
Active Power Losses Constrained Optimization

in Smart Grids by Genetic Algorithms

Gian Luca Storti1, Francesca Possemato1, Maurizio Paschero1,
Silvio Alessandroni2, Antonello Rizzi1, and Fabio Massimo Frattale Mascioli1

1 University of Rome “La Sapienza”, Information Engineering,
Electronics and Telecommunications Department,
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Abstract. In this paper the problem of the minimization of active power
losses in a real Smart Grid located in the area of Rome is faced by defining
and solving a suited multi-objective optimization problem. It is consid-
ered a portion of the ACEA Distribuzione S.p.A. network which presents
backflow of active power for 20% of the annual operative time. The net-
work taken into consideration includes about 100 nodes, 25 km of MV
lines, three feeders and three distributed energy sources (two biogas gen-
erators and one photovoltaic plant). The grid has been accurately mod-
eled and simulated in the phasor domain by Matlab/Simulink, relying on
the SimPowerSystems ToolBox, following a Multi-Level Hierarchical and
Modular approach. It is faced the problem of finding the optimal network
parameters that minimize the total active power losses in the network,
without violating operative constraints on voltages and currents. To this
aim it is adopted a genetic algorithm, defining a suited fitness function.
Tests have been performed by feeding the simulation environment with
real data concerning dissipated and generated active and reactive power
values. First results are encouraging and show that the proposed opti-
mization technique can be adopted as the core of a hierarchical Smart
Grid control system.

1 Introduction

The wide diffusion of Distributed Generation (DG) represents a possible devel-
opment of modern electrical distribution systems that can evolve towards Smart
Grids (SG). A rigorous definition of the term “Smart Grid” is somewhat diffi-
cult. In fact, due to the fast evolution of the technology, it is quite hard to mark
out a sharp boundary including all the aspects associated with this terminology.
A widely adopted definition states that a SG is an electrical network able to
perform an intelligent integration of all the users connected to it (i.e. producers
and consumers), with the purpose of distributing the electrical power in a safe,
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efficient and sustainable fashion. Tautly, it can be stated that a SG is a new
generation electrical network where smartness, dynamicity, safety and reliability
are achieved through the use of Information Communication Technologies (ICT)
[4,7]. In fact, ICT can be considered an important support to the migration of
traditional electrical infrastructure toward SG. Although the size of the actual
electric networks has been improved in order to follow the always increasing
power requests, this growth has been achieved without a global planning final-
ized to the optimization of the energy transportation. Moreover the backbones of
the existing infrastructures have been built when the location of the main power
users, such as industries, were much different from the actual configurations and
when the DG was not even a theoretical concept. For these reasons distribu-
tion networks have been implemented in a hierarchic fashion. Electric power is
distributed to the final user through an unidirectional transportation infrastruc-
ture. This configuration implies a considerable transportation consumption due
to the long distance between producers and consumers. Finally, the available
electric distribution infrastructures are inadequate to the future requirements.
The main problems concerning actual networks are listed below:

– Losses due to long distance between producers and users
– Not optimal management of energetic flows
– Inefficient use of DG related to renewable energy generators
– Lag in the reaction time in case of blackout
– Incomplete and inaccurate knowledge on the instantaneous status of the

infrastructure

As stated before, most of these problems can be solved by improving the actual
infrastructures with the aid of ICT. More precisely a large number of sensors
must be installed on the network in order to obtain a complete information on the
instantaneous status of the infrastructure. This information can be used as the
input of an optimization control algorithm capable to determine in real time the
best network configuration in order to satisfy the instantaneous power request
and to drive suitable actuators in order to achieve the optimal configuration.
DGs can impact the bus voltage, line power flow, short-circuit current and power
network reliability, so that it is very important in SG design and realization to
be able to control DGs [3,5].

