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Abstract. Low power has played an increasingly important role for embedded
systems. To save power, lowering voltage and frequency is very straightforward
and effective; therefore dynamic voltage scaling (DVS) has become a prevalent
low-power technique. However, DVS makes no effect on power saving when the
voltage reaches a lower bound. Fortunately, a technique called dynamic pipeline
scaling (DPS) can overcome this limitation by switching pipeline modes at low-
voltage level. Approaches proposed in previous work on DPS were based on
hardware support. From viewpoint of compiler, little has been addressed on this
issue. This paper presents a DPS optimization technique at compiler time to re-
duce power dissipation. The useful information of an application is exploited to
devise an analytical model to assess the cost of enabling DPS mechanism. As a
consequence we can determine the switching timing between pipeline modes at
compiler time without causing significant run-time overhead. The experimental
result shows that our approach is effective in reducing energy consumption.

1 Introduction

Since most embedded systems are portable, reducing energy consumption to extend the
lifetime of batteries has become a crucial issue. In recent years, many techniques have
been proposed to address this issue. DVS is the famous one, which has been demon-
strated by much work to be very effective [8,2,12]. It adjusts dynamically voltage and
frequency to save power, as indicated in Equation 1.

E ∝ f × C × V 2, (1)

where A ∝ B means A is in direct ratio to B. However, DVS has no effect on energy
saving when the voltage reaches its low bound because it becomes a constant [10].
Fortunately, with reference to Equation 2, energy is in direct ratio not only to the clock
frequency and the square of the voltage, but also to instruction-per-cycle (IPC).

E ∝ f × V 2 × t ∝ f × V 2 × It
f × IPC

∝ V 2

IPC
(2)

Thus, we can reduce energy dissipation at low-voltage level based on IPC. Equation 1
and Equation 2 reveal that IPC is the key to power dissipation at low-voltage level.
This fact shows that power will increase in the opposite direction of IPC and motivates
our low-power idea to devise a DPS technique to evaluate the IPC and determine the
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Fig. 1. Pipeline modes of DPS

switching timing between pipeline modes at compiler time. In DPS, the pipeline con-
sists of deep mode and shallow mode, as shown in Figure 1. The deep mode is the
default pipeline mode and the shallow mode is designed by dynamically merging adja-
cent pipeline stages of deep mode, where the latches between pipeline stages are made
transparent and the corresponding feedback paths are disabled. In theory IPC is in in-
verse ratio to the pipeline depth, the IPC of deep mode may be smaller than that of
shallow mode [6]. Therefore, executing applications in shallow mode will lead to the
reduction of power dissipation. But this statement is not always true. In reality, many
factors in deep pipeline mode will influence IPC [15,13]. Here are three examples.

(a) In deep mode, the branch penalty is about twice as large as that of shallow mode. It
leads to the reduction of IPC, and then deep mode may consume more power than
shallow mode.

(b) The deeper pipeline increases the execution latency. As a result, IPC will become
smaller, but power consumption will be larger.

(c) In deep mode, the issue queue must be long and the number of loads of the reorder
buffer must be large so that the reorder buffer can hold many in-flight instructions.
In this case, this window pressure makes IPC smaller and raises the power dissipa-
tion of deep mode.

Hence, if we want to apply DPS to save power at low-voltage level, we must decide
when the pipeline enter deep mode or shallow mode depending upon the IPC. Consider
the voltage characteristic shown in Figure 2. In the first stage, DVS is applied to save
power at high-voltage level. Although reducing voltage is very effective to low power,
DVS fails in the second stage when the voltage reaches its lower bound. At the final
stage, we can enable DPS to switch the pipeline modes based on IPC. Since IPC is af-
fected by some factors, we can consider their impact on IPC to determine the switching
timing between pipeline modes to save energy.

Previous work on DPS was proposed by architects with architectural support
[10,7,4,14,3]. However, the research about how to solve this issue with compilation
techniques remains open. In this paper, we present an optimization technique to enable
DPS with respect to IPC at compile time. We first partition an application into many
regions and then calculate the IPC of each region to determine the switching timing
between pipeline modes based on our evaluating model. Since our work is performed
at compiler time, the run-time overhead will be small and the hardware cost and com-
plexity will be as minimal as possible. The experimental results prove that the energy
reduction really benefit from our work.
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Fig. 2. Voltage characteristic

Fig. 3. The proposed DPS compilation system

The rest of this paper is organized as follows. Section 2 gives the overview of our
work and then presents our approach in detail. The experimental results are shown in
Section 3. Finally, we conclude our paper in Section 4.

