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Abstract. This paper investigates the use of feedforward neural net-
works for testing the weak form market efficiency. In contrast to ap-
proaches that compare out-of-sample predictions of non-linear models to
those generated by the random walk model, we directly focus on testing
for unpredictability by considering the null hypothesis that a given set
of past lags has no effect on current returns. To avoid the data-snooping
problem the testing procedure is based on the StepM approach in order
to control the familiwise error rate. The procedure is used to test for
predictive power in FTSE-MIB index of the italian stock market.

Keywords: Random walk, Market efficiency, Multiple testing scheme,
Resampling methods.

1 Introduction and Background

Efficiency of financial markets is certainly one of the most controversial issue in
finance. Volatility, predictability, speculation and anomalies in financial markets
are also related to the efficiency issue and are all interdependent. The efficient
market hypothesis is a concept of informational efficiency and refers to markets
ability to process information into prices. The idea at the bases of the efficient
market hypothesis (EMH) emerges already at 1900 but a formal definition of
market efficiency is due to Fama who distinguish three forms of efficiency: weak
form, semi-strong form and strong form. Weak form of efficiency assumes that
actual price of an asset incorporates the past prices information. Thus, it will
be not possible for investors, using past prices, to discover undervalued stocks
and develop strategies to systematically earn abnormal returns. The semi-strong
form hypothesis assumes that all publicly available information is incorporated
in the price of the asset and investors cannot take advantage of this information,
winning abnormal returns. Finally, strong form of market efficiency hypothesis
is more restrictive than the previous two, maintaining that all information, pub-
lic or private, is incorporated in the current stock prices and investors cannot
systematically earn abnormal returns. From that time on, various extensions
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of Fama’s definition were proposed to include different levels of information and
transaction costs. Anyway, even if there are various critics towards Fama’s defini-
tion, it is still the most commonly used standard and benchmark for determining
market efficiency.

In the following we will focus on the weak form efficiency. Historically, there
was a very close link between EMH and the random-walk model and martingale.
An orthogonality condition where all versions of the random walk and martin-
gales hypotheses are captured is the following ([2]):

cov[f(rt), g(rt+k)] = 0 (1)

where f(·) and g(·) are two arbitrary functions, rt and rt+k are asset’s returns at t
and t+k (k �= 0). For example, if (1) holds when f(·) and g(·) are linear functions,
then returns are serially uncorrelated. Alternatively, if f(·) is unrestrected but
g(·) is restricted to be linear, the (1) is equivalent to a martingale hypothesis.
Finally, if (1) holds for all f(·) and g(·) the returns are mutually independent.

A large body of literature has accumulated in order to test market efficiency
using different approaches based on RW and martingale hypotheses (see, for ex-
ample, [17] or [12] for a nice survey). Further, results are often puzzling since
they contradict the conventional wisdom that all developed markets should be
more efficient in incorporating information into prices than those markets from
the developing economies. For example, Malkiel in [16] justifies return ”anoma-
lies” in the major stock markets as chance results that tend to disappear in the
long term with a reasonable change in methodology, hence supporting the view
that mature capital markets are generally efficient. In contrast, Shiller in [20]
has to distance himself from the ”presumption” that financial markets always
work well and that price changes always reflect genuine information.

Anyway, evidence against the random walk hypothesis (RWH) for stock re-
turns in the capital markets is often shown (see, for example, [3], [14], [15] and
references therein). Failure of models based on linear time series techniques to
deliver superior forecasts to the simple random walk model has forced researchers
to use various non-linear techniques, such as Engle test, Tsay test, Hinich bis-
pectrum test, Lyapunov exponent test. Also in such a literature the market
efficiency confirms to be a changelling issue in finance (see, for example, [1]).

The aim of this paper is to test the weak form market efficient hypothesis for
the italian stock exchange. According to the evidence of non-linear patterns in
stock markets, we propose a neural network approach for characterizing and ana-
lyzing the closing price of the FTSE-MIB index, from 1/12/2003 to 23/03/2012.

