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Abstract. It is a straightforward idea to detect a harmful mobile ap-
plication based on the permissions it requests. This study attempts to
explore the possibility of detecting malicious applications in Android
operating system based on permissions. Compare against previous re-
searches, we collect a relative large number of benign and malicious ap-
plications (124,769 and 480, respectively) and conduct experiments based
on the collected samples. In addition to the requested and the required
permissions, we also extract several easy-to-retrieve features from ap-
plication packages to help the detection of malicious applications. Four
commonly used machine learning algorithms including AdaBoost, Näıve
Bayes, Decision Tree (C4.5), and Support Vector Machine are used to
evaluate the performance. Experimental results show that a permission-
based detector can detect more than 81% of malicious samples. However,
due to its precision, we conclude that a permission-based mechanism can
be used as a quick filter to identify malicious applications. It still re-
quires a second pass to make complete analysis to a reported malicious
application.

Keywords: Android, classification, malware, mobile security, permission.

1 Introduction

An Android application requires several permissions to work. Consequently, an
essential step to install an Android application into a mobile device is to allow
all permissions requested by the application. Android users must have ever seen
a similar screen shot to Figure 1. Before an application is being installed, the
system prompts a list of permissions requested by the application and asks the
user to confirm the installation. Although Google announced that a security
check mechanism is applied to each application uploaded to their market [1], the
open design of the Android operating system still allows a user to install any
applications downloaded from an untrusted source. Nevertheless, the permission
list is still the minimal defense for a user to detect whether an application could
be harmful.

Google classifies built-in Android permissions into four categories: normal,
dangerous, signature, and signatureOrSystem [2]. Therefore, a straightforward
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Fig. 1. Example screenshots of asking a user to confirm the installation of applications

idea to determine a harmful application is to check whether it requires a dan-
gerous permission. Access permissions to several common activities are clas-
sified as dangerous. For example, permissions to read the location of a user
(ACCESS COARSE LOCATION and ACCESS FINE LOCATION), access bluetooth de-
vices (BLUETOOTH), and access Internet (INTERNET) are all classified as dan-
gerous. However, an application requesting one or more dangerous permissions
does not indicate that it is a harmful application. A simple application such as a
location-based real-time weather forecast application would need some danger-
ous permissions such as INTERNET and ACCESS COARSE LOCATION. Although
Android adopts a coarse-grained permission model to control access to its built-
in components, it is not known how good (or bad) it is to detect a malicious
application based on permissions or combinations of permissions. It should be
noticed that the permissions shown to a user during an installation process are
requested permissions instead of required permissions. The requested permissions
are declared by an application developermanually. However, not all declared per-
missions are required by the application. Researchers [3,4] have shown that many
developers often declare much more permissions than they actually required. It
thereby increases the difficulty on detecting malicious applications based on the
permissions.

This study attempts to explore the possibility of detecting malicious appli-
cations based on permissions, including both requested and required permis-
sions. Compare against previous researches, a relative large number of benign
and malicious applications (124,769 and 480, respectively) were collected and
used to conduct the experiments. In addition to the requested and the required
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permissions, several easy-to-retrieve features from application packages were ex-
tracted as well to help the detection of malicious applications. Four commonly
used machine learning algorithms including AdaBoost, Näıve Bayes, Decision
Tree (C4.5), and Support Vector Machine are used to explore the possibility.

The remaining of this paper is organized as follows. Section 2 provides a review
on several interesting works that analyze permissions of Android applications.
Section 3 explains how the features (permissions and other features included in
an Android package) are obtained and how the features are labeled (as benign or
malicious). Section 4 analyzes the permission requirements of applications and
discusses the performance of detectors. Finally, a conclusion and future works
are discussed in Section 5.