In the literature there is an increasing number of publications concerning
the use of computational intelligence (CI) in SG [9,10]. Considering a SG as a
complex, dynamic, nonlinear and stochastic system, CI can provide support for
designing safer and more efficient control systems, in line with emerging technolo-
gies. From the point of view of the CI, the SG managing and control is a highly
complex problem given the non-linearity and the dynamic of the system, as well
as the heterogeneity of the elements that compose it (generators, transformers,
transmission lines, time-variant loads, telecommunications system, market reg-
ulations). As well know, the main feature of control systems is the ability to
run in real-time (unless the system is simulated). Neural and fuzzy approaches
seems to be the main candidates, given the universality they offer to model any
system. The distinction, considering a large-scale vision of a SG as a System
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of Systems (SoS), is between Distributed Local and Wide-Area Monitoring and
Control. In the first case neural techniques are used for learning and tracing the
system dynamics in order to implement operations such as constraints and oper-
ating points settings. Neural algorithms based on Multilayer Perceptron (MLP)
and Radial Basis Functions (RBFs) allow to control elements such as turbine
generators, solar and wind installations or transmission lines. Techniques known
as Artificial Immune System (AIS) allow adaptive control strategies without the
need for off-line learning. The ability to control a power system depends on the
quality of sensors and the reliability of communication infrastructures. Errors
and failures in these systems may easily cause incorrect control schemes with
serious consequences. To this aim Swarm Intelligence techniques can be used to
recover data from faulty sensors.

Among the variety of techniques offered by CI the use of Genetic Algorithms
(GA) seems to be a promising technique. In [6] an adaptive genetic algorithm
is used to establish the best distributed generation siting and sizing on a dis-
tribution network, showing that the optimal siting and sizing of DG units can
effectively reduce the network loss and improve the system voltage level. In [8]
it is shown that GAs can deal well with the stochastic nature of the distribution
grid and can be successfully used as an optimization method for solving the
control problems. Beside theoretical studies it is important to have the opportu-
nity to validate the designed optimization strategy on real data. Moving in this
direction, a cooperation with ACEA Distribuzione S.p.A. [1] has been engaged
with the aim to design a control strategy for the SG under development in the
west area of Rome. The project concerning the upgrade of the actual network to
up-to-date SG technology fulfils the requirements imposed by AEEG resolution
39/10 [2]. A complete simulator of the considered real network has been im-
plemented; it is described in Sec. 2. In Sec. 3 the multi-objectives optimization
problem is formulated and the use of a GA is proposed in order to solve it. In
Sec. 4 it is shown how the proposed control strategy can be successfully used to
modulate the power fed into the network by DGs in order to reduce active power
losses taking into account suited constraints on voltages and currents levels, as
well as the available working points of DGs. Finally, conclusions and works in
progress are discussed in Sec. 5.

2 Network Simulation

The network under consideration is located in the west area of Rome. It is
constituted of about 100 nodes and it is made up of:

– N.3 feeders at 20 kV
– N.2 transformers High Voltage/Middle Voltage (HV/MV)
– N.2 biogas generators
– N.1 photovoltaic generator
– 25 km of MV lines
– N.11 three phase breakers
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The generators and the loads are driven by 2 inputs: Active Power (P ) and
Reactive Power (Q). The real behaviour of the SG can be simulated by means of
P and Q yearly power profile. Moreover, in order to reproduce the possibility to
supply each MV feeder from a different substation and therefore to change the
topology of the network, a boundary switch (Breaker) is placed at the beginning
and at the end of each line.

