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Abstract. Automated video surveillance using video analysis and un-
derstanding technology has become an important research topic in the
area of computer vision. Most cameras used in surveillance are fixed, al-
lowing to only look at one specific view of the surveilled area. Recently,
the progress in sensor technologies is leading to a growing dissemination
of Pan-Tilt-Zoom (PTZ) cameras, that can dynamically modify their
field of view. Since PTZ cameras are mainly used for object detection
and tracking, it is important to extract moving object regions from im-
ages taken with this type of camera. However, this is a challenging task
because of the dynamic background caused by camera motion.

After reviewing background subtraction-based approaches to mov-
ing object detection in image sequences taken from PTZ cameras, we
present a neural-based background subtraction approach where the back-
ground model automatically adapts in a self-organizing way to changes in
the scene background. Experiments conducted on real image sequences
demonstrate the effectiveness of the presented approach.

Keywords: Visual Surveillance, Motion Detection, Background Sub-
traction, Self Organization, Artificial Neural Network, PTZ Camera.

1 Introduction

Moving object detection is an important research problem in the field of video
surveillance because it provides a focus of attention for recognition, classification,
and activity analysis, allowing the analysis only of moving pixels [1].

Background subtraction is one of the most common approaches to moving
object detection by static cameras (see surveys in [2,3,4,5]). It consists in con-
structing and updating a model of the fixed background, and detecting moving
objects as those that do not belong to the model. Compared to other approaches,
such as optical flow, no assumptions about the velocity of the object are made
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and it does not suffer of the foreground aperture problem. Moreover, background
subtraction approaches are usually computationally affordable for real world ap-
plications. Nevertheless, the background subtraction approach is highly sensitive
to dynamic scene changes due to lighting and extraneous events, with the con-
sequent need for a suitable adaptation of the background model [6,7].

In order to overcome the limitations of static cameras, in the recent years the
progress in sensor technologies has lead to a growing adoption of PTZ cameras,
that can change their field of view through the use of panning, tilting, and
zooming (i.e., moving left and right, up and down, closer and farther away),
thus enabling to focus the attention on automatically selected areas of interest
[8,9,10,11]. However this type of camera has introduced new challenges, because
even pixels belonging to static objects appear to move in the camera frame. This
effect is known as ego-motion and its estimation and compensation represents
one of the main objectives of the research in the active video area [10].

Extensive research on moving object detection by PTZ cameras relies on back-
ground subtraction, where the scene background is obtained either by a mosaic
image of the background or by ego-motion compensation of the background (see
section 2). In this paper we embed an ego-motion compensation technique into
a neural-based background subtraction approach to moving object detection.
The background model automatically adapts in a self-organizing way to changes
in the scene background. Background variations arising in a usual stationary
camera setting are accurately handled by the neural background model origi-
nally proposed for this type of setting [12], while handling of variations due to
the PTZ camera movement is ensured by having the neural background model
to automatically compensate the eventual ego-motion, estimated at each time
instant.

The paper is organized as follows. In section 2 we review the literature con-
cerning background subtraction techniques applied to PTZ cameras. In section 3
we sketch the neural self-organizing model for image sequences and describe how
to embed the background compensation in order to handle image sequences taken
from PTZ cameras. In section 4 we present some preliminary results achieved
with the implementation of the presented approach. Section 5 includes conclud-
ing remarks.

2 Background Subtraction Approaches for PTZ Cameras

Approaches to moving object detection for PTZ cameras based on background
subtraction can be classified into two categories: mosaiced background-based and
background compensation-based approaches.

The mosaiced background -based approaches [13], also referred to as frame to
background methods [14], create and maintain a mosaic image of the whole scene
background, on which background subtraction techniques are applied to extract
moving object regions [15,16,17,18,19,20,21,22,23,24,25,26,27]. A mosaic image,
also referred to as panorama, is a compound image built through properly com-
posing multiple images of the same scene taken from different viewpoints and
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warping them into a common reference coordinate system. The result consists
in a single image of the scene, with greater resolution or spatial extent [28].
The basic idea behind mosaiced background-based approaches to moving object
detection consists in the use of traditional background subtraction techniques
on a mosaic image of the observed scene built by the PTZ camera images. Sub-
sequent video frames are registered into the mosaic coordinate system first, in
order to locate the subset of the mosaic background model corresponding to the
current frame. This subset is then adopted to perform background subtraction
and update.