In particular, we focus on a multiple testing scheme in which the null hypothe-
sis specifies that information contained in past returns cannot be used to predict
the current returns. To avoid the data-snooping problem and in order to control
the familiwise error rate, the testing procedure uses a multiple testing scheme.
Given the probabilistic complexity of the neural network model, a resampling
technique is proposed to calibrate the test. The procedure is used to test for
predictive power in FTSE-MIB index of the italian stock market.

The paper is organized as follows. In Section 2 we describe the structure of
the data generating process and the neural network model employed. In Section
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3 we propose a testing scheme for the weak form market efficiency based on a
multiple testing scheme. In Section 4 we discuss the application of the proposed
procedure to Italian stock market. Some concluding remarks close the paper.

2 Neural Network Modelling for Financial Returns

Following a standard practice, we construct return time series as Yt = ∇ log St,
where St is the stock index at time t, in order to avoid potential problems
associated with estimation of nonstationary regression functions. The model is
defined as:

Yt = g (Yt−1, Yt−2, . . . , Yt−d) + εt (2)

where g(·) is a non-linear function and εt is zero-mean error term with finite
variance. The unknown function g(·) can be estimated by using a feedforward
neural network with d input neurons:

f (y,w) = w00 +

r∑

j=1

w0jψ
(
ỹTw1j

)
(3)

where w ≡ (
w00, w01, . . . w0r,w

T
11, . . . ,w

T
1r

)T
is a r(d+ 1)+ 1 vector of network

weights, w ∈ W with W being a compact subset of Rr(d+1)+1 and ỹ ≡ (
1,yT

)T

is the input vector augmented by a bias component 1. The network (3) has d
input neurons, r neurons in the hidden layer and the identity function for the
output layer. The (fixed) hidden unit activation function ψ is chosen in such
a way that f (x, ·) : W → R is continuous for each x in the support of the
explanatory variables and f (·,w) : Rd → R is measurable for each w in W.

Single hidden layer feedforward neural networks have a very flexible non-linear
functional form. The activation functions can be chosen quite arbitrarily and it
can be shown that they can arbitrarily closely approximate (in the appropriate
corresponding metric) to continuous, or to p-th power integrable, non-linear
functions g(·), so long as the activation function ψ is bounded and satisfies the
necessary conditions of not being a polynomial [13].

Given a training set of n observations, estimation of the network weights
(learning) is obtained by solving the optimization problem

min
w∈W

1

n

n∑

t=1

q (Yt, f (Yt−1, Yt−2, . . . , Yt−d;w)) (4)

where q(·) is a proper chosen loss function, usually a quadratic function. From
an operational point of view, estimates of the parameter vector w can be ob-
tained by using non-recursive or recursive estimation methods such as the back-
propagation (BP) algorithm and Newton’s algorithm.

Under general regularity conditions, both the methods deliver a consistent
weight vector estimator. That is, a weight vector ŵn solving equation (4) exists
and converges almost surely to w0, which solves

min
w∈W

∫
q (y, f (x,w))dπ (z) (5)
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provided that the integral exists and the optimization problem has a unique
solution vector interior to W. Moreover, under general regularity conditions the
weight vector estimator is asymptotically normally distributed.

Therefore, given a consistent estimator of the asymptotic variance covariance
matrix of the weigths, one could be tempted to test hypotheses about the connec-
tion strengths which would be of great help in defining pruning strategies with
a strong inferential basis. This approach in any case could be misleading. The
parameters (weights) of the neural network model have no clear interpretation
and this makes this class of models completely different from classical non-linear
parametric models. Moreover, the same output of the network can be obtained
with very different configurations of the weights. Finally, as a model selection
strategy, variable selection and hidden layer size should follow different schemes:
variables have a clear interpretation while hidden layer size has no clear meaning
and should be considered a smoothing parameter which is fixed to control the
trade-off between bias and variability.