The proposed simulator has been implemented following a Multi-Level Hier-
archical and Modular approach. The Multi-Level Hierarchical design improves,
through the definition of suitable I/O interfaces, the readability of whole SG
simulation model; the Modular approach allows to change, in a simple way, all
the parameters of each component models. The structure of the SG simulator
is implemented using the MatLab/Simulink SimPowerSystems ToolBox, which
allows to rapidly and easily build models that simulate power systems. The SG
simulation model is made up of 2 macro blocks: the Input Network and the Elec-
trical Network. The interconnection of the blocks constituting the simulator are
shown in Fig. 1. The first macro block, Input Network, is fed by the profiles of
P and Q of all loads and generators coming from real measures. They have been
saved in different Excel files, one for each feeder. These power profiles represent
real data acquired with a time step of 1 hour. In the second macro block, Electri-
cal Network, there are the HV, the MV and the LV networks, together with the
State Breakers block, that, through several flags, sets the topology of the SG. In
the HV network there are 2 transformers with 150 kV at the primary winding
and 20 kV at the secondary winding; in the MV network the lines, the loads
and the photovoltaic plant are modeled. In the LV network there are the two
biogas generators. The lines are modeled using an equivalent model, given by
MatLab/Simulink, based on lumped parameters modeling approach (Π model);
the transformers are modeled using a block, also provided by MatLab/Simulink,
called Three-Phase Transformer Inductance Matrix Type (Two Windings); the

Fig. 1. Interconnection among simulator sub blocks
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power driven loads and generators are modeled using the same custom block.
This block is essentially a voltage controlled current source, with I = (2P/V )∗

where the value of P is read from the corresponding data file and the voltage V
is measured at the three phase port of the block modeling the load (∗ represents
the conjugate operator). The SimPowerSystem of MatLab/Simulink allows to
use, for three phase network simulation, three solution methods: Continuous,
Discrete and Phasor. Since the simulation sampling time is equal to one hour,
it is possible to consider exhausted any transient response. For this reason the
electrical network analysis has been carried out with the Phasor method.

3 Optimization Procedure

In this section it is described how the considered active power losses optimiza-
tion problem can be formulated in terms of a multi-objective optimization prob-
lem and solved by adopting a suitable evolutionary computation approach. The
faced problem consists in finding the optimal network parameters that mini-
mize the value of the total active power losses in the network, considering the
constraints imposed on voltages and currents due to safety or quality of ser-
vice issues. Consider a linear space K, an admissible set E and a cost function
J : E → R that associates a real number to each element in E. The problem
consists in minimizing the function J in E ⊂ R

ν , where ν is the dimension of
the space K. The admissible set E is defined through the inequality constraints
gi(k) ≤ 0 i = 1, ..,m, where m is the number of constraints of the problem.
Without loss of generality it has been considered possible to measure the voltage
V(k) and the current I(k) at all locations in the network in order to compute the
cost function. In this paper it is assumed that it is possible to control both the
active and the reactive power of each biogas generator in a given range though a
couple of parameters. More precisely, the ratio k between the nominal power and
the active power and the phase φ. Moreover it is assumed that the active power
of the photovoltaic generator can be modulated in a given range. Summarizing,
the dimension ν of the parameters vector k = {k1, k2, k3, φ1, φ2} has been set
equal to 5.

Let’s define:

A =
{
k ⊂ R

5 : 0.75 ≤ k1, k2, k3 ≤ 1,−0.2 ≤ φ1, φ2 ≤ 0.45
}

(1)

B =
{
k ⊂ R

5 : Vj(k)− 1.1Vnomj ≤ 0, 0.9Vnomj − Vj(k) ≤ 0, j = 1, .., N
}

(2)
in which N represents the number of nodes of the network and Vnomj is the
nominal value of the voltage of the j-th node,

C =
{
k ⊂ R

5 : |Ij(k)| − Imaxj ≤ 0, j = 1, .., R
}

(3)

in which R represents the number of branches and Imaxj is the maximum current
allowed in the j-th wire,

D =
{
k ⊂ R

5 : k1 < cos(φ1), k2 < cos(φ2)
}

(4)
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The set D has been defined analysing the Capability Curve of biogas generators
that establishes safe operational limits. A capability curve is defined as a curve
which shows boundaries of the area on the kW-kVar diagram within which a
machine may be operated continuously.

Now, it is possible to define the admissible set E as follows:

E = A ∩B ∩ C ∩D (5)

The cost function J has been defined as follows:

J(k) =
Ploss(k)

Pgen(k)
=

Pgen(k)− Pload

Pgen(k)
(6)

where Pgen(k) is the total power generated by all sources, Pload is the total
power absorbed by the loads, and their difference Ploss(k) represents the total
losses in the network.

