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Abstract. In this paper we investigate the introduction of Reservoir
Computing (RC) neural network models in the context of AAL (Ambi-
ent Assisted Living) and self-learning robot ecologies, with a focus on
the computational constraints related to the implementation over a net-
work of sensors. Specifically, we experimentally study the relationship
between architectural parameters influencing the computational cost of
the models and the performance on a task of user movements prediction
from sensors signal streams. The RC shows favorable scaling properties
results for the analyzed AAL task.

Keywords: Reservoir Computing, Echo State Networks, Wireless
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1 Introduction

The aim of Ambient Assisted Living (AAL) [8] applications is to integrate dif-
ferent technologies to improve the quality of life of elders and disable people, by
assisting them in the environments where they live and work. Recently, the EU
FP7 RUBICON 1 (Robotic UBiquitous COgnitive Network) project [1,3], has
proposed the use of self-adaptive robotic ecologies to approach tasks in the field of
AAL. A robotic ecology consists in a network of heterogeneous devices including
mobile robots, wireless sensor networks (WSNs) [5] and actuators. The objective
of RUBICON is to integrate self-sustaining learning solutions to provide cheap,
adaptive and efficient coordination of the robotic ecology. RUBICON is based on
the interplay among different layers implementing state-of-the-art techniques in
machine learning, WSNs, cognitive robotics and agent control systems. Learning
in a network of distributed devices with very limited computational capabilities
(such are WSNs), raises novel challenges related to the effectiveness and the
efficiency of the learning models used to handle the temporal data sensed by

1 http://www.fp7rubicon.eu/
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the ecology. Reservoir Computing (RC) [14], and in particular the Echo State
Network (ESN) [12,11] model, represent an emerging paradigm for modeling Re-
current Neural Networks (RNNs), and offer in principle an interesting trade-off
between computational efficiency and the ability of learning in domains of tem-
poral sequences. RC is therefore identified as a potentially suitable approach for
the implementation of learning models on-board the nodes of robotic ecologies,
although the parameters of the RC networks should be tailored to this specific
applicative context. Moreover, in [10,4] it was already experimentally shown that
ESNs are particularly suitable for treating information gathered by WSNs for
tasks related to the prediction of indoor user movements. The problem of re-
ducing the computational requirements of RC implementations (e.g. [15,9]), in
particular for their embedding into WSN nodes [6] is currently a topic of active
research.

In this paper we present an experimental study of the relation between the
performance and the implementation cost of an RC system in a real-world AAL
task consisting in predicting user movements in indoor environments. Such study
extends the work in [10,4] to consider the effect of different components of the
RC architecture such as the number of reservoir units and the weight encoding.
The proposed investigation is useful to understand the potentiality of the RC
approach for practical implementations on the nodes of robotic ecologies.

2 Learning in RUBICON Robotic Ecology

In this Section, we characterize the RC based Learning Layer in the RUBICON
ecology system. By embedding learning functionalities on-board the nodes of the
ecology, the role of the Learning Layer in RUBICON is to supply the general
purpose learning infrastructure necessary for achieving self-sustaining learning
capabilities.

The purpose of the Learning Layer (LL) is to respond to the need of adaptivity
and analysis of temporal context (including the sensor data dynamics) of the
RUBICON environments, by providing learning mechanisms that are used by
higher (control and cognitive) layers of RUBICON architecture. Specifically, its
role is to:

– recognize and detect relevant sensed information by providing predictions
which depend on the temporal history of the input signals;

– analyze and process sensed information to extract refined goal-significant
information (e.g. information fusion, event recognition).

To this purpose, a networked learning infrastructure, named Learning Network
(LN), is built on top of the robotic ecology in order to provide the core learning
services to the higher levels of the RUBICON architecture. The LN is a flexible
environmental memory that serves as a task driven model of the environment
that can readily be shared by new nodes connecting to RUBICON. This allows
a straightforward sharing of the learned experience.

