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Preface

This volume contains papers presented at TES 2013 – The Sixth International Con-
ference of the Thailand Econometric Society, which is held in Chiang Mai, Thai-
land, during January 10th–11th, 2013, and hosted by the School of Economics, Chi-
ang Mai University, Thailand.

The aim of this conference is to bring together researchers and scientists working
in econometrics and quantitative analysis in economics for an opportunity to present
and discuss theoretical and applied research problems as well as to foster research
collaborations.

The papers included in this volume were carefully evaluated and recommended
for publication by the Scientific Committee. We appreciate the efforts of all the
authors who submitted papers and regret that not all of them can be included. The
volume begins with two papers from keynote speakers and is followed by the invited
and contributed papers.

As a follow-up of TES 2013 conference, several special issues of journals such
as Journal of Econometrics, International Journal of Approximate Reasoning, Inter-
national Journal of Intelligent Technology and Applied Statistics will be organized
to publish a small number of extended papers selected from the Conference as well
as other relevant contributions received in response to subsequent open calls. These
journal submissions will go through a fresh round of reviews in accordance with
these journals’ guidelines.

The TES 2013 conference is financially supported by the Chiang Mai School of
Economics (CMSE), Thailand. We are very thankful to Dean Pisit Leeahtam and
CMSE for providing crucial support throughout the organization of TES 2013. We
are also especially grateful to Prof. Hung T. Nguyen for his valuable advice and
constant support.

We sincerely wish to express our appreciation to all the members of Advi-
sory Board, Administrative Committee, Scientific Committee and Local Organiz-
ing Committee for their great help and support. We would also like to thank
Prof. Janusz Kacprzyk (Series Editor) and Dr. Thomas Ditzinger (Senior Editor,
Engineering/Applied Sciences) for their support and cooperation in this publication.
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Last, but not the least, we wish to thank all the authors and participants for their
contributions and fruitful discussions that made this conference a success.

We hope that you the reader will find in reading this volume helpful and
motivating.

Chiang Mai, Thailand, Van-Nam Huynh
January 2013 Vladik Kreinovich

Songsak Sriboonchitta
Komsan Suriya
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On the State of the Art of Info-metrics

Amos Golan

Abstract. Info-metrics is the science and practice of inference and quantitatively
processing information. In this paper I provide a brief discussion of the state of
info-metrics. After defining and discussing the concept of information and types of
information I relate these concepts to information processing and data analysis. The
connection between info-metrics and the class of information-theoretic methods of
inference is discussed here as well. The discussion concludes with a partial list of
open questions in info-metrics.

1 Background, Objective and Motivation

Inference and estimation deal with ways to process all of the available information.
To do so we first need to build models that connect the observable and unobservable
information, and provide the framework for processing and evaluating the infor-
mation we have. This basic issue of inference and processing of finite information
is one of the most fascinating universal problems. Regardless of the quality and
amount information we have, the main task is always how to process this informa-
tion such that the inference - derivation of conclusions from given information or
premises - is optimal and is based on minimal assumptions. In this article, I discuss
some of the basic problems in information processing and inference (info-metrics)
and concentrate on some of the basic solutions provided by the class of information-
theoretic methods of inference.

The field of info-metrics is the science and practice of inference and quanti-
tatively processing information. It crosses the boundaries of all sciences and pro-
vides a mathematical and philosophical foundation for inference with finite, noisy
or incomplete information. Info-metrics is at the intersection of information theory,
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4 A. Golan

statistical and econometric methods of inference, applied mathematics, complexity
theory, decision analysis, basic modeling and the philosophy of science. The study
of info-metrics helps in resolving a major challenge for all scientists and all decision
makers of how to reason under conditions of incomplete information. Though opti-
mal inference and efficient information processing are at the heart of info-metrics,
these issues cannot be developed and studied without understanding information,
entropy, probability theory, statistical inference, information and complexity theory
as well as the meaning and value of information, data analysis and other related
concepts from across the sciences. Info-metrics is based on the notions of informa-
tion, probabilities and relative entropy. It provides a unified framework for reasoning
under conditions of incomplete information.

Though much progress has been made, there are still many deep philosophical,
practical and conceptual open problems in info-metrics: What is information and
what information is observed? What is a correct inference method? How should a
new theory be developed? Is a unified approach to inference, learning and modeling
necessary? If so, does info-metrics provide that unified framework? Or even sim-
pler questions related to real data analyses and correct processing of different types
and sizes of blurry data fall at the heart of info-metrics. Simply stated, modeling
flaws and inference with imperfect information is a major challenge. Inconsisten-
cies between theories and empirical predictions are observed across all scientific
disciplines. Info-metrics deals with the study of that challenge. These issues - the
fundamental problem, current state, thoughts on future directions and open ques-
tions - are the focus of that article.

Generally speaking, to answer the above questions demands a better understand-
ing of both information and information processing. That includes understanding the
types of information observed, connecting it to the fundamental - often unobserved
- entities of interest and then meshing it all together and processing it in a consis-
tent way that yields the best theories and the best predictions. Info-metrics provides
that mathematical and philosophical framework. It generalizes the Maximum En-
tropy (ME) principle [12][13] which builds on the principle of insufficient reason.
The ME principle states that in any inference problem, the probabilities should be
assigned by maximizing Shannon’s[22] information measure called entropy subject
to all available information. Under this principle only the relevant information is
used. All information enters as constraints in an optimization process: constraints
on the probability distribution representing our state of uncertainty. Maximizing the
entropy subject to no constraints yields the uniform distribution representing a state
of complete uncertainty. Introducing meaningful information as constraints in the
optimization shifts the distribution away from uniformity. The more information
there is, the further away the resulting distribution is from uniformity or from a state
of complete uncertainty.

The next section discusses, qualitatively and quantitatively, the concept of in-
formation and types of information. In Section 3, the classical ME principle (for
solving under-determined problems) is formulated and extended. It follows, with
a formulation of a whole class of Information-Theoretic (IT) methods of estima-
tion and inference. In Section 4 a special member of the IT-estimators is discussed.
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Unlike the other members of the IT Class of estimators, the IT, Generalized Maxi-
mum Entropy method can accommodate for all types of information and can be used
even for very sparse or small data as well as for ill-behaved data. Some remaining
open questions and problems in info-metrics are summarized briefly in Section 5.

2 Information

2.1 Information - A Qualitative Discussion

“Information” is a word packed with seemingly many meanings and somewhat
vague in the more ordinary usage. See for example the discussion in [4] or the more
practical discussion (as related to information processing) in [6]. One practical way
of studying the concept and meaning of information is to study the way scientists
across disciplines interpret and understand it. A common view is that when we do
not know a certain fact with certainty, whatever reduces the bounds of possibility, or
concentrates probability of possible outcomes, informs us. It is an addition to one’s
stock of knowledge; however measured and of whatever quality. For the applied re-
searcher (who is interested in inference and learning) this means that information is
anything, such as a fact or an opinion that affects one’s estimates or decisions. It is
“meaningful content.” For example, the information in the random variable A about
(the random variable) B is the extent to which A changes the uncertainty about B.
When A is another random prospect, a particular outcome of it may increase or de-
crease uncertainty about B. On average, however, if A and B are related, knowledge
of outcomes of A should decrease uncertainty about prediction of outcomes of B.
More technically, the information content of an outcome (of a random variable) is an
inverse function of its probability. Consequently, anything “surprising” (an outcome
with a low probability) has much information. From a more human or behavioral
perspective, like a force that induces a change in motion, information is whatever
induces an agent (or any living being) to change her/his beliefs where these beliefs
are constrained by the new information. Similarly, information is whatever induces
a living entity to change its actions where these actions are constrained by the new
information.

The above captures only a subset of the more comprehensive notion of “infor-
mation.” For practical purposes of inference and information processing, a main
subset of the “input information” - the information used for inference, or the infor-
mation being processed - may be studied by using a core definition of information
and related concepts, such as entropy. That core concept has a precise mathematical
definition and is the basic measure that allows us to understand information and in-
formation processing. That precise definition (discussed below) is the one provided
by Shannon and is based on Hartley’s formula [10]. But there is still something miss-
ing. The input information is a composite of three types of information: The hard
data (quantitative information), the soft information and the prior information. The
first and the last are well defined and can be quantitatively analyzed using Shan-
non, or other, information measures. The second one (soft information) deserves
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further discussion and represents the toughest part of the inferential information
processing. This type of information, most often appearing as “input information”
is composed of the assumptions, conjectures and axioms of the observer or modeler.
It also captures the observer’s beliefs and values as well as intuition. The following
example demonstrates the issue and the fundamental problem of processing input
information.

Consider studying the state of the economy as is conveyed by the observed in-
formation. Given a unique data set composed of the basic macro level indicators
of the economy, we wish to infer the state of that economy. Stating it differently,
what is the most probable “story” that is consisting with the observed information
(hard data)? As we often see, different researchers end up with different outcomes.
The problem here is that there is not enough information to ensure one solution.
The hard data are not sufficient for recovering the complete story of the economy.
There are numerous stories that are fully consistent with the available information
and with the data in front of each one of the different researchers. Each researcher
is facing a blurry and imperfect data. The only reason for the different conclusions
(“output information”) must be the researchers’ use of soft information. This is the
part that is hard to quantify. This is the information that enters every time we process
information. This is the information that reflects one’s intuition, values, subjective
beliefs and other hard-to-define information.

To take into account the above issues demands a better understanding of both
information and information processing. That includes understanding the types of
information observed, connecting it to the fundamental - often unobserved - enti-
ties of interest and then meshing it all together and processing it in a consistent
way that yields the best theories and the best predictions. Info-metrics provides that
mathematical and philosophical framework. But, as discussed above, info-metrics
and the practice of inference with limited and imprecise information cannot be un-
derstood without understanding information. Before returning to our discussion of
info-metrics, we first quantify the concept of information.

2.2 Information - A Quantitative Discussion

Let η = {η1,η2, ...,ηK} be a finite set and p be a proper probability mass function
on η , where “proper probability distribution” means that all the elements are non
negative and the sum over all elements equals exactly one. Hartley showed that the
amount of information needed to fully characterize all of the K elements of this
set is defined by I(ηK) = log2K. Developed within the context of communication
theory, it is the logarithm of the number of possibilities (K), or simply a logarithm
measure of information. Shannon built on Hartley’s formula, within the context of
communication process, to develop his information criterion. Shannon’s informa-
tion content of some outcome h(ηi) = h(pi) ≡ log2

1
pi

. If the base 2 is used for the
logarithm, the resulting units are “bits”. A “bit” is a binary digit - a one or a zero and
it is a basic unit of information. All information (data) can be specified in terms of
bits. A random variable, for example, with two possible outcomes stores one bit of
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information. N binary random variables store N bits of information because the total
number of possible observed states is nN and log2(2N). The choice of base 2 seems
to be a natural choice as it provides the most efficient (cheapest) way of coding and
decoding the data, though one can use logarithms of any base.

Shannon’s criterion, called entropy, reflects the expected informational content
of an outcome and is defined as

H(p)≡∑
i

pilog2
1
pi

=−∑
i

pilog2 pi = E [log2(1/p(X))]

for some random variable X and with xlog2(x) tending to zero as x tends to zero.
This information criterion, expressed in bits, measures the uncertainty or informa-
tional content of X that is implied by p. See the original work of Shannon, or other
texts such as [2] or [6] for a detailed discussion of information and entropy and their
basic properties of this entropy measure.

Shannon’s entropy measure can be extended for defining the informational dis-
tance between two proper distributions, say a prior and a posterior. This is called
the relative entropy or more commonly known as the Kullback-Leibler divergence
measure [17]. The relative entropy (or cross entropy) between the two probability
mass functions p and q for the random variables X and Y is

D(p||q)≡∑
k

pklog(pk/qk).

The relative entropy D(p||q) reflects the gain in information resulting from the addi-
tional information in p relative to q. It is an information-theoretic distance of p from
q that measures the“inefficiency” of assuming a priori that the distribution is q when
the correct distribution is p (see [5]). In a more information theoretic language, if I
knew the true distribution of the random variable, I could construct a code with an
average description length of H(p) to describe that random variable. But if I use my
code for the incorrect distribution q, I need H(p)+D(p||q) bits on the average to
describe the same random variable. In more econometric terms, using the incorrect
likelihood, or model, when analyzing data is costly not only in terms of efficiency
and precision but also may lead to an inconsistent estimator. Note that D(p||q) is
not a true distance and is not symmetric. For further discussion on this measure see
[2].

Building on Shannon’s information and entropy measures, a number of gener-
alized information measures were developed. Though none of these measures ex-
hibit the exact properties of the Shannon’s entropy, these measures are used often in
econometrics and statistics and provide a basis for defining the class of Information-
Theoretic (IT) estimators. These generalized information measures are all indexed
by a single parameter: α .

Starting with the idea of describing the gain of information, [21] developed
the entropy of order α for incomplete random variables. The relevant generalized
entropy measure of a proper probability distribution is
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HR
α (p) =

1
1−α log∑

k

pαk

where Shannon measure is just a special case for α→ 1. Other generalizations were
developed. Among those, the more commonly used in econometrics and statistics
are those that were developed during the 1980’s by [3] and [24]. The Cressie-Read
measure (accommodating for priors) is

DCR
α (x||y) = DCR

α (p||q) = 1
α(1+α)∑k

pk

[(
pk

qk

)α
− 1

]
.

For a quantitative comparisons of these measures (including their properties) see,
for example, [6]. It is important, however, to emphasize one point on the differences
between these measures and Shannon’s entropy. With Shannon’s entropy, events
with high or low probability do not contribute much to the measure’s value. With the
generalized entropy measures for α > 1, higher probability events contribute more
to the value than do lower probability events. The average logarithm is replaced by
an average of probabilities raised to the power α . Thus, a change in α changes the
relative contribution of event k to the total sum.

We now return to the basic problem of solving an under-determined problem
where the number of unknown quantities is larger than the number of known quan-
tities, a common problem in statistical and econometric inference, especially when
one tries to impose minimal assumptions or structure on the model.

3 The Basic Information Theoretic Model

3.1 The Classical Maximum Entropy Framework

Given T (pure) moments y, our objective is to estimate the K-dimensional, unknown
distribution p for the case where K > T + 1 (an under-determined problem). With
under-determined problems we need to introduce more information (constraints) or
to choose a certain criterion to pick one of the infinitely many solutions that are
consistent with the observed information. In all of the IT family of estimators, the
chosen criterion is an informational one.

ME =

{
p̂ = argmax{H(p)≡−∑k pklogpk}
s.t. y−Xp = 0;∑k pk = 1

The ME solution is

p̂k =
exp(−∑T

t=1 λ̂t xtk)

∑k exp(−∑T
t=1 λ̂t xtk)

≡ exp(−∑T
t=1 λ̂t xtk)

Ω(λ̂λλ )

where is the T -dimensional vector of estimated Lagrange multipliers.
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The ME is formulated in terms of a constrained optimization where the optimiza-
tion is carried out with respect to the p’s. The concentrated model is

�(λ ) = −∑
k

pklog(pk)+∑
t
λt

[
yt −∑

k

xtk pk

]

=−∑
k

pk(λ )
[
−∑

t
λtxtk− log(Ω(λλλ))

]
+∑

t
λt

[
yt −∑

k

xtk pk

]

=∑
t
λt yt + log(Ω(λλλ))

(1)

Looking at the concentrated model it is clear that it has the same form of a likelihood
function. In fact, it is equivalent to the maximum likelihood Logit for a discrete
choice model.

The advantages of the concentrated model is that first, an unconstrained model
is simpler (and computationally superior), second by moving from the probability
space to the Lagrange multipliers’ space the dimension of the model decreases sig-
nificantly, and last, it allows a direct comparison with the more traditional likelihood
methods.

Out of the infinitely many solutions that are consistent with the observed infor-
mation (moments), the chosen ME distribution is the most uniform one. It is the
most conservative estimates of p. For further motivations for using the ME, related
test statistics and examples, see [6] and others.

So far the model handled only “hard” observed information - the first type of
information defined earlier. We now extend the ME to include prior information
(the third type of information defined). Substituting the Kullback-Leibler measure
for Shannon’s entropy, the Cross Entropy (CE) formalism (including priors) is

CE =

{
p̃ = argmin{D(p||q)≡ ∑k pklog(pk/qk)}
s.t. y−Xp = 0;∑k pk = 1

The estimated probabilities are:

p̃k =
qkexp(∑T

t=1 λ̃t xtk)

∑k exp(∑T
t=1 λ̃txtk)

≡ qkexp(∑T
t=1 λ̃txtk)

Ω(λ̃λλ )

and the concentrated model is

�(λλλ ) =∑
k

pklog(pk/qk)+∑
t
λt

[
yt −∑

k

xtk pk

]
=∑

t
λtyt − log(Ω(λλλ)).

Unlike the ME model where the probabilities are pushed toward uniformity, in this
case the resulting distribution is the one that is closest to the priors and satisfies the
observed moments. If no information is used, the estimates are just the priors. As
more information is introduced (via the moment constraints), the estimates start to



10 A. Golan

shift away from the priors (assuming the new information tells a different story than
the priors). If the priors are uniform the CE and ME estimates are the same.

So far we concentrated on processing two types of information: hard data (quan-
tities) and priors. We still need to accommodate these models for processing the
other soft information (type 2 defined above). We do it in the next section. But first
we build on the ME and CE framework to construct a generic IT estimator.

3.2 The Generic IT Framework

Within the same objective of solving an under-determined problem, or estimating
with minimal assumptions, it is possible to generalize the ME and CE formalisms.
The idea is to substitute the generalized entropy function for Shannon’s entropy as
the objective criterion within the ME/CE formulations. To define the problem in
more general notations, let Y = {Y1,Y2, ...,YT} be a sample of i.i.d. observations
from an unknown distribution F0. There is an N-dimensional parameter vector θθθ 0

that is related to F0 in the sense that the information about θθθ0 and F0 is available
in the form of some M moments (or functionally independent unbiased estimating
functions). A possible IT likelihood of this parameter vector could be defined by
considering the distributions supported on the sample, where each Yi is assigned a
probability Pi. For a specified value of the parameter vector, say θθθ S the IT (empiri-
cal) likelihood is defined as the maximal value of some function f (.) over all such
probability distributions satisfying the relationship among y, p, and θθθ S that are spec-
ified by the M-dimensional equations g(y,p,θθθS) = [0]. Under that approach, one
starts by defining the feasible set of proper probability distributions supported on
the sample observations. This feasible set is characterized by a set of M restrictions
on the unknown probabilities p. Given the T observations and the M moment condi-
tions, the objective is to estimate the probability distribution p. These estimates are
the unobserved empirical weights of the T data points. Like the ME formulation, a
simple way to solve such an under-determined problem is to transform it into a well-
posed, constrained optimization problem. Using one of the generalized divergence
measures forms a basis for optimal decision making and for statistical inference. To
simplify presentation, for the rest of this paper we will only use the Cressie-Read
measure, though the results hold for all IT measures. The IT estimator is

Generic IT=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∗=argmin

{
f (p||q)=DCR

α (p||q) = 1

α(1+α)∑k pk

[(
pk
qk

)α−1
]}

s.t. gm(y, p,θ1) = [0];m = 1,2, ...,M
∑i pi = 1; i = 1,2, ...,T and M < T − 1

The class of IT estimators p∗ depends on the pre specifiedα and on the exact specifi-
cation of gm(.). If, for example, α→ 1, f (p||q) = DR

α(p||q) is the Kullback-Liebler
divergence measure D(p||q) ≡ ∑T

t=1 pilog(pi/qi), with the CE solution p̃. If in ad-
dition, the q’s are uniform, then p̃ = p̂ which is equivalent to using the negative of
the Shannon’s entropy as the objective function, resulting in the ME solution p̂.
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Once the optimal solution p∗ is found, the concentrated model can be formulated.
The estimated Lagrange multipliers, which are directly related to the estimated pa-
rameters, also reflect the contribution of each constraint (moment) to the optimal
value of the objective function. In the IT class, the objective is an informational cri-
terion, meaning the estimated Lagrange multipliers reflect the marginal information
of each constraint. It is the same Lagrange multipliers that enter as the parameters
in the estimated probability distribution.

Depending on α , there are many members of this IT class of models. The case of
α→ 1 was already discussed. Another case is now briefly discussed. Letting α→ 0,
and assuming the priors are uniform, subject to the same set of M + 1 restrictions
yields the Empirical Likelihood (EL) method. The EL criterion is simply the proba-
bility of the observed sample or its natural logarithm. Following [18][19] and [20],
the EL method is

EL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∗ = argmin

{
f (p) =

1

T
∑T

t=1 log(pt)

}

s.t. ∑t ptgm(yt ;θ ) = 0;
∑i pi = 1; pt ≥ 0

The resulting estimated weights (probabilities) are

p∗ = T−1
[
∑
m
λ ∗mgm(yt ;θ )+ 1

]−1

Extending this framework for linear regression is trivial but is not discussed here.
For more details, including examples and test-statistics, see [19] and [20]. For recent
advancements and a survey of the EL (and Generalized EL) see [23] and [15]. For
a further discussion of all members of the IT family of estimators see [6] and [14].
For Bayesian and IT see the seminal work of [25].

Two notes in conclusion. First, substituting the objective function within the EL
framework for the entropy of order α takes us back to the generic IT estimator
discussed above. This idea goes back to the work of Imbens et.al, [11] that discuss
three special cases of that objective function, and to the work of [16] that connected
the ME and the GMM in a very elegant way. Second, [23] considered a more general
class of estimators which he called Generalized EL (GEL). Under the GEL, the
constrained optimization model is transformed into a concentrated model. This idea
is similar to the original work of [1] who were the first to construct the concentrated
ME model, and then applied and extended to the Generalized ME by [8], and [9].
See [9] for detailed examples and derivations.

4 The Generalized Information Theoretic Model

We now consider the more realistic case where all of the observed information may
be noisy or blurry, the information may be contradictory or complementary, and
all the soft information can be incorporated directly into the processing framework.
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The objective here is to establish a single framework that accommodates for pos-
sible noise in the observed information while allowing specification of all types
of information (hard, priors and soft). A proper way to resolve it (without impos-
ing additional assumptions/information) is via the information theoretic Generalized
Cross Entropy (GCE) or Generalized Maximum Entropy (GME) framework of [9].
In this case, all the constraints are specified as stochastic constraints together with
the proper probabilities requirements. Maximizing the joint entropies of the noise
and the signal subject to these constraints yields a unique solution. To establish the
notations and basic framework, consider extending the CE (or ME) framework for
stochastic moments. Rather than specifying the observed moments as y = X p, we
specify it as y = X p+ ε where ε is a zero mean noise vector (independent of X). In
this case, regardless of the number of observed pieces of information (moments), the
problem is always under-determined. But unlike the previous (pure) moments case,
we cannot apply the CE directly. But we can do so after reformulating the noise (ε)
as a set of proper probability distributions. To do so, we formulate each unobserved
random error (εi) as an expected value over a J-dimensional, symmetric about zero,
support space v. Then, the IT-GCE (with stochastic moments) is:

Min{p,W}D(P,W||P0,W0) = ∑k pklog(pk/p0
k)+∑t j wt j log(wt j/w0

t j)

s.t. yt = ∑k pkxtk + εt = ∑k pkxtk +∑ j wt jv j

∑k pk = 1, and ∑ j wt j = 1

As was shown previously, the concentrated model with respect to the Lagrange mul-
tipliers λ can then be formulated as well.

Though this is a very trivial example, it does introduce the framework for pro-
cessing all types of information: noisy and pure, hard and soft, contradictory and
complimentary, linear and nonlinear. It provides a natural framework for empiri-
cally validating and testing theories, conjectures and assumptions with the observ-
able information. It is one of the only approaches that allow us to incorporate soft
and hard data together and to empirically test these different types of information
for consistency. It is essential to emphasize that even though all of the information
is entered as potentially noisy, this framework does not force the noise to be none
zero, rather it allows it to be none zero. Further, and possibly most important, for
most problems, that framework generalizes the classical ME/CE but without added
complexity: the same number of basic parameters (the λλλ ’s that determine both p
and εεε) capturing the story hidden in the information is not increased.

A basic property of the classical ME (or CE) approach, as well as most members
of the IT family of estimators is that the moment conditions have to be exactly ful-
filled (zero moment conditions). This property is satisfactory for (relatively) large
samples or for well behaved samples. Unfortunately, in both the social and natu-
ral sciences we are often trying to understand small or ill-behaved (and often non-
experimental) data where the zero-moments’ restrictions may be too costly. An-
other basic concern is how to incorporate in the estimation procedure information
resulting from economic-theoretic behavior such as agents’ optimization. The IT-
GME accommodates for these concerns for all regression models by introducing all



On the State of the Art of Info-metrics 13

information as noisy constraints. These stochastic moments can be introduced in
two ways. The first is by allowing for some additive noise (with mean zero) for
each one of the moment conditions. This was discussed above. The second is by
viewing each observation as a noisy moment resulting from the same data generat-
ing process. Thus, each observed data point can be treated as a composite of two
components: signal and noise. The IT-GME model that was developed in the early
1990’s has the above view in mind and treats the moments (or each observation) as
stochastic. For detailed background, development and applications of the IT-GME
see [9] and [6]. The IT-GME for the traditional linear regression model, as well as
for other statistical problems, can be formulated using the above framework. The
exact details are beyond the scope of this short discussion on the basics of info-
metrics, but we note that this framework allows us to incorporate directly all types
of information. See above references as well as [7].

5 Open Questions

Keeping in mind that all types of information are finite and that the observed in-
formation is often very limited and blurry, all inferential problems are inherently
underdetermined. That problem brings out some of the fundamental questions a re-
searcher has to deal with when constructing a theory and processing information.
For example, how can one connect the unobserved preferences with the observed
actions? Or what inference method is the “correct” method to use? Or how can the
theory be validated with the observed information? How should one handle the noise
if the exact underlying distribution is unknown? How can one connect the observed
noisy data with the basic entities of interest? All of these questions arise naturally
when one deals with small and noisy data within the social sciences. Similar infer-
ential problems exist also with big data. One trivial example is image reconstruction
or a balancing of a very large matrix. The first problem is how to reduce the data (or
the dimensionality of the problem) so the reconstruction will be computationally
efficient. Within the IT framework one can solve that problem as well. For more
derivations and examples (small and large data) see [6]. A partial list of the funda-
mental open questions in info-metrics is provided below. Though these questions
are not necessarily independent of one another, it is helpful to include each one of
these questions separately.

The questions are:

1. What is information?

2. What information do we observe?

3. How can we connect the observed information to the basic unit (or entity) of
interest (usually unobserved)?
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4. How should we process the information we observe while connecting it to the
basic unit of interest?

5. Can we quantify all types of information?

6. How can we handle contradicting/complimentary evidence (or information)?

7. What is “useful” information?

8. Is there a way to assign relative/absolute value to information?

9. How is the macro level information connected to the basic micro level informa-
tion?

10. How should we do inference and modeling with finite information?

11. How can we validate our theories and models?

12. What is a correct inference method? Is it universal to all inferential problems?
(What are the mathematical foundations of that method?)

13. Under what conditions members of the IT family of estimators are equivalent
to the more traditional estimation methods?

The above list is not complete but it provides a window toward some pressing is-
sues within info-metrics that need more research. A more detailed discussion and
potential answers to some of these questions is part of a current and future research
agenda.
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A Test for Strict Stationarity

Luiz Renato Lima and Breno Neri

Abstract. We introduce a test for strict stationarity based on the fluctuations of
the quantiles of the data, and we show that this test has power against the alternative
hypothesis of unconditional heteroskedasticity while other tests for first order (level)
stationarity as the KPSS test (Kwiatkowski et al., 1992) and, its robust version, the
IKPSS test (de Jong et al., 2007) have low power against this alternative of time-
varying variance. Moreover, our test has power against the alternative hypothesis
of time-varying kurtosis, while the test for second order (covariance) stationarity
introduced by Xiao and Lima (2007) has power close to size against this alternative.

Keywords: strict stationarity testing, time-varying volatility, time-verying kurtosis.
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1 Introduction

Several techniques employed in time-series econometrics rely on stationarity. So,
the development of tests for stationarity is an active field of research.

In 1992, Kwiatkowski, Phillips, Schmidt and Shim (KPSS) proposed a test for
for first order (level) stationarity1 based on the following standardized empirical
process:
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ST (r) :=
1

ω̂
√

T

�Tr	
∑
t=1

(yt − yT ),

where r ∈ [0,1], yT is the sample mean of {yt}T
t=1 and ω̂2 is a nonparametric con-

sistent estimator of the long-run variance

ω2 = lim
T→∞

e

(
1√
T

T

∑
t=1

(yt − yT )

)2

.

In order to measure the fluctuation of ST (r), they consider the Cramér-von Mises
metric,

h(ST (r)) :=
1
T

T

∑
k=1

ST

(
k
T

)2

,

an alternative to the Kolmogorov-Smirnov metric. The KPSS test statistic is then
given by

KPSS =
1

(ω̂T )2

T

∑
k=1

(
k

∑
t=1

(yt − yT )

)2

,

and, under the null hypothesis of level stationarity,

KPSS
d

=⇒
∫ 1

0
κ(α)2dα,

where
d

=⇒ indicates convergence in distribution and κ(α) is the standard Brownian
bridge. That is, κ(α) := W (α)−αW (1), where W (α) is the Wiener process. The
critical values can be found in KPSS (1992).

In a recent paper, de Jong et al. (2007) proposed a robust version of the KPSS
test based on the following empirical process:

IT (r) :=
1

σ̂
√

T

�Tr	
∑
t=1

signyt −mT ,

where mT is the sample median of {yt}T
t=1, σ̂2 is a nonparametric consistent estima-

tor of the long-run variance,

σ2 = lim
T→∞

e

(
1√
T

T

∑
t=1

signyt −mT

)2

and signx is the sign of x: 1 if x > 0, −1 if x < 0 and 0 if x = 0.



A Test for Strict Stationarity 19

And they applied the Cramér-von Mises metric to measure the fluctuation of the
empirical process IT (r). This gives rise to the IKPSS test statistic

IKPSS =
1

(σ̂T )2

T

∑
k=1

(
k

∑
t=1

signyt −mT

)2

.

Under the null hypothesis of level stationarity, de Jong et al. (2007) show that

IKPSS
d

=⇒
∫ 1

0
κ(α)2dα,

the same limiting distribution as the KPSS test statistic. Unlike the KPSS test, the
IKPSS has correct size2 under the presence of fat-tailed errors. When the alternative
hypothesis is unit root,3 the indicator test has lower power than the KPSS when tails
are thin, but higher power when tails are fat.

However, when the aforementioned traditional stationarity tests are applied to test
stationarity, it is difficult to detect alternatives with unconditional volatility (distri-
bution scale) that changes over time.

In the same year, 2007, Xiao and Lima proposed a test for second order (covari-
ance) stationarity4 based on the following standardized bivariate empirical process:

ZT (r) :=
1√
T
Ω̂−

1
2

�Tr	
∑
t=1

(
ỹt

vt

)
,

where

ỹt := yt − 1
T

T

∑
j−1

y j

is the demeaned data, vt := ỹ2
t −σ2

y ,

σ2
y :=

1
T

T

∑
t=1

ỹ2
t ,

and Ω̂−
1
2 is the inverse of the Choleski decomposition5 of Ω̂ , a nonparametric con-

sistent estimator of the long-run covariance matrix

2 In hypothesis testing, given a confidence level, the size of a test is the probability of reject-
ing the null hypothesis when the null hypothesis is indeed true. Analogously, the power of
a test is the probability of rejecting the null hypothesis when the null hypothesis is indeed
false.

3 A stochastic process is said to be a unit root process when at least one of the roots of its
characteristic equation lies on the unit circle. A unit root process is said to be integrated of
order n, I(n), when it has n unit roots. An integrated process is non-stationary. For more
on unit root process or stationarity, see Hamilton, 1994.

4 A stochastic process {yt}∞t=−∞ is said to be second order (covariance, weak or wide-sense)
stationary if it is first order stationary and eytyt− j = γ j < ∞,∀t.

5 Unless in a degenerate case, the covariance matrix Ω̂ is positive definite, and hence hence
it is invertible, as it is its Choleski decomposition.
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Ω = lim
T→∞

e

(
1√
T

T

∑
t=1

(
ỹt

vt

))(
1√
T

T

∑
t=1

(
ỹt

vt

))′
.

Then, they applied the Kolmogorov-Smirnov metric to measure the fluctuation of
the empirical process ZT (r). Their test statistic is then

XL = max
1≤k≤T

∥∥∥∥∥
1√
T
Ω̂−

1
2

k

∑
t=1

(
ỹt

vt

)∥∥∥∥∥
1

.

Under the null hypothesis of covariance stationarity,

XL
d

=⇒ sup
0≤r≤1

∥∥∥∥
(

W1(r)− rW1(1)
W2(r)− rW2(1)

)∥∥∥∥
1
,

where
(
W1(r)− rW1(1) W2(r)− rW2(1)

)′
is the 2-dimensional standardized Brow-

nian bridge. The critical values can be found in Xiao and Lima (2007).
Unlike the KPSS or the IKPSS, the XL test has power not only against the al-

ternative hypothesis of distribution location varying on time but also against the al-
ternative hypothesis of distribution scale (unconditional volatility) varying on time.
However, all of the aforementioned tests have power close to size against the alter-
native hypothesis of time-varying kurtosis.

As Busetti and Harvey (2007) discuss, the distribution of a random variable may
presents changes over time that does not impact the level or the variance. For in-
stance, maybe the asymmetry or fatness of the tail is time-varying. This is particu-
larly important in analyzing financial time-series. To exemplify this point, consider
how changes in lower tail quantiles may impact decisions of a risk manager or a
regulatory agency.6

In this paper, we propose a new test for the null hypothesis of strict stationarity7

as a useful complement to the previous procedures. This new test uses the sign of
the data minus the sample quantiles. In this way, this new test can be seen as a
generalization of the IKPSS test, since the latter uses the sign of the data minus the
sample median only. Comparing to the KPSS, IKPSS and XL tests, the proposed test
has power not only against unit root alternative, alternatives with structural changes
in the mean and alternatives with unconditional heteroskedasticity, but also has good
power in detecting changes in higher moments of the unconditional distribution.

This paper is organized as follows: Section 2 describes our testing procedure;
Section 3 brings the Monte Carlo; an empirical exercise is done in Section 4; and
Section 5 concludes.

6 See for instance Value-at-Risk (VaR), a measure of risk based on a lower tail quantile, that
is of considerable importance in financial regulation (Lima and Neri, 2007).

7 A stochastic process {yt}∞t=−∞ is said to be strict (or strict sense) stationary if the uncon-
ditional distribution of yt is constant over time.
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2 A Test for Strict Stationarity

Let {yt}T
t=1 be the data and define b(τ) := argminb∈R∑T

t=1 ρτ (yt − b) for τ ∈ [0,1],
where ρτ(u) = (τ − 1u<0)u. That is, ρτ(u) is equal to (τ − 1)u if u < 0 and τu oth-
erwise. Therefore, b(τ) is simply the τth sample unconditional quantile of {yt}T

t=1.
Notice that ρτ is not everywhere differentiable but, since it is convex, we can still

compute the subgradient. The subgradient plays the same role in quantile estimation
as the score function in maximum likelihood estimation. The subgradient of ρτ is
given by8

ψτ(u) = τ− 1u<0.

We now define the empirical process

ST (r,τ) :=
1

π̂(τ)
√

T

�Tr	
∑
t=1

ψτ (yt − b(τ)) ,

where r ∈ [0,1], and π̂(τ)2 is a nonparametric consistent estimator of the long-run
variance

π(τ)2 := lim
T→∞

e

(
1√
T

T

∑
t=1

ψτ (yt − b0(τ))

)2

,

where b0(τ) is the population τth unconditional quantile of the {yt}T
t=1. π(τ)2 can

be computed as the HAC estimator9

π̂(τ)2 :=
1
T

T

∑
i=1

T

∑
j=1

K

(
i− j
qT

)
ψτ (yi− b(τ))ψτ (y j− b(τ)) ,

where K is a kernel function that satisfies, as in de Jong et al. (2007),

1.
∫ ∞
−∞ |ω(ξ )|dξ < ∞, where ω(ξ ) := 1

2π
∫ ∞
−∞K(x)e−ixξdx;

2. K is continuous at all but a finite number of points, K(x) = K(−x), |K(x)| ≤ l(x),
where l(x) is non-increasing and

∫ ∞
0 |l(x)|dx < ∞, and K(0) = 1;

3. limT↑∞ qT = ∞ and limT↑∞ qT
T = 0.

This paper proposes to test for strict stationarity by using the Kolmogorov-Smirnov
metric to measure the fluctuation of ST (r,τ) across various quantiles τ ∈Γw = [w,1−
w], for some w ∈ (0, 1

2

)
, which gives rise to the following test statistic:

SS = max
τ∈Γw

max
1≤k≤T

1

π̂(τ)
√

T

∣∣∣∣∣
k

∑
t=1

ψτ (yt − b(τ))− k
T

T

∑
t=1

ψτ (yt − b(τ))

∣∣∣∣∣ .

8 In fact, the subgradient of ρτ at zero is not unique; it can be any element of the closed
interval [τ−1,τ].

9 See Newey and West (1987) for more on Heteroskedasticity and Autocorrelation Consis-
tent (HAC) covariance matrix estimation.
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Assumption 1. (Null Hypothesis H0)

1. {yt}∞t=1 is a strictly stationary stochastic process and b0(τ) is the unique popu-
lation τth unconditional quantile of yt ;

2. {yt}∞t=1 is strong (α−) mixing10 and, for some finite κ > 2, C > 0 and η > 0,

α(m)≤Cm−
κ

κ−2−η ;
3. yt − b0(τ) have a continuous density f in a neighborhood [−η ,η ] of 0 for some
η > 0, and infy∈[−η,η] f (y)> 0;

4. σ2 ∈ (0,∞).

Theorem 1. Under Assumption 1, SS
d

=⇒ supτ∈Γw
sup0≤r≤1 |B(r,τ)|, where B(r,τ)

is the Brownian Pillow (or the tucked Brownian Sheet).

A proof for Theorem 1 for the case in which the innovations are i.i.d. was done by
Qu (2005). The critical values of our test are computed through the simulation of 105

time series with 1000 observations et ∼ i.i.d.U [0,1].11 B(r,τ) is then approximated
by

1

γ̂(τ)
√

T

(
k

∑
t=1

1et≤τ −
k
T

T

∑
t=1

1et≤τ

)
,

where k = �Tr	, and γ̂(τ)2 is the sample variance (over k) of ∑k
t=1 1et≤τ −

k
T ∑T

t=1 1et≤τ . The supremum of the absolute value of this approximating process
is obtained by maximizing over k and τ . We considered τ ∈ [0.10,0.90] with incre-
ments of 0.01. The critical values for the significance levels of 10%, 5% and 1% are
1.65, 1.77 and 2.01, respectively.

3 Monte Carlo Experiment

In this section we report the results of our Monte Carlo experiment that investigate
the size and power of the KPSS, IKPSS, XL and our test for strict stationarity (SS).
Our experiment is coded in R and it is run in one of the Linux HPCCs (High Perfor-
mance Computation Clusters) at New York University (NYU). We follow de Jong
et al. (2007) and vary tail thickness by considering t distributions with different de-
grees of freedom. In particular, we consider t∞ (normal), t5, t3, t2, and t1 (Cauchy).
We consider sample sizes T = 100, T = 500 and T = 1000. The significance level
of the tests is 5%. For the SS test, we set τ ∈ [0.10,0.90] with increments of 0.01.
Our results are based on N = 105 replications.

10 For the definition of strong mixing stochastic process, also knows as α−mixing stochastic
process, see White, 2001, pp. 46-8.

11 All numerical procedures used in this paper are implemented in R, and can be down-
loaded from https://files.nyu.edu/bpn207/public/. R is a free computer
programming language very suited to statisticians and econometricians, and can be down-
loaded from http://www.r-project.org.

https://files.nyu.edu/bpn207/public/
http://www.r-project.org
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We report our experiment in which the errors εt are i.i.d., but we also investigate
the effects of short memory via a bootstrap experiment. The results are similar to
the case with serially independent innovations, but they are not shown in this paper
due to length restrictions. All results are available upon request.

Since the errors are i.i.d., we use qT = 0 lags to compute the long-run variance
for all the four tests.

3.1 Size

We first consider the size of the tests, so our Data Generating Process (DGP) is
yt = εt , with εt i.i.d. t∞, . . . or t1. Our results are displayed in Table 1 and are easy
to summarize. For the KPSS and IKPSS, our results are, as expected, very close to
the ones obtained by de Jong et al. (2007).

The XL test requires the existence of the first two moments, so it is very under-
sized under t2 and Cauchy distributions. Analogously, the KPSS test presents size
distortion under Cauchy distribution.

The IKPSS and SS tests are robust to distributions without finite mean and/or
variance. However, for very small samples (T = 100), the SS test is more conserva-
tive than the IKPSS. This happens because we estimate 81 unconditional quantiles
in order to compute the SS test. Since the precision of such estimates depends on the
density of observations around the quantiles, the performance of the SS test tends to
deteriorate in very small samples.

Table 1 Size of the tests at 5% significance level

t∞ t5 t3 t2 t1
T = 100

KPSS 0.049 0.050 0.048 0.044 0.029
IKPSS 0.049 0.050 0.050 0.049 0.050

XL 0.030 0.023 0.019 0.015 0.006
SS 0.039 0.040 0.040 0.040 0.039

T = 500
KPSS 0.050 0.049 0.049 0.045 0.028
IKPSS 0.051 0.050 0.050 0.050 0.049

XL 0.043 0.035 0.027 0.020 0.007
SS 0.050 0.049 0.049 0.049 0.049

T = 1000
KPSS 0.050 0.049 0.049 0.046 0.028
IKPSS 0.050 0.050 0.051 0.049 0.049

XL 0.047 0.039 0.032 0.022 0.007
SS 0.050 0.051 0.051 0.051 0.051
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3.2 Power against Alternatives with Unit Root

We parameterize the alternative hypothesis of unit root in a fashion similar to de
Jong et al. (2007), yt = λ rt +εt , where rt =∑t

j=1 μ j is a random walk, and μt and εt

are i.i.d. and independent from each other, and follow the same distribution (normal,
. . . or Cauchy). The scale factor λ measures the relative importance of the random
walk component. We considered λ = 0.01 and λ = 0.1.

Table 2 Power of the tests, at 5% significance level, against the alternative hypothesis of unit
root

λ = 0.01 λ = 0.1
t∞ t5 t3 t2 t1 t∞ t5 t3 t2 t1

T = 100
KPSS 0.061 0.060 0.064 0.068 0.141 0.588 0.590 0.590 0.587 0.564
IKPSS 0.057 0.060 0.069 0.100 0.477 0.488 0.561 0.633 0.735 0.921

XL 0.035 0.028 0.026 0.029 0.146 0.442 0.468 0.502 0.563 0.679
SS 0.047 0.047 0.055 0.079 0.453 0.500 0.558 0.627 0.739 0.951

T = 500
KPSS 0.307 0.308 0.315 0.337 0.413 0.988 0.987 0.986 0.974 0.873
IKPSS 0.230 0.299 0.394 0.593 0.980 0.972 0.983 0.991 0.997 1.000

XL 0.213 0.211 0.229 0.293 0.513 0.980 0.980 0.982 0.984 0.963
SS 0.241 0.290 0.375 0.571 0.983 0.982 0.989 0.995 0.999 1.000

T = 1000
KPSS 0.606 0.607 0.608 0.608 0.582 1.000 0.999 0.999 0.996 0.934
IKPSS 0.507 0.595 0.697 0.858 0.999 0.998 0.999 1.000 1.000 1.000

XL 0.509 0.512 0.533 0.596 0.713 0.999 0.999 0.999 0.999 0.990
SS 0.539 0.605 0.694 0.853 1.000 0.999 1.000 1.000 1.000 1.000

The results summarized in Table 2 indicate that the power of all the four tests is
increasing on both λ and T , as one would expect.

The IKPSS test has more power than the KPSS test for fat tail distributions, but it
has less power for normal and t5 distributions. Actually, the power of the IKPSS test
is increasing on the fatness of the tail, which also happens with the SS test. Under
normality, the KPSS has more power than the other three tests. Both the SS and the
IKPSS tests have more power than the XL test in all cases.

The SS test has performance very similar to the IKPSS test. In all the cases, the
SS test has power very close to the winner, when it is not the winner itself. For
the infinite mean cases (Cauchy distribution), the SS test is the most powerful test
among all the four tests analyzed, except for one case (T = 100 and λ = 0.01).
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3.3 Power against Alternatives with Unconditional
Heteroskedasticity

Recall that the driving force of the KPSS (IKPSS) test is the fluctuation of the data
around the sample mean (median). So they should have low power to detect pro-
cesses with a constant distribution location, but with a distribution scale that changes
over time.

To investigate this possibility, we consider the DGP yt =
√

1+ stεt , so the scale
factor is varying over time. We considered s = 0.01 and s = 0.05. In other words,
that the variance, when it exists, is changing linearly over time at rate s.

