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Abstract. The graph classification problem consists, given a weighted graph and
a partial node labeling, in extending the labels to all nodes. In many real-world
context, such as Gene Function Prediction, the partial labeling is unbalanced:
positive labels are much less than negatives. In this paper we present a new neu-
ral algorithm for predicting labels in presence of label imbalance. This algorithm
is based on a family of Hopfield networks, described by 2 continuous parame-
ters and 1 discrete parameter, and it consists of two main steps: 1) the network
parameters are learnt through a cost-sensitive optimization procedure based on
local search; 2) a suitable Hopfield network restricted to unlabeled nodes is con-
sidered and simulated. The reached equilibrium point induces the classification
of unlabeled nodes. An experimental analysis on real-world unbalanced data in
the context of genome-wide prediction of gene functions show the effectiveness
of the proposed approach.
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1 Introduction

Label learning in graphs requires, given a graph with a partial classification of the nodes,
to extend the classification to all nodes. Methods for solving this problem are useful
in application domains where data are naturally represented as connected nodes, i.e.
biological networks [16], social networks [4] and World-Wide-Web [6].

Several methods have been proposed for node classification. First algorithms rely
on the guilt-by-association principle, which classify unlabeled nodes according to the
majority of the labels in their direct neighborhoods [11]. Furthermore, nodes can prop-
agate labels to their neighbors with an iterative process until convergence [17]. Markov
Random Walks have been applied to tune the amount of propagation we allow in the
graph, by setting the length of the walk across the graph [13]. Other approaches are
based on graph regularization [1], on global graph consistency [9], on Markov [5] and
Gaussian Random Fields [14].

Unfortunately, these methods suffer a decay in the quality of solutions when input
data are unbalanced, that is positive examples are significantly less than those nega-
tive. This issue is particularly relevant in Gene Function Prediction (GFP), where the
imbalance in data requires to adopt cost-sensitive strategies [7].
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For their common characteristics, many of the described approaches can be cast into
a common framework where a quadratic cost objective function is minimized [2]. From
this point of view, it seems natural a neural approach based on Hopfield networks, that
are local optimizers of quadratic functions [9].

In [9] the neural algorithm GAIN is applied to GFP. Neurons represent genes, the
connection weights the “similarities” between genes, the activation values are 1, -1 and
the thresholds are 0 for each neuron. Fixed a functional class, only a subset neurons are
classified (positive or negative), while the classification of the other is unknown. For
classifying the unlabelled neurons, an initial state x is given by setting 1 the positive
neurons, −1 the negative neurons and 0 those still unclassified. The dynamics of the
network is applied to this state until the equilibrium point x̂ is reached; a gene k is
classified as ”positive” iff x̂k = 1.

From a biological standpoint, this approach is motivated by the fact that minimizing
the overall energy means maximizing the weighted sum of edges connecting neurons
with the same activation value. Nevertheless, this algorithm is affected by the imbalance
problem in functional classes. Since weights are non negative and thresholds are 0, when
the positive examples are less than the negative, the network is likely to converge to a
trivial state (−1,−1, . . . ,−1). Observe that, in biological taxonomies, for most of the
functional classes only a small number of positive examples is available.

In [3] another neural algorithm, called COSNet, has been proposed for solving the
GFP problem on unbalanced data. As in the previous approach, neurons represent genes
and connection weights represent the similarities between genes. However, here a class
of networks with 2 parameters is considered: each neuron has activation values sinα and
−cosα and threshold γ . Firstly, the algorithm learns the optimal values of the parame-
ters α and γ , then it runs the subnetwork restricted neurons with unknown classification,
that are classified according to the reached equilibrium state.

We point out that in both previous algorithms all the neurons of the network have the
same activation values. Since, in principle, each neuron in a Hopfield network might
have different activation values, in this work we investigate this case by partitioning the
neurons in two classes and assigning to each class different activation values.