2 Related Work

A number of researches have introduced and discussed Android permissions.
Enck et al. [5] wrote a good introduction on Android’s security design in 2009.
Basically the Android operating system provides a coarse-grained mandatory
access control (MAC). It is able to enforce how applications access components
based on granted permissions. Consequently, each Android application must have
a list of requested permissions and all these permissions must be granted at
the time of installation. The requested permission list is often declared by an
application developer manually. Hence, a number of interesting researches are
devoted to review how permissions are declared in applications. Barrera et al.
[6] analyzed how developers of Android applications use the permissions. They
explored and analyzed 1,100 applications using the Self-Organizing Map (SOM)
algorithm. They found that although Android has a rich set of permissions,
only a small number of these permissions are actively used by developers. Felt
et al. [3] studied Android applications to determine whether Android develop-
ers follow least privilege with their permission requests. They built a tool and
applied it to 940 applications and found that about one-third of evaluated ap-
plications are over privileged. They also concluded that developers are trying to
follow least privilege but failed due to insufficient API documentation. Johnson
et al. [4] developed an architecture that automatically searches for and down-
loads Android applications from Android Market. With the application, they
created a detailed mapping of Android API calls to the required permissions.
The idea is similar to [3] but they collected a large number (141,372) of appli-
cations to conduct the experiments. They found that the majority of developers
are not using the correct permission set. The applications are either over-specify
or under-specify their security requirements. Zhou and Jiang [7] systematically
characterized 1,260 Android malicious applications from various aspects, includ-
ing their installation methods, activation mechanisms, and the carried malicious
payloads. In addition, they also compared the permission requests of the 1,260
malicious applications against another top free 1,260 benign applications on
Android market. The comparison shows that the top 20 frequently requested
permissions are similar for both benign and malicious applications.
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In addition to analyze permissions, a number of researches tried to detect ma-
licious application using static analysis or dynamic analysis techniques. These
techniques are similar to those used to detect traditional malware on desktop
personal computers. Besides many well-known signature-based virus scanners,
androguard [8] is an open source project that dedicated to detect Android mal-
ware. Androguard detect a malicious application or an injected malicious code
based on control flow graph. A given application package is first disassembled and
each identified method in assembly source codes is converted into a formatted
string that represents the control flow graph [9] of the method. A number of pre-
defined malware’s control flow graphs are then compared against the obtained
control flow graph strings to check if they are similar [10] to malware. Schmidt et
al. [11] proposed a static analysis solution to detect malicious application based
on the output of the readelf tool, which contains a list of symbols that involved
with an executable. They then differentiate malicious applications from benign
ones based on the combinations of system calls used in the executable. Burguera
et al. [12] proposed to detect malware using dynamic analysis techniques. They
developed a client named Crowdroid that is able to monitor Linux kernel system
call and report them to a centralized server. Based on the collected dataset, they
cluster each dataset using a partition clustering algorithm and hence differen-
tiate between benign and malicious applications. Due to the lack of malware
samples, most existing works conduct experiments using self-made malware or
a limited number of real malware. It still requires more evidence to prove the
effectiveness of these solutions.

3 Feature

For each Android application, we retrieved several selected features from the cor-
responding application package (APK) file. In addition, we analyzed the source
codes of an application, identified real permissions required by the application,
and adopted the features for malware detection. The values of selected features
are stored as a feature vector, which is represented as a sequence of comma sep-
arated values. We enumerate all selected features in the following items. Each
item includes the name of a feature, the data type of the feature, and a detailed
description about how the features are retrieved.

1. ext so (integer): We list all files found from an APK file and count the number
of files with a “.so” extension filename.

2. file elf (integer): We use the UNIX file utility to determine the type of each
file in an APK file and counts the number of executable and linking format
(ELF) files.

3. file exe (integer): Similar to Item 2, but this feature counts only executables.
4. file so (integer): Similar to Item 2, but this feature counts only shared ob-

jects.
5. dex.all (integer): This feature counts the total number of required permis-

sions. As introduced in Section 1, requested permissions and required
permissions are different. There is not a file that describes the actual
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permissions required by an application. Therefore, it is a must to retrieve the
required permissions by analyzing the application from the source-code level.
Although Android applications are often written in the Java programming
language, here “source codes” are the assembly source codes represented in
Jasmin’s (dedexer’s) syntax. We disassemble byte codes of each Java class
file in an APK file into assembly codes using the baksmali [13] disassembler.
We then identify invoked Android system functions from the assembly codes
and look up the required permissions from the permission map table pro-
vided by [3]. It should be noticed that currently we only map from function
calls to permissions. Although the obtained required permission would be
less than all the required permissions, it still improves the performance.

6. dex.normal (integer): Google classifies all permissions into four categories,
i.e., normal, signature, dangerous, and signatureOrSystem. Among all the
139 built-in permissions1, 21 permissions are classified as normal, 27 per-
missions are classified as signatureOrSystem, 35 permissions are classified
as signature, and 56 permissions (approximately 40% of all permissions) are
classified as dangerous. Similar to Item 5, but this feature counts only the
number of permissions that are classified as “normal.”

7. dex.sign (integer): Similar to Item 5, but this feature counts only the number
of permissions that are classified as “signature.”

8. dex.dangerous (integer): Similar to Item 5, but this feature counts only the
number of permissions that are classified as “dangerous.”

9. dex.signOrSys (integer): Similar to Item 5, but this feature counts only the
number of permissions that are classified as “signatureOrSystem.”

10. List of all required permissions (boolean): In addition to count the number
of required permissions, we also list the permissions required by an analyzed
application. With the retrieved required permission, we convert the permis-
sions into a boolean vector. Suppose the 139 built-in permissions are labeled
from 1 to 139 (P1, P2, ..., P139), an application that requests P2 and P3 would
have a boolean vector of values (0, 1, 1, 0, ..., 0). This feature contains 139
boolean values.

