput. (January 2011)

9. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: A case
study of unbiased sampling of osns. In: INFOCOM, pp. 2498–2506. IEEE (2010)

10. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Practical recommendations
on crawling online social networks. IEEE Journal on Selected Areas in Communi-
cations (October 2011)

11. Gurevich, M., Keidar, I.: Correctness of gossip-based membership under message
loss. SIAM J. Comput. 39(8) (December 2010)

12. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-
based peer sampling. ACM Trans. Comput. Syst. 25(3) (2007)

13. Kempe, D., Kleinberg, J.M., Demers, A.J.: Spatial gossip and resource location
protocols. J. ACM 51(6), 943–967 (2004)

14. Kleinberg, J.M.: Navigation in a small world. Nature 406(6798) (August 2000)
15. Lee, C.-H., Xu, X., Eun, D.Y.: Beyond random walk and metropolis-hastings sam-

plers: why you should not backtrack for unbiased graph sampling. In: SIGMET-
RICS 2012. ACM (2012)

16. Milić, D., Braun, T.: Netice9: A stable landmark-less network positioning system.
In: 2010 IEEE 35th Conference on Local Computer Networks (October 2010)

17. Sevilla, A., Mozo, A., Lorenzo, M.A., López-Presa, J.L., Manzano, P., Fernán-
dez Anta, A.: Biased Selection for Building Small-World Networks. In: Lu, C.,
Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 32–47.
Springer, Heidelberg (2010)

18. Zhong, M., Shen, K.: Random walk based node sampling in self-organizing net-
works. SIGOPS Oper. Syst. Rev. 40, 49–55 (2006)

19. Sevilla, A., Mozo, A., Fernández Anta, A.: Node Sampling using Random Centrifu-
gal Walks. CoRR, abs/1107.1089, version 3 (2012)

Physarum-Inspired Self-biased Walkers

for Distributed Clustering

Devan Sohier1, Giorgos Georgiadis2, Simon Clavière1,
Marina Papatriantafilou2, and Alain Bui1

1 Department of Computer Science and Engineering, Chalmers University of
Technology, S-412 96 Göteborg, Sweden
{georgiog,ptrianta}@chalmers.se

2 Laboratoire PRiSM (UMR CNRS 8144), Université de Versailles
St-Quentin-en-Yvelines, 78035 Versailles, France

{devan.sohier,simon.claviere,alain.bui}@prism.uvsq.fr

Abstract. We propose a distributed scheme to compute distance-based
clusters. We first present a mechanism based on the flow of distributed
tokens called walkers, circulating randomly between a source and a sink
to compute a shortest path. Each time a walker takes an edge, it rein-
forces the probability that subsequent walkers take it. This mechanism
is a discrete emulation of the slime mould (Physarum polycephalum) dy-
namics presented in [16]: each node observes the flow of walkers going
through each adjacent edge and uses this flow to compute the probabil-
ities with which it sends the walkers through each edge. Then, based on
this mechanism, we show how several sources compute a shortest path
DAG to a given sink. Finally, given some clusterheads acting like sinks,
we show that this process converges to distance-based clusters (i.e. nodes
join the clusterhead to which they are closest) with shortest-path DAGs.
The algorithm is designed with a special focus on dynamic networks: the
flow locally adapts to the appearance and disappearance of links and
nodes, including clusterheads.

1 Introduction

We focus on overlay construction over networks, in a way that nodes are clus-
tered around specified clusterheads. Clustering can facilitate locality and scal-
ability properties in a variety of networks – wireless, ad-hoc, sensor networks
– for services such as routing, data aggregation, resource finding and sharing
in neighborhoods. The latter is instrumental for realizing interest-based groups
and facilitating grouping based on gradient proximity measures [27]. When it
comes to resource sharing, load balancing is aligned with clustering; it forms an
incentive to achieve and a way to enforce fairness and group participation in
collaboration.

In particular the overlay we are aiming for here should define for each node
efficient ways of reaching the closest clusterhead through shortest paths (using
an application related distance metric); moreover, nodes at equal distances from

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 315–329, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

316 D. Sohier et al.

several clusterheads should connect to all of them, thus also forming bridges
among clusters. We are interested in methods that do not need global knowledge
of the network and have strong locality and self-organizing properties and small,
lightweight messages [21].

Towards this goal one of the basic instruments will be based on an adaptation
of random walks we call self-biased walkers. Random walks have been shown
to be effective in the searching, dissemination and construction of overlay net-
works as a statistical process that associates with important parameters and
properties of the corresponding network [18]. We will show that the proposed
walkers adaptively develop bias towards corresponding shortest paths and can
effectively simulate a process of natural computation, in particular the slime
mould Physarum polycephalum. We will further show how to use this basic form
of computation towards achieving the aforementioned goal of this work.

In their seminal work, Nakagaki et al [25] found that they could use the slime
mould Physarum polycephalum in order to solve simple mazes, by placing food
at the exits, introducing the mould into the maze and letting it reach the food
using extensible tube-like protuberances (pseudopodia). The mould not only
solved the maze but did so efficiently, by forming shortest paths between the en-
try and the exit points of the maze. In doing so, the mould changes the diameter
of its pseudopodia, depending on whether the particular protuberance is vital
in the nutrient circulation. Based on these works and with further experimenta-
tions, researchers succeeded in reproducing the transportation networks of the
Tokyo metropolitan area [26] and countries such as Brazil [15] by placing food
in population centers and having the mould connect them.

The mechanism through which the mould achieves the quality of its solutions
remains an open research question. Several authors [25,23,24,26] suggested an
electric circuit model, where nodes are connected through resistors with a diam-
eter property that can affect the amount of current that passes through them.
This diameter corresponds roughly to the pseudopodia diameter of the mould
and tends to follow the electric current flow: if the flow becomes greater the di-
ameter increases, otherwise it decreases. For the exact relation between diameter
Dij and current Qij passing through a resistor (i, j) though, several mechanisms
have been proposed, for example

[23]
dDij

dt = f (|Qij |)−Dij (1)

[25]
dDij

dt = |Qij |μ − aDij (2)

[24]
dDij

dt = |Qij | −Dij (3)

[26]
dDij

dt =
|Qij |γ

1+|Qij |γ −Dij (4)

which lead to different dynamics. It has been conjectured that the usage of these
dynamics can lead to efficient algorithms in applications that involve shortest
paths and similar transportation problems. To our knowledge, the distributed
algorithm presented here is the first such algorithm.

Related work on Physarum. In the Physarum-related literature, a number of
different dynamics have been explored to explain the mould’s behavior, focusing
on the different forms of function f(·) of equation 1 [26,19,23,16]. Specifically
Ito et al [19] use the equation 1 for the diameter dynamics and prove that their

Physarum-Inspired Self-biased Walkers for Distributed Clustering 317

model is able to solve transportation problems, while the diameters converge
exponentially to their final values. Miyaji and Onishi [24] use equation 1 and
prove analytically that the dynamics converge for planar graphs with a unique
shortest path between source and sink nodes, to a flow that uses only the shortest
path. Bonifaci et al [16] move one step further by proving that dynamics based
on equation 1 similarly converge to the unique shortest path for all graphs, pro-
vided a unique short path between source and sink exists. Furthermore, they
show that in the generic case of multiple sources and sinks, the dynamics are
attracted to a set of equilibria that are candidate solutions for the transporta-
tion problem. Recently the Physarum dynamics have been proposed to address
common computer science problems such as the work of Johannson and Zou
[20] on Linear Programming problems and Li et al [22] on routing protocols
for sensor networks: the first proposes a method to encode any linear program
into the physarum dynamics and solve it efficiently, while the second adapts
two Physarum mechanisms, path growth and path evolution, to efficiently route
messages in a wireless sensor network.

Related work on clustering. A number of methods have been proposed in the
literature to construct clusters in unstructured networks. For example, the al-
gorithms of [2,4,8,9] produce clusters with radius one. Each cluster has a node
called a clusterhead and all other nodes in that cluster are neighbors of the
clusterhead. Clusters can be built using a hierarchical method: the clustering
algorithm is iterated on the overlay network obtained by considering clusters
as nodes, until a single cluster is obtained [7,10,12]. On the other hand, the
solution given in [1] builds k-hop clusters (clusters of radius k) and in [6], a self-
stabilizing1 O(n)-time algorithm is given for computing a minimal k-dominating
set; this set can then be used as the set of clusterheads for a k-clustering. Other
clustering algorithms are based on random walks [3,5]. In [5] the clusters are
built around bounded-size connected dominating sets, while in [3] the algorithm
recursively breaks the network into two clusters as long as every cluster size
satisfies a lower bound.

These solutions are bottom-up processes while we propose a top-down ap-
proach [11] by relying on predefined clusterheads. We then compute clusters
consisting of the nodes that are closer to a given clusterhead than to any other.
Our algorithm has a focus on topological changes: the use of a flow-based pro-
cess allows the system to reconfigure after a topological change without affecting
nodes of other clusters. In particular, a topological change can affect the cluster
in which it occurs and possibly neighboring clusters, but not further nodes.

To our knowledge, the present paper is the first work that uses the Physarum
dynamics together with a discrete probabilistic tool such as self-biased walks in
order to solve a distributed problem, namely node clustering.

Outline. In the algorithm presented here we show how adaptive self-biased walk-
ers can emulate the dynamics of the Physarum. In section 2 we introduce the

1 A self-stabilizing system is a system that eventually recovers a normal behavior after
a transient fault.

318 D. Sohier et al.

necessary notations and definitions. We then proceed by showing the algorithm
for the walkers and furthermore how to use the method in order to enable each
node in a network, in a distributed way, to determine the direction towards its
closest clusterhead (using a distance metric noted by L in the following) (section
3). In section 4 we study experimentally the behavior of the algorithm in terms
of resulting cluster computation, reaction to changes in the graph and cost. We
complete our presentation with our conclusions and future work in section 5.

2 Definitions and Notation

We consider a distributed system, consisting of nodes with computation capa-
bilities and communication edges between them, in the form of an undirected
graph G = (V,E), |V | = n, |E| = m. Nodes have no id and the system is anony-
mous. We treat synchronous systems and c-asynchronous, i.e. (i) in a round, all
processors receive all pending messages and treat them and (ii) in a round for a
given node, no node has executed more than c rounds. Each edge (i, j) has also
a length Lij > 0 that we assume is known to both endnodes and a time-varying
diameter Dij (t) > 0.

A discrete time biased walk on a graph with a bias function C (here, the
conductance) is a process by which a node is chosen at each step according to
the following rule: if node i holds the walker at step t, then any neighbor j of i
will hold it at step t + 1 with probability Pij =

Cij∑
k∈Γi

Cik
, where Γi is the set of

immediate neighbors of node i. Such a process can easily be implemented in a
distributed system.

In their seminal work,Doyle and Snell [17] connected randomwalks onweighted
undirected graphs and electric circuits, by showing that a random walker behaves
in a way similar to the simplistic view of electrical current as movement of elec-
trons, provided every edge (i, j) is treated as a resistor with conductance Cij (t)

2

equal to the edge’s weight. In fact they showed that, when a unit current is in-
jected into the graph, the electrical current Qij (t) flowing over a resistor (i, j)
corresponds to the mean number of walker crossings over the respective edge. Re-
cent work showed that it is possible to use this paradigm in order to form and
study overlay networks in an efficient way [28,29]. These results imply that the
electrical current flow can be emulated by counting the mean number of walker
crossings of an edge and be used to form a clustering overlay.

The connection between the physarum dynamics and electrical networks, as
well as between electrical networks and random walks, is the basis for the im-
plementation presented in this paper.

In the rest of the paper we define the conductance Cij (t) of an edge (i, j)

to be equal to Cij (t) =
Dij(t)
Lij

. The transition probability of the biased walker

from node i to node j now becomes Pij (t) =
Cij(t)∑

k∈Γi

Cik(t)
. The mould dynamics

2 Note that all electrical measures are necessarily time-varying in order to simulate the
Physarum dynamics.

Physarum-Inspired Self-biased Walkers for Distributed Clustering 319

are defined by the evolution of the edge diameters of the network and here we
follow a discretization of the definition of Bonifaci et al [16]:

Dij(t+ 1) = Dij(t) + ε(|Qij(t)| −Dij(t))

= (1− ε)Dij(t) + ε|Qij(t)| (5)

3 Distributed Emulation of Physarum Dynamics: PECan

Algorithm

The PECan (Physarum walkErs Clustering) algorithm we present here is based
on monitoring the flow of walkers on each edge and then adjusting probabilities
accordingly. This flow is used as an estimation of the electrical current flowing
on edges and the diameter D is updated accordingly.

The algorithm assumes there is a unit flow of walkers that are created at nodes
called sources and destroyed at nodes called sinks. At each round, every node
counts the number of walkers going in and out each of its adjacent edges and
updates its flow information. Instant flow, meaning the flow measured during a
round, may vary abruptly from round to round, due to the discrete stochastic
nature of the system. To avoid sharp changes, we take into account past ob-
servations. However, to allow the system to evolve with newer observations, we
measure the flow with a discount factor applied to past observations. In practice
the flow estimation Q is computed as

Qij (t+ 1) = αQij (t) + (1 − α)#wij(t) (6)

where #wij(t) is the observed flow, i.e. the number of walkers that have crossed
(i, j) in this direction at round t minus the number that have crossed in the
opposite direction and α ∈ [0, 1] a parameter. This formula is such that if #wij

eventually reaches a probability distribution with an average, Qij stabilizes to
this average.

Equation 5 expresses the fact that Dij(t+ 1) is a weighted average of Dij(t)
and |Qij(t)|, and equation 6 that Qij(t+1) itself is a weighted average of Qij(t)
and #wij(t). Asymptotically, the sign of Q should stabilize orQ tends to 0. Thus,
asymptotically, Dij(t+ 1) will be a weighted average of Dij(t) and #wij(t). By
taking α′ = (1 − ε)α, the diameter Dij then follows asymptotically equation 6.
In the following we take Dij(t+1) = |Qij(t)| and the transition probabilities are
then:

Pij (t+ 1) =
|Qij (t)| /Lij∑

k∈Γi

|Qik (t)| /Lik
(7)

As we show in the following lemma, the dynamics converge to the same point as
the one of Bonifaci et al [16] in the case of single source and single sink, namely
by setting the diameter of edges on shortest paths equal to 1, as well as 0 to all
the others (cf [30] for the full proof).

320 D. Sohier et al.

Lemma 1. If there is a unique shortest path from source to sink and the dy-
namics stabilize, the diameter of edges on the shortest path converge to 1 while
those not on the shortest path to 0.

The α parameter has a strong influence on the behavior of the system: a con-
servative α (close to 1) slows down the convergence, while a small α may make
the system converge to a suboptimal solution (which a slight modification of the
system dynamics can solve), or entail sharp changes in the values of Qij even
after the system seems to have converged, thus making the solution “unstable”.

Any path between the source and the sink is a fixed point of these dynamics
(even if only shortest paths are attractive): if Qij is set to 1 on all edges of a
non-shortest path from the source to the sink and to 0 everywhere else, then
the system does not evolve anymore. However, such a solution is an “unstable
equilibrium”, as shown by [16] in the continuous case. To solve these situations,
we add a β parameter, the role of which is to prevent the system from converging
fully. The β parameter is a lower bound on the probability that a node sends
the walker across an adjacent edge. Thus, if close to a non-optimal (repulsive)
solution, the system will be driven away from it. If close to an optimal (attractive)
solution, the system will tend to get closer to it, even if β hinders this progression.

