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Abstract. An on-line prediction algorithm able to estimate, over a determined
time horizon, the solar irradiation of a specific site is considered. The learning
algorithm is based on Radial Basis Function (RBF) networks and combines the
growing criterion and the pruning strategy of the minimal resource allocating
network technique. An adaptive extended Kalman filter is used to update all the
parameters of the Neural Network (NN). The on-line learning mechanism avoids
the initial training of the NN with a large data set. The proposed solution has
been experimentally tested on a 14 kWp PhotoVoltaic (PV) plant and results are
compared to a classical RBF neural network.

Keywords: irradiation forecasting, minimal resource allocating networks, adap-
tive filtering, self learning algorithm, neural networks.

1 Introduction

Recently, energy saving and energy security have become major issues, especially in
some countries where energy deficiency not only impacts economics, society and de-
velopment of the country, but also results in the global warming. For these reasons,
interest in renewable energy is growing around the world and electric system operators
are addressing the challenge of how to integrate significant amounts of wind, solar and
other forms of variable generation into electricity grids while ensuring system reliabil-
ity. This calls for transmission additions and reinforcements, enhanced forecasting and
planning techniques for variable generation, and access to flexible grid resources includ-
ing customer participation in demand management programs, plug-in hybrid electric
vehicles and large scale electricity storage to help reliably integrate variable resources
to electricity systems. In particular, there are two tasks to integrate variable generation
and Distributed Energy Resources (DER), both locally and globally: integrating them
into the electricity network and into the energy market. One solution to decrease the
problems caused by the variable output of some distributed generation is to add energy
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storages into the systems (centralised or distributed energy storages). Forecast informa-
tion on the expected DER power production plays a primary role for the optimization
and management of those storages. Another solution is to use flexibility in electricity
consumption [17]. In fact, today time of use tariffs, for domestic use of energy, penalize
some periods of time with a higher price. Prosumers (customers and producers of energy
at the same time), knowing their forecasted energy production profile can (re)arrange
their processes to minimize costs, having great economic benefits. Since both solutions
need power production forecasts it’s a crucial task the finding of a valid and reliable
forecasting scheme. This problem has been deeply investigated in literature, in particu-
lar for what regards the forecasting and power scheduling from wind plant [15]. Also the
prediction of solar yields is becoming more and more important, especially for countries
where legislation encourages the deployment of solar power plants [16]. The irradiation
forecasted can be used as input for a PhotoVoltaic (PV) model to obtain the PV produc-
tion, or used in building energy simulation program that model energy and water use
in buildings. Depending on the application and the corresponding time scale different
approaches for modeling and forecasting solar irradiation may be appropriate and there
have been a lot of researchers engaged in the modeling of solar irradiance. It is possi-
ble to use satellite-based cloud motion vectors for cloud fields and, therefore, surface
irradiance short-term predictions with a forecast horizon of up to approximately 4 h
or irradiance models (clear-day solar radiation, half-sine, Seasonal Auto Regressive In-
tegrated Moving Average (SARIMA), WD-SARIMA, Support Vector Regression, see
[9] and reference therein). However, those methods have not been efficient in all cases
(most of them are efficient only to forecast up to 5− 10 minutes [14,3]) and contrar-
ily they may yield to noised results. A possible solution is given by Neural Networks
(NNs) which provide a nonlinear representation to implement mappings. In particular
in this paper Radial Basis Function Networks (RBFNs) have been considered for this
prediction and the system dynamics related to the irradiation have been taken into ac-
count through the RBFN input pattern that must be composed of a proper set of system
input and output samples acquired in a finite set of past time instants [11]. These NNs
have been widely used for nonlinear system identification [4,6,8,2,5] because they have
the ability both to approximate complex nonlinear mappings directly from input-output
data with a simple topological structure that avoid lengthy calculations [6] and to reveal
how learning proceeds in an explicit manner. The considered on-line learning algorithm
is based on the Minimal Resource Allocating Network (MRAN) technique [22], that
adds hidden neurons to the network based on the innovation of each new RBFN input
pattern which arrives sequentially. As stated in [22], to obtain a more parsimonious net-
work topology a pruning strategy is introduced. This strategy detects and removes as
learning progresses those hidden neurons which make little contribution to the network
output. Pruning is necessary for the prediction of the irradiation changing dynamics
because inactive hidden neurons could be present as the dynamics which caused their
creation becomes nonexistent. If an observation has no novelty then the existing pa-
rameters of the network are adjusted by an Extended Kalman Filter (EKF) [22]. In this
paper the performance of the filter is improved by an on-line adjustment of the noise
statistics obtained by a suitably defined estimation algorithm; the proposed Adaptive Ex-
tended Kalman Filter (AEKF) is able to adaptively estimating the unknown statistical
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parameters [13]. The main advantage of the proposed MRAN algorithm is that a large
data set of irradiation measurements, weather forecast, temperature for a specific lo-
cation is no longer required for the training of the NN, drastically reducing the setup
time. Another important advantage is that, due to the adaptive algorithm, some singular
seasonal weather situation can be rapidly identified and corrected. A comparison of the
performance obtained by the MRAN AEKF RBF Neural Network with respect to the
standard RBF Neural Network is presented, considering data taken from a PV plant lo-
cated in Jesi, Italy. The paper is organized as follows. The on-line prediction algorithm
is described in Section 2 and the performance of the considered NNs are discussed in
Section 3. The paper ends with comments on the performance of the proposed solution.

