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Abstract. We focus on learning the probability matrix for discrete ran-
dom variables in factor graphs. We review the problem and its variational
approximation and, via entropic priors, we show that soft quantization
can be included in a probabilistically-consistent fashion in a factor graph
that learns the mutual relationship among the variables involved. The
framework is explained with reference the ”Tipper” example and the
results of a Matlab simulation are included.
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1 Introduction

Probability propagation on graphs is a very promising emerging paradigm for
building intelligent signal processing systems [12]. Algorithms and applications
are under development in many areas of research that range from communication
and coding to signal processing and control. However, full use and development
of artificial intelligence systems that operate with probability propagation tech-
niques require refinements on a number of critical issues. Some of these are:
1. Propagation in graphs with cycles [1]; 2. Parameter learning [8]; 3. Graph-
structure learning [13]; 4. Propagation and learning in hybrid graphs with both
continuous and discrete variables; etc. In this paper we focus on learning the
probability matrix in discrete-variable factor graphs [7][6] pointing to a connec-
tion to variational learning [5][3][2][18][19]. We apply the idea to a generic block
where the whole probability matrix is learned from examples. Recent develop-
ment on inference based on entropic priors [15][14] allows the introduction of soft
quantization within the Bayesian graph framework much like in fuzzy logic [17].
Entropic priors allow to translate some of the successful heuristics typical of the
fuzzy framework, into a probabilistically-consistent Bayesian learning paradigm
on factor graphs. Soft logic formulated within standard probability theory [10]
coupled with belief propagating on factor graphs represents a very promising
framework to bring to a higher cognitive level many of the current signal pro-
cessing problems. In our formulation we use factor graphs in Forney’s normal
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form [11], because they are easier to handle in comparison to more traditional
Bayesian graphs [16].

In this paper we first review the problem of learning the probability matrix
pointing to a connection with variational message passing. Then we briefly in-
troduce soft quantization with entropic priors and finally we apply the ideas
to the well-known Tipper example. The results of a simulation show how this
framework implements a very natural dynamic merge of inference and learning.

2 Learning the Probability Matrix

Probabilistic inference in factor graphs via message propagation is a relatively
mature technique, at least in graphs with no cycles, when the conditional proba-
bility functions that make up the model are known [12]. A much harder problem
is learning the model parameters on line, i.e. performing inference and learning
at the same time. To focus on the specifics of this issue we start with the simplest
(non trivial) factor graph of Figure 1 that models N independent realizations
of two random variables X ∈ X = {ξ1, ..., ξd} and Y ∈ Y = {η1, ..., ηm}. The
variables are discrete and take values in the two alphabets X and Y and are
related via the unknown conditional probability matrix

P (Y |XΘ) =

⎛
⎜⎜⎝

p(η1|ξ1) ... p(ηm|ξ1)
p(η1|ξ2) ... p(ηm|ξ2)

. ... .
p(η1|ξd) ... p(ηm|ξd)

⎞
⎟⎟⎠ = Θ =

⎛
⎜⎜⎝

Θ11 ... Θ1m

Θ21 ... Θ2m

. ... .
Θd1 ... Θdm

⎞
⎟⎟⎠ , (1)

with 0 ≤ Θij ≤ 1, i = 1, ..., d, j = 1, ...,m;
∑m

j=1 Θij = 1, i = 1, ..., d. The
unknown parameters make up the matrix Θ ∈ T , where T denotes the set of all
d×m stochastic matrices. Since the structure of Figure 1 may be part of a more
complex network, we assume that information on X [n] and Y [n] is available in