As a consequence, we advocate a model selection strategy where an informa-
tive set of input variables is selected by looking at its relevance to the model, in
a statistical significance testing framework, while the hidden layer size is selected
by looking at the fitting or predictive ability of the network.

In this respect the Predictive Stochastic Complexity (PSC) index proposed by
Rissanen and already used by Kuan and Liu ([8]) proved to be an effective tool
to select appropriate hidden layer size. However, other tools based on ”honest”
prediction errors Yt − f(Yt−1, . . . , Yt−d; ŵt) can be used as well, where ŵt is
computed by using information up to time t− 1. The prediction error is labeled
as ”honest” in the sense that no information at time t or beyond is used to
calculate the estimated parameter vector ŵt.

The general idea behind variable relevance analysis is to compute some mea-
sures that can be used to quantify the relevance of explanatory variables with
respect to a given model. Following White and Racine ([24]) and La Rocca and
Perna ([9,10,11]), the hypotheses that the j-th lag, let’s say Yt−j , has no effect
on Yt, in model (2), can be formulated as:

∂g (Yt−1, Yt−2, . . . , Yt−d)

∂Yt−j
= 0. (6)

Of course the function g is unknown but we equivalently investigate the hypothe-
ses

fj (Yt−1, Yt−2, . . . , Yt−d;w0) =
∂f (Yt−1, Yt−2, . . . , Yt−d;w0)

∂Yt−j
= 0. (7)

since f is known and w0 can be closely approximated. So, if the j-th lag has no
effect on Y we have

θj = E
[
f2
j (Yt−1, Yt−2, . . . , Yt−d,w0)

]
= 0 (8)

where the square function is used to avoid cancellation effects.
This approach appear to be justified since, with reasonable assumptions on

the activation function ψ, a single hidden layer neural network can arbitrarily
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closely approximate to g(·) as well its derivatives, up to any given order (provided
that they exist), as measured by a proper norm (see [7]). Moreover, a feedfor-
ward neural network can achieve an approximation rate that grows linearly in
r and thus this class of models is relatively more parsimonious than other non-
parametric methods in approximating unknown functions. These two properties
make feedforward networks an attractive econometric tool in non-parametric
modelling.

3 Testing the Weak form Market Efficiency by Using
Neural Networks

In this paper, in contrast to approaches that compare out-of-sample predictions
of non-linear models to those generated by the random walk model, we employ
the approach proposed in La Rocca and Perna ([11]) for exchange rates and
focus on directly testing for unpredictability by conducting tests of significance
on models inspired by technical trading rules. In this perspective, the hypothesis
that a given set of lags has no effect on Y can be formulated in a multiple testing
framework as

Hj : θj = 0 vs H ′
j : θj > 0, j = 1, 2, . . . , d. (9)

and each null Hj in (9) can be tested by using the statistic,

T̂n,j = nθ̂n,j (10)

where

θ̂n,j = n−1
n∑

t=1

f2
j (Yt−1, Yt−2, . . . , Yt−d; ŵn) (11)

and the vector ŵn is a consistent estimator of the unknown parameter vectorw0.
Clearly, large values of the test statistics indicate evidence against the hypothesis
Hj .

Thus the problem here is how to decide which hypotheses reject, taking into
account the multitude of tests. In such a context, several approaches have been
proposed to control the familywise error rate (FWE), defined as the probability
of rejecting at least one of the true null hypotheses. The most familiar multiple
testing methods for controlling the FWE are the Bonferroni method and the
stepwise procedure proposed by Holm ([6]). In any case, both the procedures
are conservative since they do not take into account the dependence structure of
the individual p-values. These drawbacks can be successfully avoided by using a
proposal by Romano and Wolf ([18,19]), suitable for joint comparison of multiple
(possibly misspecified) models.

