
Rival-Penalized Competitive Clustering: A Study
and Comparison

Alberto Borghese and Wiliam Capraro

Applied Intelligent Systems Laboratory, Dept. of Comupter Science, University of Milano
borghese@di.unimi.it, wiliam.capraro@studenti.unimi.it

Abstract. A major recurring problem in exploratory phases of data mining is
the task of finding the number of clusters in a dataset. In this paper we illustrate a
variant of the competitive clustering method which introduces a rival penalization
mechanism, and show how it can be used to solve such problem. Additionally,
we present some tests aimed at comparing the performance of our rival-penalized
technique with other classical procedures.

1 Introduction

The term central clustering refers to a family of clustering algorithms that are based
on moving a set of points, referred to as prototypes, inside the data space until their
position minimizes a certain cost function, representing a measure of the goodness by
which the prototypes represent the data points.

In the literature, approaches based on soft-clustering, like fuzzy c-means [14],
Neural-Gas [13,4] or Self-Organizing Maps (SOM) [6,16], and competitive learning
[5,15,12], have been proposed to partition a given dataset into a predefined number of
clusters, each one represented by a prototype usually corresponding to the cluster cen-
troid. All these algorithms suffer from several issues, most notably, the optimal value of
the cost function is rarely reached. Only stochastic optimization [10], that is extremely
costly, or a careful initialization of the prototypes allow escaping local minima. Al-
though a few attempts have been proposed to derive a robust initialization (e.g. [11]),
there seem to be no universal and reliable way to proceed, and some prototypes typically
get stuck during the clustering process. These prototypes are referred to as “dead units”
[13] and affect the proper operation of the algorithm and the quality of the result. As a
consequence, the general approach is to repeat the clusterization process several times
with different, random initializations of the prototypes, so as to allow the algorithm to
escape from local minima from time to time.

A slightly different task is to find the number of clusters in a dataset (e.g. [3]). This is
indeed a frequent problem in exploratory phases of data mining, and a straightforward
approach is to adopt a parameterized version of a clustering algorithm using the desired
number of data clusters K as parameter and to try a different clusterization for each
possible value of the parameter. Subsequently, the best result would be chosen based on
some validity measure or index.

However, it is impractical to run several random initializations of one algorithm for
each possible values of its parameter, especially when the latter spans a wide interval of

B. Apolloni et al. (Eds.): Neural Nets and Surroundings, SIST 19, pp. 11–20.
DOI: 10.1007/978-3-642-35467-0_2 c© Springer-Verlag Berlin Heidelberg 2013

12 A. Borghese and W. Capraro

values. Alternatively, in some cases it is possible to exploit the intrinsic characteristics
of some algorithms to produce dead units (e.g. [6]), to facilitate the search for a good
solution.

Recently, in the framework of central clustering, a different approach has been pro-
posed for moving the prototypes. The idea is that, while the winning prototype is at-
tracted by the closest data point, other prototypes are moved in the opposite direction.
This mechanism, known as rival-penalization [5,15], is somehow similar to the BCM
model proposed by Bienenstock, Cooper and Munro [9] in a typical Hebbian learning
fashion.

Rival-penalization clustering has been overlooked in the past. In this paper we
present the results of some tests we performed, aimed at comparing the rival-
penalization approach with classical clustering techniques, namely standard compet-
itive learning and SOM. The ability of rival-penalization of discovering the proper
number of clusters in a given dataset is analysed and discussed. Specifically, we show
that, by introducing the rival penalization mechanism into a competitive learning set-
ting, results comparable with soft-clustering can be achieved. Moreover, the number of
clusters can be discovered in a robust and reliable way.

2 Algorithms

We’ll consider a collection of N d-dimensional observations, {ξ j} . Goal of clustering
algorithms is to assign each observation to one of K clustersΨi, according to a similarity
measure with the other elements in the same cluster. Each cluster is represented by its
centroid, ψi, which is also a point in R

d .
The following subsections give a quick coverage of the algorithms we employed.