11. xml.all (integer): This feature counts the number of permissions requested
by an application. The requested permissions are retrieved directly from the
AndroidManifest.xml file that is placed at the root of an APK file. Reading
requested permissions from an AndroidManifest.xml file is simple. This file
can be extracted from an APK file by using the unzip tool, convert to a
human-readable format using a tool such as AXMLPrinter2, and then parsed
using the libxml library.

12. xml.normal (integer): Similar to Item 11, but this feature counts only the
number of permissions that are classified as “normal.”

13. xml.sign (integer): Similar to Item 11, but this feature counts only the num-
ber of permissions that are classified as “signature.”

14. xml.dangerous (integer): Similar to Item 11, but this feature counts only the
number of permissions that are classified as “dangerous.”

1 The number is retrieved from theAndroid 2.3 version (codename: Gingerbread) source
tree. Readers can refer to the frameworks/base/core/res/AndroidManifest.xml.
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15. xml.signOrSys (integer): Similar to Item 11, but this feature counts only the
number of permissions that are classified as “signatureOrSystem.”

16. List of all requested permissions : In addition to count the number of re-
quested permissions, we also list the exact permissions requested by an ana-
lyzed application. The format is the same as Item 10. This feature contains
139 boolean values as well.

17. under (boolean): This feature is a boolean value to indicate that an appli-
cation is under-privileged. Since the requested permissions listed in an An-

droidManifest.xml are declared by the application developer, there are often
inconsistencies between the requested permissions and the required permis-
sions. Although a developer should be able to determine which permissions
are required by reading the official developer’s API reference document, re-
searchers [3] found the documented permission requirements are somewhat
different from the actual requirements. Therefore, an application may be
under-privileged or over-privileged depending on how its permission request
is declared.

An under-privileged application means that an application developer re-
quests less permissions than actually the application needs. It could be mal-
functioned because of security exceptions raised by the Android operating
system when accessing unprivileged system functions. In contrast, an over-
privileged application means that an application developer requests more
permissions than actually it needs. Although an over-privileged application
breaks the ideal least privilege scenario, it does not have any side-effect.
Therefore, to prevent an application from being blocked by the Android op-
erating system due to insufficient permissions, a developer often chooses to
request more permissions than actually the application needs.

18. ucount (integer): This feature counts the number of under-privileged per-
missions by comparing required permissions against requested permissions.
For example, if an application requires INTERNET permission but it does not
request the permission, the counter increases by one.

19. over (boolean): In contrast to Item 17, this feature is a boolean value to
indicate that an application is over-privileged.

20. ocount (integer): This feature counts the number of over-privileged permis-
sions by comparing required permissions against requested permissions. For
example, if an application does not require BLUETOOTH permission but it
request the permission, the counter increases by one.

In addition to the selected features, a label BoM is appended at the end of
a feature vector to show that the vector belongs to a benign or a malicious
application. The value of the BoM contains only malicious and benign. Labeling an
application correctly is an important task. We label the obtained feature vectors
using three different strategies—site-based labeling, scanner-based labeling, and
mixed labeling. Site-based labeling labels an application based on the source we
obtain the corresponding APK file. If an APK file is downloaded from Google
Play or third party markets, it is labeled as benign. If an APK file is downloaded
from a malicious repository, it is labeled as malicious. Scanner-based labeling
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com.rovio.angrybirds: 2,2,0,2,9,3,6,0,0,0,0,0,1,1,0,0,1,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,

0,0,0,0,0,0,0,0,0,0,0,6,2,4,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,1,4,1,1,benign

Fig. 2. An example feature vector for the AngryBird application retrieved from its
Android application package file
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Fig. 3. Count of requested permissions for both benign and malicious Android appli-
cations. The malicious applications are labeled using mixed labeling strategy.

labels an application based on the decision of an anti-virus scanner. Currently we
use the open source ClamAV anti-virus software to make the decision. If an APK
file is reported to be malicious, it is labeled as malicious. Otherwise it is labeled
as benign. Mixed labeling is the union of site-based labeling and scanner-based
labeling. If an APK is downloaded from a malicious repository or it is reported
as malicious by an anti-virus scanner, it is labeled as malicious. Otherwise, it
is labeled as benign. We obtain feature vectors for all the collected 125,249
applications. A complete example of a feature vector for the AngryBird game is
shown in Figure 2. All the features are retrieved from the AngryBird ’s APK file.
Since we have three different strategies to label the feature vectors, there are
three corresponding datasets. The datasets are named by its labeling strategy.
We then feed the datasets to machine learning algorithms and evaluate the
performance of permission-based detection for malicious Android applications.