The background compensation-based approaches [13], also named frame-by-
frame methods [14], estimate the transformation parameters between time re-
lated images by using corresponding features extracted from these images, and
create a difference image and/or a motion-compensated background in order
to detect moving object regions [29,30,31,32,14,33,34,35,36,13,37]. These ap-
proaches first estimate the apparent motion of the static background due to
the camera movement, and then compensate the previous image for the esti-
mated motion. Moving objects are usually detected by frame differencing, i.e.,
by subtracting the compensated previous image and the current image.

Both mosaiced background-based and background compensation-based ap-
proaches need to register (or align) various pairs (or collections) of images.
Therefore, assuming a motion model (e.g., affine or projective) relating pixel
coordinates in one image to pixel coordinates in another, image matching tech-
niques should be envisaged to detect and match salient features among images,
with the final aim of estimating motion parameters [38].

Most methods deal with PT cameras, and some of them are applicable to
a PTZ camera. Indeed, in the case of zooming, the motion parallax problem
arises, where the apparent motion of objects closer to the image plane is higher
than that of objects that are further away. Instead, when there is no motion
parallax, the apparent motion of all objects in the scene does not depend on
their distance from the camera. This can be guaranteed by rotating the camera
around its optical center (approach taken by many commercial systems) and
holds also for most cameras when objects are far from it [20].

According to the adopted image matching techniques, the algorithms can be
classified into two main families: intensity-based (or direct) methods and feature-
based methods. Intensity-based methods usually attempt at iteratively estimat-
ing the transformation parameters by minimizing an error function based on
pixel-by-pixel brightness differences in overlapping areas. Exploiting the infor-
mation associated with every single pixel, these methods achieve highly accu-
rate registration; however, they are computationally demanding. Feature-based
methods first extract distinctive features (i.e, regions, lines, histograms, intensity
projection profiles, and keypoints) from each image, then match these features
to establish a global correspondence, and finally estimate the geometric trans-
formation between the images. Outlier detection helps to filter out bad tracked
features or mismatched points.
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Moreover, in the case of mosaiced background-based approaches, techniques
must be developed to compute a globally consistent set of alignments among mul-
tiple images existing in the panorama, and to efficiently discover which images
overlap one another [38]. Two classes of mosaicing algorithms may be distin-
guished, with regard to the number of frames that are simultaneously combined:
global and sequential registration methods. Global registration methods compute
the best alignment among several images by simultaneously minimizing the mis-
registration between all the overlapping pairs of images. They achieve accurate
geometric reconstruction, but are computationally intensive and require all the
images to be known in advance. Sequential algorithms allow the construction of a
mosaic by continuously combining new images as soon as they become available.
Every new image is aligned with the previous one (frame-to-frame registration)
or with the mosaic built thus far (frame-to-mosaic registration). These methods
allow faster computation and do not need all the images in advance; however, the
achieved registration is only locally optimal, and may lead to error accumulation.

From the above analysis we can conclude that both the approaches to mov-
ing object detection by PTZ cameras have their pros and cons. Background
compensation-based approaches usually require less computational cost and mem-
ory storage, while the main advantage of creating a mosaic model is to save the
information of the scene background that is readily available whenever the cam-
era moves to a new position or/and returns to a previous captured location.

It should be mentioned that other approaches to moving object detection by
PTZ cameras exist that are not based on background subtraction. This is the
case of the so-called optical flow clustering-based approaches, which compute
clusters of dense or sparse optical flows in order to identify regions of movement
[39,40,41]. Other methods exploit further information of the scene settings. This
is the case of the works in [42,43], where the authors consider PTZ cameras
performing a guard tour, following a predefined set of positions covering the
area under surveillance; and the works in [44,45], where motion parameters are
measured by using specialized hardware. Finally, a comprehensive introduction
of PTZ camera networks, highlighting how cameras cooperation and reconfigu-
ration can be exploited for active surveillance, has been recently provided [10].

3 Self-Organizing Background Subtraction for PTZ
Cameras

Relying on the recent SOBS algorithm [12], we build the sequence background
model by learning in a self-organizing manner image sequence variations, seen
as trajectories of pixels in time. A neural network mapping method is proposed
to use a whole trajectory incrementally in time fed as an input to the network.
Each neuron computes a function of the weighted linear combination of incoming
inputs, and therefore can be represented by a weight vector, obtained collecting
the weights related to incoming links. An incoming pattern is mapped to the
neuron whose set of weight vectors is most similar to the pattern, and weight
vectors in a neighborhood of such node are updated. Differently from [12], at
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each time instant the neural background model automatically compensates the
eventual ego-motion due to the PTZ camera, leading to what will be called the
PTZ-SOBS algorithm.

