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Abstract. The recognition of human emotions by technical systems is
regarded as a problem of pattern recognition. Here methods of machine
learning are employed which require substantial amounts of ’emotion-
ally labeled’ data, because model based approaches are not available.
Problems of emotion recognition are discussed from this point of view,
focusing on problems of data gathering and also touching upon modeling
of emotions and machine learning aspects.
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1 Introduction

In the field of human-computer interaction (HCI) there is a growing interest in
using not only explicit function-oriented signals for the cooperation between a
human user and a technical system, but also implicit “affective” or “emotional”
signals.

In spite of a long tradition in psychology (e.g. [1,2,3,4,5,6,7,8]) there still is no
undisputed definition of emotions, neither of particular emotions nor of the gen-
eral concept of emotion. From a biological perspective emotions can be described
as modulations of animal behavior in response to certain extreme circumstances.
For example, in extreme danger, an animal may focus its attention to the rele-
vant sensory modalities and to particular spatio-temporal constellations in these
modalities; in addition it may mobilize all its physical energy and strength in
particular groups of muscles to enable quick reactions like fleeing or fighting,
and it may shift its evaluative weights (which will be explained in a bit more
detail below) towards taking more risks of injuries and pain in the course of
actions. This scenario describes a modulation of the three main ingredients of
goal-directed behavior: sensation, action and evaluation. It is plausible that in
the course of evolution and also of individual development animals have found
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a small number of such combined modulatory settings that are useful for the
modulation of behavior in certain situations. These settings may be what we
call emotions.

In social animals it may also be useful to signal these settings to other animals
in order to prevent, for example, that animals of the same species hurt each other
unnecessarily. So emotional states may also be conveyed by social signals, which
in humans often are unconsciously produced in addition to or as modification of
our explicit communication.

The biological approach sketched here may sound provocative to some psy-
chologists, but it boils down to defining emotions as particular modulators of
behavior which may also have some physiological consequences, for example
concerning heart-rate, blood-flow, body-heat and skin resistance.

Some attempts have been made to define “basic” emotion categories (typically
around six of them, see for example [9], but the varying degree of similarity be-
tween these categories suggests an embedding of them into a 2- or 3-dimensional
space; most commonly in a circular fashion ([3] or the “emotion wheel” of [8]).
The dimensions or axes of this space have also been identified ([10,6]) as “value”
(from negative or “bad” to positive or “good”), “activation” (from low or “calm”
to high or “agitated”) and “dominance” or perhaps also “competence” or “in-
fluence” (from low or “passive”, “enduring” to high or “active”, “in control”).
Another aspect of the classification of emotions is their variable strength or
expressiveness.

When we try to incorporate emotionality in HCI, we also have to consider
emotions from the computer science point-of-view. Here there are three tasks
that can be distinguished although they are often used in combination:

1. detection and classification of human emotions,
2. modeling of emotions in an artificial agent,
3. displaying emotional signals towards the human user.

1. Emotion detection can be viewed as a particular branch of pattern recogni-
tion and will be in the focus of this article.

2. Emotion modeling is an interesting enterprise which may follow the biological
approach described above and thereby relate to neurobiological and physi-
ological research on this topic (e.g. [11,12,13,14,15,16]) The neuroscientific
accounts of emotions are concentrating on fMRI experiments showing emo-
tional reactions in particular brain areas and also on the idea of explaining
the cognitive faculty of empathy as a use of the own “emotion generat-
ing system” in those areas to simulate or “mirror” the emotions of others
([17,18,19,20,21,22,23,24]), similar to the mirror neuron system representing
intentional actions. Theoretical approaches often rely on variations of rein-
forcement learning ([25,26,27,12,28,29,30,31,32,33,15,34]). The basic idea of
reinforcement learning (RL) is that an agent learns to predict an evaluative
signal (called reward) based on its sensory input and the course of action it
is about to take. It then takes the course of action that maximizes the pre-
dicted reward. Biologically realistic versions of RL assume a small number
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of different motives or objectives like eating, drinking, having sex, exploring
territory, avoiding pain, which the agent may want to optimize with different
weights or different priorities depending on its current situation (these are
the evaluative weights mentioned above).
There is also an interesting modeling approach by D. Dörner and his schol-
ars ([35,36,37,38]) that is closely related to these ideas. Another approach to
the modeling of emotions is motivated from cognitive psychology ([39,40,41]
) treating the relation between emotions and motivations or appraisals on
a higher cognitive level with less emphasis on the underlying physiological
processes and on the dynamical temporal aspects of emotions.

