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Abstract. The human brain processes information showing learning
and prediction abilities but the underlying neuronal mechanisms still
remain unknown. Recently, many studies prove that neuronal networks
are able of both generalizations and associations of sensory inputs.

In this paper, following a set of neurophysiological evidences, we pro-
pose a learning framework with a strong biological plausibility that mim-
ics prominent functions of cortical circuitries. We developed the Inductive
Conceptual Network (ICN), that is a hierarchical bio-inspired network,
able to learn invariant patterns by Variable-order Markov Models imple-
mented in its nodes. The outputs of the top-most node of ICN hierarchy,
representing the highest input generalization, allow for automatic clas-
sification of inputs. We found that the ICN clusterized MNIST images
with an error of 5.73% and USPS images with an error of 12.56%.

Keywords: pattern recognition, handwritten digits, abstraction pro-
cess, hierarchical network.

1 Introduction

The brain is a computational device for information processing and its flexible
and adaptive behaviors emerge from a system of interacting neurons depicting
very complex networks [1]. Many biological evidences suggest that the neocortex
implements a common set of algorithms to perform “intelligent” behaviors like
learning and prediction. In particular, two important related aspects seem to
represent the crucial core for learning in biological neural networks: the hierar-
chical information processing and the abstraction process [2]. The hierarchical
architecture emerges from anatomical considerations and is fundamental for as-
sociative learning (e.g. multisensory integration). The abstraction instead leads
the inference of concepts from senses and perceptions (Fig. 1D).

Specifically, information from sensory receptors (eyes, skin, ears, etc.) travels
into the human cortical circuits following subsequent abstraction processes. For
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instance, elementary sound features (e.g. frequency, intensity, etc.) are first pro-
cessed in the primary stages of human auditory system (choclea). Subsequently
sound information gets all the stages of the auditory pathway up to the cortex
where higher level features are extracted (Fig. 1E-F). In this way information
passes from raw data to objects, following an abstraction process in a hierarchical
layout. Thus, biological neural networks perform generalization and association
of sensory information. For instance, we can associate sounds, images or other
sensory objects that present together as it happens in many natural and exper-
imental settings like during Pavlovian conditioning. Biological networks process
these inputs following a hierarchical order. In a first stations inputs from distinct
senses are separately processed accomplishing data abstraction. This process is
repeated in each subsequent higher hierarchical layer. Doing so, in some hier-
archical layer, inputs from several senses converge showing associations among
sensory inputs.

Recent findings indicate that neurons can perform invariant recognitions of
their input activity patterns producing specific modulations of their synaptic
releases [3–7]. Although the comphrension of such neuronal mechanisms is still
elusive, these hints can drive the development of algorithms closer to biology
than spiking networks or other brain-inspired models appear to be.

In this work, we propose a learning framework based on these biological con-
siderations, called Inductive Conceptual Network (ICN), and we tested the ac-
curacy of this network on the MNIST and USPS datasets. The ICN represents
a general biological plausible model of the learning mechanisms in neuronal net-
works. The invariant pattern recognition that occurs in the hierarchy nodes is
achieved by modeling node inputs by Variable-order Markov Models (VMMs)
[8, 9].

2 Methods

The methods of this work are based on a set of considerations extracted primarily
from the Memory-Prediction framework proposed by Jeff Hawkins in his book
On Intelligence. Therefore in this section we first present crucial aspects of brain
information processing.