2.1 Competitive Learning and Rival Penalization

Competitive learning (CL) is an effective tool for data clustering, widely applied in a
variety of signal processing problems such as data compression, classification, adaptive
noise cancelation, image retrieval and image processing [2].

For the purposes of this contribution, a feed-forward neural network with a single
layer consisting of K output units is used to achieve a K-cluster data partitioning. Each
unit represents a cluster centroid ψi.

The training of the network proceeds as follows. At each iteration, each data point ξ
is presented in turn to the network and a winning unit, w, is elected. This is the prototype
whose Euclidean distance from the point is minimum:

w = argmin
i
‖ξ −ψi‖. (1)

Subsequently, the position of the winning unit is updated towards the data point using
the following updating rule

ψw j = ψw j +η(t)(ξ −ψw) (2)

where j denotes a component of the prototype vector and η(t) is a learning rate param-
eter whose value decays as a function of the time t.

Rival-Penalized Competitive Clustering 13

In a pure competitive learning setting, only the winning unit is updated. The proce-
dure is repeated multiple times for each data point, until the prototypes converge to their
final position—i.e. when the maximum difference in the position of any centroid in two
successive iterations is smaller than a fixed tolerance ε , or when a maximum number of
iterations is reached.

The prototypes are initialized using the ”Forgy” approach [1]—i.e. K of the available
data points are randomly chosen to serve as cluster prototypes. In this context, this is
enough to guarantee that no dead unit will ever appear, as every prototype shall win the
competition for at least one data point, that is, the prototype itself.

The rival-penalized competitive learning (RPCL) algorithm improves on the pure
competitive learning approach by introducing a rival penalization mechanism, as pro-
posed in [5] and [15]. With this approach, not only the position of the winning unit is
updated towards the input vector, but additionally the position of its rival unit is updated
in the opposite direction.

In order to find the winning unit and its rival, a relative winning frequency is intro-
duced, which keeps track of how many times each unit happens to win a competition
for some input vector. The relative winning frequency for unit i is defined as

γi =
si

∑K
j=1 s j

(3)

where si is the number of times unit i was declared winner in the past. When ∑K
j=1 s j =

0—i.e. initially, then γi = 1 in order to give every prototype a fair chance to win.
The winning unit w for an input vector ξ is now given by

w = argmin
i

γi‖ξ −ψi‖. (4)

Notice how the parameter γi acts as a “conscience” for the unit—if the unit has won
too often in the past, its chances to win the competition for the current data point are
reduced accordingly. Moreover, for each input vector ξ , the rival penalized competitive
learning algorithm computes not only the winning unit w, but also a second winning
unit, referred to as the rival, defined by

r = argmin
i

γi‖ξ −ψi‖, i �= w. (5)

Equation 2 is used to update both the winner and its rival. The latter, however, moves
away its centroid from the input point with a de-learning rate β , which is related to η
by

β(t) =−cη(t)γr (6)

where γr is the relative winning frequency of the rival and c = 1/10 is a predefined
constant. Unlike the implementation of [5], here β depends on both the learning rate η
and the winning frequency γr, so that the rival is dynamically penalized according to γr

even for constant η (which is not the case anyway).
In contrast to the CL algorithm, here a “Forgy” initialization of the prototypes is not

enough to guarantee dead unit avoidance. In fact, even if the prototypes are initialized
using the input data points, depending on the de-learning rate β , a rival unit may incur

14 A. Borghese and W. Capraro

considerable modification in the value of its prototype, and thus it can fail to win the
competition even for the input data point to which it had been initialized.

What is interesting with this approach is that, as reported in [5], if the learning rate η
is chosen to be at least one order of magnitude larger than β , then the adequate number
of output clusters will be automatically found. In other words, assuming that the actual
number of clusters is unknown and that the number of units K is chosen greater than the
cluster number, the prototype vectors will converge towards the centroids of the actual
clusters with few of them overlapping in space. In our implementation, this condition
holds in each iteration as c = 1/10. In each iteration, the RPCL algorithm pushes away
the rival, thus allowing for faster convergence, and invalidates extra prototypes by even-
tually making their cluster empty. Hence, the RPCL algorithm is believed to be able to
perform appropriate clustering without knowing the cluster number.

