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Abstract. Nowadays a correct use of energy is a crucial aspect, in
fact cost and energy waste reduction are the main goals that must be
achieved. To reach this objective an optimal energy management must be
obtained through some techniques and optimization algorithms, in order
to provide the best solution in terms of cost. In this work a comparison
between different methods for energy scheduling is proposed and some
analytical results are reported, in order to offer a clear overview for each
technique, in terms of advantages and disadvantages. A residential sce-
nario is considered for computer simulations, in which a system storage
and renewable resources are available and exploitable to match the user
load demand.

1 Introduction

The concept of smart grid faces many electrical power engineering requirements,
so different solutions can be achieved for each specific application, from the
generation to the customer level, where Computational Intelligence techniques
can be very useful [1,2]. In this area the energy management has a main role in
order to reduce costs and avoid its waste, also in a micro-grid for a residential
or domestic scenario. A joint task and energy optimization framework has been
already implemented [3], but several methods have been developed to accomplish
efficiently only energy scheduling: linear programming techniques [4], Particle
Swarm Optimization (PSO) [5], Fuzzy-Logic [6], Artificial Neural Networks [7],
and also Adaptive Dynamic Programming (ADP) [8].

In this paper, the attention is focused in home environment connected to
the main grid and also a photovoltaic (PV) system with a battery is consid-
ered to increase the saving. The load profile must be always satisfied managing
renewable energy, battery and electrical grid in order to reduce costs. There-
fore an optimal battery controller must be obtained, whose control policy is to
minimize the energy cost imported from the grid managing the battery actions
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(charge/discharge) and knowing the forecasted renewable resources, load pro-
file and energy price. In this work a comparison among six different methods,
the best promising chosen from literature, for battery management is proposed:
an overview for each technique is provided and also a comparison is reported,
in terms of advantages and disadvantages. Some of these methods have been
already presented in other papers like [9] based on Adaptive Dynamic Program-
ming (ADP) and on Particle Swarm Optimization (PSO) technique; some other
methods, based on Linear Programming (LP) and PSO, are introduced for the
first time.

The system description is reported in Section 2, the analytical issues of each
optimization algorithm are discussed in Section 3 and the simulated scenario is
shown in Section 4. Section 5 deals with the conducted computer simulations
whereas Section 6 draws the work conclusions.

2 Home Energy System Description

The proposed home model is composed of a main electrical grid, external PV
array, storage system and Power Management Unity (PMU), that ensures the
meeting of load demand. As reported in Fig. 1, PMU unit (energy scheduler)
manages the energy flows: battery can be charged from the grid and/or from
PV, moreover if necessary it can be discharged to supply the load. If there is
exceeded energy from PV not usable from the system, it is sold to the main grid.
In addition the battery must satisfy the following constraints:

1. The charging and discharging rate can not be exceeded.

2. Battery level must be always included between the upper and lower bound.

Power Management Unit 

Renewable Grid Battery 

                 
LOAD 

Bidirectional  
Power Flow 

Unidirectional  
Power Flow 

Unidirectional  
Power Flow 

Fig. 1. Power Flows
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3 Optimization Algorithms

3.1 Linear Programming Technique: LP Algorithm

The implemented algorithm is based on the “Linear Programming” (LP)
paradigm. Its objective consists in maximizing or minimizing a given function,
considering some constraints according to:

max f(x) = cTx or min f(x) = cTx

subject to Ax ≤ b or Ax ≥ b

where x ≥ 0, x ∈ R
n×1, A ∈ R

m×n, b ∈ R
m×1, c ∈ R

1×n.

The cost function U(t) used in this work with this optimization algorithm is the
following:

U(t) =

T∑

t=1

{[Lu(t)−Ru(t) + Chu(t)−Dhu(t)
] · C(t)} (1)

where Lu(t) is the load demand at temporal slot t, Ru(t) is the amount of
renewables exploited at time t, Chu is the amount of energy used for charging
the system storage, Dhu is the discharged energy used for meeting (partially or
totally) the load, C(t) is the electricity cost at time t and T is the work horizon.

This kind of battery controller works in offline way, bacause it optimizes the
given cost function in all the time horizon T .