2.1 Background about Learning and the Memory-Prediction
Framework

As preliminary step we introduce few theoretical concepts about learning and
memory experiences in nervous systems. The human brain massively elaborates
sensory information. Through some elusive mechanism, the brain builds models
(formal representation) from observations. In such models, pattern recognition
and abstraction play a crucial role [10]. The former allows for the capture of
patterns from observations, the latter allows for transforming raw observations
into abstract concepts. For instance, listening to sequence of unknown songs
from an unknown singer we perform both pattern recognition and abstraction,
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respectively when we identify sound features (e.g. beats per minute) and when
we infer abstract information concerning the new singer (e.g. he/she plays jazz).
Key features of these brain processes can be translated in algorithms [11]. Jeff
Hawkins et al. recently proposed a new learning framework (Memory-Prediction
[10]) based on abstraction processes and pattern recognitions. This paradigm
claims that abstraction represents one of the most important tasks underlying
learning in the brain and that occurs through the recognition of invariances.
Moreover, he suggested that sensory inputs are processed hierarchically: each
layer propagates to the next layer the invariant recognized patterns. In propa-
gating only invariances and discarding everything else, data are compressed with
size decreasing at every next layer. This is finely promoted by a pyramidal shape.
Hawkins et al. implemented the Memory-Prediction framework into a set of soft-
ware libraries specialized in image processing (Hierarchical Temporal Memory,
HTM [11]) which exhibits invariant recognition by a complex hierarchy of node
implementing the Hidden Markov Model algorithm [12, 13].

2.2 The Inductive Conceptual Network

We propose a different realization of the Memory-Prediction framework, called
Inductive Conceptual Network (ICN), where biological neurons are individually
identified by nodes (see Figure 1A-B) and invariant recognition is performed by
modeling inputs with Variable-order Markov Models (VMM) [8, 9, 14]. The for-
mer assumption allowed us to pin down the ICN model into adequate biological
background and to evaluate not only its learning ability but also its neurophys-
iological matching with neuronal population dynamics. The latter assumption
addresses the problem of invariant recognition in a powerful and computational
efficient way [9].

The Inductive Conceptual Network is a hierarchical spiking network working
as online unsupervised learning algorithm. In common with HTM, the ICN dis-
plays a tree-shaped hierarchy of nodes (Figure 1D-F). Formally, ICN is a triplet
(T,M, k) where T = {l1, l2, . . . , lL} is the vector that contains the number of

nodes in each layer such that l1 > l2 > · · · > lL = 1. Let q =
∑L

i=1 li be the
total number of nodes, and M is the qxq adjacency matrix representing the con-
nections between nodes and k is the maximum Markov order, an indicator of the
memory power of each node. For the construction of M = {mi,j|i, j = 1, . . . , q}
that is initially set to mi,j = 0, we proceeded iteratively following these two
steps for nodes in each layer x:

1. a set of deterministic assignations: {mi,i+lx = 1, . . . ,mi+p,i+lx = 1} with

p = � lx
lx+1

�+ 1 and ∀i ∈ {∑x
k=1 lx, . . . , (

∑x+1
k=1 lx)− � lx

lx+1
�};

2. a set of random assignations: {mi+r,i+lx = 1|r ∼ U(1, lx1)}
where lx is the number of nodes in the generic layer x and U is the discrete
uniform distribution. Layers handle inputs from the immediately preceding layer
(layer below) except for the first that handles the raw input data. The matrix
M is semi-randomly assigned respecting the multilayer architecture: each node
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receives the downstairs-layer input both from their neighbour nodes and from a
small set of randomly chosen ones (Figure 1C).

Nodes read inputs from their dendrites (Figs. 1A-B) and an algorithm esti-
mates the joint probability distribution of the observed inputs (see below, VMM).
Whether the observed input is the most expected (or is very close to) the node
produces a 1 (representing a spike) towards their output nodes otherwise does
nothing. The ICN is a general purpose learning framework, and although it has
not been tested on non-visual tasks it can however be used for other sensory
information processing.

2.3 Variable-Order Markov Models

The learning of spatiotemporal patterns is the subject of study of Sequential data
learning that usually involves very common methods, like Hidden MarkovModels
(HMM). In fact, HMM are able to model complex symbolic sequences assuming
hidden states that control the system dynamics. However, HMM training suffers
from local optima and their accuracy performance has been overcome by VMMs.
Other techniques like N -gram models (or N -order Markov Models) compute the
frequency of each N long subsequence but in these models the number of possible
model states grows exponentially with N . Therefore, both computational space
and time issues arise.

