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Abstract. As a general formalism for uncertain reasoning, the theory of belief func-
tions extends the logical and probabilistic approaches to uncertainty: a belief func-
tion (or a completely monotone Choquet capacity) can be seen both as a non additive
measure and as a generalized set. In this paper, the theory of belief functions is ar-
gued to be a suitable framework for statistical analysis of low quality, i.e., imprecise
and/or partially reliable data. After a reminder of general concepts of the theory,
we show how this approach can be applied to statistical inference by viewing the
normalized likelihood function as defining a consonant belief function. The links
with likelihood-based and Bayesian inference are discussed. We then show how this
method can be extended to the analysis of uncertain data. The approach is illustrated
using a running example.

1 Introduction

Whereas current research in statistics and econometrics mainly focuses on the
development of more complex models and inference procedures, data quality is rec-
ognized by applied statisticians as a key factor influencing the validity of the conclu-
sions drawn from a statistical analysis. As noted by Cox [5], “issues of data quality
and relevance, while underemphasized in the theoretical statistical and economet-
ric literature, are certainly of great concern in much statistical work”. Arguing for
better consideration of empirical practice in econometric theory, Heckman [22] also
remarked that “Data quality, data collection and economic interpretation of statisti-
cal evidence are perceived as topics off limits to econometricians, but central to the
field of empirical economics”.
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One of the reasons why data quality, in spite of its importance, has received rel-
atively little attention in the statistical literature, may be that its evaluation often
requires subjective judgements that do not easily fit with the standard likelihood-
based or Bayesian frameworks. While the latter approach allows for the introduc-
tion of personalistic prior information, it does so in a very specific and questionable
manner (by treating all unknown quantities as random variables), which raises a
number of theoretical and practical issues [36, 16].

In the past thirty years, alternatives to the Bayesian framework for reasoning
from weak information have emerged, including Possibility Theory [39], Imprecise
Probabilities [36] and the theory of Belief Functions [7, 25]. In particular, the latter
approach, also referred to as Dempster-Shafer or Evidence theory, was introduced
by Dempster [6, 8] with the objective to reconcile Bayesian and fiducial inference.
Shafer [25] later formalized this approach as a general method for representing and
combining evidence, not necessarily statistical. Smets [29, 33] emphasized the sin-
gularity of the theory of belief functions as opposed to related but distinct frame-
works such as imprecise probabilities [36] and random sets [24].

The main feature of the theory of belief functions is that is subsumes both the
logical and probabilistic approaches to uncertainty: a belief function may be seen
as a non-additive probability measure [25] and as a generalized set [18]. Also, basic
mechanisms for reasoning with belief functions extend both probabilistic opera-
tions (such as marginalization and conditioning) and set-theoretic operations (such
as intersection and union). In particular, the belief function approach coincides with
the Bayesian approach when all variables are described by probability distributions,
while allowing for considerably more flexibility when the available knowledge does
not allow for the specification of a reasonable probability distributions without
introducing unsupported assumptions.

In this paper, the theory of belief functions is advocated as a suitable framework
for statistical analysis of low quality, i.e., imprecise and/or partially reliable data.
The main concepts of the theory will first be recalled in Section 2 and its application
to the representation of statistical evidence will be discussed in Section 3. The use
of belief functions for representing data uncertainty and corresponding inferential
procedures will be introduced in Section 4. Finally, Section 5 will conclude the
paper with a summary of the main results and the presentation of some research
challenges.

2 Belief Functions

This section recalls the necessary background notions related to Dempster-Shafer
theory. Belief functions on finite domains and Dempster’s rule of combination are
first presented in Subsections 2.1 and 2.2, respectively. Some notions regarding
the definition and manipulation of belief functions on continuous domains are then
recalled in Subsection 2.3.
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2.1 Belief Functions on Finite Domains

Let θθθ be a variable taking values in a finite domain Θ , called the frame of discern-
ment. Uncertain evidence about θθθ may be represented by a mass function m on Θ ,
defined as a function from the powerset of Θ , denoted as 2Θ , to the interval [0,1],
such that m( /0) = 0 and

∑
A⊆Θ

m(A) = 1. (1)

Any subset A ofΘ such that m(A)> 0 is called a focal set of m. A categorical mass
function has only one focal set (it is thus equivalent to a set), while a Bayesian mass
function has only focal sets of cardinality one and is thus equivalent to a probability
distribution. The mass function m such that m(Θ) = 1 is said to be vacuous.