2.2 SOM

The limitation of considering only one data point at a time in competitive learning
has been overcome by soft-clustering approaches [2] in which the position of all the
prototypes is updated for each data point. Among these approaches, Self-Organizing
Maps (SOMs) represent an excellent tool in exploratory phases of data mining. They
project the input space onto prototypes in a low-dimensional regular grid that can be
effectively used to visualize and explore properties of the data. The SOM consists of
a regular, one- or two-dimensional grid of units, with each unit i represented by its
prototype vector ψi. Additionally, each unit i is assigned a place in the output grid,
represented by its coordinates ri = (xi,yi), and the units are logically linked to adjacent
ones by a neighborhood relation. During training, data points lying near each other in
the input space are mapped to nearby units in the output hyperplane. Thus, the SOM can
be regarded as a topology-preserving tool for mapping the input space onto the output
grid.

The SOM is trained iteratively. At each training step, a data point ξ is randomly
chosen from the input data set, and the distance between ξ and all the prototype vectors
is computed. Subsequently, all prototype vectors are updated, each proportionally to the
distance of the corresponding unit from the winning unit in the output grid:

ψi j = ψi j +η(t)Λ(i,w)(ξ −ψi). (7)

In the hereabove equation Λ(i,w) denotes the value of the neighborhood function be-
tween unit i and the winning unit w, as given by

Λ(i,w) = exp

(
−‖ri − rw‖2

2σ2

)
(8)

where the parameter σ defines the radius of the neighborhood. Λ(i,w) therefore defines
a region of influence for the prototype w. Notice that the value of Λ is exactly 1 when
i=w, and decreases as the distance of the prototype from the other data points increases.
Also, it is useful to adjust the radius as well as the learning rate at each iteration, so that
the influence region of a prototype decays with time as a function of σ and η .

Rival-Penalized Competitive Clustering 15

In this work, we are mainly concerned with the SOM’s ability to perform appropriate
clustering of a given data set. Thus, only SOMs with one-dimensional output arrays
are actually used. As stated in [16], this configuration is expected to produce better
results as compared to the 2-dimensional grid configuration. This is due to the fact
that the “tension” exerted in each unit by the neighboring units is much higher in the
second configuration, and such a tension limits the plasticity of the SOM to adapt to the
particular distributions of the dataset.

3 Experimental Setting and Test Results

In order to test the algorithms, we have generated a specific dataset containing 250
3-d data points distributed over 5 non-overlapping clusters. It has been generated by
perturbating the centroid of each cluster with a Gaussian distribution with mean value
0 and variance 1.

Since the resulting clusterization depends strongly on the initialization of prototypes,
it is essential that each algorithm be tested several times with different initializations.
For our tests, 60 “Forgy” initializations (which we’ll refer to as trials) have been gen-
erated and evaluated for each algorithm. This should be enough to overcome random
fluctuations.

As to the tests we conducted, they can be divided into two types. In a first type
thereof—we call it type-A experiment—we focused on a specific algorithm and tried to
partition our dataset varying the cluster number from K = 2 to K = 10. (And for each
K, 60 trials have been performed as described before.) On the other hand, in type-B
experiments we tested 60 trials of an algorithm with a fixed value of K but varying the
parameters of the algorithm instead.

