
R.-S. Chang et al. (Eds.): Advances in Intelligent Systems & Applications, SIST 20, pp. 645–652.
DOI: 10.1007/ 978-3-642-35452-6_65 © Springer-Verlag Berlin Heidelberg 2013

Supporting Similarity Range Queries Efficiently
by Using Reference Points in Structured P2P Overlays

Guanling Lee, Yi-Chun Chen, and Chung Chi Lee

Department of Computer Science and Information Engineering
National Dong Hwa University, Hualien, Taiwan, R.O.C

guanling@mail.ndhu.edu.tw

Abstract. In recent years, the research issues in peer to peer (P2P) systems have
been discussed widely. In a P2P system, the role of each node is the same, and the
nodes simultaneously function as both clients and servers to the other nodes on
the network. Many studies have been proposed for solving different problems to
improve the performance of P2P systems. To solve file availability and network
flow problems, a method named distributed hash tables (DHT) has been pro-
posed. However, these DHT-based systems are not able to support efficient
queries such as similarity queries, range queries, and skyline queries.

In this paper, a novel method for supporting similarity searches in a structured
P2P system is proposed. Compared to other existing works, our approach shows
great improvement in precision and guarantees the file availability. The expe-
rimental results show the effectiveness of our approach.

Keywords: Peer to Peer, Similarity Search, Dimension Reduction, iDistance.

1 Introduction and Related Work

Structured P2P systems, such as CAN [6] and Chord [7], utilize a Distributed Hash
Table (DHT) to direct searches to specific node(s) holding the requested data. This
architecture mainly concentrates on the key values lookup to improve response effi-
ciency and to guarantee file availability. Since keyword searches are not sufficient, how
to support a general query in DHT-based systems has been widely discussed [4][9][10].
In [8] the problem of similarity discovery in a P2P system is discussed and a method
called pSearch is proposed. It uses a peer Vector Space Model and peer Latent Se-
mantic Indexing (LSI) to improve the traditional Vector Space Model. [1] proposed a
scalable and distributed access structure for similarity searches in metric spaces. All the
works discussed above proposed a certain mechanism to reduce the document dimen-
sion for supporting similarity queries in a structured P2P overlay. However, the recall
of the query cannot be guaranteed. Precision and recall are two key statistics regarding
the system’s returned results for a query, and are usually used to measure the effec-
tiveness of an information retrieval system. Precision is defined as the proportion of
retrieved documents that are relevant and recall is defined as the proportion of relevant
documents that are retrieved. In general, there is an inverse relationship between pre-
cision and recall.

646 G. Lee, Y.-C. Chen, and C.C. Lee

To solve the problem of recall, the M-Chord is proposed in [5]. The structure takes
advantage of the idea of a vector index method iDistance[2] in order to transform the
issue of a similarity search into the problem of an interval search in one dimension.
However, it used only one reference point to calculate the response data which results
in poor precision.

In this paper, the problem of how to support a similarity query in a structured P2P
overlay is discussed. In our approach, by using the idea of iDistance, m reference points
are selected to reduce a high dimensional document vector into an m dimensional
vector. Additionally, the document is published in an m dimension CAN by mapping
the m dimensional vector into a specific point in CAN. In query processing, the user’s
query will be calculated with reference points, which will get m bounds in every di-
mension. Those bounds will be used to fetch a set of object in CAN. The advantages of
our work are that the recall and precision of a query can be guaranteed.

The remainder of this paper is organized as follows: The problem definition is de-
scribed in section 2. Section 3 presents the main idea of our approach. Experimental
results and analysis are discussed in Section 4. Section 5 summarizes our work.