In the LN design, each node hosts a RC network composed by a number of
artificial neurons. Neurons are connected by remote synapses (implemented by
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means of communication channels) with neurons residing on other nodes, thus
creating a distributed, artificial recurrent neural network. The same synapses are
also used to interconnect the output of the LN with the control and cognitive
layers of RUBICON. With this approach, each neuron in the local learning model
may be considered as a node of a distributed reservoir; the instantaneous state
of such reservoir thus incorporates the combined knowledge attained by each
sensor node, while reflecting the dynamics of the overall RUBICON. The design
and development of the LN is strongly influenced by the issues of scalability and
efficiency, especially with regards to the limitations of the nodes (most of which
are wireless sensors) in terms of computation, communication and energy con-
straints. In particular, the design of the LN makes use of RNNs, and specifically
of RC models, due to their modular, networked structure which naturally adapts
to the distributed nature of the RUBICON ecology, while their recurrent nature
allows to effectively capture the dynamics of the system processes. At the same
time, the neural paradigm offers a natural approach to robustly cope with noisy
sensed data.

Preliminary studies of RC used in combination with sensors for localization
applications aimed at forecasting users movements can be found in [10] and [4].
Differently from previous works, in the following we extend the study to consider
different components of the RC architecture.

3 Echo State Network Architecture

An ESN [12,11] is made up of an input layer, a reservoir and a readout with NU ,
NR and NY units, respectively (see Fig. 1). The reservoir is a large, sparsely con-
nected, non linear, untrained recurrent hidden layer, used to compute an input-
driven fixed contractive encoding of the input sequences into a state space. The
readout is a linear, feed-forward output tool, responsible for the output compu-
tation and representing the only trained component of the ESN architecture.
In standard ESNs, sigmoid reservoir units are used, e.g. implementing tanh
activation function. In this paper, we take into consideration leaky integrator
ESNs (LI-ESNs) [13], in which leaky integrator reservoir units are used, apply-
ing an exponential moving average to the reservoir state values. The use of leaky
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Fig. 1. The ESN architecture
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integration of reservoir states in LI-ESNs, implies a better handling of input
sequences changing slowly with respect to the sampling frequency [13,14,2], and
results in an RC model particularly suitable for treating real-world RSS input
signals, as experimentally shown in [10].

Given an input sequence s = [u(1), . . . ,u(n)] over the real input space R
NU ,

for each time step t the reservoir of a LI-ESN computes the state transition func-
tion: x(t) = (1−a)x(t−1)+af(Winu(t)+Ŵx(t−1)), where x(t) ∈ R

NR is the
state of the network at time t, Win ∈ R

NR×NU is the input-to-reservoir weight
matrix (possibly including also a bias term), Ŵ ∈ R

NR×NR is the recurrent
reservoir weight matrix, f is a component-wise applied activation function (we
use f ≡ tanh) and a ∈ [0, 1] is a leaking rate parameter, controlling the speed of
reservoir dynamics (smaller values of a imply slower reservoir dynamics). Note
that for a = 1, LI-ESN state transition function reduces to the case of standard
ESN. The output is computed by the readout tool, by linearly combining the acti-
vation of the reservoir units. In the following, we restrict our consideration to the
case of binary classification tasks on sequences, which is of a particular interest
for this paper. In this case, the readout is applied only when the input sequence
has been completely seen and the reservoir encoding process has terminated. For
each input sequence s of length n, the readout computes y(s) = sgn(Woutx(n)),
where Wout ∈ R

NY ×NR is the reservoir-to-readout weight matrix (possibly in-
cluding also a bias term), y(s) = {−1,+1} is the output classification computed
for the input sequence s, and sgn is a sign threshold function.

The reservoir of a LI-ESN is initialized in order to satisfy the Echo State
Property (ESP) [11,12], i.e. the network state should asymptotically depend
only on the driving input sequence [9]. A sufficient and a necessary condition
for the ESP are provided in literature [11]. A necessary condition for the ESP
is typically considered in RC applications [13,14,11], i.e. ρ(W̃) < 1, where W̃ =

(1 − a)I + aŴ , and ρ(W̃) is the spectral radius of W̃. Accordingly, Ŵ is
randomly initialized and then rescaled to meet the condition on ρ, where values
of ρ close to 1 are generally used [14,12,16]. Weight values in Win are chosen
from a random (uniform) distribution over [−scalein, scalein], where scalein is
an input scaling parameter.