The β parameter also allows to initialize the system with a null flow, by setting
Qij to 0 for all edges on all nodes. The algorithm presented below then ensures
that Qij is really a flow:

– for any nodes i and j, Qij = −Qji

– for any node i that is not a source or a sink, if it does not hold a token in
this round,

∑
j Qij = 0

– for a source (resp. a sink),
∑

j Qij tends to 1 (resp. minus the number of
sources).

In order to build clusters, all clusterheads will be sinks and all nodes willing to
join a cluster will be sources.

3.1 Monitoring the Flow and Routing Walkers

A node i has one variable Qij for each adjacent edge (i, j). This variable is used
to monitor the flow. Each time a walker comes in through a given edge (i, j),
Qij is increased and each time a walker comes out through it, it is decreased. At
each round, the value of Qij is scaled down.

The only type of messages we use is a Walker message, with no content, and
there are three types of nodes:

– sinks, that at each round update their flow information with equation 6
according to the number of received walkers and subsequently delete them;

– ordinary nodes, that at each round update their flow information and forward
received walkers;

– sources, which act as ordinary nodes but send an extra token per round.

Physarum-Inspired Self-biased Walkers for Distributed Clustering 321

Depending on the choice of sources and sinks, this algorithm may be used
to compute various related distributed structures: shortest paths, shortest path
DAGs and distance-based clusters. We detail those properties in the next section.

Procedure 1. Upon a Walker recep-
tion from j

win[j]← win[j] + 1

Procedure 2. At each round, on an
ordinary node (resp. source node)

win ← 0 (resp. 1)
for any adjacent node j do

wout[j]← 0
win ← win +win[j]
Qij ← Qij − α(1− α)win[j]
Qij ← αQij

for i = 0 to win do
Choose a neighbor k at random

according to Q/L
Send Walker to k
wout[k]← wout[k] + 1

for any adjacent node j do
Qij ← Qij + (1− α)wout[j]

Procedure 3. At each round, on a sink
node
for any adjacent node j do

Qij ← Qij − α(1− α)win[j]
Qij ← αQij

Procedure 4. Choose a neighbor at
random according to Q/L

sum← 0
for each adjacent node j do

if Qij/Lij > β then
sum← sum+Qij/Lij

else
sum← sum+ β

v ← random value in [0, sum]
j ← first neighbor of i
sum← Qij/Lij

while sum < v do
j ← next neighbor of i
if Qij/Lij > β then

sum← sum+Qij/Lij

else
sum← sum+ β

return(j)

When receiving a walker, a node updates the weight of the edge through which
it has come. Then, if it is not a sink, it chooses a neighbor at random according
to Q/L, sends the walker to it and updates the out-edge value (procedures 2, 4
and 1).

Note that choosing a neighbor according to Q/L consists of i choosing a

random neighbor j with a probability proportional to
Qij

Lij
. If this probability

Qij

Lij
is smaller than a parameter β we replace it by β, thus a neighbor has always

a positive probability of being chosen.
Ordinary nodes, at each round, forward the received walkers and update their

variables. The array win (resp. wout) stores the number of walkers received (resp.
sent) on each adjacent edge, so as to update the outgoing flow after the walkers
have been sent. Additionally, sources create a new walker at each round and send
it: they act as ordinary nodes, except for the computation of win, to which 1 is
added to account for the extra token that the source creates during the round
(procedure 2). On the other hand, sinks delete all received tokens but they keep
track of the incoming flow (procedure 3).

322 D. Sohier et al.

Note that messages are received one step after they have been sent, so that
Qji has been multiplied by α before i receives the walker sent by j. Thus, to
maintain the symmetry Qij = −Qji, ∀(i, j) and for the flow to be valid, we
are led to subtract α(1 − α). On the other hand, note that when a node sends
several messages to the same neighbor in a given round, these walkers can be
replaced by a single weighted walker, at the expense of introducing a content in
the walkers. We ran the algorithm in both settings and called the messages in
the latter setting aggregated messages.

The above algorithm has two parameters, α and β. The α parameter is used
to “smoothen” the flow evaluation. The β parameter ensures that all edges will
be used, which is necessary for the system not to get “trapped” in a suboptimal
solution (non shortest paths to the sink with weight 1, which are fixed points of
the system dynamics, but repulsive ones). In particular, if topological changes
occur, the β parameter allows walkers to visit new and possibly better paths.

3.2 Using Flows to Solve Clustering

When several nodes produce walkers, all of them compute shortest paths to the
single sink. The optimal substructure property of the shortest paths problem
[13] ensures that the process actually converges to a shortest path DAG. Indeed,
for a given sink, starting from the point where they meet, two shortest paths
from two different sources to the same sink are the same (or, if shortest paths
are not unique, can be the same).

When several sinks are present the flows do not distinguish between them.
The system acts as if they were a unique sink, consisting in the merging of
all sinks, and the shortest paths computation leads to flow running along the
shortest path to the closest sink.

Consider now a system in which some clusterheads behave as sinks and nodes
seeking clusters behave like sources. After some time, the algorithm will converge
to flows circulating along shortest paths from sources to sinks. Thus, nodes
sending flow to a given sink are closer to this sink than to any other and have
to join this cluster. In this way, any node will be able to route a message to its
sink, by sending the message along its edge with the strongest outgoing flow.

Moreover, the flow brings some extra information: since all sources generate
a unit flow, the flow that a sink receives is the number of nodes that are mem-
bers of its cluster. Similarly, suppose that the shortest paths are unique. Then
the flow coming from an edge on a node indicates to this node the size of the
corresponding subtree and all nodes have a local knowledge of the shortest path
tree of their cluster. If the shortest paths are not unique they define a DAG and
the flow indicates the number of descendants on this side of the DAG, possibly
counted partially as descendants of several nodes.

The clusterhead can then launch a new phase of the algorithm and use the
DAG to inform all nodes of its presence if required, allowing to meet the classical
clustering specification.

Physarum-Inspired Self-biased Walkers for Distributed Clustering 323

3.3 c-Asynchronous Case

Synchronicity and round-based distributed processing of messages is a strong
assumption. We can relax it to c-asynchronicity, meaning that in a round for a
given node, no node has executed more than c rounds.

With respect to slower nodes, a fast source may appear as generating up to c
walkers per round. This output cannot be distinguished from a situation where
the faster node is replaced with a central node connected to c − 1 other nodes
in a star formation. The computations of other nodes will run alike and lead to
shortest paths to these nodes. Since the shortest paths to these virtual nodes all
go through the central node, the computed shortest paths will be consistent.

A fast ordinary node, or a fast sink, will output the right number of walkers
(all received walkers are sent forth and received in the next round by slower
neighbors) and thus will not interfere with the dynamics. A slow ordinary node
(or a slow sink) will also output the right number of walkers on average, but its
output will burst periodically while being null the rest of the time. If α is too low
(putting the focus on short-term monitoring of the flow) and/or the processor
too slow, this may hinder the convergence of the system. Nevertheless, with a
bound on c depending on α and β, the system and dynamics will converge to
shortest paths.

Note that a slow node generates a weaker flow, if seen by the perspective of
a faster one. This flow is taken into account if it is not lower than β. Indeed, if
it is lower than β it will be replaced by β in the routing of walkers and the slow
node will not contribute to the dynamics.

4 Simulation Results on Clustering

The scheme presented in the previous section computes shortest paths between
sources and sinks. During our experiments we ran simulations with different
settings:

– one source, one sink (shortest path);
– all nodes are sources, except for one node which is a sink (shortest paths

DAG);
– all nodes are sources, except for two nodes which are sinks (distance-based

clustering with shortest path DAGs);
– all nodes are sources and sinks have dynamically changed.

We executed the algorithm on randomly weighted 10× 10 grids, on unweighted
random graphs (100 nodes, p = 0.2) and on randomly weighted grids (weights
were integer drawn uniformly at random between 1 and 10). Grids were chosen
because the structure of the shortest paths in those graphs is easy to describe
and because they are far from being unique. Random graphs are intended to be
closer to real-world distributed systems.

The simulations were run using DASOR [14]. Note that all graphical results
in this section show arrows proportional to the flow and that the simulation

324 D. Sohier et al.

campaign is at its beginning and we do not claim statistical accuracy of these
data. Each presented figure is the average of 100 simulation results, together
with its standard deviation: the number of messages, of aggregated messages
(i.e. weighted messages representing several walkers, as explained in the previ-
ous section), the convergence time or measures of the distance to the solution
(detailed for each measure in the relevant subsection) were recorded for each
simulation and then averaged for each round of simulations in a given setting.

4.1 Shortest Path (1 Source 1 Sink Setting)

When there is only one source and only one sink in the system, the system
dynamics allow the computation of a shortest path (or several of them) between
the source and the sink. During our experiments we considered that the system
had achieved convergence when the strongest flow ran from the sink to the source
on a shortest path and remained so until the end of the simulation (2000 rounds).

In an unweighted 10 × 10 grid with a source and a sink located at opposite
corners, with α = 0.995 and β = 0.01, on average, the system converges in 560
rounds (standard deviation: 142), 147,808 messages (standard deviation: 68,407)
and 52,095 messages (standard deviation: 19,306) if we aggregate them.

In a randomly weighted grid (with weights uniformly distributed between 1
and 10) with a source and a sink located at opposite corners, with α = 0.995
and β = 0.01, convergence took 691 round on average (standard deviation:
576), 9,542,305 messages (standard deviation: 9,684,811) and 205,930 aggregated
messages (standard deviation: 163,589).

In a random graph with 100 nodes and p = 0.2 with random source and
sink, with α = 0.999 and β = 0.01, convergence was realized after 31 rounds
(standard deviation: 12), 38,905 messages (standard deviation: 22,515), or 18,930
aggregated messages (standard deviation: 9219).

Fig. 1. Flow of walkers on shortest paths (with some remaining extra flow)

Those simulation results confirm the convergence of the discrete dynamics
to shortest paths (see figure 1). Time and message complexity are of the order
of the ones of existing distributed shortest path algorithm (O(n) and O(mn)

Physarum-Inspired Self-biased Walkers for Distributed Clustering 325

respectively) on the two unweighted settings. The results on weighted grids need
to be further investigated, with different choices of α and β.

4.2 Shortest Paths DAG of a Cluster: n Sources 1 Sink Setting

In these simulations, we measured convergence by counting the average number
of nodes that have the majority of their outgoing flow directed away from the
sink, i.e. to a node not closer to the sink than themselves (between parentheses
are the standard deviations). All nodes are sources, but for one node (a corner
node in the case of the grid) that is a sink.

25 rounds 50 rounds 100 rounds 200 rounds

convergence 44.5 (5.19) 37.98 (3.19) 1.51 (0.15) 0.48 (0.07)
#msg 26,004 (175) 104,772 (756) 385,795 (3200) 1,238,815 (11,024)

#ag msg 6,339 (43) 14,306 (107) 29,295 (244) 58,384 (606)

Fig. 2. Reconfiguration results on a 10 × 10 grid with two sinks and α = 0.975 and
β = 0.02

50 rounds 100 rounds 200 rounds 400 rounds

convergence 38.77 (5.77) 12.86 (3.12) 4.28 (2.01) 1.28 (1.25)
#msg 85,408 (4,292) 140,042 (12,289) 191,531 (16,858) 269,050 (23,304)

#ag msg 51,912 (1,529) 88,148 (5,122) 125,615 (7,518) 179,860 (10,515)

Fig. 3. Convergence results on a random graph with 100 nodes and p = 0.2, with one
sink α = 0.999 and β = 0.01

These results (figures 2 and 3) show that the algorithm converges to a shortest
path DAG quite fast for most nodes (see figure 4) and then takes time to reach
full convergence. In particular, the very conservative choice of α explains the
slow convergence in the second round of simulations. Also note that, in a grid,
aggregation of walkers reduces highly the number of exchanged messages. In the
experiments presented above, the high number of messages in the first round of
simulations make the use of aggregated walkers particularly interesting.

4.3 Clustering (n Sources, Several Sinks Setting)

The simulations were ran on a 10×10 grid, starting from an initial configuration
with a unique source at a corner. Following the same methodology as in the
previous experiments, we measured convergence by counting the average number
of nodes that have the majority of their outgoing flow directed away from the
sink, i.e. to a node not closer to the sink than themselves (between parentheses
are the standard deviations). All nodes are sources, but for two nodes (opposite
corner nodes in the case of the grid) that are sinks.

326 D. Sohier et al.

Fig. 4. Flow of the walkers on a shortest
paths DAG

Fig. 5. Computation of two clusters with
their shortest paths DAGs

25 rounds 50 rounds 100 rounds 200 rounds

convergence 19.4 (4.37) 3.89 (2.28) 1.33 (1.24) 0.55 (0.79)
#msg 24,394 (231) 92,060 (1,082) 290,887 (4,414) 710,330 (11,769)

#ag msg 6,192 (51) 13,666 (109) 27,607 (283) 54,230 (687)

Fig. 6. Convergence results on a 10×10 grid with two sinks and α = 0.975 and β = 0.02

50 rounds 100 rounds 200 rounds 400 rounds

convergence 39.3 (6.5) 12.41 (3.43) 4 (2.05) 1.08 (1.13)
#msg 86,601 (5,148) 147,325 (36,828) 205,162 (105,107) 303,000 (298,876)

#ag msg 51,427 (5,230) 87,955 (9,376) 126,313 (9,942) 180,939 (12,371)

Fig. 7. Convergence results on a random graph with 100 nodes and p = 0.2, with two
sinks and α = 0.999 and β = 0.01

The results with several sinks (figures 6 and 7) illustrate the reduction in the
complexity of the algorithm when several sinks are present. The use of these
dynamics allows to compute a clustering, as illustrated by figure 5: nodes can
use their incoming flows to reach the closest clusterhead.

4.4 Reconfiguration of Clusters after a Topological Change

The process presented here is tolerant to topological changes: starting from a
configuration with flows running to a given sink, the appearance of a new sink or
the change in an existing sink, thanks to the β parameter, will lead to changes
in the flow in order to adapt to the new situation. The nodes immediately af-
fected by the change in the situation see their flow change; nodes to which they
were related are also subject to a change in the flow circulation. However, the
dynamics of further nodes are not affected by this topological change.

The simulations were ran on a 10 × 10 grid, starting from an initial config-
uration with a unique sink at the bottom right corner and a consistent stable

Physarum-Inspired Self-biased Walkers for Distributed Clustering 327

flow (all nodes send all incoming flow to their bottom neighbor if they have one,
or to their right neighbor). Then, two rounds of simulation were ran: one with
a new sink appearing at the opposite corner and another with the original sink
becoming an ordinary node while a new sink appears at the opposite corner.
Same as before, we measured convergence by counting the average number of
nodes that have the majority of their outgoing flow directed away from the sink,
i.e. to a node not closer to the sink than themselves (between parentheses are
the standard deviations). All nodes are sources but for two nodes (opposite cor-
ner nodes in the case of the grid) that are sinks, and the parameters used were
α = 0.92 and β = 0.02.