Accordingly, in Sect. 3 a family of parametrized Hopfield networks is introduced,
whose parameters are the the possible partitions of neurons in 2 classes and the corre-
sponding activation values. In Sect. 5 it is derived an algorithm that firstly learns the
optimal values of the 2 continuous parameters (the different activation values) and the
discrete parameter (the neuron partition). Then the algorithm runs the subnetwork re-
stricted to neurons with unknown classification , that are classified according to the
reached equilibrium state. Finally, in Sect. 6 we describe the experimental procedure
adopted to validate the algorithm on the genome-wide prediction of gene functions in a
model organism, including around 200 functional classes of the FunCat taxonomy [12],
and using 3 different types of biomolecular data.

2 Gene Function Prediction (GFP)

In our setting, GFP is formalized as the problem of label learning in graphs [2]. Genes
are represented by a set of nodes V = {1,2, . . . ,n} and relationships between genes are
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encoded through a symmetric n×n real weight matrix W , whose elements wi j represent
similarities between genes i and j.

For a given functional class c, the nodes V are labeled with {+,−}, leading to the
subsets P and N of positive and negative vertices for class c. For most model organisms,
usually the functional labeling is known only for a subset S ⊂ V , while is unknown for
U = V \ S. Let be S+ = S∩P and S− = S∩N: we can refer to S+, S− and W as the
”prior information” of the GFP problem.

The Gene Function Prediction problem consists in finding a bipartition (U+,U−)
of genes in U on the basis of the prior information. Genes in U+ are then considered
candidates for the class P∩U . From this standpoint, GFP is set as a semi-supervised
learning problem on graphs, since gene functions can be predicted by exploiting both
labeled and unlabeled nodes/genes and the weighted connections between them.

3 Hopfield Networks for GFP

In this Section we consider a family of Hopfield networks [8] with binary neurons
partitioned in two classes G1 and G2. The activation values are {sinα1, −cosα1} for
neurons in G1 and {sinα2, −cosα2} for neurons in G2; the thresholds are set to 0.

Formally, in our setting, a Hopfield network H with neurons V = {1,2, . . . ,n} is a
quadruple H = <W ,b,α1,α2 >, where:

- W = (wi j) is a n× n symmetric matrix with null diagonal, whose elements wi j ∈ R

represent the connection strength between neurons i and j
- b ∈ {0,1}n is a binary vector partitioning neurons in two classes:

G1 = {k|bk = 1}, G2 = {k|bk = 0}
- α1,α2 are (possibly distinct) real values denoting the neuron activation values: {sinα1,
−cosα1} (resp. {sinα2, −cosα2}) for neurons k such that bk = 1 (resp. bk = 0)

The dynamics of the network is described as follows:

1. At time 0 an initial value xi(0) is given for each neuron i
2. At time t + 1 each neuron is updated asynchronously (up to a permutation) by the

following activation rule

xi(t + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

bi sinα1 +(1−bi)sinα2 if
i−1
∑

j=1
wi jx j(t +1)+

n
∑

k=i+1
wikxk(t)> 0

−bi cosα1 − (1−bi)cosα2 if
i−1
∑

j=1
wi jx j(t +1)+

n
∑

k=i+1
wikxk(t)≤ 0

(1)

The state of the network at time t is x = (x1(t),x2(t), · · · ,xn(t)). The main feature of a
Hopfield network is that it admits a Lyapunov function of the dynamics. In particular,
consider the following quadratic state function (energy function):

E(x) =−1
2

xTWx (2)

During the dynamics this function is not increasing; this guarantees that the dynam-
ics converges to an equilibrium state x̂ = (x̂1, x̂2, . . . , x̂n), which corresponds to a local
minimum of the energy function [8].
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4 Subnetwork Property

Let be H = < W ,b,α1,α2 > a Hopfield network. Fixed U = {1,2, . . . ,h} and S =
{h+1,h+2, . . . ,n}, each network state x can be decomposed in x = (u,s), where u and
s are respectively the states of neurons in U and in S. The energy function of H can be
written by separating the contributions due to u and s:

E(u,s) = − 1
2

(
uTW uuu+ sTW sss+ uTW uss+ sTW T

usu
)

= − 1
2

uTW uuu+ uT (−W uss)+C
(3)

where W =

(
W uu W us

W T
us W ss

)

is the weight matrix W decomposed in its submatrices W uu

connecting nodes in U , W ss connecting nodes in S, W us connecting each node in U with
each node in S, and W T

us its transpose. C =− 1
2 sTW sss is a term constant w.r.t. u.