Each number m(A) is interpreted as a degree of belief attached to the proposition
θθθ ∈ A and to no more specific proposition, based on some evidence. As argued
by Shafer [27], the meaning of such degrees of belief can be better understood by
assuming that we have compared our evidence to a canonical chance set-up. The
set-up proposed by Shafer consists of an encoded message and a set of codes Ω =
{ω1, . . . ,ωn}, exactly one of which is selected at random. We know the list of codes
as well as the chance pi of each code ωi being selected. Decoding the encoded
message using code ωi produces a message of the form “θθθ ∈ Ai” for some Ai ⊆Θ .
Then

m(A) = ∑
{1≤i≤n:Ai=A}

pi (2)

is the chance that the original message was “θθθ ∈ A”. Stated differently, it is the prob-
ability of knowing that θθθ ∈ A. In particular, m(Θ) is, in this setting, the probability
that the original message was vacuous, i.e., the probability of knowing nothing.

The above setting thus consists of a set Ω , a probability measure P on Ω and
a multi-valued mapping Γ : Ω → 2Θ \ { /0} such that Ai = Γ (ωi) for each ωi ∈ Ω .
This is the framework initially considered by Dempster in [7]. The triple (Ω ,P,Γ )
formally defines a finite random set [24]: mass functions are thus exactly equivalent
to random sets from a mathematical point of view. However, the meaning of mass
functions differs from the usual interpretation of a random set as the outcome of a
random experiment: here, m(A) is not the chance that A was selected, but it can be
viewed as the chance of the evidence meaning that θθθ is in A [27].

To each normalized mass function m, we may associate belief and plausibility
functions from 2Θ to [0,1] defined as follows:

Bel(A) = P({ω ∈Ω |Γ (ω)⊆ A}) = ∑
B⊆A

m(B) (3a)

Pl(A) = P({ω ∈Ω |Γ (ω)∩A �= /0}) = ∑
B∩A �= /0

m(B), (3b)

for all A ⊆Θ . These two functions are linked by the relation Pl(A) = 1−Bel(A),
for all A ⊆ Θ . Each quantity Bel(A) may be interpreted as the degree to which
the evidence supports A, while Pl(A) can be interpreted as the degree to which
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the evidence is not contradictory with A. The following inequalities always hold:
Bel(A) ≤ Pl(A), for all A ⊆ Θ . The function pl : Θ → [0,1] such that pl(θ ) =
Pl({θ}) is called the contour function associated to m.

If m is Bayesian, then function Bel is identical to Pl and it is a probability mea-
sure, and pl is the corresponding probability mass function. Another special case of
interest is that where m is consonant, i.e., its focal elements are nested. The plausi-
bility function is then a possibility measure [39, 19] with possibility distribution pl,
i.e., the plausibility function can be recovered from the contour function as follows:
[25]:

Pl(A) = max
θ∈A

pl(θ ). (4)

for all A⊆Θ .
Given two mass functions m1 and m2, m1 is said to be less specific than m2 if it can

be obtained from m2 by transferring belief masses m2(A) to supersets B⊇A [38, 18].
In this case, m1 can be considered as less informative, or less committed1 than m2.
The Least Commitment Principle (LCP) [31] states that, given some constraints on
an unknown mass function, the least committed should be selected. This principle
provides a justification of consonant mass functions: given a function π :Θ → [0,1]
such that maxπ = 1, the least specific mass function m with contour function pl
such that pl = π is consonant; its plausibility function, given by (4), will be denoted
as pl∗.

2.2 Dempster’s Rule

A key idea in Dempster-Shafer theory is that beliefs are elaborated by aggregat-
ing different items of evidence. The basic mechanism for evidence combination is
Dempster’s rule of combination, which can be naturally derived using the random
code metaphor as follows.