Fig. 1. The factor graph for N independent realizations of (X[n], Y [n])
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soft form via forward and backward distributions fX[n](x), bX[n](x), fY [n](y) and
bY [n](y), with x ∈ X and y ∈ Y. Also information about matrix Θ is carried by
forward and backward messages fΘ[n](θ) and bΘ[n](θ) which are matrix functions.
These messages are related to each other via marginalization as

fY [n](y) ∝
∫
θ∈T

∑
x∈X P (y|xθ)fX[n](x)fΘ[n](θ)dθ;

bX[n](x) ∝
∫
θ∈T

∑
y∈Y P (y|xθ)bY [n](y)fΘ[n](θ)dθ;

bΘ[n](θ) ∝
∑

x∈X
∑

y∈Y P (y|xθ)bY [n](y)fX[n](x).
As usual in factor graphs, the notation ∝ means that the expressions are distri-
butions except for proper normalization. The complete model is hybrid because
X [n] and Y [n] are discrete and Θ is continuous and multi-dimensional. In a
more compact matrix representation, forward and backward messages for X [n]
and Y [n] are the column vectors

fX[n] = (fX[n](ξ1), ..., fX[n](ξd))
T ; bX[n] = (bX[n](ξ1), ..., bX[n](ξd))

T ;
fY [n] = (fY [n](η1), ..., fY [n](ηm))T ; bY [n] = (bY [n](η1), ..., bY [n](ηm))T .

Therefore we can write
fY [n] ∝

∫
θ∈T θT fX[n]fΘ[n](θ)dθ = FT

θ[n]fX[n];

bX[n] ∝
∫
θ∈T θbY [n]fΘ[n](θ)dθ = Fθ[n]bY [n],

where Fθ[n] =
∫
θ∈T θfΘ[n](θ)dθ is the mean forward matrix for Θ[n]. The back-

ward message for Θ[n] is the matrix function

bΘ[n](θ) ∝ fTX[n]θbY [n] = fTX[n]

⎛
⎜⎜⎝

θ11 ... θ1m
θ21 ... θ2m
. ... .

θd1 ... θdm

⎞
⎟⎟⎠bY [n]. (2)

Messages for Θ[n] and Θ′[n] in the other branches are formally the result of
the product rule fΘ[n](θ) ∝ fΘ′[n](θ)bΘ′[n−1](θ); bΘ′[n](θ) ∝ bΘ[n](θ)bΘ′[n−1](θ);
fΘ′[n](θ) ∝ bΘ[n+1](θ)fΘ′ [n+1](θ). Each message is a product of the type

μΘ(θ) ∝
∏
l

fTX[l]

⎛
⎜⎜⎝

θ11 ... θ1m
θ21 ... θ2m
. ... .

θd1 ... θdm

⎞
⎟⎟⎠bY [l] =

∏
l

d∑
i=1

m∑
j=1

bY [l](ηj)fX[l](ξi)θij (3)

If variables X [n] and Y [n] of block n are instantiated, i.e. forward and backward
messages are delta functions, fX[n](x) = δ(x−ξi), bY [n](x) = δ(y−ηj), backward
information from block n is simply bΘ[n](θ) ∝ θij . If also all variables from all n
are instantiated, information exchanged among the blocks (except possibly for
the prior on Θ) are exactly products of Dirichlet distributions

μΘ(θ) ∝
d∏

i=1

m∏
j=1

θ
nij

ij ∝
d∏

i=1

Dir(θi1, ..., θim;ni1 + 1, ..., nim + 1), (4)

where nij are the integer numbers that represent the cumulative counts of the
occurrences of pair (i, j) (hard scores). Unfortunately, in the general case we are
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interested in with forward and backward messages carrying soft information, ex-
pression (3) becomes intractable. Hence we resort to a variational approximation
[5][3][18] for bΘ[n](θ) that gives

bVΘ[n](θ) ∝ e
∑d

i=1

∑m
j=1 bY [n](ηj)fX[n](ξi) log θij =

∏d
i=1

∏m
j=1 θ

bY [n](ηj)fX[n](ξi)

ij

∝
∏d

i=1 Dir(θi1, ..., θim; fX[n](ξi)bY [n](η1) + 1, ..., fX[n](ξi)bY [n](ηm) + 1),
(5)

which is again the product of d Dirichlet distributions. This is particularly in-
teresting because the Dirichlet distribution, sometimes used as an assumption
[7][19], is exactly the variational approximation. Assuming that also the prior
distribution πΘ is a product of Dirichlet functions