In our tests, the validity of the resulting clusterization is evaluated by means of qual-
ity indexes, and the number of iterations required by the algorithm to converge was also
measured. The quality indexes used are the Davies-Bouldin (DB) index and the mean
quadratic error (MQE). The mean quadratic error is simply the ratio of the sum of all
the squared distances of each data point from its cluster prototype to the total number
of data points:

MQE =
∑K

i=1 ∑ξ∈Ψi
‖ξ −ψi‖2

∑K
i=1 |Ψi|

. (9)

The Davies-Bouldin index is defined as

DB =
1
K

K

∑
i=1

max
j �=i

{
Si + S j

‖ψi −ψ j‖
}

(10)

where Si is the within i-th cluster scatter, as given by

Si =

√√√√ ∑
ξ∈Ψi

‖ξ −ψi‖2

|Ψi| . (11)

For a detailed review of these and other cluster validity measures see [8]. Notice that
it is geometrically plausible to seek clusters that have minimum within-cluster scatter

16 A. Borghese and W. Capraro

and maximum between-class separation, so the number of clusters K̄ that minimizes the
Davies-Bouldin index can be reasonably taken as the optimal value of K. As reported
in [8], for well-separated clusters, the Davies-Bouldin index is expected to decrease
monotonically as K increases until the correct number of clusters is achieved.

In all the tests conducted, we fixed a tolerance of ε = 0.001 and the maximum num-
ber of iterations was set to 500. It should be enough for the algorithms to produce good
clusterizations given the time-decay rule for η adopted, which is

η(t) = exp
(
− t

50

)
·η0 (12)

where η0 = 0.1 is the initial value and t = 0,1, . . . is the iteration number.
In the remaining of this section we illustrate the results of our tests.

3.1 Competitive Learning

To begin with, we measured the effectiveness of the standard CL algorithm in partition-
ing our dataset by running a type-A test. The results can be used throughout the rest of
this work as a reference for the other algorithms. For each value of K, Table 1 reports
the Davies-Bouldin index and the quadratic error for the best outcome out of the 60
trials of the algorithm, along with the number of iterations performed.

As Table 1 shows, the algorithm succeeds in discovering the correct number of clus-
ters: the DB index takes on its optimal value for K = 5.

As expected, the mean quadratic error is a decreasing function of the number of
clusters (indeed one expects the within-cluster variance to decrease in this case), and
hence it does not convey any useful information on the goodness of the result.

As a downside, the CL algorithm takes a considerable number of iterations to con-
verge, as in each iteration only the winning unit is moved towards the current data point
by a small, η-dependent, fraction of the distance. Moreover, in order to discover the
optimal value of the parameter K, every possible value has to be investigated and the
result evaluated. The average number of iterations is a decreasing function of K, which
is rather obvious since, for small K, we expect the amount of modification in the posi-
tion of each centroid as a function of the data points to be higher in each iteration as
compared to when K is large.

Fig. 1. Scatterplot of the dataset

Table 1. Type-A test results for CL

K DB MQE it

2 0.712 49.642 344
3 0.396 27.360 344
4 0.429 10.583 328
5 0.298 2.816 298
6 0.690 2.648 298
7 0.751 2.603 298
8 0.768 2.540 298
9 0.746 2.435 298
10 0.809 10.197 328

Rival-Penalized Competitive Clustering 17

Table 2. Type-A test results for SOM

(a) σ = 0.5

K nD DB MQE it

2 0 0.7123 49.6421 346
3 0 0.5779 32.8641 345
4 0 0.4291 10.5827 330
5 0 0.2983 2.8161 300
6 1 0.2983 2.8161 300
7 2 0.2983 2.8161 300
8 3 0.2983 2.8161 300
9 4 0.2983 2.8161 300

10 5 0.2983 2.8161 300

(b) σ = 1

K nD DB MQE it

2 0 0.7123 49.6421 346
3 0 0.5779 32.8641 345
4 0 0.4291 10.5827 330
5 0 0.2983 2.8161 300
6 1 0.2983 2.8161 300
7 2 0.2983 2.8161 300
8 3 0.2983 2.8161 300
9 3 0.7244 2.6374 294
10 3 1.0228 2.4724 294