25 rounds 50 rounds 100 rounds 200 rounds

convergence 27.11 (3.2) 6.74 (2.52) 1.27 (1.08) 1.21 (1.05)
#msg 24,703 (205) 94,083 (842) 303,169 (3,159) 739,326 (7810)

#ag msg 5,001 (48) 12,329 (87) 26,618 (205) 54,212 (477)

Fig. 8. Convergence results on a 10 × 10 grid after the appearance of a second sink,
with α = 0.92 and β = 0.02

The reconfiguration of the algorithm after a topological change is carried out
rapidly for most nodes. A closer examination of the simulation shows that the
nodes closer to the clusterhead that was already in place do not modify their
flow structure significantly (see figure 9).

Fig. 9. Convergence after a new sink has appeared (on the left, initial configuration;
on the right, configuration after convergence)

5 Conclusions

Based on the analogy between the growth of the mould Physarum and the behav-
ior of electrical flow, we proposed a randomized distributed algorithm in which
walkers emulate electrical current (as studied by [17]), while the resistance of
the edges are modified by the flow according to a discrete-time version of the
equations in [16].

328 D. Sohier et al.

As expected, the simulations show that the dynamics of this algorithm con-
verge to flows running along shortest paths from sources to sinks. This algorithm
is local and uses only one type of message with no content. This may compensate
partially for the high number of messages needed to reach full convergence. Also,
it may be noted that most nodes find a path to their clusterhead in the very
first rounds. After a topological change, nodes soon find their new cluster.

This work provides an insight on flows of walkers and on the interest of biasing
the walkers in a non-markovian fashion (the future moves of walkers depend on
their past moves). Interesting questions following these results are the choice of
the algorithm parameters and a comprehensive study of the theoretical founda-
tions of this discrete process.

References

1. Amis, A.D., Prakash, R., Vuong, T.H.P., Huynh, D.T.: Max-min d-cluster forma-
tion in wireless ad hoc networks. In: Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies, IEEE INFOCOM 2000, pp. 32–41
(2000)

2. Basagni, S.: Distributed clustering for ad hoc networks. In: International Sym-
posium on Parallel Architectures, Algorithms and Networks, ISPAN, pp. 310–315
(1999)

3. Bernard, T., Bui, A., Pilard, L., Sohier, D.: Distributed Clustering Algorithm
for Large-Scale Dynamic Networks. International Journal of Cluster Computing
(2010), doi:10.1007/s10586-011-0153-z

4. Bui, A., Clavière, S., Datta, A.K., Larmore, L.L., Sohier, D.: Self-stabilizing Hier-
archical Construction of Bounded Size Clusters. In: Kosowski, A., Yamashita, M.
(eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 54–65. Springer, Heidelberg (2011)

5. Bui, A., Kudireti, A., Sohier, D.: An adaptive random walks based distributed clus-
tering algorithm. International Journal of Foundations of Computer Science 23(4),
802–830 (2012)

6. Datta, A.K., Larmore, L.L., Vemula, P.: A self-stabilizing O(k)-time k-clustering
algorithm. The Computer Journal 53(3), 342–350 (2010)

7. Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing dis-
tributing algorithm. Theoretical Computer Science 410, 514–532 (2009)

8. Ephremides, A., Wieselthier, J.E., Baker, D.J.: A design concept for reliable mobile
radio networks with frequency hopping signaling. Proceedings of the IEEE, 56–73
(1987)

9. Johnen, C., Nguyen, L.: Robust self-stabilizing weight-based clustering algorithm.
Theoretical Computer Science 410(6-7), 581–594 (2009)

10. Sucec, J., Marsic, I.: Location management handoff overhead in hierarchically orga-
nized mobile ad hoc networks. In: International Parallel and Distributed Processing
Symposium, IPDPS, vol. 2, p. 198, 0194 (2002)

11. Thaler, D.G., Ravishankar, C.V.: Distributed top-down hierarchy construction. In:
Seventeenth Annual Joint Conference of the IEEE Computer and Communications
Societies, IEEE INFOCOM 1998, vol. 2, pp. 693–701 (1998)

12. Yang, S.-J., Chou, H.-C.: Design Issues and Performance Analysis of Location-
Aided Hierarchical Cluster Routing on the MANET. In: Communications and Mo-
bile Computing, CMC, pp. 26–31 (2009)

Physarum-Inspired Self-biased Walkers for Distributed Clustering 329

13. Bellman, R.: Dynamic Programming. Princeton University Press, Dover (1957)
14. Rabat, C.: Dasor, a Discret Events Simulation Library for Grid and Peer-to-peer

Simulators. Studia Informatica Universalis 7 (2009)
15. Adamatzky, A., de Oliveira, P.P.B.: Brazilian highways from slime mold’s point of

view. Kybernetes 40(9), 1373–1394 (2011)
16. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In:

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
233–240 (2012)

17. Doyle, P.G., Snell, L.J.: Random Walks and Electrical Networks. Mathematical
Association of America (December 1984)

18. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks:
Algorithms and evaluation. Performance Evaluation 63(3), 241–263 (2006)

19. Ito, K., Johansson, A., Nakagaki, T., Tero, A.: Convergence properties for the
physarum solver. arXiv:1101.5249 (January 2011)

20. Johannson, A., Zou, J.: A Slime Mold Solver for Linear Programming Problems. In:
Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 344–354.
Springer, Heidelberg (2012)

21. Lenzen, C., Suomela, J., Wattenhofer, R.: Local Algorithms: Self-stabilization on
Speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34.
Springer, Heidelberg (2009)

22. Li, K., Torres, C., Thomas, K., Rossi, L., Shen, C.-C.: Slime mold inspired routing
protocols for wireless sensor networks. Swarm Intelligence 5(3), 183–223 (2011)

23. Miyaji, T.: Mathematical analysis to an adaptive network of the plasmodium sys-
tem. Hokkaido Mathematical Journal 36(2), 445–465 (2007); Mathematical Re-
views number (MathSciNet): MR2347434

24. Miyaji, T., Onishi, I.: Physarum can solve the shortest path problem on rieman-
nian surface mathematically rigourously. International Journal of Pure and Applied
Mathematics 47(3) (2008)

25. Nakagaki, T., Tero, A., Kobayashi, R., Onishi, I., Miyaji, T.: Computational ability
of cells based on cell dynamics and adaptability. New Generation Computing 27(1),
57–81 (2008)

26. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki,
K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network
design. Science 327(5964), 439–442 (2010)

27. Wagner, D., Wattenhofer, R. (eds.): Algorithms for Sensor and Ad Hoc Networks.
LNCS, vol. 4621. Springer, Heidelberg (2007)

28. Georgiadis, G., Papatriantafilou, M.: A Least-Resistance Path in Reasoning about
Unstructured Overlay Networks. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-
Par 2009. LNCS, vol. 5704, pp. 483–497. Springer, Heidelberg (2009)

29. Bui, A., Sohier, D.: How to compute times of random walks based distributed
algorithms. Fundamenta Informaticae 80(4), 363–378 (2007)

30. Georgiadis, G., Papatriantafilou, M.: Physarum-inspired self-biased walkers for dis-
tributed clustering, Chalmers University of Technology, TR-2012:08 (June 2012)

Wait-Free Linked-Lists�

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank

Dept. of Computer Science, Technion, Israel
{stimnat,anastas,sakogan,erez}@cs.technion.ac.il

Abstract. Wait-freedom is the strongest and most desirable progress guarantee,
under which any thread must make progress when given enough CPU steps.
Wait-freedom is required for hard real-time, and desirable in many other sce-
narios. However, because wait-freedom is hard to achieve, we usually settle for
the weaker lock-free progress guarantee, under which one of the active threads
is guaranteed to make progress. With lock-freedom (and unlike wait-freedom),
starvation of all threads but one is possible.

The linked-list data structure is fundamental and ubiquitous. Lock-free ver-
sions of the linked-list are well known. However, whether it is possible to design
a practical wait-free linked-list has remained an open question. In this work we
present a practical wait-free linked-list based on the CAS primitive. To improve
performance further, we also extend this design using the fast-path-slow-path
methodology. The proposed design has been implemented and measurements
demonstrate performance competitive with that of Harris’s lock-free list, while
still providing the desirable wait-free guarantee, required for real-time systems.

1 Introduction

A linked-list is one of the most commonly used data structures. The linked-list seems
a good candidate for parallelization, as modifications to different parts of the list may
be executed independently and concurrently. Indeed, parallel linked-lists with various
progress properties are abundant in the literature. Among these are lock-free linked-
lists. A lock-free data structure ensures that when several threads access the data struc-
ture concurrently, at least one makes progress within a bounded number of steps. While
this property ensures general system progress, it does not prevent starvation of a particu-
lar thread, or of several threads. Wait-free data structures ensure that each thread makes
progress within a bounded number of steps, regardless of other threads’ concurrent ex-
ecution. Wait-free data structures are crucial for real-time systems, where a deadline
may not be missed even in a worst-case scenario. To allow real-time systems and other
systems with critical worst-case demands make use of concurrent data structures, we
must provide the strong wait-free guarantee. Furthermore, wait-freedom is a desirable
progress property for many systems, and in particular operating systems, interactive
systems, and systems with service-level guarantees. For all those, the elimination of
starvation is highly desirable.

Despite the great practical need for data structures that ensure wait-freedom, almost
no practical wait-free data structure is known, because data structures that ensure wait-
freedom are notoriously hard to design. Recently, wait-free designs for the simple stack

� This work was supported by the Israeli Science Foundation grant No. 283/10.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 330–344, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Wait-Free Linked-Lists 331

and queue data structures appeared in the literature [7,2]. Wait-free stack and queue
structures are not easy to design, but they are considered less challenging as they present
limited parallelism, i.e., a limited number of contention points (the head of the stack,
and the head and the tail of the queue). We are not aware of any practical wait-free
design for any other data structure that allows multiple concurrent operations to occur
simultaneously. In particular, to the best of our knowledge, there is no wait-free linked-
list algorithm available in the literature except for algorithms of universal constructions,
which do not provide practical efficiency.

The main contribution of this work is a practical, linearizable, fast and wait-free
linked-list. Our construction builds on the lock-free linked-list of Harris [4], and extends
it using a helping mechanism to become wait-free. The main technical difficulty is
making sure that helping threads perform each operation correctly, apply each operation
exactly once, and return a consistent result (of success or failure) according to whether
each of the threads completed the operation successfully. This task is non-trivial and it
is what makes wait-free algorithms notoriously hard to design. Our design deals with
several races that come up, and a proof of correctness makes sure that no further races
exist. Some of our techniques may be useful in future work, especially the success bit
introduced to determine the owner of a successful operation. Next, we extend our design
using the fast-path-slow-path methodology of Kogan and Petrank [8], in order to make
it even more efficient, and achieve performance that is almost equivalent to that of the
lock-free linked-list of Harris. Here, the idea is to combine both lock-free and wait-free
algorithms so that the (lock-free) fast path runs with (almost) no overhead, but is able
to switch to the (wait-free) slow path when contention interferes with its progress. It is
also important that both paths are able to run concurrently and correctly. Combining the
newly obtained wait-free linked-list with the existing lock-free linked-list of Harris is
an additional design challenge that is, again, far from trivial.

We have implemented the new wait-free linked-list and compared its efficiency with
that of Harris’s lock-free linked-list. Our first design(slightly optimized) performs worse
by a factor of 1.5 when compared to Harris’s lock-free algorithm. This provides a prac-
tical, yet not optimal, solution. However, the fast-path-slow-path extension reduces the
overhead significantly, bringing it to just 2-15 percents. This seems a reasonable price to
pay for obtaining a data structure with the strongest wait-free guarantee, providing non-
starvation even in worst-case scenarios, and making it available for use with real-time
systems.

We begin in Section 2 with an overview of the algorithm and continue in Section 3
with a detailed description of its most complex operation and crucial parts. Highlights
of the correctness proof appear in Section 4. The linearization points of the algorithm
are specified in Section 5. We give an overview of the fast-path-slow-path extension of
the algorithm in Section 6, and Section 7 presents the performance measurements. In
a full version of this work [11] we also provide details about the fast-path-slow-path
implementation, the entire pseudo-code, and a full correctness proof for the algorithm.

1.1 Background and Related Work

The first lock-free linked-list was presented by Valois [12]. A simpler and more
efficient lock-free algorithm was designed by Harris [4], and Michael [9] added a

332 S. Timnat et al.

hazard-pointers mechanism to allow lock-free memory management for this algorithm.
Fomitchev and Rupert achieved better theoretical complexity in [3]. Herlihy and Shavit
implemented a variation of Harris’s algorithm [6], and we used this implementation
both for comparison and as the basis for the Java code we developed.

Wait-free queues were presented in [7,2]. A different approach for building concur-
rent lock-free or wait-free data structures is the use of universal constructions [5,6,1].
However, universal constructions (at least for the linked-list) are not efficient enough to
be applied in practice, and are often non-scalable.

Recently, Kogan and Petrank [8] presented the fast-path-slow-path technique men-
tioned above. We use the fast-path-slow-path methodology in this work to achieve an
efficient and wait-free linked-list.

Our wait-free linked-list design follows the traditional practice, in which concurrent
linked-list data structures realize a sorted list, where each key may only appear once in
the list [3,4,6,12]. A brief announcement of this work appeared in [10].

2 An Overview of the Algorithm

Before getting into the technical details (in Section 3) we provide an overview of the
design. The wait-free linked-list supports three operations: INSERT, DELETE, and CON-
TAINS. All of them run in a wait-free manner. The underlying structure of the linked-list
is depicted in Figure 2. Similarly to Harris’s linked-list, our list contains sentinel head
and tail nodes, and the next pointer in each node can be marked using a special mark
bit, to signify that the entry in the node is logically deleted.

To achieve wait-freedom, our list employs a helping mechanism. Before starting to
execute an operation, a thread starts by publishing an Operation Descriptor, in a special
state array, allowing all the threads to view the details of the operation it is executing.
Once an operation is published, all threads may try to help execute it. When an operation
is completed, the result is reported to the state array, using a CAS which replaces the
existing operation descriptor with one that contains the result.

A top-level overview of the insert and delete operations is provided in Figure 1.
When a thread wishes to INSERT a key k to the list, it first allocates a new node
with key k, and then publishes an operation descriptor with a pointer to the new node.

1: boolean insert(key)
2: Allocate a new node (without help)
3: Publish the operation (without help)
4: Search for a place to insert the node
5: If key already exists, return with failure
6: Direct the new node’s next pointer
7: Insert the node(by modifying its predecessor)
8: Return with Success

1: boolean delete(key)
2: Publish the operation (without help)
3: Search for the victim node to delete
4: If key doesn’t exist, return with failure
5: Announce the victim node in the state array
6: Mark the victim’s pointer to logically delete it
7: Physically remove the victim node
8: Report that the victim node has been removed
9: Compete for success (without help)

Fig. 1. Insert and delete overview

Wait-Free Linked-Lists 333

The rest of the operation can be executed by any of the threads in the system, and may
also be run by many threads concurrently. Any thread that executes this operation starts
by searching for a place to insert the new node. This is done using the search method,
which, given a key k, returns a pair of pointers, prev and curr. The prev pointer points
to the node with the highest key smaller than k, and the curr pointer points to the node
with the smallest key larger than or equal to k. If the returned curr node holds a key
equal to the key on the node to be inserted, then failure is reported. Otherwise the node
should be inserted between prev and curr. This is done by first updating the new node’s
next pointer to point to curr, and then updating prev’s next field to point to it. Both of
these updates are done using a CAS to prevent race conditions, and the failure of any of
these CASes will cause the operation to restart from the search method. Finally, after
that node has been inserted, success is reported.