Suppose now that a state s̃ of neurons in S is given. We are interested in the dynamics
obtained by allowing the update just of neurons in U , without updating neurons in S.
We denote with HU|s̃ the Hopfield network with neurons U which realizes this dynamics
and E|s̃ the corresponding energy; from equation (3) it holds:

Theorem 1. HU|s̃ = < W uu,bu,α1,α2 >, with thresholds −Wuss̃ and where bu is the
subvector of b restricted to neurons in U.

Given a state s̃ of neurons in S, we say that s̃ is part of global minimum of the energy
E of H if there is a state u of neurons in U s.t. (u, s̃) is a global minimum of E . The
introduction of the network HU|s̃, is motivated by the following property:

Theorem 2. (Subnetwork property) If s̃ is part of a energy global minimum of H, and
ũ is a global minimum of the energy E|s̃(u), then (ũ, s̃) is a energy global minimum of
H.

In our setting, we associate the given bipartition (S+,S−) of S with the state s̃= x(S+,S−):

xi(S
+,S−) =

{
bi sinα1 +(1− bi)sinα2 if i ∈ S+

−bi cosα1 − (1− bi)cosα2 if i ∈ S−

for each i ∈ S. Suppose, for suitable b,α1,α2, that x(S+,S−) is part of a energy global
minimum of H =< W ,b,α1,α2 >; then, by the subnetwork property, we can predict
the hidden part relative to neurons U by minimizing the energy of HU|x(S+,S−).

5 Algorithm for GFP

In this Section we exhibit a procedure based on Hopfield networks for dealing with the
GFP problem.

For a given similarity matrix W , we consider the class of networks H =<W ,b,α1,
α2 > on neurons V = {1,2, . . . ,n}, where α1, α2 are real parameters and b ∈ {0,1}n is
a discrete parameter.

Fixed a functional class, an instance of GFP problem is given by the matrix W and
the sets S+ and S− of positive and negative examples. We hypothesize that there exist a
triple (b̂, α̂1, α̂2) such that:
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1. The solution of the problem corresponds to an energy global minimum of H =<
W , b̂, α̂1, α̂2 >

2. x(S+,S−) is part of an energy global minimum of H

Then, by Theorem 2, we can discover the hidden part û of the global minimum by min-
imizing the energy of the network HU|x(S+,S−). Accordingly, the procedure for solving
the GFP problem can be factorized into two main steps:

Step 1. Determine the parameters (b̂, α̂1, α̂2) such that the state x(S+,S−) is approx-
imately part of a global minimum by finding the parameters (b,α1,α2) for which
x(S+,S−) is ”as close as possible” to a part of an equilibrium state of H.

Step 2. Minimize the energy function of the network HU|x(S+,S−) with the estimated

parameters (b̂, α̂1, α̂2) by reaching an equilibrium state û in a dynamics generated by
a suitable initial state.

Finally, the solution (U+,U−) of GFP is:

U+ = {i ∈U | ûi > 0}
U− = {i ∈U | ûi ≤ 0}.

In the following we discuss in more details Step 1 (Section 5.1) and Step 2 (Section 5.2)
of the algorithm.

5.1 Finding the Optimal Parameters

The main goal of this step is to find the values of the parameters b, α1 and α2 such that
the state x(S+,S−) is ”as close as possible” to an equilibrium state.

To this end, we consider the parametrized subnetwork restricted to neurons in S, i.e.
HS =<W ss,bs,α1,α2 >, where bs, α1 , α2 are the parameter to be learned.