The constraints of this problem, for 1 ≤ t ≤ T , are reported as follows:

– Positive function: Lu(t)−Ru(t) + Chu(t)−Dhu(t) ≥ 0
– Do not exceed renewables: Ru(t) ≤ R(t)
– Load is fixed Lu(t) = L(t)
– Charge and discharge limits: Chu(t) ≤ Chrate, Dhu(t) ≤ Dhrate

– Battery level: SL(t) = SL(t− 1) + Chu(t)−Dhu(t)
– Battery level limits: SLMIN ≤ SL(t) ≤ SLMAX

where R(t) and L(t) are respectively the total renewable avaiable and load de-
mand, while SL is the State of Charge (SoC) of the system storage.

3.2 Particle Swarm Optimization Algorithm

PSO is a technique inspired to certain social behaviors, and it is used to explore a
search parameter space to find values allowing to minimize an objective function
[10]. The PSO algorithm works by maintaining simultaneously various candidate
solutions (particles in the swarm) in the search space. In PSO, the coordinates
of each particle represent a possible solution associated with two vectors, the po-
sition x and velocity v vectors in N -dimensional search space. A swarm consists
of a number i of particles “or possible solutions” that flies through the feasible
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solution space to find the optimal one. Each particle updates its position xi on
the basis of its own best exploration pi, its best swarm overall experience pg,
and its previous velocity vector vi(k − 1) according to (2) and (3).

xi(k) = xi(k − 1) + vi(k) (2)

vi(k) = vi(k− 1)+ ρ1 · rand1 ·
[
pi− xi(k− 1)

]
+ ρ2 · rand2 ·

[
pg − xi(k− 1)

]
(3)

where ρ1 and ρ2 are two positive correction factors, k is the iteration step while
rand1 and rand2 are two random numbers [0.0, 1.0]. The PSO algorithm can be
described in general as follows:

1. For each particle, randomly initialize the position and velocity vectors with
the same size as the problem dimension.

2. Measure the fitness (utility function value) of each particle and store the
particle with the best fitness value (minimum utility function value).

3. Update velocity and position vectors according to (2) and (3) for each par-
ticle.

4. Repeat steps 2 and 3 until a termination criterion is satisfied.

As already done in [9] we introduce in (4) an utility function that must be
minimized for each temporal slot t.

U(t) =

√{
[L(t)−R(t) + u(t)] · C(t)

}2
+
{
SLcap − [SL(t) + u(t)]

}2
(4)

where u(t) is the optimized value of battery charge (u(t) > 0) or discharge
(u(t) < 0) that must be found by the algorithm for each time t, SLcap is the
battery capacity and SL(t) is the actual battery level. Minimizing U(t) means
charging the battery when renewable is high and/or when cost is low, and dis-
charging the battery when renewable is lower than the load and/or the cost is
high. Obviously u(t) must satisfy the two battery constraints discussed in Sec-
tion 2. If one of these constraints is not satisfied, the obtained solution u(t) is
not valid and must be discarded. So the function is multiplied with a penalty
factor which is set to a higher value.

It is important to note that this battery controller works in online way, because
the cost function is evaluated step by step without knowing the energy horizon
profiles.

3.3 Extended Particle Swarm Optimization Algorithm

Similar to the scheme proposed in Section 3.2, an extended version of PSO has
been realized. The operation is not online anymore, but offline in order to give
an optimal solution on an extended period, for which all scenario profiles are
considered in the work horizon, as well as the forecasted data about renewable
energy. Differently from (4), the utility function adopted in this case does not
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include battery terms, and also a sum over the entire period is considered, in
order to provide an optimization for the entire work horizon T .

U(t) =

T∑

t=1

√{
[L(t)−R(t) + u(t)] · C(t)

}2
(5)

Obviously u(t) must satisfy the battery constraints discussed in Section 2.

3.4 Adaptive Dynamic Programming

Combining approximate dynamic programming and reinforcement learning, Wer-
bos proposed a new optimization technique [11], whose goal is to design an op-
timal control policy, which can be able to minimize a given cost function called
“utility function” (especially in nonlinear and noisy environments), adapting two
neural networks: the Action Network and the Critic Network. The Action Net-
work, taking the current state as input, has to drive the system to a desired
one, providing a control to the latter. The Critic Network, knowing the state
and the control provided by the Action Network, has to check its performances
and return to the Action Network a feedback signal to reach the optimal state
over time. To check Action performances, the Critic Network approximates the
following Bellman equation associated with optimal control theory:

J(t) =

∞∑

i=0

γiU(t+ i) (6)

where γ is the discount factor (0, 1] and U(t) is the utility function.
As already implemented in [9], that was inspired by [8], an Action-Dependent

Heuristic Dynamic Programming (ADHDP) model free approach is adopted for
the design of an optimal controller, whose goal is to manage the battery, knowing
forecasted data (Load, Price, Renewable Energy), in order to save money during
an overall time-horizon. As reported in Fig. 2 the input to the Action network
is the system state x(t), and the output u(t) is the amount of energy used to
charge or discharge the battery; the input of the Critic Network consists of the
current system state and the current control provided by the Action Network.