While the above description outlines the general process of inserting a node, the
actual algorithm is a lot more complex, and requires care to avoid problematic races
that can make things go wrong. In addition, there is also a potential ABA problem that
requires the use of a version mark on the next pointer field1. We discuss these and other
potential races in Section 3.4.

When a thread wishes to DELETE a key k from the list, it starts by publishing the
details of its operation in the state array. The next steps can be then executed by any
of the threads in the system until the last step, which is executed only by the thread that
initiated the operation, denoted the owner thread. The DELETE operation is executed
(or helped) in two stages. First, the victim node to be deleted is chosen. To do this,
the search method is invoked. If no node with the key k is found, failure is reported.
Otherwise, the victim node is announced in the state array. This is done by replacing
the state descriptor that describes this operation to a state descriptor that has a pointer to
the victim node. This announcement helps to ascertain that concurrent helping threads
will not delete two different nodes, as the victim node for this operation is determined
to be the single node that is announced in the operation descriptor. In the second stage,
deletion is executed similarly to Harris’s linked-list: the victim node’s next field is
marked, and then it is physically removed from the list. The victim node’s removal is
then reported back to the state array.

However, since multiple threads execute multiple operations, and as it is possible
that several operations attempt to DELETE the same node, it is crucial that exactly one
operation be declared as successfully deleting the node’s key and that the others return
failure. An additional (third) stage is required in order to consistently determine which
operation can be considered successful. This step is executed only by the owner threads,
and is given no help. The threads that initiated the concurrent delete operations compete
among themselves for the ownership of the deletion. To this end, an extra success-bit
designated for this purpose is added to each node in the list. The thread that successfully
CASes this bit from false to true is the only one that reports success for this deletion.
We believe that using an extra bit to determine an ownership of an operation is a use-
ful mechanism for future wait-free constructions as well. This mechanism is further
explained in Section 3.5.

1 The versioning method provides a simple solution to the ABA problem. A more involved
solution that does not require a versioned pointer appears in the full version of this paper [11].

334 S. Timnat et al.

The CONTAINS operation is much simpler than the other two. It starts by publishing
the operation. Any helping thread will then search for it in the list, reporting success
(on the operation record) if the key was found, or failure if it was not.

3 The Algorithm

In this section we present the details of the algorithm. We fully describe the list struc-
ture, the helping mechanism, and the SEARCH and INSERT operations. The INSERT

operation is the most complicated part of the algorithm. A detailed description of the
DELETE and CONTAINS operations appears in the full version of this paper [11]. We
also include in this section a detailed description of the success-bit technique used
in the DELETE operation, as we believe this mechanism can be useful for future work.

3.1 The Underlying Data Structures

The structure of the linked-list is depicted in Figure 2. A node of the linked list consists
of three fields: a key, a success bit to be used when deleting this node, and a special
pointer field. The special pointer field has its least significant bit used by the algorithm
for signaling between threads. In addition, this pointer is versioned, in the sense that
there is a counter associated with it (in an adjacent word) and each modification of it
(or of its special bit) increments the counter. The modification and counter increment
are assumed to be atomic. This can be implemented by squeezing all these fields into
a single word, and limiting the size of the counter and pointer, or by using a double-
word compare-and-swap when the platform allows. Alternatively, one can allocate a
“pointer object” containing all these fields and bits, and then atomically replace the
existing pointer object with a new one. The latter approach is commonly used with Java
lock-free implementations, and we use it as well.

In addition to the nodes of the list, we also maintain an array with an operation-
descriptor for each thread in the system. The OpDesc entry for each thread describes
its current state. It consists of a phase field phase, the OpType field signifying which
operation is currently being executed by this thread, a pointer to a node, denoted node,

List:
 head
 tail
 state array
 currentMaxPhase

Node:
 key
 next pointer
 success bit

OpDesc:
 type
 phase
 node
 searchResult

OpDesc of thread 0 OpDesc of thread 1 OpDesc of thread 2 OpDesc of thread 3

Fig. 2. General structure

Wait-Free Linked-Lists 335

which serves the insert and delete operations, and a pair of pointers (prev,curr), for
recording the result of a search operation. Recall that the result of a SEARCH operation
of a key, k, is a pair of pointers denoted prev and curr, as explained in Section 2 above.

The possible values for the operation type (OpType) in the operation descriptor state are:
insert asking for help in inserting a node into the list.
search delete asking for help in finding a node with the key we wish to delete.
execute delete asking for help in marking a node as deleted (by tagging its

next pointer) and unlinking it from the list.
contains asking for help in finding out if a node with the given key exists.
success operation was completed successfully.
failure operation failed (deletion of a non-existing key

or insertion of an existing key).
determine delete decide if a delete operation completed successfully.

The first four states in the above list are used to request help from other threads. The
last three states indicate steps in the executions in which the thread does not require
any help. The linked-list also contains an additional long field, currentMaxPhase, to
support the helping mechanism, as described in Subsection 3.2.

3.2 The Helping Mechanism

Before a thread starts executing an operation, it first selects a phase number larger than
all previously chosen phase numbers. The goal of assigning a phase number to each op-
eration is to let new operations make sure that old operations receive help and complete
before new operations are executed. This ensures non-starvation. The phase selection
mechanism ensures that if operation O2 arrives strictly later than operation O1, i.e., O1

receives a phase number before O2 starts selecting its own phase number, then O2 will
receive a higher phase number. The phase selection procedure is executed in the MAX-
PHASE method depicted in Figure 3. Note that although a CAS is used in this method,
the success of this CAS is not checked, thus preserving wait-freedom. If the CAS fails,
it means that another thread increased the counter concurrently, which is sufficient for
the phase numbering. After selecting a phase number, the thread publishes the operation
by updating its entry in the state array. It then goes through the array, helping all oper-
ations with a phase number lower than or equal to its own. This ensures wait-freedom:
a delayed operation eventually receives help from all threads and soon completes. See
Figure 3 for the pseudo-code.

3.3 The Search Methods

The CONTAINS method, which is part of the data structure interface, is used to check
whether a certain key is a part of the list. The SEARCH method is used (internally) by
the INSERT, DELETE, and CONTAINS methods to find the location of a key and perform
some maintenance during the search. It is actually nearly identical to the original lock-
free SEARCH method. The SEARCH method takes a key and returns a pair of pointers

336 S. Timnat et al.

1: private long maxPhase() {
2: long result = currentMaxPhase.get();
3: currentMaxPhase.compareAndSet
4: (result, result+1);
5: return result; }
6:

7: private void help(long phase) {
8: for (int i = 0; i < state.length(); i++) {
9: OpDesc desc = state.get(i);

10: if (desc.phase <= phase) { � help older op
11: if (desc.type == OpType.insert) {
12: helpInsert(i, desc.phase);
13: } else if
14: (desc.type == OpType.search delete
15: || desc.type == OpType.execute delete) {
16: helpDelete(i, desc.phase);
17: } else if (desc.type == OpType.contains) {
18: helpContains(i, desc.phase);
19: } } } }
20:

21: private boolean isSearchStillPending(int tid,
long ph) {

22: OpDesc curr = state.get(tid);
23: return (curr.type == OpType.insert ||
24: curr.type == OpType.search delete ||
25: curr.type == OpType.execute delete ||
26: curr.type==OpType.contains) &&
27: curr.phase == ph; }

28: private Window search(int key, int tid, long
phase) {

29: Node pred = null, curr = null, succ = null;
30: boolean[] marked = {false}; boolean snip;
31: retry : while (true) {
32: pred = head;
33: curr = pred.next.getReference();
34: while (true) {
35: � Reading both the ref and the mark:
36: succ = curr.next.get(marked);
37: while (marked[0]) { � logically deleted
38: � Attempt to physically remove curr:
39: snip = pred.next.compareAndSet
40: (curr, succ, false, false);
41: if (!isSearchStillPending(tid,phase))
42: return null; � to ensure wait-freedom.
43: if (!snip) continue retry; � list changed
44: curr = succ; � advance curr
45: succ = curr.next.get(marked); � and succ
46: }
47: if (curr.key >= key) � window found
48: return new Window(pred, curr);
49: pred = curr; curr = succ; � advance both
50: }
51: }
52: }
53:

54:

Fig. 3. The help and search methods

denoted window: pred, which points to the node containing the highest key less than
the input key, and curr, which points to the node containing the lowest key higher than
or equal to the requested key. When traversing through the list, the SEARCH method
attempts to physically remove any node that is logically deleted. If the remove attempt
fails, the search is restarted from the head of the list. This endless attempt to fix the
list seems to contradict wait-freedom, but the helping mechanism ensures that these
attempts eventually succeed. When an operation delays long enough, all threads reach
the point at which they are helping it. When that happens, the operation is guaranteed
to succeed. The SEARCH operation will not re-iterate if the operation that executes it
has completed, which is checked using the ISSEARCHSTILLPENDING method. If the
associated operation is complete, then the SEARCH method returns a null. The pseudo-
code for the search method is depicted in Figure 3.

3.4 The Insert Operation

Designing operations for a wait-free algorithm requires dealing with multiple threads
executing each operation, which is substantially more difficult than designing a lock-
free operation. In this section, we present the insert operation and discuss some of the

Wait-Free Linked-Lists 337

1: public boolean insert(int tid, int key) {
2: long phase = maxPhase(); � getting the phase for the op
3: Node newNode = new Node(key); � allocating the node
4: OpDesc op = new OpDesc(phase, OpType.insert, newNode,null);
5: state.set(tid, op); � publishing the operation
6: help(phase); � when finished - no more pending operation with lower or equal phase
7: return state.get(tid).type == OpType.success;
8: }
9:

10: private void helpInsert(int tid, long phase) {
11: while (true) {
12: OpDesc op = state.get(tid);
13: if (!(op.type == OpType.insert && op.phase == phase))
14: return; � the op is no longer relevant, return
15: Node node = op.node; � getting the node to be inserted
16: Node node next = node.next.getReference();
17: Window window = search(node.key,tid,phase);
18: if (window == null) � operation is no longer pending
19: return;
20: if (window.curr.key == node.key) { � chance of a failure
21: if ((window.curr==node)||(node.next.isMarked())){ � success
22: OpDesc success =
23: new OpDesc(phase, OpType.success, node, null);
24: if (state.compareAndSet(tid, op, success))
25: return;
26: }
27: else { � the node was not yet inserted - failure
28: OpDesc fail=new OpDesc(phase,OpType.failure,node,null);
29: � the following CAS may fail if search results are obsolete:
30: if (state.compareAndSet(tid, op, fail))
31: return;
32: }
33: }
34: else {
35: if (node.next.isMarked()){ � already inserted and deleted
36: OpDesc success =
37: new OpDesc(phase, OpType.success, node, null);
38: if (state.compareAndSet(tid, op, success))
39: return;
40: }
41: int version = window.pred.next.getVersion(); � read version.
42: OpDesc newOp=new OpDesc(phase,OpType.insert,node,null);
43: � preventing another thread from reporting a failure:
44: if (!state.compareAndSet(tid, op, newOp))
45: continue; � operation might have already reported as failure
46: node.next.compareAndSet(node next,window.curr,false,false);
47: if (window.pred.next.compareAndSet
48: (version, node.next.getReference(), node, false, false)) {
49: OpDesc success =
50: new OpDesc(phase, OpType.success, node, null);
51: if (state.compareAndSet(tid, newOp, success))
52: return;
53: }
54: }
55: }
56: }

Fig. 4. The insert operation

338 S. Timnat et al.

races that occur and how we handle them. The basic idea is to coordinate the execution
of all threads using the operation descriptor. But more actions are required, as explained
below. Of-course, a proof is required to ensure that all races have been handled. The
pseudo-code of the INSERT operation is provided in Figure 4. The thread that initiates
the operation is denoted the operation owner. The operation owner starts the INSERT

method by selecting a phase number, allocating a new node with the input key, and
installing a link to it in the state array.

Next, the thread (or any helping thread) continues by searching the list for a location
where the node with the new key can be inserted (Line 17 in the method HELPINSERT).
In the original lock-free linked-list, finding a node with the same key is interpreted as
failure. However, in the presence of the helping mechanism, it is possible that some
other thread that is helping the same operation has already inserted the node but has not
yet reported success. It is also possible that the node we are trying to insert was already
inserted and then deleted, and then a different node, with the same key, was inserted
into the list. To identify these cases, we check the node that was found in the search.
If it is the same node that we are trying to insert, then we know that success should be
reported. We also check if the (next field of the) node that we are trying to insert is
marked for deletion. This happens if the node was already inserted into the list and then
removed. In this case, we also report success. Otherwise, we attempt to report failure.
If there is no node found with the same key, then we can try to insert the node between
pred and curr. But first we check to see if the node was already inserted and deleted
(line 35), in which case we can simply report success.

The existence of other threads that help execute the same operation creates various
races that should be properly handled. One of them, described in the next paragraph,
requires the INSERT method to proceed with executing something that may seem re-
dundant at first glance. The INSERT method creates a state descriptor identical to the
existing one and atomically replaces the old one with the new one (Lines 42–45). The
replacement foils all pending CAS operations by other threads on this state descriptor,
and avoids confusion as to whether the operation succeeds or fails. Next, the method
executes the actual insertion of the node into the list (Lines 46–48) and it attempts to
report success (Lines 49–52). If any of the atomic operations fail, the insertion starts
from scratch. The actual insertion into the list (Lines 46–48) is different from the inser-
tion in the original lock-free linked-list. First, the next pointer in the new node is not
privately set, as it is now accessible by all threads that help the insert operation. It is
set by a CAS which verifies that the pointer has not changed since before the search.
Namely, the old value is read in Line 16 and used as the expected value in the CAS of
Line 46. This verification avoids another race, which is presented below. Moreover, the
atomic modification of the next pointer in the previous node to point to the inserted
node (Lines 47–48) uses the version of that next pointer to avoid the ABA problem.
This is also justified below.

Let us first present the race that justifies the (seemingly futile) replacement of the
state descriptor in Lines 42–45. Suppose Thread T1 is executing an INSERT operation
of a key k. T1 finds an existing node with the key k and is about to report failure. T1

then gets stalled for a while, during which the other node with the key k is deleted and
a different thread, T2, helping the same INSERT operation that T1 is executing, does find

Wait-Free Linked-Lists 339

a proper place to insert the key k, and does insert it, but at that point T1 regains control
and changes the descriptor state to erroneously report failure. This sequence of events
is bad, because a key has been inserted but failure has been reported. To avoid such
a scenario, upon finding a location to insert k, T2 modifies the operation descriptor to
ensure that no stalled thread can wake up and succeed in writing a stale value into the
operation descriptor.

Next, we present a race that justifies the setting of the next pointer in the new node
(Line 46). The INSERT method verifies that this pointer has not been modified since it
started the search. This is essential to avoid the following scenario. Suppose Thread T1

is executing an INSERT of key k and finds a place to insert the new node N in between
a node that contains k− 1 and a node that contains k + 2. Now T1 gets stalled for a
while and T2, helping the same INSERT operation, inserts the node N with the key k ,
after which it also inserts another new node with key k+ 1, while T1 is stalled. At this
point, Thread T1 resumes without knowing about the insertion of these two nodes. It
modifies the next pointer of N to point to the node that contains k+2. This modification
immediately foils the linked-list because it removes the node that contains k+ 1 from
the list. By making T1 replace the next field in N atomically only if this field has not
changed since before the search, we know that there could be no node between N and
the node that followed it at the time of the search.