The readout of a LI-ESN is typically trained off-line by using Moore-Penrose
pseudo-inversion or ridge regression (see e.g. [10,14]).

Beside the choice of the spectral radius, one of the most relevant parameters in
RC applications is the number of reservoir units. Indeed, larger reservoirs often
lead to better network performances (e.g. [16,9]). Notice that the cost of ESN
application (both in time and space) increases with the reservoir dimension2.
Another interesting aspect is related to the weight dimension, i.e. the number
of bits used to represent each weight in Win and Ŵ. Typically, such weights
are randomly initialized to assume values in an infinite real interval, and in
practice floating-points with double precision are used, requiring 64 bits per

2 The cost is quadratically bounded in general and, due to the sparsity of reservoir
connectivity, it can be linear under the assumption of a fixed maximum number of
connections for each reservoir unit.



An Experimental Evaluation of Reservoir Computation for AAL 45

weight memorization. In the following, this setting is referred to as LI-ESN
full weight encoding. In this paper we also consider the alternative strategy of
assuming a small finite set of possible non-zero weights in the untrained RC
matricesWin and Ŵ. The number of different non-zero values is denoted by Nw.
In this case, referred in the following as LI-ESN with reduced weight encoding,
each weight value can still be a double precision floating-point, but a small
number of bits (i.e. �log2Nw�) are sufficient to encode each weight in the network
matrices.

The issue of minimizing the cost for the network memorization is of a funda-
mental relevance in view of the embedding of the RC networks directly on the
motes. Indeed, it is worth to note that the motes of a WSN usually host a very
limited total amount of RAM memory (usually in the order of 8-10 Kbytes).
We therefore experimentally assess the impact on the predictive performance
of RC networks due to the variation of the number of reservoir units and the
type of weight encoding used (i.e. full or reduced), specifically in a task of user
movement prediction type.

4 Experiments

Real WSN data for our experiments was collected during a measurement cam-
paign at the first floor of the the ISTI institute of CNR in the Pisa Research
Area, in Italy. The environment comprises 4 rooms organized into pairs of cou-
pled rooms (denoted as Room 1 and Room 2 in each couple), with front doors
separated by a hallway. Rooms contained typical office furniture including chairs,
cabinets, monitors and desks (see Fig. 2), representing harsh conditions for in-
door wireless communications. In each couple of rooms, we set up a WSN com-
posed of 5 IRIS motes [7]: 4 fixed sensors, or anchors, and 1 mobile sensor
worn by the user. Sensors embedded a Chipcon AT86RF230 radio subsystem
implementing the IEEE 802.15.4 standard. The user moved in the environment
according to the 6 possible paths illustrated in Fig. 2. Following a curved tra-
jectory the user remained in the same room, while straight trajectories led to
a room change. Each measurement gathered the received signal strength (RSS)
information between the anchors and the mobile at a constant frequency of 8 Hz,
from the starting point of each movement until the user reached a marker point
(denoted as M in Fig. 2) located at 60 cm from the door. The RSS data was used
to set up a dataset for a binary classification task in which RSS sequences from
the different anchors are used as input data and the target consists in +1 if the
corresponding user movement led to a room change, and −1 otherwise. In prac-
tice, the classification tasks consists in predicting if the user is about to change
room or not based on the history of the RSS information until the marker. Note
that the marker M is the same for all the movements, hence it not possible to
distinguish the different paths based only on the RSS values collected at M.
The dataset contains 210 input sequences, where 104 of them where collected in
the first couple of rooms, and the remaining 106 in the second couple. Using a
stratified sampling over the different movement paths, the dataset was divided
into a training and a test set comprising 168 and 42 sequences, respectively.
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We run experiments for all the 15 possible configurations of the number of
anchors considered, i.e. for Nanchors = 1, 2, 3, 4. We used reservoirs with NR ∈
{10, 20, 50, 100, 300, 500} units, 10% of connectivity, input scaling scalein = 1
and spectral radius ρ = 0.99. In the reduced weight encoding setting, each non-
zero weight value in Win and Ŵ was randomly chosen in a small weight alpha-
bet with Nw = 8 possible values, uniformly sampled in the interval [−0.4, 0.4],
thus leading to just a 3 bit encoding per weight memorization. For every choice
of the reservoir hyper-parametrization, we considered 10 independent (random
guessed) reservoirs (and the results were averaged over the 10 guesses). The read-
out was trained using pseudo-inversion and ridge-regression, with regularization
parameter λr ∈ {10−1, 10−3, 10−5}. The readout regularization was chosen by
model selection with stratified holdout validation, using ≈ 30% of the training
set as validation set.