4 Result

Before digging into the results of classification, we have a quick look on the
most frequently used permissions in Android applications. We plot a similar
statistics on top 20 permissions to [7]. Figure 3 shows the top 20 permissions
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Table 1. The Performance of Classifiers on Detection of Malicious Applications

Classifier TP Rate FP Rate Precision Recall F-Measure

Dataset #1 AdaBoost 0 0 n/a 0 n/a
Site-based label Näıve Bayes 0.720000 0.057769 0.019544 0.720000 0.038055

C4.5 (J48) 0.460000 0.000080 0.901961 0.460000 0.609272
SVM 0.445000 0.000048 0.936842 0.445000 0.603390

Dataset #2 AdaBoost 0 0.000008 0 0 n/a
Scanner-based label Näıve Bayes 0.811905 0.076625 0.034424 0.811905 0.066047

C4.5 (J48) 0.714286 0.000401 0.857143 0.714286 0.779221
SVM 0.616667 0.000080 0.962825 0.616667 0.751814

Dataset #3 AdaBoost 0 0.000024 0 0 n/a
Mixed label Näıve Bayes 0.762500 0.086536 0.032787 0.762500 0.062870

C4.5 (J48) 0.650000 0.000449 0.847826 0.650000 0.735849
SVM 0.585417 0.000088 0.962329 0.585417 0.727979

requested and required by both malicious and benign applications. Compare our
results against their statistics, the top three requested permissions are the same.
For malicious applications, the top three requested permissions are INTERNET,
READ PHONE STATE, and ACCESS NETWORK STATE. For benign applications,
the top three requested permissions are INTERNET, ACCESS NETWORK STATE,
and WRITE EXTERNAL STORAGE. Although the number of malicious application
we evaluated is less than [7], the ranks of requested permissions are similar.

We then use the Weka data mining software [14] to classify benign and ma-
licious applications based on permissions. We feed the permission datasets re-
trieved from the 125,249 applications to four commonly used classifiers. They
are AdaBoost, Näıve Bayes, C4.5 (J48), and support vector machine (SVM).
Each classifier builds classification models from the three datasets, distinguishes
malicious applications from benign ones based on the models, and then evalu-
ates how good (or bad) it performs. Readers should notice that it is a difficult
problem for classifiers because the datasets are extremely imbalanced datasets.
The ratio of the number of malicious applications and benign applications, in
the best case, is 480:124769 (less than 0.004). Finding a malicious application is
just like finding a needle in a haystack.

Table 1 shows the performance of each classifier on detection of malicious An-
droid applications. The performance of a classifier is measured using the following
metrics: the true positive (TP) rate, the false positive (FP) rate, the precision,
the recall rate, and the F-measure. All values range from 0.0 to 1.0. Note that
the precision and the F-measure fields of some classifiers are labeled n/a in the
table. This is because precision is evaluated by true-positives/(true-positives+
false-positives) but the classifier does not classify any instance into the mali-
cious class. Hence, both true-positives and false-positives are zero. Similarly,
the F-measure is evaluated by 2 · (precision · recall)/(precision + recall) and
therefore it cannot be evaluated if either precision or recall rate cannot be
obtained.
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From the table, we also find that the AdaBoost classifier does not perform well.
It classifies all applications as benign applications. The Näıve Bayes classifier
does not also perform well because it has a very low precision. The C4.5 (J48)
and the SVM would be better choices. They have a much higher precision and
the recall rate for the default C4.5 classifier ranges from 0.46 to 0.71. This means
that the default C4.5 classifier is possible to identify more than 70% of evaluated
malicious applications. For the support vector machine (SVM) classifier, we have
tried to optimize it by tuning its cost and gamma parameter via cross-validation
and grid-search [15]. Although the optimized performance shows that the recall
rate is lower than the C4.5 classifier, the SVM has a very high precision. Based
on the result, we are able to choose a classifier to fit different usage different
scenarios. If precision is the concern, the C4.5 and the SVM would be good
choices. In contrast, if recall rate is the concern, the Näıve Bayes would be a
good choice. It is of course that we can combine results from multiple classifiers
to get the maximal set of malicious applications. However, we would need a
second phase to further examine a detected malicious application.

5 Conclusion and Future Work

Application requested permissions are currently the minimal defense for an An-
droid user to decide whether or not to install an application. This paper explores
the possibility of detection malicious Android applications based on permissions
and several easy-to-retrieve features from Android application packages. Our
large scale experiments show that a single classifier is able to detect about 81%
of malicious applications. By combining results from various classifiers, it can
be a quick filter to identify more suspicious applications. Although the perfor-
mance numbers are not perfect, permission-based classifications can be further
improved in two directions. First, the retrieval of the required permissions can
be further improved by considering permissions relevant to event handling and
content accessing. Second, more features can be retrieved by statically analyz-
ing assembly source codes of an application. We believe that permission-based
classifications can be a good auxiliary to detect malicious applications.
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