In the following we describe the objective function adopted for learning the network
parameters and the relative optimization procedure.

Objective Function. First of all, we fix bs, α1 , α2. Every neuron i has an “internal
energy” Ai, where:

Ai = sinα1 ∑
k∈S

wikPkbs
k + sinα2 ∑

k∈S

wikPk(1− bs
k)

− cosα1 ∑
k∈S

wik(1−Pk)b
s
k − cosα2 ∑

k∈S

wik(1−Pk)(1− bs
k)

(4)

where P is the characteristic vector of S+ (i.e. Pk = 1 iff k ∈ S+). By means of Ai, we are
able in computing the number of true positive TP, false negative FN and false positive
FP:

- T P(bs, α1 , α2) = ∑i∈S Pi HS(Ai), i.e. the number of positive examples with positive
internal energy (true positive)
- FN(bs, α1 , α2) = ∑i∈S Pi(1−HS(Ai)), i.e. the number of positive examples with
negative internal energy (positive misclassification)
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- FP(bs, α1 , α2) = ∑i∈S(1−Pi)HS(Ai), i.e. is the number of negative examples with
positive internal energy (negative misclassification)

Here HS denotes the Heaviside function (HS(x) = 1 if x ≥ 0, 0 otherwise).
The function we want to maximize is the so called Fscore :

Fscore(b
s,α1,α2) =

2TP
2TP+FP+FN

By observing that 0 ≤ Fscore ≤ 1, this criterion is justified by the following:

Theorem 3. Fscore(bs,α1,α2) = 1 iff x(S+,S−) is an equilibrium state of the sub
-network HS.

Optimization Procedure. The values of parameters that maximize the Fscore criterion
are:

(b̂
s
, α̂1, α̂2) = argmax

bs∈{0,1}|S|,α1,α2

Fscore(b
s,α1,α2). (5)

For every bs ∈ {0,1}|S|, we define F(bs) = max
α1,α2

Fscore(b
s,α1,α2). Given bs, an ap-

proximation of F(bs) can be found by applying a standard continuous optimization
procedure.

In order to maximize F(bs), we adopt a simple local search on hypercube {0,1}|S|,
where the neighborhood of bs is {b

s|dH(b
s,b

s
) = 1}, and dH is the Hamming distance.

Once obtained the local optimum b̂
s
, we determine the optimal values for α1 and α2 as

(α̂1, α̂2) = argmax
α1,α2

Fscore(b̂
s
,α1,α2).

Having the optimal values (b̂
s
, α̂1, α̂2), we want to extend the vector b̂

s
to b̂ =

(b̂
u
, b̂

s
), where the indices of b̂

u
are the elements of U .

With regard to this, compute for all k:

Δ+
k = ∑

i∈S+
wki ; Δ−

k = ∑
i∈S−

wki

In this way, we associate with each neuron k a point Pk = (Δ+
k ,Δ−

k ) in the plane. Con-
sider now the subsets of points C1 and C2, where:

C1 = {Pk : b̂
s
k = 1} ; C2 = {Pk : b̂

s
k = 0}

By using C1,C2 we learn two bivariate normal distributions N2(μ1,Σ1),N2(μ2,Σ2)
where, for j = 1,2 , μ j and Σ j are respectively the sample mean and the sample co-
variance of Cj.

Finally, if k ∈ U , we set b̂
u
k = 1 if and only if the probability of Pk, according to

N2(μ1,Σ1), is greater than the probability of Pk, according to N2(μ2,Σ2).
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5.2 Finding the Unknown Labels by Network Dynamics

After the computation of the optimal parameters (b̂, α̂1, α̂2), we consider the sub-network
HU|x(S+,S−):

HU|x(S+,S−) = <W uu, b̂
u
, α̂1, α̂2 > (6)

with thresholds −W T
sux(S+,S−).