2 Prediction Algorithm

The approach to implement a Minimal Resource Allocating Network (MRAN) is based
on a sequential learning algorithm and an Extended Kalman Filter (EKF) [22,10]. In
particular the sequential learning algorithm adds or removes neurons on-line to the net-
work according to a given criterion [22] and an EKF is used to update the net parame-
ters. In this paper the MRAN algorithm is improved by an Adaptive Extended Kalman
Filter (AEKF) in order to take into account the time-varying noise statistics [13], as
shown in the following.

2.1 Radial Basis Function Neural Network

A RBFN with input pattern x ∈ R
m and a scalar output ŷ ∈ R implements a mapping

f : Rm → R according to

ŷ = f (x) = λ0 +
K

∑
i=1

λiφ (‖x−ci‖) (1)

where φ(·) is a given function from R
+ to R, ‖ · ‖ denotes the Euclidean norm, λi,

i = 0,1, · · ·,K are the weight parameters, ci ∈ R
m, i = 1,2, · · · ,K, are the radial basis

function centers (called also units or neurons) and K is the number of centers [6]. The
terms:

oi = λiφ (‖x−ci‖) , i = 1, · · · ,K (2)

are called the hidden unit outputs.
In this paper the RBFN is used for the prediction of the output of a dynamical system

and the system dynamics can be taken into account through the network input pattern
x, that must be composed of a proper set of system input and output samples acquired
in a finite set of past time instants [11]. In particular in this paper, the system output is
the solar irradiation (see Section 3) and the inputs are the weather forecast, the number
of day of the year, the hour of the day (see Section 3).

Theoretical investigation and practical results show that the choice of the non-linearity
φ(·), a function of the distance di between the current input x and the centre ci, does
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not significantly influence the performance of the RBFN [6]. Therefore, the following
gaussian function is considered:

φ(di) = exp
(−d2

i /β 2
i

)
, i = 1,2, · · ·,K (3)

where di = ‖x−ci‖ and the real constant βi is a scaling or “width” parameter [6].