Fig. 3 shows the averaged test accuracy of LI-ESN with full weight encoding,
for increasing reservoir dimension NR and varying the number of anchors used
Nanchors. For any value of Nanchors considered, results in Fig. 3 are averaged
(and standard deviations are computed) over the number of possible configura-
tions of the anchors. It can be noticed that the RC networks can reach excellent
test performances, and the test accuracy scales very well with both the reser-
voir dimension and the number of anchors. As already pointed out in [10,4], the
test accuracy of the LI-ESN networks is improved when more anchors are pro-
gressively considered in the WSN setting. The best performance (test accuracy
up to 97.1%) is obtained for Nanchors = 4, although very good performances
are achieved for simpler WSN settings with a fewer number of anchors (up to
88.6%, 91.5% and 95.4%, for 1, 2 and 3 anchors, respectively). Table 1 details the
training and test accuracies (and standard deviations over the reservoir guesses)
in the case Nanchors = 4, for increasing reservoir dimensionality. The best test
accuracy, i.e. 97.1%, is obtained for NR = 500, corresponding to test sensitivity
and specificity of 99.5% and 95.0%, respectively. Moreover, from Fig. 3 it is clear
that for every choice of Nanchors, the LI-ESN performance is improved as larger
reservoirs are considered (adopting regularization in readout training in order

Mobile position Anchor position

Anchor position

Fig. 2. Prototypical environment where the RSS measurements have been collected,
showing the positions of the anchors of the WSN in one couple of rooms and the
possible user movement paths
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Fig. 3. Mean test accuracy (in %) and standard deviation of LI-ESNs with full weight
encoding, varying the reservoir dimension and the number of anchors considered

Table 1. Mean accuracy (in %) and standard deviation of LI-ESNs with full weight
encoding for Nanchors = 4

Reservoir Dimension (NR)
10 20 50 100 300 500

Training 76.1(±3.1) 86.7(±2.5) 96.4(±2.1) 99.8(±0.3) 99.0(±0.5) 99.9(±0.2)
Test 74.0(±5.6) 85.2(±4.6) 90.2(±3.9) 92.1(±3.2) 96.9(±1.5) 97.1(±2.3)

to avoid overfitting). At the same time, it can also be observed that the test
performance tends to be saturated as the number of reservoir units is increased.
Indeed, when a sufficiently large reservoir is considered, a further increase of the
reservoir dimension can only slightly improve the test accuracy. This means that
small enough reservoirs can be sufficient in practice and thus a small amount of
memory can be sufficient for storing the network parameters on the motes of the
WSN. For instance (see Table 1), for Nanchors = 4, the test performance with
NR = 500 units is 97.1%, while with smaller reservoirs e.g. with NR = 100 and
NR = 50, the test performance is 92.1% and 90.2%, respectively, which are still
very satisfactory results for this kind of tasks (from noisy input data).

