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Abstract. Background modeling is the core of event detection in surveillance 
systems. The traditional Gaussian mixture model has some defects when en-
countering some situations like shadow interferences, lighting changes, and 
other problems causing foreground image broken. All of these cases will result 
in deficiencies of event detection. In this paper, we propose a new background 
modeling method to solve these problems. The model features of our method 
are the combination of texture and color characteristics, hysteresis thresholding, 
and the motion estimation to recover broken foreground objects. 

Keywords: background modeling, moving objects detection, hysteresis thre-
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1 Introduction 

In these days, people are more and more concerned about the importance of environ-
ment security. Not only working space but also residences are commonly equipped with 
surveillance systems. In addition, foreground detection is also a milestone of the surveil-
lance system. By this way, we can save lots of time of focusing on the monitor. In fact, 
background modeling is used to distinguish foreground and background. Thus, a robust 
background modeling method is needed when detecting moving objects. 

There are a number of methods for moving objects detection but most of them are 
based on color information. For instance, a statistical approach based on color infor-
mation [1] built a background model and reduce the shadow interference. In addition, 
Wren et al. [2] proposed a one-Gaussian method to strengthen the background flex-
ibility. However, one-Gaussian method has a defect for a dynamic background, such 
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as swaying trees, ripples, and the blink of a screen. Thus, Stauffer and Grimson pro-
posed the Gaussian mixture model (GMM) method [3]. For each pixel, GMM used 
more than one Gaussian to model the background [3, 4, 5]. If the pixel does not match 
the GMM model, it will be regarded as a foreground pixel. There is an example of 
GMM method for traffic monitoring [6] and others can be found in [7] and [8]. 

Though GMM improves Wren et al.’s method a lot, it still suffers from shadow in-
terference and illumination changes. Therefore, Heikkilä and Pietikäinen proposed the 
texture-based background model with local binary patterns (LBPs) [9, 10]. This me-
thod has the tolerance to illumination changes. However, LBPs are not robust. When 
noises or swaying trees strike the central pixel value, the corresponding LBPs  
histogram would be interfered and increase the possibilities of false positive and false 
negative cases. 

In this paper, we proposed a new background modeling method. Our main contri-
butions are as follows: (1) Our proposed method is based on hysteresis thresholding. 
Hysteresis thresholding has never been used for background modeling and it can 
greatly alleviate the cavity problem in foreground objects. (2) We proposed a new 
texture descriptor derived from our previous work [11]. With this descriptor, we can 
enhance the tolerance to illumination changes and shadow interference. (3) Our me-
thod combines the information of both texture and color to reduce shadow problems 
while improving the shapes of foreground objects. (4) The motion estimation tech-
nique is also applied in our method to recover broken foreground objects caused by 
motion problems, such as moving too slow or walking toward the camera. 

The following parts of this paper are organized as follows: in Section 2, we take a 
brief review on the Gaussian mixture model. Our proposed method is presented in 
Section 3. The results of our experiments are discussed in Section 4. Finally,  
conclusions are provided in Section 5. 

2 Preparation Work 

In this section, we will explain how a mixture of Gaussians model works. This me-
thod was first proposed by Grimson and Stauffer [1, 2]. They model each background 
pixel into a K-Gaussians mixture model (GMM), where K is between 3 and 5. The 
weight of each Gaussian distribution represents the portion of the data accounted for 
that Gaussian. 

First, each pixel is modeled by a mixture of K Gaussian distributions. The proba-
bility of observing the current pixel value is: 

 , , ,
1

( ) * ( , , ),
K

t j t t j t j t
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=
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where Xt is the current pixel value at time t, K is the number of Gaussian distributions, 
ωj,t is the weight estimation of the jth Gaussian in the mixture at time t, µj,t and ∑j,t are 
the mean value and covariance matrix respectively, of the jth Gaussian in the mixture 
at time t, and η is a Gaussian probability density function (pdf). 
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After the model is built, each incoming pixel of following frames is compared with 
the existing model components. In the case that the input pixel fits one of the 
weighted Gaussian distributions, it means that its pixel value is within 2.5 standard 
deviations of the matched distribution. Once the pixel is matched, the update process 
will be invoked to fine-tune the corresponding model; otherwise, we will replace the 
distribution, which has the lowest weight, with a new distribution using the current 
incoming pixel as its mean value, an initial high variance, and a low prior weight. 

In order to select the best Gaussians for each pixel, the K distributions are sorted 
based upon the value ω/σ. Only the first B distributions are selected as the background 
model of a pixel for the scene and denoted as: 

 
1

arg min ( ),
b

b k B
k

B Tω
=

= >  (2) 

where TB is a predefined threshold and usually set to about 90%, ωk is the weight  
parameter of the kth model component and b indicates the number of background  
distributions. 