In this perspective, the observed symbolic (binary) sequence is assumed to
be generated by a stationary unknown symbol source S = 〈Σ,P 〉 where Σ is
the symbol alphabet and P is the probability distribution of symbols. A VMM
(also known as Variable length Markov Chains), given the maximum order D
of conditional dependencies and a training sequence s generated by S, returns
a model for the source S that’s an estimation P̂ of probability distribution P .
Applying VMMs, instead of N -gram models, takes several advantages. A VMM
estimation algorithm builds efficiently a model for S. In fact, only the occurred
D-grams are stored and their conditional probabilities p(σ|s) , σ ∈ Σ and s ∈
Σd≤D are estimated. This trick saves lots of memory and computational time
and makes feasible to model sequences with very long dependencies (D ∈ [1, 103])
on current personal computers.

2.4 The Node Behavior and Invariance Recognition

We consider the inputs from dendrites that each neuron (node) sees as binary
symbols emitted by a discrete source which releases outcomes following an un-
known non-stationary probability distribution P . The aim of each node is to
learn its source as best as possible so that it can recognize correctly recurrent
patterns assigning to them highest probabilities. The VMMs are typically used
for this task being able to model dependencies among symbols up to an arbitrary
order. VMMs can be estimated by many algorithms. We took into considera-
tion a famous efficient lossless compression algorithm, the Prediction by Partial
Matching (PPM) [15, 16], implemented in an open-source Java software library
[17].
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Formally, a node reads a binary input (at each step) s = (s1, . . . , sn) of length
n that represents the all-or-none dendritic activity. Let k < n be the maximum
dependency allowed among input symbols, then each node builds its probability
model feeding k-tuples of the received n-ary input s into the PPM algorithm.
Each node has its own instance of the PPM algorithm. After this first learning
phase, the node passes into the prediction mode and looks if it observes in s the
most expected pattern (pattern that has the highest probability assignment). If it
happens, the node produces 1 as output in correspondence to the salient patterns
thus preserving the spatial structural organization of inputs. We introduce the
further condition that a 1 is produced in correspondence of patterns having
Hamming distance [18] very close to the most expected one. We make this choice
to introduce a sort of noise tolerance in the pattern recognition process. In other
words, during the coding (and second) stage, a node processes its input by k
symbols at time. If the current k-tuple pattern is the highest probable (or is very
close to, by Hamming distance) a 1 is inserted into the output code, otherwise
it marks a 0.

For instance, let be k = 3 and 101 the most expected pattern. Let 110000101-
100101 be the current input that updates the probability distribution P . Finally,
the node produces the output sequence 00101 where 1 corresponds to the two oc-
currences of the most expected pattern (101). The pseudo-code of the algorithms
governing respectively nodes and the hierarchy are the following:

Algorithm for nodes

Node()

read input s = (s_1,...,s_n);

for each k-tuple in s:

update P by PPM(s_i,...,s_(i+k));

if HammingDistance((s_i,...,s_(i+k)),bestPattern) < gamma:

output(1);

else

output(0);

update bestPattern;

end

end

where the function PPM() updates the probabilistic model P̂ with the new in-
put s i,...,s (i+k). The function HammingDistance(·,·) computes the Hamming
distance between two binary strings and the function PPM best() returns the
current most probable pattern.

Algorithm for ICN

ICN()

for each image in dataset:

bw = binarizeImage(image);

assignInputToFirstLayer(bw);

foreach layer in ICN:
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setInput(bw);

learn();

bw = predict();

end

collect(bw)

end

end

where in the learn() function the distribution P̂ of each node are updated and
in the predict() function the spiking activity of the current layer is returned.
Before evaluating the performance of ICN on handwritten digit datasets, we
evaluated the learning capabilities of a single node by a simple experiment. We
provided a sequence of 1000 binary 5-tuples as input to a node with 5 dendrites
and k = 5 (Figs. 2A-B). The input sequence of 5-tuple is generated randomly
inserting at each time with probability 0.25 a fixed pattern (equal to 10010).
Simulating a Hebbian setup where at each of the five dendrites is associated
a weight increased in case of positive temporal correlation between pre- and
post-synaptic spikes and decreased otherwise [19], we make sure that the end
of proposed sequence weights of first and fourth dendrites are strengthen to the
detriment of other ones (Figure 2A).