Fixed an initial state ui = 0 for each i ∈ {1,2, . . . ,h}, we run the sub-network
HU|x(S+,S−) to learn the unknown labels of neurons U .

If û is the stable state reached by this dynamics, we obtain the final solution (U+,U−)
by setting:

U+ = {k|ûk > 0} , U− = {k|ûk ≤ 0}

6 Algorithm Validation

In this Section we describe the procedure for experimentally evaluate our algorithm
and we discuss the results of the comparison of the algorithm with other state-of-the-art
methods.

6.1 Experimental Setting

We performed predictions of gene functions at genome-wide level in the S.cerevisiae
organism (yeast), using the whole FunCat ontology [12] 1. We predicted functions of
genes belonging to three different biomolecular data sets previously adopted in[3]:

- Pfam is an enriched representation of Pfam domains by replacing the binary scoring
with log E-values obtained with the HMMER software toolkit. This dataset contains
3528 genes and 5724 features.
- Expr data contains 250 gene expression measures of 4523 genes
- SP-sim is a data set containing pairwise similarities between 3527 yeast genes repre-
sented by Smith and Waterman log-E values between all pairs of yeast sequences

As validation procedure we adopt the 10-folds cross validation: genes are randomly
divided into 10 equal-sized subsets, and each time the labels for genes in a fold are
hidden and predicted using as training data the other nine folds.

6.2 Results

First of all, we compared our method with semi-supervised and supervised machine
learning methods proposed in the literature for the Gene Function Prediction problem.
We consider: 1) the GAIN algorithm [9]; 2) Zhu-LP, a popular semi-supervised label
propagation learning algorithm based on Gaussian random fields and its class mass

1 We used the funcat-2.1 scheme with the annotation data funcat-2.1 data 20070316, available
from: ftp://ftpmips.gsf.de/yeast/catalogues/funcat/
funcat-2.1 data 20070316

ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-2.1_data_20070316
ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-2.1_data_20070316


186 M. Frasca, A. Bertoni, and A. Sion

Pfam Expr Sp−sim

Data sets

F
sc

or
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GAIN Zhu−LP Zhu−LP−CMN SVM−l SVM−g Our proposal

Fig. 1. F-score comparison in terms of averaged Fscore

normalized version Zhu-LP-CMN [17]; 3) Support Vector Machines with linear (SVM-
l) and Gaussian (SVM-g) kernels [10].

In order to take into account the imbalance in positive and negative labels character-
izing the GFP context, we adopt the F-score performance measure (Sect. 5.1). Figure 1
shows for each dataset and for all the considered methods, the average F-score across
all the functional classes.

Our algorithm highly outperforms in terms of average F-score all the other compared
methods, and the difference is always significant at 10−6 significance level, according
to the Wilcoxon signed-ranks test [15]. We think this results are due to the inherent cost-
sensitive nature of the algorithm, which is able in automatically finding the parameters
that better “re-equilibrate” the imbalance in labels.

Moreover, in order to better analyze the performance of our algorithm, we evaluate
also the precision of the algorithm, precision = T P

T P+FP , which informally is the prob-
ability that a positive prediction corresponds to a true positive. We point out that in
GFP context the automatic positive predictions of unknown genes need to be confirmed
by expensive experimental laboratory procedures; accordingly, achieving a high preci-
sion in predicting functions of unknown genes is central, and provides reliable clues to
experimentally check the membership of a gene to a functional class.

In Table 1 we show the averaged precision and Fscore of our algorithm and of another
cost-sensitive algorithm, COSNet, proposed in [3].