Finally, we justify the use of a version for the next pointer in Line 47, by show-
ing an ABA problem that could arise when several threads help executing the same
insert operation. Suppose Thread T1 is executing an INSERT of the key k into the list.
It searches for a location for the insert, finds one, and gets stalled just before executing
Line 47. While T1 is stalled, T2 inserts a different k into the list. After succeeding in
that insert, T2 tries to help the same insert of k that T1 is attempting to perform. T2 finds
that k already exists and reports failure to the state descriptor. This should terminate the
insertion that T1 is executing with a failure report. But suppose further that the other k
is then removed from the list, bringing the list back to exactly the same view as T1 saw
before it got stalled. Now T1 resumes and the CAS of Line 47 actually succeeds. This
course of events is bad, because a key is inserted into the list while a failure is reported
about this insertion. This is a classical ABA problem, and we solve it using versioning
of the next pointer. The version is incremented each time the next pointer is modified.
Therefore, the insertion and deletion of a different k key while T1 is stalled cannot go
unnoticed.

3.5 The Success Bit Technique

Helping DELETE is different from helping INSERT in the sense that the help method
in this case does not execute the entire DELETE operation to its completion. Instead, it
stops before determining the success of the operation, and lets the operation owner de-
cide whether its operation was successful. Note that this does not foil wait-freedom, as
the operation owner will never get stuck on deciding whether the operation was success-
ful. When the help method returns, there are two possibilities. The simpler possibility
is that the requested key was not found in the list. Here it is clear that the operation
failed and in that case the state is changed by the helper to a failure and the operation
can terminate. The other possibility is that the requested key was found and deleted.

340 S. Timnat et al.

1: public boolean delete(int tid, int key) {
2: long phase = maxPhase(); � getting the phase for the op
3: state.set(tid, new OpDesc
4: (phase, OpType.search delete, new Node(key),null)); � publishing
5: help (phase); � when finished - no more pending operation with lower or equal phase
6: OpDesc op = state.get(tid);
7: if (op.type == OpType.determine delete)
8: � Need to compete on the ownership of deleting this node:
9: return op.searchResult.curr.success.compareAndSet(false, true);

10: return false;
11: }

Fig. 5. The delete method

In this case, it is possible that several DELETE operations for the same key were run
concurrently by several operation owners and by several helping threads. As the delete
succeeded, it has to be determined which operation owner succeeded. In such a case
there are several operation owners for the deletion of the key k and only one operation
owner can return success, because a single DELETE has been executed. The others op-
eration owners must report failure. This decision is made by the operation owners (and
not by the helping threads) in Line 9 of the DELETE method itself, depicted in Figure
5. It employs a designated success bit in each node. Whoever sets this bit becomes
the owner of the deletion for that node in the list and can report success. We believe
that this technique for determining the success of a thread in executing an operation
in the presence of helping threads can be useful in future constructions of wait-free
algorithms.

3.6 Memory Management

The algorithm in this work relies on a garbage collector (GC) for memory management.
A wait-free GC does not currently exist. This is a common difficulty for wait-free al-
gorithms. A frequently used solution, which suits this algorithm as well, is Michael’s
Hazard Pointers technique [9]. Hazard pointers can be used for the reclamation of the
operation descriptors as well, and not only for the reclamation of the list nodes them-
selves.

4 Highlights of the Correctness Proof

We now briefly explain how this algorithm is proven correct. A full proof appears in the
full version of this paper [11]. A full proof is crucial for a parallel algorithm as without
it, one can never be sure that additional races are not lurking in the algorithm.

Basic Concepts and Definitions. The mark bit, is the bit on the next field of each node,
and it is used to mark the node as logically deleted. A node can be marked or unmarked
according to the value of this bit. We define the nodes that are logically in the list to be

Wait-Free Linked-Lists 341

the unmarked nodes that are reachable from the list’s head. Thus, a logical change to
the list, is a change to the set of unmarked nodes reachable from the head. We say that
a node is an infant node if it has never been reachable from the head. These are nodes
that have been prepared for insertions but have not been inserted yet.

In the proof we show that at the linearization point of a successful insert, the inserted
value becomes logically in the list and that at a linearization point of a successful delete,
a node with the given value is logically deleted from the list. To show this, we look at
the actual physical modifications that may occur to the list.

Proof Structure. One useful invariant is that a physical change to the list can only mod-
ify the node’s next field, as a node’s key is final and never changes after the initialization
of a node. A second useful invariant is that a marked node is never unmarked, and that
it’s next field never changes (meaning, it will keep pointing to the same node). This is
ascertained by examining all the code lines that change a node’s next field, and noting
that all of them do it using a CAS which prevents a change from taking effect if the
node is marked. We next look at all possible physical changes to a node’s next field,
and show that each of them falls in one of the following four categories:

* Marking: changing the mark bit of a node that is logically in the list to true.
* Snipping: physically removing a marked node out of the list.
* Redirection: a modification of an infant node’s next pointer (in preparation for its

insertion).
* Insertion: a modification of a non-infant node to point to an infant node (making

the latter non-infant after the modification).

Proving that every physical change to a node’s next field falls into one of the four cat-
egories listed above, is the most complicated part of the formal proof, and is done by
induction, with several intermediate invariants. Finally, it is shown that any operation in
the marking category matches a successful delete operation and any operation in the in-
sertion category matches a successful insert operation. Thus, at the proper linearization
points the linked list changes according to its specification. Furthermore, it is shown
that physical operations in the Redirection and Snipping categories cause no logical
changes to the list, which completes the linearizability proof.

To show wait-freedom, we claim that the helping mechanism ensures that a limited
number of concurrent operations can be executed while a given insert or delete execu-
tion is pending. At the point when this number is exhausted, all threads will help the
pending operation, and then it will terminates within a limited number of steps.

5 Linearization Points

In this section we specify the linearization point for the different operations of the
linked-list. The SEARCH method for a key k returns a pair of pointers, denoted pred
and curr. The prev pointer points to the node with the highest key smaller than k, and
the curr pointer points to the node with the smallest key larger than or equal to k. The
linearization point of the SEARCH method is when the pointer that connects pred to
curr is read. This can be either at Line 36 or 45 of the SEARCH method. Note that curr’s

342 S. Timnat et al.

next field will be subsequently read, to make sure it is not marked. Since it is an invari-
ant of the algorithm that a marked node is never unmarked, it is guaranteed that at the
linearization point both pred and curr nodes were unmarked.

The linearization point for a CONTAINS method is the linearization point of the ap-
propriate SEARCH method. The appropriate SEARCH method is the one called by the
thread that subsequently successfully reports the result of the same CONTAINS opera-
tion. The linearization point of a successful insert is in Lines 47-48 (together they are a
single instruction) of the helpInsert method. This is the CAS operation that physically
links the node into the list. For a failing insertion, the linearization point is the lineariza-
tion point of the SEARCH method executed by the thread that reported the failure.

The linearization point of a successful delete is at the point where the node is log-
ically deleted, which means successfully marked. Note that it is possible that this is
executed by a helping thread and not necessarily by the operation owner. Furthermore,
the helping thread might be trying to help a different thread than the one that will even-
tually own the deletion. The linearization point of an unsuccessful delete is more com-
plex. A delete operation may fail when the key is properly deleted, but a different thread
is selected as the owner of the delete. In this case, the current thread returns failure, be-
cause of the failure of the CAS of the DELETE method (at Line 9). In this case, the
linearization point is set to the point when the said node is logically deleted (marked).
The linearization point of an unsuccessful delete, originating from simply not finding
the key, is the linearization point of the SEARCH method executed by the thread that
reported the failure.

6 The Fast-Path-Slow-Path Variation

The idea behind the fast-path-slow-path [8] approach is to combine a (fast) lock-free
algorithm with a (slower) wait-free one. The lock free algorithm provides a basis for a
fast path and we use Harris’s lock-free linked-list for this purpose. The execution in the
fast path begins by a check whether a help is required for any operation in the slow path.
Next, the execution proceeds with running the fast lock-free version of the algorithm
while counting the number of contentions that end with a failure (i.e., failed CASes).
Typically, few failures occur and help is not required, and so the execution terminates
after running the faster lock-free algorithm. If this fast path fails to make progress, the
execution moves to the slow path, which runs the slower wait-free algorithm described
in Section 3, requesting help (using an operation descriptor in its slot in the state array)
and making sure the operation eventually terminates.

The number of CAS failures allowed in the fast path is limited by a parameter called
MAX FAILURES. The help is provided by threads running both the fast and slow path,
which ensures wait-freedom: if a thread fails to complete its operation, its request for
help is noticed both in the fast and in the slow path. Thus, eventually all other threads
help it and its operation completes. However, help is not provided as intensively as
described in Section 3. We use the delayed help mechanism, by which each thread only
offers help to other threads once every several operations, determined by a parameter
called HELPING DELAY.

Combining the fast-path and the slow-path is not trivial, as care is needed to guaran-
tee that both paths properly run concurrently. On top of other changes, it is useful to note

Wait-Free Linked-Lists 343

that the DELETE operation must compete on the success-bit even in the fast-path, to
avoid a situation where two threads running on the two different paths both think they
were successful in deleting a node. The full implementation of the fast-path-slow-path
variation of the linked-list is described in [11].

7 Performance

Implementation and Platform. We compared four Java implementations of the linked-
list. The first is the lock-free linked-list of Harris, denoted LF, as implemented by Her-
lihy and Shavit in [6]. (This implementation was slightly modified to allow nodes with
user-selected keys rather than the object’s hash-code. We also did not use the item field.)

The basic algorithm described in Section is denoted WF-Orig in the graphs below. A
slightly optimized version of it, denoted WF-Opt, was changed to employ a delayed help
mechanism, similar to the one used in the fast-path- slow-path extension. This means
that a thread helps another thread only once every k operations, where k is a parameter
of the algorithm set to 3. The idea is to avoid contention by letting help arrive only after
the original thread has a reasonable chance of finishing its operation on its own. This
optimization is highly effective, as seen in the results. Note that delaying help is not
equivalent to a fast-path-slow-path approach, because all threads always ask for help
(there is no fast path). All the operations are still done in the helpInsert and helpDelete
methods.

The fast-path-slow-path algorithm, denoted FPSP, was run with the HELPING DELAY

parameter set to 3, and MAX FAILURES set to 5. This algorithm combines the new wait-
free algorithm described in this paper with Harris’s lock-free algorithm, to achieve both
good performance and the stronger wait-freedom progress guarantee.

We ran the tests in two environments. The first was a SUN’s Java SE Runtime, ver-
sion 1.6.0 on an IBM x3400 system featuring 2 Intel(R) Xeon(R) E5310 1.60GHz quad
core processors (overall 8 cores). The second was a SUN FIRE machine with an Ultra-
SPARC T1 8 cores each running four hyper-threads.

Workload and Methodology. In the micro-benchmarks tested, we ran each experiment
for 2 seconds, and measured the overall number of operations performed by all the
threads during that time. Each thread performed 60% CONTAINS, and 20% INSERT and
DELETE operations, with keys chosen randomly and uniformly in the range [1,1024].
The number of threads ranges from 1-16 (in the Intel(R) Xeon(R)) or from 1-32 (In the
UltraSPARC). We present the results in Figure 6. The graphs show the total number of
operations done by all threads in thousands for all four implementations, as a function
of the number of threads. In all the tests, we executed each evaluation 8 times, and the
averages are reported in the figures.

Results. It can be seen that the fast-path-slow-path algorithm is almost as fast as the
lock-free algorithm. On the Intel machine, the two algorithms are barely distinguish-
able; the difference in performance is 2-3%. On the UltraSPARC the fast-path-slow-
path suffers a noticeable (yet, reasonable) overhead of 9-14%. The (slightly optimized)
basic wait-free algorithm is slower by a factor of 1.3–1.6, depending on the number of
threads. Also, these three algorithms provide an excellent speed up of about 7 when

344 S. Timnat et al.

Fig. 6. The number of operations done in two seconds as a function of the number of threads

working with 8 threads (on both machines), and about 24 when working with 32 multi-
threads on the UltraSPARC. The basic non-optimized version of the wait-free algorithm
doesn’t scale as well. There, threads often work together on the same operation, causing
a deterioration in performance and scalability. The simple delayed-help optimization
enables concurrency without foiling the worst-case wait-freedom guarantee.

References

1. Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for wait-free transaction
friendly data structures. In: SPAA, pp. 335–344 (2010)

2. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction. In: SPAA,
pp. 325–334 (2011)

3. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC, pp. 50–59. ACM,
New York (2004)

4. Harris, T.L.: A Pragmatic Implementation of Non-blocking Linked-Lists. In: Welch, J.L.
(ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

5. Herlihy, M.: A methodology for implementing highly concurrent objects. ACM Trans. Pro-
gram. Lang. Syst. 15(5), 745–770 (1993)

6. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2008)
7. Kogan, A., Petrank, E.: Wait-free queues with multiple enqueuers and dequeuers. In: PPOPP,

pp. 223–234 (2011)
8. Kogan, A., Petrank, E.: A methodology for creating fast wait-free data structures. In: PPOPP,

pp. 141–150 (2012)
9. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)
10. Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In: PPOPP, pp. 309–

310 (2012)
11. Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists (2012),

http://www.cs.technion.ac.il/%7eerez/%50apers/wfll-full.pdf
12. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: PODC, pp. 214–222. ACM,

New York (1995)

http://www.cs.technion.ac.il/%7eerez/%50apers/wfll-full.pdf

Byzantine Chain Replication

Robbert van Renesse, Chi Ho, and Nicolas Schiper

Cornell University�

Ithaca, NY, USA
{rvr,chho,nschiper}@cs.cornell.edu

Abstract. We present a new class of Byzantine-tolerant State Machine
Replication protocols for asynchronous environments that we term
Byzantine Chain Replication. We demonstrate two implementations that
present different trade-offs between performance and security, and com-
pare these with related work. Leveraging an external reconfiguration ser-
vice, these protocols are not based on Byzantine consensus, do not require
majority-based quorums during normal operation, and the set of replicas
is easy to reconfigure.

One of the implementations is instantiated with t+1 replicas to toler-
ate t failures and is useful in situations where perimeter security makes
malicious attacks unlikely. Applied to in-memory BerkeleyDB replica-
tion, it supports 20,000 transactions per second while a fully Byzantine
implementation supports 12,000 transactions per second—about 70% of
the throughput of a non-replicated database.

1 Introduction

Byzantine-tolerant State Machine Replication (BSMR) is the only known generic
approach to making applications (servers, routing daemons, and so on) tolerate
arbitrary faults beyond crash failures in an asynchronous environment [1]. Var-
ious studies in complex systems have shown that crash failures constitute a
minority of failures [2, 3], while trends in hardware increase the probability of
transient hardware errors such as bit flips [4–6]. Worse yet, most replication pro-
tocols deployed in cloud centers provide weak consistency guarantees, meaning
that they introduce inconsistencies even if there are no faults [7, 8]. Protocols
such as Primary-Backup [9] and Chain Replication [10] make strong assump-
tions about failure detection that are easily violated in datacenter settings while
conservative timeouts result in long recovery times.

While BSMR addresses all these problems, to the best of our knowledge there
is no deployment of BSMR in today’s datacenters. There are good reasons for
this:

– Traditional BSMR require 3t + 1 replicas in order to tolerate t faults [11],
whereas primary-backup replication protocols require only t+1 replicas [9].