3. Emotion display has become quite popular in HCI in applications concerned
with entertainment and computer games. It makes use of the fact that hu-
mans readily project emotions into artificial agents they interact with. In
a feedback situation of HCI it can be useful to combine emotion recogni-
tion with emotion display, for example in order to improve and stabilize the
emotion recognition performance on both sides in a dyadic HCI.

In fact, one can perhaps divide the whole area of affective computing into those
domains where the expression of emotions by the computer is more important,
which will most likely occur in recreational activities like entertainment, edu-
tainment, or game playing, and those domains where the recognition of human
emotions by the computer is more important, which will most likely occur in the
context of work, when the computer helps to achieve a given task. In our col-
laborative research center (see http://www.sfb-trr-62.de/) we focus on the
second type of interaction and we define Companion technology as the technology
that helps to improve this kind of HCI.

2 Recognition of Emotions or User Dispositions

In HCI the recognition of emotions has turned out to be a very hard problem of
pattern recognition and machine learning due to the following reasons:

– Emotions are rare. They do not occur often in human interaction and perhaps
even less in HCI.

– Most emotions can occur in different degrees and they occur only in weak
degrees most of the time.

– This often leads to a high degree of uncertainty about the recognized emotion
and, in addition, it may be necessary to distinguish the degree of recognition
uncertainty from the degree of expressiveness of the present emotion.

– Emotions are expressed multi-modally. So it is often useful and even neces-
sary to combine several sensory modalities (audition, vision, and biophysical
measurements, if available) in their detection and classification.

– Emotion recognition is context dependent. Humans often cannot correctly
identify emotions unless they are provided within broader context of the
given situation. For artificial systems this implies that one should make use

http://www.sfb-trr-62.de/
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Table 1. Multimodal datasets of HCI with annotated emotions

Name Modalities1 Size2 Annotation3 HCI type4 Remarks5 Reference

AVEC A,V 95/13/7.5h 4 D
2-8 raters

D T,E [78]

EmoRec A,V,P 110/110/73h
3 D
not req.

S,T E [75]

Humaine A,V 50/?/3.3h
4 D
n/a

D E [79]

Last Minute A,V,P 126/126/63h not yet0C
annotated

S,C T,C [80]

Nimitek A,V 10/10/15h
6 C
n/a

T T,E [81]

PIT A,V 37/74/9h > 9 C
2-3 raters

C,O C [82]

SAL A,V 20/4/10h
6 C, 4 D
n/a

D E [83]

Smartkom A,V 224/224/16.8h
9 C
n/a C,O T [84]

1 (A) audio, (P) physiological, (V) video
2 #/#/# number of recordings/number of subjects/hours of recording
3 # number of labels, (C) categories (D) dimensions;
number of raters, (n/a) number of raters not available,
(not req.) rating not required

4 (T) trainer/teacher, (M) monitor, (O) organizer, (C) consultant, (S) servant,
(D) discourse

5 (T) transcript available, (E) emotions are evoked, (C) multiple cameras

of high-level symbolic information, if available, and at least use temporal
integration of the given multimodal signals over a longer time (e.g. covering
a whole interaction sequence, not just one utterance or turn in a dialogue).

These observations have been made in our own attempts to create a “Companion
technology” ([42] ) for HCI that allows the computer to react to human emotional
signals. There is not much scientific literature yet on these topics to substanti-
ate these preliminary observations (e.g. [43,44,45,46,47,48,49,50]), since the field
of “affective computing” is still in its infancy. Early experiments on unimodal
emotion recognition ([51,7,52,53,54,55]) had to rely on artificial acted emotions.
And even on these data (e.g. [56,57,58,59]) the typical performance for 4 or 5
emotion categories was around 70 to 80 percent, usually about as bad or just a
little worse than human performance on the same data.

There are some projects providing large multimodal databases of almost natu-
ral human conversations (see [60,61,62,63,64,65,66,67,68,69,70])
which can be used to substantiate the 5 points above, but not much work on nat-
ural emotion recognition has appeared so far (e.g. [48,71,49,72,73] [74,75,76,77]).

A serious problem of emotion recognition from the engineering point of view
is that, strictly speaking, there is no ground truth that can be used for labeling.
Even if one tries to work with induced emotions the exact emotional category
that is induced may strongly depend on the character of the subject, in addition
to ethical problems involved in the induction of strong negative emotions. The
only available ’gold-standard’ is human rating of the observed emotional behavior
and this is far from being unequivocal.
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Concerning emotions in HCI the available data are still very sparse. Currently
we are aware just of a few reasonably extensive multimodal HCI databases (see
Table 1). In fact, any project of data-collection for affective HCI is faced with a
number of very particular challenges:

– Technical problems with gathering and displaying large amounts of synchro-
nized multi-modal data in a reasonable HCI scenario (often requiring WOZ
methodology).