πΘ ∝
∏d

i=1 Dir(θi1, ..., θim;αi1 + 1, ..., αim + 1).
A generic message in the upper branches has the form

μΘ ∝
∏d

i=1 Dir(θi1, ..., θim;
αi1 +

∑
l fX[l](ξi)bY [l](η1) + 1, ..., αim +

∑
l fX[l](ξi)bY [l](ηm) + 1).

(6)

A priori knowledge about the rule that mapsX into Y can also be easily included
in the coefficients of πΘ. The exponential form for the variational approximation
suggests that matrix variables Θ[n] and Θ′[n] could be replaced with soft score
matrix variablesO[n] andO′[n]. Backward message from block n becomes matrix
bO[n] = fX[n]b

T
Y [n]. Also all messages in the upper branches become d ×m ma-

trices with combination rules fO[n] = fO′[n] + bO′[n−1]; bO′[n] = bO[n] + bO′[n−1];
fO′[n] = bO[n+1] + fO′[n+1]. Forward and backward messages for Y [n] and X [n]
are respectively fY [n] ∝ FT

O[n]fX[n]; bX[n] ∝ FO[n]bY [n],, where FO[n] is the row-
normalized version of fO[n]. Note that these propagation rules represent the
learning steps for Θ as inference and learning happen at the same time. Recall
that the various stages in the graph represent time-unfolded versions of the same
block. Mode details and proofs will be reported in a longer paper.

3 Soft Quantization

Manipulation of discrete quantities in machine learning, also when the problem
involves continuous variables, may be particularly handy, because a priori qual-
itative information can be more easily injected into the system. Fuzzy methods
[17] have shown great success in merging soft knowledge with hard functions
especially in control [9]. In [15] we have shown how the use entropic priors in the
Bayesian framework allowing the introduction of soft membership information
in a way that is consistent within standard probability theory. This is a cru-
cial step to allow soft quantization and coherent use of probability propagation
for inference and learning in systems that contain both continuous and discrete
variables.
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Figure 2 shows a quantization scheme for a continuous variable Sa. All the like-
lihoods are triangular, complementary and centered on the M nodes ξ1, ..., ξM .
Denoting the triangular function on a, b, c with Λ(sa; a, b, c), the M pdfs are

{ 2
ξ2−ξ1

Λ(sa; ξ1, ξ1, ξ2),
2

ξ3−ξ1
Λ(sa; ξ1, ξ2, ξ3),

..., 2
ξM−ξM−2

Λ(sa; ξM−2, ξM−1, ξM ), 2
ξM−ξM−1

Λ(sa; ξM−1, ξM , ξM )}, (7)

and are shown in Figure 2(a). The differential entropy [4] of Λ(sa; a, b, c) is eas-
ily computed to be h(Sa) = 1

2 + log c−a
2 . With entropic priors πi ∝ eh(Sa|i)

[15], the prior-likelihood products, become equivalent to a set of functions
with same height as in Figure 2(b). We recall that entropic priors are the
distribution that maximize the joint entropy H(Sa, S) for fixed likelihoods
(pSa(sa|1), ..., pSa(sa|M)) [15]. The node distribution can be chosen according
to the data points density, but the complementarity of the likelihoods guaratees
that no information is lost after soft quantization. Figure 2(b) shows also how
this kind of soft quantization can be drawn as a generative factor graph model
that can be inserted into a larger factor graph. The backward message for Sa is
a data point bSa(sa) = δ(sa − s0). The backward message for S1 in vector nota-
tion is bS1 = (pSa(s0|1), ...., pSa(s0|M))T that after combination with entropic
priors becomes fS2 = (pSa(s0|1)π1, ...., pSa(s0|M)πM )T . The soft quantization
model satisfies a property of perfect recostruction because if bS2 = bS1 , we
have fS1 = fS2 and fSa(sa) = δ(sa − fTS1(ξ1, ..., ξM )T ) = δ(sa − s0) (lossless
dequantization). More details about soft quantization with entropic priors will
be reported in a longer paper elsewhere.