2 The Proposed Approach

In this section, we focus on how our DPS approach is applied to applications to save
energy at compiler time. We first introduce our basic idea in Section 2.1. In section 2.2,
we depict the method to partition a code into regions and then present the evaluating
function to decide the switching between pipeline modes. The mechanism to enable
DPS is given in Section 2.3.

2.1 Basic Idea

Figure 3 shows our compilation system composed of SUIF framework [16], our pro-
posed engine, and Wattch simulator. First, an application is compiled by SUIF as a
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control flow graph (CFG) and a data flow graph (DFG). Then the CFG and DFG are an-
alyzed to identify the loop regions and collect information for our evaluating model and
identify loop regions. In our work, a code will have another type of regions, non-loop
regions, except loop regions. Indeed, a region is an union of basic blocks as a unit that
our DPS can manipulate. The evaluation model has two goals: one is to partition the
remaining part of the loop regions into non-loop regions and the other is enable each
region to enter a suitable pipeline mode. The details of partitioning scheme is described
in Section 2.2. To activate DPS, for each region we will insert the DPS-enable function
in its entrance at compile time so that it can be executed in proper pipeline mode to
save energy based on its IPC. Since the switching between pipeline modes best is very
hard to decide, we propose an evaluation model to decide the timing during execution.
The evaluation model is presented in detail in Section 2.3. In this way, the code will be
switched between different pipeline modes at run time. The experiment is performed on
the Wattch simulator [1] with DSPstone and Mediabench benchmark suites.

2.2 Evaluation Model for Switching Pipeline Modes

As mentioned in Section 1, the IPC of deep pipeline mode is not always larger than that
of shallow mode. As a consequence, the shallow mode may have better power saving
than the deep mode according to Equation 2. Thus to reduce power reduction, each
region can enter deep mode or shallow mode based on the IPC during execution. To
achieve this objective, we conduct an evaluation model to decide the switching timing
between deep mode and shallow mode at compiler time. Since the calculation of IPC
closely relates to the size of a region, how to partition a code into regions becomes very
important to our work. On one hand, if the region size is too large, we may lose the
chances to take advantage of switching pipeline modes to save energy. On the other
hand, although the small region size can allow us to apply the DPS optimization to
a code, it possibly generates severe switching overheads. However what the size of a
region is the optimal solution for our approach is very hard to decide, thus we attempt to
seek for a principle to guide our selection in this section. With our observations, since
the loops usually dominate execution time and power consumption of a code, they are
the key to our decision.

To use the loops to partition a code, they must be identified first and then be referred
to divided the remaining part into non-loop regions. Below we present our partitioning
approach and evaluation model. Given a code G = (V,E), it is divided into two types
of regions, Γ1 and Γ2, where Γ1, Γ2 ⊆ V × E,G = Γ1

⋃
Γ2, and Γ1

⋂
Γ2 = Ø. Note

Ø represents the empty set; that is Γ1 and Γ2 are disjoint. We first define Γ1 in case A
and then use Γ1 to define Γ2 in case B.

Case A: Γ1 is the set of regions, which are composed of loops. In other words, each
region in Γ1 only contains a loop.

After defining the loop regions, to classify the non-loop regions, we must present our
evaluation model first. Then the evaluation model is applied to loop regions for cate-
gorizing the non-loop regions. Below we first give some assumptions and then present
how to use them to divided the non-loop part of a code into non-loop regions and finally
formalize our evaluation model.
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For a code G = (V,E), where V = {R1, R2, ..., Rn} is the set of regions in G and
E = {(u, v) | u, v ∈ V and u �= v}. That is, E is the set of edges between regions. For
each region Ri, we assume:

· NRi : the number of instructions in region Ri, for i = 1, 2, 3, · · ·
· Nbi : the number of branches in Ri

· Bij : the jth branch in Ri

· PBij : the probability that Bij is taken
· Ci: the number of clock cycles that does not result from any branch in Ri

· CBij : the number of clock cycles that results from that Bij is taken
· CBij : the number of clock cycles that results from that Bij is untaken

According to Equation 1 and Equation 2, IPC predominate the determination of switch-
ing pipeline modes during execution. With the information collected previously and the
above terminologies, we can present our evaluating model as follows.

ΩRi =

Nbi∑

j=1

[PBij × CBij + (1 − PBij )× CBij ] + Ci (3)

ΘRi = NRi/ΩRi (4)

Equation 3 estimates the clock cycles required for each region of the target code, which
is also applied to classify the non-loop regions. Equation 4 calculates the IPC for each
region and is the guideline to enable DPS. Since the loop regions very likely dominates
power dissipation of a code, we use the following parameter Λ with the aid of the
evaluation function of regions in Γ1 to partition the non-loop part of a code. Λ is defined
as the maximum of all ΩRi in Γ1. Formally, it can be described as follows.