Let m1 and m2 be two mass functions induced by triples (Ω1,P1,Γ1) and
(Ω2,P2,Γ2) interpreted under the random code framework as before. Let us fur-
ther assume that the codes are selected independently. For any two codes ω1 ∈ Ω1

and ω2 ∈Ω2, the probability that they both are selected is then P1({ω1})P2({ω2}),
in which case we can conclude that θθθ ∈ Γ1(ω1)∩Γ2(ω2). If Γ1(ω1)∩Γ2(ω2) = /0,
we know that the pair of codes (ω1,ω2) could not have been selected: consequently,
the joint probability distribution on Ω1×Ω2 must be conditioned, eliminating such
pairs [27]. This line of reasoning yields the following combination rule, referred to
as Dempster’s rule [25]:

(m1⊕m2)(A) =
1

1−κ ∑
B∩C=A

m1(B)m2(C) (5)

for all A⊆Θ , A �= /0 and (m1⊕m2)( /0) = 0, where

1 Alternative comparative orderings between belief functions have been proposed, see, e.g.,
[18].
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κ = ∑
B∩C= /0

m1(B)m2(C) (6)

is the degree of conflict between m1 and m2. If κ = 1, there is a logical contradic-
tion between the two pieces of evidence and they cannot be combined. Dempster’s
rule is commutative, associative, and it admits as neutral element the vacuous mass
function defined as m(Ω) = 1.

Dempster’s rule can be easily expressed in terms of contour functions: if pl1 and
pl2 are the contour functions of two mass functions m1 and m2, then the contour
function of m1⊕m2 is, using the same symbol ⊕ as used for mass functions and
contour functions

(pl1⊕ pl2)(θ ) =
pl1(θ )pl2(θ )

1−κ (7)

for all θ ∈Θ , where κ is the degree of conflict. If m1 or m2 is Bayesian, then so is
m1 and m2 and the degree of conflict is then

κ = 1− ∑
θ∈Θ

pl1(θ )pl2(θ ). (8)

2.3 Random Real Intervals

The definition of belief functions and random sets in infinite spaces implies greater
mathematical sophistication than it does in finite spaces [26, 24]. Here, we will
restrict our discussion to random closed intervals on the real line (see, e.g., [9, 32,
11]), which constitute a simple yet sufficiently general framework for expressing
beliefs on a real variable.

Let (Ω ,A ,P) be a probability space and (U,V ) :Ω→R
2 a two-dimensional real

random vector such that P({ω ∈Ω |U(ω)≤V (ω)}) = 1. Let Γ be the multi-valued
mapping that maps each ω ∈ Ω to the closed interval [U(ω),V (ω)]. This setting
defines a random interval, as well as belief and plausibility functions on R defined,
respectively, by

Bel(A) = P({ω ∈Ω |[U(ω),V (ω)]⊆ A}) (9)

Pl(A) = P({ω ∈Ω |[U(ω),V (ω)]∩A �= /0}) (10)

for all elements A of the Borel sigma-algebra B(R) on the real line [9]. The intervals
[U(ω),V (ω)] are referred to as the focal intervals of [U,V ]. We note that, when U
and V are continuous, the notion of mass function should be replaced by that of
mass density function defined by m([u,v]) = p(u,v), where p(u,v) denotes the joint
probability density function (pdf) of (U,V ). To simplify the terminology, we will
continue to use the term “mass function” in this case.

If U =V , then we have a random point, which is equivalent to a real random vari-
able. Another special case of interest is that of consonant random closed intervals
defined as follows. Let Ω = [0,1] andπ : R→ [0,1] a function such that, for each
ω ∈Ω ,
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Γ (ω) = {x ∈ R|π(x)≥ ω}
is a closed interval [U(ω),V (ω)]. Finally, let P denote the Lebesgue measure on
Ω . Then, [U,V ] is a random interval and π is its contour function, i.e., pl(x) =
Pl({x}) = π(x) for all x∈R. Such a random interval is said to be consonant because
its focal intervals Γ (ω) are nested.