2 Problem Definition and Preliminaries

In the similarity search system, each object can be represented by a k-element vector
and in the vector, each dimension is standing for a term, which is related to the
object. The similarity between the objects can be represented by the corresponding
vectors. There are several similarity measures in the traditional database. In this
paper, Euclidean distance is used to evaluate similarity between objects. The Euc-
lidean distance between objects X=(x1, x2,…, xk) and Y=(y1, y2,…, yk), in Euclidean

space, is defined as: 2 2 2

1 1 2 2
() () ... ()

k k
x y x y x y− + − + + − . In a similarity dis-

covery system, the range query is defined as Query(q, r) and it will retrieve all
objects within distance r to q. Express as { : (,) }x objects dist q x r∈ ≤ . In general,

the number of dimensions is between 80,000 and 110,000. Even if LSI is used to
reduce dimensionality, k is still between 50 and 350. To further reduce the dimen-
sionality, the idea of iDistance is proposed. The advantage of iDistance is that the
recall of search results can be guaranteed. However, the precision in the system is
not good enough. That is, too many unrelated objects are retrieved. To solve the
problem, in this paper, a document is mapped into a multi-dimension structure by
applying a similar idea of iDistance.

In iDistance, the data space is partitioned into n clusters. For each cluster Ci, the

centroid of Ci, said pi, is selected as its reference point. Each data object is assigned a

one-dimensional iDistance value according to the distance between itself and the ref-

erence object of the cluster it belongs to. By using a constant c to separate an individual

cluster, the iDistance value for an object
i

x C∈ is () (,) *
i

iDist x dist p x i c= + .

 Supporting Similarity Range Queries Efficiently by Using Reference Points 647

Expecting that c is large enough, all objects in cluster i are mapped to the interval

[i*c, (i+1)*c]. According to the basic concept of range query, for Query(q, r), only the

clusters whose coverage overlap the query range may contain the satisfied objects. That

is, only the cluster Ci which satisfies the inequality (,)
i i

dist p q r r− ≤ , where ri is the

radius of Ci, should be checked. Moreover, because iDistance maps each object into a

one dimensional space, the search range of the satisfied cluster Ci can be summarized as

[MAX(i*c, dist(q,pi)-r+i*c), MIN(dist(q,pi)+r+i*c, ri+i*c)].

Fig. 1. Search bounds of reference point pij

Our system is based on CAN [6], which is designed to store and retrieve individual
data objects and support exact match queries. To support a similarity search, in our
approach the idea of iDistance is extended to map the document into CAN. Moreover,

648 G. Lee, Y.-C. Chen, and C.C. Lee

to increase the precision, for each Ci, m reference points {pi1, pi2,…, pim}, where pi1 is
centroid of Ci, are selected in this approach. For an object x belonging to cluster Ci, the
m-dimension vector

1 1 2 2
(,) * , (,) * , ..., (,) *

i i im m
dist x p i c dist x p i c dist x p i c< + + + >

can be used to represent x in an m dimensional space. In the equation, cj is a constant
used to separate the range covered by the clusters in dimension j. And after the trans-
formation, x can be assigned into m-dimension CAN easily.

To process range query Query(q,r), only the cluster Ci which satisfies the inequality
(,)

i i
dist p q r r− ≤ , where ri is the radius of Ci, should be checked. The lower bound of
the search range is the minimum distance from reference point pij to the overlap
region which is dist(q, pij)-r+i*ci (Fig. 1(a)) or i*cj (Fig. 1(b)). The upper bound of the
search range is the longest distance from pij to the overlap region. Refer to Fig. 1(d),
when query range is fully covered by the cluster Ci, the longest distance can be com-
puted as

1
(,) *

ij i i j
dist p p r i c+ + . Otherwise, refer to Fig. 1(c), the longest distance is

bounded by (,) *ij jdist q p r i c+ + . Summarizing the above discussions, the search
range for Ci in dimension j, i.e., the dimension corresponding to pij, can be computed as
follows:

1
[(* , (,) *), ((,) * , (,) *)]

j ij j ij j ij i i j
MAX i c dist q p r i c MIN dist q p r i c dist p p r i c− + + + + + (1)

3 Our Approach

3.1 File Publishing

Initially, a distributed cluster method proposed in [3] is used to partition the objects
into clusters. After getting the clusters, m reference points will be generated for
each cluster. A reference point pij denotes the jth reference point in cluster i. Moreover,
pi1 is the centroid of Ci. By using the equation proposed in section 2, a high dimensional
object x can be transformed into an m dimensional vector, that is,

1 1 2 2
(,) * , (,) * , ..., (,) *

i i im m
dist x p i c dist x p i c dist x p i c< + + + > . With the m dimen-

sional vector, object x can be published in an m dimension CAN by using the publish
function supported in CAN directly.