(c) σ = 1.5

K nD DB MQE it

2 0 0.7123 49.6421 346
3 0 0.5779 32.8641 345
4 0 0.4291 10.5827 330
5 0 0.2983 2.8161 300
6 1 0.2983 2.8161 300
7 2 0.2983 2.8161 300
8 3 0.2983 2.8161 300
9 2 1.0505 2.5142 294
10 3 1.0710 2.5077 294

We have also investigated the role of the learning rate η in the learning process. To
this end, a type-B test has been performed in which a value of K = 5 has been fixed and
η takes on some values in the range (0.2-0.02). As before, 60 trials of the algorithm have
been tested for each value of η , and the best outcome is considered. We do not report
the results for space issues. We report, however, that the initial learning rate seems to
play no crucial role in the learning process, since for every value of η the best value
obtained for the DB index is the same as that of Table 1.

3.2 SOM

As our second test, we have investigated the performance of a SOM in achieving proper
clusterizations of the dataset. As before we ran a type-A test using a 1-dimensional
output array of units, as we are not interested in the spatial organization of the resulting
cluster centroids. The distance of each prototype from its neighbor prototypes on the
output array has been set arbitrarily to 1, which is also the initial value for the radius of
the neighborhood σ . The general idea is that, by exploiting the SOM’s inherent ability to
produce dead units, it is possible to avoid testing every possible value of the parameter
K provided it is chosen larger than the actual number of clusters. Results are reported in
Table 2b, where nD represents the number of dead units and again each line represents
the best outcome for all the 60 initializations, according to the Davies-Bouldin index.

As the table implies, the minimum of the DB index is obtained for values of K in
the range between K = 5 and K = 8. The values reported confirm the ability of the
SOM to produce good clusterizations of the dataset, with values comparable with that
of the competitive learning approach for all values of the parameter K. The results also
advocate the thesis that the SOM is able to invalidate extra clusters and discover the
correct number of clusters if the parameter K is chosen in a neighborhood of its optimal
value.

We did not expect the quality of the resulting clusterization to change considerably
as a function of the initial learning rate η , so we did not conduct any test in this respect.
It is interesting, however, to observe the behavior of the algorithm when the initial
radius is enlarged or restricted. Tables 2a and 2c also show the result of type-A tests

18 A. Borghese and W. Capraro

Table 3. Type-B test results for RPCL

(a) η = 0.1

K DB MQE it

1 5 0.2973 2.8166 298
2 8 14.1375 436.7141 499
3 5 0.2983 2.8161 298
4 7 0.8392 3.4301 337
5 5 0.2977 2.8162 298
6 5 0.2972 2.8165 298
7 5 0.2977 2.8162 298
8 5 0.2972 2.8168 298
9 8 1.2113 127.1700 485
10 5 0.2980 2.8161 298
11 9 1.9186 283.6699 486
12 5 0.2981 2.8161 298
13 9 1.5104 2.2541 285
14 10 1.4525 32.4955 438
15 8 1.8814 119.3174 478
16 9 3.2711 1289.8495 499
17 5 0.2981 2.8161 298
18 10 1.3259 2.0547 283
19 5 0.2964 2.8175 298
20 7 0.8711 2.4896 298
21 5 0.2961 2.8180 298
22 8 1.2890 187.3231 478
23 5 0.2983 2.8161 298
24 10 1.4116 2.0938 287
25 8 1.7381 87.3881 429
26 5 0.2959 2.8205 298
27 8 1.4844 786.6143 499
28 9 2.2929 931.2280 499
29 5 0.2983 2.8161 298
30 5 0.2967 2.8174 298
31 5 0.2970 2.8167 298
32 5 0.2975 2.8164 298
33 5 0.2983 2.8161 298
34 5 0.2959 2.8183 298
35 7 0.8889 2.5653 292
36 5 0.2983 2.8161 298
37 5 0.2973 2.8165 298
38 5 0.2979 2.8161 298
39 5 0.2973 2.8164 298
40 7 1.4684 206.7596 491
41 5 0.2975 2.8164 298
42 5 0.2959 2.8188 298
43 9 1.0727 2.5370 297
44 5 0.2975 2.8163 298
45 9 1.2583 69.7734 465
46 9 1.2287 150.8042 494
47 8 1.3926 246.4092 499
48 5 0.2959 2.8183 298
49 7 2.1666 222.3385 487
50 5 0.2983 2.8161 298
51 5 0.2958 2.8192 298
52 9 1.4211 51.5298 445
53 5 0.2976 2.8162 298
54 5 0.2970 2.8168 298
55 9 1.3163 988.7258 499
56 5 0.2982 2.8161 298
57 9 1.2233 2.2424 292
58 8 1.7596 428.0865 499
59 5 0.2978 2.8161 298
60 5 0.2982 2.8161 298