2.5 Learning of Handwritten Digits

In the current form, ICN can perform unsupervised learning. To evaluate the
learning capabilities of such framework, we gave as input to the first layer, the
images of the MNIST (or USPS) dataset (handwritten digits, 0 to 9). Here we
use the MNIST test set which contains 10000 examples and the whole 11000
sample of the USPS. The chosen instantiation of ICN was composed by 4 layers
with respectively 50, 20, 5 and 1 node in each layer. The maximum Markov order
k was set to 5 for all ICN nodes. All parameters in this section have been chosen
empirically to best match the right classification of the digits. We expected that
digit images were correctly grouped with respect to the represented number.
MNIST images are represented by 28x28 (784) pixels of 8-bit gray level matrix.
Instead, USPS images, are represented by 16x16 (256) pixels. Images were bina-
rized setting a threshold on the 8-bit gray-level values to 80. As explained above,
nodes produce bits and the result of this unsupervised learning is valuable in the
outputs of the top-most node. In fact, this node retains the most abstract infor-
mation regarding the observed images. Namely, something likes the concept of
number. After some empirical tuning of parameters (number of nodes, layer and
maximum Markov order), ICN was able to discriminate digits by the top-most
node output code. For instance in some experiments, giving an image of digit
0, the ICN emitted the binary code 1000. In the same experiments, the code
0101 was reserved to the digit 1 and so on. Obviously, the ICN made errors and
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digit-to-code associations were not unique, e.g. some seven digits can be incor-
rectly classified with code 0101 reserved for the 1. To estimate the learning error,
we chose a representative code for each digit class. The representatives were se-
lected as most frequents for each class. Thus, the learning error was computed
by counting mismatchs between labels and representative codes.

3 Experimental Results

The ICN algorithm has been developed following strict and recently found bio-
logical criteria from the neurophysiology of neuronal networks. Once ascertained
that ICN nodes perform a sort of Hebbian plasticity (see section 2.4) we chal-
lenged the ICN with the MNIST dataset (handwritten digit images). The MNIST
dataset represents a sort of casting-out-nines for learning systems; in fact, new
proposed algorithms are tested on this dataset to check their attitude to learn.

The learning capabilities of ICN were tested by its clustering efficiency over
the MNIST dataset. Before submitted to ICN every digit image was binarized
by applying a threshold. Subsequently each image was fed into the first layer
nodes. Invariant recognized patterns are then propagated, layer-by-layer up to
the highest, following the execution of Algorithm-2 (see Methods). As a whole,
an input image elicits a bit (spike) flux in the bottom layer, a code transmitted
to the upper layer. The top-most layer, composed by only one node, finally
generates its binary codes each corresponding to a digit (class) of the image
input. We ascertained that at the best tuning of parameters the ICN model got
an average error of 5.73%, an acceptable score in an unsupervised environment,
remarkably not requiring any preprocessing stages such as image alignment,
centering or dimensionality reduction. For the USPS dataset, however harder to
learn, the best achieved error was of 12.56%.

Eventually, we further investigated the influence of dataset size in the learn-
ing performance. For this reason, we repeated the same experiments randomly
subsampling both datasets to 1000 and 5000 samples. For both datasets, perfor-
mance improved increasing the dataset size as shown in table 4.

4 Discussion

Even convolutional neural networks (CNNs) [21, 22] are biologically inspired by
the pioneer works of Hubel et al. on the retinotopies of the cat’s visual cortex
[20]. Indeed, CNNs exploit the fact that nearby pixels are more tightly corre-
lated than more distant ones. Furthermore by using a cascading structure of
convolutional and subsampling layers, these networks show successfully invari-
ant recognition of handwritten digits subjected to certain transformations (scal-
ing, rotation or elastic deformation). Altough CNNs are bio-inspired by the local