2.2 Minimal Resource Allocating Network Algorithm

The learning process of MRAN involves allocation of new hidden units and a pruning
strategy as well as adaptation of network parameters [22]. The network starts with no
hidden units and as input-output data (x(·),y(·)) are received, some of them are used
to generate new hidden units based on a suitably defined growth criteria. In particular
at each time instant n the following three conditions are evaluated to decide if the input
x(n) should give rise to a new hidden unit:

‖e(n)‖= ‖y(n)− f (x(n))‖> E1 (4)

erms(n) =

√√
√
√

n

∑
j=n−(M−1)

e( j)2

M
> E2 (5)

d(n) = ‖x(n)−cr(n)‖> E3 (6)

where cr(n) is the centre of the hidden unit that is nearest to x(n) and M represents the
number of past network outputs to calculate the output error erms(n). The terms E1, E2

and E3 are thresholds to be suitably selected. As stated in [22], these three conditions
evaluate the novelty in the data. If all the criteria of (4)–(6) are satisfied, a new hidden
unit is added and the following parameters are associated with it:

λK+1 = e(n) (7)

cK+1 = x(n) (8)

βK+1 = α ‖x(n)−cr(n)‖ (9)

where α determines the overlap of the response of a hidden unit in the input space as
specified in [22]. If the observation (x(n),y(n)) does not satisfy the criteria of (4)–(6),
an EKF is used to update the following parameters of the network:

w =
[
λ0,λ1,c

T
1 ,β1, · · · ,λN ,c

T
N ,βN

]T
. (10)

The update equation is given by:

w(n) =w(n− 1)+k(n)e(n) (11)

where the gain vector k(n) is expressed by:

k(n) = P (n− 1)a(n)
[
σ2

v (n)+aT (n)P (n− 1)a(n)
]−1

(12)
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with a(n) the gradient vector of the function f (x(n)) (see Eq. 1) with respect to the
parameter vector w(n− 1) [22], σ2

v (n) is the variance of the measurement noise and
P (n− 1) is the error covariance matrix. This matrix is updated by:

P (n) =
[
Iz×z −k(n)aT (n)

]
P (n− 1)+σ2

η(n− 1)Iz×z (13)

where I is the identity matrix and σ2
η (n−1) is introduced to avoid that the rapid conver-

gence of the EKF algorithm prevents the model from adapting to future data [22]. The
z× z matrix P (n) is positive definite symmetric and z is the number of parameters to be
adjusted. When a new hidden neuron is allocated, the dimension of P (n) increases to:

P (n) =

(
P (n− 1) 0

0 p0Iz1×z1

)
. (14)

In (14), p0 is an estimate of the uncertainty in the initial values assigned to the param-
eters and the dimension z1 of the identity matrix I is the number of new parameters
introduced by adding the new hidden neuron. As stated in [22], to keep the RBF net-
work in a minimal size a pruning strategy removes those hidden units that contribute
little to the overall network output over a number of consecutive observations. To carry
out this pruning strategy, for every observation (x(n),y(n)) the hidden unit outputs are
computed (see Eq. (2)) and normalized with respect to the highest output:

oi(n) =
oi(n)

max{oi(n)} , i = 1, · · · ,K. (15)

The hidden units for which the normalized output (15) is less than a threshold δ for ξ
consecutive observations are removed and the dimensionality of all the related matrices
are adjusted to suit the reduced network [22].

The weakness of the above algorithm is that all the parameters of the network, in-
cluding all the centers of the hidden neurons, widths and weights, have to be update at
every step; the size of the matrices to be update becomes large as the number of hidden
neurons increases. Therefore, for the real-time implementation of the considered algo-
rithm, it could be necessary to reduce the online computation effort and to this purpose
a “winner neuron” strategy can be incorporate in the learning algorithm as proposed
in [22]. The “winner neuron” is defined as the neuron in the network that is closest
(in some norm sense) to the current input data. The criteria for adding and pruning the
hidden neurons are all the same as in the above algorithm; the difference, in the “win-
ner neuron” strategy, is that if the observation (x(·),y(·)) does not meet the criteria to
add a new hidden neuron (see Eqs. (4)–(6)), only the network parameters related to the
selected “winner neuron” are updated by the EKF algorithm [22].