Λ = {ΩR | ∃R ∈ Γ1 and ΩR ≥ ΩRi , for i = 1, · · · , n} (5)

Although the loops usually consume the majority of power dissipation for an applica-
tion, using λ to partition the non-loop part can be furthermore improved. Instead, we
adapt Λ as the new parameter by timing a α to it, where α is a real number. Thus Γ2

can be defined on the basis of αΛ in the following case B.
The followings demonstrate how our partitioning approach works using the code

segment selected from Matrix of DSPstone benchmark suite as an example. At first,
there are two loops existing in this code; thus they are identified as two loop regions
and Γ1 = {Ra1 , Ra2}. Then we compare ΩRa1

and ΩRa2
and define Λ = ΩRa2

since
ΩRa2

> ΩRa1
. Afterwards, we let α = 1 and thus αΛ = Λ is applied to categorize

non-loop parts into regions of the second type. The evaluation value of the first non-
loop code segment is smaller than Λ, so it is immediately identified as the first non-loop
region, Rb1 . Similarly, the evaluation value of the second non-loop code segment is
equivalent to Λ, so it is identified as another non-loop region, Rb2 . Finally, the evalua-
tion value of the third non-loop code segment is larger than Λ, thus it is further classified
into two regions of the second type Rb3 and Rb4 so that ΩRb3

= Λ and ΩRb4
< Λ. As

a consequence Γ2 = {Rb1 , Rb2 , Rb3 , Rb4}.
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2.3 DPS Enabling

After the code partitioning has been done, to enable DPS, we insert a function
DPS enable () into its head of each region to make it executed in deep mode or shallow
mode. The DPS enable () is implemented as follows.

DPS enable()

⎧
⎪⎪⎨

⎪⎪⎩

Lda #SYSCALL DEEP2SHAW
Call Pal #131
Lda #SYSCALL SHAW2DEEP
Call Pal #131

DPS enable() provides two functionalities to switch between pipeline modes with the
system call of Alpha 21264 Call Pal #131. #SYSCALL DEEP2SHAW switches the
pipeline from deep mode to shallow mode and #SYSCALL SHAW2DEEP switches
the pipeline from shallow mode to deep mode. In this way, we are able to determine
the timing to switch pipeline modes. The Ω value of each region calculated by Equa-
tion 4 is used for DPS enable() when the code is compiled by our system. Thus the
code will dynamically enter the deep mode or shallow mode during execution after the
DPS enable() is inserted into it. Finally the optimized DPSed program is performed on
the modified Wattch simulator.

3 Experimental Results

In Section 3.1, we introduce the system configuration of our work and present the ex-
perimental results in Section 3.2.

3.1 System Configuration

The underlying hardware is the Alpha 21264 processor, which contains one fetch buffer,
four integer ALUs, two floating-point ALUs, one integer multiplier/divider, and one
floating-point multiplier/divider, etc. In instruction window, RUU indicates register up-
date unit and LSQ comprises load queue (LQ) and store queue (SQ). Its main features
are summarized in Table 1. To perform our proposed approach, we extend the pipeline
mode from one mode to two modes. We assume that the original pipelining mode is
shallow mode and the new mode is deep mode by constructed by adding extra four
stages to shallow pipeline. It is designed to dynamically disable one of each pair of
stages by making the latches between pipeline stages transparent so that the processor
can switch between these two pipeline modes. The software configuration is shown in
Table 2. The SUIF compiler infrastructure is the front end of our system and generate
CFG and branch information. The operating system is Tru64 UNIX for 64-bit instruc-
tion set architecture. The Wattch simulator is an architectural simulator that provides
cycle-by-cycle simulation and detailed out-of-order issue with multi-level memory sys-
tem. For keeping consistence with our DPS approach, it has been modified to support
shallow pipeline mode and deep pipeline mode.

3.2 Experimental Results

In our experiment, the deep mode is the default pipeline mode and the shallow mode
is chosen during execution if necessary. The energy reduction benefits by the switch-
ing between deep mode and shallow mode depending on the IPC of a region, which is
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Table 1. Hardware configuration

Processor Core
Pipeline length 4 cycles (shallow mode)

8 cycles (deep mode)
Fetch buffer 8 entries
Functional units 4 Int ALU, 2 FP ALU, 1 Int mult/div,

1 FP mult/div, 2 mem ports
Instruction win-
dow

RUU=80, LSQ=40

Issue width 6 instructions per cycle: 4 Int, 2 FP
Memory Hierarchy

L1 D-cache size 64KB, 2-way, 32B blocks,
L1 I-cache size 64KB, 2-way, 32B blocks,
L1 latency 1 cycle
L2 Unified, 2MB, 4-way LRU