� This work was supported in part by DARPA grants FA8750-10-2-0238, FA9550-11-
1-0137 , FA8750-11-2-0256, NSF grants 1040689, 1047540, 54083, and DOE grant
DE-AR0000230.

R. Baldoni, P. Flocchini, and R. Binoy (Eds.): OPODIS 2012, LNCS 7702, pp. 345–359, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

346 R. van Renesse, C. Ho, and N. Schiper

Also, the protocols may require expensive cryptographic operations and sig-
nificant network bandwidth, further increasing cost;

– Significant progress has been made at reducing the cost of BSMR [12–14].
However, these protocols are complex [15]. Even basic (crash-tolerant) Paxos
replication is difficult to implement and debug [16]. Multi-purpose Paxos and
BSMR libraries have not proved successful, and few support basic operations
such as reconfiguring the locations of the protocol participants, important
to practical deployment.

Much of the difficulty stems from replicated services being designed to be stand-
alone, but in practice the configuration of replicated services is usually managed
by an external scalable configuration service. The configuration service is used
only in the face of failures. Exploiting this, we can build replication protocols
that do not use quorums in the steady-state when there are no failures. This
reduces the number of replicas necessary, not only increasing efficiency but also
robustness in the face of limited sources of diversity.

Our protocols are based on Chain Replication [10], which is increasingly being
used in scalable fault tolerant systems [17–20]. Chain Replication also uses an
external configuration service, but cannot tolerate even general crash failures as
the protocol depends on accurate failure detection, an overly strong requirement
in today’s datacenters. In the face of a mistaken failure detection, a chain may
split and inconsistent results may be returned to clients. To reduce the likelihood
of such problems, timeouts used for failure detection have to be set conservatively
(values that exceed one minute are not uncommon in practice), meaning that
in the face of an actual crash it takes a long time before remedial action can be
taken.

In this paper we make the following contributions:

– We present a new class of highly reconfigurable Chain Replication protocols
that are easily reconfigurable, do not require accurate failure detection, and
are able to tolerate Byzantine failures.

– We prove the correctness of this class of protocols;

– We present a Byzantine Chain Replication protocol called Shuttle;

– We briefly describe two simple implementations of Shuttle: one that can
tolerate Byzantine failures in their full generality, and one that tolerates
“accidental failures” such as crashes, bit flips, concurrency bugs, and so on;

– We present a performance evaluation of Byzantine Chain Replication applied
to the popular BerkeleyDB database service [21];

– We compare the complexity with that of related protocols.

The Shuttle implementation that can tolerate arbitrary failures uses, in steady
state, 2t+ 1 replicas, HMAC signatures, and has a message overhead of 2t + 2
messages per operation. The implementation that is designed to deal with crash
failures as well as bit flips and Heisenbugs uses only t+1 replicas, and its overhead
is essentially the same as Chain Replication for update operations (using CRC
checksums and t + 2 messages per operation). However, read-only operations

Byzantine Chain Replication 347

are as expensive as update operations, whereas in Chain Replication read-only
operations are only 2 messages.

Section 2 presents Byzantine Chain Replication, and Section 3 shows the Shut-
tle protocol. Implementation details are the topic of Section 4. Section 5 eval-
uates performance characteristics. A comparison with related work is described
in Section 6. Section 7 concludes.

2 Byzantine Chain Replication

This section presents a class of replication protocols, rather than a specific pro-
tocol. The class is characterized by the state that correct replicas keep and how
they order and persist operations. For simplicity, we consider a single object. We
model the state of the object as a finite history H of operations, which is a set
of 〈s, o〉 pairs, where s is a slot number and o an operation. It has the following
property:

∀s, o, o′ : 〈s, o〉 ∈ H ∧ 〈s, o′〉 ∈ H⇒ o = o′ (1)

That is, each slot can have at most one operation assigned to it.
Initially, H is empty. The only allowed transition on the object is to add an

operation to the history at a particular slot (transitions are atomic):

specification Object:
transition apply(s, o):

precondition: ∃o′ : 〈s, o′〉 ∈ H

action: H := H ∪ {〈s, o〉}

Note that the history does not have to be filled sequentially, and thus “holes”
in the history are allowed. However, if a running state is maintained, operations
should be applied in the order of their slot number in the history.

To make the object highly available, we will replicate it and dynamically
change the configuration in order to deal with failures. Similar approaches have
been proposed for crash failures only [22, 23]. For now suppose there is an un-
bounded sequence of configurations C = C1 :: C2 :: C3 :: The boolean function
succ(C,C′) evaluates to true if and only if C′ follows C directly in C. Each con-
figuration Ci is an ordered chain of replicas (see Chain Replication [10]), and we
assume that the replicas of any two different configurations are disjoint. Given
two replicas ρ and ρ′ in the same configuration, we write ρ ≺ ρ′ if ρ precedes ρ′

in the chain.
Any replica ρ can create statements of the form 〈d〉ρ where d is arbitrary data.

For now, assume that d is data signed by ρ using public key cryptography; more
efficient schemes will be described later. If ρ is correct, only ρ can create those
statements. We say that ρ says d. A global state variable statements contains all
statements of correct replicas, but may also contain statements of faulty replicas.

348 R. van Renesse, C. Ho, and N. Schiper

specification Chain:
transition orderCommand(ρ,C, s, o):

precondition:
ρ ∈ C ∧ ρ.mode = ACTIVE ∧
∀ρ′ ∈ C : ρ′ ≺ ρ⇒ 〈order, s, o〉ρ′ ∈ statements ∧
� ∃o′, v′, ρ′ : 〈s, o′, ρ′, C, v′〉 ∈ ρ.history

action:

ρ.history := ρ.history ∪
{〈

s, o, ρ, C, {〈order, s, o〉ρ′ | ρ
′ ∈ C ∧ ρ′ � ρ}

〉}

statements := statements ∪ {〈order, s, o〉ρ}

transition becomeImmutable(ρ):
precondition:

ρ.mode = ACTIVE

action:
ρ.mode := IMMUTABLE

statements := statements ∪ {〈wedged, ρ.history〉ρ}

transition switchConfig(C,C′,H):
precondition:

succ(C,C′) ∧ � ∃h : 〈inithist, C′, h〉 ∈ statements ∧
H ⊆ statements ∧
∃Q ∈ QC : |H | = |Q| ∧

∀ρ ∈ Q : ∃h : 〈wedged, h〉ρ ∈ H ∧ validHist(h, ρ,C)

action:

hist := {
〈
s, o,max(C′), C′, {〈order, s, o〉ρ′ | ρ

′ ∈ C′}
〉
|

∃h, v : h ∈ H ∧ 〈s, o, v〉 ∈ h ∧
∀h′, v′, o′ : h′ ∈ H ∧ 〈s, o′, v′〉 ∈ h′ :⇒ |v| ≥ |v′|}

statements := statements ∪ {〈inithist, C′, hist〉Ω}

transition becomeActive(ρ,C, hist):
precondition:

ρ ∈ C ∧ ρ.mode = PENDING ∧ 〈inithist, C, hist〉Ω ∈ statements
action:

ρ.history := hist
ρ.mode := ACTIVE

Fig. 1. State transitions allowed in Chain Replication

A correct replica ρ in configuration C has the following local state:

– ρ.mode: PENDING, ACTIVE, or IMMUTABLE. Initially all replicas in C1 are AC-
TIVE, while replicas in all other configurations are PENDING;

– ρ.history: a set of order proofs. An order proof is a tuple of the following form:〈
s, o, ρ, C, {〈order, s, o〉ρ′ | ρ′ ∈ C ∧ ρ′ + ρ}

〉
. (2)

Here s is a slot number, o an operation, and each 〈order, s, o〉ρ′ is an order

statement said by ρ′ ∈ C. An order proof contains order statements from
all replicas that precede ρ in C and from ρ itself. ρ.history cannot contain

Byzantine Chain Replication 349

conflicting order proofs, that is, order proofs for the same slot number but
different operations.

In addition to replicas, there is an oracle Ω that can sign so-called inithist

statements. Figure 1 shows what transitions are allowed in Chain Replication
by correct replicas and by Ω:

1. orderCommand(ρ, C, s, o): Any active replica ρ in configuration C can say
〈order, s, o〉ρ if each preceding replica in C, if any, has done likewise and
there is no conflicting operation for s in its history. ρ also adds a new order
proof to its history.

2. becomeImmutable(ρ): An active replica ρ can suspend updating its history
by becoming immutable at any time. Typically it will do this only if one
or more of its peer replicas are suspected of being faulty. The replica signs
a wedged statement to notify Ω that it is immutable and what its history
is.

3. switchConfig(C,C′, H): The oracle Ω waits for a set H of valid histories
from a quorum of replicas in C. QC is the set of quorums defined for con-
figuration C. A valid history contains at most one order proof per slot. The
oracle then issues an inithist statement for configuration C′ with the or-
der proofs of maximal size for each slot s in the histories in H . max(C′) is
the last replica (the “tail”) on chain C′. The oracle can issue at most one
inithist statement per configuration.

4. transition becomeActive(ρ, C, hist): A pending replica ρ in configuration
C can become active if the oracle has issued an inithist statement
for C.

We require that each quorum Q ∈ QC contain at least one honest replica. An
honest replica ρ is defined as follows: if issued, 〈wedged, h〉ρ includes all or-
der proofs corresponding to all 〈order, s, o〉ρ statements that ρ issues. In other
words, an honest replica cannot truncate its history, nor can it issue new order

statements after it has become immutable and issued a wedged statement.
Clearly, correct replicas are honest, but replicas that suffer only crash fail-

ures are honest as well. Later we will argue that replicas that suffer from bit
flips and other types of non-malicious failures can be transformed into honest
replicas. Replicas that are not honest are easily identified: the combination of
an 〈order, s, r〉ρ statement and a 〈wedged, h〉ρ statement that does not contain
an order proof for 〈s, r〉 constitutes a proof of misbehavior.

The transitions specify what actions are safe, but not when or in what order
to do them.1 In other words, the system is asynchronous. For liveness, we assume
that there is always eventually a configuration in which all replicas are correct
and do not become immutable.

1 The transition specifications are not pseudo-code, and should not be confused with
implementation. For example, the code corresponding to the orderCommand tran-
sition would have to check that the order proofs of preceding replicas are signed
correctly.

350 R. van Renesse, C. Ho, and N. Schiper

Safety
We show safety through a sketch of a refinement mapping of Specification Chain
to Specification Object. The statements that are made by the (correct and
faulty) replicas map to the state of the object as follows:

H = {〈s, o〉 | ∃C ∈ C : ∀ρ ∈ C : 〈order, s, o〉ρ ∈ statements} (3)

Thus an 〈s, o〉 pair is in the object history if all replicas of a configuration
have issued order statements for that pair. We call the 〈s, o〉 pairs in H thus
defined persistent. For this refinement mapping to be well-defined, we need to
show that Equation 1 holds. We say that 〈s, o〉 persists in C if C ∈ C and
∀ρ ∈ C : 〈order, s, o〉ρ ∈ statements.

Lemma 1. If 〈s, o〉 persists in C and the precondition of orderCommand(ρ′, s, o′)
holds, where ρ′ is a correct replica in configuration C′ that follows C in C (not
necessarily directly), then o = o′.

Proof. (Sketch) By definition of persists, all replicas in C issue an 〈order, s, o〉
statement. First assume C′ is the configuration that directly follows C. Because
the precondition of orderCommand(ρ′, s, o′) holds, ρ′ is active, and thus the oracle
Ω must have issued an inithist statement for C′. Thus a quorum of replicas in
C must have issued wedged statements and Ω obtained order proofs of at least
one honest replica in C. The oracle thus obtained an order proof for 〈s, o〉 from
some honest replica ρ. It is not possible for faulty replicas to create a larger order
proof for a different 〈s, o′〉, as that would require that ρ says 〈order, s, o′〉ρ for
the larger order proof. This cannot happen because ρ is honest. So if there is a
larger order proof, it must be for 〈s, o〉.

Iteratively, all correct replicas in all configurations that follow C will have an
order proof for 〈s, o〉. As a correct replica never issues an order statement that
conflicts with an order proof in its history, the lemma holds.

Theorem 1. For all s, o, o′, C, and C′, if 〈s, o〉 persists in C and 〈s, o′〉 persists
in C′, then o = o′.

Proof. (Sketch) By contradiction, consider some s, o, o′, C, and C′ such that
o = o′. All correct replicas in C ordered 〈s, o〉, while all correct replicas in C′

ordered 〈s, o′〉. There are two cases:

– C = C′: this means that all correct replicas in C ordered both 〈s, o〉 and
〈s, o′〉, which is impossible as a correct replica issues at most one order

statement per slot number.

– C = C′: wlog., assume C′ follows C in C. Because all correct replicas in C′

ordered 〈s, o′〉, they must each have issued order statements for 〈s, o′〉 and
thus underwent orderCommand transitions for 〈s, o′〉. By Lemma 1, o = o′.

This demonstrates that Equation 1 holds under any Chain transition.

Byzantine Chain Replication 351

An important question is how to enforce that each quorum in QC contains
at least one honest replica. One way is to have each quorum contain at least
t + 1 replicas and thus at least one correct replica. To guarantee liveness each
configuration would have to have at least 2t+1 replicas, or no sufficient number
of replicas might issue a wedged statement for the precondition of switchConfig
to become true.

Another option is to assume that all replicas are honest. Under this assump-
tion, quorums can be singletons and, for liveness, each configuration would have
to have at least t+ 1 replicas. Such an assumption could be reasonable if mali-
cious failures are unlikely and each replica maintain a checksum of its history,
reporting a failure when it detects that its history is compromised. Alterna-
tively, automated approaches that transform hardware errors into crash failures
could be used [5, 6]. There is no way to prevent malicious replicas from issuing
truncated histories. However, if they do so they expose themselves as provably
faulty.

3 Shuttle: A Byzantine Chain Replication Protocol

Shuttle is a BSMR protocol based on Byzantine Chain Replication. Each replica
maintains a running state in addition to the local history of order proofs (we will
show later how the history can be truncated periodically). A centralized config-
uration service called Olympus implements the oracle Ω and generates a series
of configurations, issuing inithist statements (signed by a private key held by
Olympus) for each such configuration. Any modern datacenter will contain a
configuration service similar to the Olympus and can maintain the configura-
tions of many objects. A configuration statement includes the sequence number
of the configuration and an ordered list of replica identifiers.

Olympus generates a new configuration upon receiving a reconfiguration-

request statement. To reduce the efficacy of trivial Denial-of-Service attacks
on the object, Olympus only accepts reconfiguration requests that are sent by
replicas in the current configuration or accompanied by a proof of misbehavior
(such as the aforementioned conflicting wedged and order statements from the
same replica, or any other set of conflicting statements from the same replica
that Olympus recognizes). Olympus does not have to allocate a fresh set of
replicas for each configuration—doing so would lead to significant overhead as
state is transfered from old replicas to new replicas—however, reused replicas
need to be made aware of their new configuration. For liveness, we assume that
the Olympus eventually creates a configuration of correct replicas that do not
issue reconfiguration requests.