196 A.G. Zippo et al.

Fig. 1. Background and preliminary concepts on Inductive Conceptual Network (ICN).
(A)-(B) Comparison between biological and artificial neurons. Biological signals con-
ducted by each dendrite on soma can be represented by artificial inputs; after the input
elaboration, axon conducts the signal output that in artificial neuron is computed by
estimation of probability distribution of the observed inputs. (C) Graphically, neurons
are represented by nodes (circle) which are organized in layers. They are linked by
inter layer connections (edges) following a proximity criterion admitting exceptions.
(D) Representation of the hierarchical abstraction framework that occurs getting from
input representing raw data (concept instances, e.g. one, seven) to concepts (num-
ber). (E) An example of biological correspondence between the ICN and the auditory
sensorial system in human. Auditory input elaborated from cochlea, through sensory
pathway reaches auditory associative cortex. (F) The auditory sensory pathways seen
in the coronal MRI template slices. Abbreviations: SON, Superior Olivary Complex;
Inf Coll, Inferior Colliculi; MGN, Medial Geniculate Nucleus; A1, Primary auditory
cortex, AAC, Auditory Associative Cortex.

receptive fields which constitute the local features, the learning mechanism of the
whole network does not appear to have a biological counterpart. Vice versa, the
proposed network (ICN) implements invariant recognition exhibiting a spiking
behavior in each node which represents a clear correspondence with biological
networks. Furthermore, the algorithm governing nodes is the same in the whole
network. Since the electrophysiological properties of neurons are quite similar,
our network appears to be more plausible than CNNs where a set of special
layers (and nodes) exclusively perform the invariant recognition.
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Fig. 2. Learning in a node of ICN assuming synaptic weights (ω) and the Hebb′s rule.
(A) Starting with equal weights (0.5) and assigning a positive increment (0.01) whether
pre-synaptic spike precedes the post-synaptic spike in 2 timesteps at most. Otherwise
the synaptic weight incurs in a negative reward (-0.01). The sequence of input patterns
is composed by randomly generated binary inputs (with probability 0.75) plus a fixed
input equal to 10010 (with probability 0.25) . The simulation lasts 1000 timesteps
where, at the end, the recurrent pattern 10010 was recognized assigning strong weights
to the first and fourth synapses depressing the other ones. (B) In detail, the raster
plot of the simulation where the activity of nodes 1-5 matches the activity of the 5
presynaptic inputs and the activity of node 6 is the output of node in examination.
(B′) An enlargement of the first 100 timesteps. (B′′) The evolution of the most expected
pattern according to the PPM estimation in the node. After the first 31 timesteps, the
fixed pattern 10010 becomes the most expected.

The performance of each node is based on the PPM algorithm that requires
O(n) during learning and O(n2) during prediction as computational time com-
plexities [9]. Although the quadratic complexity, each node receives only small
fractions of inputs keeping n within small values. Thus the overall time com-
plexity for each processed image raises to O(m · n2), where m is the number of
nodes. Interestingly, the node executions within each layer can be computed in
parallel. Even the space complexity is dictated by the complexity of the PPM
algorithm that is O(k ·n), where k is the chosen Markov order, in the worst case.
Therefore, the ICN algorithm requires O(m · k · n) in space complexity.
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Fig. 3. Sample of common incorrect classifications on MNIST dataset. Numbers in the
upper left of boxes indicate the correct representation. Numbers in the lower right of
boxes indicate the incorrect classifications.
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5 Conclusion

The MNIST dataset is a standard test to evaluate learning accuracy for both
linear and non-linear classifiers. We show here that ICN is apt to carry out un-
supervised learning tasks with an error rate of 5.73% for MNIST and 12.56% for
USPS at most. The percentage may appear weaker, in comparison with other
learning methods, seemingly showing better error rates thanks, however to train-
ing and preprocessing (check for instance the performance of convolutional nets
scoring down to 0.35% error rate). Furthermore, in comparison with other clus-
tering techniques, our method does not fail into the curse of dimensionality [23].
Any classical unsupervised learning techniques, such as k-means, Expectation-
Maximization or Support Vector Machines generally require an ad hoc dimen-
sionality reduction (e.g. by Independent or Principal Component Analysis),
a procedure that reduces the algorithm general purposiveness [24]. However,
these networks do not acknowledge biological modeling, where ICN is instead
adequately biologically oriented.

In conclusion, the proposed model achieves interesting preliminary results.
Nevertheless further experiments with other machine learning datasets are re-
quired to strengthen its validity. Moreover, future developments can allow for
effective multi-input integrations: for instance, two different sources of input (like
sounds and images) could be associated by similar output codes even in presence
of inputs from a single source.
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