3.2 Range Query Processing

To process range query Query(q,r), we first find out the clusters whose coverage
overlap the query range. That is, the cluster Ci which satisfies the inequality

1
(,)

i i
dist p q r r− ≤ is a candidate cluster. And then, for each candidate cluster Ci,
equation (1) proposed in section 2 is calculated to get m search bounds. By searching
the objects within the search bounds in the corresponding dimension in CAN, the
objects satisfy Query(q,r) are obtained. The detailed algorithms are shown in Fig. 2
and 3.

 Supporting Similarity Range Queries Efficiently by Using Reference Points 649

Fig. 2. Range query

Fig. 3. GetClusterCandidate

Algorithm: Range Query(q,r)

Input: query point q

 query range r

Output: result S

1: S={}

2: For each cluster Ci

3: If (dist(pi1,q)-r≦ri) // Ci overlaps Query(q,r)

4: S←S ∪ GetClusterCandidate(Ci,q,r)

5: End If

6: End For

7: Return S

Algorithm GetClusterCandidate(Ci,q,r)

Input: cluster Ci

 query point q

 query range r

Output:result S

1: S={}

2: For each pij // reference points of Ci

// calculate the search bound

3: Lj← − +(* , (,) *)
ij i

MAX i c distq p r i c

4: Uj← + + + +
1

((,) * , (,) *)
ij ij i i i

MIN distq p r i c dist p p r i c

5: End For

6:S←Search the range <L1,U1>, <L2,U2>,…,<Lm,Um> in CAN

7: Return S

650 G. Lee, Y.-C. Chen, and C.C. Lee

3.3 Reference Points Generation

The precision of the result is truly affected by the reference points. Therefore, how to
generate m reference points is an important issue. In this approach, we propose three
methods to generate reference points. Their efficiency will be discussed in section 4.

Random selection: Select m-1 objects in cluster i randomly to be the reference points
pi2,…, pim.

Cluster selection: When m is 2, the one reference point is the centroid of the cluster,
and the other is selected randomly. When m > 2, the objects in the cluster are further
partitioned into m-1 subclusters. The centroids of the subclusters are selected to be
reference points.

Coverage selection: When m is 2, the one reference point is the centroid of the
cluster, and the other is selected randomly. When m > 2, the cluster is partitioned into
m-1 equal coverage space areas. And the centers of the m-1 areas are selected to be
reference points.

4 Experimental Results

4.1 Simulation Setup

All programs were written in Java and run on a PC with 3.0G Pentium 4 processor and
1G memory. The objects are generated synthetically with normal distribution. The
function which is generally used to measure precision in a traditional IR system is
shown below. Moreover, because our approach can achieve a 100% recall, we do not
show the result here. Table 1 lists the parameters setting of our simulation.

 (2)

Table 1. Parameter settings

 default range

Number of Documents 100,000 -

Number of Peers in CAN 2,000 -

Number of reference points 4 2~8

Reference points generation

methods

Random se-

lection

Random selection

Cluster selection

Coverage selection

Number of items retrieved that are relevant
Precision=

Total number of file retrieved

 Supporting Similarity Range Queries Efficiently by Using Reference Points 651

4.2 Experimental Results

Fig. 4 shows the average hop counts for processing range query with different number
of reference points. In CAN, average hop-count decreases as dimension increases.
Because the routing protocol is based on CAN, Fig. 4 shows the similar result.