The EKF can be implemented once estimates of σ2
η (n) and σ2

v (n) are available. In
general, a complete and reliable information about these estimates is not available; on
the other hand it is well known how poor knowledge of noise statistics may seriously
degrade the Kalman filter performance. This problem is here dealt with introducing an
adaptive adjustment mechanism of σ2

η(n) and σ2
v (n) values in the EKF equations.
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2.3 Adaptive Estimation of σ2
η(n) and σ2

v (n)

A considerable amount of research has been performed on the adaptive Kalman filtering
[13,23], but in practice it is often necessary to redesign the adaptive filtering scheme ac-
cording to the particular characteristics of the faced problem. In the adaptive procedure
here proposed, under proper assumptions given in [13], it is possible to define a simple
and efficient estimation algorithm based on the condition of consistency, at each step,
between the residual e(n) and its predicted statistic E{e2(n)}. Imposing such a condi-
tion, one-stage estimates σ̂2

η(n−1) and σ̂2
v (n), of σ2

η(n−1) and σ2
v (n), respectively, are

obtained at each step. To increase their significance, the one-stage estimates σ̂2
η (n− 1)

and σ̂2
v (n) are average obtaining the relative smoothed version ¯̂σ2

η(n− 1) and ¯̂σ2
v (n).

After proper calculations [13], the following recursive form of estimates ¯̂σ2
η (n−1) and

¯̂σ2
v (n) is found:

¯̂σ2
η (n− 1) = ¯̂σ2

η (n− 2)+
1

lη + 1
[σ̂2

η(n− 2)− σ̂2
η(n− (lη + 1))] (16)

¯̂σ2
v (n) = ¯̂σ2

v (n− 1)+
1

lv + 1
(σ̂2

v (n)− σ̂2
v (n− lv)) (17)

where:

– σ̂2
η(n− 1) = max{(a(n)aT (n))−1[e(n)2 −a(n)P (n− 1)aT(n)− ¯̂σ2

v (n)],0}
– σ̂2

v (n) = max{e2(n)− [a(n)P (n− 1)aT(n)+a(n) ¯̂σ2
η(n− 1)IaT (n)],0}

– lη and lv are the number of one-stage estimates ¯̂σ2
η (n− 1) and ¯̂σ2

v (n) respectively,
yielding the smoothed estimates.

Parameters lη and lv of estimators (16) and (17) are chosen on the basis of two antag-
onist considerations: low values would produce noise estimators which are not statis-
tically significant, large values would produce estimators which are scarcely sensitive
to possible rapid fluctuations of the true σ2

η (n− 1) and σ2
v (n) [13]. In other words, the

one-stage estimates are made by averaging past samples in order to increase the statis-
tical significance of estimators; if the samples are too far the filter has a low reactivity,
while if the samples are too near estimators have a low statistical significance [13].
During filter initialization, the starting values σ̂2

η (0) and σ̂2
v (0) in Eqs. (16) and (17)

respectively, must be chosen on the basis of the a priori available information. In case
of lack of such information, a large value of P(0,0) is useful to prevent divergence.

The MRAN prediction algorithm [22] enhanced by the AEKF, called MRANAEKF
algorithm, is summarized as follow:

1. For each observation (x(n),y(n)) do: compute the overall network output: ŷ(n) =

f (x(n)) = λ0 +
K
∑

i=1
λiφ (‖x(n)−ci‖) where K is the number of hidden units;

2. Calculate the parameters required by the growth criterion:
- ‖e(n)‖= ‖y(n)− f (x(n))‖
- erms(n) =

√
n
∑

j=n−(M−1)

e( j)2

M
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- d(n) = ‖x(n)−cr(n)‖
3. Apply the criterion for adding a new hidden unit:

if
‖e(n)‖ > E1 and erms(n) > E2 and d(n) > E3 allocate a new hidden unit K + 1
with:

- λK+1 = e(n)
- cK+1 = x(n)
- βK+1 = α ‖x(n)−cr(n)‖

else
- adapt the measurement noise coefficient:

¯̂σ2
v (n) = ¯̂σ2

v (n− 1)+ 1
lv+1 (σ̂

2
v (n)− σ̂2

v (n− lv))
- tune the network parameters:
w(n) =w(n− 1)+k(n)e(n)

- adapt the process noise coefficient:
¯̂σ2

η (n− 1) = ¯̂σ2
η (n− 2)+ 1

lη+1 [σ̂
2
η(n− 2)− σ̂2

η(n− (lη + 1))]
- update the error covariance matrix:
P (n) =

[
Iz×z −k(n)aT (n)

]
P (n− 1)+σ2

η(n− 1)Iz×z

end
4. Check the criterion to prune hidden units:

- compute the hidden unit outputs:
oi(n) = λiφ (‖x(n)−ci‖) , i = 1, · · · ,K

- compute the normalized outputs:
oi(n) =

oi(n)
max{oi(n)} , i = 1, · · · ,K

- if oi(·)< δ for ξ consecutive observations then
prune the ith hidden unit and reduce the dimensionality of the related matrices

end
5. n = n+ 1 and go to step 1.

3 Neural Network Based Irradiation Forecasting

Tests are based on data acquired from January 2011 to December 2011 during PV plant
standard working. The considered 14 kWp PV plant, equipped with polysilicon solar
panels south oriented and tilt angle 27 deg., is located in Jesi (AN), Italy. It is composed
by 8 strings of Renergies 220P/220 polysilicon panels [19] where each string is con-
nected to a SMA Sunny Boy 1700IT solar inverter [21]. A lithium battery pack which is
composed by the series of two sub-module with 80 ThunderSky modules 40 Ah, a Bat-
tery Management System (BMS) and a battery charger for each module [24]. A solar
inverter (model SIAC soleil 10kW) is connected to this pack [20]. All communication
is done through the TCP/IP protocol, using serial to TCP/IP converters. All devices are
connected to a server, where it is located the software to manage the whole system.

For the above PV plant, two different situations are considered: in the first one the
proposed algorithm is tested without a pre-trained net; this situation can occur if the
solar irradiation has to be predicted on a plant without previous information on it. In
the second situation, the MRANAEKF learning algorithm starts with a pre-trained net
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Fig. 1. Evolution of hidden neurons due to growing and pruning for the considered data set (Year
2011). The continuous red line is the pre-trained MRANAEKF network while the dashed blue
line is the no pre-trained MRANAEKF network. The first data window is from day 7 (144th
sample) to day 9 (216th sample); the second data window is from day 169 (4032th sample) to
day 171 (4106th sample).

based on few historical information found on the WEB such as solar irradiation pro-
file of clear sky days and cloudy days for the specified location, panel orientation and
tilting. The information have been taken directly from the website of PVGIS [18]. This
is a common operating condition, when no sensors and measures are available for the
plant before the forecast starts. To measure the performance of the proposed algorithm,
the Root Mean Square of the Error e(·) (RMSE) and its Standard Deviation (SD) have
been calculated. Only hours with daylight (irradiance greater than zero) are considered
for the calculation of the RMSE; night values with no irradiance are excluded from the
evaluation. The set of experimental data is composed of 8000 pairs of input and out-
put samples. Sampling time is 1h and the data have been normalized, between 0 and
1, in order to have the same range. In particular the set of experimental data is given
by the pairs (x(n),y(n)), n = 1,2, . . . where x(n) is composed by the hourly weather
forecast given by sunny, clean, partly cloud and overcast sky conditions taken on the
WEB [12,1], the number of day of the year, the hour of the day, the air temperature
and y(·) is the solar irradiation measured by the SMA Sunny Sensorbox [21]. The con-
sidered algorithm requires careful selection of the threshold parameters E1, E2, E3 and
of parameter M, as defined in Eqs. (4)–(6), which control the growth characteristics of
the network; i.e. if small thresholds are chosen more units are added to the NN. The
parameters δ and ξ control the pruning strategy (Eq. (15)); it is important to take into
account the system non stationarity to select these parameters. In other words, slowly
dynamic variations imply a bigger δ and a smaller ξ . The parameters α , p0, σ2