At last, the update process will change the weights of K Gaussian distributions as 
follows: 

 , , 1 ,(1 ) ( ),k t k t k tMω α ω α−= − +  (3) 

where α is the learning rate and Mk,t is 1 for the matched distribution and 0 for the 
unmatched distributions. In addition, weights of distributions should be renormalized. 
If the new pixel matches a Gaussian distribution, the values of mean and variance of 
this distribution are updated as follows: 

 1(1 ) ,t t tXμ ρ μ ρ−= − +  (4) 
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where 

 ( | , ).t k kXρ αη μ σ=  (6) 

3 Proposed Method 

In this section, we describe the proposed method with texture descriptor, texture-
based background modeling, hysteresis thresholding, and motion estimation for  
foreground recovery. 

3.1 Texture Descriptor 

In the beginning, we divide the input frame into several non-overlapping blocks with 
a size of n×n pixels. For each block, mean value m of the block is calculated by: 
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where xij indicates the pixel value in the position (i, j) of the block. 
With the mean value, we can build a binary map (BM) for the block by the follow-

ing equation. 
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where bit “1” denotes that the pixel value is greater than the mean value m of that 
block; Otherwise, the bit is “0”. 

Here is an example for the texture descriptor. In this case, the block is set to 3×3 as 
shown in Fig. 1. In Fig.1, the mean of this block is 51.56 and the bitmap is built  
accordingly. 

 

Fig. 1. The process of building a binary bitmap 

3.2 Texture-Based Background Modeling 

In the previous section, each block has been transformed into a binary bitmap. How-
ever, if there is a smooth block, where the pixels are either barely larger or barely 
smaller than the block mean, the corresponding bitmap would result in an interlaced 
0/1 pattern. This situation gives rise to an unstable background model since smooth 
blocks and non-smooth blocks cannot be distinguished. To solve this problem, Eq.(8) 
is changed to Eq.(9) with a threshold THsmooth to solve this problem, and THsmooth is set 
as 8 according to our experiments. 

 
0,    if ,

1,    otherwise.
ij smooth

ij

x m TH
b

< += 


 (9) 

Note that in the process of the bitmap generation, the input frame captured by a cam-
era is transformed into a grayscale image by Eq.(10)in order to improve the efficien-
cy. Fig. 2 illustrates the result of the bitmap generation, which shows the validity of 
the proposed texture descriptor. 

 Gray= 0.299R+ 0.587G + 0.114B  (10) 
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(a) Original image (b) Texture description 

Fig. 2. The proposed texture descriptor 

The proposed background modeling is a pixel-based model. Therefore, each pixel has 
its own texture description, i.e., the corresponding BM. The background model based 
on the proposed texture descriptor consists of K weighted bitmaps, {BM1, BM2, …, 
BMK}, where each weight is between 0 and 1, and the summation of the weights is 1. 
The weight of the kth bitmap is denoted as wk. When a new BMnew is captured, it is 
compared with the K bitmaps by the following Hamming distance equation, where m 
is in the range of [1, K]: 
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If min ( , )new m
m

Dist BM BM  is smaller than a threshold predefined, the BMnew matches 

the background model, and then the update process will be invoked; otherwise, BMnew 
is regarded as a foreground pattern, and the unmatched process will be applied. The 
process of the model maintenance can be referred to our previous work [11]. 

3.3 Hysteresis Thresholding 

In the traditional GMM, whether a pixel is a background pixel or not is determined by 
a single threshold TH(i.e., 2.5 standard deviations of a Gaussian) as follows: 

 
foreground,  if min ,

input
background,  otherwise.

Dist TH≥
= 


 (12) 

This approach brings about a serious problem. If TH is too small, the output image 
will contain lots of noises; on the contrary, when TH is too large, the foreground ob-
jects may contain a lot of cavities. 

In this paper, hysteresis thresholding is proposed to solve this problem, where 
double thresholds THhigh and THlow are used to enhance the foreground estimation. 
The threshold THhigh is responsible for generating “strong” information and THlow is 
responsible for gathering “weak” information. The strong information means these 
generated foreground pixels are very robust but may result in breaks or cavities in the 
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foreground objects. On the other hand, the weak information will generate more com-
plete shapes of foreground objects but involve more noise as well. 

We apply hysteresis thresholding on both of the original color GMM and the pro-
posed texture-based background modeling to generate four binary maps, called strong 
color, weak color, strong texture, and weak texture maps. The pixels in the strong 
texture map are called real foreground pixels and the pixels in the remaining maps are 
called pseudo foreground pixels. The foreground objects generation starts from the 
strong texture map, and traces weak texture, strong color, and weak color maps to 
gradually compensate or mend the shapes of the foreground objects. More specifical-
ly, if a pixel belongs to one of the strong color, weak color, and weak texture maps, 
and the pixel is connected with a strong texture pixel, then the pixel is identified as a 
real foreground pixel and will be treated as a new strong texture pixel in the next ite-
ration. The process will continue until all the pseudo foreground pixels have been 
tested. 