Table 3 Power of the tests, at 5% significance level, against the alternative hypothesis of
time-varying volatility

s = 0.01 s = 0.05
t∞ t5 t3 t2 t1 t∞ t5 t3 t2 t1

T = 100
KPSS 0.049 0.049 0.049 0.043 0.028 0.052 0.051 0.050 0.044 0.026
IKPSS 0.051 0.051 0.050 0.051 0.051 0.055 0.056 0.056 0.056 0.056

XL 0.098 0.050 0.032 0.019 0.006 0.388 0.171 0.086 0.039 0.008
SS 0.072 0.064 0.061 0.058 0.051 0.239 0.190 0.167 0.146 0.102

T = 500
KPSS 0.051 0.053 0.050 0.046 0.027 0.053 0.053 0.052 0.046 0.025
IKPSS 0.057 0.057 0.057 0.056 0.057 0.066 0.065 0.065 0.066 0.066

XL 1.000 0.823 0.399 0.110 0.010 1.000 0.943 0.600 0.188 0.012
SS 0.974 0.913 0.851 0.758 0.505 1.000 0.999 0.996 0.984 0.860

T = 1000
KPSS 0.054 0.053 0.051 0.047 0.026 0.056 0.052 0.051 0.046 0.026
IKPSS 0.060 0.060 0.060 0.061 0.060 0.072 0.068 0.070 0.070 0.070

XL 1.000 0.982 0.705 0.210 0.010 1.000 0.989 0.786 0.280 0.013
SS 1.000 1.000 1.000 1.000 0.973 1.000 1.000 1.000 1.000 0.999

Table 3 exhibits our results. Basically, the KPSS test has power equal to size even
for large sample sizes (T = 1000). In fact, it is a biased test (power less than size)
in several instances.

The IKPSS test has power close to size. Even for large samples (T = 1000), the
maximum power offered by the IKPSS is never more than 0.072.

The XL test has power against this alternative of time-varying scale for thin tail
distributions. For the t2 distribution, its power is low. For the Cauchy distribution,
its power is never greater than 0.013, even when T = 1000.

The SS test has more power than all the other tests in almost all cases. Even for
moderate sample sizes (T = 500), it offers power 1, or very close to 1, for almost all
distributions.
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3.4 Power against Alternative with Time-Varying Kurtosis

Consider a family of real-valued discrete random variables X(ν) parametrized by
ν ∈ [
√

2,∞) and defined by the following probability mass distribution:

P(X(ν) = x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ν2 if x =− ν√

2
,

1− 2
ν2 if x = 0,

1
ν2 if x = ν√

2
,

0 otherwise.

Note that eX(ν) = 0, eX(ν)2 = 1, eX(ν)3 = 0 and eX(ν)4 = ν2

2 , so the expectation,
variance and skewness do not vary with ν , but the kurtosis depends on ν . Now, de-
fine ηt :=X(

√
2+8 t

T ) and consider the DGP yt =ηt +εt . That is, the process is now
the error εt , that can be distributed as normal, . . . , or Cauchy, plus a discrete random
variable ηt that has zero mean (and median) and skewness, and unit variance, but
has time-varying kurtosis.12

It is worthwhile to notice that Kapetanios (2007) says that stationarity tests ap-
plied to such processes with changes only in higher unconditional moments have
not been analyzed in the literature, and Xiao and Lima (2007) say that many widely
used stationarity tests cannot even capture changes in the unconditional variance.

Since the KPSS and the IKPSS tests are not even able to detect time-varying
variance when the mean (when it exists) and median are constant over time, they
are not able to detect time-varying kurtosis when both the distribution location and
the distribution scale are constant over time, as we see in Table 4. Their power and
size are about the same.

The XL test presents very low power (never greater than 0.06). Except for the
normal distribution case, its power is less than the significance level, 5%.

Our new SS test has good power when the sample size is moderate (T = 500 and,
specially, T = 1000). Our test performs well when the kurtosis exists (normal and t5
distributions), as one would expect; its power decreases with the fatness of the tail.

These results show that the SS test can reveal lack of stationarity in the data even
when they have constant mean (or median), variance and skewness (if they exist).
The new test is actually testing the null hypothesis of strict stationarity.

12 We choose the equation ν(t) :=
√

2+ 8 t
T because X(ν) is not defined for ν <

√
2 and

P(X(ν) = 0)> 0.98 if ν > 10. The results of our simulation are sensitive to the choice of
this parametrization. More precisely, the SS test loses some power if ηt �= 0 too seldom
or too often, as one could expect. However, the other tests have never power against the
alternative of time-varying kurtosis, no matter the parametrization we choose.
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Table 4 Power of the tests, at 5% significance level, against the alternative hypothesis of
time-varying kurtosis

t∞ t5 t3 t2 t1
T = 100

KPSS 0.049 0.048 0.049 0.045 0.027
IKPSS 0.052 0.051 0.051 0.051 0.052

XL 0.050 0.032 0.024 0.017 0.006
SS 0.085 0.070 0.065 0.060 0.051

T = 500
KPSS 0.050 0.050 0.048 0.046 0.027
IKPSS 0.051 0.050 0.050 0.052 0.052

XL 0.060 0.044 0.032 0.022 0.007
SS 0.386 0.273 0.221 0.178 0.112

T = 1000
KPSS 0.049 0.048 0.050 0.046 0.028
IKPSS 0.051 0.050 0.051 0.050 0.051

XL 0.058 0.046 0.035 0.023 0.007
SS 0.723 0.536 0.438 0.342 0.199

4 An Empirical Illustration

In this section we present an empirical analysis in which the use of the SS test can
lead to a significant different finding.

We use T = 4438 observations of log returns on the S&P 500 index, from
01/03/1991 to 08/11/2008. The first panel of Figure 1 leads us to the belief that
the returns rt exhibit mean reversion, which suggests that the returns rt do not have
a unit root. However note, yet in the first panel, that the variance seems to change
over time. Therefore, both the KPSS and the IKPSS tests cannot reject the null hy-
pothesis of stationarity, but that both the XL and the SS tests can, as we can see in
the first column of Table 5.

To visualize how the variance is varying on time, we compute variances using a
rolling window of length 2h+ 1.13 More specifically, given h ∈ N, define

{
V (h)

t

}T−h

t=h+1
, where V (h)

t :=
1

2h+ 1

t+h

∑
j=t−h

r2
j .

We show the case for h = 66, or 3 months, so the total window length is one
semester, but the results are similar when we use other windows lengths, available

upon request. We plot V (66)
t in the third panel of Figure 1 with a continuous curve.

13 We use a rolling window instead of an ARCH type variance (Engle, 1982) because we are
interested in the unconditional variance rather than the conditional one.
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Fig. 1 (1) Plot of the log returns on S&P 500 from 01/03/1991 to 08/11/2008; (2) plot of
the standardized returns; (3) plots of the variances of both the returns and the standardized
returns; (4) plot of the kurtosis of the standardized returns

Table 5 Tests statistics of the four analyzed tests applied to 4438 observations of returns on
the S%P 500 index. To indicate statistical significance at 10%, 5% and 1%, we use ∗, ∗∗ and
∗∗∗, respectively.

rt rstd(121)
t rstd(66)

t rstd(33)
t

Tests Statistics
KPSS 0.282 0.184 0.178 0.214
IKPSS 0.264 0.262 0.256 0.281

XL 6.298∗∗∗ 1.389 1.083 1.138
SS 4.933∗∗∗ 2.129∗∗∗ 2.153∗∗∗ 2.042∗∗∗

Now, let us define a standardized return,

rstd(h)
t :=

rt√
V (h)

t

,

plotted in the second panel of Figure 1, and compute its variance using the rolling

window, V std(h)
t , plotted in the third panel, as a dotted curve.
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The variance of the standardized return (the dotted curve) is always around one,
so the standardized returns are probably covariance stationary. Indeed, when apply-
ing the four stationarity tests to the standardized return, we find the the KPSS, the
IKPSS and the XL tests fail to reject the null hypothesis of stationarity. However,
the SS test rejects it at any usual significance level.

Perhaps the standardized returns have higher moments that are time-varying. To
investigate this, we compute the kurtosis of the standardized returns with a rolling

window, Kstd(66)
t , plotted in the fourth and last panel of Figure 1. Indeed, the kurtosis

is not constant over time.
In summary, the SS test can capture these fluctuations in higher moments of the

returns, and even in higher moments of the standardized returns, so it can strongly
reject the null hypothesis of strict stationarity. This empirical exercise casts doubts
on results in the literature that are obtained from models that assume stationarity of
returns.

5 Conclusion

In this paper we introduce a new test for strict stationarity. We show, through com-
prehensive Monte Carlo experiments and an empirical exercise that this test is com-
parable to both classical and new tests for stationarity in terms of power against
alternative hypothesis with unit root or unconditional heteroskedasticity.

More importantly, we show that this test has good power against alternative hy-
potheses with higher moments varying on time, like a time-varying kurtosis, while
the other tests fail to reject these hypotheses.

Moreover, the new test is particularly more powerful than the other analyzed tests
for fat tail distributions, which makes it very suitable when analyzing financial time
series.
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Statistical Inference from Ill-known Data
Using Belief Functions

Thierry Denœux

Abstract. As a general formalism for uncertain reasoning, the theory of belief func-
tions extends the logical and probabilistic approaches to uncertainty: a belief func-
tion (or a completely monotone Choquet capacity) can be seen both as a non additive
measure and as a generalized set. In this paper, the theory of belief functions is ar-
gued to be a suitable framework for statistical analysis of low quality, i.e., imprecise
and/or partially reliable data. After a reminder of general concepts of the theory,
we show how this approach can be applied to statistical inference by viewing the
normalized likelihood function as defining a consonant belief function. The links
with likelihood-based and Bayesian inference are discussed. We then show how this
method can be extended to the analysis of uncertain data. The approach is illustrated
using a running example.

1 Introduction

Whereas current research in statistics and econometrics mainly focuses on the
development of more complex models and inference procedures, data quality is rec-
ognized by applied statisticians as a key factor influencing the validity of the conclu-
sions drawn from a statistical analysis. As noted by Cox [5], “issues of data quality
and relevance, while underemphasized in the theoretical statistical and economet-
ric literature, are certainly of great concern in much statistical work”. Arguing for
better consideration of empirical practice in econometric theory, Heckman [22] also
remarked that “Data quality, data collection and economic interpretation of statisti-
cal evidence are perceived as topics off limits to econometricians, but central to the
field of empirical economics”.
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One of the reasons why data quality, in spite of its importance, has received rel-
atively little attention in the statistical literature, may be that its evaluation often
requires subjective judgements that do not easily fit with the standard likelihood-
based or Bayesian frameworks. While the latter approach allows for the introduc-
tion of personalistic prior information, it does so in a very specific and questionable
manner (by treating all unknown quantities as random variables), which raises a
number of theoretical and practical issues [36, 16].

In the past thirty years, alternatives to the Bayesian framework for reasoning
from weak information have emerged, including Possibility Theory [39], Imprecise
Probabilities [36] and the theory of Belief Functions [7, 25]. In particular, the latter
approach, also referred to as Dempster-Shafer or Evidence theory, was introduced
by Dempster [6, 8] with the objective to reconcile Bayesian and fiducial inference.
Shafer [25] later formalized this approach as a general method for representing and
combining evidence, not necessarily statistical. Smets [29, 33] emphasized the sin-
gularity of the theory of belief functions as opposed to related but distinct frame-
works such as imprecise probabilities [36] and random sets [24].

The main feature of the theory of belief functions is that is subsumes both the
logical and probabilistic approaches to uncertainty: a belief function may be seen
as a non-additive probability measure [25] and as a generalized set [18]. Also, basic
mechanisms for reasoning with belief functions extend both probabilistic opera-
tions (such as marginalization and conditioning) and set-theoretic operations (such
as intersection and union). In particular, the belief function approach coincides with
the Bayesian approach when all variables are described by probability distributions,
while allowing for considerably more flexibility when the available knowledge does
not allow for the specification of a reasonable probability distributions without
introducing unsupported assumptions.

In this paper, the theory of belief functions is advocated as a suitable framework
for statistical analysis of low quality, i.e., imprecise and/or partially reliable data.
The main concepts of the theory will first be recalled in Section 2 and its application
to the representation of statistical evidence will be discussed in Section 3. The use
of belief functions for representing data uncertainty and corresponding inferential
procedures will be introduced in Section 4. Finally, Section 5 will conclude the
paper with a summary of the main results and the presentation of some research
challenges.

2 Belief Functions

This section recalls the necessary background notions related to Dempster-Shafer
theory. Belief functions on finite domains and Dempster’s rule of combination are
first presented in Subsections 2.1 and 2.2, respectively. Some notions regarding
the definition and manipulation of belief functions on continuous domains are then
recalled in Subsection 2.3.
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2.1 Belief Functions on Finite Domains

Let θθθ be a variable taking values in a finite domain Θ , called the frame of discern-
ment. Uncertain evidence about θθθ may be represented by a mass function m on Θ ,
defined as a function from the powerset of Θ , denoted as 2Θ , to the interval [0,1],
such that m( /0) = 0 and

∑
A⊆Θ

m(A) = 1. (1)

Any subset A ofΘ such that m(A)> 0 is called a focal set of m. A categorical mass
function has only one focal set (it is thus equivalent to a set), while a Bayesian mass
function has only focal sets of cardinality one and is thus equivalent to a probability
distribution. The mass function m such that m(Θ) = 1 is said to be vacuous.

Each number m(A) is interpreted as a degree of belief attached to the proposition
θθθ ∈ A and to no more specific proposition, based on some evidence. As argued
by Shafer [27], the meaning of such degrees of belief can be better understood by
assuming that we have compared our evidence to a canonical chance set-up. The
set-up proposed by Shafer consists of an encoded message and a set of codes Ω =
{ω1, . . . ,ωn}, exactly one of which is selected at random. We know the list of codes
as well as the chance pi of each code ωi being selected. Decoding the encoded
message using code ωi produces a message of the form “θθθ ∈ Ai” for some Ai ⊆Θ .
Then

m(A) = ∑
{1≤i≤n:Ai=A}

pi (2)

is the chance that the original message was “θθθ ∈ A”. Stated differently, it is the prob-
ability of knowing that θθθ ∈ A. In particular, m(Θ) is, in this setting, the probability
that the original message was vacuous, i.e., the probability of knowing nothing.

The above setting thus consists of a set Ω , a probability measure P on Ω and
a multi-valued mapping Γ : Ω → 2Θ \ { /0} such that Ai = Γ (ωi) for each ωi ∈ Ω .
This is the framework initially considered by Dempster in [7]. The triple (Ω ,P,Γ )
formally defines a finite random set [24]: mass functions are thus exactly equivalent
to random sets from a mathematical point of view. However, the meaning of mass
functions differs from the usual interpretation of a random set as the outcome of a
random experiment: here, m(A) is not the chance that A was selected, but it can be
viewed as the chance of the evidence meaning that θθθ is in A [27].

To each normalized mass function m, we may associate belief and plausibility
functions from 2Θ to [0,1] defined as follows:

Bel(A) = P({ω ∈Ω |Γ (ω)⊆ A}) = ∑
B⊆A

m(B) (3a)

Pl(A) = P({ω ∈Ω |Γ (ω)∩A �= /0}) = ∑
B∩A �= /0

m(B), (3b)

for all A ⊆Θ . These two functions are linked by the relation Pl(A) = 1−Bel(A),
for all A ⊆ Θ . Each quantity Bel(A) may be interpreted as the degree to which
the evidence supports A, while Pl(A) can be interpreted as the degree to which



36 T. Denœux

the evidence is not contradictory with A. The following inequalities always hold:
Bel(A) ≤ Pl(A), for all A ⊆ Θ . The function pl : Θ → [0,1] such that pl(θ ) =
Pl({θ}) is called the contour function associated to m.

If m is Bayesian, then function Bel is identical to Pl and it is a probability mea-
sure, and pl is the corresponding probability mass function. Another special case of
interest is that where m is consonant, i.e., its focal elements are nested. The plausi-
bility function is then a possibility measure [39, 19] with possibility distribution pl,
i.e., the plausibility function can be recovered from the contour function as follows:
[25]:

Pl(A) = max
θ∈A

pl(θ ). (4)

for all A⊆Θ .
Given two mass functions m1 and m2, m1 is said to be less specific than m2 if it can

be obtained from m2 by transferring belief masses m2(A) to supersets B⊇A [38, 18].
In this case, m1 can be considered as less informative, or less committed1 than m2.
The Least Commitment Principle (LCP) [31] states that, given some constraints on
an unknown mass function, the least committed should be selected. This principle
provides a justification of consonant mass functions: given a function π :Θ → [0,1]
such that maxπ = 1, the least specific mass function m with contour function pl
such that pl = π is consonant; its plausibility function, given by (4), will be denoted
as pl∗.

2.2 Dempster’s Rule

A key idea in Dempster-Shafer theory is that beliefs are elaborated by aggregat-
ing different items of evidence. The basic mechanism for evidence combination is
Dempster’s rule of combination, which can be naturally derived using the random
code metaphor as follows.

Let m1 and m2 be two mass functions induced by triples (Ω1,P1,Γ1) and
(Ω2,P2,Γ2) interpreted under the random code framework as before. Let us fur-
ther assume that the codes are selected independently. For any two codes ω1 ∈ Ω1

and ω2 ∈Ω2, the probability that they both are selected is then P1({ω1})P2({ω2}),
in which case we can conclude that θθθ ∈ Γ1(ω1)∩Γ2(ω2). If Γ1(ω1)∩Γ2(ω2) = /0,
we know that the pair of codes (ω1,ω2) could not have been selected: consequently,
the joint probability distribution on Ω1×Ω2 must be conditioned, eliminating such
pairs [27]. This line of reasoning yields the following combination rule, referred to
as Dempster’s rule [25]:

(m1⊕m2)(A) =
1

1−κ ∑
B∩C=A

m1(B)m2(C) (5)

for all A⊆Θ , A �= /0 and (m1⊕m2)( /0) = 0, where

1 Alternative comparative orderings between belief functions have been proposed, see, e.g.,
[18].
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κ = ∑
B∩C= /0

m1(B)m2(C) (6)

is the degree of conflict between m1 and m2. If κ = 1, there is a logical contradic-
tion between the two pieces of evidence and they cannot be combined. Dempster’s
rule is commutative, associative, and it admits as neutral element the vacuous mass
function defined as m(Ω) = 1.

Dempster’s rule can be easily expressed in terms of contour functions: if pl1 and
pl2 are the contour functions of two mass functions m1 and m2, then the contour
function of m1⊕m2 is, using the same symbol ⊕ as used for mass functions and
contour functions

(pl1⊕ pl2)(θ ) =
pl1(θ )pl2(θ )

1−κ (7)

for all θ ∈Θ , where κ is the degree of conflict. If m1 or m2 is Bayesian, then so is
m1 and m2 and the degree of conflict is then

κ = 1− ∑
θ∈Θ

pl1(θ )pl2(θ ). (8)

2.3 Random Real Intervals

The definition of belief functions and random sets in infinite spaces implies greater
mathematical sophistication than it does in finite spaces [26, 24]. Here, we will
restrict our discussion to random closed intervals on the real line (see, e.g., [9, 32,
11]), which constitute a simple yet sufficiently general framework for expressing
beliefs on a real variable.

Let (Ω ,A ,P) be a probability space and (U,V ) :Ω→R
2 a two-dimensional real

random vector such that P({ω ∈Ω |U(ω)≤V (ω)}) = 1. Let Γ be the multi-valued
mapping that maps each ω ∈ Ω to the closed interval [U(ω),V (ω)]. This setting
defines a random interval, as well as belief and plausibility functions on R defined,
respectively, by

Bel(A) = P({ω ∈Ω |[U(ω),V (ω)]⊆ A}) (9)

Pl(A) = P({ω ∈Ω |[U(ω),V (ω)]∩A �= /0}) (10)

for all elements A of the Borel sigma-algebra B(R) on the real line [9]. The intervals
[U(ω),V (ω)] are referred to as the focal intervals of [U,V ]. We note that, when U
and V are continuous, the notion of mass function should be replaced by that of
mass density function defined by m([u,v]) = p(u,v), where p(u,v) denotes the joint
probability density function (pdf) of (U,V ). To simplify the terminology, we will
continue to use the term “mass function” in this case.

If U =V , then we have a random point, which is equivalent to a real random vari-
able. Another special case of interest is that of consonant random closed intervals
defined as follows. Let Ω = [0,1] andπ : R→ [0,1] a function such that, for each
ω ∈Ω ,
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Γ (ω) = {x ∈ R|π(x)≥ ω}
is a closed interval [U(ω),V (ω)]. Finally, let P denote the Lebesgue measure on
Ω . Then, [U,V ] is a random interval and π is its contour function, i.e., pl(x) =
Pl({x}) = π(x) for all x∈R. Such a random interval is said to be consonant because
its focal intervals Γ (ω) are nested.

Dempster’s rule can be defined for random intervals as follows. Let us assume
that we have two random intervals (Ωi,Ai,Pi,Γi) with i = 1,2 and [Ui(ω),Vi(ω)] =
Γi(ω). LetΓ12 be the mapping fromΩ1×Ω2 to the set of closed real intervals defined
by

Γ12(ω1,ω2) = Γ1(ω1)∩Γ2(ω2), ∀(ω1,ω2) ∈Ω1×Ω2

and let P12 be the product measure P1×P2 conditioned on the set {(ω1,ω2) ∈Ω1×
Ω2|Γ12(ω1,ω2) �= /0}. Then, (Ω1×Ω2,A1×A2,P12,Γ12) define a random interval
[U12,V12] = [U1,V1]⊕ [U2,V2]. Its contour function is

(pl1⊕ pl2)(x) =
pl1(x)pl2(x)

1−κ
for all x ∈ R, where κ is the degree of conflict between the two random intervals
defined as:

κ = P({(ω1,ω2) ∈Ω1×Ω2|Γ12(ω1,ω2) �= /0}) .
In general, the combination of two random intervals by Dempster’s rule is not easy
to compute analytically. However, a special case in which the computations are very
simple is that were a random point with pdf p1 is combined with a random interval
with contour function pl2. The results is a random point with pdf

(p1⊕ pl2)(x) =
p1(x)pl2(x)

1−κ , (11)

where the degree of conflict κ is

κ = 1−
∫ +∞

−∞
p1(x)pl2(x)dx. (12)

3 Modeling Statistical Evidence

Let us now turn our attention to the representation of statistical evidence. Assume
that we have observed a realization x of a random vector X with pdf p(x;θθθ), where
θθθ ∈Θ is an unknown parameter. What does this item of evidence tell us about θθθ?
Shafer’s solution [25] derived from the Likelihood and Least Commitment princi-
ples will first be recalled in Subsection 3.1. Arguments for and against this solu-
tion will then be discussed in Subsection 3.2 and an illustrative example will be
presented in Subsection 3.3.
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3.1 Least Committed Solution Based on Likelihoods

In the standard statistical framework, information about θθθ is typically assumed to be
represented by the likelihood function defined by L(θ ;x) = p(x;θ ) for all θ ∈Θ .
More precisely, the likelihood principle [2] [3] [20, chapter 3] states that “Within
the framework of a statistical model, all the information which the data provide
concerning the relative merits of two hypotheses is contained in the likelihood ratio
of these hypotheses on the data”. In statistical parlance, the likelihood ratio is often
referred to as the “relative plausibility”, which suggests translating the likelihood
ratio in the belief function framework as follows:

pl(θ1;x)
pl(θ2;x)

=
L(θ1;x)
L(θ2;x)

,

for all (θ1,θ2) ∈Θ 2 or, equivalently,

pl(θ ;x) = cL(θ ;x)

for all θ ∈ Θ and some positive constant c. The LCP then leads us to giving the
highest possible value to constant c, i.e., defining pl as the relative likelihood :

pl(θ ;x) =
L(θ ;x)

supθ∈Θ L(θ ;x)
(13)

and representing evidence about θθθ by the least committed plausibility function in-
duced by pl, i.e.,

Pl(A;x) = sup
θ∈A

pl(θ ;x) =
supθ∈A L(θ ;x)
supθ∈Θ L(θ ;x)

, (14)

for all A⊆Θ . The corresponding belief function is called a likelihood-based belief
function by Wasserman [37].

3.2 Discussion

Equation (14) was first proposed by Shafer in [25, chapter 11] who, however, did
not justify it by the LCP, but by the more questionable requirement that the belief
function on Θ be consonant. In the special case where Θ = {θ1,θ2} has only two
points, Wasserman [37] showed that the plausibility function (14) corresponds to
the unique belief function Bel(·;x) verifying the following requirements:

1. If L(θ1;x) = L(θ2;x), then Bel(·;x) should be vacuous;
2. Bel({θ};x) should be nondecreasing in L(θ ;x);
3. If Bel = Bel(·;x)⊕P0 and P0 is a probability measure, then Bel should be equal

to the Bayesian posterior.
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This argument can be extended to the case whereΘ is a complete, separable metric
space [37].

One of the main criticisms against the use of the likelihood-based plausibility
function (14) for represented statistical evidence is its incompatibility with Demp-
ster’s rule in the case of independent observations [28]. More precisely, assume that
X is an independent sample (X1, . . . ,Xn) and each observation Xi has a marginal
pdf p(xi;θθθ ) depending on θθθ . We could combine the n observations at the “aleatory
level” by computing Pl(·;x) using (14), or we could combine them at the “epis-
temic level” by first computing the consonant plausibility functions Pl(·;xi) induced
by each of the independent observations and applying Dempster’s rule. Obviously,
these two procedures yield different results in general, as consonance is not pre-
served by Dempster’s rule.

Shafer [28] seems to have regarded the above argument as strong enough to reject
(14) as a reasonable method to represent statistical evidence. However, Aickin [1]
proposed to keep (14) but questioned Dempster’s rule as a mechanism for combining
statistical evidence. Additional arguments against the use of Dempster’s rule for
combining evidence from independent observations can be found in [35].

Based on the above discussion, we propose to adopt (13) and (14) as models of
statistical evidence. Further arguments in favor of this approach are summarized
below:

1. This method of inference is considerably simpler than other methods such as
Dempster’s initial proposal [8] and other methods discussed in [28], while being
more widely applicable than Smets’ Generalized Bayesian Theorem [30, 17].

2. Combining Pl(·;x) given by (14) with a Bayesian prior P0 onΘ using Dempster’s
rule yields a Bayesian plausibility function Pl(·;x)⊕ P0 which is identical to
the posterior probability obtained using Bayes’ rule: consequently, the proposed
method of inference boils down to Bayesian inference when a Bayesian prior is
available.

3. Finally, viewing the relative likelihood function as a possibility distribution seems
to be consistent with statistical practice, although this point of view has not been
adopted explicitly in the statistical literature. For instance, likelihood intervals
[23, 34] are focal intervals of the relative likelihood viewed as a possibility dis-
tribution. In the case where θθθ = (θ1,θ2) ∈ Θ1×Θ2 and θ2 is considered as a
nuisance parameter, the relative profile likelihood function can be written

pl(θ1;x) = sup
θ2∈Θ2

pl(θ1,θ2;x),

which is the marginal possibility distribution on Θ1. Eventually, we can remark
that the usual likelihood ratio statistics Λ(x) for a composite hypothesis H0 ⊂Θ
is nothing but the plausibility of H0, as

Λ(x) =
supθ∈H0

L(θ ;x)

supθ∈θ L(θ ;x)
= sup

θ∈H0

pl(θ ;x) = Pl(H0;x).
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3.3 Illustrative Example

As a concrete example, let us consider the following problem using a real dataset.
Average public teacher pay and spending on public schools per pupil in 1985 for 49
states and the District of Columbia were reported by the Albuquerque Tribune2. The
data are plotted in Figure 1 for each of the three areas: Northeast and North Central,
South and West. We can see that public teacher pay is approximately linearly related
to spending on public schools. Is there any statistical evidence of different relations
holding in the three regions?
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Fig. 1 Average public school teacher annual salary ($) as a function of spending on public
schools per pupil ($) for 49 states and the District of Columbia

Let yki and xki denote, respectively, the teacher pay and spending on public schools
in state i of region k (k = 1,2,3). We assume that yk = {yki}nk

i=1 is a realization of a
Gaussian random vector Yk ∼N (Xkbk,σ2

k In), where Xk is the fixed design matrix
with line i equal to (1,xki), In is the identity matrix of size n, and θθθ k = (bk,σk)

′ is
the parameter vector.

Figure 2 shows the contour functions pl(bk;yk). We recall that this function is ob-
tained as the relative profile likelihood function considering variance as a nuisance
parameter, i.e.,

pl(bk;yk) = sup
σk>0

pl(bi,σk;yk) =
supσk>0 L(bk,σk;yk)

supbk∈R2,σi>0 L(bk,σk;yk)
,

2 The dataset can be downloaded from the Data and Story Library at http://lib.
stat.cmu.edu/DASL. The data for Alaska is an outlier and was not considered in
this analysis

http://lib.stat.cmu.edu/DASL
http://lib.stat.cmu.edu/DASL
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with

L(bk,σk;yk) = φ(yk;X′kbk,σ2
k In) =

n

∏
i=1

φ(yki;(1,xki)
′bk,σ2

k ),

We can see from Figure 2(d) that the contour at level 0.1 for region 3 does not
intersect the corresponding contour for region 2, which suggests that b3 is differ-
ent from b2 with a high plausibility. To carry the analysis further, we can compute
the plausibilities Pl(bi = b j) for each pair of regions, as well as the plausibility
Pl(b1 = b2 = b3) that the three parameters are equal. It is easy to see [15] that these
plausibilities are equal to one minus the degree of conflict between the belief func-
tions related to each parameter. These degrees of conflict are not easy to compute
analytically, but they can be estimated by Monte-Carlo simulation. This is achieved
by picking a focal set at random independently for each of the belief function, and
estimating the probability for the focal sets to be disjoint. We obtain the following
values:

Pl(b1 = b2) = 0.70, Pl(b1 = b3) = 0.12, Pl(b2 = b3) = 0.02

Pl(b1 = b2 = b3) = 0.01.

which confirms that the hypotheses b2 = b3 and b1 = b2 = b3 can be discarded as
having very small plausibility.

4 Inference from Uncertain Data

We consider in this section the situation where the data x have been generated by a
random process but have been imperfectly observed [12, 13, 14]. Our partial knowl-
edge of x will then be described by a mass function m on the data space ΩX ⊆ R

d .
Our objective will be to find a suitable representation of the information about the
parameter provided by such data, in the belief function framework. Our approach
will be to generalize the likelihood function and, as before, to consider the relative
likelihood as the contour function of a consonant plausibility measure.

Before we describe our approach, it must be emphasized that, in this model, the
pdf or probability mass function p(x,θθθ) and the Dempster-Shafer mass function m
represent two different pieces of knowledge:

• p(x,θθθ) represents generic knowledge about the data generating process or, equiv-
alently, about the underlying population; it corresponds to random uncertainty;

• m represents specific knowledge about a given realization x of X; this knowledge
is only partial because the observation process is imperfect; function m captures
epistemic uncertainty, i.e., uncertainty due to lack of knowledge.

The uncertain data m is thus not assumed to be produced by a random experiment,
which is in sharp contrast with other approaches based on random sets [24] or fuzzy
random variables [21].

Our approach will first be described in Subsection 4.1. The impact of stochastic
and cognitive independence assumptions will then be examined in Subsection 4.2.
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Fig. 2 Contour functions pl(bk;yk) for each of the three regions (a-c) and 0.1-level contours
(d). Please note that the x and y axes have different ranges in the four plots.

4.1 Representation of Uncertain Statistical Evidence

Let us assume that the mass function m is induced by a random set (Ω ,A ,P,Γ ). We
will further assume that one of the following two conditions holds:

• X is discrete, or
• X is continuous an if Γ (ω) is not reduced to a point (which would correspond an

infinite precision).

Under these assumptions, the probability of observing the result Γ (ω) given that
the interpretation ω ∈Ω holds is

P(Γ (ω);θ ) =
∫
Γ (ω)

p(x;θ )dx,

assuming that the integral in the right-hand side is well defined. The probability of
the uncertain observation m may then defined as the average of P(Γ (ω);θ ) over
ω ∈Ω , which can be written as

P(m;θ ) = ∑
ω∈Ω

p(ω)P(Γ (ω);θ )
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if Ω is finite and
P(m;θ ) =

∫
Ω

p(ω)P(Γ (ω);θ )dω

otherwise, assuming this integral to be defined. The likelihood function given the
uncertain observation m can then be defined as L(θ ;m) = P(m;θ ) for all θ ∈Θ . It
is easy to show that L(θ ;m) only depends on the contour function. To see this, we
may write:

L(θ ;m) =

∫
Ω

p(ω)

(∫
Γ (ω)

p(x;θ )dx
)

dω , (15)

=
∫
ΩX

p(x;θ )
(∫
{ω|Γ (ω)�x}

p(ω)dω
)

dx, (16)

=

∫
ΩX

p(x;θ )pl(x)dx (17)

= Eθ [pl(X)] . (18)

As a natural extension of (13), we propose to represent the information on θθθ pro-
vided by the uncertain data by the consonant plausibility function with the following
contour function:

pl(θ ;m) =
L(θ ;m)

supθ∈Θ L(θ ;m)
. (19)

An iterative procedure for finding a value θ̂ of θ that maximizes pl(θ ;m) has been
introduced in [4] and generalized in [12, 14]. This procedure, called the Evidential
Expectation Maximization (E2M) algorithm, is an extension of the EM algorithm
[10].

4.2 Independence Assumptions

Let us assume that the random vector X can be written as X = (X1, . . . ,Xn), where
each Xi is a p-dimensional random vector taking values in ΩXi . Similarly, its re-
alization can be written as x = (x1, . . . ,xn) ∈ ΩX. Two different independence as-
sumptions can then be made:

1. Under the stochastic independence of the random variables X1, . . . ,Xn, the pdf
or probability mass function p(x;θθθ) can be decomposed as:

p(x;θθθ) =
n

∏
i=1

p(xi;θθθ ), ∀x = (x1, . . . ,xn) ∈ΩX (20)

2. Under the cognitive independence of x1, . . . ,xn with respect to m (see [25, page
149]), we can write:

pl(x) =
n

∏
i=1

pli(xi), ∀x = (x1, . . . ,xn) ∈ΩX, (21)

where pli is the contour function corresponding to the mass function mi obtained
by marginalizing m on ΩXi .
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We can remark here that the two assumptions above are totally unrelated as they
are of different natures: stochastic independence of the random variables Xi is an
objective property of the random data generating process, whereas cognitive inde-
pendence pertains to our state of knowledge about the unknown realization x of
X.

If both assumptions hold, the likelihood criterion (18) can be written as a product
of n terms:

L(θθθ ;m) =
n

∏
i=1

Eθθθ [pli(Xi)] (22)

and pl(θ ;m) can be written as:

pl(θ ;m) =
∏n

i=1 pl(θ ;mi)

supθ∈Θ ∏n
i=1 pl(θ ;mi)

. (23)

Example 1. Let us come back to the analysis of Subsection 3.3, this time assuming
that the observations of the dependent variable are uncertain. This is reasonable
if we assume that teacher pay data for each state are not known exactly but are
estimated by surveys carried out with samples of different sizes and under different
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Fig. 3 Contour functions pl(bk;yk) for each of the three regions (a-c) and 0.1-level contours
(d), with simulated data uncertainty. Please note that the x and y axes have different ranges in
the four plots.
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conditions. As we do not know in which conditions the data were collected, we simu-
lated data uncertainty by assuming the contour functions plki(yki) to be normalized
Gaussians centered at each data point and with standard deviation ski selected at
random from a uniform distribution in [0,5000].

The results are shown in Figure 3. We can see that the consideration of data
uncertainty actually leads to less committed plausibility functions in the parameter
space. The plausibility values for the same hypotheses as considered in Subsection
3.3 are now:

Pl(b1 = b2) = 0.61, Pl(b1 = b3) = 0.39, Pl(b2 = b3) = 0.13,

Pl(b1 = b2 = b3) = 0.08,

which shows that the hypotheses b2 = b3 and b1 = b2 = b3 can no longer be rejected
based on the uncertain statistical evidence.

5 Conclusion

The Dempster-Shafer theory of belief functions places emphasis on the representa-
tion of evidence for evaluating degrees of belief. This generality and flexibility of
this framework makes it suitable for representing and combining expert judgments
and statistical evidence.

In this paper, we have focused on the representation of statistical evidence, seeing
the relative likelihood function as the contour function of a consonant belief func-
tion in the parameter space, as originally proposed by Shafer. Likelihood-based and
Bayesian inference schemes can both be seen as special cases of this approach.

We have shown that this method can be extended in a simple way to the represen-
tation of uncertain statistical evidence or ill-known data, where lack of knowledge
comes from imperfectness of the observation process. Maximum plausibility esti-
mation can still be performed in this case using a computationally simple iterative
procedure that extends the EM algorithm.

A interesting perspective of this approach concerns situations in which statistical
evidence needs to be combined with expert judgements. Such problems typically
arise in climate change studies, in which statistical data cannot be considered as a
unique source of information but have to be pooled with expert opinions summa-
rizing findings from physical modeling. Results concerning the application of the
belief approach to such problems will be reported in future publications.
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Brief Introduction to Probabilistic
Compositional Models

Radim Jiroušek

Abstract. Any field of social sciences is based on uncertain knowledge, uncertain
information and uncertain data. The economics is not an exception. This is why
probability theory and probabilistic modeling play an important role in economet-
rics. In practical applications one has to cope with the fact that even relatively small
models have to take into account rather hundreds than tens of factors. This is why the
methods for multidimensional probability distribution representation, like Bayesian
networks, have become so popular in this field. The goal of this paper is to promote
an alternative approach, so called compositional models.

1 Introduction

There are more and more fields of human activities which are giving rise to databases
of enormous size. In some of them, the research data bases are a side product of
other business activities, like, for example, in banking where even small banks store
hundreds or rather thousands of records describing their clients’ activities every day.
As another example we can consider the research in the field of customer relation-
ship management, which is based on the analysis of records describing the customer
spending. On the other hand, creating large data bases has become a business of its
own, as the different media research companies attest to. These companies collect
data on all possible marketing activities, like data from TV-meters, or data moni-
toring advertising investments, such as data on advertising in journals and on the
Internet. An existence of such institutions proves the fact that data have become
a business product and that their analysis and processing is an important part of
business life.
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So, it is not surprising that there is abundant literature on application techniques
such as Bayesian networks [3, 14], which is perhaps the most popular tool to de-
scribe and process multidimensional probability distributions. Here we are expected
to present some examples of research papers describing typical applications of
Bayesian networks, but we do not dare to do it; in a few seconds Google has found
more than two million incidences of ‘application of Bayesian network to . . . ’. In
this paper we do not intend to present the two-millionth-first paper on the Bayesian
networks. On the contrary, we want to present a survey paper (summarizing some
of the results published in [5, 9, 8]) on an alternative approach to multidimensional
probability distribution representation and processing, an approach based on the so-
called operator of composition.

In contrast to Bayesian networks, an advantage of the models described in the
current paper, which we call compositional models, is that we can make do with
probability theory. Though they are as powerful as Bayesian networks (they can
model the same class of distributions), they do not use graphs to represent the dis-
tribution structure. For other advantages of compositional models see Conclusions.

2 Notation and Basic Concepts

We consider variables u ∈ N, each having a finite (non-empty) set of values that
will be denoted by Xu. The set of all combinations of the considered values will
be denoted XN =×u∈NXu. Analogously, for a subset of variables K ⊂ N, XK =×u∈KXu.

Distributions of the considered variables will be denoted by Greek letters κ ,λ , . . .
with possible indices; thus for K ⊆N, we can consider a distribution κ(K), which is
a |K|-dimensional distribution and κ(x) denotes the value of probability distribution
κ for point x ∈ XK .

For a probability distribution κ(K) and J ⊂ K, we will often consider a marginal
distribution κ↓J of κ , which can be computed for all x ∈XJ by

κ↓J(x) = ∑
y∈XK :y↓J=x

κ(y),

where y↓J denotes the projection of y ∈ XK into XJ . Note that we do not exclude
situations when J = /0. By definition, we get κ↓ /0 = 1.

Having two distributions π(K) and κ(K), we say that κ dominates π (in symbol
π � κ) if for all x ∈ XK , for which κ(x) = 0 also π(x) = 0. As a measure of simi-
larity of these two distributions we will consider their Kullback-Leibler divergence
[13] (or crossentropy) defined1

Div(π ;κ) = ∑
x∈XK

π(x) log
π(x)
κ(x)

,

which is known to be zero if and only if π = κ .

1 In this paper we take 0.0
0 = 0 by definition.
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The most important notion of this paper is the operator of composition, which
realizes an operation in a way inverse to marginalization. For a probability distri-
bution κ(K) and J ⊂ K, the respective marginal distribution κ↓J is unique. For a
distribution π(J) there are (infinitely) many distributions ν(K) such that ν↓J = π .
All these distributions ν are extensions of π for variables K. But if we want to find
that ν(K), which is as similar as possible to a given distribution μ(K), we can take
the distribution

ν = arg min
λ (K):λ ↓J=π

Div(λ ;μ),

which is unique if the divergence is defined. In this case we say that ν is a projection
of μ into the set (space) of all the extensions of π for variables K.

The operator of composition is designed in the way that the projection of μ into
the set of all the extension of π is got as a composition of π and μ - see Property 3
of the following Proposition.

Definition 1. For two arbitrary distributions κ(K) and λ (L), for which κ↓K∩L �
λ ↓K∩L, their composition is, for each x ∈ XL∪K, given by the following formula

(κ �λ )(x) =
κ(x↓K)λ (x↓L)
λ ↓K∩L(x↓K∩L)

.

In case κ↓K∩L �� λ ↓K∩L, the composition remains undefined.

Let us summarize the most important properties of the composition operator that
were proved in [5, 9]

Proposition 1. Suppose κ(K) and λ (L) are probability distributions for which
λ ↓K∩L� κ↓K∩L. Then the following statements hold:

1. Domain: κ �λ is a distribution for K∪L.
2. Composition preserves first marginal: (κ �λ )↓K = κ .
3. Projection: κ �λ = arg min

ν(K∪L):ν↓K=κ
Div(ν↓L;λ ).

4. Non-commutativity: In general, κ �λ �= λ �κ .
5. Commutativity under consistency: If κ↓K∩L = λ ↓K∩L, then κ �λ = λ �κ .
6. Non-associativity: Suppose μ(M) is a probability distribution, then, in general,

(κ �λ )� μ �= κ � (λ � μ).
7. Associativity under a special condition: Suppose μ(M) is a probability distribu-

tion, and suppose L⊃ (K∩M). Then, (κ �λ )�μ = κ � (λ �μ), if the right hand
side formula is defined.

8. Stepwise composition: Suppose M is such that (K∩L)⊆M⊆ L. Then (κ �λ ↓M)�
λ = κ �λ .

9. Simple marginalization: Suppose M is such that (K ∩ L) ⊆ M ⊆ K ∪ L. Then
(κ �λ )↓M = κ↓K∩M �λ ↓K∩M.

10. Maximum entropy extension: If κ↓K∩L = λ ↓K∩L, then κ �λ = arg max
ν∈Π(κ ,λ )

H(ν),

where Π(κ ,λ ) is the set of all common extensions of κ and λ , and H(ν) is a
Shannon entropy of ν .
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3 Compositional Models

To avoid some technical problems and the necessity of repeating some assumptions
to excess, let us make three conventions.

In this and the next section we will consider a system of n distributions κ1(K1),
κ2(K2), . . . ,κn(Kn). Therefore, whenever we speak about a distribution κk, if not
explicitly specified otherwise, the distribution κk will always be assumed to be a
distribution of variables Kk. Thus, for example, κ2 � κ1 � κ4, if it is defined, will
determine the distribution of variables K1∪K2∪K4.

Our second convention pertains to the fact that the operator of composition is
neither commutative nor associative. To avoid having to write too many parentheses
in the formulas, in the rest of the paper we will apply the operators from left to right.
Thus

κ1 �κ2 �κ3 � . . . �κn = (. . . ((κ1 �κ2)�κ3)� . . . �κn),

and the parentheses will be used only when we want to change this default ordering.
Therefore, to construct a multidimensional distribution it is sufficient to determine
a sequence – we call it a generating sequence – of oligodimensional distributions.

The third convention is of a rather technical nature. Since in the remaining part of
the paper we are interested in a construction of multidimensional models, it is quite
natural that we will always assume that all the models (compositions) we speak
about are defined.

3.1 Perfect Sequences

Definition 2. A generating sequence of probability distributions κ1, κ2, . . . ,κn is
called perfect if all the distributions from this sequence are marginals of the dis-
tribution (κ1 �κ2 � . . . �κn), i.e., if for all i = 1,2, . . . ,n

(κ1 �κ2 � . . . �κn)
↓Ki = κi.