We can observe that the two algorithms achieve close values of Fscore; on the other
hand, the present algorithm obtains a significant improvement in precision at α = 5 ∗
10−10 significance level (Wilcoxon signed-ranks test).
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Table 1. Precision and F-score of COSNet and of our algorithm averaged across the Funcat
functional classes

Pfam
Method Precision F
COSNet 0.445 0.375

Our proposal 0.509 0.370
Expr

Method Precision F
COSNet 0.057 0.085

Our proposal 0.147 0.105
SP-sim

Method Precision F
COSNet 0.445 0.376

Our proposal 0.489 0.368

Conclusions

In this paper we propose a new algorithm for predicting node labels in graph in pres-
ence of label imbalance. The algorithm is based on a family of Hopfield networks with
2 real parameters and 1 discrete parameter. The parameters are learned by means of a
cost-sensitive procedure, which allows to manage the imbalance in data. Then the sub-
network of unlabeled nodes is simulated and the reached equilibrium state provides the
classification of unlabeled nodes.

The algorithm has been experimentally validated on the problem of predicting the
functions of genes in a model organism; the results, compared with those of the state-
of-the-art methods, show the effectiveness of this approach.

In this paper, neurons are bi-partitioned, but in principle we could consider
k-partitions, increasing the number of parameters. It should be interesting to evalu-
ate the impact that the number of parameters has on the predicting capabilities of the
algorithm, and to define the optimal number of parameters (which ensures to avoid
overfitting) through model selection techniques.

References

1. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and Semi-supervised Learning on Large
Graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp.
624–638. Springer, Heidelberg (2004)

2. Bengio, Y., Delalleau, O., Le Roux, N.: Label Propagation and Quadratic Criterion. In:
Chapelle, O., Scholkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 193–216. MIT
Press (2006)



188 M. Frasca, A. Bertoni, and A. Sion

3. Bertoni, A., Frasca, M., Valentini, G.: COSNet: A Cost Sensitive Neural Network for Semi-
supervised Learning in Graphs. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis,
M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 219–234. Springer, Heidelberg
(2011)

4. Borgatti, S., Mehra, A., Brass, D., Labianca, G.: Network Analysis in the Social Sciences.
Science 232, 892–895 (2009)

5. Deng, M., Chen, T., Sun, F.: An integrated probabilistic model for functional prediction of
proteins. J. Comput. Biol. 11, 463–475 (2004)

6. Dorogovtsev, S., Mendes, J.: Evolution of networks: From biological nets to the Internet and
WWW. Oxford University Press, Oxford (2003)

7. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, pp. 973–978 (2001)

8. Hopfield, J.: Neural networks and physical systems with emergent collective compatational
abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

9. Karaoz, U., et al.: Whole-genome annotation by using evidence integration in functional-
linkage networks. Proc. Natl. Acad. Sci. USA 101, 2888–2893 (2004)

10. Lin, H.T., Lin, C.J., Weng, R.: A note on platt’s probabilistic outputs for support vector
machines. Machine Learning 68(3), 267–276 (2007)

11. Marcotte, E., Pellegrini, M., Thompson, M., Yeates, T., Eisenberg, D.: A combined algorithm
for genome-wide prediction of protein function. Nature 402, 83–86 (1999)

12. Ruepp, A., et al.: The FunCat, a functional annotation scheme for systematic classification
of proteins from whole genomes. Nucleic Acids Research 32(18), 5539–5545 (2004)

13. Szummer, M., Jaakkola, T.: Partially labeled classification with Markov random walks. In:
Advances in Neural Information Processing Systems (NIPS), vol. 14, pp. 945–952. MIT
Press (2001)

14. Tsuda, K., Shin, H., Scholkopf, B.: Fast protein classification with multiple networks. Bioin-
formatics 21(suppl. 2), ii59–ii65 (2005)

15. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
16. Wuchty, S., Ravasz, E., Barabsi, A.L.: The architecture of biological networks. Complex

Systems in Biomedicine 5259, 165–181 (2003)
17. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and

harmonic functions. In: ICML, pp. 912–919 (2003)


	A Neural Procedure for Gene Function Prediction
	Introduction
	Gene Function Prediction (GFP)
	Hopfield Networks for GFP
	Subnetwork Property
	Algorithm for GFP
	Finding the Optimal Parameters
	Finding the Unknown Labels by Network Dynamics

	Algorithm Validation
	Experimental Setting
	Results

	References