3.1 Proofs

Before describing the Shuttle protocol, we generalize the notion of a proof. A
proof of d is a tuple: 〈

d, C, ρ, {〈d〉ρ′ | ρ′ ∈ C ∧ ρ′ + ρ}
〉
. (4)

352 R. van Renesse, C. Ho, and N. Schiper

where C ∈ C and ρ ∈ C. Typically, ρ is the issuer of the proof. An order proof
is an example of a proof, that is, a proof of ρ ordering 〈s, o〉. We will say that a
proof is complete if ρ is the tail of the chain in C, that is, all replicas in C have
signed d.

3.2 Failure-Free Case

Suppose a client wants to execute an operation o and obtain a result. The client
first obtains the current configuration from Olympus, and sends o to the head
of the chain. The head orders incoming operations by assigning increasing slot
numbers to them, and creating shuttles that are sent along the chain.

A shuttle contains two proofs: an order proof for 〈s, o〉 and a result proof
for the result of o. Suppose that the head assigns o to slot s. Each replica ρ,
including the head, does the following:

1. checks the validity of the order proof in the shuttle;
2. applies o to its running state and obtains a result r;
3. adds 〈order, s, o〉ρ to the order proof (the replica undergoes an orderCom-

mand transition);
4. adds 〈result, o, S(r)〉ρ to the result proof, where S is a cryptographic hash

function;
5. forwards the shuttle to the next replica if any.

After the tail replica adds its order statement to the shuttle, the order proof
is complete and 〈s, o〉 is persistent, and the tail forwards the result proof to
the client along with the result r itself. The client believes the result if S(r)
corresponds to all result statements in the result proof.

The tail also returns the shuttle with the completed proofs to the head along
the chain in the reverse order. We will refer to this as the result shuttle. Each
replica caches this shuttle (and the result r itself) in order to deal with potential
failures, as described next.

3.3 Dealing with Failures

In the case of a replica or a network failure, a client may not receive a valid
response. The client uses a timer to try to detect a failure. (The value of the timer
does not affect safety and can thus be set aggressively in order to detect failures
quickly—however, if set too aggressively the overhead of reconfigurations would
negatively affect performance.) When the timer expires, the client retransmits
its operation to all replicas in the chain. If a (correct) replica that receives the
request has the result shuttle cached, it returns the result along with the result
proof to the client. If the replica is immutable, it responds to the client with an
error statement, in which case the client has to retrieve the latest configuration
from Olympus and try again. In all other cases, the replica forwards the request
to the head (if it is not the head itself), and starts a timer.

The head, if correct and upon receiving a retransmission (either directly from
the client or indirectly through one of the peer replicas), distinguishes three
cases:

Byzantine Chain Replication 353

1. it has cached the result shuttle corresponding to the operation;
2. it has ordered the operation but is still waiting for the result shuttle to come

back;
3. it does not recognize the operation.

In the first case, it sends the cached result to the client. In the second case,
it starts a timer. In the third case, it allocates a new slot number, starts the
protocol from scratch, and starts a timer. In the latter two cases, if receiving
the result before its timer expires, the head cancels its timer and responds to the
client. Upon receipt of the result each replica does likewise, canceling its timer if
it is still outstanding, and sending the result along with the result proof to the
client. Should the timer expire at one of the replicas, then the replica sends a
reconfiguration-request statement to Olympus.

To reconfigure, Olympus executes the following steps:

1. send signed wedge requests to each of the replicas in the current configura-
tion. Correct replicas respond with wedged statements (becomeImmutable
transition);

2. await responses from a quorum of replicas, and construct a history h by
selecting the longest order proof for each slot;

3. allocate a new configuration C of replicas and seed those with h and a con-
figuration statement for C. The replicas then become active (becomeActive
transition).

3.4 Clients

After sending an operation, the client is waiting for a response that may never
arrive. For liveness, the client checks periodically with Olympus to see if there
is a new configuration, and if so retransmits its operation. Consequently, an op-
eration may be executed more than once. Although not currently implemented,
duplicate execution can be prevented if the service keeps track of which oper-
ations it has already executed (on a per-client basis) and treats duplicates as
no-ops. The results of such operations may no longer be available, as caching re-
sults for ever would present a significant storage problem. Note that the problem
and solution are the same for non-replicated servers [24].

Shuttle can tolerate Byzantine clients in that correct Shuttle replicas do not
assume that clients follow a particular specification. In particular, Byzantine
clients cannot compromise the integrity of the replicated object, for example,
by sending conflicting operations to different replicas. This is a direct result of
the head of the object making all ordering decisions within its configuration.
However, Byzantine clients can send bogus operations to the replicas2 and they
can mount Denial-of-Service attacks by sending lots of bogus operations. Shuttle
has no specific defense for such attacks, except that client operations are signed
and thus the source is easily identified. It is assumed that such clients are shut
down using external means.

2 A faulty head of the chain can introduce bogus operations by itself.

354 R. van Renesse, C. Ho, and N. Schiper

4 Implementation

We have implemented two versions of the Shuttle protocol:

1. CRC Shuttle: A version that is intended to deal with unintentional failures
such as power failures, Heisenbugs, bit flips, and so on, but all replicas are
assumed to be honest. It uses t+ 1 replicas in each configuration, singleton
quorums, and CRC checksums for signatures.

2. HMAC Shuttle: A version that tolerates arbitrary failures, and uses 2t + 1
replicas in each configuration, quorums of size t + 1, and signatures based
on HMACs.

We do not have space to describe the entire implementations, but sketch some
aspects below. For a complete description, see [25].

4.1 HMAC Vectors

In the case of HMAC Shuttle, a replica signs a statement with a vector of HMAC
signatures, with one entry for each receiver that may need to receive the state-
ment. It is thus possible that a faulty replica provides valid signatures for some
but not for all destinations. Worse, a recipient of a statement with a valid HMAC
signature in its entry of the vector cannot necessarily convince other processes.

Each replica ρi has a secret signing key k
r
ij for each other replica ρj and a secret

signing key kcic for each client c. The inter-replica signing keys krij are known to
the Olympus as well, while the replica-to-client signing keys kcic are created
using the Diffie-Hellman [26] protocol. A wedged statement from a replica to the
Olympus is signed by an HMAC vector with an entry for each other replica. The
Olympus can check this signature as well as all order proofs as it is in possession
of all the necessary keys.

In the current implementations, Olympus is a trusted server that is not repli-
cated itself, but it could be replicated using something like PBFT [12]. Since
Olympus has the inter-replica signing keys, a Byzantine replica of the Olympus
service might try to leak these keys to Byzantine object replicas. It is thus im-
portant that outputs of the Olympus replicas go through a voting filter; only if
t + 1 of the Olympus replicas send a copy of particular message, the filter will
let it through.

4.2 Checkpointing

It would be infeasible in practice for each replica to maintain the entire history of
operations, let alone pass on this history to new replicas during reconfiguration.
Thus each replica actually maintains a checkpoint and a suffix of the history
of operations that comes after this checkpoint. Periodically the head initiates
a checkpoint by sending a shuttle down the chain with a checkpoint proof for
a hash of its running state. Each replica ρ adds a 〈checkpoint, S(state)〉ρ to
the checkpoint proof. The tail returns the completed checkpoint proof along the

Byzantine Chain Replication 355

chain so each replica can remove the corresponding prefix from its history. The
latest checkpoint proof along with the corresponding state is part of a wedged

statement of a replica.
In HMAC Shuttle, it is not necessary for all 2t+1 replicas to maintain running

state [13]. The chain is split into two parts. The first t+ 1 (including the head)
maintain the running state, but the final t (including the tail) do not. These
witness replicas have to sign the order proofs in the shuttles, but they do so
without knowing the running state. Witnesses do not sign the result proof as
they cannot compute it. A client needs only t+ 1 matching copies of the result
in order to accept it, knowing that at least one correct replica signed the result.

5 Experimental Evaluation

In this section, we evaluate the performance of HMAC Shuttle experimentally
and compare it against Chain Replication [10], a protocol that tolerates only
crash failures and assumes perfect failure detection. We expect the performance
of Shuttle CRC to be close to Chain Replication: they both arrange t+1 replicas
in a chain. Computing CRC checksums, an operation only carried out in Shuttle
CRC, has negligible overhead. Both HMAC Shuttle and Chain Replication are
implemented in Java. To evaluate the overhead of these protocols, we put them
side-to-side with a non-replicated server in a failure-free scenario.

The code is deployed on a cluster of Linux machines connected by a Gigabit
switch. Replicas and clients run on dual-core 2.8 Ghz AMD Opterons. We use 2
and 3 machines for the replicas of Chain Replication and HMAC Shuttle respec-
tively (t = 1); clients run on a separate machine. All replicas maintain running
state and HMACs are generated with the SHA-256 algorithm using 256-bit keys.

Each replica runs a copy of a BerkeleyDB, a transactional key-value store.
The store consists of a list of accounts with their corresponding balances. We
consider an update-only workload where transactions deposit a random amount
of money into a randomly selected account. We configured BerkeleyDB to run
entirely in memory as disk latencies tend to largely dominate and obfuscate the
protocol overheads. In the benchmarks, each client submits 10 transactions in
parallel and waits to receive all responses before submitting the next ones. Each
client submits 30,000 transactions and the experiments comprised between 1 and
24 clients.

In Figure 2, we present the average number of committed transactions per
second (throughput) versus the average latency for Chain Replication (CR) and
HMAC Shuttle (HMAC). In the left graph of Figure 2, we include the perfor-
mance of a single BerkeleyDB instance. In both graphs, we report the standard
deviation of the latency, except for the single BerkeleyDB instance. The latter
was consistently smaller than for the two other protocols.

Chain Replication has a slightly higher latency than the single BerkeleyDB
instance for a given load: with Chain Replication the transaction goes through
two servers instead of a single one. Surprisingly, Chain Replication supports
up to 20,000 transactions per second, a higher load than a single BerkeleyDB

356 R. van Renesse, C. Ho, and N. Schiper

0

4

8
12

16

20

0 5000 10000 15000 20000

L
a
te
n
c
y
(m

s)

Transactions per second

CR –◦–

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦◦ ◦◦ ◦

◦◦◦

0

4

8
12

16

20

0 5000 10000 15000 20000

L
a
te
n
c
y
(m

s)

Transactions per second

HMAC –•– 1 Server –∗–

• •
•• ••••

•• •
•
•

∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗∗
∗∗∗

Fig. 2. Throughput vs. Latency of Chain Replication (CR) and HMAC Shuttle
(HMAC)

server, which can support about 17,000 transactions per second. It turns out that
with Chain Replication the overhead of communication with clients is shared
between the head and the tail of the chain—the head receives transactions from
clients and the head sends back results. HMAC Shuttle offers good performance
for a Byzantine-resilient replication protocol: it supports loads up to 12,000
transactions per second. However, it exhibits higher latencies due to the overhead
of verifying and signing statements.

6 Comparison with Prior Work

Many papers have described how to make Byzantine fault tolerance practical.
Starting from PBFT [12], various proposals [14, 15, 27–29] aim to reduce latency
and increase throughput. Aardvark [30] and Zyzzyvark [31] focus on sustainable
performance rather than peak performance. Other proposals focus on reducing
the number of full replicas [13, 32, 33].

Table 1 compares various aspects of Shuttle with related work. PBFT is the
first Byzantine replication protocol designed for practical use. Zyzzyva [14] is
optimized for peak performance. Aliph [15] uses a chain communication pattern,
like Shuttle. Zyzzyvark is a recent protocol that tolerates client failures. We
consider ZZ [33] the state of the art in reducing replication cost.

We consider the total number of replicas, the number of full replicas, the
maximum number of HMAC operations at a replica, the number of message
rounds (aka message latencies or network latencies), and the effect that Byzan-
tine clients can have on a replicated object. As all of the approaches support
batching of multiple requests in order to amortize CPU overhead, we include
the effect of batching on the number of crypto operations. In PBFT and ZZ
(based on PBFT), a faulty client can trigger reconfigurations in the replicated
object. Zyzzyva uses speculative execution, and a faulty client can trigger a roll-
back that involves multiple rounds and expensive RSA signatures. In Aliph a
faulty client can also trigger a rollback.

Byzantine Chain Replication 357

Table 1. Properties of state-of-the-art BFT replication approaches that tolerate t
failures, avoid RSA signatures, and use a batch size b

PBFT Zyzzyva Aliph Zyzzyvark ZZ HMAC CRC

Shuttle Shuttle

total #replicas 3t+ 1 3t + 1 3t+ 1 3t + 1 3t+ 1 2t+ 1 t+ 1

#full replicas 2t+ 1 2t + 1 3t+ 1 2t + 1 t+ 1 t+ 1 t+ 1

#crypto ops 2 + 8t+1
b

2 + 3t
b

1 + t+1
b

2t + 3t
b
+ 2 2 + 10t+3

b
2 + 2t

b
2 + t

b

#message rounds 4 3 3t+ 2 4 4 2t+ 2 t+ 2

effects of

faulty clients Reconfig. Rollback Rollback None Reconfig. None None

7 Conclusion

Byzantine fault tolerance is becoming increasingly important as we depend more
on computer systems, and as those systems have more components that may fail.
Byzantine Chain Replication is a new class of replication protocols that needs
only few sources of diversity and has modest costs while tolerating a large class
of failures. This paper has also presented Shuttle, a simple implementation of a
Byzantine Chain Replication protocol, and compared two versions with related
work. We find that Byzantine Chain Replication configured with t = 1 applied
to an in-memory database can support about 70% of the throughput of a non-
replicated database, albeit at about twice the latency due to the overhead of
checking and verifying HMAC signatures.