v (0)
and σ2

η (0) related to the AEKF algorithm used to update the network parameters of
Eq. (10) are chosen by trial and error. In the considered experimental tests the numeric
values of these parameters are selected, as: E1 = 0.01, E2 = 0.02, E3 = 0.4, M = 50,
δ = 0.0005, ξ = 2000, α = 1.2, p0 = 0.2, σ2

v (0) = 0.03, σ2
η (0) = 0.03. Samples of

the performed prediction tests are given in Fig. 1 through 4. In particular the Fig. 1
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Fig. 2. First data window: day 7 to 9 of 2011 (7–9 January)

Fig. 3. Second data window: day 169 to 171 of 2011 (19–21 June)

shows the hidden neurons evolution history for the MRANAEKF algorithm as it learns
sequentially from data. In this figure two data windows have been highlighted to com-
pare the performance of the MRANAEKF RBF NN with respect to a classical RBF NN
algorithm. As will be showed in Figs. 2 and 3, the first data window is relative to the
starting learning period of the MRANAEKF (days 7− 9) and the second data window
is relative to the “steady state” operation (days 169−171). Results are compared with a
previously trained classical RBF network with the same inputs and output. The training
data set of the classical RBF network is composed by 5000 pairs of input-output and
it is relative to the last 20 days of each month of 2010 as described in [7]. A sample
of the performed tests is shown in Figs. 2 and 3, where continuous red line represents
the irradiation predicted by the pre-trained MRANAEKF, the dashed blue line is the
irradiation predicted by the no pre-trained MRANAEKF network, the dotted black line
is the irradiation predicted by the classical RBF NN and the continuous green line is
the measured irradiation. Results for the data set relative to the year 2011 have been
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Fig. 4. Sample covariance of the residuals obtained by the prediction performed by the pre-trained
MRANAEKF network.

Table 1. Comparison of prediction results (values are in [W/m2]) of the MRANAEKF with (a)
and without (b) pre-training and the classical fixed RBF network. The considered whole data set
is relative to the year 2011. Data windows are highlighted in Fig. 1.

MRANAEKF (a) MRANAEKF (b) RBF

DATA RMSE SD RMSE SD RMSE SD

Whole data set 65.2 60.2 70.5 68.2 75.1 74.2
First data window 71.1 69.8 76.2 75.2 81.2 79.7

Second data window 50.4 48.3 55.9 53.4 59.3 57.1

summarized in Table 1. The network pre-trained with basic information on PV plant
design and historical data available on the WEB [18] has shown good capability to gen-
eralize the prediction of the irradiation of a specific plant in the first two days of working
and, with the growing on the net, the forecast becomes more accurate; the net starting
without neurons (no pre-trained) needs up to 4 days to show a good performance. Both
networks have shown better performance with respect to the classical RBF NN. The
whiteness test on the sample covariance of the prediction errors has been used for the
network validation. A sample is shown in Fig. 4.

4 Concluding Remarks

In this paper a minimal resource allocating network algorithm has been analyzed for
on-line hourly site-specific irradiance forecast. This algorithm increases the number of
RBFN hidden neurons depending on the input-output data and an adaptive extended
Kalman filter is used to update all the parameters of the network. A pruning strategy
is also considered to remove those hidden units which end up to give a contribution to
the network output. Two ways of use the MRANAEKF algorithm have been proposed:
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with a pre-trained net based only on historical information found on the WEB and with
a no pre-trained network. The results indicate that both situations give networks with
better prediction accuracy with respect to a classical fixed RBF NN previously trained
with a large data set. As future developments, the authors are actually considering the
possibility to integrate a “winner neuron” strategy to minimize the computational effort
of the overall algorithmic architecture. This will make the developed system even more
appealing from a real-time implementation perspective.
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