Dempster’s rule can be defined for random intervals as follows. Let us assume
that we have two random intervals (Ωi,Ai,Pi,Γi) with i = 1,2 and [Ui(ω),Vi(ω)] =
Γi(ω). LetΓ12 be the mapping fromΩ1×Ω2 to the set of closed real intervals defined
by

Γ12(ω1,ω2) = Γ1(ω1)∩Γ2(ω2), ∀(ω1,ω2) ∈Ω1×Ω2

and let P12 be the product measure P1×P2 conditioned on the set {(ω1,ω2) ∈Ω1×
Ω2|Γ12(ω1,ω2) �= /0}. Then, (Ω1×Ω2,A1×A2,P12,Γ12) define a random interval
[U12,V12] = [U1,V1]⊕ [U2,V2]. Its contour function is

(pl1⊕ pl2)(x) =
pl1(x)pl2(x)

1−κ
for all x ∈ R, where κ is the degree of conflict between the two random intervals
defined as:

κ = P({(ω1,ω2) ∈Ω1×Ω2|Γ12(ω1,ω2) �= /0}) .
In general, the combination of two random intervals by Dempster’s rule is not easy
to compute analytically. However, a special case in which the computations are very
simple is that were a random point with pdf p1 is combined with a random interval
with contour function pl2. The results is a random point with pdf

(p1⊕ pl2)(x) =
p1(x)pl2(x)

1−κ , (11)

where the degree of conflict κ is

κ = 1−
∫ +∞

−∞
p1(x)pl2(x)dx. (12)

3 Modeling Statistical Evidence

Let us now turn our attention to the representation of statistical evidence. Assume
that we have observed a realization x of a random vector X with pdf p(x;θθθ), where
θθθ ∈Θ is an unknown parameter. What does this item of evidence tell us about θθθ?
Shafer’s solution [25] derived from the Likelihood and Least Commitment princi-
ples will first be recalled in Subsection 3.1. Arguments for and against this solu-
tion will then be discussed in Subsection 3.2 and an illustrative example will be
presented in Subsection 3.3.
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3.1 Least Committed Solution Based on Likelihoods

In the standard statistical framework, information about θθθ is typically assumed to be
represented by the likelihood function defined by L(θ ;x) = p(x;θ ) for all θ ∈Θ .
More precisely, the likelihood principle [2] [3] [20, chapter 3] states that “Within
the framework of a statistical model, all the information which the data provide
concerning the relative merits of two hypotheses is contained in the likelihood ratio
of these hypotheses on the data”. In statistical parlance, the likelihood ratio is often
referred to as the “relative plausibility”, which suggests translating the likelihood
ratio in the belief function framework as follows:

pl(θ1;x)
pl(θ2;x)

=
L(θ1;x)
L(θ2;x)

,

for all (θ1,θ2) ∈Θ 2 or, equivalently,

pl(θ ;x) = cL(θ ;x)

for all θ ∈ Θ and some positive constant c. The LCP then leads us to giving the
highest possible value to constant c, i.e., defining pl as the relative likelihood :

pl(θ ;x) =
L(θ ;x)

supθ∈Θ L(θ ;x)
(13)

and representing evidence about θθθ by the least committed plausibility function in-
duced by pl, i.e.,

Pl(A;x) = sup
θ∈A

pl(θ ;x) =
supθ∈A L(θ ;x)
supθ∈Θ L(θ ;x)

, (14)

for all A⊆Θ . The corresponding belief function is called a likelihood-based belief
function by Wasserman [37].

3.2 Discussion

Equation (14) was first proposed by Shafer in [25, chapter 11] who, however, did
not justify it by the LCP, but by the more questionable requirement that the belief
function on Θ be consonant. In the special case where Θ = {θ1,θ2} has only two
points, Wasserman [37] showed that the plausibility function (14) corresponds to
the unique belief function Bel(·;x) verifying the following requirements:

1. If L(θ1;x) = L(θ2;x), then Bel(·;x) should be vacuous;
2. Bel({θ};x) should be nondecreasing in L(θ ;x);
3. If Bel = Bel(·;x)⊕P0 and P0 is a probability measure, then Bel should be equal

to the Bayesian posterior.
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This argument can be extended to the case whereΘ is a complete, separable metric
space [37].