32B blocks, 11-cycle latency
Memory latency 100 cycles
TLB size 128-entry, fully-associative,

30-cycle miss

Table 2. Software Configuration

OS and Software Configuration
Profiler SUIF
Compiler MachSUIF
OS Tru64 UNIX
Simulator Wattch v.1.02 with DPS

calculated by equation 4. The experiment is performed on the Wattch simulator with
DSPstone. For each program, the baseline is its original energy dissipation and the op-
timized energy is measured by performing our DPS approach. This benchmark is com-
piled by the Alpha compiler with default settings and linked with the intrinsic library
on Tru64 UNIX operating system.

Figure 4 shows the energy reduction by comparing the baseline energy and the op-
timized energy for DSPstone. In this experiment, we let α = 0.25, 0.5, 1.0, and, 2.0
to measure the effects of various partitioning sizes of non-loop regions. The energy
saving ranges from 2% to 35%, with a mean of reduction 17.8%. As the partition-
ing size of non-loop region λ becomes larger, the energy saving decreases slowly.
With our observations, the large-size region eliminates some chances to switch the
pipeline modes based on IPC and thus slightly increases energy consumption. Nine
of these programs including adpcm, complex multiply, complex update, dot product,
fft, iir biquad one sections, matrix, real update, and startup, have better energy saving
about from 22% to 35%. The reason is that there are many branches in them and thus
our DPS approach can take advantage of them to save energy depending upon the con-
tribution of branch penalty to IPC. With our experiences, our approach works better
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Fig. 4. Energy reduction of various λ of profile-based DPS for DSPstone

Fig. 5. Chang in IPC for three cases using DSPstone as a benchmark

for the codes with many loops and larger loops. Note that many programs have large
outer loops such as event-driven programs or programs with GUI, which may include
almost the entire programs. In this experiment, the typical example for above discussion
is matrix testbench, and it has the best energy saving about 35%.

Figure 5 demonstrate the effect on IPC for three cases using DSPstone as the met-
ric. Deep and Shallow represent deep and shallow pipeline modes; DPS indicates that
applying our DPS approach to these benchmarks. They are still measured for various
partitioning sizes of non-loop regions 0.25λ, 0.5λ, λ, and, 2λ. For DSPstone, the aver-
age IPCs of Deep case and Shallow case are 0.4 and 0.52. In DPS case, the average
IPC is 0.45, which is between those of deep mode and shallow mode. In DSPstone,
the IPCs of adpcm, fft, fir2dim, and matrix are larger. This is because since they are
loop-intensive applications and the loops in them contribute a lot to the increase of IPC.

Figure 6 show the effect of our DPS approach on performance for DSPstone. The
latency between pipelining stages is designed to be equivalent to increase performance
and achieve resource sharing at each clock. In theory, the performance is in direct ra-
tio to the number of pipelining stages and thus the longer pipeline will lead to the
performance. Thus, the processor will result in slowdown when executing in shallow
mode. The performance will be degraded if the pipelining stages are merged into shal-
low mode. In reality, the performance may be degraded due to many factors such as
pipelining hazards, branch penalty, or switching overhead between pipeline modes. For
each benchmark, the performance of deep mode with λ is the baseline to compare those
of deep mode and our DPS method for various λs. For the performance of DSPstone
in Figure 6, on average, our DPS approach leads to 6.23% degradation in performance.
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Fig. 6. Relative performance of various Λs for DSPstone

By contrast, the performance degradation of shallow pipeline mode is 61.62%, which
is almost ten times larger than the above one. Although the DPS switches the pipelin-
ing modes based on the IPC to save energy, the switching slows down the processor
compared to the high-speed execution in deep mode. In addition, larger λ has a better
performance than smaller ones since it causes the pipeline to enter the shallow mode
more infrequently.

4 Conclusions

DVS has been proven be very effective in low power optimizations, but it cannot further
save energy when the voltage reaches its lower bound. Fortunately, DPS can overcome
this limitation by adjusting pipeline modes based on IPC. Previous work resolved this
issue with hardware techniques and thus increased hardware cost and design complex-
ity. In this paper, we present a DPS technique to reduce power dissipation by proposing
an evaluating model so that they can decide the timing of entering the proper pipeline
mode. In contrast, our work can eliminate hardware overhead and reduce energy con-
sumption according to the code behavior at compiler time. To investigate the effect of
our approach, we perform the experiment with various criteria for DSPstone and Me-
dieabench. In summary, the results show that smaller partitioning sizes of non-loop
regions can create optimization space and loop-intensive applications provide more
chances to optimize code to save energy.
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