References

1. Schneider, F.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

2. Gashi, I., Popov, P., Stankovic, V., Strigini, L.: On Designing Dependable Ser-
vices with Diverse Off-the-Shelf SQL Servers. In: de Lemos, R., Gacek, C., Ro-
manovsky, A. (eds.) Architecting Dependable Systems II. LNCS, vol. 3069, pp.
191–214. Springer, Heidelberg (2004)

3. Vandiver, B., Balakrishnan, H., Liskov, B., Madden, S.: Tolerating Byzantine faults
in transaction processing systems using commit barrier scheduling. In: Proc. of
the 21st Symp. on Operating Systems Principles, SOSP 2007, pp. 59–72. ACM
(October 2007)

4. Shivakumar, P., Kistler, M., Keckler, S., Burger, D., Alvisi, L.: Modeling the effect
of technology trends on the soft error rate of combinational logic. In: Dependable
Systems and Networks, DSN 2002, pp. 389–398 (2002)

5. Reis, G., Chang, J., Vachharajani, N., Rangan, R., August, D.: SWIFT: software
implemented fault tolerance. In: Proceedings of the International Symposium on
Code Generation and Optimization, pp. 243–254 (March 2005)

358 R. van Renesse, C. Ho, and N. Schiper

6. Schiffel, U., Schmitt, A., Süßkraut, M., Fetzer, C.: ANB- and ANBDmem-
Encoding: Detecting Hardware Errors in Software. In: Schoitsch, E. (ed.) SAFE-
COMP 2010. LNCS, vol. 6351, pp. 169–182. Springer, Heidelberg (2010)

7. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proc. of 21st Symposium on Operating Systems Principles
(2007)

8. Shafaat, T., Schütt, T., Moser, M., Haridi, S., Ghodsi, A., Reinefeld, A.: Key-
based consistency and availability in structured overlay networks. In: Proc. of the
17th Int. Symp. on High-Performance Distributed Computing, HPDC 2008, pp.
235–236. ACM (June 2008)

9. Budhiraja, N., Marzullo, K., Schneider, F., Toueg, S.: The primary-backup ap-
proach. In: Mullender, S. (ed.) Distributed Systems, 2nd edn. ACM Press/Addison-
Wesley, New York (1993)

10. Van Renesse, R., Schneider, F.: Chain Replication for supporting high throughput
and availability. In: 6th Symp. on Operating Systems Design and Implementation,
OSDI 2004 (December 2004)

11. Bracha, G., Toueg, S.: Resilient consensus protocols. In: Proc. of the 2nd ACM
Symp. on Principles of Distributed Computing, Montreal, Quebec, pp. 12–26. ACM
SIGOPS-SIGACT (August 1983)

12. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: Proc. of the 3rd
Symposium on Operating Systems Design and Implementation, OSDI 1999, New
Orleans, LA. USENIX (February 1999)

13. Yin, J., Martin, J., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating agree-
ment from execution in Byzantine fault-tolerant services. In: Proceedings of the
19th ACM Symposium on Operating Systems Principles, SOSP 2003, Bolton Land-
ing, NY, pp. 253–268 (October 2003)

14. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
Byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4) (2009)

15. Guerraoui, R., Knezevic, N., Quema, V., Vukolic, M.: The next 700 BFT protocols.
In: Proc. of the 5th ACM European Conf. on Computer Systems, EUROSYS 2010,
Paris, France (April 2010)

16. Chandra, T., Griesemer, R., Redstone, J.: Paxos made live: an engineering perspec-
tive. In: Proc. of the 26th ACM Symp. on Principles of Distributed Computing,
Portland, OR, pp. 398–407. ACM (May 2007)

17. Andersen, D., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., Vasudevan,
V.: FAWN: A Fast Array of Wimpy Nodes. In: Proc. of the 22nd ACM Symp. on
Operating Systems Principles, Big Sky, MT (October 2009)

18. Terrace, J., Freedman, M.: Object storage on CRAQ: High-throughput chain repli-
cation for read-mostly workloads. In: Proc. of the USENIX Annual Technical Con-
ference, USENIX 2009, San Diego, CA (June 2009)

19. Fritchie, S.: Chain replication in theory and in practice. In: Proceedings of the 9th
ACM SIGPLAN Workshop on Erlang (2010)

20. Escriva, R., Wong, B., Sirer, E.: HyperDex: A distributed, searchable key-value
store. In: Proceedings of the SIGCOMM Conference, Helsinki, Finland (August
2012)

21. Olson, M., Bostic, K., Seltzer, M.: Berkeley DB. In: Proc. USENIX Annual Tech-
nical Conference (1999)

22. Lamport, L., Malkhi, D., Zhou, L.: Brief announcement: Vertical Paxos and
Primary-Backup replication. In: Proc. of the 28th ACM Symp. on Principles of
Distributed Computing (August 2009)

Byzantine Chain Replication 359

23. Birman, K., Malkhi, D., Van Renesse, R.: Virtually Synchronous Methodology
for Dynamic Service Replication. Technical Report MSR-TR-2010-151, Microsoft
Research (2010)

24. Saltzer, J., Reed, D., Clark, D.: End-to-end arguments in system design. Trans. on
Computer Systems 2(4), 277–288 (1984)

25. Ho, C.: Reducing costs of Byzantine fault tolerant distributed applications. PhD
thesis, Cornell University (May 2011)

26. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22, 644–654 (1976)

27. Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M., Wylie, J.: Fault-scalable
Byzantine fault-tolerant services. In: Proceedings of the 20th ACM Symposium on
Operating Systems Principles, SOSP 2005, Brighton, UK (October 2005)

28. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: A
hybrid quorum protocol for Byzantine fault tolerance. In: Proceedings of the Sym-
posium on Operating System Design and Implementation, OSDI 2006. USENIX
(2006)

29. Song, Y.J., van Renesse, R.: Bosco: One-Step Byzantine Asynchronous Consen-
sus. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008)

30. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzantine
fault tolerant systems tolerate Byzantine faults. In: Proceedings of the USENIX
Symposium on Network Design and Implementation, NSDI 2009 (2009)

31. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.:
UpRight cluster services. In: Proceedings of the 22nd ACM Symposium on Oper-
ating Systems Principles, SOSP 2009 (October 2009)

32. Li, J., Mazieres, D.: Beyond one-third faulty replicas in Byzantine fault tolerant
systems. In: USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2007 (2007)

33. Wood, T., Singh, R., Venkataramani, A., Shenoy, P., Cecchet, E.: ZZ and the Art
of Practical BFT. In: Proceedings of EuroSys 2011, Salzburg, Austria (2011)

Author Index

Anceaume, Emmanuelle 1
Andersson, Björn 16
Avni, Hillel 31

Beauquier, Joffroy 61
Bonomi, Silvia 76
Braginsky, Anastasia 330
Brown, Trevor 31
Bui, Alain 315
Burman, Janna 61

Castañeda, Armando 91
Chatzigiannakis, Ioannis 269
Chlebus, Bogdan S. 106
Clavière, Simon 315
Czyzowicz, Jurek 121

de Niz, Dionisio 16
Dolev, Shlomi 135
Dubois, Swan 135

Fernández Anta, Antonio 300
Förster, Klaus-Tycho 151
Fraigniaud, Pierre 224

Garg, Vijay K. 166
Georgiadis, Giorgos 315
Ghaffari, Mohsen 181
Gilbert, Seth 181
Gradinariu Potop-Butucaru, Maria 135
Grau, Sascha 196

Halldórsson, Magnús M. 224
Ho, Chi 345
Hoang, Bao-Thien 46

Imine, Abdessamad 46

Jurdzinski, Tomasz 209

Kakugawa, Hirotsugu 254
Kawai, Shinji 254
Klappenecker, Andreas 76
Kogan, Alex 330

Korman, Amos 224
Kowalski, Dariusz R. 106, 209

Lee, Hyunyoung 76
Le Merrer, Erwan 1
Ludinard, Romaric 1

Markou, Euripides 239
Masuzawa, Toshimitsu 254
Michail, Othon 269
Mozo, Alberto 300

Newport, Calvin 181

Ooshita, Fukuhito 254

Papatriantafilou, Marina 315
Paquette, Michel 239
Pelc, Andrzej 106, 121
Petrank, Erez 330

Raynal, Michel 91
Rosaz, Laurent 61
Roy, Mélanie 121
Rozoy, Brigitte 61

Sastry, Srikanth 284
Schiper, Nicolas 345
Sericola, Bruno 1
Sevilla, Andrés 300
Shibata, Masahiro 254
Sohier, Devan 315
Spirakis, Paul G. 269
Stainer, Julien 91
Straub, Gilles 1

Tan, Henry 181
Timnat, Shahar 330
Tixeuil, Sébastien 135

van Renesse, Robbert 345

Wattenhofer, Roger 151
Welch, Jennifer L. 76, 284
Widder, Josef 284

	Title
	Preface
	Organization
	Table of Contents
	FixMe: A Self-organizing Isolated Anomaly Detection Architecture for Large ScaleDistributed Systems
	Introduction
	Related Work
	Model of the System
	FixMe Framework
	Rationale
	Overview of FixMe Overlay
	FixMe Operations
	Self-organizing Nodes in Dense Seeds

	Analysis
	Solving the Isolated Anomaly Detection Problem
	Conclusion
	References

	Analyzing Global-EDF for MultiprocessorScheduling of Parallel Tasks
	Introduction
	System Model and Terminology
	Defining FF-DBF
	Schedulability Test
	Proving the Resource Augmentation Bound
	Conclusions
	Legal Notices
	References

	Range Queries in Non-blocking k-ary SearchTrees
	Introduction and Related Work
	Basic Operations and Validate
	Range Queries in a k-ST
	Correctness
	Experiments
	Future Work and Conclusion
	References

	On the Polling Problem for Social Networks
	Introduction
	Polling and Social Network Models
	Polling Model
	Social Network as a Graph Models

	Protocol
	Description
	Properties of Protocol
	Protocol and Graph with Dishonest Nodes

	Experimental Evaluation
	Related Work
	Conclusion
	References

	Non-deterministic Population Protocols
	Introduction
	Basic Model and Notations
	Results about Equality of Output Languages
	A Negative Result
	Equality with Interactions of More than Two Agents
	Equality by Simulation with Empty Outputs

	Inclusion with Interactions of More than Two Agents
	References

	Stochastic Modeling of Dynamic Distributed Systems with Crash Recovery and ItsApplication to Atomic Registers
	Introduction
	Related Work
	System Model
	The Dynamic Model
	Dynamic Atomic Register
	Specification
	Implementation
	Analysis of Register Algorithm

	Conclusions
	References

	When and How Process Groups Can BeUsed to Reduce the Renaming Space
	Introduction
	Computation Model
	From (n-) Non-empty Groups to (n+2-1)-Renaming
	Is It Possible to Do Better?
	When the Groups Have a Known Minimal Size s1
	An Algorithm for Groups of Size at Least s
	The Size of the New Name Space

	Conclusion
	References

	Electing a Leader in Multi-hop Radio Networks
	Introduction
	Preliminaries
	Auxiliary Procedures
	Partial Multi Broadcast
	Ultra-Selectors and Combined-Ultra-Selectors
	Multiple DFS Traversals
	Randomized Multiple DFS Traversals

	Randomized Election
	Deterministic Election
	Gossiping
	Conclusion
	References

	Tree Exploration by a Swarm of Mobile Agents
	Introduction
	The Model and the Problem
	 Our Results
	Related Work

	Exploration of a Known Tree
	Even Range
	Odd Range
	The Number of Agents

	Exploration of an Unknown Tree
	Conclusion
	References

	Crash Resilient and Pseudo-StabilizingAtomic Registers
	Introduction
	Model and Definitions
	Message Passing Model
	Pseudo-Stabilization and Fault-Tolerance
	Problem and Specification
	The ABD Simulation

	Necessary Tools
	Data-Link Protocol
	Bounded Labeling Scheme

	Our FTPS Simulation
	Distributed Protocol
	Proof of Correctness

	Conclusion
	References

	Directed Graph Exploration
	Introduction
	Model
	Results

	Related Work
	Lower Bounds for General Graphs
	Deterministic Online Algorithms
	Randomized Online Algorithms
	Starting Node

	Upper Bounds for General Graphs
	Unweighted Graphs
	Searching a Node
	Lower Bounds for Special Cases
	Other Exploration Models
	References

	Lattice Completion Algorithms for DistributedComputations
	Introduction
	Background: Posets with Implicit Representation
	 Lattice Completion of a Computation
	IDML: An Incremental Algorithm for Lattice Completion
	Traversal Based Algorithms for DM-Completion
	Breadth First Search Enumeration of Normal Cuts
	Depth First Search Enumeration of Normal Cuts

	Applications of Normal Cuts in Distributed Systems
	Finding the Meet and Join of Events
	Detecting Global Predicates in Distributed Systems

	Conclusions and Future Work
	References

	Optimal Broadcast in Shared Spectrum RadioNetworks
	Introduction
	Model and Problem
	Upper Bounds
	Low-Disruption Regime
	High-Disruption Regime

	Lower Bounds
	References

	Attack-Resilient Multitree Data DistributionTopologies
	Introduction
	System Model and Attack-Resilient Topologies
	An Approximative Damage Measure
	Forward-Stable Distribution Topologies
	Basic Requirements
	A Matrix Representation and Orthogonal Arrays
	Hardness of Finding Forward-Stable Topologies

	Conclusion
	References

	On the Complexity of Distributed Broadcastingand MDS Construction in Radio Networks
	Introduction
	Preliminaries
	Lower Bound
	Broadcasting Algorithm in Networks of Radius 2
	Description of Algorithm A1
	Analysis of Algorithm A1

	Broadcasting in Networks with Any Radius 1Dn
	From Broadcasting to Minimal Dominating Set
	References

	On the Impact of Identifiers on Local Decision
	Introduction
	Background and Motivation
	Model and Objectives
	Our Results
	Related Work

	Deterministic Decision
	Non-deterministic Decision
	Conclusion
	References

	Black Hole Search and Exploration in Unoriented Tori with SynchronousScattered Finite Automata
	Introduction
	Our Results
	Our Model
	Negative Results
	Black Hole Search in a Torus of Type 3
	Black Hole Search in a Torus of Type 2
	Black Hole Search and Exploration in a Torus of Type 0

	Positive Results
	Exploration of an Unoriented Torus by a Finite Automaton
	BHS in Semi-oriented Tori of Type 1

	Conclusion
	References

	Algorithms for Partial Gatheringof Mobile Agents in Asynchronous Rings
	Introduction
	Background and Our Contribution
	Related Works

	Preliminaries
	Network Model
	Agent Model
	System Configuration
	Partial Gathering Problem

	A Deterministic Algorithm for Distinct Agents
	The First Part
	The Second Part

	A Randomized Algorithm for Anonymous Agents
	The First Part
	The Second Part

	Conclusion
	References

	Causality, Influence, and Computation in Possibly Disconnected SynchronousDynamic Networks
	Introduction
	Related Work
	Contribution
	Preliminaries
	The Dynamic Network Model
	Spread of Influence in Dynamic Graphs (Causal Influence)

	Our Metrics
	The Influence Time
	The Connectivity Time

	Fast Propagation of Information under Continuous Disconnectivity
	Termination and Computation
	Nodes Know an Upper Bound on the ct: An Optimal Termination Criterion
	Known Upper Bound on the oit: Another Optimal Termination Criterion

	Conclusions
	References

	Wait-Free Stabilizing DiningUsing Regular Registers
	Introduction
	Background and Related Work
	System Model
	Dining and Mutual Exclusion
	Wait-Free Pseudo-Stabilizing Mutual Exclusion
	Wait-Free Pseudo-Stabilizing Dining
	Algorithm Description
	Pseudo-Stabilization
	Correctness

	Discussion
	References

	Node Sampling Using Random Centrifugal Walks
	Introduction
	Definitions and Model
	Sampling in a Connected Network
	Sampling in a Grid
	Sampling in a Concentric Rings Network with Uniform Connectivity
	Concentric Rings Networks without Uniform Connectivity
	Conclusions
	References

	Physarum-Inspired Self-biased Walkersfor Distributed Clustering
	Introduction
	Definitions and Notation
	Distributed Emulation of Physarum Dynamics: PECan Algorithm
	Monitoring the Flow and Routing Walkers
	Using Flows to Solve Clustering
	c-Asynchronous Case

	Simulation Results on Clustering
	Shortest Path (1 Source 1 Sink Setting)
	Shortest Paths DAG of a Cluster: n Sources 1 Sink Setting
	Clustering (n Sources, Several Sinks Setting)
	Reconfiguration of Clusters after a Topological Change

	Conclusions
	References

	Wait-Free Linked-Lists
	Introduction
	Background and Related Work

	An Overview of the Algorithm
	The Algorithm
	The Underlying Data Structures
	The Helping Mechanism
	The Search Methods
	The Insert Operation
	The Success Bit Technique
	Memory Management

	Highlights of the Correctness Proof
	Linearization Points
	The Fast-Path-Slow-Path Variation
	Performance
	References

	Byzantine Chain Replication
	Introduction
	Byzantine Chain Replication
	Shuttle: A Byzantine Chain Replication Protocol
	Proofs
	Failure-Free Case
	Dealing with Failures
	Clients

	Implementation
	HMAC Vectors
	Checkpointing

	Experimental Evaluation
	Comparison with Prior Work
	Conclusion
	References

	Author Index