Notice that when defining a perfect sequence, let alone a generating sequence, we
have not imposed any conditions on sets of variables for which the distributions
were defined. For example, considering a generating sequence where one distribu-
tion is defined for a subset of variables of another distribution (i.e., Kj ⊂ Kk) is fully
sensible and may provide some information about the resulting multidimensional
distribution. If, e.g., κ(u),λ (v),μ(u,v,w) is a perfect sequence, it is quite obvious
that

κ(u)�λ (v)� μ(u,v,w) = μ(u,v,w)

(because all the elements of a perfect sequence are marginals of the resulting distri-
bution and therefore μ must be marginal to κ �λ � μ). Nevertheless, it can happen
that for some reason or another, it may be more advantageous to work with the
model defined by the perfect sequence than just with the distribution μ . From this
model one can immediately see that variables u and v are independent, which, not
knowing the numbers defining the distribution, one cannot say about distribution μ .
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Let us present two important properties on perfect sequences (Theorem 10.14
and Theorem 10.15 in [9]).

Proposition 2. If a sequence of distributions κ1,κ2,. . . ,κn is perfect, then

H(κ1 �κ2 � . . . �κn)≥H(ν)

for any ν ∈ {π(K1∪K2∪ . . .∪Kn) : π↓Ki = κi ∀i = 1,2, . . . ,n}.
Proposition 3. If a sequence of distributions κ1, . . . ,κn and its permutation κi1 , . . . ,
κin are both perfect, then κ1 �κ2 � . . . �κn = κi1 �κi2 � . . . �κin .

From the point of view of practical applications it is important to know that each
generating sequence can be transformed into a perfect sequence. The process of
transformation is described in the following assertion proved in [9] (Theorem 10.9).

Proposition 4. For any generating sequence κ1,κ2, . . . ,κn, the sequence π1,π2, . . . ,
πn computed by the following process

π1 = κ1,

π2 = π↓K2∩K1
1 �κ2,

π3 = (π1 �π2)
↓K3∩(K1∪K2) �κ3,

...

πn = (π1 � . . . �πn−1)
↓Kn∩(K1∪...Kn−1) �κn

is perfect and κ1 � . . . �κn = π1 � . . . �πn.

From the theoretical point of view, this process is simple. Unfortunately, it need
not be valid from the point of view of computational complexity. The process re-
quires marginalization of models, which are distributions represented by generating
sequences, and this may be computationally very expensive [6]. To avoid these com-
putational problems we will use decomposable generating sequences introduced in
the following paragraph.

3.2 Decomposable Sequences

We call a generating sequence κ1,κ2, . . . ,κn decomposable if the corresponding se-
quence of variable sets K1,K2, . . . ,Kn meets the running intersection property (RIP),
i.e., if

∀i = 2, . . . ,n ∃ j(1 ≤ j < i)

(
Ki∩ (

i−1⋃
k=1

Kk)⊆ Kj

)
.

The importance of these sequences follows, among others, from the following
assertion [9].

Proposition 5. If κ1,κ2, . . . ,κn is a sequence of pairwise consistent probability dis-
tributions such that K1, . . . ,Kn meets RIP, then this sequence is perfect.
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The reader can notice, that if the sequence K1,K2, . . . ,Kn in Proposition 4 meets RIP,
then K3∩ (K1∪K2) equals either K3∩K1 or K3∩K2. Similarly, K4∩ (K1∪K2∪K3)
equals K4∩Kj for some j ≤ 3. It means that, thanks to RIP, for all i = 3,4, . . . ,n the
necessary marginal distributions

(π1 � . . . �πi−1)
↓Ki∩(K1∪...∪Ki−1)

can be computed from some π j as π↓Ki∩Kj
j , because π1, . . . ,πi−1 is a perfect sequence

and therefore π j is marginal to π1 � . . . �πi−1. All this means that for this type of
distributions the process of perfectization can be performed locally.

4 Conditioning

In this short section we will show that the operator of composition can also serve
as a tool for computation of conditional distributions. Define a degenerated one-
dimensional probability distribution π|u;α as a distribution of variable u achieving
probability 1 for value u = α , i.e.,

π|u;α(x) =

{
1 if x = α,
0 otherwise.

Now, consider a probability distribution κ(K) for which {u,v} ⊂ K and compute
(π|u;α �κ)↓{v}. For any y ∈ Xv

(π|u;α �κ)↓{v}(y) = ((π|u;α �κ)↓{u,v})↓{v}(y)

= (π|u;α �κ↓{u,v})↓{v}(y)

= ∑
x∈Xu

π|u;α(x) ·κ↓{u,v}(x,y)
κ↓{u}(x)

=
κ↓{u,v}(α,y)
κ↓{u}(α)

= κ(v = y|u = α).

Thus we have got that κ(v|u = α) = (π|u;α �κ)↓{v}.
In the same way it can be shown for any L⊆ K \ {u} that

(
π|u;α �κ

)↓L
is an |L|-

dimensional conditional distribution κ under the condition that variable u attains
value α , i.e., κ(L|u = α). Proceeding analogously even further we can get that for
any v ∈ K \ (L∪{u}) and β ∈ Xv

κ(L|u = α,v = β ) =
(
π|v;β �

(
π|u;α �κ

))↓L
is a conditional distribution for variables from L given that variables u and v attain
values α and β , respectively.
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5 Local Computations

By local computations we understand a process based on the ideas published in the
famous paper by Lauritzen and Spiegelhalter [15]. Here we have especially in mind
the idea that when computing the required conditional probability, one performs
computations only on the system of marginal distributions defining the decompos-
able model. It means that during the computational process one does not need to
store more data than what is necessary to store for the decomposable model.

In the preceding paragraph we showed that the conditional distribution can be
expressed as a composition of a degenerated distribution with the distribution for
which we want to compute the conditional distribution. So, let us assume that a
distribution κ is decomposable, i.e.,

κ = κ↓K1 �κ↓K2 � . . . �κ↓Kn

for a sequence K1,K2, . . . ,Kn meeting RIP, and we want to compute, say, κ(L|u =

α,v = β ) =
(
π|v;β �

(
π|u;α �κ

))↓L
.

For this, we will have to take advantage of the famous fact (an immediate conse-
quence of the existence of a join tree, see [1]) that if K1,K2, . . . ,Kn can be ordered
to meet RIP, then there are many of such orderings, and for each k ∈ {1,2, . . . ,n},
at least one of them starts with Kk. Therefore, thanks to Proposition 3, we can con-
sider any of these orderings. So, consider any Kk for which u ∈ Kk, and find the
ordering meeting RIP which starts with this Kk. Without loss of generality let it be
K1,K2, . . . ,Kn (so, u ∈ K1).

Thus, our goal is to compute in the first step
(
π|u;α �κ

)

π|u;α �κ = π|u;α � (κ↓K1 �κ↓K2 � . . . �κ↓Kn).

Now applying (n− 1) times Associativity under a special condition (Property 7 of
Proposition 1) we get (recall that we selected the RIP ordering, for which u ∈ K1)

π|u;α � (κ↓K1 �κ↓K2 � . . . �κ↓Kn) =

π|u;α � (κ↓K1 �κ↓K2 � . . . �κ↓Kn−1)�κ↓Kn =

. . .= π|u;α �κ↓K1 �κ↓K2 � . . . �κ↓Kn ,

from which the following computationally local process (see Proposition 4 and the
comment in Section 3.2)

ν1 = π|u;α �κ↓K1 ,

ν2 = ν↓K2∩K1
1 �κ↓K2 ,

ν3 = (ν1 �ν2)
↓K3∩(K1∪K2) �κ↓K3 ,

...

νn = (ν1 � . . . �νn−1)
↓Kr∩(K1∪...Kn−1) �κ↓Kn ,

yields a perfect decomposable sequence ν1, . . . ,νn, such that π|u;α �κ = ν1 �. . . �νn.
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Now, it has remained to compute in the second step the required

κ(L|u = α,v = β ) =
(
π|v;β �

(
π|u;α �κ

))↓L
=
(
π|v;β � (ν1 � . . . �νn)

)↓L
.

Thanks to decomposability of the sequence ν1, . . . ,νn the computations will proceed
in the same way as in the first step. First, distributions νi will be reordered in the
way that ν j1 , . . . ,ν jn meet RIP and variable v is among the variables for which ν j1
is defined. Then we can, as in the first step, due to Associativity under a special
condition deduce that

π|v;β � (ν j1 �ν j2 � . . . �ν jn) = (π|v;β �ν j1)�ν j2 � . . . �ν jn ,

which can be, again, converted into a perfect sequence by the computationally local
process of perfectization.

6 Heuristics for Model Construction

The reader interested in other theoretical issues concerning the operator of composi-
tion and perfect sequence models is referred to [9] and the papers cited there. Here,
we want to briefly introduce a possible heuristic way to create a perfect sequence
model from a data file – see Figure 1. For a more detailed description of this process,
as well as for an example of its application to a small data file, the reader is referred
to [8]. Notice that the described process is fully driven by an expert, and thus the
following decisions must be made by a human expert:

1. Selection of oligodimensional distributions at the beginning of the whole process.
2. Decision which type of “refinement” procedure should be chosen (detailed

explanation is given below).
3. Stopping rule.

As it can be seen from the diagram in Figure 1, the process is initiated with def-
inition of a system of oligodimensional distributions. Regarding the fact that the
process cyclically employs steps of verification and refinement, during which this
initial system is gradually changed, the result is fairly independent of the initial se-
lection. For example, starting with all two-dimensional distributions may be quite
reasonable (for application to small data files with a limited number of variables one
can consider a possibility to start with three-dimensional marginal distributions). In
other situations, an expert can select the initial marginal distributions from which the
model should be constructed. Generally, we propose to select distributions carrying
a greater amount of information. This idea is supported by the following assertion,
proved in [7] (Corollary 1.). It claims that the higher information content of a perfect
sequence, the better approximation of the unknown distribution.
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Definition of
oligodimens.
distributions

Construction of
generating
sequence

Perfectization

Computation of
K-L

divergences

VERIFICATION REFINEMENT

�

�

�
� �

Definition
of new

distributions
IPFP

�

Fig. 1 Process of model construction

Proposition 6. Consider an arbitrary distribution κ , and a generating sequence
consisting of its marginals κ↓K1 , κ↓K2 , . . . ,κ↓Kn . If this generating sequence is per-
fect, then

Div(κ‖κ↓K1 � . . . �κ↓Kn) = I(κ)− I(κ↓K1 � . . . �κ↓Kn),

where the Information content I(π) of a distribution π(J) is the Kullback-Leibler
divergence of π and a product distribution of its one-dimensional marginal distri-
butions:

I(π) = Div(π‖∏
u∈J

π↓{u}) = ∑
x∈XJ

π(x) log
π(x)

∏
u∈J

π↓{u}(x↓{u})
.

Let us stress that the information content is a generalization of a Shannon mutual
information, which will be used in the algorithm further in this text, and which is
for two disjoint (nonempty) L,M ⊂ J defined by the formula

MIπ(K;L) = ∑
x∈XK

∑
y∈XL

π↓K∪L(x,y) log
π↓K∪L(x,y)

π↓K(x) ·π↓L(y) .

If we want to construct a perfect sequence model approximating an unknown distri-
bution κ , we have to aim at getting the model with the highest possible information
content (under the assumption that the oligodimensional distributions, which the
perfect sequence consists of, are marginals of the approximated distribution). In [8]
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we have published the following heuristic algorithm producing a sub-optimal gen-
erating sequence from a system of oligodimensional distributions.

Algorithm
Input: System of low-dimensional distributions κ1(K1), . . .κn(Kn).
Initialization: Select a variable u and a distribution κ j such that

u ∈ Kj. Set π1 := κ↓{u}j , L := {u} and k := 1.
Computational Cycle: While K1 ∪ . . . ∪ Kn \ L �= /0 perform the following

3 steps:

1. for all j = 1, . . . ,n and all w ∈ Kj \L compute the mutual information
MIκ j(w;Kj ∩L).

2. Fix j and w for which MIκ j (w;Kj ∩L) achieved its maximal value.

3. Increase k by 1. Set πk := κ↓(Kj∩L)∪{w}
j and L := L∪{m}.

Output: Generating sequence π1,π2, . . . ,πk.

What can be said about the resulting generating sequence π1,π2, . . . ,πk? Distribu-
tion ν = π1 �π2 � . . .�πk is a probability distribution of variables K1∪K2∪ . . .∪Kn.
The algorithm realizes a greedy (therefore very efficient) process, which seeks to
find a sequence utilizing the information content of individual oligodimensional
distributions in a maximal possible way. The result is a generating sequence which,
unfortunately, need not be perfect. It means that some of the input distributions are
not marginals of the resulting multidimensional model. As a rule, the expert (the
model constructor) has to accept some deviations of the model marginals from the
input oligodimensional distributions. To decide whether the obtained deviations are
acceptable, i.e., whether the whole model construction process depicted in Figure 1
should be terminated, the expert must be provided with some additional informa-
tion. To get it, the process employs the perfectization procedure described in Propo-
sition 4. Then it is possible to compare original oligodimensional distributions with
the corresponding marginals defined by the model. The comparison may be done
with the help of Kullback-Leibler divergence; as already said above, its value equals
0 iff π = κ , otherwise it is always positive. Therefore, the lower this value, the closer
κ to π . The goal of this step is to find all the marginal distributions which are un-
acceptably distorted by the model. If there is no such a marginal distribution, the
process is terminated. In the opposite case, the expert proposes to perform another
cycle of the whole process with a modified system of oligodimensional distribu-
tions. The described process then proceeds so that several original distributions are
substituted with one a-little-bit-more-dimensional one in the refinement step.

As the reader can see from Figure 1, there are two possibilities to get these new
distributions. If it is possible (i.e., the data file is large enough) the expert can de-
cide to get them as estimations from the given data file (going along the left branch
of the refinement box in Figure 1). However, if the data file is too small to get reliable
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estimations (which may happen easily if one needs to substitute several distribu-
tions with a distribution whose dimensionality is high – let us say, 6 or more), then
one can take advantage of the well-known Iterative Proportional Fitting Procedure
(IPFP) (see [2]; for its effective implementation, which makes it possible to compute
distributions of pretty high dimensions, see [4]). In this way, when all the desired
substitutions are realized, a new system of oligodimensional distributions is set up,
to which the heuristic algorithm for generating sequence construction is again ap-
plied. The described cycle is repeated until the expert decides that a suitable multi-
dimensional model representing (approximating) all the required oligodimensional
distributions has been achieved.

Let us stress once more that the process shown in Figure 1 is fully controlled by
the expert. The more cycles of the process are performed, the higher dimensions of
the input distributions are considered. If the expert had continued ad absurdum, the
process would have, in fact, finished with an application of IPFP to all of the initial
oligodimensional distributions (which is, as a rule, computationally intractable in
practical situations).

7 Conclusions

In this paper we summarized most of the practically oriented properties of composi-
tional models and showed that they can be applied to multidimensional distribution
representation. We also showed that conditional distributions can be computed as a
composition of one or several degenerated distributions with the respective model,
and that these computations can be, for decomposable models, performed locally.

Let us, now, mention another advantage of perfect compositional models that
is important for another computational process that was not discussed in this pa-
per. We have in mind the process of marginalization. Since the perfect model is
composed of a system of its marginal distributions, it is not difficult to show on ex-
amples that there are number of situations when marginalization in a compositional
model is simple but the same process in the corresponding Bayesian network is ei-
ther computationally very expensive or even intractable. This advantageous property
of compositional models is employed in algorithms described in [6].

As the last remark, let us mention that compositional models where introduced
not only within the framework of probability theory, but also in possibility theory
[16], the theory of belief functions [12], and recently also for the Shenoy’s valuation-
Based Systems [11]. Thus, most of the results presented in this paper can easily be
extended into the above mentioned theoretical frameworks. For example, the content
of Sections 4 and 5 have originally been published for belief functions [10], not for
probability theory.

Acknowledgement. This work was supported in part by the National Science Foundation of
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Some Aspects of Information Theory
in Gambling and Economics

Hai Q. Dinh

Abstract. We discuss applications of information theory to the fields of gambling
and economics, such as the problem of gambling on horse races with causal side
information, and process of portfolio selection in the stock market. One of the center
points is the gambling strategy proposed by Kelly, that, on the one hand, gave a real-
life situation of a communication channel without optimum coding in which the rate
of transmission is significant. On the other hand, its optimization process opened the
door for the theory of rebalanced portfolios with known underlying distributions. We
also overview the work on universal portfolios with and without side information,
which yield portfolio strategies that have the same exponential rate of growths as the
ones achieved by the best state-constant and constant rebalanced portfolios chosen
after the stock outcomes are revealed. We do not intend to be encyclopedic, the
topics included are bounded to reflect our own research interest.

1 Information Theory

Information theory was founded in 1948 by Claude E. Shannon1 in his landmark pa-
per “A Mathematical Theory of Communication” [26]. The main object of classical
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computer and digital circuit design theory [9, 18], when, as a 21-year-old master’s stu-
dent at M.I.T in 1937, he wrote a thesis establishing that electrical application of Boolean
algebra could construct and resolve any logical, numerical relationship [25]. It has been
claimed that this was the most important master’s thesis of all time. Shannon contributed
to the field of cryptanalysis during World War II and afterwards, including basic work on
code breaking.
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information theory is the engineering problem of the transmission of information
over a noisy channel. The most fundamental results of this theory are Shannon’s
source coding theorem and Shannon’s noisy-channel coding theorem. The former
obtains that, on average, the number of bits needed to represent the result of an
uncertain event is given by its entropy; and the later establishes that reliable com-
munication is possible over noisy channels provided that the rate of communication
is below a certain threshold, called the channel capacity. The channel capacity can
be approached in practice by using appropriate encoding and decoding systems.

1.1 Coding Theory

The existence of noise in communication channels is an unavoidable fact of life.
A response to this problem has been the creation of error-correcting codes. Coding
Theory is the study of the properties of codes and their properties for a specific
application. Codes are used for data compression, cryptography, error-correction,
and more recently for network coding.

The common feature of communication channels is that the original information
is sent across a noisy channel to a receiver at the other end. The channel is ”noisy”
in the sense that the received message is not always the same as what was sent.
The fundamental problem is to detect if there is an error, and in such case, to de-
termine what message was sent based on the approximation that was received. An
example that motivated the study of coding theory is telephone transmission. It is
impossible to avoid errors that occur as messages pass through long telephone lines
and are corrupted by things such as lightening and crosstalk. The transmission and
reception capabilities of many modems are increased by error handling capability
in hardware. Another area in which coding theory has been applied successfully
is deep space communication. The message source is the satellite, the channel is
the out space and hardware that sends and receives date, the receiver is the ground
station on earth, and the noise are outside problems such as atmospheric conditions
and thermal disturbance. Data from space missions has been coded for transmission,
since it is normally impractical to retransmit. It is also important to protect commu-
nication across time from inaccuracies. Data stored in computer banks or on tapes
is subject to the intrusion of gamma rays and magnetic interference. Personal com-
puters are exposed to much battering, their hard disks are often equipped with an
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error correcting code called “cyclic redundancy check” (CRC)2 designed to detect
accidental changes to raw computer data.

The study of codes has grown into an important subject that intersects various
scientific disciplines, such as information theory, electrical engineering, mathemat-
ics, and computer science, for the purpose of designing efficient and reliable data
transmission methods. This typically involves the removal of redundancy and the
detection and correction of errors in the transmitted data. There are essentially two
aspects to coding theory, namely, source coding (i.e, data compression) and channel
coding (i.e, error correction). These two aspects may be studied in combination.

Source coding attempts to compress the data from a source in order to transmit it
more efficiently. This process can be found every day on the internet where the com-
mon Zip data compression is used to reduce the network bandwidth and make files
smaller. The second aspect, channel coding, adds extra data bits to make the trans-
mission of data more robust to disturbances present on the transmission channel.
The ordinary users usually are not aware of many applications using channel cod-
ing. A typical music CD uses the Reed-Solomon code to correct damages caused by
scratches and dust. In this application the transmission channel is the CD itself. Cel-
lular phones also use coding techniques to correct for the fading and noise of high
frequency radio transmission. Data modems, telephone transmissions, and NASA
all employ channel coding techniques to get the bits through, for example the turbo
code and LDPC codes.

Algebraic coding theory studies the subfield of coding theory where the prop-
erties of codes are expressed in algebraic terms. Algebraic coding theory is basi-
cally divided into two major types of codes, namely block codes and convolutional
codes. It analyzes the following three important properties of a code: code length,
total number of codewords, and the minimum distance between two codewords, us-
ing mainly the Hamming3 distance, sometimes also other distances such as the Lee
distance, Euclidean distance.

2 A cyclic redundancy check (CRC) is an error-detecting code designed to detect accidental
changes to raw computer data, and is commonly used in digidelltal networks and storage
devices such as hard disk drives. The CRC was first introduced by Peterson and Brown
in 1961 [24], the 32-bit polynomial used in the CRC function of Ethernet and many other
standards is the work of several researchers and was published in 1975. Blocks of data
entering these systems get a short check value attached, derived from the remainder of
a polynomial division of their contents; on retrieval the calculation is repeated, and cor-
rective action can be taken against presumed data corruption if the check values do not
match. CRCs are so called because the check (data verification) value is a redundancy (it
adds zero information to the message) and the algorithm is based on cyclic codes. CRCs
are popular because they are simple to implement in binary hardware, are easy to analyze
mathematically, and are particularly good at detecting common errors caused by noise in
transmission channels. Because the check value has a fixed length, the function that gen-
erates it is occasionally used as a hash function.

3 The Hamming distance is named after Richard Hamming, who first introduced it in his
fundamental paper on Hamming codes in 1950 [8]. It is used in telecommunication to
count the number of flipped bits in a fixed-length binary word as an estimate of error, and
hence it is sometimes referred to as the signal distance.
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Given an alphabet A with q symbols, a block code C of length n over the alphabet
A is simply a subset of A n. The q-ary n-tuples from C are called the codewords of
the code C. One normally envisions K, the number of codewords in C, as a power of
q, i.e., K = qk, thus replacing the parameter K with the dimension k = logq K. This
dimension k is the smallest integer such that each message for C can be assigned
its own individual message k-tuple from the q-ary alphabet A . Thus, the dimension
k can be considered as the number of codeword symbols that are carrying message
rather than redundancy. Hence, the number n−k is sometimes called the redundancy
of the code C. The error correction performance of a block code is described by the
minimum Hamming distance d between each pair of code words, and is normally
referred as the distance of the code.

In a block code, each input message has a fixed length of k < n input symbols. The
redundancy added to a message by transforming it into a larger codeword enables
a receiver to detect and correct errors in a transmitted code word, and to recover
the original message by using a suitable decoding algorithm. The redundancy is
described in terms of its information rate, or more simply, for a block code, in terms
of its code rate, k/n.

At the receiver end, a decision is made about the codeword transmitted based
on the information in the received n-tuple. This decision is statistical, that is, it
is a best guess on the basis of available information. A good code is one where
k/n, the rate of the code, is as close to one as possible (so that, without too much
redundancy, information may be transmitted efficiently) while the codewords are
far enough from one another that the probability of an incorrect interpretation of the
received message is very small. The following diagram describes a communication
channel that includes an encoding/decoding scheme:

Message
original−−−−−→
message

Encoder
codeword−−−−−→ Channel

received−−−−−→
codeword

Decoder
estimated−−−−−→
message

User

.
!⏐⏐Noise

Shannon’s noisy-channel coding theorem ensures that our hopes of getting the cor-
rect messages to the users will be fulfilled a certain percentage of the time. Based
on the characteristics of the communication channel, it is possible to build the right
encoders and decoders so that this percentage, although not 100%, can be made
as high as we desire. However, the proof of Shannon’s noisy-channel coding the-
orem is probabilistic and only guarantees the existence of such good codes. No
specific codes were constructed in the proof that provides the desired accuracy for
a given channel. The main goal of Coding Theory is to establish good codes that
fulfill the assertions of Shannon’s noisy-channel coding theorem. During the last 50
years, while many good codes have been constructed, but only from 1993, with the
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introduction of turbo codes4, the rediscoveries of LDPC codes5, and the study of re-
lated codes and associated iterative decoding algorithms, researchers started to see
codes that approach the expectation of Shannon’s noisy-channel coding theorem in
practice.

1.2 Information Theory without Optimum Coding

The rate of transmission over a noisy communication channel was defined by Shan-
non [26] in terms of various probabilities. This rate plays an important role in the
Shannon’s noisy-channel coding theorem that ensures that a system of encoders and
decoders can be built to transmit over the channel at this rate with the probability of
error made as small as we want.

In 1956, Kelly [10] considered the situations with communication systems where
optimum coding is not being used, such as radar. Basically, in order to attach signif-
icance to the rate of transmission, one needs to attach a value measure to the system.
That means a cost function must be constructed on pairs of symbols that can give
the information on how bad it is to receive a certain symbol when another speci-
fied signal is transmitted. Moreover, the expected value of this cost function needs
to have significance, i.e., a system must be preferable to another if its average cost
is less. In general, this cost function should only depend on things external to the
system and not on the probabilities which describe the system, so that its average
value could not be identified with the rate as defined by Shannon. On the other hand,
the ultimate receiver of a communication system is in a position to profit from any

4 Turbo codes were first introduced and developed in 1993 by Berrou, Glavieux, and Thiti-
majshima [4]. Turbo codes are a class of high-performance forward error correction codes,
which were the first practical codes to closely approach the channel capacity, a theoreti-
cal maximum for the code rate at which reliable communication is still possible given a
specific noise level. Turbo codes are widely used in deep space communications and other
applications where designers seek to achieve reliable information transfer over bandwidth-
constrained or latency-constrained communication links in the presence of data-corrupting
noise. The first class of turbo code was the parallel concatenated convolutional code. Since
the introduction of the original parallel turbo codes in 1993, many other classes of turbo
code have been discovered, including serial versions and repeat-accumulate codes. Itera-
tive Turbo decoding methods have also been applied to more conventional forward error
correction systems, including Reed-Solomon corrected convolutional codes.

5 LDPC (low-density parity-check) codes were first introduced in 1963 by Robert G. Gal-
lager in his doctoral dissertation at M.I.T [7]. At that time, it was impractical to implement
and LDPC codes were forgotten, but they were rediscovered in 1996. A LDPC code is a
linear error correcting code, a method of transmitting a message over a noisy transmis-
sion channel, and is constructed using a sparse bipartite graph. LDPC codes are capacity-
approaching codes, which means that practical constructions exist that allow the noise
threshold to be set arbitrarily close on the binary erasure channel to the Shannon limit
for a symmetric memoryless channel. The noise threshold defines an upper bound for the
channel noise, up to which the probability of lost information can be made as small as de-
sired. Using iterative belief propagation techniques, LDPC codes can be decoded in time
linear to their block length.
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knowledge of the input symbols or even from a better estimate of their probabilities.
Thus, a cost function needs to somehow reflect this feature as well.

Kelly then analized such a communication system with no optimum coding of a
real-life situation without a cost function, namely, the gambling situation in which
a gambler uses knowledge of the received symbols of a communication channel to
make profitable bets on the transmitted symbols. He posed the question of whether a
mathematical formula could be derived to ensure success in betting on horse races.
His solution, known as Kelly gambling strategy, or Kelly bet, or Kelly criterion,
or Kelly formula, became the basic of many gambling system. In most gambling
scenarios, and several investing scenarios under some simplifying assumptions, the
Kelly gambling strategy will do better than any essentially different strategy in the
long run6.

2 Information Theory and Gambling

2.1 Kelly Gambling Strategy

Kelly showed in [10] that if each horse race outcome can be represented as an in-
dependent and identically distributed copy of a random variable X and the gambler
has some side information Y relevant to the outcome of the race, then under some
conditions on the odds, the mutual information I(X ;Y ) is the difference between
growth rates of the optimal gambler’s wealth with and without side information Y .
Thus, Kelly’s result gave an interpretation that mutual information I(X ;Y ) is the
value of side information Y for the horse race X .

The side information can be considered to be a set of symbols received over
a communication channel that the gambler uses to make bets on the transmitted
symbols. The exponential rate of growth is defined as

G = lim
N→∞

1
N

log
VN

V0
,

where VN is the gambler’s capital after N bets and V0 is the starting capital. An opti-
mal gambler always tries to maximize the exponential rate of growth, i.e., to achieve
Gmax. This is established by placing the bets in proportion to some probability distri-
bution. Here, the channel has several input symbols, not necessarily equally likely,
which represent the outcome of chance events. Denote

X : Random variable representing the transmitted symbols (outcome of the races),
Y : Random variable representing the received symbols (side information),
p(s) : probability that s is transmitted,
p(r|s) : conditional probability that r is received when s is transmitted,
p(s,r) : joint probability of s and r,

6 Over the years, Kelly gambling strategy has become a part of mainstream investment the-
ory. It has been claimed that well known successful investors including Warren Buffett and
Bill Gross use Kelly methods [19, 30].
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q(r) : received symbol probability,
q(s|r) : conditional probability of transmitted symbol given the received symbol,
αs : odds paid on the occurrence of s, i.e., αs is the number of dollars returned for a
one dollar bet including that one dollar,
a(s|r) : fraction of capital the gambler bets on the occurrence of s after observing r.

In case there is no track take, i.e., the gambler does not pay anything to the track,
and the odds are fair, i.e., αs =

1
p(s) , then the exponential rate of growth is

G =∑
rs

p(s,r) logαsa(s|r) =∑
rs

p(s,r) log
a(s|r)
p(s)

=∑
rs

p(s,r) loga(s|r)+H(X),

where H(X) is the source rate as defined by Shannon. Thus, G is maximized when
a(s|r) = q(s|r), and

Gmax = H(X)−H(X |Y) = I(X ;Y ),

which is the rate of transmission defined by Shannon.
In the case there is no track take, and the odds are not fair, i.e., αs �= 1

p(s) , then

G =∑
rs

p(s,r) loga(s|r)+∑
s

p(s) logαs =∑
rs

p(s,r) loga(s|r)+H(X),

where H(X)=∑s p(s) logαs. In this case, G is also maximized when a(s|r)= q(s|r),
and

Gmax = H(α)−H(X |Y) = I(X ;Y ).

It follows that the gambler can maximize his profit by ignoring the posted odds
while placing his bets. Moreover, anything other than fair odds gives an advantage
to the gambler.

Consider the case there is track take, i.e., the gambler has to pay a certain positive
amount to the track. Denote by br the fraction not bet when the received symbol is
r, i.e., br = 1−∑s a(s|r). Then

G =∑
rs

p(s,r) log[br +αsa(s|r)],

subject to the constraints
br +∑

s
a(s|r) = 1.

In this case, Kelly’s strategy to maximize the exponential rate of growth G is the
following procedure:

(1) Permute indices so that p(s)αs ≥ p(s+ 1)αs+1.
(2) Set

pt =
t

∑
1

p(s), σt =
t

∑
1

1
αs

.
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Let t = T be the smallest value of t so that 1−pt
1−σt

achieves its minimum positive

value, and set b equal to such value, i.e., b = 1−pT
1−σT

.

(3) Set a(s) = max{p(s)− b
αs
, 0}.

The maximum value of G is

Gmax =
T

∑
1

p(s) log p(s)αs +(1− pT ) log
1− pT

1−σT
.

2.2 Directed Information and Causal Conditioning

In 1973, Marko [14] initiated the concept of directed information, which gave a
meaningful notion of directivity to the information flow through a communication
channel. The directed information I(Xn → Y n) from a sequence Xn to a sequence
Y n was then specifically defined by Massey [17] in 1990 as

I(Xn→ Y n) =
n

∑
i=1

I(Xi;Yi|Y i−1).

It can be seen readily that, in general, I(Xn→Yn) �= I(Yn→ Xn). Massey [17] showed
that when feedback is present, the directed information I(Xn → Y n) gives a better
upper bound on the information that the output sequence Y n gives about the source
sequence Uk than does the conventional mutual information I(Xn;Y n), i.e,

I(Uk;Y n)≤ I(Xn→ Y n)≤ I(Xn;Y n).

Subsequently, it was established by several researchers that Massey’s directed infor-
mation and its variants indeed characterize the capacity of feedback and two-way
channels [11, 12, 13, 22, 23, 27, 28, 29], and the rate distortion function with feed-
forward [31].

The causal conditioning notion (·||·) was introduced by Kramer [12] in 1998. The
probability mass function of Xn = (X1,X2, . . . ,Xn) causally conditioned on Y n−d , for
some non-negative integer d, is denoted by p(xn||yn−d), and is defined as

p(xn||yn−d) =
n

∏
i=1

p(xi|xi−1,yi−d),

with the convention that if i− d ≤ 0, then yi−d is set to null. In light of the chain
rule, it is easy to see that

p(xn|yn) = p(xn||yn) p(yn||xn−1).

The causally conditional entropy H(Xn||Y n) is defined as the expected logarithm of
p(Xn||Y n), i.e.,
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H(Xn||Y n) = E[log p(Xn||Y n)] =
n

∑
i=1

H(Xi|Xi−1,Yi).

With this notion, the directed information from Y n to Xn can be represented as

I(Y n→ Xn) =
n

∑
i=1

I(Xi;Y i|Xi−1) = H(Xn)−H(Xn||Y n).

2.3 Gambling with Causal Side Information

In 2008, Permuter et al [20, 21] investigated the problem of gambling in horse races
and show that Massey’s directed information characterizes the increment in the max-
imum achievable capital growth rate due to the availability of side information. This
result gave a natural interpretation of directed information I(Y n→Xn) as the amount
of information that Y n causally provides about Xn.

Denote

Xi ∈X = [1,2, . . . ,m] : the horse that wins at time i,
Yi : the side information at time i,
o(Xi|Xi−1) : the payoffs at time i for horse Xi given that in the previous race, the
horses Xi−1 won,
b(Xi|Y i,Xi−1) : the fractions of the gambler’s wealth invested in horse Xi at time i,
given that the side information available at time i is Y i and the horses Xi−1 won in
the previous races,
S(Xn||Y n) : the gambler’s wealth after n races when the outcomes of the races are
Xn and the side information Y n is causually available,
W (Xn||Y n) : the growth, defined as the expected logarithm of the gambler’s wealth

W (Xn||Y n) = E[logS(Xn||Y n)],

1
nW (Xn||Y n) : the growth rate.

Suppose that at any time n the gambler invest all his capital, then the total wealth
after n rounds is

S(Xn||Y n) = b(Xn|Xn−1,Y n)o(Xn|Xn−1)S(Xn−1||Y n−1) =
n

∏
i=1

b(Xi|Xi−1,Y i)o(Xi|Xi−1).

The maximum growth rate is obtained if the gambler invests the money proportional
to the causual conditioning distribution, i.e., for all i≤ n,

b∗(xi|xi−1,yi) = p(xi|xi−1,yi),

or equivalently,
b∗(xn||yn) = p(xn||yn),
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and the optimal growth in this case is

W ∗(Xn||Y n) = E[logo(Xn)]−H(Xn||Y n).

If, in addition, the odds are fair and uniform, then o(Xi|Xi−1) = 1
|X | , and

1
n

W ∗(Xn||Y n) = log |X |− 1
n

H(Xn||Y n).

That means the sum of the optimal growth rate 1
nW ∗(Xn||Y n) and the entropy rate

1
n H(Xn||Y n) of the horse race process causally conditioned on the side information,
is a constant.

Now consider the case that the gambler invests only part of his capital. Let
b0(yi,xi−1) be the portion of capital not invested at time i given that the side in-
formation is yi and the horses xi−1 won in the previous races. The wealth after n
races is

S(Xn||Y n) =
n

∏
i=1

[
b0(Y

i,Xi−1)+ b(Xi|Xi−1,Y i)o(Xi|Xi−1)
]
.

The growth W (Xn||Yn) obeys a chain rule as

W (Xn||Y n) =
n

∑
i=1

W (Xi|Xi−1,Y i),

where

W (Xi|Xi−1,Y i) = E
[
b0(Y

i,Xi−1)+ b(Xi|Xi−1)o(Xi|Xi−1,Y i)
]
.

It can be shown that the optimization problem of maximizing the growth W (Xn||Y n)
is equivalent to the convex problem of maximizing ∑x∈X p(x) log[b0 + b(x)o(x)]
with the constrain b0 +∑x∈X b(x) = 1, which is exactly the same as the problem
arised in Kelly strategy discussed in 2.1.

3 Information Theory and Economics

The essential requirements of Kelly gambling strategy are the posibility of reinvest-
ment of profits and the ability to control the amount of money invested in different
categories. The channel may be extended to a real communication channel or just
simply corresponds to the side information available to the investor. The optimiza-
tion process in Kelly strategy is similar to that for rebalanced portfolios with known
underlying distributions. Thus, Kelly strategy can be generalized to apply to portfo-
lio theory to establish optimal portfolio strategies for investment in the stock market
with or without side information.
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3.1 Portfolio Theory

Portfolio Theory is a theory of finance that concentrates on maximizing the portfolio
expected return for a given amount of portfolio risk, or equivalently, minimizing
risk for a given level of expected return, by carefully choosing the proportions of
various assets. Portfolio Theory was first introduced in 1952 by Markowitz [15]
(see also [16]). The fundamental concept of Portfolio Theory is that the assets in an
investment portfolio should not be chosen independently, each on their own merits.
Rather, it is significant to consider how a change in price of each asset relates to that
of every other asset in the portfolio.

Investing is a tradeoff between risk and expected return. In general, assets with
higher expected returns have more risk. Given an amount of risk, Portfolio The-
ory describes how to choose a portfolio with the highest possible expected return.
Conversely, for a given expected return, Portfolio Theory explains how to choose a
portfolio with the lowest possible risk. Thus, Portfolio Theory is a form of diversi-
fication. Under certain assumptions and for specific quantitative definitions of risk
and return, Portfolio Theory explains how to find the best possible diversification
strategy.

3.2 Stock Market

The behavior of the stock market in n trading days is represented by non-negative
price-relative sequence of stock market vectors X1,X2, . . . ,Xn. Each stock market
vector Xi =(xi1,xi2, . . . ,xim)

T represents the performance of the stock market on day
i, where m is the number of stocks, and xi j is the price relative of the jth stock on
day i, i.e., the ratio of closing to opening price of stock j on day i. A portfolio bi =
(bi1,bi2, . . . ,bim) ∈B, where the simplex B is the (m− 1)-dimensional portfolios
given by

B =

{
b ∈ R

m : bi ≥ 0,
m

∑
i=1

bi = 1

}
,

represents the propotion of wealth invested in each stock on day i. The wealth after
n trading days for the portfolio strategy b = (b1,b2, . . . ,bn) is

Sn(b) =
n

∏
i=1

bT
i Xi.

The objective of an optimal portfolio strategy is to maximize this wealth.

3.3 Constant Rebalanced Portfolios

A constant rebalanced portfolio is a sequential investment strategy that maintains
fixed through time, trading period by trading period, the wealth distribution among
a set of assets. In the other words, a constant rebalanced portfolio strategy uses the
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same portfolio b for each trading period. Let Xn = (X1,X2, . . . ,Xn) be a sequence of
stock vectors, the constant rebalanced portfolio strategy using portfolio b achieves
wealth Sn(b,Xn), or just simply Sn(b), given by

Sn(b,Xn) = Sn(b) =
n

∏
i=1

bT Xi.

It requires a great deal of trading to maintain a constant rebalanced portfolio starat-
egy because at the end of each trading period i, the proportion of wealth invested
in each stock has changed from b1,b2, . . . ,bm to xi1b1

bT Xi
, xi2b2

bT X2
, . . . , ximbm

bT Xm
; and there-

fore, stocks must be bought and sold to restore the proportions of wealth back to
b1,b2, . . . ,bm for the next trading period.

Given a sequence of stock vectors Xn, the maximum wealth is denoted by S∗n(Xn),
or just simply S∗n:

S∗n(X
n) = S∗n = max

b∈B
Sn(b).

The best constant rebalanced portfolio is the one that achieves this wealth S∗n, and it
is denoted by b∗(Xn), or simply b∗:

b∗(Xn) = b∗ = arg max
b∈B

Sn(b).

The exponential growth rate of wealth achieved by the best constant rebalanced
portfolio at time n is denoted by W ∗n (Xn), and it is given by

W ∗n (X
n) =

1
n

logS∗n(X
n).

3.4 Side Information

Investors often use various sources of side information to adjust and update their
portfolios. This side information is modeled as a finite-valued variable y made avail-
able at the start of each investment period. The knowledge of y is then used in the
process of choosing the portfolio. Hence, the formal domain of the stock market
model is a sequence of oredered pairs {(Xi,yi)}, where Xi is the stock vector of day
i, and yi ∈ Y = {1,2, . . . ,k} is the state of the side information at time i.

3.5 State-Constant Rebalanced Portfolios

The constant rebalanced portfolio is designed to handle the portfolio selection
problem when there is no additional information concerning the stock market. To
overcome this limitation, Cover and Ordentlich [6] proposed the state constant re-
balanced portfolio, which is capable of appropriately exploiting the available side
information of the stock market. The constant rebalanced portfolio is generalized
to the state-constant rebalanced portfolio by allowing the portfolio decisions to
vary with the side information y. A state-constant rebalanced portfolio specifies
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portfolios b(1),b(2), . . . ,b(k) ∈B, and uses portfolio b(yi) at time i when the side
information state takes on value yi ∈Y = {1,2, . . . ,k}. Note that, in the special case
of k = 1, i.e., |Y |= 1, the corresponding state-constant rebalanced portfolio is just
simply the constant rebalanced portfolio.

For a sequence of stock vectors Xn = (X1,X2, . . . ,Xn), and side information yn,
the choice of portfolios b : Y →B results in the wealth

Sn(b(·),Xn|yn) =
n

∏
i=1

b(yi)
T Xi.

Let Bk be the set of all state-constant rebalanced portfolios with k states. Given
a sequence of stock vectors Xn and side information yn, the maximum wealth is
denoted by S∗n(Xn|yn) and is given by

S∗n(X
n|yn) = max

b(·)∈Bk
Sn(b(·),Xn|yn).

The best state-constant rebalanced portfolio is the one that achieves this wealth
S∗n(Xn|yn), and it is denoted by b∗(·):

b∗(·) = arg max
b(·)∈Bk

Sn(b(·),Xn|yn).

The exponential growth rate of wealth achieved by the best state-constant rebalanced
portfolio is

W ∗n (X
n|yn) =

1
n

logS∗n(X
n|yn).

3.6 Universal Portfolios

The universal portfolio was introduced in 1991 by Cover [5]. Let Xi =
(xi1,xi2, . . . ,xim)

T be the stock market vector for one investment period on day i,
where xi j is the price relative of the jth stock on day i, i.e., the ratio of closing
to opening price of stock j on day i. An investment at time i in the stock market
is represented by a portfolio vector bi = (bi1,bi2, . . . ,bim)

T , where all bi j ≥ 0 and
∑m

j=1 bi j = 1. The components bi j of bi are the proportions of the current wealth
invested in each of the m stocks on day i. The wealth after n trading days for the
portfolio strategy b = (b1,b2, . . . ,bn) is

Sn(b) =
n

∏
i=1

bT
i Xi,

where the initial wealth is normalized to 1, i.e. S0(b)= 1. Consider as the goal S∗n(b),
the maximum wealth achievable over all constant rebalanced portfolio strategies b,
including those obtained by assuming perfect knowledge of future stock prices:

S∗n(b) = max
b

Sn(b).
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It can be shown that S∗n exceeds the best stocks, the Dow Jones average, and the
value line index at time n. Cover [5] constructively showed that there is an universal
portfolio strategy b̂k, where b̂k is based only on past X1,X2, . . . ,Xk−1, such that the
performance of b̂k is as good as the best portfolio based on the prior knowledge of
the sequence of price relatives. This universal portfolio strategy b̂k is a performance
weighted strategy given by,

b̂1 =

(
1
m
,

1
m
, . . . ,

1
m

)
,

b̂k+1 =

∫
B bSk(b)d b∫
B Sk(b)d b

where

Sk(b) =
k

∏
i=1

bT Xi,

and integration is over the set of (m− 1)-dimensional portfolios

B =

{
b ∈ R

m : bi ≥ 0,
m

∑
i=1

bi = 1

}
.

Hence, the initial universal portfolio b̂1 is uniform over the stocks, and the portfolio
b̂k at time k is the performance average of all portfolios b in B. The wealth Ŝn

generated by the universal portfolio is given by,

Ŝn =
n

∏
i=1

b̂
T
i Xi.

It can be shown that, for arbitrary bounded stock sequences X1,X2, . . . , Ŝn and S∗n
have the same exponent to first order as

1
n

ln
Ŝn

S∗n
−→ 0.

A more refined analysis of the wealth generated by universal portfolio strategy
shows that, in the special case of two assets, i.e., for m = 2 stocks,

Ŝn
∼=
√

2π
nJn

S∗n,

and in the general case of m stocks, under certain conditions,

Ŝn
∼= S∗n(m− 1)!

(2π
n

)m−1
2

|Jn| 12
.

where Jn is a (m− 1)× (m− 1) matrix and represents the sensitivity of the stock
market.
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3.7 Universal Portfolios with Side Information

In 1996, Cover and Ordentlich [6] studied Universal Portfolios with side information
for |Y |= k > 1. The μ-weighted universal portfolio with side information is given
by

b̂i(y) =

∫
B bSi−1(b |y)dμ(b)∫
B Si−1(b |y)dμ(b)

, i = 1,2, . . . ,y ∈ Y ,

with ∫
B

dμ(b) = 1,

where Si(b |y) is the wealth obtained by the constant rebalanced portfolio b along
the sequence { j ≤ i : y j = y} and is given by

Si(b |y) = ∏
j≤i:y j=y

bT X j withS0(b |y) = 1.