The combination of the color-based GMM and the proposed texture-based model 
has higher tolerance to shadow interference and illumination changes. In addition, 
using hysteresis thresholding can fix the cavities problem caused in the strong texture 
map and get more complete shapes of foreground objects. The noise in the proposed 
scheme can be nearly removed because noise is usually not connected with strong 
maps. Fig. 3 shows an example of the four maps. 

 

   

(a) original video (b) strong texture (c) strong color 

   

(d) result video (e) weak texture (f) weak color 

Fig. 3. The results of four maps based on hysteresis thresholding 

3.4 Motion Estimation 

In addition to the above four maps discussed in the previous section, in this section, 
another binary map, called motion map, is generated based on motion estimation. 
When there is an object that moves too slowly or moves toward the camera, some 
pixels of this object will be gradually becoming background due to the effects of Eqs. 
(3) to (6), resulting in the foreground object fractured. With the help of the motion 
map, this problem can be greatly alleviated. 
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The motion map is generated as follows. Set the binary image of the ith frame using 
the four maps mentioned in Section 3.3 be denoted as Ri, and set Pi−1 be the result 
after applying the four maps and the motion map of the (i−1)th frame. The motion map 
for the ith frame is the difference between Ri and Pi−1, denoted as Di. To mend cavities 
in Ri, each pixel in Ri will find its 5×5 neighbors. If some of these 5×5 neighbors be-
long to Di, these pixels will be included in the foreground objects. The flow chart of 
generating the motion map is shown in Fig. 4 and an example of applying the motion 
map is presented in Fig. 5. 

 

 

Fig. 4. Flow chart of motion map 

 

   

(a) Original video (b) Result video (Ri) (c) Final result video(Pi) 

Fig. 5. Final result of using the motion map 

4 Experimental Results 

4.1 Detecting Results 

The following are our experimental results. Figs. 6 and 7 show the indoor and outdoor 
scenes with shadow interference. The results show that the proposed method has 
higher tolerance to the shadow interference than the original GMM. 

Fig. 8 shows an outdoor scene that a person walks toward the camera. In this video, 
our proposed method shows the repair ability of broken image, which cannot be 
achieved in the traditional GMM. 

Fig. 9 shows a person walking toward an indoor camera. This figure clearly reveals 
that the proposed method not only removes the shadow but also successfully mends 
most of the cavities in the body. 
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Fig. 6. Experimental results of indoor video 1 

Fig. 7. Experimental results of outdoor video 1 

Fig. 8. Experimental results of outdoor video 2 

Fig. 9. Experimental results of indoor video 2 

   

(a) Original image (b) GMM method (c) Proposed method 

   

(a) Original image (b) GMM method (c) Proposed method 

   

(a) Original image (b) GMM method (c) Proposed method 

   

(a) Original image (b) GMM method (c) Proposed method 
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4.2 Quantitative Results 

We compare our method with the traditional GMM in a quantitative way. The simula-
tion environment is equipped with a 2.93 GHz Core 2 Duo Intel processor and 4 GB 
of memory. All algorithms were implemented in C++. The parameters, α and K, used 
in the experiments are set to 0.005 and 3, respectively. 

Fig. 10 shows the accuracy comparison of the proposed method, GMM method and 
the ground truth. There are three items in this evaluation: False positive (FP) is the 
number of background pixels which are mistaken for foreground; False negative is the 
number of foreground pixels which are mistaken for background; Total Error (TE) is 
the sum of FP and FN. 

Fig. 10. Comparison on indoor video 

From Table 1, it clearly reveals that the proposed method has much lower FP than 
that in the GMM due to the shadow removing, and FN in the proposed scheme is 
greatly reduced for the reason of our mending technique. 

Table 1. Accuracy comparison 

Items GMM Proposed method 
FP 2376 556 
FN 749 238 
TE 3125 794 

5 Conclusions 

In this paper, we proposed a new background modeling method based on hysteresis 
thresholding. The proposed method has the following advantages: (1) tolerance to 
shadow interference and illumination change due to the texture characteristic; (2) 
resistance to noise and shape fracturing because of hysteresis thresolding; (3) repair-
ing the foreground objects with the help of the mostion estimation technique. The 
expirement results show that FP and FN of the proposed method are much better than 
those in the original GMM method. Our future work will improve our efficency for 
real time surveillance applications. 

   

(a) Ground truth (b) GMM method (c) Proposed method 
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