The algorithm runs as follows. Relabel the hypothesis from Hr1 to Hrd in

redescending order with respect to the value of the test statistics T̂n,j, that is

T̂n,r1 ≥ T̂n,r2 ≥ . . . ≥ T̂n,rd . In the first stage, the stepdown procedure tests the
joint null hypothesis that all hypothesesHj are true. This hypothesis is rejected if
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T̂n,r1 (the maximum over all the d test statistics) is large, otherwise all hypothe-
ses are accepted. In other words, in the first step the procedure constructs a rect-
angular joint confidence region for the vector (θr1 , . . . , θrd)

T
, with nominal joint

coverage probability 1− α, of the form
[
T̂n,r1 − c1,∞

)
× · · · ×

[
T̂n,rd − c1,∞

)
.

The common value c1 is chosen to ensure the proper joint (asymptotic) cov-

erage probability. If a particular individual confidence interval
[
T̂n,rj − c1,∞

)

does not contain zero, the corresponding null hypothesis Hrs is rejected. Once
a hypothesis is rejected, it is removed and the remaining hypotheses are tested
by rejecting for large values of the maximum of the remaining test statistics. If
the first R1 re-labelled hypotheses are rejected in the first step, then d−R1 hy-
potheses remain, corresponding to the labels rR1+1, . . . , rd. In the second step, a

rectangular joint confidence region for the vector (θR1+1, . . . , θrd)
T
is constructed

with, again, nominal joint coverage probability 1−α. The new confidence region

is of the form
[
T̂n,rR1+1 − c2,∞

)
× · · · ×

[
T̂n,rd − c2,∞

)
, where the common

constant c2 is chosen to ensure the proper joint (asymptotic) coverage proba-

bility. Again, if a particular individual confidence interval
[
T̂n,rj − c2,∞

)
does

not contain zero, the corresponding null hypothesis Hrj is rejected. The stepwise
process is repeated until no further hypotheses are rejected.

Given the probabilistic complexity of the neural network model which makes
the use of analytic procedures very difficult, estimation of the quantile of order
1 − α is obtained by using resampling techniques. Here we will refer to the
maximum entropy bootstrap proposed by Vinod [21,22] e used by Guegan and
de Peretti [4] and Heracleous et al. [5].

Given the time series {Y1, Y2, . . . , Yn} the resampling algorithm runs as follows
(see Vinod and Lopez-de-Lacalle [23]).

1. Sort {Y1, Y2, . . . , Yn} by ascending order and let
{
Y(1), Y(2), . . . , Y(n)

}
be the

sorted series. Denote {i1, i2, . . . , in} the index series containing the ordering
of the original series.

2. Compute intermediate points zt = (Y(t) + Y(t+1))/2, t = 1, 2, . . . , n− 1.
3. Define intervals I1, I2, . . . , In with equiprobability as well as bounds for the

first and last intervals. Then compute the trimmed mean of ΔYt and compute
the lower bound by removing this mean to z1 and the upper bound by adding
this mean to zn.

4. On each interval compute the desired means defined as m1 = 0.75Y(1) +
0.25Y(2) for I1, mn = 0.25Y(n−1) + 0.75Y(n) for In and mj = 0.25Y(j−1) +
0.5Y(j) + 0.25Y(j+1) for intermediate values.

5. Draw uniform realizations on [0, 1] and compute the associated quantiles for{
Y(1), Y(2), . . . , Y(n)

}
by linear interpolation.

6. Adjust the quantiles using zt to preserve the means, and reorder the
adjusted quantiles according to it. This returns a bootstrap realization for
{Y1, Y2, . . . , Yn}.

7. Repeat steps from 1 to 6, B of times, with B denoting the number of desired
runs.
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4 Empirical Evidence from the Italian Stock Market

To test the weak form of market efficiency for the Italian stock market we con-
sidered the closing price of the FTSE-MIB index from 1/12/2003 to 23/03/2012.
To avoid spurious effects due to local behaviors we also considered a variety of
periods of analysis. We first consider the full data set, and we then move to
shorter periods in order to examine periods of analysis which may be more ho-
mogeneous than the entire sample. From a visual inspection in figure 1, panel
(a), it is clear that up to 15/01/2008 (the first 1070 observations) the data series
shows relatively low volatility while, in the remaining sample, volatility appear
to be much higher. In all the periods considered, as expected, data show strong
kurtosis and the Jarque Bera test clearly rejects the hypothesis of normally dis-
tributed returns (see Table 1).