The corresponding wealth generated by the universal portfolio with side information
is

Ŝn(Xn|yn) =
n

∏
i=1

b̂i(yi)Xi

which can be expressed more compactly as,

Ŝn(Xn|yn) =
k

∏
y=1

∫
B

Sn(b |y)dμ(b).

Recall that S∗n(Xn|yn) is the wealth achieved by the best μ-weighted state-constant
rebalanced portfolio with side information. It can be shown that there exists mea-
sure μ for which the μ-weighted universal portfolio with side information b̂(·) is
universal for the state-constant rebalanced portfolios Bk in the sense that

lim
n→∞

sup
Xn,yn

1
n

log
S∗n(Xn|yn)

Ŝn(Xn|yn)
= 0.

In other words, there exists μ such that Ŝn(Xn|yn) and S∗n(Xn|yn) have the same
exponent in first order, just like the case of universal portfolios with no side infor-
mation discussed in 3.6.

This is established for two choices of μ , namely, the uniform (i.e., the Dirich-
let (1, . . . ,1)) distribution, and the Dirichlet ( 1

2 , . . . ,
1
2 ) distribution on the portfolio

simplex B by showing that if μ equals to the uniform distribution then

sup
Xn,yn

1
n

log
S∗n(Xn|yn)

Ŝn(Xn|yn)
= sup

Xn,yn

(
W ∗n (X

n|yn)−Ŵn(Xn|yn)
)≤ k(m− 1)

n
log(n+ 1),

and if μ is chosen to be the Dirichlet ( 1
2 , . . . ,

1
2) distribution then
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sup
Xn,yn

1
n

log
S∗n(Xn|yn)

Ŝn(Xn|yn)
= sup

Xn,yn

(
W ∗n (Xn|yn)−Ŵn(Xn|yn)

)≤ k(m−1)
2n

log(n+1)+
k
n

log2.

Since both bounds tend to 0 as n→∞, the universality for these choices of μ follows.
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Why Clayton and Gumbel Copulas:
A Symmetry-Based Explanation

Vladik Kreinovich, Hung T. Nguyen, and Songsak Sriboonchitta

Abstract. In econometrics, many distributions are non-Gaussian. To describe de-
pendence between non-Gaussian variables, it is usually not sufficient to provide
their correlation: it is desirable to also know the corresponding copula. There are
many different families of copulas; which family shall we use? In many economet-
ric applications, two families of copulas have been most efficient: the Clayton and
the Gumbel copulas. In this paper, we provide a theoretical explanation for this em-
pirical efficiency, by showing that these copulas naturally follow from reasonable
symmetry assumptions. This symmetry justification also allows us to provide rec-
ommendations about which families of copulas we should use when we need a more
accurate description of dependence.

Keywords: Archimedean copulas, econometrics, symmetries.

1 Formulation of the Problem

Copulas are needed. Traditionally, in statistics the dependence between random
variables η , ν , . . . , is described by their correlation. This description is well
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justified in the frequent cases when the joint distribution is Gaussian: in this case,
to describe the joint distribution, i.e., to describe the corresponding cumulative dis-
tribution function P(η ≤ x&ν ≤ y& . . .), it is sufficient to describe the marginal

distribution Fη(x)
def
= P(η ≤ x), Fν(y)

def
= P(ν ≤ y), . . . , of each of the variables, and

the correlations between each pairs of variables.
In many practical situations, e.g., in economics, the distributions are often non-

Gaussian; see, e.g., [5]. For non-Gaussian pair of variables (η ,ν), in general, it is
not enough to know the distribution of each variables and the correlations between
them, we need more information about the dependence. Such information is pro-
vided, e.g., by a copula, i.e., by a function C(u,v) for which P(η ≤ x&ν ≤ y) =
C(Fη(x),Fν (y)); see, e.g., [4, 5, 6].

Usually, Archimedean copulas are used, i.e., copulas of the form C(u,v) =
ψ(ψ−1(u)+ψ−1(v)) for some decreasing generator function ψ(x) that maps [0,∞)
into (0,1].

Most efficient Archimedean copulas. In econometric applications, the following two
classes of Archimedean copulas turned out to be most efficient [5]: the Frank

copulas C(u,v) = − 1
θ
· ln

(
1− (1− exp(−θ ·u)) · (1− exp(−θ · v))

1− exp(−θ )
)

, the

Clayton copulas C(u,v) =
(
u−θ + v−θ − 1

)−1/θ
and the Gumbel copulas C(u,v) =

exp
((

(− ln(u))−θ +(− ln(v))−θ − 1
)−1/θ

)
. The efficiency of Frank’s copulas is

clear: Frank copulas are the only Archimedean copulas which satisfy the natural
condition C(u,v) +C(u,1− v) +C(1− u,v) +C(1− u,1− v) = 1 that describes
the intuitive idea that for every two events U and V , we should have P(U &V )+
P(U &¬V )+P(¬U &V )+P(¬U &¬V ) = 1 (see, e.g., [4, 5, 6]). But why Clayton
and Gumbel copulas?

Main question: why Clayton and Gumbel copulas? In principle, there are many dif-
ferent copulas. So why did the above two classes turned out to be the most efficient
in econometrics?

Auxiliary question: what if these copulas are not sufficient? While at present, the
above two classes of copulas provide a good description of all observed dependen-
cies, in the future, we will need to describe this dependence in more detail, so we
will larger classes of copulas. Which classes should we use?

What we do in this paper. In this paper, we provide answers to both questions.
Specifically, we show that natural symmetry-based ideas indeed explain the effi-
ciency of the above classes of copulas, and that these same ideas can lead us, if
necessary, to more general classes.

2 Why Symmetries

Symmetries as a fundamental description of knowledge: brief reminder. Symme-
tries are one of the fundamental concepts of modern physics. The reason for their
ubiquity is that most of our knowledge is based on symmetry; see, e.g., [2].
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Indeed, how do we gain any knowledge about the physical world? Let us start
with a simple example: we observe many times that the Sun rises every morning,
and we conclude that it will rise again. This conclusion is based on the implicit
assumption that the dynamics of the Solar system does not change when we move
from one day to another.

Similarly, we drop a rock, and it falls down with an acceleration of 9.81 m/sec2.
We repeat this experiment at different locations on the Earth, we repeat it at the
same location turning to different places, and we always get the same acceleration.
We therefore conclude that at all locations on the Earth surface, no matter what our
orientation is, the rock will drop with the same acceleration. This means that no
matter how we shift or rotate, the fundamental laws of physics do not change.

In general, when we formulate a physical law based on observations, we thus
implicitly assume that new situations are similar to the already observed ones, so
the regularities that we observed earlier will happen in future situations as well.
This idea has been formalized in modern physics, to the extend that may physical
theories (starting with the quarks theory) are formulated not in terms of differential
equations as before, but explicitly in terms of appropriate symmetries [2]. Moreover,
it was discovered that many fundamental physical equations – e.g., Maxwell equa-
tions of electrodynamics, Schrödinder’s equations of quantum mechanics, Einstein’s
equations of General Relativity etc. – can be uniquely derived from the correspond-
ing symmetries; see, e.g., [3].

In view of efficiency of symmetries in physics, it is reasonable to use them in
other disciplines as well; for example, in [7], we have shown that symmetries can
be efficiently applied to computing.

Basic symmetries. In this paper, we will use the basic symmetries that come from
the fact that the numerical value of a physical quantity depends on the choice of the
measuring unit and on the choice of a starting point.

Let us start with the choice of the measuring unit. For example, when we measure
lengths and instead of using meters, start using centimeters – a unit which is λ = 100
times smaller than the meter – instead of the original numerical values x, we get new
values x′ = λ · x which are λ times larger. Many fundamental physical processes
do not have any preferred unit of length; for such processes, it is reasonable to
require that the corresponding equations do not change if we simply change the
units. The corresponding transformations are called scalings, and invariance under
such transformation is known as scale-invariance. It is worth mentioning that scale-
invariance is an important part of symmetry-based derivation of the fundamental
physical equations presented in [3].

Another basic symmetry is the possibility to select different starting points for
measurements. For example, when we measure time, we can arbitrarily select the
starting point: instead of the usual calendar that starts at Year 0, we can start, as the
French Revolution proposed, so start with the date of the Revolution. In this case,
instead of the original numerical value x, we get a new value x′ = x+ s, where s
is the difference between the starting points (e.g., s = −1789 for the French Revo-
lution). Many fundamental physical quantities like time do not have any preferred
starting point; for such processes, it is reasonable to require that the corresponding
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equations do not change if we simply change the starting point. The corresponding
transformations are called shifts, and invariance under such transformation is known
as shift-invariance.

3 Invariant Functions Corresponding to Basic Symmetries

Example of invariance. A power law y = xa has the following invariance property:
if we change a unit in which we measure x, then in the new units, we get the exact
same formula – provided that we also appropriately changing a measuring unit for
y. Let us explain this property in detail.

If we replace the original unit for measuring x by a new measuring unit which is
λ times larger, then all the numerical values get decreased by a factor of λ . In other

words, instead of the original values x, we have new values x′ =
x
λ

. How will the

dependence of y on x look in the new units?
From the above dependence of x′ on x, we conclude that x = λ · x′. Substituting

this expression into the formula y = xa, we conclude that y = (λ · x′)a = λ a · (x′)a.
This new formula is different from the original formula – it has not only x′ raised

to the power a, it also has a multiplicative constant μ def
= λ a. However, we can make

this formula exactly the same if we also select a new unit for y: namely, a unit which
is μ times larger than the original one. Now, instead of the original values y, we get

new values y′ =
y
μ

. In these new units, due to y = μ · (x′)a, the dependence of y on

x takes the form y′ = (x′)a – i.e., exactly the same form as in the previous units.

Towards a general description of invariant functions corresponding to basic symme-
tries. Let us now provide a general description of invariant functions corresponding
to basic symmetries. As we have mentioned, there are two types of basic symme-
tries: scaling (corresponding to a change in measuring unit) and shift (correspond-
ing to the change in the starting point). When we are looking for invariant functions
y = f (x), we have 2 possible symmetries for x and 2 possible symmetries for y, so
we need to consider all 2× 2 = 4 possible combinations of these symmetries. Let
us describe what happens in all these 4 cases: scale→ scale, scale→ shift, shift→
scale, and shift→ shift.

Definition 1. A differentiable function f (x) is called scale-to-scale invariant if for
every λ , there exists a μ for which f (λ · x) = μ · f (x).

Comment. In this case, if we replace x with x′ = λ · x, we can get the same depen-

dence y′ = f (x′) if we replace y with y′ =
y
μ

.

Proposition 1. A function f (x) is scale-to-scale invariant if and only if it has the
form f (x) = A · xa for some real numbers A and a.

For readers’ convenience, all the proofs are placed in a special (last) section.

Definition 2. A differentiable function f (x) is called scale-to-shift invariant if for
every λ , there exists an s for which f (λ · x) = f (x)+ s.
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Comment. In this case, if we replace x with x′ = λ · x, we can get the same depen-
dence y′ = f (x′) if we replace y with y′ = y− s.

Proposition 2. A function f (x) is scale-to-shift invariant if and only if it has the
form f (x) = A · ln(x)+ b for some real numbers A and b.

Definition 3. A differentiable function f (x) is called shift-to-scale invariant if for
every s, there exists a λ for which f (x+ s) = λ · f (x).

Comment. In this case, if we replace x with x′ = x+ s, we can get the same depen-

dence y′ = f (x′) if we replace y with y′ =
y
λ

.

Proposition 3. A function f (x) is shift-to-scale invariant if and only if it has the
form f (x) = A · exp(k · x) for some real numbers A and k.

Definition 4. A differentiable function f (x) is called shift-to-shift invariant if for
every s, there exists a b for which f (x+ s) = f (x)+ b.

Comment. In this case, if we replace x with x′ = x+ s, we can get the same depen-
dence y′ = f (x′) if we replace y with y′ = y− b.

Proposition 4. A function f (x) is shift-to-shift invariant if and only if it has the form
f (x) = A · x+ c for some real numbers A and c.

Definition 5. A function is called invariant if it is either scale-to-scale invariant, or
scale-to-shift invariant, or shift-to-scale invariant, or shift-to-shift invariant.

Discussion. Not all physical dependencies are invariant. Specifically, when the map-
pings y = f (x) from x to y and z = g(y) are both invariant with respect to the same
symmetries, then their composition z = g( f (x)) is also invariant with respect to the
same symmetries. In general, however, the mappings y = f (x) and z = g(y) cor-
respond to different symmetries; in this case, their composition is not necessarily
invariant.

In view of this observation, if we want to use symmetries but cannot find an
invariant function, we should be look for functions which are compositions of two
invariant functions (if necessary, compositions of three, etc.) Let us apply this
approach to our problem of finding appropriate copulas.

4 Why Scalings and Shifts Can Be Applied to Probabilities

Symmetries are actively used in statistics. One of the main objectives of mathemat-
ical statistics is to process data, in particular, physical data. As we have mentioned,
in physics, symmetries are very important, in particular basic symmetries such as
scalings and shifts. Not surprisingly, invariance with respect to different symmetries
is one of the main tools in traditional mathematical statistics – especially scale- and
shift-invariance; see, e.g., [1].

We plan to use symmetries in copula techniques as well. Our objective is go be-
yond traditional statistical techniques and to derive the formulas for copulas, i.e.,
the formulas that transform probabilities into probabilities.
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Due to the success of symmetries in physics and in traditional mathematical
statistics, it seems desirable to apply symmetries for copulas as well. Specifically,
we would like to use the simplest – and most widely used – symmetries: scalings
and shifts.

Challenge: for copulas, we need a new justification of symmetries. In physics (and
in traditional mathematical statistics), the use of these symmetries is justified by
the possibility to select different measuring units and different starting points. This
justification cannot be directly applied to copulas – functions from probabilities to
probabilities: since probabilities are limited by the interval [0,1], for probabilities,
we have a natural starting point (0) and a natural measuring unit (1).

We will show, however, that, by using arguments which are slightly more com-
plex than in the general case, we can still justify the use of scalings and shifts in the
(copula-related) probabilistic context.

Main idea of the new justification: considering conditional probabilities. We will
show that the possibility of scaling naturally comes from the fact that most of the
probabilities that we analyze are, in effect, conditional probabilities, and the numer-
ical values of these probabilities change if we change the context.

Let us give two econometric examples that illustrate the possibility of scaling and
shift of probabilities. For clarity, these examples are made as simple as possible.

An example illustrating the possibility of scalings. Let us assume that we want to
invest in stable stocks, and we have selected several such stocks, i.e., stocks that only
experience a drastic change in price when the market as a whole starts changing. We
want to gauge stability of several such stocks.

One way to estimate such a stability is to divide the number of days c when this
stock drastically changed by the total number of days N during which we kept the
records. Alternatively, since the stock only changes when the market itself changes,
we can divide c by the total number of days n < N when the market drastically

changed. The two resulting probabilities p=
c
N

and p′=
c
n

differ by a multiplicative

constant p′ = λ · p, where λ def
=

n
N

.

Thus, in econometric applications, scaling makes sense for probabilities.

Possibility of scalings: general idea. In general, all the probabilities P(E) of dif-
ferent events E are, in effect, conditional, i.e., have the form P(E |U) for some
universal event U . The numerical value of each such probability depends on the se-
lection of the universal event U that contains all desired events E . If we replace the
original universal event U with a new universal event U ′, then the original condi-

tion probability P(E)
def
= P(E |U) =

P(E &U)

P(U)
=

P(E)
P(U)

is replaced by a new value

P′(E) def
= P(E |U ′) = P(E &U ′)

P(U ′)
=

P(E)
P(U ′)

which is related to the original value by

the scaling formula P′(E) = λ ·P(E), where λ def
=

P(U)

P(U ′)
.
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An example illustrating the possibility of shifts. Suppose that we have a stock which
always fluctuates when the market changes and also sometimes experiences drastic
changes of its own. How can we estimate the stability of this stock? One way is to
divide the number of days c when this stock drastically changed by the total number

of days N during which we kept the record of this stock, and get an estimate p =
c
N

.

However, since we know that this stock always changes when the market changes,
it makes sense to only consider days when the market itself was stable, i.e., to use

the estimate p′ =
c− n
N− n

. Since n� N, we have p′ ≈ c− n
N

= p+ s, where s
def
= − n

N
.

Thus, in econometric applications, shifts also make sense for probabilities.

Discussion

• Similarly to the scaling example, this shift example can also be easily in a general
form.

• In our analysis of copulas, we used the simplest (basic) symmetries: scalings and
shifts. By using these basic symmetries, we came up with a reasonable explana-
tion of the empirical success of specific copulas. In view of this result, we believe
that it will be beneficial to perform a deeper analysis of the application of basic
(and other) symmetries to copulas.

5 Archimedean Copulas with Whose Generators Are Either
Invariant or Compositions of Two Invariant Functions

Now that we have given arguments that symmetries – including basic symmetries
such as scalings and shifts – can be applied to econometric copulas, let us describe
the corresponding results. Let us start by describing all the Archimedean copulas in
which the generator is invariant.

Proposition 5. The only Archimedean copula with an invariant generator is the
copula C(u,v) = u · v corresponding to independence.

Discussion. This result shows that to describe dependence, it is not sufficient to use
invariant generators, we need to consider compositions of invariant generators.

Proposition 6. The only Archimedean copulas in which a generator is a composition
of two invariant functions are the following:

• Clayton copulas C(u,v) =
(
u−θ + v−θ − 1

)−1/θ
;

• the the Gumbel copulas C(u,v) = exp
((

(− ln(u))−θ +(− ln(v))−θ − 1
)−1/θ

)
;

• the copulas C(u,v) =
1
L

exp

(
1
�
· ln(u ·L) · ln(v ·L)

)
, with �= ln(L).

Comment. Please notice that we have an additional family of copulas.

Discussion. This approach leads to a natural answer to a question of which copulas
we should use when we the approximation provided by the existing Archimedean
copulas is no longer sufficient:
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• we should first try Archimedean copulas whose generator function is a composi-
tion of three invariant functions,

• if needed, we should move to Archimedean copulas whose generator function is
a composition of four invariant functions,

• etc.

Example. The generator ψ(x) = − 1
θ
· ln(1− (1− exp(−θ )) · exp(−x)) of Frank

copulas can be obtained as a composition of three invariant transformations: first,
we apply an invariant function y= f (x) = (1−exp(−θ ))·exp(−x), then an invariant

function z = g(y) = 1− y, and finally, an invariant function t = h(z) =− 1
θ
· ln(z).

6 Proofs

Proof of Proposition 1. It is easy to check that every function f (x) = A · xa is scale-
to-scale invariant. Vice versa, let f (x) be a scale-to-scale invariant function. By
definition, this means that for every λ , there exists a μ (depending on this λ ) for
which f (λ · x) = μ(λ ) · f (x).

This property is trivially true when f (x) = 0 for all x. It is therefore sufficient
to consider the cases when the function f (x) is not identically 0. Let us prove, by
contradiction, that in such cases, the function f (x) cannot attain zero values for
x �= 0. Indeed, if f (x0) = 0 for some x0 �= 0, then, for every other x, we will get

f (x) = μ
(

x
x0

)
· f (x0) = 0. So, f (x) �= 0 for x �= 0.

Here, the function f (x) is differentiable, the function f (λ · x) is also differ-

entiable, and thus, their ratio μ(λ ) =
f (λ · x)

f (x)
is also differentiable. Differenti-

ating both sides of the equation f (λ · x) = μ(λ ) · f (x) by λ , we conclude that
x · f ′(λ ·x) = μ ′(λ ) · f (x). In particular, for λ = 1, we get x · f ′(x) = μ0 · f (x), where

we denoted μ0
def
= μ ′(1). This equation can be rewritten as x · d f

dx
= μ0 · f . In this

equation, we can separate variables by moving all the terms containing d f and f to
the left side and all the terms containing dx and x to the right side. As a result, we get
d f
f

= μ0 · dx
x

. Integrating both sides, we get ln( f ) = μ0 · ln(x)+C for some constant

C. Thus, we conclude that f (x) = exp(ln( f (x))) = exp(μ0 · ln(x)+C)= exp(C) ·xμ0 ,
which is exactly the desired form for the transformation f (x), with A = exp(C) and
a = μ0. The proposition is proven.

Proof of Proposition 2. It is easy to check that every function f (x) = A · ln(x)+ b is
scale-to-shift invariant. Vice versa, let f (x) be a scale-to-shift invariant function. By
definition, this means that for every λ , there exists an s (depending on this λ ) for
which f (λ · x) = f (x)+ s(λ ).

Here, the function f (x) is differentiable, the function f (λ · x) is also differen-
tiable, and thus, their difference s(λ ) = f (λ ·x)− f (x) is also differentiable. Differ-
entiating both sides of the equation f (λ · x) = f (x)+ s(λ ) by λ , we conclude that
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x · f ′(λ ·x) = s′(λ ). In particular, for λ = 1, we get x · f ′(x) = s0, where we denoted

s0
def
= s′(1). This equation can be rewritten as x · d f

dx
= s0. In this equation, we can

separate variables by moving all the terms containing d f and f to the left side and

all the terms containing dx and x to the right side. As a result, we get d f = s0 · dx
x

.

Integrating both sides, we get f = s0 · ln(x)+C for some constant C. This is exactly
the desired form for the transformation f (x). The proposition is proven.

Proof of Proposition 3. It is easy to check that every function f (x) = A ·exp(k ·x) is
shift-to-scale invariant. Vice versa, let f (x) be a shift-to-scale invariant function. By
definition, this means that for every shift s, there exists a λ (depending on this s) for
which f (x+ s) = λ (s) · f (x).

This property is trivially true when f (x) = 0 for all x. It is therefore sufficient
to consider the cases when the function f (x) is not identically 0. Let us prove, by
contradiction, that in such cases, the function f (x) cannot attain zero values at any
x. Indeed, if f (x0) = 0 for some x0, then, for every other x, we will get f (x) =
λ (x− x0) · f (x0) = 0. So, f (x) �= 0 for all x.

Here, the function f (x) is differentiable, the function f (x+ s) is also differen-

tiable, and thus, their ratio λ (s) =
f (x+ s)

f (x)
is also differentiable. Differentiating

both sides of the equation f (x+ s) = λ (s) · f (x) by s, we conclude that f ′(x+ s) =
λ ′(s) · f (x). In particular, for s = 0, we get f ′(x) = λ0 · f (x), where we denoted

λ0
def
= λ ′(0). This equation can be rewritten as

d f
dx

= λ0 · f . In this equation, we can

separate variables by moving all the terms containing d f and f to the left side and

all the terms containing dx and x to the right side. As a result, we get
d f
f

= λ0 ·dx.

Integrating both sides, we get ln( f ) = λ0 ·x+C for some constant C. Thus, we con-
clude that f (x) = exp(ln( f (x))) = exp(λ0 · x+C) = exp(C) · exp(λ0 · x), which is
exactly the desired form for the transformation f (x), with A = exp(C) and k = λ0.
The proposition is proven.

Proof of Proposition 4. It is easy to check that every function f (x) = A · x+ b is
shift-to-shift invariant. Vice versa, let f (x) be a shift-to-shift invariant function. By
definition, this means that for every shift s, there exists a b (depending on this s) for
which f (x+ s) = f (x)+ b(s).

Here, the function f (x) is differentiable, the function f (x+ s) is also differen-
tiable, and thus, their difference b(s) = f (x+ s)− f (x) is also differentiable. Dif-
ferentiating both sides of the equation f (x + s) = f (x) + b(s) by s, we conclude
that f ′(x+ s) = b′(s). In particular, for a = 0, we get f ′(x) = b0, where we denoted

b0
def
= b′(0). Integrating this equation, we get f = b0 ·x+C for some constant C. This

is exactly the desired form for the transformation f (x). The proposition is proven.

Proof of Proposition 5. A generator ψ(x) of an Archimedean copula should map 0

into 1 and ∞ into 0: ψ(0) = 1 and ψ(∞) def
= lim

x→∞
ψ(x) = 0. One can easily check that

most invariant functions do not satisfy this property:
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• the function f (x) = A · xa does not satisfy the property f (0) = 1;
• the function f (x) = A · ln(x)+ b does not satisfy the property f (0) = 1, and
• the function f (x) = A · x+ b does not satisfy the property f (∞) = 0.

The only remaining invariant function is f (x) = A · exp(k · x). For this function,
from f (0) = 1, we conclude that A = 1, and from f (∞) = 0, that k < 0. One can
check that for this generator function ψ(x) = exp(−|k| · x), the inverse is equal to

ψ−1(u) = − 1
|k| · ln(u), and thus, the corresponding copula has the form C(u,v) =

ψ(ψ−1(u)+ψ−1(v)) = u · v. The proposition is proven.

Proof of Proposition 6. We have 4 types of invariant functions f (x) and 4 types
of invariant functions g(y), so we have 4× 4 = 16 possible compositions ψ(x) =
g( f (x)). Let us consider them one by one.

1◦. Let us first consider the case when f (x) = A · xa.

1.1◦. If g(y) is of the same type g(y) = B · yb, then the composition is also of the
same type, and we already know, from the proof of Proposition 5, that a function of
this type cannot be a generator.

1.2◦. If g(y) = B · ln(y)+ b, then the composition has the form

ψ(x) = g( f (x)) = B · ln(A · xa)+ b = (B ·a) · ln(x)+ (B · ln(A)+ b).

In this case, we cannot have ψ(0) = 1.

1.3◦. If g(y) = B · exp(k · y), then the composition takes the form ψ(x) = g( f (x)) =
B · exp(k ·A · xa). The condition ψ(0) = 1 leads to B = 1 and a > 0, the condition
ψ(∞) = 0 leads to k ·A< 0. One can easily check that in this case, we get the Gumbel
copula.

1.4◦. If g(y) = B · y+ b, then the composition takes the form ψ(x) = g( f (x)) =
B ·A · xa + b. The condition ψ(∞) = 0 leads to 0, so ψ(x) = (B ·A) · xa, and the
equality ψ(0) = 1 is not possible.

2◦. Let us first consider the case when f (x) = A · ln(x)+ b.

2.1◦. If g(y) = B · ya, then the composition takes the form

ψ(x) = g( f (x)) = B · (A · ln(x)+ b)a.

This function cannot satisfy the property ψ(0) = 1.

2.2◦. If g(y) = B · ln(y)+ a, then the composition takes the form ψ(x) = g( f (x)) =
B · ln(A · ln(x)+ b)+ a, then we also cannot have the property ψ(0) = 1.

2.3◦. If g(y) = B · exp(k · y), then the composition takes the form ψ(x) = g( f (x)) =
B · exp(k ·A · ln(x)+ k ·b) = (B · exp(k ·b)) · xk·A, so we cannot have ψ(0) = 1.

2.4◦. If g(y) = B · y+ a, then the composition takes the form ψ(x) = g( f (x)) =
B ·A · ln(x)+ (B ·A+ b), we also cannot have ψ(0) = 1.

3◦. Let us consider the case when f (x) = A · exp(k · x).
3.1◦. If g(y) = B · ya, then the composition has the form
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ψ(x) = g( f (x)) = (B ·Aa) · exp((k ·a) · x).

We already know, from the proof of Proposition 5, that such generator functions
lead to the independence copula.

3.2◦. If g(y) = B · ln(y)+ a, then the composition takes the form ψ(x) = g( f (x)) =
B · ln(A · exp(k · x))+ a = (B · k) · x+(B · ln(A)+ a), so we cannot have ψ(∞) = 0.

3.3◦. If g(y) = B · exp(a · y), then the composition takes the form

ψ(x) = B · exp(� · exp(k · x)),

for � = a ·A. The condition ψ(0) = 1 leads to B · exp(�) = 1, so B = exp(−�), and
ψ(x) = exp(� · (exp(k · x)− 1)).

Let us describe the copula corresponding to this generator. For that, let us first
find an explicit expression for the inverse function ψ−1(u). From the condition that

ψ(x) = u, we conclude that � ·(exp(k ·x)−1)= ln(u), hence exp(k ·x) = 1+
ln(u)
�

=

ln(u ·L)
�

, where we denoted L
def
= exp(�). Thus, k · x = ln

(
ln(u ·L)

�

)
, and

x =
1
k
· ln
(

ln(u ·L)
�

)
.

To find C(u,v), we compute x+y, where x =ψ−1(u) and y =ψ−1(v), then compute
z = x+ y and C(u,v) = ψ(z). Here,

z = x+ y =
1
k
·
[

ln

(
ln(u ·L)

�

)
+ ln

(
ln(v ·L)

�

)]
,

hence k · z = ln

(
ln(u ·L)

�

)
+ ln

(
ln(v ·L)

�

)
and exp(k · z) = ln(u ·L)

�
· ln(v ·L)

�
.

Thus, � · (exp(k · z)− 1) =
ln(u ·L) · ln(v ·L)

�
− �, so for

C(u,v) = exp(� · (exp(k · z)− 1)),

we get the desired expression.

3.4◦. If g(y) = B · y+ a, then the composition takes the form

ψ(x) = g( f (x)) = (B ·A) · exp(k · x)+ a.

The condition ψ(∞) = 0 leads to a = 0, so we get an exponential generator function
which, as we have mentioned, leads to the independence copula.

4◦. Finally, let us consider the case when f (x) = A · x+ b.

4.1◦. If g(y) = B · ya, then the composition takes the form

ψ(x) = g( f (x)) = B · (A · x+ b)a.
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This generator function leads to the Clayton copulas.

4.2◦. If g(y) = B · ln(y)+ a, then the composition takes the form ψ(x) = g( f (x)) =
B · ln(A · x+ b)+ a. For this function, the condition ψ(∞) = 0 cannot be satisfied.

4.3◦. If g(y) = B · exp(k · y), then the composition takes the form ψ(x) = g( f (x)) =
B · exp(k ·A · ln(x) + k · b) = (B · exp(k · b) · xk·A. This function cannot satisfy the
condition ψ(0) = 1.

4.4◦. If g(y) = B · y+ a, then the composition ψ(x) = g( f (x)) is also a linear func-
tion, so we cannot have ψ(0) = 1.

The proposition is proven.
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Size Distortion in the Analysis of Volatility
and Covolatility Effects

Christian Gourieroux and Joann Jasiak

Abstract. Let us assume that ÂT is a consistent, asymptotically normal estimator
of a matrix A (where T is the sample size), this paper shows that test statistics used
in empirical work to test 1) the noninvertibility of A, i.e. detA = 0, 2) the positivite
semi-definiteness A>> 0, have a different asymptotic distribution in the case where
A = 0 than in the case where A �= 0. Moreover, the paper shows that an estimator of
A constrained by symmetry or reduced rank has a different asymptotic distribution
when A = 0 than when A �= 0. The implication is that inference procedures that
use critical values equal to appropriate quantiles from the distribution when A �= 0
may be size distorted. The paper points out how the above statistical problems arise
in standard models in Finance in the analysis of risk effects.A Monte Carlo study
explores how the asymptotic results are reflected in finite sample.

Keywords: Multivariate Volatility, Risk Premium, BEKK Model, Volatility Trans-
mission, Identifiability, Boundary, Invertibility Test.

JEL number: C10, C32, G10, G12.

1 Introduction

In financial models, the risk on a set of assets is commonly represented by a
volatility-covolatility matrix, while the risk effect on expected returns and future
volatilities is often specified as an affine function of current and lagged realized
volatilities and covolatilities. Under some specific hypotheses, the regularity
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conditions may not hold in this particular framework, and, as a consequence, the
limiting distributions of some commonly used estimators and test statistics may dif-
fer from the standard ones.

There are two strands of literature that are directly concerned: the literature on
risk premium, and the literature on multivariate ARCH models.

Let us first consider a simple risk premium model with 2 assets, called asset 1
and asset 2, and the following volatility matrix

Σt =

(
σ11,t σ12,t

σ12,t σ22,t

)
.

The expected return on asset 1 can be written as:

Et(r1,t+1)= r f ,t+1+a1σ11,t +2b1σ12,t +c1σ22,t +a∗1σ11,t−1+2b∗1σ12,t−1+c∗1σ22,t−1,

where r f ,t is the riskfree return, and coefficients (a1,b1,c1), (a∗1,b
∗
1,c
∗
1) are the el-

ements of matrices A =

(
a1 b1

b1 c1

)
and A∗, respectively. This model allows us to

estimate the ex-ante equity risk premium and to test the statistical significance and
positivity of the risk premium. Technically, these two tests concern the significance
and sign of matrix A (resp. A∗). Regarding the sign, there exists evidence that sug-
gests that risk premium can be either positive or negative. In particular, Boudoukh
et al (1993), Ostdiek (1985), Arnott, Ryan (2001), Arnott, Bernstein (2002), Chen,
Guo, Zhang (2006), Walsh (2006) tested the positivity of the conditional risk pre-
mium using the method of instrumental variables and showed that risk premium can
be of either sign, depending on the environment. The rank of risk premium is also
unclear. The theory underlying the CAPM model suggests the existence of a rela-
tionship between the expected return and the variance of a single market portfolio
that captures the entire effect of variances and covariances of all assets. This would
imply that matrix A, in the above risk premium model, is not of full rank.

A similar ambiguity concerning the sign and rank of risk premium arises in
foreign exchange markets [see e.g. Domowitz, Hakkio (1985), Macklem (1991) ,
Hakkio, Sibert (1995)]. The literature suggests that the sign of the foreign exchange
real risk premium can vary depending on the ratio of market volatilities in both
countries. The significance of risk premium is of economic interest too, as it has an
important interpretation in the context of exchange rates. In particular, if the risk
premium is zero, the forward exchange rate becomes an unbiased predictor of the
future spot exchange rate.

In multivariate ARCH models, the expected future volatility is defined by linear
functions of volatility-covolatility (see, e.g. Engle, Granger, Kraft (1984), Boller-
slev, Engle, Wooldridge (1988), Bollerslev, Chou, Kroner (1992)). For example, the
so-called vech-representation is:

Vt(r1,t+1) = d + a1σ̃11,t + 2b1σ̃12,t + c1σ̃22,t + a∗1σ̃11,t−1 + 2b∗1σ̃12,t−1 + c∗1σ̃22,t−1,

where σ̃i j,t = ri,t r j,t , i, j = 1,2, and as before, the remaining coefficients are ele-
ments of matrices A and A∗.
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In this model, it is interesting to test the significance of lagged realized volatility,
and the existence of a factor representation of realized volatility, as in the BEKK
model (Baba, Engle, Kraft, Kroner (1990)). These tests directly concern the rank and
sign of matrix A (resp. A∗), as it was the case in the risk premium model discussed
in the previous paragraphs.

In this paper, we assume that matrix A is estimated from a sample of asset returns
of size T , and that estimator ÂT is a consistent, asymptotically normal estimator
of A. Our study is focused on the tests of various hypotheses concerning matrix A,
mainly for A of dimension 2 × 2, for clarity of exposition.

The hypotheses of interest discussed in this paper are:

1) the hypothesis of noninvertibility of matrix A;
2) the hypothesis that matrix A is positive semi-definite.

This last hypothesis is equivalent to the hypothesis of nonnegativity of the lin-
ear form Tr(AΣ) (see Appendix, Lemma 1). Indeed, the linear form in volatilities-
covolatilities that appears in the risk premium model and the vech-representation
above can be rewritten as:

aσ11 + 2b1σ12 + cσ22 = Tr

[(
a b
b c

)(
σ11 σ12

σ12 σ22

)]
= Tr(AΣ), say,

where Tr is the trace operator.
Moreover, we will also investigate

3) constrained estimation of A
when the constraint implies that the rank of A is less or equal to 1.

At a first sight, the above hypotheses tests and constrained estimation 1 seem
quite standard. Indeed, the invertibility of matrix A (hypothesis 1) is usually tested
from the singular value decomposition of the (asymptotically) Gaussian random
matrix ÂT [see Anderson (1989), Gourieroux, Monfort, Renault (1995), Bilodeau,
Brenner (1999)]. As for hypothesis 2), the tests of matrix positivity are based on
asymptotic tests of the following inequality restrictions ac− b2 ≥ 0, a ≥ 0 [see e.g.
Gourieroux, Monfort (1989), Wolak (1991)]. Finally, estimation of A under the hy-
pothesis of reduced rank is commonly performed by a quasi-maximum likelihood
method, as in the BEKK model [Engle, Kroner (1995), Jeantheau (1998), Comte,
Lieberman (2000)].

The purpose of this paper is to point out the identifiability problems, boundary
problems and degeneracies that may be encountered while performing the afore-
mentioned tests and estimation in the framework of risk premium and multivariate
ARCH models. In the presence of these effects, the asymptotic distributions of es-
timators and test statistics can be non-standard. This can render the outcomes of
standard inference misleading and the stylized facts questionable. The degeneracies

1 Similar problems arise in the so-called vech-diagonal multivariate ARCH models, such
as σi j,t = di j + ai jσ̃i j,t , i,j=1,2, i ≤ j. It is easy to check that the expected volatility-
covolatility matrix is positive semi-definite, if and only if, the matrix A = (ai j) is positive
semi-definite. This condition is sufficient only for matrices of larger dimension (Silber-
berg, Pafka (2001)).
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discussed in the paper concern some commonly used estimators and test statistics
for which the true asymptotic distributions are derived. In particular, the asymptotic
admissibility of the test statistics and their potential improvements are out of the
scope of the present paper.

The paper is organized as follows. Section 2 considers the Wald test of non-
invertibility of matrix A based on the estimated determinant det ÂT . It shows that in
the degenerate case A = 0 the Wald test statistic has a non-Gaussian distribution and
that this distribution depends on the asymptotic variance of random matrix ÂT . Sec-
tion 3 discusses the constrained estimation of A when it is not of full rank. We point
out that when A = 0, the distribution of the constrained estimator is non-standard.
Section 4 considers the test of positive semi-definiteness, that is, of the hypothe-
sis defined by inequality constraints a ≥ 0,c ≥ 0,ac− b2 ≥ 0. We show that when
A = 0, the standard asymptotic theory is no longer valid. The necessary adjustments
are given for an unconstrained A [respectively, for A of reduced rank] under the
maintained hypothesis. Finite sample properties of the standard test statistics in the
degenerate case are presented in Section 5. Section 6 concludes.

2 Invertibility Tests

Let us consider the test of invertibility of matrix A, based on the significance of its
determinant. The null hypothesis is:

H0 : (detA = 0). (1)

2.1 The Unconstrained Model

Let us consider a n× n matrix of parameters A, and its consistent, asymptotically
Gaussian estimator ÂT . vecA denotes a vector of length n2 obtained by stacking the
columns of matrix A. We assume that:

√
T [vec(ÂT )− vec(A)]

d→ N(0,Ω), (2)

where Ω is a (n2×n2) invertible matrix and
d→ denotes the convergence in distribu-

tion. ÂT conveys all relevant information about A contained in the data. From now
on, model (2) is referred to as the unconstrained (asymptotic) model.

2.2 Wald Test Statistic

A standard method for testing the null hypothesis H0 in (1) is based on the esti-
mated determinant detÂT and its asymptotic distribution obtained by applying the
δ -method.
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Since ∂ (detA)
∂ (vecA) = vec[co f (A)], where co f (A) is the (n ×n) matrix whose elements

are the cofactors2 of elements of A, we get:

√
T (detÂT − detA)

d→ N(0,vec[co f (A)]′Ω vec[co f (A)]). (3)

The Wald test statistic for testing the null hypothesis (1) is:

ξ̂T =

√
TdetÂT

[vec[co f (ÂT )]′Ω̂T vec[co f (ÂT )]]1/2
, (4)

where Ω̂T is a consistent estimator of Ω . If vec[co f (A)] �= 0, this Wald statistic
follows asymptotically a standard normal distribution and a critical region of the
type {|ξ̂T |> 1.96} defines a test at asymptotic level 5%.

2.3 The Degenerate Case

The standard asymptotic properties of the test are valid as long as vec[co f (A)] �= 0,
that is, if A �= 0. Otherwise, the asymptotic properties of the Wald test statistic are
significantly altered.
i) Asymptotic Properties of the Estimated Determinant

When A = 0, we have
√

T vec(ÂT )
d→ vec(A∞) ∼ N(0,Ω), say. Thus we have:

det(
√

TÂT )
d→ det(A∞), or equivalently

T n/2detÂT
d→ det(A∞). (5)

When n≥ 2, the asymptotic behavior differs from the standard behavior, since:

i) the speed of convergence is 1/(T n/2) instead of 1/
√

T , that is greater;
ii) the limiting distribution is not Gaussian, but instead, it is a determinant transfor-
mation of a multivariate Gaussian distribution.
ii) Asymptotic Properties of the Wald Test Statistic

Similarly, we can examine the test statistic ξ̂T when A=0. Since co f (
√

T ÂT ) =

T (n−1)/2co f (ÂT ), we see that ξ̂T
d→ ξ (A∞), where

ξ (A∞) =
det(A∞)

{vec[co f (A∞)]′Ω vec[co f (A∞)]}1/2
. (6)

iii) Comparison with the Literature
The degenerate case considered here does not belong to those discussed in Andrews
(2001), in which some parameters are not identifiable under the null. In our frame-
work, matrix A is always identifiable. This explains why the asymptotic distribution
of the Wald statistic differs from the distribution derived by Andrews (2001).

This degeneracy cannot be disregarded or circumvented, for example, by intro-
ducing a sequence of null hypotheses indexed by the number T of observations,

2 A cofactor is a determinant obtained by deleting the row and column of a given element of
a matrix preceded by a + or− sign depending whether the element is in a + or− position.
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such as H0,T : [detA = 0, ||A||> h(T )] , where ||A||2 denotes the largest eigenvalue
of AA′ and h(T ) is strictly positive and tends to zero at an appropriate rate, when
T tends to infinity 3. Indeed, the hypothesis H0 : {A = 0} does not belong in the
union of this sequence of hypothesis H0,T , and hypothesis H0 has often structural
interpretations whereas the sequence H0,T does not. For instance, the test of H0 al-
lows for determining the autoregressive order of a multivariate ARCH model 4. In
the application to risk premium, the condition A = 0 characterizes the hypothesis of
nonpredictability of asset returns that is of economic interest.

2.4 Critical Values

1) Asymptotic Size of the Test
The multiplicity of limiting distributions of the Wald test statistic under the null

hypothesis suggests that a detailed analysis of the type I error is needed, as the
condition of asymptotic similarity on the boundary condition is violated [see Hansen
(2003)]. For instance, suppose that the null hypothesis is rejected when the Wald
statistic ξ̂T is larger in absolute value than the critical value c, and let us denote A′
the set of noninvertible matrices A.

The size of the test for a finite sample of length T is equal to:

αT (c) = supA∈A′PA(ξ̂T > c),

and is reached for matrix A∗T in A′.
Then, it is possible to define
(*) the asymptotic null rejection probability as:

α∞(c) = supA∈A′ lim
T→∞

PA(ξ̂T > c);

(**) the asymptotic size of the test as:

α̃∞(c) = lim
T→∞

αT (c) = lim
T→∞

supA∈A′PA(ξ̂T > c).

In the sequel, we assume that limT→∞ and supA∈A′ can commute, which implies a
“uniform convergence” condition of the finite sample distribution of ÂT towards its
asymptotic Gaussian distribution.

Assumption A.1

The asymptotic size of the test is equal to the asymptotic null rejection probability.
In the applications, Assumption A.1. has to be verified case by case according to

the type of asymptotically Gaussian estimator ÂT which is used.

3 Such a methodology is followed in the test of switching regimes, for the parameter repre-
senting the unknown switching date [Andrews (1993)].

4 See Andrews (2001), Francq, Zakoian (2006) for tests concerning the orders of univariate
GARCH processes.
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Under Assumption A.1, the asymptotic size of the test is:

α∞(c) = supH0 lim
T→∞

PA[|ξ̂T |> c]

= sup[supA:detA=0,A �=0 lim
T→∞

PA(|ξ̂T |> c),supA=0 lim
T→∞

PA(|ξ̂T |> c)]

= sup[(P(|X |> c),P(|ξ (A∞)|> c)] (where X ∼ N(0,1)).

By inverting this relationship, we deduce the critical value for an asymptotic size
α∞ = α:

c(α) = Max[Φ−1(1−α/2),Q(α,Ω)],

where Φ is the cdf of the standard normal, and Q(α,Ω) is the quantile computed
from:

P[|ξ (A∞)|> Q(α,Ω)] = α, (7)

where vec(A∞) ∼ N(0,Ω). Function Q is too complicated to be calculated analyt-
ically, but the value Q(α,Ω) can be easily approximated by Monte-Carlo simula-
tions. Let us denote by Ω̂0T an estimator of Ω , which is consistent under the null
and by Q̂(α,Ω̂0T ) the associated value of Q derived by simulations. The critical
value will be chosen as ĉ(α) = Max[Φ−1(1−α/2), Q̂(α,Ω̂0T )].

ii) Comparison with Sequential Procedures

Under Assumption A.1, the procedure above provides the correct asymptotic size of
the test of the null hypothesis H0 : {detA = 0}. It is an alternative to the sequential
procedures described below, which are asymptotically size distorted.

i) A two-step procedure can be as follows. In the first step, we consider a Fisher
statistic F for testing the hypothesis H∗0 : {A = 0} with critical value fα0 , say, corre-
sponding to level α0. If F < fα0 , the null hypothesis H0 is accepted. Otherwise, in
the second step we perform a test based on the determinant at level α1, and accept
H0, if ξT <Φ−1(1−α1/2). The critical region of the sequential test is:

W = {F > fα0 ,ξT >Φ−1(1−α1/2)}.
For a given choice of α0,α1, the asymptotic size5 of this test is equal to

SupA:det(A)=0 lim
T→∞

P[W > fα0 ,ξT >Φ−1(1−α1/2)].