One of the main criticisms against the use of the likelihood-based plausibility
function (14) for represented statistical evidence is its incompatibility with Demp-
ster’s rule in the case of independent observations [28]. More precisely, assume that
X is an independent sample (X1, . . . ,Xn) and each observation Xi has a marginal
pdf p(xi;θθθ ) depending on θθθ . We could combine the n observations at the “aleatory
level” by computing Pl(·;x) using (14), or we could combine them at the “epis-
temic level” by first computing the consonant plausibility functions Pl(·;xi) induced
by each of the independent observations and applying Dempster’s rule. Obviously,
these two procedures yield different results in general, as consonance is not pre-
served by Dempster’s rule.

Shafer [28] seems to have regarded the above argument as strong enough to reject
(14) as a reasonable method to represent statistical evidence. However, Aickin [1]
proposed to keep (14) but questioned Dempster’s rule as a mechanism for combining
statistical evidence. Additional arguments against the use of Dempster’s rule for
combining evidence from independent observations can be found in [35].

Based on the above discussion, we propose to adopt (13) and (14) as models of
statistical evidence. Further arguments in favor of this approach are summarized
below:

1. This method of inference is considerably simpler than other methods such as
Dempster’s initial proposal [8] and other methods discussed in [28], while being
more widely applicable than Smets’ Generalized Bayesian Theorem [30, 17].

2. Combining Pl(·;x) given by (14) with a Bayesian prior P0 onΘ using Dempster’s
rule yields a Bayesian plausibility function Pl(·;x)⊕ P0 which is identical to
the posterior probability obtained using Bayes’ rule: consequently, the proposed
method of inference boils down to Bayesian inference when a Bayesian prior is
available.

3. Finally, viewing the relative likelihood function as a possibility distribution seems
to be consistent with statistical practice, although this point of view has not been
adopted explicitly in the statistical literature. For instance, likelihood intervals
[23, 34] are focal intervals of the relative likelihood viewed as a possibility dis-
tribution. In the case where θθθ = (θ1,θ2) ∈ Θ1×Θ2 and θ2 is considered as a
nuisance parameter, the relative profile likelihood function can be written

pl(θ1;x) = sup
θ2∈Θ2

pl(θ1,θ2;x),

which is the marginal possibility distribution on Θ1. Eventually, we can remark
that the usual likelihood ratio statistics Λ(x) for a composite hypothesis H0 ⊂Θ
is nothing but the plausibility of H0, as

Λ(x) =
supθ∈H0

L(θ ;x)

supθ∈θ L(θ ;x)
= sup

θ∈H0

pl(θ ;x) = Pl(H0;x).
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3.3 Illustrative Example

As a concrete example, let us consider the following problem using a real dataset.
Average public teacher pay and spending on public schools per pupil in 1985 for 49
states and the District of Columbia were reported by the Albuquerque Tribune2. The
data are plotted in Figure 1 for each of the three areas: Northeast and North Central,
South and West. We can see that public teacher pay is approximately linearly related
to spending on public schools. Is there any statistical evidence of different relations
holding in the three regions?
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Fig. 1 Average public school teacher annual salary ($) as a function of spending on public
schools per pupil ($) for 49 states and the District of Columbia

Let yki and xki denote, respectively, the teacher pay and spending on public schools
in state i of region k (k = 1,2,3). We assume that yk = {yki}nk

i=1 is a realization of a
Gaussian random vector Yk ∼N (Xkbk,σ2

k In), where Xk is the fixed design matrix
with line i equal to (1,xki), In is the identity matrix of size n, and θθθ k = (bk,σk)

′ is
the parameter vector.

Figure 2 shows the contour functions pl(bk;yk). We recall that this function is ob-
tained as the relative profile likelihood function considering variance as a nuisance
parameter, i.e.,

pl(bk;yk) = sup
σk>0

pl(bi,σk;yk) =
supσk>0 L(bk,σk;yk)

supbk∈R2,σi>0 L(bk,σk;yk)
,

2 The dataset can be downloaded from the Data and Story Library at http://lib.
stat.cmu.edu/DASL. The data for Alaska is an outlier and was not considered in
this analysis

http://lib.stat.cmu.edu/DASL
http://lib.stat.cmu.edu/DASL
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with