Fig. 4. Hop counts with different dimensions

Fig. 5 shows the precision with different number of reference points. As shown in
the result, the precision of random selection and cluster selection methods increase as
the number of reference point increases. And they always outperform M-chord.
Moreover, random selection method performs almost the same as cluster selection
method when the number of reference points larger than 5. This is because increase the
number of reference points, the probability that the selected points cover the cluster
increase. The precision of coverage selection method is very poor. The reason is that
the distribution of objects in a cluster may not be uniform. Therefore, use the centers
of the equal partition areas to be the reference points may lead to poor discrimination of
the objects in the same cluster.

Fig. 5. Precision with different number of reference points

0

20

40

60

2 3 4 5 6 7 8

ho
p

co
un

ts

number of reference points

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

pr
ec

is
io

n

number of reference points

M-chord

Random
selection

Cluster
selection

Coverage
selection

652 G. Lee, Y.-C. Chen, and C.C. Lee

5 Conclusions

In this paper, the problem of how to support a similarity range query method in struc-
tured P2P overlays is discussed. In our approach, by using the idea of iDistance, m
reference points are selected to reduce a high dimensional vector into an m dimensional
vector which can be located in CAN. To process a range query, m search bounds are
calculated according to m reference points. By using the bounds, the satisfied objects
can be retrieved in CAN efficiently. In the simulation, a set of evaluations is performed
to show the benefits of our approach. In comparison with previous approaches, our
approach has a great improvement in precision and guarantees file availability.

References

1. Falchi, F., Gennaro, C., Zezula, P.: A Content–Addressable Network for Similarity Search
in Metric Spaces. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M.
(eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 98–110. Springer, Hei-
delberg (2007)

2. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive B+-tree
based indexing method for nearest neighbor search. ACM Transactions on Database Sys-
tem (TODS 2005) 30, 364–397 (2005)

3. Li, M., Lee, G., Lee, W.-C., Sivasubramaniam, A.: PENS: An Algorithm for Densi-
ty-Based Clustering in Peer-to-Peer Systems. In: Proceedings of INFOSCALE 2006. IEEE
Computer Society, Hong Kong (2006)

4. Mass, Y., Sagiv, Y., Shmueli-Scheuer, M.: KMV-peer: a robust and adaptive
peer-selection algorithm. In: Proceedings of the 4th ACM International Conference on
Web Search and Data Mining, Hong Kong, China, pp. 157–166 (2011)

5. Novak, D., Zezula, P.: M-Chord: A Scalable Distributed Similarity Search Structure. In:
Proceedings of the 1st International Conference on Scalable Information Systems, New
York, USA, pp. 1–10 (May 2006)

6. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Con-
tent-Addressable Network. In: Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, San Diego
USA, pp. 161–172 (August 2001)

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In: Proceedings of the ACM
SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, San Diego, USA, pp. 149–160 (2001)

8. Tang, C., Xu, Z., Mahalingam, M.: pSearch: Information Retrieval in Structured Overlays.
ACM SIGCOMM Computer Communication Review 33, 89–94 (2003)

9. Tang, Y., Xu, J., Zhou, S., Lee, W.C.: A Lightweight Multidimensional Index for Complex
Queries over DHTs. IEEE Transactions on Parallel and Distributed Systems 22(12),
2046–2054 (2011)

10. Tang, Y., Zhou, S., Xu, J.: Light: A Query-Efficient Yet Low-Maintenance Indexing
Scheme over Dhts. IEEE Transactions on Knowledge Data Engineering 22(1), 59–75
(2010)

	Supporting Similarity Range Queries Efficiently by Using Reference Points in Structured P2P Overlays

	Introduction and Related Work
	Problem Definition and Preliminaries
	Our Approach
	File Publishing
	Range Query Processing
	Reference Points Generation

	Experimental Results
	Simulation Setup
	Experimental Results

	Conclusions
	References