The asymptotic size can be bounded by a known function of α0,α1, but depends
on α0,α1 and Ω , in general. Thus, this sequential test can be asymptotically size
distorted.

ii) Another sequential procedure can be based on the analysis of the rank of matrix
A [ see e.g. Anderson (1989), Gill, Lewbel (1992), Cragg, Donald (1996), (1997),
Bilodeau, Bremer (1999), Robin, Smith (2000)]. Indeed, for a matrix of dimension
(n× n), we know that

5 Assumed equal to the asymptotic null rejection probability.
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H0 : {detA = 0} = {rank(A) = 0}∪{rank(A) = 1}∪ . . .{rank(A) = n− 1}
= {rank(A)< n}.

Thus, we can first test if rankA = 0; then, if this hypothesis is rejected, we test if
rankA = 1, etc. As above, the asymptotic size of this sequential test can be easily
bounded, but its exact value is difficult to derive. The interpretation in terms of rank
shows that a) a reason for the degenerate asymptotic behavior of statistic ξ̂T is that
the null hypothesis H0 is a union of elementary null hypotheses {rank(A) = p};
b) the only elementary hypothesis that causes the degeneracy is {rank(A) = 0},
whereas the other elementary hypotheses {rank(A) = p}, p = 1, ...,n−1 have been
jointly accommodated in the single statistic ξ̂T .

2.5 Symmetric Matrix A of Dimension (2,2)

Let us consider the estimator of a square (2,2) symmetric matrix

ÂT =

(
âT b̂T

b̂T ĉT

)
and its convergence limit A∞ =

(
a∞ b∞
b∞ c∞

)
. The aim of this sec-

tion is to derive the asymptotic critical values of the Wald test for any possible
matrix Ω . Matrix Ω contains 6 different elements. First, we show that the critical
values depend on Ω by only three parameters and the sign. This finding allow us to
simplify the display of critical values.

The test statistic ξ (A∞) is such that ξ (PA∞P′) = ξ (A∞), for any matrix P
of dimension (n× n) (see Proposition A.1, ii) in Appendix). We infer that the
quantiles Q(α,Ω) and Q(α,Ω(P)) are identical if Ω = V [vec(A∞)] and Ω(P) =
V [vec(PA∞P′)], for any P. By choosing an appropriate linear transformation P, we
show in Appendix, b) that the quantiles Q(α,Ω), ∀Ω , depend in fact, on a number
of parameters much smaller than the number of elements in Ω .

Proposition 1: Up to a transformation A∞ −→ PA∞P′, matrix Ω can be defined as:

Ω =Var

⎛
⎝a∞

b∞
c∞

⎞
⎠=

⎛
⎝ 1 0 ερ2

0 γ2 0
ερ2 0 1

⎞
⎠ ,

where parameters ρ and γ are nonnegative, ρ < 1, and ε is equal to +1 or -1, ac-
cording to the sign of correlation between a∞ and c∞.

Thus, the set of admissible quantiles {Q(α,Ω),Ω >> 0}, where Ω >> 0 means
that the matrix is symmetric, positive semi-definite, coincides with the set of quan-
tiles {Q[α,Ω(ε,ρ ,γ)],ε =±1,0 < ρ < 1,γ > 0}.

The Wald test statistic with Ω(ε,ρ ,γ) is:

ξ (A∞) =
a∞c∞− b2

∞√
(c∞,−2b∞,a∞)Ω(ε,ρ ,γ)(c∞,−2b∞,a∞)′

=
a∞c∞− b2

∞√
c2
∞+ a2

∞+ 2ερ2c∞a∞+ 4b2
∞γ2

. (8)
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Table 1 provides the upper quantiles at 10%, 5% and 1% of the variable |ξ (A∞)| for
different values of parameters ρ ,γ and ε =+/−1. The quantiles are obtained from
Monte-Carlo experiments with 5000 replications. They can be directly compared
to the critical values 1.64, 1.96, 2.57 of the standard normal distribution, which
correspond to the case when detA = 0 with A �= 0. We observe that all these values
are smaller than their Gaussian counterparts. This implies that, under Assumption
A.1. for a (2,2) symmetric matrix A the asymptotic size of the standard Wald test
does not need to be corrected for degeneracy A = 0, but likely, the magnitude of size
distortion depends on the dimension of matrix A. Moreover, we show that such a
size correction is needed for other inference on matrix A.

3 Constrained Estimation of A

3.1 The Example of BEKK Model

To ensure the positivity of volatility matrix Ht =Vt(rt+1), the multivariate GARCH
literature (Engle, Kroner (1995)) proposed the following constrained specification6:

Ht =C0 +
p

∑
j=1

MjHt− jM
′
j +

q

∑
k=1

Nkrt−kr′t−kN′k, say,

where Mj,Nk,C0 are (n,n) matrices and C0 >> 0. Accordingly, the volatility of asset
i is:

hiit = c0,ii +
p

∑
j=1

Mi jHt− jM
′
ji +

q

∑
k=1

Nikrt−kr′t−kN′ki,

where Mi j (resp. Nik) is the ith row of Mj (resp. Nk). A component of the first sum
on the right-hand side is of the form:

MiHM′i = Tr(MiHM′i) = Tr(M′i MiH) = Tr(AiH), say,

where Ai = M′iMi is of rank less or equal to 1.
Under a BEKK specification, the estimation of matrix Ai has to be performed un-

der constraints. A common approach consists in optimizing a quasi-likelihood func-
tion with respect to parameters M (and N) [see e.g. Engle, Kroner (1995), Comte,
Lieberman (2003), Iglesias, Phillips (2005)]. Let us consider matrix A of dimen-

sion two7, A =

(
m2

1 m1m2

m1m2 m2
2

)
. Due to a lack of identifiability of parameter M, the

following two difficulties arise:

6 For ease of exposition, we introduced only 1 positive component per lag.
7 The results can be easily extended to matrix A of dimension (n× n) and of rank less or

equal to 1.
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Table 1 Critical Values of the Wald Test Statistic for Positive and Negative ε

ρ γ ε Positive ε Negative
10 5 1 10 5 1

0.0 0.5 0.945 1.092 1.428 0.903 1.074 1.399
0.0 1.0 0.989 1.141 1.472 0.922 1.092 1.491
0.0 1.5 0.935 1.074 1.359 0.898 1.048 1.423
0.0 2.0 0.896 1.044 1.336 0.871 1.014 1.337
0.1 0.5 0.942 1.081 1.412 0.930 1.064 1.393
0.1 1.0 0.980 1.135 1.465 0.927 1.096 1.457
0.1 1.5 0.936 1.083 1.356 0.894 1.046 1.424
0.1 2.0 0.894 1.046 1.318 0.869 1.015 1.326
0.2 0.5 0.929 1.098 1.411 0.941 1.066 1.384
0.2 1.0 0.975 1.125 1.420 0.946 1.089 1.480
0.2 1.5 0.930 1.076 1.335 0.905 1.037 1.416
0.2 2.0 0.890 1.046 1.309 0.868 1.016 1.331
0.3 0.5 0.928 1.054 1.391 0.930 1.074 1.361
0.3 1.0 0.955 1.119 1.404 0.959 1.102 1.470
0.3 1.5 0.923 1.064 1.306 0.919 1.044 1.396
0.3 2.0 0.896 1.038 1.294 0.876 1.002 1.336
0.4 0.5 0.915 1.062 1.407 0.926 1.079 1.323
0.4 1.0 0.939 1.104 1.380 0.970 1.114 1.441
0.4 1.5 0.904 1.063 1.270 0.921 1.052 1.391
0.4 2.0 0.889 1.026 1.287 0.878 1.015 1.340
0.5 0.5 0.910 1.030 1.367 0.927 1.075 1.354
0.5 1.0 0.930 1.075 1.339 0.991 1.125 1.437
0.5 1.5 0.898 1.049 1.272 0.937 1.058 1.380
0.5 2.0 0.866 1.027 1.268 0.880 1.017 1.340
0.6 0.5 0.899 1.047 1.337 0.934 1.095 1.360
0.6 1.0 0.923 1.058 1.300 1.008 1.147 1.440
0.6 1.5 0.889 1.042 1.259 0.951 1.082 1.358
0.6 2.0 0.858 1.018 1.260 0.888 1.038 1.329
0.7 0.5 0.878 1.052 1.281 0.936 1.108 1.353
0.7 1.0 0.885 1.020 1.276 1.019 1.168 1.414
0.7 1.5 0.857 1.028 1.262 0.965 1.106 1.377
0.7 2.0 0.850 1.005 1.263 0.906 1.057 1.318
0.8 0.5 0.866 1.041 1.255 0.939 1.101 1.372
0.8 1.0 0.859 1.008 1.228 1.034 1.196 1.424
0.8 1.5 0.840 1.020 1.268 0.986 1.121 1.387
0.8 0.2 0.833 0.996 1.265 0.923 1.072 1.333
0.9 0.5 0.841 0.970 1.238 0.941 1.094 1.389
0.9 1.0 0.8433 0.992 1.249 1.049 1.189 1.515
0.9 1.5 0.837 0.995 1.268 0.999 1.155 1.415
0.9 2.0 0.833 0.995 1.265 0.938 1.072 1.327

i) First, there is a problem of global identifiability since the same matrix A is ob-
tained for M and −M. To solve this problem, it is common to use the following
change of parameters:
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A = m2
1

(
1 m2/m1

m2/m1 (m2/m1)
2

)
= α
(

1
β

)
(1,β ), say, (9)

where α = m2
1 ≥ 0,β = m2/m1 (whenever m1 �= 0, or equivalently α �= 0).

ii) Second, there is a problem of local identifiability at A = 0. The reason is that the
Jacobian

∂ vechA
∂ (m1,m2)′

=

⎛
⎝ 2m1 0

m2 m1

0 2m2

⎞
⎠

is of rank 2, except when A = 0.
The asymptotic theory established for multivariate BEKK models doesn’t hold

for the estimators of parameters α and β defined in (9), because it assumes the
identifiability of parameter M [see Assumption A.4 in Comte, Lieberman (2003)].
To overcome this difficulty Engle, Kroner (1995) (Proposition 2.1) introduce the
identifiability condition m1 > 0. This condition eliminates both the global and local
identifiability problems.

In the next section, we derive the true asymptotic distributions of the minimum
distance estimators of α and β based on a consistent, and asymptotically normal es-
timator of A. For the application to BEKK model, we assume that the unconstrained
quasi-maximum likelihood estimator of A is asymptotically normal. This, in turn,
requires some additional assumptions on the BEKK model, such as the presence of
at least one non-zero ARCH effect [Nki �= 0 for at least one index k] to avoid another
degeneracy pointed out in Andrews (2001).

3.2 The Constrained Estimator

Let us now assume that matrix A is symmetric and of reduced rank. Then we can

write A = α
(

1
β

)
(1,β ), where α and β are unconstrained 8.

The constrained estimator of A based on ÂT is the solution of the following
minimization:

(α̂T , β̂T ) = argminα ,β (âT −α, b̂T −αβ , ĉT −αβ 2)Ω̃−1
T

⎛
⎝ âT −α

b̂T −αβ
ĉT −αβ 2

⎞
⎠ . (10)

The objective function (10) is defined for all values of parameters α , β . However,
the stochastic coefficients involved in the objective function cannot be normalized
uniformly with respect to the true matrix A. Therefore, Assumption 3 in Andrews
(1999), p. 1349, is not satisfied and new asymptotic results need to be derived.
The objective function can be concentrated with respect to α . Then, the solution in
α for a given β is:

8 We do not assume a priori that A is positive semi-definite.
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α(β ) =< vechÂT ,

⎛
⎝ 1

β
β 2

⎞
⎠> / <

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠>,

where <,> denotes the inner product associated with Ω̃−1
T .

The concentrated objective function is:

ΨT (β ) =< vechÂT ,vechÂT >−
⎡
⎣(< vechÂT ,

⎛
⎝ 1

β
β 2

⎞
⎠>)

⎤
⎦

2

/ <

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠> . (11)

The optimization of the concentrated objective function yields a finite solution (see
Appendix).

Since the first-order condition is:

< vechÂT ,

⎛
⎝ 0

1
2β

⎞
⎠><

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠>−< vechÂT ,

⎛
⎝ 1

β
β 2

⎞
⎠><

⎛
⎝ 0

1
2β

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠>= 0,

(12)
the solution that minimizes (11) is a root of a polynomial of degree 5.

3.3 Asymptotic Distribution of the Constrained Estimator

When A is not equal to zero (i.e. if α �= 0), the standard asymptotic theory holds and
we have:

√
T

[(
α̂T

β̂T

)
−
(
α
β

)]
d→ N[0,(J(α,β )Ω̃−1J(α,β )′)−1],

where the Jacobian matrix is J(α,β ) =
(

1 β β 2

0 α 2αβ

)
.

When A = 0, the Jacobian matrix is of rank 1, and the standard asymptotic theory
is no longer valid. Let us now consider this case. It follows from (12) that β̂T is a
solution of

Maxβ

⎡
⎣< vechÂT ,

⎛
⎝ 1

β
β 2

⎞
⎠>

⎤
⎦

2

/ <

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠>

⇐⇒ Maxβ

⎡
⎣< vech(

√
TÂT ),

⎛
⎝ 1

β
β 2

⎞
⎠>

⎤
⎦

2

/ <

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠> .

As a consequence, β̂T tends to a limit β∞, which is a solution to the optimization:
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Maxβ

⎡
⎣< vech(A∞),

⎛
⎝ 1

β
β 2

⎞
⎠>

⎤
⎦

2

/ <

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠> . (13)

Similarly, we note that:

√
T α̂T =

√
Tα(β̂T )

= < vech(
√

T ÂT ),

⎛
⎝ 1
β̂T

β̂ 2
T

⎞
⎠> / <

⎛
⎝ 1
β̂T

β̂ 2
T

⎞
⎠ ,

⎛
⎝ 1
β̂T

β̂ 2
T

⎞
⎠>

tends to a limit

α∞ =< vech(A∞),

⎛
⎝ 1
β∞
β 2
∞

⎞
⎠> / <

⎛
⎝ 1
β∞
β 2
∞

⎞
⎠ ,

⎛
⎝ 1
β∞
β 2
∞

⎞
⎠> . (14)

Proposition 3 summarizes the above discussion.

Proposition 3

If A = 0, then (
√

T α̂T , β̂T )
d→ (α∞,β∞), where (α∞,β∞) is a complicated nonlinear

transformation of the Gaussian vector, derived from (13), (14).

Note that parameter β is not identifiable when A = 0. Nevertheless its estimator β̂T

admits a limiting distribution.
The asymptotic limiting distributions of test statistics for α and β are

non-standard too. For instance, the t-statistic for the test of significance of parameter
α is:

η̂α
T =
√

T α̂T /σ̂α ,T ,

where σ̂α ,T is the square root of the first diagonal element of the matrix

[J(α̂T , β̂T )Ω̃−1
T J(α̂T , β̂T )

′]−1.

When A �= 0, this statistic tends in distribution to a standard normal. When A = 0,
statistic η̂α

T tends to:

ηα
∞ =< vech(A∞),

⎛
⎝ 1
β∞
β 2
∞

⎞
⎠> /σα ,∞, (15)

where σα ,∞ is the square root of the first diagonal element of the random matrix
Σ∞ = [J(α∞,β∞)Ω̃−1J(α∞,β∞)′]−1.

Similarly, the t-statistic for the test of significance of parameter β ,

η̂β
T =
√

T β̂T/σ̂β ,T



104 C. Gourieroux and J. Jasiak

Table 2 Upper Quantiles of the Student Statistic for α and β

ρ γ ηα(10%) ηα (5%) ηα (1%) ηβ (10%) ηβ (5%) ηβ (1%)

0.000 0.500 1.523 1.880 2.535 0.997 1.175 1.587
0.000 1.000 1.621 1.963 2.614 1.258 1.500 2.069
0.000 1.500 1.656 1.979 2.625 1.318 1.610 2.221
0.000 2.000 1.657 1.973 2.611 1.331 1.630 2.276
0.100 0.500 1.535 1.866 2.533 1.005 1.183 1.604
0.100 1.000 1.625 1.965 2.593 1.270 1.527 2.064
0.100 1.500 1.650 1.971 2.607 1.327 1.608 2.235
0.100 2.000 1.658 1.966 2.609 1.333 1.635 2.273
0.200 0.500 1.529 1.857 2.574 1.021 1.202 1.639
0.200 1.000 1.631 1.965 2.634 1.300 1.561 2.080
0.200 1.500 1.645 1.982 2.635 1.374 1.666 2.247
0.200 2.000 1.651 1.974 2.621 1.380 1.691 2.315
0.300 0.500 1.538 1.855 2.562 1.054 1.237 1.668
0.300 1.000 1.640 1.959 2.614 1.335 1.622 2.171
0.300 1.500 1.669 1.998 2.631 1.432 1.748 2.360
0.300 2.000 1.664 1.976 2.612 1.455 1.772 2.398
0.400 0.500 1.540 1.870 2.567 1.094 1.284 1.740
0.400 1.000 1.667 1.987 2.683 1.416 1.737 2.319
0.400 1.500 1.691 2.017 2.673 1.539 1.877 2.477
0.400 2.000 1.691 2.010 2.668 1.566 1.939 2.599
0.500 0.500 1.555 1.866 2.548 1.159 1.359 1.843
0.500 1.000 1.670 1.994 2.648 1.537 1.869 2.522
0.500 1.500 1.710 2.025 2.697 1.681 2.047 2.732
0.500 2.000 1.710 2.020 2.673 1.722 2.135 2.882
0.600 0.500 1.551 1.851 2.505 1.248 1.469 1.998
0.600 1.000 1.697 2.006 2.669 1.727 2.085 2.869
0.600 1.500 1.743 2.043 2.721 1.920 2.300 3.131
0.600 2.000 1.724 2.017 2.687 1.982 2.426 3.290
0.700 0.500 1.565 1.901 2.503 1.392 1.641 2.254
0.700 1.000 1.714 2.032 2.691 1.974 2.374 3.297
0.700 1.500 1.741 2.065 2.728 2.252 2.701 3.682
0.700 2.000 1.723 2.054 2.688 2.350 2.855 3.793
0.800 0.500 1.573 1.885 2.516 1.639 1.947 2.670
0.800 1.000 1.726 2.037 2.660 2.444 2.935 4.053
0.800 1.500 1.737 2.074 2.694 2.827 3.359 4.622
0.800 2.000 1.730 2.054 2.700 2.956 3.600 4.834
0.900 0.500 1.607 1.904 2.556 2.281 2.697 3.666
0.900 1.000 1.729 2.049 2.668 3.524 4.200 5.655
0.900 1.500 1.731 2.028 2.694 4.044 4.843 6.567
0.900 2.000 1.739 2.008 2.645 4.291 5.152 6.917
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tends to
ηβ
∞ = β∞/σβ ,∞, (16)

where σβ ,∞ is the square root of the second diagonal element of Σ∞.
Table 2 presents the quantiles at 10%, 5%, 1% of the distribution of variables |ηα

∞ |
and |ηβ

∞ | , respectively, calculated for Gaussian matrices introduced in Section 2.
The quantiles have been obtained by simulations with 5000 replications.

The quantiles associated with the t-statistic for α are less sensitive to parameters
ρ and γ than the quantiles associated with the t-statistics for β . Both sets of quantiles
are much more sensitive to parameter γ than to other parameters. Moreover, the
quantiles differ significantly from the Gaussian quantiles 1.64, 1.96, 2.57, especially
for parameter β . In particular, the critical values exceed significantly the critical
values from the standard normal distribution.

Figure 1 shows the distribution of β∞ for ρ = 0,γ = 1 . For ρ = 0,γ = 1, β∞
is the solution of Maxβ (a∞+ b∞β + c∞β 2)2/(1+ β 2 + β 4), where a∞,b∞,c∞ are
independent standard normal. Since

β∞(−a∞,−b∞,−c∞) = β∞(a∞,b∞,c∞),
β∞(c∞,b∞,a∞) = 1/β∞(a∞,b∞,c∞),

the distribution of β∞ is symmetric and invariant with respect to transformation
β∞→ 1/β∞. This explains the shape of the distribution displayed in Figure 1, with
a mode at 0 and very heavy tails.
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Fig. 1 Distribution of β∞
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4 Positivity Test

Let us now focus on the test of positivity for a symmetric matrix A. This test depends
on the maintained hypothesis, that is, on whether we assume “A unconstrained”, or
“A of reduced rank”. Both cases are discussed below.

4.1 A Unconstrained

A common approach to testing matrix positivity is as follows. The null hypothesis
is written as H0 : {a≥ 0,c≥ 0,ac−b2≥ 0}, and the test of these inequality restric-
tions is performed along the lines developped 9 by [ Gourieroux, Holly, Monfort
(1980), (1982), Kodde, Palm (1986), Gourieroux, Monfort (1989), Wolak (1991)].
However, in the presence of a degeneracy due to A = 0, this standard technique can-
not be applied. The reason is that it requires the Jacobian of the constraints, that is,
(a,b,c)→ (a,ac− b2) to be of full rank on the boundaries of the null hypothesis.

For A = 0, however, the Jacobian

(
1 0 0
c −2b a

)
is of reduced rank.

Intuitively, the degeneracy can be explained as follows. The positivity condition
involves three restrictions and the null hypothesis should be written as H0 : {a ≥
0,c ≥ 0,ac− b2 ≥ 0}. If either a (resp. c) is strictly positive, than condition ac−
b2 ≥ 0 implies that c (resp. a) is nonnegative. Thus, one of the two first inequalities
seems to be redundant. In fact, this is not the case. For instance, the restrictions

a≥ 0,ac−b2≥ 0 are satisfied for A=

(
0 0
0 −1

)
, which is not positive semi-definite.

Let us now consider the asymptotic properties of the likelihood ratio test. The
log-likelihood function of the (asymptotic) unconstrained model is :

LT (A) = T [− log2π− 1
2

logdetΩ̃T − 1
2

vech(ÂT −A)′Ω̃−1
T vech(ÂT −A)], (17)

where vech denotes the vec-half operator. The likelihood ratio statistic for testing
the positivity hypothesis is:

ξP
T = 2(MaxALT (A)−MaxA:A>>0LT (A))

= MinA:A>>0Tvech(ÂT −A)′Ω̃−1
T vech(ÂT −A). (18)

The estimator of matrix A constrained by the positivity condition can be equal to
either of the three following:

i) ÂT , when ÂT >> 0;
a solution to (18), which can be either:
ii) a positive semi-definite matrix of rank 1;
iii) 0.
Under standard regularity conditions, the maximum value of type I error under the
null is attained for A = 0, and is computed from a weighted mixture of chi-square

9 see e.g. example iv) in Andrews, (1996), p. 705.
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distributions, with weights equal to the probabilities of the three outcomes i), ii), iii)
evaluated under A = 0.

For A = 0 however, some identification problems arise, as shown in the previous
sections. Let us consider the asymptotic behavior of the likelihood ratio statistic
when A = 0. Since the set of positive semi-definite matrices is a positive cone, we
get:

ξP
T = MinA:A>>0T vech(ÂT −A)′Ω̃−1

T vech(ÂT −A)

= MinA:A>>0vech(
√

T ÂT −A)′Ω̃−1
T vech(

√
TÂT −A)

d→ ξP
∞ = MinA:A>>0vech(A∞−A)′Ω̃−1vech(A∞−A). (19)

Thus, (19) defines an asymptotic optimization criterion under A = 0. There are 3
regimes distinguished by the admissible values of that objective function:

Value in regime i) : ξ 1,P
∞ = 0;

Value in regime ii) : ξ 2,P
∞ = vech(A∞−A0

∞)
′Ω̃−1vech(A∞−A0

∞),
where vech(A0

∞)
′ = (α∞,α∞β∞,α∞β 2

∞);
Value in regime iii) : ξ 3,P

∞ = vech(A∞)
′Ω̃−1vech(A∞).

The asymptotic probabilities of these regimes are denoted by π1
∞,π2

∞,π3
∞.

Let us now consider the type I error. We get

supA>>0 lim
T→∞

P[ξP
T > c] = sup[supA>>0,A �=0 lim

T→∞
P[ξP

T > c],PA=0[ξP
∞ > c]].

By standard asymptotic theory underlying the tests of inequality constraints [see e.g.
Gourieroux, Holly, Monfort (1980), Gourieroux, Monfort (1989), Wolak (1991)],
the first component supA>>0,A �=0 limT→∞ P[ξP

T > c] is bounded from above by the
survival function corresponding to a mixture of chi-square 10:

π1
∞χ

2(0)+π2
∞χ

2(2)+π3
∞χ

2(3).

This survival function has to be compared with the survival function of ξP
∞ under

A = 0. This survival function is of the type:

π1
∞χ

2(0)+π2
∞Q∞+π3

∞χ
2(3),

where Q∞ denotes the asymptotic distribution of ξ 2,P
∞ . As in the previous sections,

the limiting distribution Q∞ and the probabilities of the regimes can be easily ob-
tained from simulations.

4.2 A of Reduced Rank

Section 3 considered the estimation of A when the rank of matrix A is less or equal
to 1. In this parametric framework, the positivity hypothesis can be written as

10 Under regime ii), the standard theory implies a mixture of χ2(1) and χ2(2), which is
bounded from above by a χ2(2).
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Table 3 Lower Quantiles of the Student Statistic for α

ρ γ ηα(1%) ηα (5%) ηα(10%)

0.000 0.500 -2.250 -1.510 -1.103
0.000 1.000 -2.283 -1.606 -1.248
0.000 1.500 -2.298 -1.615 -1.263
0.000 2.000 -2.312 -1.636 -1.264
0.100 0.500 -2.263 -1.518 -1.109
0.100 1.000 -2.313 -1.608 -1.239
0.100 1.500 -2.312 -1.642 -1.264
0.100 2.000 -2.327 -1.639 -1.266
0.200 0.500 -2.248 -1.520 -1.122
0.200 1.000 -2.314 -1.622 -1.234
0.200 1.500 -2.334 -1.635 -1.265
0.200 2.000 -2.327 -1.627 -1.262
0.300 0.500 -2.230 -1.528 -1.146
0.300 1.000 -2.267 -1.630 -1.260
0.300 1.500 -2.296 -1.652 -1.279
0.300 2.000 -2.326 -1.654 -1.281
0.400 0.500 -2.225 -1.534 -1.159
0.400 1.000 -2.290 -1.648 -1.279
0.400 1.500 -2.331 -1.686 -1.290
0.400 2.000 -2.317 -1.679 -1.300
0.500 0.500 -2.231 -1.540 -1.157
0.500 1.000 -2.309 -1.663 -1.281
0.500 1.500 -2.394 -1.691 -1.301
0.500 2.000 -2.344 -1.698 -1.308
0.600 0.500 -2.203 -1.525 -1.170
0.600 1.000 -2.352 -1.681 -1.285
0.600 1.500 -2.416 -1.727 -1.317
0.600 2.000 -2.391 -1.722 -1.316
0.700 0.500 -2.218 -1.567 -1.215
0.700 1.000 -2.461 -1.711 -1.316
0.700 1.500 -2.506 -1.757 -1.335
0.700 2.000 -2.468 -1.744 -1.320
0.800 0.500 -2.241 -1.576 -1.238
0.800 1.000 -2.435 -1.737 -1.331
0.800 1.500 -2.510 -1.755 -1.360
0.800 2.000 -2.413 -1.747 -1.342
0.900 0.500 -2.265 -1.614 -1.242
0.900 1.000 -2.423 -1.736 -1.365
0.900 1.500 -2.427 -1.734 -1.331
0.900 2.000 -2.377 -1.752 -1.317
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H0 : (α ≥ 0). It is usually tested by a one-sided test based on the t-statistic η̂α
T .

As shown in Section 3, the asymptotic distribution of this test statistic is standard
normal, except when α = 0 ( that is A= 0). We provide in Table 3 the one-sided crit-
ical value, that is the lower quantile of ηα

∞ at 1%, 5%, 10%, derived by simulation
with 5000 replications.

5 Finite Sample Properties

The previous sections were focused on the asymptotic distributions of test statistics.
These distributions can be significantly different from the finite sample distributions.

To study the finite sample properties of standard test statistics, we generate three
samples of iid standard Gaussian returns (r1,t ,r2,t)

′, that are IIN(0, Id), where Id
denotes the identity matrix. The number of observations in each sample is T =
50,100,200. Next, we consider the following regressions:

Regression 1: r1,t = d+ ar2
1,t−1 + 2br1,t−1r2,t−1 + cr2

2,t−1 + vt ;

Regression 2: r2
1,t = d+ ar2

1,t−1 + 2br1,t−1r2,t−1 + cr2
2,t−1 + vt .

The first regression is a model with a bivariate risk premium, while the second one
is a volatility transmission model.
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For each regression, we determine the finite sample distributions of ξ̂T , η̂α
T , η̂

β
T ,

where the Wald statistics are derived from the OLS estimators of a,b,c with the
OLS estimated variance-covariance matrix Ω̃T . The distributions of ξ̂T for the two
regressions are displayed in Figures 2a-2b. We observe fat tails, and different limit-
ing distributions for each of the two regressions due to the differences between the
limiting OLS covariance matrices for the two regressions (see Section 2.5).

Let us now consider the finite sample distributions of the t-ratios for α and β . All
the distributions feature fat tails due to the stochastic variance in the denominator of
the t-ratio.

6 Concluding Remarks

The paper derives the limiting distributions of standard estimators and test statis-
tics for the analysis of return volatility and covolatility effects on the expected re-
turns and future volatilities. When the volatility effects vanish, one can encounter
difficulties that are due to non-identifiability of parameters, or to non-uniform con-
vergence of the objective function used in estimation. Similar problems arise when
the second-order causality is examined. Indeed, the null hypotheses of unidirec-
tional second-order causality involve inequality restrictions, which entail identifia-
bility problems of the type considered in this paper (see Gourieroux, Jasiak (2006),
Gourieroux (2007), for the definition of causality hypotheses in terms of parameter
restrictions).
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Appendix

Positivity Condition

Let us consider a linear form in symmetric positive semi-definite (2,2) matrices:

σ =

(
σ11 σ12

σ12 σ22

)
−→ h(Σ) = aσ11 + 2bσ12+ cσ22.

This linear form can be equivalently written as:

h(Σ) = Tr[AΣ ],

where A=

(
a b
b c

)
and Tr is the trace operator, which computes the sum of diagonal

elements of a square matrix.

Lemma 1: The linear form takes nonnegative values for any positive semi-definite
matrix Σ , if and only if, matrix A is positive semi-definite.

Proof

Since the set of symmetric positive semi-definite matrices is a positive convex cone,
it is equivalent to check the positivity condition on the boundary of the set. This
boundary corresponds to the non invertible Σ matrices. These matrices can be writ-
ten as

Σ =

(
α
β

)
(α β ) =

(
α2 αβ
αβ β 2

)
.

We get
h(Σ) = aα2 + 2bαβ + cβ 2 ≥ 0, ∀α,β .

Let us assume α �= 0. The condition becomes:

a+ 2b(β/α)+ c(β/α)2≥ 0, ∀α,β ,
which is equivalent to b2− ac≤ 0 (the discriminant of the polynomial of degree 2
is nonpositive), and a≥ 0.

By considering the other case α = 0, we see that c≥ 0.

The set of conditions: a≥ 0,c≥ 0,ac−b2≥ 0 is exactly the set of conditions for
positive semi-definiteness of matrix A. QED
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For dimension n larger than 2, it is known that the linear form Σ → Tr(AΣ) takes
nonnegative values for any positive semi-definite matrix Σ , when A is symmetric
positive semi-definite. However, this condition is no longer necessary.

From the proof of Lemma 1, the positivity semi-definiteness condition on A is
also required if the linear form has to be nonnegative for any degenerate positive
matrix Σ . This is important in ARCH modeling where the realized volatility matrix

is generally approximated by squared returns Σt =

(
r2

1t r1t r2t

r1t r2t r2
2t

)
, that has rank 1.

Thus, it is not necessary for us to assume that Σt is invertible and to average square
returns over a fixed window, for this reason (as suggested, for instance, in Tse, Tsui
(2002)).

Proof of Proposition 1

a) Some Invariance Properties
Proposition A.1 below illustrates invariance properties of det(A∞) and ξ (A∞) with
respect to linear transformations of matrix A∞.

Proposition A.1 Invariance Properties: For any (n × n) invertible matrices P,Q,

we have:

i) det(PA∞Q) = det(P)det(A∞)det(Q);
ii) ξ (PA∞P′) = ξ (A∞).

Proof: The proof is based on a succession of Lemmas

Lemma 2: If P and Q are (n,n) invertible matrices, we get:

co f (PAQ) = det(P)det(Q)Q−1co f (A)P−1.

Proof

From the identity Aco f (A) = det(A) Id, it follows that

(PAQ)Q−1co f (A)P−1det(P)det(Q) = det(A)det(P)det(Q) Id = det(PAQ) Id.

The result follows. QED

Lemma 3: There exists a (n,n) permutation matrix Δ such that vec(A′) = Δvec(A).
This matrix satisfies Δ = Δ ′ = Δ2.

Lemma 4: i) vec(PA) = diag(P)vec(A), where diag(P) denotes the bloc-diagonal
matrix, with diagonal block P.
ii) vec(AQ) = Δdiag(Q′)Δvec(A).
iii) vec(PAQ) = diag(P)Δdiag(Q′)Δvec(A).
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Proof

i) We have

PA = P(a1, ...,an) (where a j denotes the jth column ofA)

= (Pa1, ...,Pan).

Thus, vec(PA) =

⎛
⎜⎝

Pa1
...

Pan

⎞
⎟⎠= diag(P)vecA.

ii) We have

vec(AQ) = Δvec[(AQ)′] (by Lemma 3)

= Δvec(Q′A′)
= Δdiag(Q′)vec(A′) (from part i))

= Δdiag(Q′)ΔvecA (by Lemma 3).

iii) This follows directly from parts i) and ii).
QED

Lemma 5: For any (n,n) invertible matrix P, we have ξ (PA∞P) = ξ (A∞).

Proof:

Let us consider the transformation:

A∞ −→ A∗∞ = PA∞Q,

where P and Q are deterministic (n,n) invertible matrices. We have:

vec(A∗∞) = diag(P)Δdiag(Q′)Δvec(A∞) (by Lemma 4),

Ω ∗ = Var[vec(A∗∞)] = diag(P)Δdiag(Q′)ΔΩΔdiag(Q)Δdiag(P′),
det(A∗∞) = det(P)det(Q)det(A∞),

co f (A∗∞) = det(P)det(Q)Q−1co f (A∞)P
−1,

vec[co f (A∗∞)] = det(P)det(Q)diag(Q−1)Δdiag[(P′)−1]Δvec[co f (A∞)].

If detPdetQ > 0, we find that:

ξ (A∗∞) =
det(A∗∞)√

vec[co f (A∗∞)]′Ω ∗vec[co f (A∗∞)]
=

det(A∞)

B∞
,

where

B∞ = vec[co f (A∞)]
′Δdiag[(P)−1]Δdiag[(Q′)−1]diagPΔdiag(Q′)ΔΩΔdiag(Q)Δdiag(P′)

diag(Q−1)Δdiag[(P′)−1]Δvec[co f (A∞)].
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It follows directly that, if Q = P′, we have

detPdetQ = (detP)2 > 0,

B∞ = vec[co f (A∞)]
′Ωvec[co f (A∞)] and ξ (PA∞P) = ξ (A∞) . The result follows.

b) Proof of Proposition 1

We use the invariance properties of ξ (A∞) and det(A∞) to show Proposition 1.

i) Let us consider a matrix P =

(
λ 0
0 μ

)
. We get:

PA∞P′ =
(

a∞λ 2 b∞λμ
b∞λμ c∞μ2

)
.

Thus, it is always possible to standardize a∞ and c∞ to get V (a∞) =V (c∞) = 1.

ii) Let us now prove that we can find a linear transformation in order to have

Cov(a∞,b∞) =Cov(c∞,b∞) = 0.

For P =

(
1 α
β 1

)
, the matrix A∗ = PAP′ is such that

a∗∞ = a∞+ 2b∞α+ c∞α2,

b∗∞ = a∞β +(1+αβ )b∞+ c∞α,
c∗∞ = a∞β 2 + 2b∞β + c∞.

The condition Cov(b∗∞,c∗∞) = 0 implies

α =−Cov(a∞β + b∞,a∞β 2 + 2b∞β + c∞)
Cov(b∞β + c∞,a∞β 2 + 2b∞β + c∞)

.

By substituting this expression for α in the condition Cov(a∗∞,b∗∞) = 0, we get a
polynomial in β of degree 5 (almost surely). This polynomial has at least one real
root, which needs to be selected in order to obtain zero covariances.

The Solution in β Is Finite

When β tends to infinity, the quantity

μT (β ) =< vechÂT ,

⎛
⎝ 1

β
β 2

⎞
⎠>2 / <

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠>

tends to ĉ2
T . Moreover, the condition μT (β )> ĉ2

T is equivalent to:
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< vechÂT ,

⎛
⎝ 1

β
β 2

⎞
⎠>2 −ĉ2

T <

⎛
⎝ 1

β
β 2

⎞
⎠ ,

⎛
⎝ 1

β
β 2

⎞
⎠>> 0.

It is satisfied for a finite beta value, since the left-hand side of the inequality is a
polynomial of degree 3.
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Maximum Entropy Test for Autoregressive
Models

Sangyeol Lee and Siyun Park

Abstract. In this paper, we apply the maximum entropy test developed for a good-
ness of fit in iid samples by [11] to autoregressive time series models including
non-stationary unstable models. Its asymptotic distribution is derived under the null
hypothesis. A bootstrap version of the test is also discussed and its performance is
evaluated through Monte Carlo simulations. A real data analysis is conducted for
illustration.

Keywords: Maximum entropy measure, goodness of fit test, time series models,
unstable autoregressive models.

1 Introduction

The maximum entropy principle (cf. [7]) is well known as a criterion for selecting
a priori probabilities. Maximum entropy modeling has been successfully applied to
diverse research fields such as computer vision, spatial physics, natural language
processing, and many other fields. For a probability density function f (x), [5] pro-
vided the Boltzmann-Shannon entropy is defined as

H( f ) =−
∫ ∞

−∞
f (x) log( f (x))dx. (1)

[6] proposed the function −∑ pi log(pi/(xi− xi−1)) as a discrete analogue of (1.1),
where pi = P[xi−1 < X ≤ xi] =

∫ xi
xi−1

f (x)dx, i = 1, . . . ,n−1 and a = x0 < .. . < xn =
b. Based on this, [11] constructed the maximum entropy test described in Section 2.
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Goodness of fit (gof) tests measure the degree of agreement between the distribu-
tion of an observed random sample and a theoretical statistical distribution. Over the
years, a number of gof methods including the chi-squared test and various empirical
distribution function (edf) tests (cf. [3]) have been developed. In time series analysis,
the gof test problem has been a crucial issue for modeling time series. In particular,
the normality test attracted much attention from many researchers, since the nor-
mality of time series ensures several advantageous properties that non-normal time
series do not possess. On the other hand, a prior information of non-normality is
also beneficial in practice since, for instance, a heavy-tailed distribution modeling is
required in the analysis of financial time series in practice. As relevant references,
we refer to [12] who considered the empirical process gof test in autoregressive
models, [8] who considered the Bickel-Rosenblatt test in stationary time series, and
[10] who considered the Jarque-Bera test (cf. [1]) in GARCH models. Recently, [11]
developed a maximum entropy test in iid settings and demonstrated its usefulness.
Since the test outperforms several existing gof tests, in this study, we consider ap-
plying the maximum entropy test to autoregressive time series models (cf. [2] and
[12]).

In Section 2, we introduce the test statistic and summarize its asymptotic distri-
bution and properties in iid settings. In Section 3, we apply this test to autoregressive
models. In Section 4, we perform a simulation study in order to explore the capa-
bilities of the proposed test statistic. Particularly, a bootstrap method is employed to
cope with small samples. In Section 5, we conduct a real data analysis for illustra-
tion. Concluding remarks are provided in Section 6.

2 Maximum Entropy Test

Let Yi, i= 1, . . . ,n be a random sample from a distribution with unknown distribution
function F and consider the following test of fit:

H0 : F = F0 vs. F �= F0. (1)

[11] considered the following generalization of [6] entropy:

Sw(F) =−
m

∑
i=1

wi (F(si)−F(si−1)) log

(
F(si)−F(si−1)

si− si−1

)
, (2)

where the w′s are appropriate weight functions with 0 ≤ wi ≤ 1 and ∑m
i=1 wi = 1,

m is the number of disjoint intervals for partitioning the data range, and −∞ <
a ≤ s1 ≤ . . . ≤ sm ≤ b < ∞ are preassigned partition points. For a properly se-
lected constant c, the null hypothesis is rejected if supw |Sw(Fn)−Sw(F0)| ≥ c, where
Fn(x) = n−1∑n

i=1 I(Yi ≤ x).
Observe that if F0 is the uniform distribution in [0,1], then Sw(F0) = 0. This fact

enables us to concentrate on the uniform distribution on [0,1] without loss of gen-
erality, so that the hypothesis problem is reduced to a uniform test. Specifically, the
probability integral transform can be applied to construct the values F0(Yi) denoted
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by Ui, and a test is then made of whether a uniform distribution is appropriate for
the Ui’s. To incorporate with various possible alternatives though, we consider the
test with weights (cf. (2.2) and Theorem 2.1 below). Indeed, the role of weights
are vital especially before the implementation of the uniform transformation. In our
case, however, the data is transformed into uniform r.v.s and si = i/m can be used to
make a uniform spacing of the unit interval. Further, the supremum over all weights
is taken to cope with any possibilities characterized by specific alternatives. This
approach eases the difficulty of choosing optimal weights irrespective of their exis-
tence. The following is due to [11].

Theorem 2.1. Let Y1, . . . ,Yn be a random sample from a continuous distribution with
cumulative distribution function F. Under H0 given in (2.1), as n→ ∞, we have

√
n sup

w∈W
|Sw(Fn)| d−→ sup

w∈W

∣∣∣∣∣
m

∑
i=1

wi (B(si)−B(si−1))

∣∣∣∣∣ , (3)

where Fn is the sample distribution based on Ui = F0(Yi), B(s) is a Brownian bridge
on [0,1] (i.e., a Gaussian process with mean zero and the covariance structure such
that Cov(B(s),B(t)) = s∧t−st for all s, t ∈ [0,1]),W denotes the space of bounded
weights wi : [0,1]→ [0,1] with ∑m

i=1 wi = 1, and 0 = s0 ≤ s1 ≤ . . . ≤ sm = 1. Here,

the symbol
d→ indicates the convergence in distribution.

It is common to test the composite null hypothesis that the unknown distribution
belongs to a parametric family {Fθθθ}θθθ∈Θ , where Θ is an open subset in Rk. In this
case, a consistent estimator θ̂θθ to test H0 : F = Fθθθ vs. H1 : not H0 by using Fθ̂θθ (Yi) =

Ûi. As discussed in [4], the limiting distribution is affected by the estimation of
θθθ . The effect, though, may diminish when m is large and maxi(si− si−1) is small.
In the next section, we will demonstrate that this phenomenon can be also seen in
autoregressive models.

3 Autoregressive Models

In this section, we consider the maximum entropy test for time series models. Let
us consider the autoregressive model:

Xt −β1Xt−1−·· ·−βqXt−q = εt , (1)

where εt are iid random variables with Eε1 = 0, Eε2
1 = σ2 and Eε4

1 <∞. We assume
that the corresponding characteristic polynomial φ has a decomposition

φ(z) = 1−β1z−·· ·−βqzq

= (1− z)a(1+ z)b
l

∏
k=1

(1− 2cosθkz+ z2)dkψ(z),
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where a,b, l,dk are nonnegative integers, θk belongs to (0,π) and ψ(z) is the poly-
nomial of order r = q− (a+ b+ 2d1 + . . .+ 2dl) that has no zeros on the unit disk
in the complex plane. If a,b, l,dk are all zeros, {Xt} in (3.1) is a stationary process.