(b) η = 0.3

K DB MQE it

1 5 0.3312 3.6632 366
2 5 0.2955 2.8196 353
3 5 0.2978 2.8162 353
4 6 1.0019 594.3351 499
5 10 3.2478 12092.0839 499
6 9 2.2782 27149.0575 499
7 7 2.2396 407.3565 499
8 1 n.a. n.a. 499
9 9 2.0219 14926.2644 499
10 8 1.0686 111.9457 499
11 1 n.a. n.a. 494
12 1 n.a. n.a. 496
13 8 3.3781 736.2310 499
14 6 0.6007 2.6212 353
15 9 1.1331 2.4473 363
16 8 1.1660 254.0439 499
17 9 4.7230 68607.6355 499
18 1 n.a. n.a. 499
19 1 n.a. n.a. 486
20 1 n.a. n.a. 459
21 5 0.2948 2.8272 353
22 1 n.a. n.a. 499
23 8 1.4005 22.1895 463
24 7 0.8376 2.4683 345
25 9 1.1667 2.7230 374
26 1 n.a. n.a. 495
27 9 1.1134 6.0580 410
28 8 1.1568 355.1591 499
29 6 1.4096 91.4646 443
30 7 1.1727 7076.8766 499
31 9 1.2331 22.9518 479
32 9 1.4621 599.8796 499
33 9 1.2037 2.8699 384
34 8 0.9067 2.8137 374
35 1 n.a. n.a. 470
36 10 3.6183 406.4338 499
37 7 2.0509 729.5399 499
38 8 0.9922 2.6372 352
39 9 1.2467 32.5807 487
40 1 n.a. n.a. 467
41 1 n.a. n.a. 499
42 8 1.8052 5702.3187 499
43 9 1.0551 2.6401 363
44 1 n.a. n.a. 499
45 9 1.6941 22.7070 461
46 1 n.a. n.a. 499
47 7 1.7933 317.9108 499
48 9 1.1090 3.3827 386
49 9 1.1030 3.8625 396
50 7 1.0535 1192.2263 499
51 10 1.9694 1978.7778 499
52 5 0.2982 2.8161 353
53 8 5.0827 783.8008 499
54 7 1.9763 3376261.9184 499
55 9 1.2069 39.0237 497
56 5 0.2983 2.8161 353
57 5 0.2894 2.9133 354
58 7 1.0936 701.7895 499
59 1 n.a. n.a. 499
60 8 2.7499 133.5437 499