Fig. 2. Soft quantization on nodes {ξ1, ..., ξM}. (a) The triangular likelihoods; (b) The
entropic priors-likelihoods products.
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4 The Tipper Example

In this paper we report some experiments with the variational learning rules of
Section 2 and with the soft quantization scheme of Section 3 on the well-known
”Tipper” example. In this problems there are three continuous variables: Sa

(Service), Fa (Food) and Ta (Tip). The Tipper example, often used as a teaching
example in control classes (there is a Matlab demo available in the Fuzzy Control
Toolbox), is a typical case of mapping between two input variables (Service
and Food) and a final one (Tip). In the fuzzy framework is also very easy to
include soft rules and various design constraints. Our objective is here to traslate
this typical approach into a probabilistically-consistent Bayesian framework. The
underlying factor graphs shown in Figure 4, in which messages travel back and
forth, allows simultaneous inference and learning with inputs and outputs that
become essentially indistinguishable.

Even though a priori soft-logic rules can be easily included as contraints in the
prior block πΘ, we have assumed here no prior knowledge about the variables
Sa, Fa and Ta. We have simply presented 50 realizations of the triplet as fSa , fFa

and fTa and let the system learn (simulations with combinations of soft rules and
examples will be reported elsewhere). The triplets were obtained from a blind
run of the Matlab demo. Forward and backward messages carry information in
various parts of the system and inferences can also be made backward on Service
and/or Food from Tip.

The graph structure assumes that variables Service and Food are mutually
independent and that the N = 50 realizations are also statistically indepen-
dent. The three analog variables Sa, Fa and Ta are soft quantized from ranges
[0 − 10][0− 10][5− 25] with M = 6 uniformly spaced nodes each into the three
discrete variables S, F and T . Entropic priors are imposed in πS , πF and πT .
The 36× 6 matrix of conditional probabilities P (T |SFΘ) is learned via message
propagations with the variational algorithm described in Section 2. The simula-
tions let the messages propagate 300 steps which is enough to cover the graph
diameter. The graph is clearly a tree and convergence is guaranteed. Figure 4
shows the comparison of forward and backward information at each stage n. The
thre plots show the comparison of the actual value of each variable, as carried by
the backward input message, with the value provided by the rest of the system,
as carried by the forward output message that uses all the other inputs after
learning and propagation. Note that learning and inference is all done at the
same time since information about the parameter θ are also carried by travelling
messages. The simulation is self-contained and implements our best use of the
data because the inference, say on Ta[n], is based on all the examples except the
one on Ta[n]. This is because fΘ[n] does not contain information coming from
bΘ[n]. Hence each stage n uses a slightly different estimate for P (T |SFΘ) be-
cause the nth examples is automatically excluded. Therefore in inferring Ta[n],
values of Sa[n] and Fa[n] are used for inference, but not for learning. The same
considerations apply to inferences on Sa[n] and Fa[n].
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Fig. 3. The factor graph for the Tipper example
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Fig. 4. Comparison of forward (inference) (*) and backward (true) (o) values for the
three variables in the Tipper example
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Conclusions

In this work we have reported partial results for a successful Bayesian paradigm
that implements via message propagation on a factor graph simultanaous infer-
ence and learning. By means of an example, we have also proposed a quanti-
zation scheme, that via the introduction of entropic priors, allows us to build
a probabilistically-consistent graph that can adapted with belief propagation.
More work will be devoted to further understanding of the adaptation rules and
on the inclusion of soft-logic contraints.
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