Given a particular determination k of the vector k, the value returned by (6)
is equal to the normalized total active power losses in the network, and can be
considered as a measure of how well k solves the optimization problem. Since
it is not practically possible do derive expression (6) in closed form as a func-
tion of k, in this paper a genetic algorithm (derivative free approach) has been
employed. A GA is a search method based on the principles of natural selection
and evolution which selects individuals with high adaptation to environmental
conditions as candidates to survive and being part of the following generation
of individuals. Moreover, satisfying constraints (5) and minimizing expression
(6) are two conflicting objectives, since active power loss is minimized when the
voltage across the line is high. Consequently, the constrained optimization prob-
lem can be faced by defining a multi-objective optimization, by relying on the
following fitness function:

F (k) = αJ(k) + (1− α)Γ (k) (7)

where α is a coefficient between 0 and 1 and it is used to adjust the relative weight
of the power losses term J(k) over the constraints term Γ (k). The function Γ (k)
is defined as follows:

Γ (k) = βΓNLC(k) + (1 − β)
[
γΓI(k) + (1− γ)ΓV (k)

]
(8)

in which β and γ are real numbers between 0 and 1. The function ΓV (k) is a
measure of how much the constraints on voltages are violated, ΓI(k) evaluates
the violation of the constraints on currents and ΓNLC(k) is a measure of the
violation of the nonlinear constraints defined in (4). The parameter β is used to
assign the relative weight of the nonlinear constraints violation with respect to
the term measuring how much voltages and currents are far from the admissible
range. In the same way, the γ parameter adjusts the relative weight of the viola-
tion of current constraints with respect to the term related to voltages violation.
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4 Tests and Results

In order to test the effectiveness of the proposed optimization procedure, the first
generation of the genetic algorithm has been generated in a random way, in the
domain A of the network parameters defined in (1). This initialization does not
necessarily guarantee the satisfaction of the constraints defined in (2), (3) and
(4), considered in the definition of the chosen fitness function. In this way, it is
possible to verify if the optimization algorithm is able to restore the network in
a safe configuration satisfying all the constraints, possibly minimizing the total
active power losses. For this test the behaviour of the control system has been
simulated and validated in a single time sample (one hour). All the simulations
have been realized using the Matlab Global Optimization Toolbox together with
the developed network simulator.

Setting the nominal voltage for the low voltage lines (LV) to Vnom = 400 V and
for the medium voltage lines (MV) to Vnom = 20800 V, the voltages constraints
on the nodes of the network are expressed as follows:

360 V < VLV < 440 V, 18710 V < VMV < 22880 V (9)

Moreover, considering IMAX = 270 A as the maximum allowed current in the
network breakers and I as the current flowing in a given network branch, it is
possible to define the currents constraints as follows:

|I| < 270 A (10)

Without loss of generality, voltages and currents have been measured only in
some critical nodes and branches taken into consideration on the basis of the
network topology. Four runs of the genetic algorithm have been done. The pro-
posed solution represents the mean value of the results obtained in all the differ-
ent simulations. The number of generations has been set to 55 and the number
of individuals for each generation has been set to 10. A few comments can be
made on the results showed in Fig. 2. First of all it should be noted that the GA
produces 50 generations instead of 55 due to early convergence to a satisfying
solution. In addition, it can be seen that the trend of the normalized voltage
level remains almost constant into allowed ranges (Fig. 2 part (a)). Moreover
the GA reduces the current level of the first and the second feeder (Fig. 2 parts
(b) and (c)) approximately by 2% and 30% respectively. The decrease of the
current level on the branches induces a reduction of the power loss as can be
seen in Fig. 2 part (d). After 30 generations the trend of the power loss becomes
almost stable and the overall decrease is approximately 2% of its original value.
Looking at Fig. 3 it can be seen that the action performed by the GA is to
increase the power contribution associated with all the DGs. In fact, the gains
k1, k2 and k3 of all generators and the power factors cos(φ1) and cos(φ2) of the
two biogas generators tend to unity, trying to achieve the maximum injection of
active power in the network (see Fig. 3 part (a), (b), (c), (d) and (e)), reducing
in this way the power request from the main grid. Finally in Fig. 3 (f) it can be
seen the trend of the fitness function, that decreases with the increasing of the
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Fig. 2. Evolution of the normalized voltage and current levels and power losses versus
GA generations
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Fig. 3. Evolution of GA parameters and fitness function versus GA generations