(c) η = 0.5

K DB MQE it

1 6 0.9961 1743.7830 499
2 7 1.1205 529.9871 499
3 1 n.a. n.a. 499
4 9 1.0335 8.1133 440
5 8 2.0086 1834.3202 499
6 6 0.6528 2.9607 411
7 7 1.7469 27172.1130 499
8 1 n.a. n.a. 499
9 1 n.a. n.a. 499
10 1 n.a. n.a. 499
11 3 1.3013 84.3499 454
12 7 1.0529 659.0174 499
13 8 1.5026 353.7500 499
14 5 0.2983 2.8161 379
15 7 1.3130 663.7360 499
16 1 n.a. n.a. 499
17 4 0.9470 45.7815 432
18 9 8.7524 200.3968 499
19 8 1.3188 35309.9092 499
20 8 2.2503 712.0748 499
21 5 0.2983 2.8161 379
22 1 n.a. n.a. 499
23 1 n.a. n.a. 499
24 1 n.a. n.a. 499
25 7 0.7805 3.0149 401
26 6 1.0100 270.6201 499
27 1 n.a. n.a. 454
28 7 2.1072 12438.7022 499
29 1 n.a. n.a. 499
30 7 1.0933 3285294.0383 499
31 8 0.9186 3.4217 410
32 9 2.0005 4802.1818 499
33 7 0.9568 2.8659 402
34 8 2.0441 15709.4822 499
35 9 8.6214 631.4390 499
36 7 1.0028 502.4863 499
37 1 n.a. n.a. 499
38 1 n.a. n.a. 499
39 7 2.0152 147.8561 482
40 2 0.7452 106.3408 445
41 8 2.7086 503.6955 499
42 6 2.6311 41958.7468 499
43 8 2.3926 889.5130 499
44 6 0.9915 904.8396 499
45 5 1.6410 564.5119 499
46 1 n.a. n.a. 499
47 1 n.a. n.a. 499
48 7 1.1248 208.1925 499
49 1 n.a. n.a. 499
50 1 n.a. n.a. 499
51 2 0.8228 102.4013 450
52 7 0.8945 2.7744 378
53 7 1.0473 1132.3572 499
54 1 n.a. n.a. 499
55 6 1.0058 582.4626 499
56 1 n.a. n.a. 499
57 10 6.9798 282791.2331 499
58 1 n.a. n.a. 469
59 6 0.9993 464.6136 499
60 1 n.a. n.a. 499

Rival-Penalized Competitive Clustering 19

for σ = 1.5 and σ = 0.5: results show a general tendency of the radius to influence the
ability of the SOM to kill extra units—this ability seems to increase as the radius of the
neighborhood narrows.

3.3 Competitive Clustering with Rival Penalization

Lastly, we have analysed the performance of our RPCL implementation in discovering
the correct number of clusters. As suggested in [5] we have chosen a number of clus-
ters, K = 10, larger than the true number of clusters. Recall that the de-learning rate
β is always at least one order of magnitude smaller than η . Once again we considered
60 “Forgy” initialization of the algorithm, and ran three type-B tests using different
learning rates, namely η = 0.1, η = 0.3 and η = 0.5. Results are reported in Tables 3a
through 3c, where we have indicated with k the number of partitions in the resulting
clusterization, and with # the trial number. For each value of η , we have highlighted
the best result according to the Davies-Bouldin index.

Results reveal the following aspects. As expected, the algorithm exhibits a strong
ability to invalidate extra units. Such ability appears to be stronger compared to the
SOM, as suggested by the fact that the algorithm has always been able to obtain correct
clusterizations of the dataset—i.e. five clusters, associated with extremely good values
for the Davies-Bouldin index.

Moreover, this ability is only partially affected by the choice of the initial learning
rate η—as Table 3 implies, the RPCL algorithm has been able to obtain correct parti-
tionings of the dataset in the 56.67% of the trials for η = 0.1, 11.67% for η = 0.3 and
5% for η = 0.5. In this respect, a higher learning rate does augment the ability of the
rival units to move in the data space, and hence the ability of the algorithm to invalidate
extra clusters1, but the success or failure of the algorithm is ultimately due to the good-
ness of the initialization of the prototypes. As a consequence, we expect the algorithm
to succeed independently of the learning rate as long as the number of initializations
tested is large enough.

4 Discussion and Conclusion

In conclusion, all the algorithms tested work reasonably well and produce good cluster-
izations of the dataset. However, if the main task is to make use of one such methods to
discover the number of clusters in a given dataset, the rival-penalized competitive learn-
ing approach appears to be more robust and practical, since it exhibits a remarkable
ability to invalidate extra units—i.e. clusters—depending on the prototype initializa-
tion, provided the number of initializations tested is large enough. Hence, this method
comes in handy when the number of clusters of a dataset is unknown.