The averaged test accuracy for LI-ESNs with reduced weight encoding is
shown in Fig. 4, varying the reservoir dimensionality and the number of anchors.
Analogous considerations can be done as for the case of full weight encoding.
RC networks achieve very good test accuracy, which scales well with the number
of anchors in the environment and the reservoir dimension. Also in the case of
reduced weight encoding, a saturating effect of the networks performance can be
observed for increasing the number of reservoir units. Table 2 reports the training
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Fig. 4. Mean test accuracy (in %) and standard deviation of LI-ESNs with reduced
weight encoding, varying the reservoir dimension and the number of anchors considered

and test accuracies achieved by LI-ESNs in correspondence of Nanchors = 4 and
varying the number of reservoir units. The best test performance is obtained for
NR = 500, corresponding to a test accuracy of 97.6%, test sensitivity of 99.0%
and test specificity of 96.4%. Very interestingly, comparing the performances ob-
tained by LI-ESNs with full and reduced weight encodings (see Figures 3 and 4,
and Tables 1 and 2), we can observe that in the two cases, the accuracies are sub-
stantially the same (except for small, statistical fluctuations) for correspondent
experimental settings. As a result, the use of a reduced weight encoding scheme
does not have a relevant practical effect on the LI-ESN model performances, and
in particular it does not strictly depend on the reservoir dimension, due to the
prevailing role of the number of reservoir units on the accuracy results3. This
means that in practice, using a small finite set of reservoir weights, thus a few
bits per weight encoding, is sufficient for tackling the task at hand, and the small
amount of memory typically available on the motes of a WSN can be enough for
ESN embedding. To give an idea of the possible reduction in memory require-
ments, for storing the weights in Ŵ of a 100-dimensional reservoir, roughly 8
Kbytes of memory are needed in case of full weight encoding, while roughly 800
bytes are sufficient in case of reduced weight encoding. For 50-dimensional reser-
voirs, the memory requirement reduces from roughly 2 Kbytes (for full weight
encoding) to roughly 250 bytes (for reduced weight encoding).

3 Note that the number of bits used in our experiments for the reduced weight en-
coding scheme, i.e. log2(Nw) = 3 bits, is even smaller than what could be necessary
for embedded implementations of our RC system on-board the motes of a WSN.
Considering a further reduction of the number of bits used for the weight values
encoding could lead to investigations of architectural variants of the ESN model,
e.g. see [15].
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Table 2. Mean accuracy (in %) and standard deviation of LI-ESNs with reduced weight
encoding for Nanchors = 4

Reservoir Dimension (NR)
10 20 50 100 300 500

Training 76.8(±2.4) 85.5(±3.9) 96.6(±1.4) 100.0(±0.0) 100.0(±0.0) 100.0(±0.0)
Test 73.6(±4.3) 84.8(±3.9) 93.8(±3.4) 94.3(±2.7) 96.4(±2.7) 97.6(±1.8)

Concerning the computational power constraints, we observed that on motes
with an 8 MHz processor, like the IRIS motes used in our experiments, the
LI-ESN computations required for each input-output step approximatively 0.7
and 2 milliseconds, respectively for reservoirs of dimension 50 and 100, which is
therefore plausible for a real-time processing on-board the nodes of a WSN.

5 Conclusions

We have presented an experimental investigation of the relation between the per-
formance and the implementation cost of RC networks in an AAL task consist-
ing in anticipating user movements in indoor environments. Results have shown
that the proposed RC system achieves a very good predictive performance on
the considered task. Such performance scales well with the number of anchors
used and with the cost of the network memorization. In particular, a decrease
in the number of reservoir units does not lead to a dramatic degeneration of the
performance (up to 50 units), and the use of a reduced encoding scheme (re-
quiring only 3 bits of memory for each weight value) does not affect significantly
the accuracy of the model. A small reservoir with each weight value encoded in
a few bits is sufficient in practice for the analyzed task. Such promising results
allow us to envisage practical solutions for the embedding of the RC networks
on-board the motes of WSNs.

The experimental analysis presented in this paper represents a ground for
further investigations on the development of local and distributed learning ca-
pabilities based on RC systems distributed across the nodes of the RUBICON
ecology.
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