L(bk,σk;yk) = φ(yk;X′kbk,σ2
k In) =

n

∏
i=1

φ(yki;(1,xki)
′bk,σ2

k ),

We can see from Figure 2(d) that the contour at level 0.1 for region 3 does not
intersect the corresponding contour for region 2, which suggests that b3 is differ-
ent from b2 with a high plausibility. To carry the analysis further, we can compute
the plausibilities Pl(bi = b j) for each pair of regions, as well as the plausibility
Pl(b1 = b2 = b3) that the three parameters are equal. It is easy to see [15] that these
plausibilities are equal to one minus the degree of conflict between the belief func-
tions related to each parameter. These degrees of conflict are not easy to compute
analytically, but they can be estimated by Monte-Carlo simulation. This is achieved
by picking a focal set at random independently for each of the belief function, and
estimating the probability for the focal sets to be disjoint. We obtain the following
values:

Pl(b1 = b2) = 0.70, Pl(b1 = b3) = 0.12, Pl(b2 = b3) = 0.02

Pl(b1 = b2 = b3) = 0.01.

which confirms that the hypotheses b2 = b3 and b1 = b2 = b3 can be discarded as
having very small plausibility.

4 Inference from Uncertain Data

We consider in this section the situation where the data x have been generated by a
random process but have been imperfectly observed [12, 13, 14]. Our partial knowl-
edge of x will then be described by a mass function m on the data space ΩX ⊆ R

d .
Our objective will be to find a suitable representation of the information about the
parameter provided by such data, in the belief function framework. Our approach
will be to generalize the likelihood function and, as before, to consider the relative
likelihood as the contour function of a consonant plausibility measure.

Before we describe our approach, it must be emphasized that, in this model, the
pdf or probability mass function p(x,θθθ) and the Dempster-Shafer mass function m
represent two different pieces of knowledge:

• p(x,θθθ) represents generic knowledge about the data generating process or, equiv-
alently, about the underlying population; it corresponds to random uncertainty;

• m represents specific knowledge about a given realization x of X; this knowledge
is only partial because the observation process is imperfect; function m captures
epistemic uncertainty, i.e., uncertainty due to lack of knowledge.

The uncertain data m is thus not assumed to be produced by a random experiment,
which is in sharp contrast with other approaches based on random sets [24] or fuzzy
random variables [21].

Our approach will first be described in Subsection 4.1. The impact of stochastic
and cognitive independence assumptions will then be examined in Subsection 4.2.
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Fig. 2 Contour functions pl(bk;yk) for each of the three regions (a-c) and 0.1-level contours
(d). Please note that the x and y axes have different ranges in the four plots.

4.1 Representation of Uncertain Statistical Evidence

Let us assume that the mass function m is induced by a random set (Ω ,A ,P,Γ ). We
will further assume that one of the following two conditions holds:

• X is discrete, or
• X is continuous an if Γ (ω) is not reduced to a point (which would correspond an

infinite precision).

Under these assumptions, the probability of observing the result Γ (ω) given that
the interpretation ω ∈Ω holds is

P(Γ (ω);θ ) =
∫
Γ (ω)

p(x;θ )dx,

assuming that the integral in the right-hand side is well defined. The probability of
the uncertain observation m may then defined as the average of P(Γ (ω);θ ) over
ω ∈Ω , which can be written as

P(m;θ ) = ∑
ω∈Ω

p(ω)P(Γ (ω);θ )
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if Ω is finite and
P(m;θ ) =

∫
Ω

p(ω)P(Γ (ω);θ )dω

otherwise, assuming this integral to be defined. The likelihood function given the
uncertain observation m can then be defined as L(θ ;m) = P(m;θ ) for all θ ∈Θ . It
is easy to show that L(θ ;m) only depends on the contour function. To see this, we
may write:

L(θ ;m) =

∫
Ω

p(ω)

(∫
Γ (ω)

p(x;θ )dx
)

dω , (15)

=
∫
ΩX

p(x;θ )
(∫
{ω|Γ (ω)�x}

p(ω)dω
)

dx, (16)

=

∫
ΩX

p(x;θ )pl(x)dx (17)

= Eθ [pl(X)] . (18)

As a natural extension of (13), we propose to represent the information on θθθ pro-
vided by the uncertain data by the consonant plausibility function with the following
contour function:

pl(θ ;m) =
L(θ ;m)

supθ∈Θ L(θ ;m)
. (19)

An iterative procedure for finding a value θ̂ of θ that maximizes pl(θ ;m) has been
introduced in [4] and generalized in [12, 14]. This procedure, called the Evidential
Expectation Maximization (E2M) algorithm, is an extension of the EM algorithm
[10].