The used Critic network is composed by 15 linear neurons in input, 40 sig-
moidal hidden neurons and 1 linear in output, while Action network by 4 linear
neurons in input, 40 sigmoidal hidden neurons and 1 linear in output. In this
study the proposed utility function U(t) is reported in (7).

U(t) =

√{[
L(t)−R(t) + u(t)

] · C(t)
}2

(7)

where u(t) is the optimized value of battery charge (u(t) > 0) or discharge
(u(t) < 0) that must be found for each time t. Obviously u(t) must satisfy the
battery constraints discussed in Section 2 and in this case it is forced after Action
Network output to respect these limits. When the utility function is minimized
the control policy is optimal and the cost is the lowest. The squaring of the
equation is necessary to avoid that U(t) is negative.
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Fig. 2. ADHDP Scheme

The online training is based on the “Backpropagation algorithm”: the iterative
training used for both neural networks is repeated for a fixed number of epochs
and explained step by step below:

1. The Action and Critic weights are initialized before the training: with ran-
dom values [-1,1] or pre-trained with extended PSO.

2. Train Critic Network refreshing its weights using computing Critic error
(Ec), then refresh Action Network computing Action error (Ea).

3. Evaluate the system perforance computing the total cost to minimize in the
time horizon. If the cost decreases, the control policy is improving and the
new action weights are the best; if not, revert to old action weights and add
a small random perturbation. Then restart the training from Step 2.

Also this type of battery controller is an offline one because it optimizes the
utility function during all the time horizon T , since it employs forecasted data.

3.5 Self-Learning Procedure Based on ADHDP Scheme

Like in [12] this optimization procedure is based on a simplified ADHDP scheme
because only few actions can be done by the controller, in fact the battery is
limited to a ternary choice (charge, discharge or idle). In this way we consider
only a critic network in the scheme. If a network is trained correctly, whenever
power demand occurs the critic network verifies which is the action that involves
the smallest output value, so the most convenient action is chosen. The training
procedure is the following:

1. Data are collected: the action is taken randomly, the state is characterized
by the cost rate, the load profile, the battery level and the renewable energy;

2. Compute U(t) and Q(t) in order to obtain the target, since the training
is based on the mapping: {x(t − 1);u(t − 1)} −→ {U(t) + γQ(t)}, where
x(t − 1) and u(t − 1) are the previous state and control, U(t) is the actual
utility function, γ ∈ (0, 1] is a discount factor and Q(t) is the actual critic
network output;
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3. The critic network is trained with the “Levenberg-Marquardt backpropaga-
tion” algorithm;

4. Eventually the neural network can be re-trained whenever there are consis-
tent changes in the scenario.

The utility function that we want to minimize is:

U(t) = [L(t)−R(t) + u(t)] · C(t) (8)

where u(t) = u′(t)q(t) is the battery charge (u(t) > 0) or discharge (u(t) < 0),
u′(t) is the battery action (1,−1, 0) and q(t) is the charging/dicharging battery
quantity. Also in this case u(t) must satisfy the battery constraints discussed in
Section 2 and in this case it is forced to respect these limits.

Also this battery control strategy is offline and considesr the overall working
horizon T .

4 Simulated Scenario

All the simulations reported in Section 5 refer to the same scenario: a system
storage is supposed to be available, as well as renewable resources deriving from
solar energy. In Texas, in Austin city, we consider an area of 30 m2 covered by
some photovoltaic (PV) panels, whose efficiency is 30 %, and irradiation data is
taken from [13]. According to [14], the available renewable energy is computed
with P = GHI · ηpv · Apv, where GHI is the Global Horizontal Irradiance in
Wh/m2 received on a horizontal surface, ηpv is the efficiency of the PV and Apv

is the total area of the PV panel in m2. The difference between the simulations is
the considered time horizon: 48-h, 96-h and 168-h horizons are simulated in order
to test performances of each technique for the short and long-term period. In
the Tab. 1 system storage parameters used for all the simulations are reported,
and since the resolution time used is one hour, kWh and kW agree so we can
consider the same unit of measurement both for energy and power parameters.