Let Xt = (Xt , . . . ,Xt−q+1)
′, where Xt = 0 for all t ≤ 0. Let

β̂ββ n =

(
n

∑
t=1

Xt−1X′t−1

)−1 n

∑
t=1

Xt−1Xt , n > q,

be the least squares estimate (LSE) of βββ = (β1, . . . ,βq)
′ based on X1, . . . ,Xn. We

denote by βββ 0 the true parameter of βββ . Then the residuals are ε̂t = Xt− β̂ββ ′nXt−1, t =
1, . . . ,n. It is well known that the LSE has a limiting distribution of a functional
form of standard Brownian motions (cf. [2]). The residual empirical process has
been considered to test H

′
0 : εt ∼ F0(·/σ), σ > 0 vs. H

′
1 : not H

′
0 (cf. [12] and [9]),

where F0 is strictly increasing and twice differentiable and satisfies
∫

xdF0(x) = 0.
According to [12], under some regularity conditions, the residual empirical

process

V̂n(s) =
√

n(F̂n(s)− s)

with

F̂n(s) =
1
n

n

∑
t=1

I(F0(ε̂t/σ̂n)≤ s)

can be expressed as

V̂n(s) = Vn(s)− (β̂ββ n−βββ 0)
′ 1√

n

n

∑
t=1

Xt−1 f0(F
−1
0 (s))

+

√
n(σ̂2

n −σ2
0 )

2σ2
0

f0(F
−1
0 (s))F−1

0 (s)+Δn(s), (2)

where σ0 and βββ 0 denote the true values under H0, Vn(s) =
√

n(Fn(s)− s), Fn(s) =
1
n ∑

n
t=1 I(F0(εt/σ0)≤ s), f0 = F

′
0, and sups |Δn(s)|= oP(1). Further, it is well known

that (β̂ββ n−βββ 0)
′ 1√

n ∑
n
t=1 Xt−1 = OP(1). Here, we assume that

lim
|x|→∞

|x f0(x)|= 0 and sup
x
| f ′0(x)|< ∞. (3)

Then similarly to (2.3), we have the following result.

Theorem 3.1. Under H
′
0 and (3.3), if max1≤i≤m |si− si−1| → 0 as m→ ∞, we have

that for large m, as n→ ∞,

T̂n :=
√

n sup
w∈W
|Sw

max(F̂n)| d≈ sup
w∈W

∣∣∣∣∣
m

∑
i=1

wi (B(si)−B(si−1))

∣∣∣∣∣ , (4)
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where the symbol An
d≈ A as n→ ∞ indicates that the limiting distribution of An is

approximately the same as the distribution of A as n tends to ∞.

Proof. Express

Sw
max(F̂n) =−

m

∑
i=1

wi
(
F̂n (si)− F̂n (si−1)

) · log

(
F̂n(si)− F̂n(si−1)

si− si−1
− 1+ 1

)
.

Recall that F̂n(s)→ s in probability under the null. Then, by using the fact that
| log(1+ x)− x| ≤ x2 for |x|< 1/2, due to (3.2), we have

Sw
max(F̂n) = −

m

∑
i=1

wi

(
F̂n(si)− F̂n(si−1)

si− si−1

)

·[(F̂n(si)− si
)− (F̂n(si−1)− si−1

)]
+ oP(1/

√
n)

=
−1√

n

m

∑
i=1

wi

(
F̂n(si)− F̂n(si−1)

si− si−1

)(
V̂n(si)− V̂n(si−1)

)
+ oP(1/

√
n),

so that since Vn
w→B, for large m, as n→ ∞,

sup
w∈W

∣∣∣√nSw
max(F̂n)−

m

∑
i=1

wi(β̂ββ n−βββ 0)
′ 1√

n

n

∑
t=1

Xt−1

{
f0(F

−1
0 (si))− f0(F

−1
0 (si−1))

}

+
m

∑
i=1

wi

√
n(σ̂2

n −σ2
0 )

2σ2
0

{
f0(F

−1
0 (si))F

−1
0 (si)− f0(F

−1
0 (si−1))F

−1
0 (si−1)

}∣∣∣
d≈ sup

w∈W

∣∣∣ m

∑
i=1

wi(Vn(si)−Vn(si−1))
∣∣∣ d≈ sup

w∈W

∣∣∣ m

∑
i=1

wi(B(si)−B(si−1))
∣∣∣.

Hence, T̂n
d≈ supw∈W

∣∣∣∑m
i=1 wi (B(si)−B(si−1))

∣∣∣ by virtue of (3.2). This completes

the proof. �

Remark 3.1. In order to implement our test in practice, we consider w(l)
i , l = 1, . . . ,L,

independent and identically distributed random variables from U [0,1], which are
also independent from Ui ∼U [0,1], where L is a fixed positive integer. Then, if we
put

wli =
w(l)

i

w(l)
1 + · · ·+w(l)

m

,

we have that as L→ ∞,

max
1≤l≤L

|
m

∑
i=1

wli (B(si)−B(si−1)) | d→ sup
w∈W

∣∣∣∣∣
m

∑
i=1

wi (B(si)−B(si−1))

∣∣∣∣∣ .
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Subsequently, instead of the test of the form in (3.4), by taking si = i/m, i = 1, . . . ,m
for convenience, we can use as the maximum entropy test the quantity

T̂n =
√

n max
1≤l≤L

∣∣∣ m

∑
i=1

wli(F̂n(i/m)− F̂n((i− 1)/m)) (5)

× logm(F̂n(i/m)− F̂n((i− 1)/m))
∣∣∣

d≈ sup
w∈W

∣∣∣ m

∑
i=1

wi(B(i/m)−B((i− 1)/m))
∣∣∣.

For more details, see [11].

Remark 3.2. Conventionally, m is chosen to be much less than n so that m/n is
close to 0. Either a too small or a too large m will give unsatisfactory results. Thus,
for given n, the choice of m can be an important issue in practice. Nevertheless, in
a theoretical aspect, there is no such a rule to choose an optimal m. Furthermore,
Theorem 3.1 only provides an asymptotic result and cannot be directly applied to
small samples. Therefore, in this study, we recommend to use a bootstrap method
as in [13]. The detailed procedure is as follows:

(1) Based on the data X1, . . . ,Xn, obtain the LSE β̂ββ n and σ̂2
n .

(2) Generate ε∗1 , . . . ,ε∗n that follow F0(·/σ̂n) and construct X∗1 , . . .X
∗
n obtained through

Eq. (3.1) with βββ replaced by its LSE by letting X∗i = 0 for all i≤ 0. Then, calculate
T̂n with a preassigned m in (3.5) based on these r.v.s.
(3) Repeat the above procedure B times and calculate the 100(1−α)% percentile
of the obtained B number of T̂n values.
(4) Reject H0 if the T̂n value based on the original observations is larger than the
obtained 100(1−α)% percentile in (3).

The above bootstrap method is easy to implement and gives satisfactory results as
seen in the next section.

4 Simulation Results

In this section, we evaluate the performance of the maximum entropy test in Section
3 through a simulation study. In this simulation study, we consider the AR(1) model
where εt are assumed to be iid N(0,1) for the null hypothesis H0. For alternative H1,
we consider that εt are assumed to follow a normal mixture model:

εt ∼ p N(0,1)+ (1− p) N(0,σ2
0 ), p = 0.9,σ2

0 = 10,25.

We examine the empirical sizes and powers of the test with sample sizes n and
m as (n,m) = (100,3),(300,5), and (500,7) at the nominal levels 0.01, 0.05, and
0.1. The empirical sizes and powers are calculated as the number of rejections of
the null hypothesis H0 out of 1000 repetitions. In performing a test, we consider the
bootstrap test discussed in Remark 3.2 with B=500 and explore the sizes and powers
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for the AR(1) coefficient β1= 0.3, 0.5, 0.7, and 1.0 in (3.1). Table 1 shows that the
empirical sizes are close to the nominal levels and Table 2 shows that the bootstrap
test produces reasonably good powers. Overall, our result strongly suggests that the
maximum entropy test performs appropriately.

5 Real Data Analysis

In this section, we apply our test to the real data set in [14], Chapter 2, Example
2.2. The data is a daily log series of the S&P 500 index from January 1990 to De-
cember 2003: the total number of observations is 3532. Figure 1 suggests that the
series exhibits a non-stationary phenomenon and has high sample serial correlations.
Based on the results in Tsay (2005) and using the AIC method, the AR(14) model
is selected as an underlying model. To test for a unit root in the AR(14) model, the
augmented Dickey-Fuller (ADF) test is conducted and the ADF test value −0.9648
is obtained with p-value 0.9444, which supports the existence of a unit root in the
AR(14) model. Table 3 summarizes the LSE of the autoregressive coefficients βi,
i = 1, . . . ,14. To test H0: εt ∼iid N(0,σ2) vs. H1 : not H0, the bootstrap test in
Remark 3.2 with B=500 is implemented. The maximum entropy test statistic with
m=10 turns out to have value 1.162, so the null hypothesis is rejected at the nominal
levels 0.01 0.05 and 0.1. In fact, one can check that only βi, i= 1,2,4,5,8,12,14, are
nontrivial and conduct the same normality test for the restricted AR(14) model only
with these coefficients. In this case, though, the normality assumption is rejected as
before. Further, it can be seen that the choice of different values of m = 7,9,12,15
does not alter this conclusion. Our findings confirm that the error terms do not follow
a normal distribution.

6 Concluding Remarks

In this study, we extended the maximum entropy test developed for iid samples to
unstable autoregressive models. Its limiting null distribution is derived under reg-
ularity conditions. To cope with the small samples and the difficulty regarding the
choice of the number of cells, say m, in the test (the stability of the test may depend
upon m), we suggested to use a bootstrap method and showed through a simulation
study that the bootstrap test has no size distortions and produce good powers. A real
data analysis is also conducted for the S&P 500 index data set. It is revealed that the
error terms in the fitted AR model are not normally distributed. Overall, our findings
demonstrate the validity of our test.

Acknowledgements. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Ed-
ucation, Science and Technology (2011-0010936) grant number: 2011-0010936. We would
like to thank Jiyun Lee for her help with the real data analysis. We also thank the referee for
his/her careful reading and helpful suggestion.



126 S. Lee and S. Park

Appendix

Table 1 Empirical sizes based on the bootstrap method with B = 500

m = 3,n = 100 m = 5,n = 300 m = 7,n = 500
β 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.3 0.009 0.049 0.111 0.007 0.056 0.106 0.010 0.053 0.110
0.5 0.009 0.046 0.100 0.016 0.043 0.085 0.013 0.057 0.117
0.7 0.016 0.043 0.085 0.013 0.051 0.112 0.013 0.051 0.112
1.0 0.011 0.051 0.096 0.015 0.048 0.096 0.007 0.04 0.098

Table 2 Empirical powers based on bootstrap method with B = 500

m = 3,n = 100 m = 5,n = 300 m = 7,n = 500
β σ2

0 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.3 10 0.251 0.386 0.466 0.567 0.771 0.858 0.824 0.942 0.973
0.5 10 0.245 0.368 0.461 0.569 0.767 0.862 0.837 0.928 0.954
0.7 10 0.257 0.394 0.487 0.592 0.747 0.838 0.820 0.933 0.964
1.0 10 0.296 0.410 0.488 0.624 0.787 0.866 0.853 0.954 0.980
0.3 25 0.740 0.823 0.857 0.992 0.997 1.000 1.000 1.000 1.000
0.5 25 0.769 0.828 0.864 0.990 0.998 0.998 0.999 1.000 1.000
0.7 25 0.770 0.852 0.885 0.992 0.998 0.999 1.000 1.000 1.000
1.0 25 0.810 0.859 0.888 0.995 1.000 1.000 1.000 1.000 1.000

Table 3 The least squares estimates of the AR(14) model

β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7

0.9964 -0.0211 -0.0125 0.0421 -0.0422 0.0169 -0.0244

β̂8 β̂8 β̂10 β̂11 β̂12 β̂13 β̂14

0.0456 0.0085 0.0052 -0.0287 0.0655 -0.0196 -0.0317
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Fig. 1 Plot of the logarithm of daily S&P 500
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Choice of Copulas in Explaining Stock Market
Contagion

Kian-Guan Lim

Abstract. We provide in this paper an assessment of how well the Archimedean
class of copulas can explain equity market contagion across regions. In particular
we examine the Clayton, the Gumbel, and the Frank copulas. Three representative
large equity markets across the globe in U.S., in U.K., and in Japan are studied. The
S&P 500, FTSE 100, and the Nikkei 225 stock market indices of the three countries
are used to compute proxy large portfolio returns. The joint daily return vectors of
these three equity markets are tracked over the period from the beginning of January
1990 till end of April 2012. The Kullback-Leibler distances (divergences) or rela-
tive entropy of the copulas with respect to the empirical distribution are compared
with a benchmark t-copula relative entropy. We then narrow the focus on the condi-
tional joint tail losses of the multivariate return distribution using the Pareto Type II
distribution to model the tails. The maximum likelihood approach is used for esti-
mating the parameters of the marginal conditional tail distributions and the copulas.
The observed joint returns in the loss region of at least one standard deviation away
from the mean are then matched in frequencies across 27 three by three cells with
the theoretical probabilities based on the estimated parameters under the compet-
ing copulas. A goodness-of-fit test together with the relative entropy results show
that the Clayton copula is statistically the most appropriate copula in explaining
contagion during this sampling period.

Keywords: Archimedean copulas, stock market contagion, conditional tail losses,
Kullback-Leibler distance.

1 Introduction

The global financial crisis that started in 2008 with the sub-prime mortgage market
collapse in U.S. led to immense loss of confidence in the world banking system.

Kian-Guan Lim
Lee Kong Chian Business School,
Singapore Management University, 50 Stamford Road, Singapore 178899
e-mail: kgl@smu.edu.sg

V.-N. Huynh et al. (Eds.): Uncertainty Analysis in Econometrics with Appl., AISC 200, pp. 129–140.
DOI: 10.1007/978-3-642-35443-4�9 c© Springer-Verlag Berlin Heidelberg 2013

kgl@smu.edu.sg


130 K.-G. Lim

This problem continued in the form of the sovereign debt crisis in the Eurozone
since 2010. The continuing weakness in world consumer demand, the high unem-
ployment problems in Europe and the potentially slower growth and high inflation
in China and Asia have led to high volatility and extreme movements in equity and
other asset prices in recent years. There are two significant observations in the above
development. First, country stock markets have since evidenced more frequent sud-
den sharp losses on a daily basis. This has heightened the attention of investment
funds to risk management and the careful monitoring of portfolio positions to avoid
being stuck in heavy losses. Second, such drops appear to be global in a contagion
effect across countries around the globe within a matter of several trading hours or
within the next trading day. Since the U.S. market is the largest capital market in the
world and has been at the epicenter of the global financial earth-quake of 2008, it
is also noticed that the contagion typically, though not always, starts with the U.S.
market movement as the lead.

Choice of Copulas

We provide in this paper a study of the effectiveness of employing copulas to model
contagion, and in particular focus on the choice of which copulas to use in the mod-
eling. The contribution is to provide market analysts and researchers the approach
to a better choice of copulas in such modeling, and also to provide empirical evi-
dence of the choice. We consider the Archimedean class of copulas, specifically the
Clayton, the Gumbel, and the Frank copulas, in explaining equity market contagion
across regions. These Archimedean copulas are considered because they represent a
parsimonious class of copulas employing only one copula parameter in the function
of marginal distributions. In terms of obtaining maximum likelihood functions, this
class of copulas also provides analytical derivations.

Copulas are a useful statistical tool because they constitute multivariate distribu-
tion function in a straight forward manner using marginal densities of the individ-
ual random variables, and the functional form of the copula with its parameter(s)
characterizes the dependence structure of the individual random variables. The co-
movements in the individual random variables are invariant to strictly monotone
transforms and the dependence structure is more general than the linear Pearsonian
correlation measure. Its drawbacks may be also the general difficulty of relating the
dependence to the popular and more familiar Pearsonian correlations. The latter,
however, is a further advantage of using the Archimedean class as the Clayton, the
Gumbel, and the Frank copula parameters are associated directly with a Kendall’s
tau measure which is a non-parametric rank measure of correlations. See [11].

Large Equity Markets

Three representative large equity markets across the globe in U.S., in U.K., and in
Japan are studied. The S&P 500, FTSE 100, and the Nikkei 225 stock market indices
of the three countries are used to compute proxy large portfolio returns. The joint
daily return vectors of these three equity markets are tracked over the period from
the beginning of January 1990 till end of April 2012. Several procedures of aligning
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the U.S. S&P 500, the U.K. FTSE100 and the Japan NK225 daily index returns
were tried, and it was found that the highest correlations were obtained by aligning
reported day t returns of U.S. and U.K. with reported day t + 1 return of the N225.
Daily returns correlations between S&P 500 and FTSE100, and between S&P 500
and N225 were 0.486 and 0.401 respectively. That between FTSE100 and N225
was 0.258. The implication, as also found in many market information transmission
research, is that both the U.S. and U.K. markets affect the Japanese market the next
day after the U.S. and U.K. markets close for the day. The New York market and
the London market overlap in opening hours though the U.K. market would close
earlier. However, while New York market is trading, it would also affect the closing
prices of the London market on the same reported trading day.

We first show the empirical distribution of the index returns for the entire sam-
pling period (January 1990-April 2012) in Fig. 1. The set of daily returns from S&P
500 index, FTSE index, and N225 index in our sample comprised 6820 data points
per index. Figure 1 shows that during the entire sampling period, the corresponding
cdf uniform variables of the returns were mostly clustered around the centre of the
unit cube and toward both the upper and lower ends. The cdf uniform variable of
a return is obtained by first sorting the N returns from the smallest to the largest
value, and then assigning k/N if a return is the kth value from the smallest value. In
terms of the implications to financial investments and bank portfolios, the lower end
closest to the viewer is the simultaneous loss region that is of particular importance
and special interest in our study.

 

 

S&P 500 
FTSE 100 

N225 

Fig. 1 CDF’s of the S&P500, FTSE100, and N225 Index daily returns January 1990- April
2012

Modeling Contagion

To study contagion, we consider only the conditional joint tail losses of the joint
multivariate return distributions. The conditional tail losses are modeled using Pareto
Type II distribution. The latter type of distribution will be explained in detail in a
later section. The maximum likelihood approach is used for estimating the distribu-
tional parameters.

Our initial assessment of the copulas was based on a semi-parametric approach
by firstly computing the maximum likelihood estimates of the copula parameters,
and secondly, computing estimates of the relative entropy or Kullback-Leibler (KL)
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distance or information criterion E0

(
ln L0

L1(θ)

)
where subscript “0” to the expecta-

tion operator denotes probability measure with respect to the null hypothesis
distribution, and L0 is also the log-likelihood function under the null hypothesis
distribution. L1(θ ) is the log-likelihood function under the alternative probability or
copula where its parameter θ is also estimated at the same time by maximizing the
likelihood function. In the likelihood estimation, we use the empirical distribution
of the uniform variates corresponding to the returns of S&P 500, FTSE100, and
NK225, as null. Since the actual null distribution is not specified parametrically,
the resulting relative entropy measure cannot be used to approximate an asymptotic
χ2 likelihood ratio test-statistic. The null distribution is unclear largely because the
marginal distributions entering the copula functions are not specified. The empirical
results are reported in Section 2 where we also provide further discussion on the spe-
cific copulas. In Section 3 we perform a modeling of the loss tails. In Section 4 we
complete the study by using the maximum likelihood approach to estimate both the
marginal distribution and the copula parameters and also perform a goodness-of-fit
test on the various copulas. Section 5 contains the conclusions.

2 Maximum Likelihood Estimation

For the Clayton copula function,

CC(u1,u2, . . . ,uN) =

(
N

∑
i=1

u−βi −N + 1

)− 1
β

, β > 0 .

For the Gumbel copula,

CG(u1,u2, . . . ,uN) = exp

⎧⎨
⎩−
[

N

∑
i=1

(− lnui)
β

] 1
β
⎫⎬
⎭ , β > 1

For the Frank copula,

CF(u1,u2, . . . ,uN) =− 1
β

ln

{
1+

∏N
i=1

(
e−βui− 1

)
(
e−β − 1

)N−1

}
, β > 0

for N ≥ 3.
In all cases, ui(zi) denotes the cumulative distribution function of underlying ran-

dom variable zi, for i= 1,2, . . . ,N. Each copula is parameterized by a single β that of
course carries different values in the different copulas. We also employ the t-copula
Ct(u1,u2, . . . ,uN) as follows, as a benchmark for comparison:

∫ t−1
v (u1)

−∞
. . .
∫ t−1

v (uN)

−∞
Γ ((v+N)/2)

Γ (v/2)
√
(πv)N |Σ |

(
1+

x′Σ−1x
v

)−(v+N)/2

dx
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where tv is a standard univariate student-t distribution with v degrees of freedom,
and Σ is the correlation matrix of the t−1

v (ui) variables implied by the uniform ui’s.
The pdf’s of the multi-dimensional distributions corresponding to the various

copula functions are found as follows. For the Clayton pdf,

fC(u1,u2, . . . ,uN)≡ ∂NC
∂u1∂u2 . . .∂uN

N

∏
i=1

∂ui

∂ zi
= ABD

N

∏
i=1

fi(zi) (1)

where fi(zi) is the pdf of r.v. zi, and

A =

(
N

∏
j=1

u j

)−(β+1)

, B =
N−1

∏
j=1

(1+ jβ ), D =

[
N

∑
j=1

u−βj −N + 1

]−( 1
β +N
)

For Gumbel pdf,

fG(u1,u2, . . . ,uN) =CGBP
N

∏
i=1

fi(zi) (2)

where

B =
N

∏
i=1

[
1
ui
(− lnui)

β−1
]
, P =

N

∑
i=1

aN
i A

i
β −N

,

A = ∑N
i=1(− lnui)

β , and aN
i is defined as follows: ak+1

1 = ak
1(kβ − 1), ak+1

2 = ak
1 +

ak
2(kβ − 2), ak+1

3 = ak
2 + ak

3(kβ − 3), . . . ,ak+1
k = ak

k−1 + ak
k(kβ − k), and ak+1

k+1 = 1,
for 1≤ i≤ N.
For the Frank pdf,

fF (u1,u2, . . . ,uN) =

(
N

∑
j=1

c jA
− jPj

)
N

∏
i=1

fi(zi) (3)

where

A = 1+
∏N

i=1

(
e−βui− 1

)
(
e−β − 1

)N−1

Pj =
(−β )N−1∏N

k=1 e−βuk
[
∏N

k=1

(
e−βuk− 1

)] j−1

(
e−β − 1

) j(N−1)

c j = (−1) j−1( j− 1)!a j

and a j ≡ S(N, j) is the Stirling number of the second kind, where

S(N, j) =
1
j!

j

∑
k=0

(−1) j−k
(

j
k

)
kN
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Using the above pdf’s, and based on a null of the empirical distribution, maximum
log-likelihood (ML) functions and parameter estimates of the different copulas are
computed and reported as follows. The empirical pdf is simply one divided by the
total number of sample points. To find the standard deviation of the ML estimates,
we employ the jackknife method. This is useful for small samples as well as for the
cases where simulation is not possible due to the unknown null distribution. The
“z-values” are computed by dividing the β̂ estimates by their standard deviations,
and provide an indication of whether the estimates are significantly different from
zeros. Sometimes, ML based on a null empirical distribution, or the semi-parametric
approach, is also called a pseudo-ML where part or one of the parameters is esti-
mated using an alternative consistent, asymptotic method instead of full ML due to
reasons such as non-convergence or having an empirical distribution as marginal.

Table 1 Maximum likelihood estimates and Kullback-Leibler distances

Copula β̂ Jackknife “z-value” KL ML
Std. Dev. distance

Student-t 6 0 ∞ 5.68 -10,251
Clayton 1.15 0.017 67.6 3.72 -11.92
Gumbel 2.12 0.034 62.3 4.10 -1,982
Frank 4.29 0.052 82.4 4.29 -2,998

In Table 1, clearly the Clayton copula has the least KL distance or relative en-
tropy to the empirical distribution. The t-copula is also found to be more distant and
less consistent with the empirical distribution relative to all the other Archimedean
copulas. The Clayton copula also has the highest maximum likelihood score. Using
the estimated (pseudo)-ML parameter values, we provide the probability density
function graphs on the three Archimedean copulas. The graphs depict only a 2-
dimensional slice of the N-dimensional copula, but are representational in the char-
acterization of the joint density effects. This is shown in Figure 2. From the fitted
copulas as seen in Fig. 2, Clayton takes care of both loss and gain tails. Gumbel for
the parameter loads on the positive tail with a bulk at the middle. Frank overloads
and plateaus on the long side with much less density on the loss tail.

 
Fig. 2 PDF based on estimated copula parameter
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3 Loss Tail Model

We study the loss tails of the marginal return distributions in more detail. The Pareto
Type II distribution is used to model the conditional returns falling below one stan-
dard deviation away from the mean. The use of the Pareto class of distributions to
model fat and long tails of distributions have been documented in many statistical
studies such as [12], [15], [10], [13], [4], [1], and so on.

In a series of articles, viz. [7], [8], [9], [5], and [16], the tail dependence of mul-
tivariate distributions using copula method has been characterized via methods of
regular variations and mixtures of scales. However, there were no empirical studies
to validate the models or study situations of structural changes in the parameters
in a time series setting. There have been several recent applications of the multi-
variate Pareto distribution. [14] provided an application of the multivariate Pareto
distribution to computing the tail conditional expectation, or sometimes called con-
ditional Value-at-Risk in risk measurement literature. They provided formulas for
the conditional expectation, but there is no study of their statistical properties. [2]
provided one of the earliest study of country index return correlations using the cop-
ula method, but used the non-central t-distribution as univariate density instead, and
it did not provide statistical tests of the parametric estimators.

We define any end-of-day t return to a country market as the natural logarithm
of the index level price relative over a day: rt = ln(Pt/Pt−1) where Pt is the in-
dex level at day t. The loss tail for each index is the set of negative daily re-
turns below a threshold u that is fixed as the sample estimate of E(ln(Pt/Pt−1)−√

var(ln(Pt/Pt−1)) where u < 0 in all cases. We define the conditional negative re-
turns in the loss region as rt < u < 0. Let zt = |rt − u| > 0, the exceedance of loss
beyond threshold or bound u.

The Pareto Type II (sometimes also called the Lomax distribution) decumulative

distribution function (ddf) of zt is F̄ =
(

1+ zt
γ

)−α
, where α,γ > 0, and zt > 0. The

(cumulative) distribution function of zt is thus F(zt) = 1− F̄ = 1−
(

1+ zt
γ

)−α
. It

is in the class of Pearson system Type IV distribution. It can also be expressed as

F(zt) = 1−
(

1+ ξ zt
σ

)−1/ξ
, where ξ = 1/α and σ = γ/α . The constants u, σ , and ξ

are also called location, scale, and shape parameters for this distribution. The shape
parameter affects the curvature and thinness of the tail. The scale as well as the shape
parameters affect the fatness of the tail. Within the class of Pareto distributions, the
Pareto II distribution is well suited and more general than Pareto Type I in modeling
tail losses of returns. Figure 3 shows the pdf and the cdf of a Pareto Type II distribu-
tion. The tail of the pdf thickens or increases with higher γ and lower α values. To
study contagion, we consider only the conditional joint tail losses of the joint mul-
tivariate return distributions. Using the copula to model multivariate distribution,
we therefore model each loss tail as a marginal distribution. In particular we per-
form an empirical distributional fit using the Pareto Type II distribution conditional



136 K.-G. Lim

 Fig. 3 PDF and CDF of Pareto Type II distributions of tail loss zt = |rt −u| with parameters
γ and α

on loss exceeding a bound that has been taken to be one standard deviation into the
loss region away from the mean of the sample of returns for each index. Experi-
menting with slightly different bounds or location parameters does not produce any
material qualitative differences.

The marginal Pareto II distribution parameters of γ̂i and α̂i for i = 1,2,3, could
be estimated using a full ML approach. However, the first order conditions are sen-
sitive to small variations in data and do not converge at times to a solution. To
avoid computational errors, we perform a pseudo-ML estimation by first estimating
the γ̂ via minimizing the Kolmogorov-Smirnov distance D between the theoretical
CDF curve and the empirical CDF curve. We obtain the following estimates of γ̂
for the shapes of the loss tails of the U.S., U.K., and Japanese stock index returns
respectively: 0.0439, 0.0940, 0.0229. The fitted CDF curves theoretically converge
in distribution, and the γ̂ estimates are asymptotically consistent.

For each stock index i, the maximum likelihood estimates of α can be obtained
as follows, given the estimates of γ obtained from the empirical fit above. The log-
likelihood of the sample is expressed as

L ≡ ln f (zi,1,zi,2, . . . ,zi,t , . . . ,zi,T )

= ln
T

∏
t=1

f (zi,t ) =
T

∑
t=1

ln f (zi,t )

=
T

∑
t=1

ln

(
αi

γi

[
1+

zi,t

γi

]−(αi+1)
)

,zi,t > 0 , ∀i, t. (4)

where f (zi,1,zi,2, . . . ,zi,t , . . . ,zi,T ) indicates the time series multivariate pdf of the
sample {zi,1,zi,2, . . . ,zi,T }. We assume independence of zi,t across time.
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We maximize the likelihood function L in equation (4) and obtain the following
first order optimality condition in equation (5). The second order condition is also
satisfied.

∂
∂αi

:
T
αi

=
T

∑
t=1

ln

(
1+

zi,t

γ̂i

)
(5)

The empirical results for the estimates of γ̂i and α̂i are reported in Table 2 below.

Table 2 Estimates of tail parameters under Pareto II distributions

Parameters U.S. S&P 500 U.K. FTSE 100 Japan N225

Lower bound 0.0099 0.0112 0.0150
K-S D-statistic 0.0459 0.0663 0.0722
γ̂ 0.0439 0.0940 0.0229
α̂ 3.4826 7.5707 2.1180

Mean γ̂
α̂−1 0.0177 0.0143 0.0205

Std.Dev. γ̂
α̂−1

√
α̂

α̂−2 0.0271 0.0167 0.0868

Table 2 shows that the Japanese stock index returns exhibited higher mean but
more volatility relative to the other two indices. The α̂ estimates that are all greater
than 2 also indicate that all the conditional loss tails possessed means and variances.
The mean and standard deviation estimates were computed based on the Pareto Type
II distribution. Actual sampling estimates are all approximately the same except for
a lower sampling standard deviation in the N225 case.

4 Estimation Results on the Copulas

The conditional multivariate joint distributions are next developed using the Clay-
ton, Gumbel and the Frank copulas. The maximum likelihood approach is again
employed for estimating the copula parameters. After removing all dates whereby
the joint returns did not exist due to holidays in the countries, and conditioning on
all the countries’ returns in the loss region beyond the thresholds u1, u2, and u3

respectively for S&P500, FTSE100, and N225, a smaller sample of size 89 is left.
Thus contagion effect occurred in less than 1.4% of the number of trading days.

Let ui,t = F(zi,t ) where i = 1,2,3. The values of i being 1,2, or 3 represent U.S.
S&P 500, U.K. FTSE100, and Japan N225 respectively. Using the Clayton, Gumbel,
and Frank pdf’s exposited in equations (1), (2), and (3), we can construct the respec-
tive log-likelihood functions of the different copulas. The maximum log-likelihoods
of the respective copulas with the respective maximum likelihood estimates, β̂i can
be obtained. Due to the highly nonlinear copula function and its related first and
second-order derivatives, a full maximum likelihood computation is highly sensitive
to small sample errors and in our case produces rather unstable results. The β̂i’s are
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therefore obtained based on a two-stage procedure or inference for margin approach
(see [6]) whereby ûi, for i = 1,2, . . . ,N, is first obtained in stage one, based on es-
timates γ̂i and α̂i as obtained earlier. The two-stage process under correct marginal
distribution specification should produce consistency and asymptotically efficient
estimates when sample size T → ∞. The two-stage procedure is also discussed
in [3].

The maximum likelihood estimates of the different copula parameter βi’s and the
associated Kendall’s τ statistics for the different copulas are shown below in Table
3. The results indicate that the Gumbel and Frank copulas tend to produce very high
association estimates relative to the Clayton copula. This does not mean that they
are more appropriate copulas. It means that if they are true, then they tend to capture
higher associations. We therefore have to evaluate and compare them as in a horse
race how well the copulas performed relative to the actual empirical data.

Table 3 Maximum likelihood estimates of the copulas

Estimates Clayton Gumbel Frank

β̂i 0.4001 2.4782 4.3295
Kendall’s τ 0.1667 0.5964 0.4121

In comparing the empirical performance of the copulas, a natural intuitive test
would be the goodness-of-fit test with an asymptotic χ2 test statistic. The observed
joint returns beyond the loss boundary of at least one standard deviation away from
the mean are matched in frequencies across 27 three by three cells with the theoret-
ical probabilities under the competing copulas. Each domain of ui for i = 1,2,3 is
divided into 3 equal regions, ûi ∈ (0, 1

3 ], ûi ∈ ( 1
3 ,

2
3 ], and ûi ∈ ( 2

3 ,1], for i = 1,2,3.
Table 4 shows the goodness-of-fit test statistic that is χ2 with 26 degrees of freedom.
At 1% significance level, the test cannot reject the null of Clayton copula while it
clearly rejects the Gumbel copula, the Frank copula, and the joint multivariate uni-
form distribution. The goodness-of-fit test shows that the Clayton copula seems to
be the most appropriate copula in explaining contagion during this sampling period.

Table 4 Goodness-of-fit tests of the theoretical copulae

Hypothesized Asymptotic p-Value
Distribution χ2 d.f. 26

Clayton copula 41.0 0.0310
Gumbel copula 292.7 0.0000
Frank copula 76.2 0.0000
Uniform 53.3 0.0012
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5 Conclusions

There is a relative scarcity of rigorous studies using empirical data and advanced
econometric methods to verify structural changes and systemic risk in the global fi-
nancial markets. In this paper, we first employ (pseudo)-maximum likelihood method
and a measure of relative entropy considering copulas and their estimated Kullback-
Leibler distances from the empirical cdf of index return distributions. It is found that
for the entire index return distributions of the S&P 500, the FTSE100, and N225 dur-
ing the 1990 to early 2012 sample period, the Archimedean class of copulas capture
the joint distribution of returns better than a benchmark t-copula based on univariate
t-distributions. The Clayton copula shows the least relative entropy with respect to
the empirical distribution.

We then employ the Pareto Type II distribution to model the conditional tail loss
distributions of the respective index returns. Unlike most other empirical studies, we
concentrate on the tail loss as it is the area most critical to the risk-taking and risk
management decisions made by banks and financial institutions. It is also the area
most concerned by regulatory bodies worldwide and in each of advanced economies
with a mature financial market subject to sharp losses and contagion risk. One practi-
cal, not theoretical, disadvantage of using conditional distribution in modeling rather
than the unconditional distribution is that when it comes to estimation, the sample
size will be smaller due to the condition or restriction, and thus small sample bias
may become more of an issue.

To study contagion based on the conditional tail losses, the joint multivariate joint
distributions using the Clayton, Gumbel and the Frank copulas are estimated using
the pseudo-maximum likelihood approach. Due to the sensitivity of full-scale max-
imum likelihood computations in its outcomes based on small samples, we used a
two-stage approach in first estimating the parameters of the individual conditional
loss tails and then estimating the copula parameter given the estimated univariate
tail parameters. The observed joint returns beyond the loss boundary of at least one
standard deviation away from the mean are then matched in frequencies across 27
three by three cells with the theoretical probabilities under the competing copulas.
A goodness-of-fit test shows that the Clayton copula seems to be the most appro-
priate copula in explaining contagion during this sampling period. Using the copula
and univariate tail distributional models via maximum likelihood estimation is evi-
denced as a reasonable approach to modeling and estimating contagion risk.
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A Bayesian Perspective on Mixed GARCH
Models with Jumps

Cathy W.S. Chen, Edward M.H. Lin, and Yi-Ru Lin

Abstract. In this paper, generalized autoregressive conditionally heteroskedastic
(GARCH) models with jumps are investigated, where jump arrivals are time in-
homogeneous and state-dependent. These models permit the conditional jump in-
tensity to be time-varying and clustering, and allow volatility effects in the jump
component. A Bayesian approach is taken and an efficient adaptive sampling scheme
is employed for inference. A Bayesian posterior model comparison procedure is
used to compare the proposed model with the standard GARCH model. The pro-
posed methods are illustrated using both simulated and international stock market
return series. Our results indicate that the mixed GARCH-Jump models provide a
better fit for the dynamics of the daily returns in the US and two Asian markets.

1 Introduction

Due to advances in technology, investors have more efficient ways to obtain new
information. With the opening of the international financial markets, the lifting of
investment restrictions, the occurrence of capital fast flow, and the occurrence of
unexpected economic events of world economic powers, the entire world market
facilitates large volatility. When unanticipated or anticipated events occur, the latent
news can all cause stock market volatility, resulting in price volatility. The biggest
factor is the impact of potential news. Latent news can be divided into two parts:
usual news and unusual news. Usual news assumes the conditional variance of re-
turn, resulting in smooth changes. Unusual news causes a drastic change in return.
These impact the market. Unusual information is defined as a jump.

The family of autoregressive conditional heteroskedasticity (ARCH) and gener-
alized ARCH (GARCH) models, initiated by [10] and [2], respectively, have per-
mitted conditional variance in time series to be modeled so that the magnitude of
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volatility can be predicted from past news and lagged conditional variance. How-
ever, GARCH models do not presume the existence of jumps for financial asset
prices. Nowadays, some stylized facts have emerged about the statistical behavior
of many financial asset prices. They possess jumps, therefore, and the importance
of considering jumps into models has been widely discussed in finance literature. In
volatility dynamics, it is conventional wisdom that GARCH and stochastic volatility
(SV) models provide a good approximation of these stylized facts by modeling the
autoregressive structure in the conditional variance. GARCH and SV models can
be devised to capture smooth and persistent changes in volatility. Most returns are
measured in discrete time which suggests that jumps provide a natural framework to
model price moves. [12] develop a mixed GARCH-Jump model incorporating the
autoregressive conditional jump intensity parametrization proposed by [4].

Even though it shows inhomogeneous jump dynamics and volatility structures for
the model, it does not explicitly specify how the jump dynamics depend on the state
of asset prices. [9] propose several asymmetric GARCH-Jump models that mix time
varying autoregressive jump intensities and volatility feedback in the jump compo-
nent. They also extend the [12] specification by allowing the jump intensity to be
both autoregressive and dependent on the return volatility or its proxy. In this paper,
we make inference of the mixed GARCH-Jump model via Bayesian framework, that
extends the [12] structure to consider not only time-varying jump intensities but also
volatility effects in the jump dynamics component.

For a mixed GARCH-Jump model with large numbers of parameters, the
Bayesian and Markov chain Monte Carlo (MCMC) methods can provide a more ef-
ficient way to estimate numbers of parameters in this model. [13] employ Bayesian
approach modelling foreign exchange rates with jumps. We adopt the Bayesian ap-
proach using MCMC algorithms and apply the random walk and independent kernel
Metropolis-Hastings (MH, [14], [11]) algorithms to estimate the unknown param-
eters. In the past, Bayesian methods have proven successful inference for many
heteroscedastic models, such as: the GARCH models [1]; EGARCH models [16];
the asymmetric GARCH models [5]; and the Markov switching GARCH models [7]
etc. Bayesian MCMC methods have the further advantage of being valid under the
stationarity and positivity parameter constraints usually required for such models,
and the ability to do joint finite sample inference on all model parameters.

The mixed GARCH-Jump model takes into account the jump size. Most return on
capital has discrete jumps: modeling the GARCH-Jump model better captures sta-
tistical characteristics of the jump discontinuity. We also employ a formal Bayesian
posterior model comparison procedure to compare the proposed model with com-
peting models. In this paper, we adapt two approaches suggested by [15] and [8] to
calculate marginal likelihood.

The rest of this study is structured as follows. Section 2 describes a mixed
GARCH-Jump model with autoregressive jump intensity and volatility effects in
the jump structure; Section 3 discusses model estimation via the Bayesian inference.
Model selection is described in Section 4. A simulation study and three daily stock
indices are conducted for illustration in Sections 5 and 6. The concluding remarks
are provided in Section 7.
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2 The Mixed GARCH-Jump Model

[2] generalizes [10]’s ARCH model by allowing the conditional variance to be a
function of lagged errors and conditional variance itself. We follow [3] by employ-
ing a GARCH(1,1) process:

ht = ω+αε2
t−1 +βt−1, (1)

where ht is the conditional variance; ω , α , and β are unknown parameters; and εt is
a random error term. [12] specify the components of returns in which two stochastic
innovations, εt,1 and εt,2, drive returns.

Rt = μ+φ1Rt−1 + εt,1 + εt,2, (2)

where εt,1 is a mean-zero innovation with a normal stochastic process, εt,2 is a jump
innovation specified so that it is also conditionally mean-zero, and εt,1 is contempo-
raneously independent of εt,2. The component εt,1 is:

εt,1 =
√

htZt , Zt ∼ N(0,1), ht = ω+αε2
t−1 +βht−1, (3)

where ht is assumed to follow a GARCH(1,1) process and εt = Rt−φ1Rt−1−μ , t =
1, . . . ,T . The specification of εt contains the expected jump component and thus al-
lows it to propagate and affect future volatility through the GARCH variance factor.
In order to ensure positive variance and stationarity, we set the following standard
restrictions on the variance parameters:

ω , α, β > 0 and α+β < 1. (4)

Let Nt denotes the number of jumps that arrive between t−1 and t, among which the
conditional jump size of the k-th jump is Yt,k given the history of returns. The jump
component affecting returns period t is Jt = ∑Nt

k=1 Yt,k. Hence, the jump innovation
associated with period t is expressed as

εt,2 = Jt −E(Jt |Ft−1) =
Nt

∑
k=1

Yt,k−θλt ,

where Yt,k∼N(θ ,δ 2), P(Nt = j|Ft−1) = λ j
t exp(−λt)/ j!, j = 0,1,2, · · · . The con-

ditional jump intensity λt , which controls the jump dynamics, is assumed to follow
the autoregressive process:λt = ν0+ν1λt−1+τε2

t−1, where ν0 controls the expected
number of jumps per day, ν1 controls the persistence of jump-clustering effect, and
τ controls the time-varying effects in jump dynamics. A sufficient condition given
in [12] for λt > 0 is ν0 > 0, ν1 ≥ τ , and τ ≥ 0. For the conditional jump intensity to
be well defined, the following parameters are set:

ν0,τ ≥ 0 and 0≤ ν1 < 1. (5)
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Under the stationarity specification in (5), the unconditional jump intensity is equal
to E(λt) = (ν0 + τE(ht))/(1−ν1), where E(ht) = ω/(1−α−β ) is the uncondi-
tional volatility of Rt . In summary, the mixed GARCH-Jump model in this paper is
as follows:

Rt = μ+φ1Rt−1 + εt , εt = εt,1 + εt,2, (6)

εt,1 =
√

htZt , ht = ω+αε2
t−1 +βht−1,

εt,2 =
Nt

∑
k=1

Yt,k−θλt , λt = ν0 +ν1λt−1 + τε2
t−1,

Zt ∼ N(0,1), Nt |Ft−1∼Poisson(λt), Yt,k∼N(θ ,δ 2).

Bayesian MCMC methods have a number of advantages in estimation and inference.
They account for parameter uncertainty in both probabilistic and point forecasting;
provide exact inference for finite samples; efficiently and flexibly handle complex
models and non-standard parameters; and supply efficient and valid inference under
parameter constraints. Therefore, MCMC methods were generally used to estimate
the mixed GARCH-Jump model in this paper.

3 Bayesian Inference

Bayesian methods usually require the specification of a likelihood function and
prior distributions on model parameters. Define φ = (μ ,φ1),α = (ω ,α,β ) and ν =
(ν0,ν1,τ) as the vectors of the mean, variance, and jump size parameters, respec-
tively, and denote the vector of all parametersΘ = (φ ,α ,ν,θ ,δ 2). The εt given that
j jumps occur and the information set Ft−1 follows a Gaussian distribution:

εt = Rt −φ1Rt−1− μ , t = 1, . . . ,T,

εt |(Nt = j,Ft−1)∼ N(μεt , σ
2
εt
), Nt |Ft−1∼Poisson(λt).

Let R= (R1, . . . ,RT ), when jump is introduced the likelihood function become com-
plicated, it may be non-differentiable in the parameters. By some conditioning pa-
rameters, the likelihood function can be written as follows:

L (R|Θ) =
T

∏
t=1

∞

∑
j=0

f (εt |Nt = j,Ft−1)p(Nt |Ft−1)

=
T

∏
t=1

∞

∑
j=0

1√
2πσ2

εt

exp

{
− (εt − μεt )

2

2σ2
εt

}
· λ

j
t e−λt

j!
, (7)

where μεt = jθ −θλt , and σ2
εt
= σ2

t,1 + jδ 2.
Prior distributions on the parameters must be assumed in Bayesian inference, in

this paper, the prior distribution is chosen to be reasonably uninformative over the
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possible region. For φ in (2), the parameters of the mean equation of the GARCH-
Jump model, we assume a bivariate normal prior for φ :

π(φ)∼N

([
mμ
mφ1

]
,

[
σ2
μ 0

0 σ2
φ1

])
,

where σ2
μ > 0 and σ2

φ1
> 0. For θ , the mean of the jump size, we assume a normal

distribution prior, θ ∼ N(mθ ,σ2
θ ). We assume that the variance of the jump size,

δ 2, is an inverse gamma distribution, δ 2∼IG(a,b). In order to satisfy the necessary
constraints on parameters and ensure a proper posterior, for the parameters α and
ν follow constrained uniform priors, defined by indicators I(S1) and I(S2), respec-
tively, where S1 is the set α that satisfies (4), and S2 is the set ν that satisfies (5).