4.2 Independence Assumptions

Let us assume that the random vector X can be written as X = (X1, . . . ,Xn), where
each Xi is a p-dimensional random vector taking values in ΩXi . Similarly, its re-
alization can be written as x = (x1, . . . ,xn) ∈ ΩX. Two different independence as-
sumptions can then be made:

1. Under the stochastic independence of the random variables X1, . . . ,Xn, the pdf
or probability mass function p(x;θθθ) can be decomposed as:

p(x;θθθ) =
n

∏
i=1

p(xi;θθθ ), ∀x = (x1, . . . ,xn) ∈ΩX (20)

2. Under the cognitive independence of x1, . . . ,xn with respect to m (see [25, page
149]), we can write:

pl(x) =
n

∏
i=1

pli(xi), ∀x = (x1, . . . ,xn) ∈ΩX, (21)

where pli is the contour function corresponding to the mass function mi obtained
by marginalizing m on ΩXi .
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We can remark here that the two assumptions above are totally unrelated as they
are of different natures: stochastic independence of the random variables Xi is an
objective property of the random data generating process, whereas cognitive inde-
pendence pertains to our state of knowledge about the unknown realization x of
X.

If both assumptions hold, the likelihood criterion (18) can be written as a product
of n terms:

L(θθθ ;m) =
n

∏
i=1

Eθθθ [pli(Xi)] (22)

and pl(θ ;m) can be written as:

pl(θ ;m) =
∏n

i=1 pl(θ ;mi)

supθ∈Θ ∏n
i=1 pl(θ ;mi)

. (23)

Example 1. Let us come back to the analysis of Subsection 3.3, this time assuming
that the observations of the dependent variable are uncertain. This is reasonable
if we assume that teacher pay data for each state are not known exactly but are
estimated by surveys carried out with samples of different sizes and under different
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Fig. 3 Contour functions pl(bk;yk) for each of the three regions (a-c) and 0.1-level contours
(d), with simulated data uncertainty. Please note that the x and y axes have different ranges in
the four plots.
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conditions. As we do not know in which conditions the data were collected, we simu-
lated data uncertainty by assuming the contour functions plki(yki) to be normalized
Gaussians centered at each data point and with standard deviation ski selected at
random from a uniform distribution in [0,5000].

The results are shown in Figure 3. We can see that the consideration of data
uncertainty actually leads to less committed plausibility functions in the parameter
space. The plausibility values for the same hypotheses as considered in Subsection
3.3 are now:

Pl(b1 = b2) = 0.61, Pl(b1 = b3) = 0.39, Pl(b2 = b3) = 0.13,

Pl(b1 = b2 = b3) = 0.08,

which shows that the hypotheses b2 = b3 and b1 = b2 = b3 can no longer be rejected
based on the uncertain statistical evidence.

5 Conclusion

The Dempster-Shafer theory of belief functions places emphasis on the representa-
tion of evidence for evaluating degrees of belief. This generality and flexibility of
this framework makes it suitable for representing and combining expert judgments
and statistical evidence.

In this paper, we have focused on the representation of statistical evidence, seeing
the relative likelihood function as the contour function of a consonant belief func-
tion in the parameter space, as originally proposed by Shafer. Likelihood-based and
Bayesian inference schemes can both be seen as special cases of this approach.

We have shown that this method can be extended in a simple way to the represen-
tation of uncertain statistical evidence or ill-known data, where lack of knowledge
comes from imperfectness of the observation process. Maximum plausibility esti-
mation can still be performed in this case using a computationally simple iterative
procedure that extends the EM algorithm.

A interesting perspective of this approach concerns situations in which statistical
evidence needs to be combined with expert judgements. Such problems typically
arise in climate change studies, in which statistical data cannot be considered as a
unique source of information but have to be pooled with expert opinions summa-
rizing findings from physical modeling. Results concerning the application of the
belief approach to such problems will be reported in future publications.
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