Table 1. Storage system parameters (in kW )

SL0 SLMIN SLMAX Chrate Dhrate

5 0 10 1 1

In Tab. 1 SL0, SLMIN and SLMAX are respectively the initial, minimum and
maximum State of Charge (SoC), while Chrate and Dhrate are the maximum
charge and discharge rate of the considered storage system. The efficiency η has
been considered equal to 100%.



318 F. De Angelis et al.

5 Computer Simulations

In this study a battery management problem is considered in order to minimize
the imported energy from the main grid and increase the money saving. The cost
(expressed in dollars) related to each optimization technique for three different
time horizon (48-h, 96-h and 168-h) is reported in Tab. 2; while the money
saving, compared to an online baseline algorithm applied in the same scenario,
is given in percentage in Tab. 3. The baseline approach follows the next simple
rules for each time step:

– if the load is greater than the available renewable energy, the difference is
supplied discharging the battery (according with Dhrate in Tab. 1). If the
battery support is not enough, the needed energy to supply totally the load
is imported from the main grid;

– if the available renewable energy is greater than the load demand, the surplus
is used to charge the battery (according with Chrate in Tab. 1). If the battery
is already full or the surplus is greater than the charging rate, the amount
of energy in excess, not usable in other ways, is sold to the main grid.

Table 2. Cost comparison for energy scheduling (in $)

T LP ADP Ext PSO Self−L ADP PSO Baseline

48 h 6.46 6.48 6.49 6.63 6.97 7.12

96 h 12.80 12.84 12.86 13.08 13.74 14.09

168 h 25.08 25.16 25.22 25.75 26.04 26.79

Looking at the results reported in Tables 2-3 it is evident that the LP offline
algorithm provides the best solution, due to the linear behavior of the energy
scheduling problem. Furthermore it has no convergence problems and the compu-
tational cost is very low, but as mentioned this method can not work in real-time
and it needs forecasted data relative to the considered horizon. Whenever a lin-
ear approximation of a nonlinear model is not valid, this linear approach cannot
be used and a different method should be chosen.

Table 3. Money saving (in percentage) compared to baseline algorithm

T LP ADP Ext PSO Self−L ADP PSO

48 h 9.27% 8.99% 8.85% 6.89% 2.10%

96 h 9.21% 8.87% 8.73% 7.17% 2.55%

168 h 6.38% 6.08% 5.86% 3.88% 2.80%

Differently, PSO is an online algorithm able to work without forecasted data,
and it optimizes step by step a given utility function, with very low computa-
tional complexity. For this reason it is not possible to offer an optimal solution
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over a large time horizon, so the cost reduction is limited. Different is the case of
Extended PSO, which gives a good solution over a considered work horizon, even
if its performances degrade gradually while the horizon increases (due to the fact
that the number of unknowns increases). This offline method needs forecasted
data relative to all the temporal steps considered, and it has a computational
cost higher than the previous mentioned techniques.

As mentioned, the Extended PSO is used to pretrain the neural networks
used in ADP method. The ADP, adapting the Action and Critic weights, can
improve the performances of the Extended PSO and find a better solution with
an higher saving. This saving is remarkable especially in longer periods, where
the ADP overcomes the performances of the Extended PSO, which finds an
optimal solution over longer period because of the variables number increase.

The initial computational cost of the ADP algorithm is not very small, but
it has the advantage to adapt itself quite quickly when the time horizon and
the scenario change; in fact the optimization process can continue from the best
weights of the neural networks stored on the previous training step, and it does
not need to restart from the beginning like the other proposed methods.

Finally, the self-learning procedure based on ADHDP scheme offers a trade
off between the goodness of the solution and the computational cost: slightly
sacrificing the cost reduction, a much shorter time spent for the neural network
training can be obtained.

6 Conclusions

A comparison between different optimization techniques for the energy schedul-
ing in a smart home environment has been proposed, and an evaluation in mon-
etary terms has been given in order to highlight the performances also referred
to a baseline approach. Although all the shown methods are valid, the LP al-
gorithm offers the best solution, since the energy scheduling problem is linear.
Also the other techniques provide good solutions, and obviously they could solve
optimization problems in more complex and nonlinear systems. PSO works fine
in online configuration, but its extended offline version gives a better cost re-
duction. Both the two ADP procedures can be advantageous concerning cost re-
duction and computational cost for long-term periods. In conclusion, the choise
among these different offline and online methods depends on the linearity of the
problem, the computational cost and the availability of forecasted profiles.
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