Table 1. Descriptive statistics for the FTSE-MIB, daily returns from 1/12/2003 to
23/03/2012. Low volatility period from 1/12/2003 to 15/01/2008, high volatility period
from 16/01/2008 to 23/03/2012. P-values are in parenthesis.

Statistics Whole sample Low volatility High volatility

Min. -0.0860 -0.0384 -0.0860
1st Quartile -0.0063 -0.0034 -0.0107

Median 0.0007 0.0008 0.0003
Mean -0.0002 0.0003 -0.0008

3rd Quartile 0.0065 0.0049 0.0111
Max. 0.1087 0.0229 0.1087

Skewness -0.0884 -0.6619 0.0260
Kurtosys 6.8252 1.8478 3.4026

Jarque Bera test 4159.9 232.1 518.0
(0.0000) (0.0000) (0.0000)

In order to test market efficiency hypothesis in its weak form, as described in
the previous section, we directly focus on testing for unpredictability by testing
the null hypothesis that a given set of past lags has no effect on current returns.
More precisely, we consider the following model for the involved stock price at
time t, Pt:

Pt = g(Pt−1, . . . , Pt−5) + εt (12)

and we estimate the unknown function g by using a neural network depending
on the considered period (whole: from 1/12/2003 to 23/03/2012, characterized
by low volatility: from 1/12/2003 to 15/01/2008, characterized by high volatil-
ity: from 16/01/2008 to 23/03/2012). So the problem becomes to test for the
significance of Pt−i (i = 1, . . . , 5) in the model (12).

To avoid the data-snooping problem the testing procedure has been based on
the StepM approach in order to take under control the familiwise error rate.
The results of the test procedure are reported in figure 1. For the low volatility
period we estimated a neural network with d = 5 input neurons and 3 neurons
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(a) Time plot (b) Whole sample

(c) Low volatility period (d) High volatility period

Fig. 1. Tests for weak form market efficiency for FTSE-MIB returns on the whole
sample and on low and high volatility periods. All tests have been based on feedforward
neural networks with d = 5 input neurons and calibrated by resampling with 4999 runs.
Hidden layer size is equal to 2 for the whole period and, respectively, equal to 3 and 1
for the low and high volatility period.

in the hidden layer. Clearly all the first five lags appear to be not significant at
nominal level α = 0.05 and we cannot reject the hypothesis for unpredictability
(see panel (c)). Same conclusions can be drawn if we consider the high volatility
period (see panel (d)). In this latter case the StepM test has been conducted
on the base of neural networks with d = 5 input neurons and 1 neuron in the
hidden layer. Finally, for the whole period we estimated a neural network with
d = 5 input neurons and 2 neurons in the hidden layer. Again, at the nominal
level of α = 0.05 we cannot reject the hypothesis of unpredictability (see panel
(b)). In all cases hidden layer size has been fixed by using the Rissanen PSC.

Eventually, we can conclude that when we apply our method to test for pre-
dictive power in FTSE-MIB index of the italian stock market we find that it
does not appear to contain information that is exploitable for enhanced point
prediction.
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5 Concluding Remarks

In this paper we have investigated the use of feedforward neural networks for
testing market efficiency in its weak form. In contrast to approaches that compare
out-of-sample predictions of non-linear models to those generated by the random
walk model, we have focused on checking for unpredictability by testing the null
hypothesis that a given set of past lags has no effect on current returns. To
avoid the data-snooping problem the testing procedure has been based on the
StepM approach in order to take under control the familywise error rate. We
have applied our method to test for predictive power in FTSE-MIB index of the
italian stock market finding that it does not appear to contain information that
is exploitable for enhanced point prediction. Our results suggest that bootstrap-
based inference and multiple testing can be a valuable addition to modeling
non-linear phenomena with feedforward neural networks.
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