Let γ be one of the parameters in Θ and π(γ|R,Θ−γ) denote the posterior dis-
tribution, where Θ−γ is the vector of all parameters without γ . MCMC methods re-
quire conditional posterior distribution for each choice of γ . In each case, the target
posterior is:

π(γ|Θ−γ) ∝ L (R|Θ)π(γ). (8)

By using Bayes rule, the posterior distribution in (8), for each choice of γ does not
have known or standard forms in the parameters. Such as the parameters φ of the
mean equation, the full conditional posterior is written by

π(φ |Θ−φ ) =
T

∏
t=1

∞

∑
j=0

f (εt |Nt = j,Ft−1)p(Nt |Ft−1)π(φ). (9)

Note that Equation (9) looks like a bivariate normal distribution but it is a non-
standard from actually. For θ , the mean of normal distribution of the jump size, the
full conditional posterior can be written by

π(θ |Θ−θ ) =
T

∏
t=1

∞

∑
j=0

f (εt |Nt = j,Ft−1)p(Nt |Ft−1)π(θ )

=
T

∏
t=1

∞

∑
j=0

1√
2πσ2

εt

exp

{
− (εt −μεt )

2

2σ2
εt

}
λ j

t e−λt

j!
1√

2πσ2
θ

exp

{
− (θ −μθ )2

2σ2
θ

}
.(10)

For δ 2, the variance of normal distribution of the jump size, the full conditional
posterior for δ 2 with a prior IG(a,b) is written by

π(δ 2|Θ−δ 2 ) ∝
T

∏
t=1

∞

∑
j=0

(δ 2)
(−a− 1

2 )−1
exp

{
− 1

2

[
2b
δ 2 +

ε2
t −2 jθεt +2θλtεt + j2θ2−2 jθ2λt +θ2λ 2

t

σ 2
t,1 + jδ 2

]}
. (11)

The conditional posteriors for each parameter group are non-standard. We therefore
incorporate the Metropolis-Hastings (MH) methods to draw the MCMC iterates for
the parameter groups. To speed convergence and allow optimal mixing, we employ
an adaptive MH-MCMC algorithm that combines a random walk Metropolis and an
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independent kernel MH algorithm. The MCMC algorithm for the mixed GARCH-
Jump models is described as follows:

Step1: Set l = 0 and specify an initial value for (φ ,α ,ν,θ ,δ 2).
Step2: For j = 1, . . . ,g,

Step 2a: Sample φ |Θ−φ from (9).

Step 2b: Sample α from L (R|Θ)I(S1).
Step 2c: Sample ν from L (R|Θ)I(S2).
Step 2d: Sample θ |Θ−θ , from (10).
Step 2e: Sample δ 2|Θ−δ 2 , from (11).

Step 3: Set l = l+ 1 and go to Step 2.

The Gibbs sampler is repeated for N+M iterations from Step 2 to Step 3, which con-
tain M burn-in iterations and N iterations to estimate posterior parameters. We first
use the random walk algorithm from the first M iterations and then use the inde-
pendent kernel MH algorithm algorithm from iteration M + 1 onwards. A detailed
description of MH algorithm is provided by [6].

4 Model Selection

Model comparison and selection are important issues in practice. A common ap-
proach to compare the k models in the Bayesian setting is to use the marginal likeli-
hood, which, for model Mk, is f (R|Mk). In this paper, we use the approaches of [15]
(NR hereafter) and [8] to calculate the marginal likelihoods. NR uses the poste-
rior distribution, π(θ |R,Mk), as the important sampling distribution to numerically
evaluate the marginal likelihood,

Mlik(Mk) =

∫
f (R|θ ,Mk)π(θ |Mk)dθ .

The logarithmic marginal likelihood can then be approximated by the following
importance sampling estimator:

logM̂lik(Mk) =

[
1
N

N

∑
i=1

(
log f (R|θ (i),Mk)

)−1
]−1

,

where θ (i) is an MCMC iteration which draws from the posterior distribution
π(θ |R,Mk). When the harmonic mean of the marginal log likelihood value is large,
its estimated result is better.

Another method we adopt is an approach by [8] for computing the model to
obtain the logarithm of marginal likelihood:

logMlik(Mk) = log f (R|θ ,Mk)+ logπ(θ ,Mk)− logπ(θ |R,Mk), (12)

where θ is the parameter set in the Mk model, f (R|θ ,Mk) is the likelihood function,
π(θ ,Mk) is the prior probability density, and π(θ |R,Mk) is the posterior density.



A Bayesian Perspective on Mixed GARCH Models with Jumps 147

Let θ ∗ denote a set of posterior means of unknown parameters. Using Chib’s
method, the logarithm of marginal likelihood in Eq. (12) can be estimated by sub-
stituting θ ∗. Therefore, we are able to calculate the log likelihood estimate from the
likelihood function of the GARCH-Jump model, and obtain the value of logπ(θ∗,Mk)
from each prior setting of unknown parameters. Since the full conditional posterior
density for the GARCH-Jump model is unknown, we apply the kernel density esti-
mate of a non-parametric approach to approximate logπ(θ∗|R,Mk):

log π̂(θ ∗|R,Mk)∼= log
[
(nhd)−1∑K ((θ ∗ −θ i)/h)

]
,

where h > 0 is a bandwidth, d is the dimension of space, and K(·) is a Gaussian
kernel function. A common method of choosing the h is to minimize the asymptotic
mean integrated squared error (AMISE). Here, we implemented an empirical rule
for choosing the bandwidth of a Gaussian kernel density estimator.

5 Simulation Study

To examine the effectiveness of the MCMC sampling scheme in the Bayesian infer-
ence, we conduct a simulation study from a GARCH-Jump model and considering
the sample size n = 2,000. For the model in Eq. (6), 100 data sets were generated
and then used for analysis.

For unknown model parameters, α , ν , we consider π(α,ν) ∝ 1. The prior for
θ is chosen as a normal distribution, and that for δ 2 is chosen as a inverse gamma
distribution; these priors are described in Section 3. For the hyper-parameters, we
choose (mθ ,σ2

θ ) = (0,0.1) and (a,b) = (4,0.06). For the initial values, we choose
(μ , φ1)=(0, 0), (ω , α , β )=(0.15, 0.1, 0.1), (ν0, ν1, τ)=(0.01, 0.01, 0.01), θ = 0, and
δ 2 = 0.01.

The Gibbs sampler is run for a total of N +M = 20,000 MCMC iterations for
each data set, using the random walk MH for the first M = 10,000 burn-in itera-
tions, and the independent kernel MH algorithm for the next N = 10,000 iterations.
Convergence is monitored heavily using trace and ACF plots, through which, we
observed that the adaptive method can indeed lead to reduced auto-correlations for
MCMC iterates. These plots are not provided in this paper in order to save space, but
are available upon request. For the setting of the jump number, we add a total of four
in our computational task. It is easy to increase the jump number in our FORTRAN
codes.

Table 1 provides summary statistics of parameter estimates averaged over 100
replications, including true values, posterior means, medians, standard deviations,
and 2.5 and 97.5 percentiles. All of the means of the estimates are close to their true
values. However, the average of standard deviation (∼= 0.20) is slightly large for ν1.
The histograms of 100 posterior mean estimates and true values in vertical lines are
given in Figure 1. The simulation results indicate that the Bayesian method gives
sound inference except for ν1.
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Table 1 Parameter estimates from 100 replications for the GARCH-Jump model

True Mean Median Std 2.5% 97.5%
μ 0.05 0.0508 0.0509 0.0243 0.0034 0.0984
φ1 0.10 0.1226 0.1225 0.0233 0.0769 0.1683
ω 0.05 0.0760 0.0721 0.0271 0.0342 0.1413
α 0.07 0.0799 0.0788 0.0161 0.0517 0.1154
β 0.88 0.8553 0.8591 0.0339 0.7775 0.9111
ν0 0.10 0.1038 0.0843 0.0824 0.0036 0.3061
ν1 0.30 0.2773 0.2374 0.2038 0.0107 0.7447
τ 0.03 0.0337 0.0285 0.0256 0.0013 0.0949
θ 0.00 0.0001 0.0001 0.0995 -0.1950 0.1948
δ 2 0.02 0.0195 0.0163 0.0116 0.0069 0.0522
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Fig. 1 Histograms with 100 replications. The vertical line in each plot is the true value of
the parameter.

Table 2 Summary statistics of daily stock returns

Data No Min Q1 Median Mean Q3 Max Std Skewness Excess
obs. Kurtosis

S&P500 2437 -9.4695 -0.5643 0.0776 0.0079 0.6104 10.9572 1.9407 -0.1990 8.2978
Nikkei 225 2375 -12.1110 -0.7891 0.0363 -0.0130 0.8701 13.2346 2.5250 -0.5173 7.9249

HSI 2395 -13.5820 -0.6769 0.0572 0.0235 0.7946 13.4068 2.6804 0.0519 8.7794
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6 Empirical Study

We illustrate our methods using three daily stock market indices obtained from
Datastream International for the period from May 24, 2002, to January 31,2012: the
Nikkei 225 of Japan, the HSI (HANG SENG Index) of Hong Kong, and the S&P500
of the US. Daily log returns are calculated as Rt = (log(pt)− log(pt−1))× 100,
where pt is the price index at time t. To provide a general understanding of the na-
ture of each market return, summary statistics of daily returns are presented in Table
2. The returns range from -13.58% to 13.41%, but their mean returns are all close to
zero. In terms of variance, the S&P500 has the smallest value, 1.94, which implies
that it is the most stable stock market. The HSI indicates that Hong Kong’s stock
market is a high-risk market. For the S&P500 and Nikkei 225, the negative skew-
ness, which indicates that the extreme values happen at low quantile, thus causing
a longer left tail and high excess kurtosis value, shows that the data contains ex-
treme negative values. Figure 2 shows the time series plots of the three markets. It
is clear that all series of returns were more volatile during the global financial crisis
in 2008-2009.

The mixed GARCH-Jump model with the first-order autoregressive process in
Eq. (6) is used to investigate the structure of dynamic jumps under various market

S
&

P
50

0

28−May−02 3−May−04 10−Apr−06 19−Mar−08 25−Feb−10 31−Jan−12

−1
0

0
5

N
22

5

28−May−02 3−May−04 10−Apr−06 19−Mar−08 25−Feb−10 31−Jan−12

−1
5

−5
5

15

H
S

I

28−May−02 3−May−04 10−Apr−06 19−Mar−08 25−Feb−10 31−Jan−12

−1
5

−5
5

15

Fig. 2 The time series plots for daily stock returns
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Table 3 Empirical results for the GARCH-Jump model

Mean Median Std. 2.5 % 97.5 %
S&P 500 μ 0.0593 0.0593 0.0167 0.0272 0.0910

φ1 -0.0807 -0.0809 0.0209 -0.1203 -0.0373
ω 0.0018 0.0014 0.0015 0.0001 0.0057
α 0.0857 0.0851 0.0104 0.0661 0.1079
β 0.9020 0.9026 0.0106 0.8807 0.9212
ν0 0.1860 0.1858 0.0647 0.0650 0.2963
ν1 0.3910 0.3768 0.1629 0.1617 0.6837
τ 0.0057 0.0052 0.0040 0.0003 0.0151

θ -0.2435 -0.2440 0.0701 -0.3814 -0.1091
δ 2 0.3595 0.3494 0.1071 0.1808 0.6041

Nikkei 225 μ 0.0482 0.0479 0.0245 0.0014 0.0996
φ1 -0.0180 -0.0176 0.0221 -0.0628 0.0245
ω 0.0419 0.0407 0.0113 0.0226 0.0673
α 0.1195 0.1187 0.0139 0.0941 0.1485
β 0.8655 0.8662 0.0149 0.8350 0.8929
ν0 0.0793 0.0728 0.0492 0.0034 0.1857
ν1 0.2993 0.2869 0.1783 0.0209 0.6741
τ 0.0062 0.0054 0.0045 0.0003 0.0172
θ -0.0223 -0.0203 0.1010 -0.2253 0.1664
δ 2 0.0216 0.0167 0.0186 0.0068 0.0671

HSI μ 0.0579 0.0586 0.0227 0.0133 0.1023
φ1 0.0195 0.0190 0.0206 -0.0208 0.0599
ω 0.0158 0.0154 0.0048 0.0076 0.0264
α 0.0716 0.0711 0.0089 0.0558 0.0906
β 0.9216 0.9221 0.0094 0.9015 0.9389
ν0 0.1153 0.0984 0.0843 0.0048 0.3053
ν1 0.2715 0.2267 0.2018 0.0052 0.7324
τ 0.0054 0.0045 0.0043 0.0002 0.0162
θ -0.0096 -0.0069 0.1029 -0.2217 0.1823
δ 2 0.0207 0.0168 0.0158 0.0069 0.0605

conditions. The parameter estimates for the model in each market are summarized in
Table 3. Posterior summaries - mean, median, standard error, and the 95% Bayesian
intervals for the model parameters - are given. The three parameters ν0, ν1, and τ
are important in characterizing the different structures of the jump dynamics among
the various financial assets, and the parameters α and ν are satisfied in equations (4)
and (5), respectively, and by δ 2 > 0. The jump-size mean θ is negative for all three
markets. The estimated mean of θ is only significantly different from zero for the
S&P 500. Note that the impact of jumps on the conditional mean of returns tends to
be centered around zero on average, which does not imply that jumps do not affect
the distribution of returns. The estimated time-varying volatilities of GARCH-Jump
models are given in Figure 3. The plots reveal the presence of exceedingly large
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Fig. 3 The time-series plots of estimated conditional volatilities from GARCH-Jump
models

movements in the volatilities variation. The unconditional jump intensity is 0.1874,
0.1040, and 0.1325 for the S&P500, Nikkei 225, and HSI, respectively. It seems that
there are more frequent jumps to returns for the US market during this period. This
implies that for Nikkei 225 and HSI, jumps to returns arrive on the average less than
once per two weeks (around 8-10 days). But for S&P500 jumps to returns could
arrive as often as once every five business days.

We attempt to compare the proposed model with the GARCH(1,1) model in Eq.
(1) by utilizing NR’s and Chib’s methods. We report the results of the model selec-
tion in Table 4 for the GARCH and GARCH-Jump models. The likelihood values
of NR’s and Chib’s methods are obtained from the average of the five replications,
and standard deviations are given in parentheses. It is clear that the mixed GARCH-
Jump model outperforms the GARCH model based on both methods. The estimated
conditional volatilities of the GARCH models look similar to those of the GARCH-
Jump model in Figure 3. Actually, there is a large discrepancy between the two the
estimated conditional volatilities of th two models, as shown in Figure 4.
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Table 4 Model selection for GARCH and GARCH model with jumps

Method NR Chib
Model ML Std. ML Std.

S&P500 GARCH-n -3566.2536 (0.0334) -3579.6220 (0.2525)
GARCH-Jump -3533.9728 (0.8184) -3556.1998 (0.6767)

Nikkei 225 GARCH-n -4075.0416 (0.0149) -4085.8530 (0.4793)
GARCH-Jump -4049.0128 (0.9106) -4070.2372 (1.2633)

HSI GARCH-n -4014.9520 (0.0597) -4027.9106 (0.3782)
GARCH-Jump -4002.8998 (0.5430) -4021.7002 (1.3826)
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Fig. 4 The estimated conditional volatility differences between GARCH-Jump and GARCH
models

7 Conclusion and Future Research

In this paper, we propose a Bayesian inference for a mixed GARCH-Jump model
to capture the dynamic volatility including the time-varying volatility effects in the
jump dynamics component. A simulation study shows that the Bayesian MCMC
gives sound parameter estimates. For model comparison, we calculate the marginal
log likelihood using NR’s and Chib’s methods for the mixed GARCH-Jump and
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GARCH model. The results show that the mixed GARCH-Jump model outperforms
a standard GARCH model and show the existence of jumps in the empirical evi-
dence from all of the three financial markets.

In the future, the mixed GARCH-Jump model can be extended in various direc-
tions to obtain more flexibility and applicability. If we have extra information such
as opening prices, minimum/maximum prices, or traded volumes, we can also input
information into the jump intensity, improving the behavior of the mixed GARCH-
Jump model. Moreover, we can consider Bayesian forecasting for GARCH-Jump
model to carry out Value-at-Risk and Expected Shortfall forecasts, both of which
are popular risk measures in financial risk management.
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Risk Measures and Asset Pricing Models
with New Versions of Wang Transform

Baokun Li, Tonghui Wang, and Weizhong Tian

Abstract. To provide incentive for active risk managements, tail-preserving and co-
herent distortion risk measures are needed in the actuarial and financial fields. In
this paper we propose new versions of Wang transform using two different forms of
skew-normal distribution functions, and prove that the related risk measures in Cho-
quet integral form are coherent and degree-two tail-preserving for usual bi-atomic
risk distributions. Also under some plausible conditions, the portfolio optimization
is explored for the capital asset pricing model where the pricing strategy uses the
new Wang transforms as the distortion functions.

1 Introduction

Risk measures are used to decide insurance premiums and required capital for a
given risk portfolio by examining its downside risk potential. A widely used risk
measure for the risk of loss on a specific portfolio of financial assets is the value at
risk (VaR), a threshold value in which the probability that the mark-to-market loss
on the portfolio exceeds this value is the given probability level. Mathematically,
the VaR is simply a percentile on the distribution of losses.

Although the VaR is widely accepted and used in financial control, risk manage-
ment, and governance of trusts and pension plans, several authors have pointed out
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the two deficiencies of the VaR, lack of subadditivity and difficulty to optimize as it
may have multiple local minima (Artzner et al.[2]; Basak and Shapiro [4]). Also the
VaR is often criticized for not taking into account the magnitude of losses when the
VaR is exceeded. Thus the conditional VaR (CVaR), known as expected shortfall,
is proposed as an alternative to the VaR. The CVaR is defined as the conditional
expectation of the losses exceeding VaR, which provides additional information of
the losses in the tail exceeding the VaR.

Distortion risk measures based on Wang transform overcome the drawbacks of
both the VaR and the CVaR, but they do not always provide incentive for risk man-
agement since they do not give capital relief in some simple risk distributions.
Because they, like the CVaR, preserve only degree 1 and 0 tail-preserving order
(Hürlimann [7]). In this paper we propose new versions of Wang transform using
two forms of skew-normal distribution functions.

This paper is organized as follows. Two distortion risk measures and their prop-
erties are discussed in Section 2 and two forms of skew normal distributions are
introduced in Section 3. New versions of Wang transform under skew normal set-
tings, together with their distortion functions, are studied in Section 4. Results on
properties of risk measures with new distortion functions are obtained in Section 5.
In Section 6, we discuss the skew normal distortion functions for the capital asset
pricing model(CAPM) and an example is given for illustrating our results.

2 Two Types of Distortion Risk Measures

2.1 Coherent Distortion Risk Measures

Let (Ω ,A ,P) be a probability space such that Ω is the space of outcomes or states
of the world, A is the σ -algebra of events, and P is the probability measure. For a
measurable real-valued random variable X on this probability space, that is, a map
X : Ω → R, the probability distribution of X is defined and denoted by FX(x) =
P(X ≤ x).

In the present paper, the random variable X represents a financial loss such that,
for ω ∈ Ω , the real number X(ω) is the realization of a loss or profit function,
with X(ω) ≥ 0 for a loss and X(ω) < 0 for a profit. Let X be the set of financial
losses. A risk measure, ρ(X), is a functional from the set of losses to the extended
nonnegative real numbers described by a map ρ : X → R+. Note that ρ(X) can be
considered as an amount that a company must reserve to face financial loss X , that
is ρ(X) is a minimum amount that the company insurance must reserve to pay the
damage made by risk X so that ρ(0) = 0.

Definition 3. A risk measure is said to be coherent if it satisfies the following de-
sirable properties (see, e.g., Arztner et al.[1] and [2]):

(i) Monotonicity: ρ(X)≤ ρ(Y ) provided that P(X ≤ Y ).
(ii) Homogeneity: for any c > 0 and X ∈X , ρ(cX) = cρ(X).
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(iii) Subadditivity: for any X ,Y ∈X , ρ(X +Y)≤ ρ(X)+ρ(Y).
(iv) Translation invariance: ρ(X + c) = ρ(X)+ c for any X ∈X and c ∈ℜ.

A distortion function is a continuous non-decreasing function g : [0,1]→ [0,1] with
g(0) = 0 and g(1) = 1. Let FX(x) be the distribution function of the risk X , the trans-
form Fg

X (x) = g(FX(x)) defines a distribution function, which is called the distorted
distribution function. In this paper, we will focus on the distortion risk measure
defined by Choquet integral, given by

ρg(X) =−
∫ 0

−∞
[1− g(SX(x))]dx+

∫ ∞

0
g(SX(x))dx, (1)

where SX(x) = 1−FX(x) is the survival function of X . Wang [9] proved that the risk
measure given in (1) is coherent if the distortion function g(x) is a concave function.
We will show in Section 5 that the risk measure defined in (1) is coherent for the
skew normal distortion functions.

2.2 Tail-Preserving Distortion Risk Measures

For any random variable X ∈X with probability distribution function FX(x), the
higher order partial moments πn

X(x) = E[(X− x)n
+], n = 0,1,2, ..., are said to be the

degree n stop-loss transforms. Note that π0
X(x) = SX(x) = 1−F(x) is the survival

function of X . For two random variables X and Y , if πn
X(x)≤ πn

Y (x) for all x, the X is

said to precede Y in degree n stop-loss transform order, denoted by X ≤(n)
slt Y . Also,

we say that the X precedes Y in (n+1)-convex order, denoted by X ≤(n+1)−cx Y if

X ≤(n)
slt Y and E[Xk] = E[Y k], for all k = 0,1, . . . ,n.

A desirable property for a risk measure is that increased risk should be penal-
ized with an increased measure. A distortion measure ρg(X) with concave distortion
function preserves the stop-loss order(see, e.g., Hürlimann [7]). With equal means
and variances, a stop-loss order relation between different random variables cannot
exist. In this situation, one is interested in distortion measures that preserve higher
degree convex orders. Such measures are called tail-preserving distortion measures.

Definition 4. A risk measure ρ : X → R is said to be a degree n tail-preserving
risk measure if it is preserved under the (n+1)-convex order. That is, if two random
variables X and Y ∈X satisfy X ≤(n+1)−cx Y , then ρ(X)≤ ρ(Y ).

It is known that a distortion measure ρg(X) with concave distortion function g(x)
preserves (n+1)−cx order for n = 0,1 so that it is a tail-preserving risk measure of
degree zero and one. From Examples 3.1 and 3.2 of Hürlimann [7], both the CVaR
and Wang distortion risk measure are not the degree-two tail-preserving coherent
risk measures.
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3 Two Forms of Skew-Normal Distributions

The popular skew-normal distribution was introduced by Azzalini [3] and has been
studied by many authors in last two decades.

Definition 5. The random variable X is said to have the skew normal distribution
with location parameter μ ∈ ℜ, scale parameter σ > 0, and skewness parameter
α ∈ R, denoted by X ∼ SN(μ ,σ2,α), if its probability density function is of the
form

fX (x|μ ,σ ,α) = 2φ(x|μ ,σ)Φ
[
α
(

x− μ
σ

)]
,

where φ(.) and Φ(.) are probability density function and cumulative distribution
function of standard normal distribution, respectively.

For simplicity, we call SN(μ ,σ2,α) the α-skew normal distribution. Note that the
distribution is skewed to the right if α > 0 and to the left if α < 0. When α = 0,
the distribution is reduced to N(μ ,σ2). the normal distribution with mean μ and
variance σ2.

The Inverse scale factor skew distribution was introduced by Fernandez and Steel
[8]. Suppose that g is the probability density function symmetric about 0 and γ ∈
(0,∞) is a scalar. The inverse scale factor skew distribution of a random variable Y
is defined by means of the probability density function

s(y|γ) = 2
γ+ 1/γ

g(yγ−sgn(y)),

where sgn(t) is the sign function which is equal to 1 if t > 0, −1 if t < 0, and 0 if
t = 0. Using this inverse scaled factor mechanism, we have the following definition.

Definition 6. The random variable Y is said to have the inverse scale factor skew-
normal distribution with location parameter μ and scale parameter σ2 and skew-
ness parameter γ , denoted by Y ∼ ISN(μ ,σ2,γ), if its probability density function
is given by

fY (y|μ ,σ ,γ) = 2
γ+ 1/γ

1√
2πσ

exp

[
−1

2

(
y− μ
σ

γ−sgn(y−μ)
)2
]
.

For simplicity, we call Y ∼ ISN(μ ,σ2,γ), the γ-skew normal distribution. The idea
of the skewing mechanism is to scale Y differently for negative and positive values.
The parameter γ clearly determines the direction and the intensity of the skewness.

For both the α-skew normal and the γ-skew normal distributions, by straightfor-
ward calculation, we obtain the following results.

Lemma 1. (i) The mean and variance of X ∼ SN(μ ,σ2,α) are

E(X) = μ+σδ
√

2
π
, Var(X) = σ2

(
1− 2δ 2

π

)
with δ = α/

√
1+α2.
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(ii) The mean and variance of Y ∼ ISN(μ ,σ ,γ) are

E(Y ) = μ+σΔ , Var(Y ) = σ2
(
γ4− γ2 + 1

γ2 −Δ2
)

with Δ =

√
2
π
γ2− 1
γ

.

Since the effects of skewness parameter γ on mean and variance are not limited,
the γ-skew normal distribution brings more flexibility to construction of distortion
function in risk measures than the α-skew normal distribution.

4 New Versions of Wang Transform

Motivated by directly extending the Sharpe ratio, used to characterize how well the
return of an asset compensates the investor for the risk taken, to risks with skewed
distributions, Wang [9] proposed the following Wang transform:

gλ (x) =Φ(Φ−1(x)+λ ), (2)

where Φ(z) is the cumulative distribution function (cdf) of the standard normal ran-
dom variable Z ∼N(0,1). The Wang transform given in (2) is a pricing formula that
recovers CAPM and Black-Scholes formula under normal asset-return distributions.

Wang transforms are made of distribution functions with symmetric densities.
In many real world applications, the data sets collected are not symmetrically dis-
tributed so that normal may not be good fit. Specifically, data sets are skewed to the
left or skewed to the right in most applications so that the skew normal distributions
maybe the better choices. In this paper, we will construct two new versions of Wang
transform under skew normal settings. Denote

SΦ(x|μ ,γ) =
∫ x

−∞
f (t|μ ,1,γ)dt (3)

as the cdf of a skew-normal random variable X , we have

Definition 7. For x > 0, the α-skew normal distortion function and the γ-skew nor-
mal distortion function are defined by

gα(x) = SΦα(Φ−1(x)|μ ,α) for μ < 0, α ≤ 0 (4)

and
gγ(y) = SΦγ(Φ−1(y)|μ ,γ) for μ < 0, 0 < γ ≤ 1, (5)

respectively, where SΦα(·) is the cdf of the α-skew normal distribution SN(μ ,1,α)
and SΦγ(·) is the cdf of γ-skew normal distribution ISN(μ ,1,γ).

When α = 0 and γ = 1, both distortion functions are to reduced to the Wang trans-
form with λ = μ . The graphs of theα-skew normal and the γ-skew normal distortion
functions, compared with the CVaR and Wang transform are listed in Figure 1 and
Figure 2, respectively.
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Fig. 1 The α-skew normal distortion functions with different transforms

Fig. 2 The γ-skew normal distortion functions with different transforms

5 Risk Measures with New Versions of Wang Distortion
Functions

A distortion risk measure can be defined as the distorted expectation of any non-
negative loss random variable X . It is accomplished by using a utility or the distor-
tion function g as follows:

ρg(X) =

∫ ∞

0
g(SX(x))dx =

∫ ∞

0
g(1−FX(x))dx, (6)

where SX(x) denotes the survival function of X , while g(SX(x)) is referred to as a
distorted survival function.

For the gain/loss-distributions, we know that the loss random variable X can take
any real value so that the distortion risk measure is defined as in (1). The VaR is
not a distortion risk measure because its distortion function is discontinuous in this
case. Except the fact that properties of the distortion risk measures come from stan-
dard results about the Choquet integral (see Denneberg [5]), Wirch and Hardy [10]
proved that distortion risk measures are sub-additive, i.e.,

ρg(X +Y )≤ ρg(X)+ρg(Y ),

if and only if the distortion function g(x) is concave. Thus the concave distortion
risk measures are coherent risk measures. In order to show that each of our extended
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versions of distortion risk measures is coherent, one only need to prove that each of
our extended distortion functions in (4) and (5) are concave.

Theorem 1. (i) The distortion risk measure corresponding to the α-skew normal
distortion function gα(x) given in (4) is coherent and
(ii) The distortion risk measure corresponding to the γ-skew normal distortion func-
tion gγ(x) in (5) is coherent.

Proof. To show that gα is coherent, we need to show that gα has negative sec-
ond derivative everywhere for x ∈ X . Thus for (i), we obtain that the first order
derivative

g′α(x) =
fX (Φ−1(x)|μ ,1,α)

φ(Φ−1(x))
= 2Φ

[
α
(
Φ−1(x)− μ

)]
,

which is exists and positive for all x ∈X . The second derivative of gα also exists
and is obtained as

g′′α(x) =
2α

φ [Φ−1(x)]
φ
[
α
(
Φ−1(x)− μ

)]
.

Given α ≤ 0 and μ < 0, it is easy to check that g′′α(x) is always negative. So the
distortion risk measure, corresponding to gα in (4), defined by Choquet integral is
coherent.

Similarly, for (ii), we have

g′γ(y) =
2

γ+ 1/γ
exp

{
1
2

(
(Φ−1(y))2− (Φ−1(y)− μ)2γ−2sgn(Φ−1(y)−μ)

)}
,

which is continuous except at the point x =Φ(μ). Note that when x =Φ(μ),

g′γ(y) =
2

γ+ 1/γ
exp

{
1
2
(Φ−1(y))2

}

because the term (Φ−1(x)−μ)2 = 0. Thus g′γ(y) exists for all y ∈X . Also we have

g′′γ (y) =
g′γ(y)

φ(Φ−1(y))

[
Φ−1(y)− (Φ−1(y)− μ)γ−2sgn(Φ−1(y)−μ)

]
,

which exists because of the same reason discussed above. Given γ ≤ 1 and μ <
0, it is easy to see that g′′2(x) is always negative. So the distortion risk measure,
corresponding to gγ in (5), defined by Choquet integral is coherent. �

For a loss random variable X ∼ N(μ0,σ2),

SX(x) = 1−FX(x) = 1−Φ
(

x− μ0

σ

)
=Φ
(
−x− μ0

σ

)
.

We can prove the following result:
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Theorem 2. Assume that X ∼ N(μ0,σ2), the normal loss distribution. Let FX(x) be
the cdf of X and SX(x) = 1−FX(x).

(i) For the α-skew normal distortion function given in (4),

gα (SX(x)) = 1− SΦα (x|(μ0−σμ),σ ,−α) .

(ii) For the γ-skew normal distortion function given in (5),

gα (SX(x)) = 1− SΦγ

(
x|(μ0−σμ),σ , 1

γ

)
.

Proof. Note that

gα (SX (x)) = SΦα

(
−x−μ0

σ
|μ,σ ,α

)
and gγ (SX (x)) = SΦγ

(
−x−μ0

σ
|μ,σ ,γ

)
.

The desired results follow from the facts given by

SΦα(y|μ ,σ ,α) = 1− SΦα(−y|− μ ,σ ,−α)

and

SΦγ(y|μ ,σ ,γ) = 1−SΦγ

(
−y|− μ ,σ ,

1
γ

)
. �

From Theorem 2, we know that for a normally distributed loss random variable, its
distorted loss distribution is skew-normal. Denote the distorted distribution as the
distribution of the loss random variable X∗, then the risk measures in Equation (1)
for both gα and gγ are

ρgα (X) = E(X∗) = μ0− μσ−σ
(

α√
1+α2

)√
2
π

(7)

and

ρgγ (X) = E(X∗) = μ0− μσ +σ
(

1
γ
− γ
)√

2
π
, (8)

respectively. Note that when α = 0 or γ = 1, the risk measures are reduced to that
of Wang distortion function.

Remark. From the results given above, we can conclude that both gα and gγ affect
the risk measures by the location parameter μ , scale parameter σ and skew parame-
ter α or γ . Note that the range of α√

1+α2
is (−1,1) and the range of 1

γ −γ is (−∞,∞)
so that the effect of the skew parameter α to the risk measure ρgα (X) is limited. But
the γ-skew normal distortion function brings more flexibility in distorting the loss
distribution compared to Wang transform. �
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In order to show that the distortion risk measure is also degree-two tail-preserving,
we need the following lemma.

Lemma 2. (Hürlimann [7]). Let g(x) be a continuous and differentiable increasing
concave distortion function. The coherent distortion risk measure ρg(X) is a degree-
two tail-preserving risk measure for the subset of bi-atomic losses if and only if the
following condition holds:

t
1− t

(1− g(t))+ g(t)− 2tg′(t)≥ 0, for t ∈ (0,1). (9)

Theorem 3. (i) The distortion risk measure corresponding to α-skew normal dis-
tortion function given in (4) is the degree-two tail-preserving risk measure for the
bi-atomic losses.
(ii) The distortion risk measure corresponding to α-skew normal distortion function
given in (5) is the degree-two tail-preserving risk measure for the bi-atomic losses.

Proof We prove the part (i) only and the part (ii) can be done similarly. Note that
the first two terms in the inequality (9) are positive because of the properties of
distribution function, and

g′2(x) = 2Φ[α(Φ−1− μ)]→ 0 as α→−∞.

So the inequality (9) holds and the desired result follows from Lemma 2. �

6 Skew Normal Distortion Function for CAPM

Both versions of skew normal distortion functions, SΦα(Φ−1(x)|μ ,α) given in (4)
and SΦγ(Φ−1(x)|μ ,γ) given in (5), could also be used in capital asset pricing model
(CAPM), where the parameters are assumed to be μ > 0 and α > 0 (or γ > 1).

Specifically, we denote the return rate of the i-th stock at day t as

ri,t =
pi,t

pi,t−1

− 1, i, t = 1,2, · · · ,

where pi,t is the closing price for the the i-th stock at day t. For simplicity, we brief
ri,t to be ri. Given a portfolio containing k stocks with corresponding daily return
rate ri, its total return rate for the specific day t is

r =
k

∑
i=1

wiri, with wi ≥ 0,
k

∑
i=1

wi = 1,

where wi’s are the weights of the i-th stock in your portfolio.
Let the Choquet integral be the distorted value, the expected value of the portfolio

under the distortion function, the optimization problem for the portfolio is set as
follows. The objective function is h(w) defined by
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h(w) = ρg(r) =−
∫ 0

−∞
[1− g(SX(x))]dx+

∫ ∞

0
g(SX(x))dx

with restrictions

eT
k w =

k

∑
i=1

wi = 1 and wi ≥ 0, i = 1,2, · · · ,k,

where the distortion function can be either the gα defined in (4) or the gγ defined in
(5), w = (w1,w2, · · · ,wk)

T, a column vector in (0,1]k, ek = (1,1, · · · ,1)T, and r =
(r1,r2, · · · ,rk)

T, the column vector of k daily return rates. Note that from Theorem
1, we know that both risk measures are convex with μ > 0 and α > 0 (or γ > 1).

We will use the ρgγ (r) to illustrate the procedure for solving this optimization
problem and the use of ρgα (r) can be treated similarly.

Suppose that the return rates of k stock prices R = (R1,R2, · · · ,Rk)
T follows a

multivariate normal distribution with mean vector μ0ek and covariance matrix Σ .
Then the total return rate R = ∑k

i=1 wiRi ∼ N(μ0,σ2), the normal distribution with
mean value μ0 and variance σ2 = wTΣw. Note that a realization of R is r, which is
the vector of the daily return rates of stocks on a specific day. From Theorem 2, we
know that its distortion distribution is the γ-skew normal with location parameter
μ0−σμ , scale parameter σ and skewness parameter γ > 1. Therefore by (8), the
optimization problem is simplified as

h(w) = μ0− μσ+

√
2
π

(
1
γ
− γ
)
σ . (10)

with restrictions

wTek =
k

∑
i=1

wi = 1 and wi ≥ 0, i = 1,2, · · · ,k,

where μ > 0 and γ > 1 are known parameters.
Let t = μ−√2/π(1/γ−γ). Then Equation (10) can be rewritten as H(w)= μ0−

tσ . Denote y = Σ1/2w, ν = Σ−1/2E(R), and θ = Σ−1/2ek. The objective function
with restrictions is reduced to

H(y) = yTν− t
√

yTy with yTθ = 1. (11)

It is well known that the unique solution of this mean-standard deviation optimiza-
tion problem may not exist. In the following we will provide a solution for the
optimization problem by adding an extra condition.

Theorem 4. The solution of the optimization problem given in (11) is unique if t >√
νTν .

Proof. Using Lagrange multiplier method, the objective function is

L(y) = yTν− t
√

yTy+λ (yTθ − 1). (12)
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Taking partial derivatives with respect to y and λ , respectively, and set them to 0,
we obtain

∂L
∂y

= ν− ty√
yTy

+λθ = 0 and
∂L
∂λ

= yTθ − 1 = 0. (13)

From the first equation of (13), we obtain

ty√
yTy

= ν+λθ .

Multiplying to the left the transpose of itself in both sides of this equation, we obtain

(θTθ )λ 2 + 2(θTν)λ +νTν− t2 = 0.

Under the assumption that t >
√
νTν , this quadratic form of λ has a unique positive

root. Let λ̂ be the root, the solution ŷ of y can be uniquely determined by

y√
yTy

=
ν+ λ̂θ

t
and yTθ = 1.

Now, we will show that if the solution ŷ ∈ (R+)k ={
(y1,y2, ...,yk)

T|yi > 0, i = 1,2, ...,k
}

, then the objective function given in
(13) reaches its maximum. Since the domain (R+)k is open, we only need to show
that the Hession matrix of L(y) is negative semi-definite and is given by

H =
∂ 2L(y)
∂y∂yT =−t

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ 2L
∂y2

1

∂ 2L
∂y1∂y2

. . . ∂ 2L
∂y1∂yk

∂ 2L
∂y2∂y1

∂ 2L
∂y2

2
. . . ∂ 2L

∂y2∂yk

...
...

...
...

∂ 2L
∂yk∂y1

∂ 2L
∂yk∂y2

. . . ∂ 2L
∂y2

k

⎤
⎥⎥⎥⎥⎥⎥⎦

= −t

(
k

∑
s=1

y2
s

)−3/2

⎡
⎢⎢⎢⎣
∑k

s=1 y2
s − y2

1 −y1y2 . . . −y1yk

−y2y1 ∑k
s=1 y2

s − y2
2 . . . −y2yk

...
...

...
...

−yky1 −yky2 . . . ∑k
s=1 y2

s − y2
k

⎤
⎥⎥⎥⎦

= −t

(
k

∑
s=1

y2
s

)−3/2

B.

Let u = (u1,u2, · · · ,uk)
T. The for all u ∈ Rk, we have

uTBu =∑
i�= j

(yiy j− uiu j)
2 ≥ 0,
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so B is non-negative definite matrix and hence H is negative semi-definite. Because
this is true for any Y ∈ Rk+, the optimization problem solution Ŷ is the unique
maximum. �.

In the following, an empirical example is given for this allocation problem.

Example 2. The average daily return rates for 5 stocks over sixty days in China’s
stock markets are given as follows:

Code Company Name Daily Rate
600019 Baoshan Steel Ltd 1.0022
600086 Oriental Gold 1.0012
600036 China Merchants Bank 1.0025
600068 Gezhouba Dam 1.0013
000822 Shandong Ocean Chemical Group 1.0056

Using the price time series data of the these 5 stocks, their variance-covariance
matrix is obtained using Maple as:

Σ =

⎡
⎢⎢⎢⎢⎣

.000296 .000177 .000139 .000096 .000112

.000177 .000992 .000076 .000266 .000265

.000139 .000076 .000238 .000055 .000149

.000096 .000266 .000055 .001028 .000195

.000112 .000265 .000149 .000195 .000817

⎤
⎥⎥⎥⎥⎦

For t = 1, the solution of the optimization problem is obtained as:

w = (0.283,0.021,0.505,0.075,0.116)T

which is the weights for these 5 stocks to be considered when you want to allocate
them. �
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Purchasing Power Parity Puzzle and the
Australian Dollar Real Exchange Rate

Khorshed Chowdhury

Abstract. This paper examines mean reversion in the real exchange rate (RER) in-
dex of Australia in the presence of structural breaks from 1984 quarter 1 till 2011
quarter 1. Testing for mean reversion in RER is one way of testing the purchas-
ing power parity (PPP) theory of international trade and finance. Mean reversion
is examined by using a minimum Lagrange Multiplier unit-root test that allows for
breaks in level and trend. We were able to reject the unit-root null hypothesis and
find evidence of mean reversion and hence purchasing power parity (PPP). Our find-
ing reverses the results of past studies that failed to prove convergence to PPP in the
long-run. The corresponding structural break dates are 1988 quarter 2 and 2002
quarter 4 respectively and these breaks are statistically significant. The break dates
mostly correspond to the period of RER instability (1986-1989) and the recovery of
the Australian dollar driven by the resources boom (2001-2002).

Keywords: Real exchange rate, purchasing power parity, unit-root, structural
breaks.

JEL Classification: F13, F31, F41.

1 Introduction

Real exchange rate (RER)–the ratio of price of tradables to price of nontradables
–measures the cost of foreign goods relative to domestic goods. [14] defines it as
“. . . the product of the nominal exchange rate, expressed as the number of foreign
currency units per home currency unit, and the relative price level, expressed as
the ratio of the price level in the home country to the price level in the foreign
country.” RER measures the external competitiveness of an economy and is useful
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in explaining trade behaviour and national income. The policy issue of ‘overval-
uation/undervaluation’ and the resultant existence and magnitude of distortions is
discussed in terms of RER movements. Since RER is a price that ensures internal
and external equilibrium simultaneously, it plays a pivotal role in macroeconomic
adjustment. RER misalignment has adverse welfare and efficiency costs on small,
open economies like Australia.

Testing for mean reversion in RER is one way of testing the purchasing power
parity (PPP) theory. The basis for PPP is the “law of one price” derived from in-
ternational trade theory. Short-run deviations from PPP are significant, while the
deviations from PPP dissipate in the long-run. The absence of unit-root in RER will
indicate that long-run PPP holds. To highlight this point, let us consider the loga-
rithms of the Australian dollar price of a unit of foreign currency (st ), the logarithms
of the Australian price level (pt), the logarithms of foreign price level (p∗t ) and the
logarithms of RER (qt). Thus, qt can be expressed as follows:

qt = st + p∗t − pt (1)

The absolute version1 of PPP theory implies that nominal exchange rate (st) is pro-
portional to the relative price ratio (pt/p∗t ) thus rendering qt to remain constant over
time. If qt changes over time and follows a stationary autoregressive moving average
(ARMA) process, then deviations from PPP are transient. Short-run deviations from
PPP are perfectly consistent with efficiently functioning financial markets. However,
if qt is non-stationary, then the deviations will not be eliminated resulting in the fail-
ure of PPP in the long-run.

Empirical examinations in the 1960s lend some support of PPP over long periods
of time. Since then empirical evidence on the validity of PPP has been mixed so that
the validity of PPP remain doubtful. It was generally assumed that the exchange
rate would move quickly in line with changes in relative price levels after the col-
lapse of the Bretton Woods system. [11] ‘overshooting’ hypothesis provided some
theoretical justification for the transient deviations from PPP. Empirical tests of the
mid-1980s tended to reject PPP except in countries with high inflation [15]. This
view was criticised because the time series properties of exchange rates and relative
prices were ignored. Since 1973 increasing evidence of mean reversion of RERs
in industrialised countries has been found in studies employing the panel unit-root
test ([29]; [34]; [36]; [35] inter alia). Critics are sceptical of the evidence given the
low power and size distortions of these tests. Some studies [16]; [30]; [41]; [45];
[2]; [26]) show that the behaviour of the exchange rate can be non-linear where the
exchange rate adjustment can be characterised as a smooth transition autoregressive
(STAR) process2.

1 Mean reversion is a tendency for a stochastic process to remain near, or tend to return over
time to a long-run average value. Mean reversion also implies stationarity of a stochastic
process

2 We do not pursue this strand of research as it is beyond the scope of this paper.
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Given the conundrum of results, the objective of this paper is to test for mean
reversion of RER of Australia in the presence of structural breaks3 since December
19834. The traditional unit-root tests (like Dickey-Fuller (DF), Augmented Dickey-
Fuller (ADF) and Phillips-Perron (PP)) and tests accounting for a single structural
break have low power when multiple structural breaks are ignored5. To the best of
my knowledge, it is the first study that employs Australian RER data and tests for
unit-root in the presence of structural breaks. Allowing for structural breaks is par-
ticularly important considering the nature of the post-float experience for Australia.

The structure of the paper is as follows: In Section II we provide a critique of
the previous studies on testing for unit-roots of RER of Australia. In Section III, we
conduct a bevy of unit-root tests that ignores structural breaks in the data genera-
tion process (DGP). Next we conduct the powerful [24], henceforth LS, minimum
Lagrange Multiplier (LM) unit-root test with structural breaks. The LS test with
two structural breaks endogenously determines the location of two breaks in level
and trend and tests the null of a unit-root. The LS test with two structural breaks is
invariant to the magnitude of the breaks. The alternative hypothesis of the LS test
unambiguously implies trend stationarity. The results are discussed in Section IV.
Section V concludes with a summary of the findings.