If the number of clusters is not known exactly but it is known to belong to a range of
a few possible values, then the self-organizing map can also guess the correct number of
clusters and yield a good clusterization, providing multiple, random initializations are
tested and the prototypes are drawn from the input dataset. However, the performance

1 Note that, in some cases, this ability has reached a point in which the algorithm produced a
1-cluster partitioning, for which the Davies-Bouldin index is structurally not defined and the
quadratic error loses its significance.

20 A. Borghese and W. Capraro

of the SOM exhibits a strong dependency on the value of the parameters, and finding
the optimal values for the radius and the step-length can be a challenging task. In this
respect, the rival-penalized competitive learning approach is to be preferred over the
SOM. Moreover, the SOM involves greater workload compared to the rival-penalized
method or the standard competitive learning method, and hence its use in a context
where the spatial organization of the output units is of little or no interest appears to be
questionable.

Lastly, if the number of clusters is known in advance and the goal is simply to pro-
duce a clusterization of the dataset, the basic competitive learning algorithm works
fairly well and is less susceptible to the initialization of the prototypes and does not
suffer from the dead unit problem. Additionally, it has the highest performance-to-cost
ratio, although the number of clusters and the learning rate can play a crucial role in
this respect.

References

1. Forgy, E.W.: Cluster analysis of multivariate data: efficiency vs interpretability of classifica-
tions. Biometrics 21, 768–769 (1965)

2. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Net-
works 16, 645–678 (2005)

3. Sugar, C.A., James, G.M.: Finding the number of clusters in a dataset: an information theo-
retic approach. Journal of the American Statistical Association 98, 750–763 (2003)

4. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: “Neural Gas” network for vector quantiza-
tion and its application to time-series prediction. IEEE Transactions on Neural Networks 4,
558–569 (1993)

5. Budura, G., Botoca, C., Miclău, N.: Competitive Learning Algorithms for Data Clustering.
Electronics and Energetics 19, 261–269 (2006)

6. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cy-
bernetics 43, 59–69 (1982)

7. Erwin, E., Obermayer, A., Schulten, K.: Self-organizing maps: ordering, convergence, prop-
erties and energy functions. Biological Cybernetics 67, 47–55 (1992)

8. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Transactions on Systems,
Man, and Cybernetics 28, 301–315 (1998)

9. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Neuroscience 2, 32–48 (1982)
10. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220,

671–680 (1983)
11. Ferrari, S., Ferrigno, G., Piuri, V., Borghese, N.A.: Reducing and Filtering Point Clouds with

Enhanced Vector Quantization. IEEE Transactions on Neural Networks 18, 161–177 (2007)
12. Uchiyama, T., Arbib, M.A.: An algorithm for competitive learning in clustering problems.

Pattern Recognition 27, 1415–1421 (1994)
13. Fritzke, B.: A growing Neural Gas network learns topologies. Advances in Neural Informa-

tion Processing Systems 7, 625–632 (1995)
14. Bezdek, J.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New

York (1981)
15. King, I., Lau, T.-K.: Non-hierarchical Clustering with Rival Penalized Competitive Learning

for Information Retrieval. In: Perner, P., Petrou, M. (eds.) MLDM 1999. LNCS (LNAI),
vol. 1715, pp. 116–130. Springer, Heidelberg (1999)

16. Bação, F., Lobo, V., Painho, M.: Self-organizing Maps as Substitutes for K-Means Cluster-
ing. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005.
LNCS, vol. 3516, pp. 476–483. Springer, Heidelberg (2005)

	Rival-Penalized Competitive Clustering: A Study
and Comparison
	Introduction
	Algorithms
	Competitive Learning and Rival Penalization
	SOM

	Experimental Setting and Test Results
	Competitive Learning
	SOM
	Competitive Clustering with Rival Penalization

	Discussion and Conclusion
	References