numbers of generations. Comparing Table 1 and 2 it is possible to figure out the
percentage of active power absorbed (AAP), capacitive reactive power (CRP),
active power generated (GAP) and inductive reactive power (IRP) generated by
the loads, distributed generators, network and balance nodes in the initial and
final configuration of the network. Some relevant comments can be made about
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Table 1. Percentage of the distribution of power in the Loads, Distributed Generators,
Network and at the Balance Nodes in the initial configuration

Loads Distributed Generators Balance Nodes Network

AAP 0,9955 0,0000 0,0000 0,0045

GAP 0,0000 0,1467 0,8533 0,0000

IRP 0.9914 0.0086 0,0000 0,0000

CRP 0,0000 0,0000 0,7266 0,2734

Table 2. Percentage of the distribution of power in the Loads, Distributed Generators,
Network and at the Balance Nodes in the final configuration

Loads Distributed Generators Balance Nodes Network

AAP 0,9956 0,0000 0,0000 0,0044

GAP 0,0000 0,1717 0,8283 0,0000

IRP 1,0000 0,0000 0,0000 0,0000

CRP 0,0000 0,0161 0,7077 0,2762

the absorbed and generated active power in both conditions. In the non con-
trolled configuration the active power is generated by 15% from DGs and 85%
from balance nodes, while the network absorbs about 0.45%. In the optimized
configuration, the active power is generated by 17% from DGs and 83% from
balance nodes, while the network absorbs about 0.44%. Although the reduction
of power dissipation of the network is small, it can be seen an increase in active
power generated by the DGs, so it can be concluded that the evolutionary op-
timization procedure tries to minimize the total losses by decreasing the power
requests from the main grid (balance nodes), while increasing the power fraction
produced by DGs which, in the considered network, are closest to loads. Con-
sequently, the distribution paths on the network from power sources to loads
are shortened, decreasing the total active power dissipated on electrical lines.
Moreover, in the initial configuration the DGs deliver inductive reactive power,
while, at the end of the simulation, they deliver capacitive reactive power; this
is a further aspect that helps to reduce the power losses on the overall network.

5 Conclusions

In this paper it has been proposed a control system able to reduce power losses
in the ACEA Distribuzione S.p.A. SG in the west aera of Rome by modulating
the DGs active and reactive powers, while considering suitable constraints on
voltages and currents imposed by safety and quality of service issues. Moreover
the constraints imposed by safe operational limits established by the Capability
Curve of biogas generators have been considered. The network has been accu-
rately modelled and simulated relying on the MatLab/Simulink SimPowerSys-
tems ToolBox, which allows to rapidly and easily build models to simulate power
systems. The optimization problem has been faced as a multi-objective one, since
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power losses minimization and constraints satisfaction are conflicting objectives.
Since it is not practically possible to derive in closed form the expression of the
power losses in terms of system parameters, a derivative free optimization proce-
dure based on a genetic algorithm has been adopted. First results show that the
proposed control strategy is able to reduce power losses and to achieve admissible
voltage and current levels according to predefined constraints. Future works will
concern on evaluating different derivative free optimization techniques, such as
Particle Swarm Optimization. Moreover, a Thyristor Voltage Regulator (TVR)
and Li-Po Energy Storage System (ESS) will be soon installed in the considered
electrical network. An advanced control system able to deal with these two new
components is currently under study.
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