3.1 Neural Model Representation

Given an image sequence {It}, for each pixel p in the image domain D, we build
a neuronal map consisting of n × n weight vectors mi,j

t (p), i, j = 0, . . . , n − 1,
which will be called a model for pixel p and will be indicated as Mt(p):

Mt(p) =
{
mi,j

t (p), i, j = 0, . . . , n− 1
}
. (1)

If every sequence frame has N rows and P columns, the complete set of models
Mt(p) for all pixels p of the t-th sequence frame It is organized as a 2D neuronal
map Bt with n×N rows and n× P columns, where the weight vectors mi,j

t (p)
for the generic pixel p = (x, y) are at neuronal map position (n×x+ i, n×y+j),
i, j = 0, . . . , n− 1:

Bt(n× x+ i, n× y + j) = mi,j
t (p), i, j = 0, . . . , n− 1. (2)

This configuration of the whole neuronal map Bt allows to easily take into ac-
count the spatial relationship among pixels and corresponding weight vectors.

3.2 Background Subtraction and Neural Model Update

At each subsequent time step t, background subtraction is achieved by comparing
each pixel of the t-th sequence frame It with the model for that pixel. In the
general case of image sequences taken from PTZ cameras, the incoming pixel
p of the t-th sequence frame It could have moved as compared to the previous
time t − 1. Therefore, the current model Mt−1(p), whose weight vectors are
stored in Bt−1 as described in Eq. (2), could be an improper model for actual
pixel p. In order to keep track of such spatial movements, we compute the
homography H between sequence frames It−1 and It, that allows to obtain, for
each pixel p′ of It−1, the corresponding pixel p = Hp′ of It. This information
is exploited in order to address the proper model for current pixel p, to perform
background subtraction, and to update the proper model through a selective
weighted running average analogous to [12].

4 Experimental Results

Several experimental tests have been conducted to validate our approach to
moving object detection in image sequences taken from PTZ cameras. In the
following, qualitative and quantitative results will be described for the Lab1
sequence, that represents a typical indoor situation critical for video surveil-
lance systems. The Lab1 sequence, publicly available in the download section
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Fig. 1. Results of moving object detection for the frames 89, 263, and 685 of the Lab1
sequence: (a) original frames; (b) ground truth masks; (c) moving object detection
masks computed by the PTZ-SOBS algorithm

of http://cvprlab.uniparthenope.it, is an indoor sequence consisting of 886
frames of 160 × 120 spatial resolution. The scene consists of an office, where
a person comes in and walks, and the PTZ camera follows the movement of
the person. Representative frames together with obtained results are reported
in Fig. 1, where we report the original sequence frames no. 89, 263, and 685
(first column), the corresponding ground truth masks (second column), and the
moving object detection mask computed by the PTZ-SOBS algorithm (third
column). In frame 89 a person has entered the office, and the camera is panning
from right to left in order to follow him; the compensated background provides
a good representation of the real background, and the corresponding detection
mask is quite accurate. In frame 263 a person has moved further left, while
the camera is still following him. The compensated background still provides a
good representation of the real background. The corresponding detection mask
is quite accurate, although few white pixels of the moving person and of the
background have been misdetected. In frame 685 the person is going back from
left to right, still followed by analogous movement of the camera. The compen-
sated background still provides a good representation of the real background, as
shown by the quite accurate corresponding detection mask.

http://cvprlab.uniparthenope.it


Neural Moving Object Detection by Pan-Tilt-Zoom Cameras 135

The average segmentation accuracy results achieved by the proposed approach
on the considered sequence, in terms of Precision, Recall and F1 measure, are
quite encouraging. Indeed, the achieved Recall=0.94 value ensures that most of
the moving pixels are indeed detected as moving; at the same time, the high
Precision=0.88 value indicates that only few of the pixels detected as moving
are instead background pixels. The consequent high value of F1=0.91, that is
the weighted harmonic mean of Precision and Recall, allows us to deduce the
overall high segmentation accuracy of the proposed approach.

5 Conclusions

We present an approach to the problem of moving object detection in image
sequences taken from PTZ cameras based on the idea of exploiting the available
knowledge concerning the self-organized learning behavior of the brain, which
is the foundation of human visual perception, and traducing it into models and
algorithms that can accurately solve the problem. A neural self-organizing back-
ground model is presented, that automatically adapts to variations in the scene
background, both arising in a usual stationary camera setting and due to the
PTZ camera movement. The compensated background model is adopted for ac-
curate moving object detection, as demonstrated by experimental results on real
image sequences.
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