– Determining the relevant label categories for the data, which may even be
application- or scenario-dependent (see below).

– Developing tools that make it possible for annotators to add (un)certainty
values to their labels (like [85,86,87]).

2.1 Identifying User Dispositions in Companion Technology

In spite of these problems we expect much further progress in affective HCI for
the development of Companion systems, based on a few conceptual and technical
developments in the next years.

First, we said that emotions are rare in HCI, and indeed some of the gen-
uine human emotions may not even be relevant for typical Companion systems.
Hence one can try to restrict the emotional categories that have to be recog-
nized and distinguished to the practically relevant ones. To this end it would of
course be useful not to consider every application separately, but to identify a
small set of typical applications or Companion tasks. In our understanding of
Companion systems we are not focusing on entertainment systems, but rather
on applications where the Companion system helps the user to achieve some
goal. A typical problem of this kind occurs if the user has to rely on a conven-
tional technical system which is complicated or partially unknown to the user.
In such a case the Companion system can mediate between the user and the
conventional system. Another type of application occurs in training or teaching
where the system guides the user in extending his knowledge or his practical or
physical capabilities.

To arrive at a short list of generic Companion tasks we can consider the
typical examples of assistance that are proposed or already offered by modern
technical systems in the household (cleaning, cooking, preparing or organizing
meals, invitations), in the car (navigation, driving assistance), at work (keep-
ing track of dates, meetings and duties, finding information, e.g. on products,
transportation, addresses, making connections to other people), simplifying or
personalizing use of machinery (cameras, coffee-machines, cell-phones, audio-
video-displays, diagnosis and repair), in education (learning, edutainment), in
buying, ordering things, in the hospital and rehabilitation (monitoring, control
of medication, motivation of physical exercises).

We have attempted to condense this down to the following five types of Com-
panions : Trainer/teacher, monitor, organizer, consultant, servant.

When we now consider the emotional dispositions of the user that will be
relevant for the reactions of the Companion in these cases, it turns out that in
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practically all cases it is the disposition or attitude of the user towards the task
at hand and towards the Companion system that matters. The central affective
goal of the system is to maintain a positive attitude of the user, for example
by adjusting the amount, redundancy and complexity of the information it is
providing, or by giving ensuring or just evaluating feedback to the user (and, of
course, by functioning properly). Thus the main practical objective in emotion
recognition for such systems will be to distinguish different kinds of negative
emotions or attitudes from each other, and also from neutral or “no problem”.
Here we propose to distinguish the following seven: Bored, disengaged, frus-
trated, helpless, over-strained, angry, impatient.

Again this short list of specific application oriented user attitudes or disposi-
tions has to be regarded as preliminary and it certainly needs further explana-
tion, for example in terms of emotion dimensions like activation and dominance,
in particular when it is used for labeling. Such a short list, however, would help
a lot to simplify the task of emotion recognition for Companion systems and
to unify the labeling of corresponding affective HCI databases for Companion
systems.

Another reason for anticipating a fast progress in emotion recognition lies in
the development of new ideas and techniques in pattern recognition and ma-
chine learning. There are a number of new ideas concerning information and
classifier fusion ([88,89,90,91,92,93,94,95,96,97]) which have lead to better the-
oretical understanding and practical results in the fusion of information from
different sources and have already been applied to the recognition of user dispo-
sitions or emotions (e.g. [96,98,99,100,101,102,103]) There are also new results on
semi-supervised learning ([104,105,106,107,108,109,110,111,112,113,114,115,116]
[117,118]) and on learning from uncertain teacher signals ([119,120,121]) that
can be used to simplify the labeling of large datasets with uncertain or partially
missing labels.

We believe that, based on these ideas and developments, the field of affective
computing for Companion systems and also for HCI in general is going to make
considerable progress in the next years.
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R., Limbrecht, K., Traue, H., Schwenker, F.: Multimodal Emotion Classification
in Naturalistic User Behavior. In: Jacko, J.A. (ed.) HCI International 2011, Part
III. LNCS, vol. 6763, pp. 603–611. Springer, Heidelberg (2011)

76. Schels, M., Glodek, M., Meudt, S., Schmidt, M., Hrabal, D., Böck, R., Walter,
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