2 Past Studies of Unit-Root of RER of Australia

Past studies on testing for unit-root of RER of Australia are sparse. A majority of
these studies have used the traditional tests (DF, ADF, KPSS and others) which suf-
fer from power deficiency when structural breaks are ignored. A few studies ([6];
[10]; [20] have incorporated a single endogenous structural break while testing for
unit-root with opposing results. So far empirical results ([7]; [10]; [20]) are over-
whelming in favour of rejection of the mean reversion hypothesis6.

In earlier studies, the Australian RER was characterised as a unit-root process
([4]; [3] and [17]). [18] “estimate the real exchange rate models over the post-float
period; a sample so short that tests of non-stationarity generates ambiguous results.
Tests on a longer sample of Australia’s trade-weighted RER suggest it is stationary,
possibly around a trend [19]”. [44], using RBA quarterly data from 1973 quarter 4
to 1995 quarter 2, found the trade-weighted RER to be stationary around a trend by
using the ADF test and [22] (KPSS) test. A notable feature of [44] is that RER was

3 The examples of policies with break consequences include frequent devaluations, deregu-
lation of both real and financial sectors and policy regime shifts, abrupt exogenous changes
like the H1N1, SARS pandemic etc. This can lead to huge forecasting errors and unrelia-
bility of the model in general.

4 After the collapse of the Bretton Woods system in February 1973, the Reserve Bank of
Australia (RBA) pegged the Australian dollar with a basket of currencies of its trading
partners. The Australian dollar was completely floated from December 1983, allowing its
value to fluctuate dependent on supply and demand on international money markets.

5 A succinct review of the unit-root tests are given in the Appendix.
6 [33] found shocks to RER have finite life and interpret their results as evidence in favour

of PPP.
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found to be stationary on the basis of ADF and KPSS unit-root test for the entire
sample period while for the post-float period RER was non-stationary which was
contradicted by the KPSS test.

[5] used RBA quarterly data from 1981 quarter 3 to 2000 quarter 4 to quantify
the extent to which the Australian trade-weighted RER was misaligned relative to
its long-run equilibrium value. [5] wrote “The time series properties of the data were
examined. The Dickey-Fuller test was unable to reject the null hypothesis of station-
arity for all of the variables7.” Results reported in Table 1 page 19 are erroneous.

By employing the ADF test and data from 1973 quarter 1 to 1995 quarter 3,
[1] finds the RER of Australia to be non-stationary. [1] defined the bilateral RER(q)
= eCPIUS/CPIAUS, where, e= nominal exchange rate and CPIUS,CPIAUS represent
the consumer price indices of the US and Australia respectively. This definition of
RER is restrictive and does not capture the overarching influence of relative prices
and bilateral exchange rates of the trading partners8.

These unit-root tests were carried out while modelling the fundamental determi-
nants of the Australian RER. It seems that the result is sensitive to the test method
and the size of the sample. Further, these studies ignored structural breaks and the
profound influence it can have on the DGP. Some researchers ([20] and [6]) enter
this debate by including the influence of structural change.

[20] used [47] and [38] unit-root tests failed to find evidence of mean reversion
in RER of Australia over the period 1973 quarter 1 till 1999 quarter 1. It is worth
noting that trade-weighted RER has been calculated from [23] index of RER without
reference to various trade-weights being used and the number of trading partners.
Thus, the RER measure on page 653 of Henry and Olekalns (2002) may not be an
accurate and comprehensive measure of RER.

The data accuracy problem was addressed by [6] who used the RER indices of
RBA. [6] comprehensively examined the unit-roots of four RER indices by taking
into account one structural break from 1970 quarter 4 to 1995 quarter 2. [6] esti-
mated a bevy of unit-root tests which include: [47], [39] Innovational Outlier (IO)
and Additive Outlier (AO) models, and [38] AO model and IO models I and II.

Using the [43] general-to-specific search procedure, [6] found [38] AO model
was the optimal model. His findings show that Trade-weighted index (TWI), Export-
weighted index (EWI) and Import-weighted index (IWI) arestationary while G7-
GDP weighted index is non-stationary. The structural break dates for these variables
are 1990 quarter 3 for TWI; 1991 quarter 3 for EWI; 1989 quarter 2 for IWI and
1982 quarter 4 for G7-GDP respectively. [6] result reverses the result obtained by
[20]. In addition, [6] and [20] report the break date without reporting the statistical
significance.

Importantly, unit-root tests in the above studies, which either do not allow for a
break under the null hypothesis such as [47] or model the break as an Innovational
Outlier (IO) as [38], suffer from severe spurious rejections in finite samples when a

7 The null hypothesis of DF test is non-stationary. It is only in the KPSS test that the null
hypothesis is stationary.

8 The conceptually correct method for calculating an RER index has been described by [14].
Hence, the result obtained by [1] is suspect.



Purchasing Power Parity Puzzle and the Australian Dollar Real Exchange Rate 175

break is present under the null hypothesis ([25]; [24]). Because the spurious rejec-
tions are not present in the case of a known break point, [25] identify the inaccurate
estimation of the break date as source of the incorrect rejections. Furthermore, [25]
found that the asymptotic null distributions of the DF-type endogenous break test
statistics are affected by nuisance parameters.

This shallow evidence in the Australian literature highlights the difficulties of
detecting robust evidence in favour of, or against, the PPP theory. A summary of
past results is given in Table 1 for a ready reference. Therefore, further research
is warranted to determine if PPP provides a valid representation of the long-run
equilibrium relation between the exchange rate and relative prices in Australia by
exploring the possibility of including multiple structural breaks. The next section is
devoted to this particular aspect.

Table 1 Summary of Previous Results of Unit-root in the Australian RER

Author(s) Finding Data Source Sample Period Test Method

Blundell-Wignall & Gregory (1990) NS Authors calculation with OECD data 1970:1 to 1988:4 ADF
Blundell-Wignall & Fahrer & Heath (1993) NS RBA data. 1973:2 to 1992:3 ADF
Gruen & Wilkinson (1994) NS RBA data. 1969:4 to 1990:4 ADF
Gruen & Shuetrim (1994) S ard.a trend RBA data. 1970:1 to 1993:4 ADF
Gruen & Kortian (1996) Ambiguous RBA data. 1984:1 to 1993:4 ADF & others
Tarditi (1996) S ard. a trend RBA data. 1973:4 to 1995:2 ADF & others
Chand (2001) S RBA data. 1981:3 to 2000:4 ADF
Bagchi et al. (2004) NS Authors’ calculation with IFS data. 1973:1 to 1995:3 ADF
Henry & Olekalns (2002) NS Authors’ calculation. Data source unknown. 1973:1 to 1999:1 Zivot & Andrews (1992),

Single break date @: 1984:1 Vogelsang (1997)
Chowdhury (2007) S RBA data. 1970:4 to 1995:2

Single break date@: 1990:3 Perron (1997) AO Model
& 4 other unit-root tests

Note: S = Stationary; NS = Non-stationary; @=Assume no break under the null hypothesis of unit root.

3 Time-Series Properties of RER in the Presence of Structural
Breaks

3.1 Data and Data Source

We performed the LS minimum Lagrange Multiplier (LM) unit-root tests to de-
termine structural breaks endogenously. The LS unit-root test with two structural
breaks endogenously determines the location of two breaks in level and trend and
tests the null of a unit-root. The LS unit-root test with two structural breaks is invari-
ant to the magnitude of the breaks. LS noted that the alternative of the minimum LM
unit-root test with two structural breaks unambiguously implies trend stationarity;
however, it could be true that the series can possess unit-root with structural breaks.

Unit-root tests for one (LS1) and two breaks (LS2) were conducted with RATS
7.2. We estimated two models: LS-Break Model and LS-Crash Model. The LS-
Break Model captures the change that is gradual whereas LS-Crash Model picks
up the change that is rapid. We have reported the results of both models in Table 2
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which are contradictory to each other. The result of the unit-root test is contingent
upon the way the breaks are modelled. The choice of the “model” should be based
on economic theory and reality. Based on our judgement, we think the LS Trend
Break model is the optimal model to discuss.

On the basis of LS1unit-root test we find LnRER to be stationary. By applying the
LS2 unit-root test we found that LnRER is also stationary. Rejection of the unit-root
null provides evidence of mean reversion and hence PPP.

Table 2 Unit-Root Tests in the Absence and Presence of Structural Breaks

Variable:LnRER Traditional Unit Root Tests
Test τ Time of Break1 Time of Break2 k Decision
ADF -2.425 NC NC 2 NS
Elliot et al. 399.551 NC NC 2 S
Ng-Perron5 30.418 NC NC 4 S
KPSS 0.184 NC NC 5 NS
Variable:LnRER LS-Break Model Result
Test τ Time of Break1 Time of Break2 k Decision
LS1 -3.568* 2003:2*** NC 5 S
LS2 -3.877** 1998:2** 2002:4*** 5 S
Variable:LnRER LS-Crash Model Result
Test τ Time of Break1 Time of Break2 k Decision
LS1 -2.334 1989:1 NC 5 NS
LS2 -2.714 1998:1* 1995:1** 5 NS

Note:

1. NC = Not calculated; S = Stationary, NS = Nonstationary.
2. t-statistic for the null hypothesis =0.
3. DF Test critical values at 1, 5 and 10 per cent level are -4.054; -3.456 and -3.153 respec-

tively.
4. Critical values of the endogenous two-break LM unit-root test at 10%, 5% and 1% level

of significance are -3.504, -3.842 and -4.545 respectively from Table 2 Lee and Strazi-
cich (2003:1084).

5. We report the first unit root test statistic developed by Ng and Perron which is the Elliot,
Rothenberg, and Stock (1996) point optimal statistic for GLS de-trended data. The other
three statistics, MZd

α ,MZd
t and MSMd are the enhancements of the Phillips-Peron (PP)

test statistics, which are not reported here.
6. (*), (**) and (***) refer to significant at 10, 5 and 1 per cent level of significance respec-

tively.

ADF test fails to reject the null hypothesis for LnRER (refer to Table 2). The
GLS test proposed by [13] and M-test suggested by [31] reject the null of a unit-
root for LnRER. However, based on the KPSS test we reject the null hypothesis of
stationarity for LnRER. On balance, the evidence in Table 2 is inconclusive.
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3.2 Lee and Strazicich (2003) (LS) Unit-Root Test

We performed the LS minimum Lagrange Multiplier (LM) unit-root tests to de-
termine structural breaks endogenously. The LS unit-root test with two structural
breaks endogenously determines the location of two breaks in level and trend and
tests the null of a unit-root. The LS unit-root test with two structural breaks is invari-
ant to the magnitude of the breaks. LS noted that the alternative of the minimum LM
unit-root test with two structural breaks unambiguously implies trend stationarity;
however, it could be true that the series can possess unit-root with structural breaks.

Unit-root tests for one (LS1) and two breaks (LS2) were conducted with RATS
7.2. We estimated two models: LS-Break Model and LS-Crash Model. The LS-
Break Model captures the change that is gradual whereas LS-Crash Model picks
up the change that is rapid. We have reported the results of both models in Table 2
which are contradictory to each other. The result of the unit-root test is contingent
upon the way the breaks are modelled. The choice of the “best model” should be
based on economic theory and reality. Based on our judgement, we think the LS
Trend Break model is the optimal model to discuss.

On the basis of LS1unit-root test we find LnRER to be stationary. By applying the
LS2 unit-root test we found that LnRER is also stationary. Rejection of the unit-root
null provides evidence of mean reversion and hence PPP.

3.3 Endogenously Determined Structural Break Dates

The estimated single structural break date determined by the LS1 Break Model cor-
responds to 2003 quarter 2 for LnRER. The break date is statistically significant at
the 5 per cent level. By considering the two breaks LS2 Trend Break Model, the
corresponding break dates for LnRER are 1988:2 and 2002:4. The structural break
dates are all statistically significant. The first break date of LnRER coincides with
the abandonment of the “check-list” approach in favour of “discretionary” approach
to monetary policy by RBA in 1988 quarter 2. This structural break may also be
capturing the effect of the stock market crash of October 1987, and the onset of
recession at the end of the 1980s culminating into the recession in 1990. The be-
haviour of the Australian RER shows periods of instability. One such period was
centred around June 1986, the other between March 1998 and June 1999. After a
sustained period of depreciation, appreciations of the RER occurred during 1986-
1989 so that the break date for the RER is picked up in 1988 quarter 2 followed
by the meltdown in 2001 and again a recovery in early 2002. The second break
date is found to be in 2002 quarter 4 which is due to the sudden appreciation of
the Australian dollar. Between January 2002 and July 2008, the Australian dollar
appreciated sharply from 51 US cents to 97 US cents which was largely driven by
increased demand for Australian exports.
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4 Summary and Conclusion

We investigate evidence of mean reversion in the Australian dollar RER. Conven-
tional unit-root tests fail to provide evidence of stationarity of RER. If RER is
non-stationary, then PPP is no longer valid as a representation of the long-run equi-
librium relation between the exchange rate and relative prices. The conventional
unit-root tests may suffer from severe size distortions and results might be erroneous
since they do not account for structural breaks in the data. To overcome the loss of
power in conventional unit-root tests, we performed the [24] minimum Lagrange
Multiplier unit-root tests in the presence of structural breaks.

Based on our result, we were able to reject the unit-root null hypothesis and
find evidence of mean reversion and hence PPP. This result is consistent with [6]
finding although the break dates are different. This finding reverses the findings of
past works that failed to reject non-stationarity. The corresponding break dates for
RER are 1988 quarter 2 and 2002 quarter 4 respectively; and the break dates are all
statistically significant. The estimated break dates mostly correspond to the period
of RER instability (1986-1989) and the recovery of the Australian dollar driven by
the resources boom (2001-2002).

Appendix

A Brief Review of Unit-root Tests9

Traditional (First Generation Models) tests for unit-roots (such as Dickey-Fuller,
Augmented Dickey-Fuller and Phillips-Perron) have low power in the presence of
structural break. [37] demonstrated that, in the presence of a structural break in
time-series, many perceived non-stationary series were in fact stationary. [37] re-
examined [32] data and found that 11 of the 14 important US macroeconomic vari-
ables were stationary when known exogenous structural break is included10. [37]
allows for a one time structural change occurring at a time TB(1 < TB < T ), where
T is the number of observations.

The following models were developed by [37] for three different cases. Notations
used in equations 2–19 are the same as in the papers quoted. Null Hypothesis:

Model(A) yt = μ+ dD(TB)t + yt−1 + et (2)

Model(B) yt = μt + yt−1 +(μ2− μ1)DUt + et (3)

Model(C) yt = μt + yt−1 + dD(TB)t +(μ2− μ1)DUt + et (4)

Where D(T B)t = 1 if t = TB +1, 0 otherwise, and DUt = 1 if t > TB,0 otherwise.

9 The discussion that follows is for reference only and may be omitted.
10 However, subsequent studies using endogenous breaks have countered this finding with

[47] concluding that 7 of these 11 variables are in fact non-stationary.
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Alternative Hypothesis:

Model(A) yt = μt +β t +(μ2− μ1)DUt + et (5)

Model(B) yt = μ+βtt +(β2−β1)DT ∗t + et (6)

Model(C) yt = μ+β1t +(μ2− μ1)DUt +(β2−β1)DTt + et (7)

Where DT ∗t = t−TB, i f t > TB , and 0 otherwise.
Model A permits an exogenous change in the level of the series whereas Model B

permits an exogenous change in the rate of growth. Model C allows change in both.
[37] models include one known structural break. These models cannot be applied
where such breaks are unknown. Therefore, this procedure is criticised for assuming
known break date which raises the problem of pre-testing and data mining regarding
the choice of the break date [28]. Further, the choice of the break date can be viewed
as being correlated with the data.

Second Generation Models

Unit-Root Tests in the Presence of a Single Endogenous Structural Break
Despite the limitations of [37] models, they form the foundation of subsequent stud-
ies that we are going to discuss hereafter. [47], [39], and [38] among others have de-
veloped unit-root test methods which include one endogenously determined struc-
tural break. Here we review these models briefly and detailed discussions are found
in the cited works.

[47] models are as follows:

Model with Intercept

yt = μ̂A + θ̂ADUt(λ̂ )+ β̂At + α̂Ayt−1 +
k

∑
j=1

ĉA
j"yt− j + êt (8)

Model with Trend

yt = μ̂B + β̂Bt + γ̂BDT ∗t (λ̂ )+ α̂Byt−1 +
k

∑
j=1

ĉB
j"yt− j + êt (9)

Model with Both Intercept and Trend

yt = μ̂C + θ̂CDUt(λ̂ )+ β̂Ct + γ̂CDT ∗t (λ̂ )+ α̂Cyt−1 +
k

∑
j=1

ĉC
j"yt− j + êt (10)
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where,

DUt(α) = 1 if t > Tα , 0 otherwise; DT ∗t (λ ) = t−Tλ if t > Tλ , 0 otherwise.

The above models are based on [37]’s models. However, these modified models do
not include DTb.

On the other hand, [39] include DT b but exclude t in their models. [39] models
are given below:

Innovational Outlier Model (IOM)

yt = μ+ δDUt +θD(Tb)t +αyt−1 +
k

∑
j=1

ci"yt−i + et (11)

Additive Outlier Model (AOM) - Two Steps

yt = μ+ δDUt + ỹt (12)

and

ỹt =
k

∑
j=0

wtD(Tb)t−1 +α ỹt−1 +
k

∑
j=1

c j"ỹt− j + et (13)

ỹ in the above equations represents a detrended series y.
[38] includes both t (time trend) and DTb (time at which structural change occurs)

in his Innovational Outlier (IO1 and IO2) and Additive Outlier (AO) models.
Innovational Outlier Model allowing one time change in intercept only (IO1):

yt = μ+θDUt +β t + γD(Tb)t +αyt−1 +
k

∑
j=1

ci"yt− j + et (14)

Innovational Outlier Model allowing one time change in both intercept and slope
(IO2):

yt = μ+θDUt +β t + γD(Tb)t + γD(Tb)t +αyt−1 +
k

∑
j=1

ci"yt− j + et (15)

Additive Outlier Model Allowing One Time Change in Slope (AO)

yt = μ+β t + γDT∗t + ỹt (16)

where DT ∗t = 1(t > Tb)(t−Tb)

ỹt = α ỹt−1 +
k

∑
j=1

ĉC
j"ỹt− j + et (17)

The Innovational Outlier models represent the change that is gradual whereas Ad-
ditive Outlier model represents the change that is rapid.

Regarding the power of tests, the [39] model is robust. The testing power of
[38] and [47] models are almost the same. On the other hand, [38] model is more
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comprehensive than [47] model as the former includes both t and DTb while the
latter includes t only.

Additional test methods have been proposed for unit-root test allowing for multi-
ple structural breaks in the data ([27] (LP); [24] (LS)). One important issue common
to the ZA and LP (and other similar) endogenous break tests is that they assume no
break(s) under the unit-root null and derive their critical values accordingly. Thus,
the alternative hypothesis would be “structural breaks are present” which includes
the possibility of a unit-root with break(s). Thus, rejection of the null does not nec-
essarily imply rejection of a unit-root per se, but would imply rejection of a unit-root
without breaks.

Third Generation Models

Lee and Strazicich (LS) (2003) Minimum LM Unit-Root Test
LS propose a minimum Lagrange multiplier (LM) unit-root test in which the alter-
native hypothesis unambiguously implies trend stationarity. Consider the DGP as
follows:

"yt = δ ′+"Zt +φ S̃t−1 + ut (18)

where S̃t = yt − ψ̃x−Zt δ̃ (t = 2, . . .T and is a vector of exogenous variables defined
by the data generating process; δ̃ is the vector of coefficients in the regression of
"yt on "Zt respectively with " the difference operator; and ψ̂x = y1−Z1δ̃ , with
y1 and Z1 the first observations of yt and Zt respectively.

Model B of Perron (1989) is omitted by LS (2003), as it is commonly held that
most economic time-series can be adequately described by model A or C. Equivalent
to Perron’s (1989) Model C, which allows for a shift in intercept and change in
trend slope under the null hypothesis and is described as Zt = [1, t,Dt ,DTt ]

′, where
DTt = t−TB for t > TB+1, for t > T B+1, and zero otherwise. It is important to note
here that testing regression (18) involves using"Zt instead of Zt . "Zt is described
by [1,BtDt ]

′ where Bt = "Dt and Dt = "DTt . Thus, Bt and Dt correspond to a
change in the intercept and trend under the alternative and to a one period jump and
(permanent) change in drift under the null hypothesis, respectively.

The unit-root null hypothesis is described in (18) by φ = 0 and the LM t-test is
τ̃ = t given by; where τ̃ = t− statistic for the null hypothesis φ = 0.

The augmented terms " ˜St− j, j = 1, ...k, terms are included to correct for serial
correlation. The value of k is determined by the general to specific search procedure.
General to specific procedure begins with the maximum number of lagged first dif-
ferenced terms max k = 8 and then examine the last term to see if it is significantly
different from zero. If insignificant, the maximum lagged term is dropped and then
estimated at k = 7 terms and so on, till the maximum is found or k = 0. To endoge-
nously determine the location of the break (TB), the LM unit-root searches for all
possible break points for the minimum (the most negative) unit-root t-test statistic
as follows:
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inf τ̃ = inf
λ
τ̃(λ ); where λ = TB/T. (19)

The two-break LM unit-root test statistic can be estimated analogously. Critical val-
ues of the two-break LM unit-root test (T = 100) is reported in Table 3 by LS. LS
(2003: 1087) conclude “summary, the two-break minimum LM unit-root test pro-
vides a remedy for a limitation of the two-break minimum LP test that includes the
possibility of a unit-root with break(s) in the alternative hypothesis. Using the two-
break minimum LM unit-root test, rejection of the null hypothesis unambiguously
implies trend stationarity.”
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An Empirical Analysis of Price Behavior of
Natural Rubber Latex: A Case of Central
Rubber Market Hat Yai, Songkhla, Thailand

Hari Sharma Neupane and Peter Calkins

Abstract. Hat Yai City in Songkhla Province, Thailand has three unique advantages:
its Central Rubber Market lies in the largest rubber growing region in the world, it
can easily access the new (2004) deep-sea port in Songkhla, and it lies directly
on the improved transport infrastructure of the Asia Highway and the North-South
Economic Corridor linking it to other growing areas in Southeast Asia and Thai-
land. Despite these advantages, the rubber industry has always been susceptible to
the price volatility of rubber latex, which destabilizes the benefits of rubber produc-
tion to the local economy, particularly to small-holder producers. Since volatility
may theoretically either decrease in the future with the integration of more numer-
ous supplying regions or increase with the intensified co-dependence of supplying
and demanding countries, careful modeling of rubber price volatility on the Hat
Yai market could both inform development policy today and serve as a baseline for
future studies.

This paper therefore attempts to identify the best econometric model to cap-
ture price volatility of latex type RSS3 in Thailand for the period 2004-2011. The
daily price of latex type RSS3 was modeled by adopting and comparing conditional
volatility models, GARCH, GARCH-GJR and EGARCH. The price volatility of
natural rubber latex type RSS3 is strongly persistent, and the estimated
results are statistically valid. If implemented, the findings of this paper with re-
spect to economic, environmental, and transportation policy could lead to benefits
to small holders and to price stabilization mechanisms on national and export.
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1 Historical Background of Rubber Production and Marketing

Rubber plantations are established in many tropical nations as an indispensable re-
source for a prosperous life and other economic and environmental benefits (Dean
1987). Over the 21-year period 1990-2011, global rubber production has increased
from 15 million to 26 million tons, while rubber consumption has rose from 14.8
million to 25.8 million tons. These figures account for the 2.8% average annual
increment in both rubber production and consumption in the world (Table 1).

Table 1 Growth, shares, consumption and production of rubber in the world

Growth = Average annual growth rate

Table 2 Natural rubber consumption (000’ mt.) by major economies (2002-2010)

Growth = Average annual growth rate

The production of NR has risen by an average annual rate of 3.9% and that of
shares in total rubber production by 2.8% between 1990 and 2011. The consumption
of NR has also followed the same trend. As demand for NR has grown, the shares
of SR production and consumption have dropped by almost 10% (decline from 66%
to reach 56%) and nearly 9% (drop from 64.96% to reach 56.65%), with an average
annual growth rate of only 2.49%. Likewise, China consumed more than 33% of
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NR produced in the world, the USA more than 10%, Japan 9% and Thailand 4%,
respectively, in 2010 (Table 2)1. Conversely, the average annual growth trend of NR
consumption was negative in the USA (-2.26%) over the period 2002-2010. The
average annual growth of global NR consumption was 3.68% in the same period.
The upward trend in NR demand was fueled by increased consumption by emerging
economies, averaging 12.8% per year in China and 6.5% in Thailand.

2 Problems of Price Volatility and Market Concentration

The demand for both natural rubber (NR) and synthetic rubber (SR) is well secured
and growing apace with improvements in living standards around the world (FAO
2002). However, the price of latex is quite volatile. Since the price of the natu-
ral input is a critical determinant of industrial demand for NR to produce rubber
tires and tubes for motor vehicles; footwear, belts and hoses for wire cable indus-
tries (Grilli 1980), such volatility can wreak havoc with profitability, planning and
worker incomes. FAO (2002) mentioned that SR is a purely petroleum-based indus-
trial product made from monomers and subject to price volatility, whose production
and consumption are dominated by large global enterprises. Therefore, economic
planners need to know the relative volatility of NR and SR prices, as well as the best
means of controlling excessive market price volatility in NR. Realizing this need,
the first International Natural Rubber Agreement (INRA) was signed in 1979 under
the support of the United Nations Conference on Trade and Development (UNC-
TAD) and agreement was updated periodically (UNCTAD 2007). Market regulation
in the NR sector included the creation and management of international buffer stock
schemes envisaged under the 1979, 1987 and 1995 INRAs. These schemes gave
due consideration to increasing producer benefits, specifically for smallholders, and
to stabilizing and increasing export earnings through expanded export volumes. The
East Asian International Tripartite Rubber Organization (ITRO) established in 2001,
aims to manage NR production through the maintenance of orderly market growth
and guaranteed minimum price to domestic producers (UNCTAD 2007). Although
NR latex or rubber smoked sheets (RSS) serve as both raw products for industry and
in rubber items; they are perfect substitutes for the end user (Saidur and Mekhilef
2010). In fact, such items could be made either from NR, SR or blends of both in
various proportions. Therefore, manufacturers determine the type of rubber used
in the rubber items based on technological advantage, product availability, current
market prices and, as noted, price volatility.

At present, vast land areas are already covered by fast-growing tree plantations
where the dominant crop is Hevea in Africa, Asia, Latin America, Oceania, the
southern USA and even some European countries (Spain and Portugal) (TERRA
2004). Perhaps, Thailand is the country that has most pioneered large-scale NR
plantations, which were eventually extended to other countries of the region. Over
20 millions of families are dependent on NR plantation for their basic income in

1 Source: http://www.thainr.com/en, and Office of Agricultural Economics, Thai-
land.

http://www.thainr.com/en


188 H.S. Neupane and P. Calkins

the world NR market (Khin et al. 2008). The production of NR has a major role
in the socioeconomic development of the producing countries or regions and is the
sources of livelihood for smallholders, especially in and around the west Malaysian
peninsula. The NR industry has always been susceptible to crisis induced by fluc-
tuating prices and manufacturers are most vulnerable to raw materials, production
and export of rubber based articles. Hence, economic shocks to the rubber market-
ing channel have always had major impact upon not only the economy but also the
social and political stability of the region (Allen 2004; Stubbs 1983). Fluctuations in
both farm gate prices and macro exchange rates have exacerbated the food insecurity
of millions of rural dwellers and low prices paid for NR contribute to rural poverty in
many countries, especially smallholders in South East Asia where currency turmoil
has greatly diminished the purchasing power for essentials like medicines (Khin et
al. 2008).

3 Natural Rubber Production and Export in Thailand

Natural rubber plantation in Thailand has been promoted by Thai Government from
1961 onwards through special policies and programs. Since 1991, Thailand has been
the world’s largest producer and exporter in both NR and rubber articles (TRA,
2007). The Siam peninsula accounted for more than 31 and 34% of world produc-
tion and exports, respectively, in 2010. Nevertheless, the total share of Thailand’s
production in the world rubber market has been reduced by 4.5% due to a relatively
weak average annual growth rate of 2.76 % over the period 2002-2010. Meanwhile,
consumption of NR grew by 5.22% and exports grew by 3.95%. The economic con-
tribution of the NR industry to Thai export receipts increased significantly, from
74.6 billion in 2002 to 249.3 billion TB in 2010, with an average annual growth rate
of 16.27 % (Table 3)2.

4 The Study Site and Purpose of Study

Songkhla province is one of the leading NR growing provinces in the south. The
monoculture production system has replaced a traditional system of rubber forests,
where rubber used to be grown as an intercrop within fruit orchards and natural
forests known as a ‘suan somrom’ meaning “integrated garden” (TRA 2007). The
rubber plantation has been promoted through governments’ welfare fund and land
use pattern now depicts that some 61% of total land cover of the province is occupied
by Para rubber plantations. Forests including shrubs and grasses constitute 14.5%;
rice fields hold 12%; agriculture, pasture, mines and other activities comprise nearly
7%; and fisheries, wetlands, and water bodies occupy about 4% of the total land
cover. The remaining 2% is devoted to urban and rural settlements and institutional
land (Figure 1)3.

2 Source: http://www.thainr.com/en and http://www.thainr.com/en
3 Source: GIS data file is obtained from Prince of Songhkla University, Hat Yai, Thailand

http://www.thainr.com/en
http://www.thainr.com/en
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Table 3 Natural Rubber production and Exports in Thailand

Average annual growth rate

The NR industry is one of the key sectors of the provincial economy of the
Songkhla, with extensive impacts on economic, social and environmental systems.
In the 112 years since NR was first introduced into Thailand from Malaysia through
Trang province (Somboonsuke and Cherdchom 2000), it has become an integral
part of the cultural and economic life for Southern Thai’s (TRA 2007). The Siamese
council of Ministers agreed to participate in an international rubber control scheme
in 1934 without prior knowledge of dynamics of expansion process or the extent
of the planting of small stand of rubber trees in peninsular Siam (Stifel 1973). The
TRA argued that “the Para rubber tree has played [sic] a vital role related to or hosts
a routine of many smallholders, laboring entrepreneurs and government officers: a
great deal of Thai citizens (at least 6 million people or no less than 1 million families
of the Country). The worthy botany has brought an immense income for our country
that comes from the export of NR products, rubber productivities and rubber wood
manufactures of which the values were estimated by over 400,000 million Baht per
year”.

Rubber production is the dominant source of household income for small rubber
growers involved in integrated farming systems and small holding rubber grower has
become increasingly prominent in both hectarage and production (Somboonsuke
and Shivakoti 2001). A full 93-95% of total rubber farmers directly engaged in NR
production are small holders, whereas only 5-7% are estate owners (Kittipol 2008;
Somboonsuke and Cherdchom 2000). Thus, small producers are highly vulnerable
to market uncertainties (Viswanathan 2006).

Conversely, the rubber sector itself is controlled by large processing plants that
purchase the material via local dealers. There are two marketing chains, one for the
large plantations owned by large firms; the other for the small producers, with lots
of middlemen and collecting centers. Prices are set one month before in the Hat Yai
market. There is also the emergence of a rubber futures market. The Agricultural Fu-
tures Exchange of Thailand (AFET) is involved in NR futures trading. AFET started
trading in the specific product known as Ribbed Smoked Sheet No.3 (RSS3). The
aims of the AFET are to provide an efficient system for trading, clearing, settlement
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Fig. 1 Landuse use map of Songkhla showing coverage of Para rubber

and deliveries, which will serve as an instrument to hedge the price risks and for
future price discovery (IRSG 2010).

Realizing the immense potential of the NR industry in the world market, the Thai
government has reformed the country’s rubber development system with the estab-
lishment of an international standard rubber research institute at Hat Yai. It has even
declared that Hat Yai is to be known as “rubber city.” The Central Rubber Market
Hat Yai (CRMH) has played such a great role in the marketing of NR products that
the city is considered as a production and marketing hub for Thai NR products.
This role is likely to grow as a result of both the establishment of the Deep-Sea
Port in Songkhla (Gov/Thai PRD 2004) and the great amelioration of road trans-
port through the North-South Economic Corridor. The Asian Highway AH 2(No.
4) links the North-South Economic Corridor of the Greater Mekong Sub-region
(GMS) at Bangkok to the Indonesia-Malaysia-Thailand growth Triangle, embrac-
ing several provinces of southern Thailand and ending in the Sadao Municipality of
Songkhla at the Malaysian border. This Asian Highway or its sub-branches serve
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to directly or indirectly tie together the various agricultural production patches and
agro-based industries of southern peninsular Siam and even northeastern Thailand,
providing ample opportunities for national and international market through land
shipment. Not only does this growing road network connect the Hat Yai market to
rubber shipments coming up from Malaysia; it will be able to rapidly and efficiently
channel rubber shipments from such Northeastern Thai regions as Mukdahan. Thus,
Songkhla province, as an international marketing hub for NR and other agricultural
products, has played a leading role in the socioeconomic development of south-
ern Thailand. The province seems to be one of the driving forces or catalysts for
economic development of the peninsular Siam.

Even though these infrastructural developments are “good,” they add additional
elements of uncertainty to rubber supply, demand, trade, and hence price volatility.
Measuring such volatility becomes a pressing research priority, which the present
paper will endeavor to meet. The price behavior of NR at the CRMH already plays
a significant role in provincial economy. It affects the export status of NR extracts
and rubber based products on the international market as well as the livelihood of
the large number of small rubber holding farmers in the south. The obvious envi-
ronmental advantages which NR possesses over the synthetic rubbers have never
translated into financial advantage: both kinds have for decades suffered from poor
prices. Despite this, producing NR remains the main and often the sole source of
family income for millions of small farmers around the world (Allen 2004). Thus,
we propose to use advanced econometric methods to observe the volatility of the
rubber prices and its persistence over time by using the daily bid price of the rubber
latex at the CRMH.

Fundamentally, the price of NR depends upon the global demand of NR and on
the world petroleum price, which directly affects the cost of SR production. But
changes in the prices of rubber are also altered by market fundamentals. Improve-
ment in the world economy leads to an increase in rubber demand, while a decline in
the price of NR relative to SR induces a falling share of SR in total rubber consump-
tion. Meanwhile, a weak currency exchange in the producing countries encourages
an increase in exports of NR and its products (Khin et al. 2008). Furthermore, the
price of NR is highly influenced by global rubber stock controllers. The rubber mar-
ket in Thailand is controlled by Singaporean, Malaysian, and to a certain extent Thai
investors, leaving the rubber growers themselves no role in price setting. As mere
suppliers of the rubber produce, Thai farmers are offered a lower per unit price for
RSS grade and fresh latex, on average around Thai Bhat 35.00 per kilogram. In con-
trast, market prices of rubber have fluctuated around 50-100 baht per kilo in 2007
(Kaiyoorawong 2008).

The growing debate on how to enhance the green economy has recognized that
the carrying capacity of ecosystems is vulnerable and that, in the face of climate
change, there is an urgent need to reduce global carbon emissions. The NR industry
is fortunate from this point of view in that it not only provides eco-friendly prod-
ucts; it is also capable of reabsorbing the carbon dioxide from the atmosphere. The
natural rubber industry is based upon minimal environmental disturbance, far less
than that required to produce typical food crops (Jones 1997). Hence, the findings of
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this paper about the nature of fluctuating rubber price in the CRMH may have im-
plications for both economic and environmental policy. If implemented, they could
lead to benefits of small holders and price stabilization mechanism in the Songkhla
and its peripherals as well as NR and NR based products export market.

5 Data Sources and Methods

5.1 Source and Nature of the Data

The data for this research were gathered from various sources. The daily bid prices
of NR latex of type RSS3 for the period June 2004 to February 2011 were obtained
from the webpage of the Songkhla Provincial Agriculture Office4. World rubber
consumption and production and the value of NR exports were downloaded from
the webpage of Thai Rubber Association5 and from the webpage on Indian NR6.
The nature of the series/variables are plotted in the Figure 2 and 3.

Fig. 2 A. Daily prices of RSS3 at CRHM (Bhat/Kg) and B. volatility of price

Fig. 3 First difference (A) and log difference of daily prices of RSS3 (B)

4 http://songkhla.doae.go.th/
5 http://www.thainr.com/en
6 http://rubber.wordpress.com/

http://songkhla.doae.go.th/
http://www.thainr.com/en
http://rubber.wordpress.com/
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5.2 Theoretical Setup and Models

5.2.1 Unit Root Test

A standard time series model assumes linearity and symmetric adjustments and,
if adjustment is approximately symmetric, the Dickey-Fuller test is more powerful
than any other test (Enders and Granger 1998). A study variable series yt (RSS3 in
our case), is said to be stationary if the mean, variance and covariance of the series
remain constant over time (Lim et al. 2009). If the yt is correlated at higher order
lags, the assumption of white noise disturbances, εt , is violated and the Augmented
Dickey-Fuller (DF) test allow us to perform a parametric correction for higher-order
serially correlated error processes. The formulation of an augmented DF test of de-
pendent variable with deterministic trend is presented in equation (1) where Δyt is
the first difference of series yt ; ‘p’ is the lag-length terms for yt , εt is the error term
and α , δ , ψ and θ are the parameters. The lags Δyt of capture any dynamic struc-
ture present in the dependent variables in order to insure that εt is not autocorrelated
(Brooks 2008; Maddala 1992). Likewise, the Phillips-Perron method for unit root
test estimates the non-augmented DF test, and modifies the t-ratio of the α coeffi-
cient so that serial correlation does not affect the asymptotic distribution of the test
statistic (QMS 2007)

Δyt = α+ δ trend+ψyt−1 +
p

∑
i=1

θiΔyt−i + εt (1)

The classic methods of Dickey and Fuller (1979, 1981) and Phillips and Perron
(1988) are suffered from low power and size distortions (Divino and McAleer 2010).
However, such limitations are overcome by adopting other modified tests methods
as suggested by Perron and Ng (1996), Elliott et al. (1996), and Ng and Perron
(2001), (cited in Divino and McAleer 2009). These suggested modified unit root
tests methods are also subject to low power and size distortions under the short run
persistence implied by GARCH component. However, Divino and McAleer (2009)
argued that such size distortions might be even greater for the traditional Dickey
Fuller test, despite the sensitivity of the modified tests to the degree of volatility
in the GARCH process. Hence, we have adopted the modified Augmented Dickey-
Fuller generalized least square (MADFGLS) test and the MPPGLS test, which both
use generalized least square (GLS) de-trended data and the MAIC in order to choose
the truncation lag MPPGLS.The outcomes of unit root test are presented in Table 4
and the result reveals that the null hypothesis of a unit root is rejected for the trans-
formed variables. The series RSS3 and logarithm of RSS3 may not be stationary.
However, the unit root test clearly depicts that the first difference and log difference
variables are stationary. These empirical results allow us to use the univariate con-
ditional mean and conditional volatility models to estimate the bid price behavior of
RSS3 at CRMH.
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Table 4 Unit root test statistics for daily price of RSS3

These results are obtained on lag length 10.Values with (***) denotes null hypothesis of a
unit root is rejected at the 1% level of significance.

5.2.2 Conditional Mean and Conditional Volatility Models

Recently, researchers have turned their attention to the risk associated with eco-
nomic variables. For instance, international tourist arrivals, prices of agricultural
products, stock and exchange rates are carefully monitored. Conditional volatility
models then adopted to predict the risk of returns for these industries and to cap-
ture symmetric and asymmetric effects using daily, weekly and monthly data for
example (Divino and McAleer 2009; Huang B.-W. et al. 2009; Lim and McAleer
2000; Shareef and McAleer 2007; Yang et al. 2010). Price volatility of RSS3 fol-
lows a similar pattern to that of financial volatility. Recently, theoretical devel-
opments and their results for univariate and multivariate time series models with
conditional volatility errors and a wide range of univariate and multivariate, con-
ditional and stochastic models for volatility have been extensively reviewed (Li et
al. 2002; McAleer 2005). The residual series of such selected models should follow
the white noise process. The Akaike and Schwarz information criteria can be prac-
ticed to determine the lag length, although it is very common to impose GARCH (1,
1) specification in advance (Coshall, 2009; Huang B.-W. et al., 2009). The general
form of the GARCH (p, q) formulation is presented in equation (2) and (3). Like-
wise, the univariate stationary form of AR (1) - GARCH (1, 1) model for bid price
of RSS3 and transformed variables (i.e. Δyt ; logyt ; and Δ logyt as appropriate) at
CRMH, is presented in equation (4)

yt = ψ1 +ψ2yt−i + εt ; where |ψ2|< 1 (2)

ht = ω+
p

∑
i=1

αiε2
t−1 +

q

∑
j−1

β jht− j (3)

yt = ψ1 +ψ2yt−1 + εt , where |ψ2|< 1 (4)

Where yt denotes the daily prices of RSS3 for t = 1, . . . ,n and εt is an error process.
The shock or movement in daily bid price of RSS3 is denoted by,
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εt = νt

√
ht ; νt ≈ iid(0,1) (5)

ht = ω+αε2
t−1 +βht−1 (6)

Where, σ2
v = 1 and vt is a white-noise process and the conditional and unconditional

means of εt are equal to zero. The conditional variance of the error process is ht . The
AR (1) process in equation (4), can easily be extended to univariate or multivariate
ARMA (p, q) processes (Ling and McAleer 2003) and it is expressed in equation
(8), where ω > 0, α ≥ 0, and β ≥ 0; are the sufficient conditions to ensure ht > 0
; and α and β are the ARCH and GARCH terms, respectively. The ARCH effect
designates the short run persistence of shocks while the GARCH term represents
the long run persistence of the shock, that is (α + β ). The larger the value of both
α and β , the more plausible it becomes to increase the conditional volatility, but in
different ways and a higher value of α indicates a more distinct shock in the subse-
quent period (Enders 2004; Ling and McAleer 2003). Since the GARCH process is
a function of the unconditional shock, the quasi-maximum likelihood (QML) esti-
mators for GARCH (p, q) are consistent if the second moment of εt is finite (Ling
and McAleer 2003). Parameters in the conditional variance equation are generally
estimated by the maximum likelihood method under the conditional normality as-
sumption.Moreover, even if the conditional normality assumption does not hold,
parameters can be estimated by applying the QML method.

The sufficient and necessary condition for the presence of the second moment
of εt for a GARCH (1, 1) process is α + β < 1 (Huang B.-W. et al., 2009). Un-
der normality, the necessary and sufficient condition for the existence of the fourth
moment is (α +β )2 + 2α2 < 1 (Divino and McAleer, 2009). The QML estimators
are asymptotically normal locally and globally if the fourth and sixth moments of εt

are finite for GARCH (p, q) (Ling and Li 1997; Ling and McAleer 2002; Ling and
McAleer 2003). The previous literature suggests that the non-negativity condition of
GARCH (p, q) model might be violated by the estimated model, and assumed that
the positive and negative socks are same in the symmetric GARCH process, under
the provision of conditional variance, ht and it can able to capture thick tailed and
volatility clustering (Enders 2004).Additionally, Glosten et al. (1993) proposed GJR
(1, 1) model suited to capture the leverage effect and asymmetry behaviour which
is defined as:

ht = ω+[α+ γI (νt−1)]ε2
t−1 +β loght−1 (7)

whereω > 0 , α+γ ≥ 0, β ≥ 0 and I(νt)< 0, is an indicator variable and defined as,
I(νt) = 1, if εt < 0, otherwise, 0, if, εt ≥ 0 and asymmetry of the series is captured
by the coefficient, γ .The regularity condition for GJR (1, 1) is α + β + 1/2γ < 1
and εt and νt have the same sign. It is expected that the value of coefficient, γ ≥ 0,
particularly when handling financial data because negative shocks increase the risk
(Huang et al. 2009), this fact also holds for prices of NR (for growers).

loght = ω+α+ |νt−1|+ γνt−1 +β loght−1; where |β |< 1 (8)
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The exponential GARCH model or EGARCH (equation 8) is suggested to capture
the asymmetric effect in the data series; this model allows no restriction on param-
eters (α, β and γ) required to ensure ht > 0, if, |β | < 1 is a sufficient condition
for consistency of asymptotically normal values of Quasi-maximum likelihood esti-
mators (QMLE). It was noted that GARCH and GJR models are dependent upon
lagged unconditional shocks, while EGARCH depends upon lagged conditional
shocks to the standardized residuals . Extensions of several of these results (νt−1) for
asymmetric conditional volatility models are given in ref. (McAleer et al. 2007).

6 Empirical Results

The series daily price of the rubber latex type RSS3 at CRMH and its logarithm may
not be stationary. However, the null hypothesis of unit root is statistically rejected
and clearly depicts that the first difference and log difference variables are stationary
(Table 4). Based on these empirical results of unit root test, the univariate conditional
mean and conditional volatility models, namely, GARCH (1, 1), GARCH-GJR and
EGARCH models are adopted by introducing AR (1) term in mean equation to
estimate the price behavior of RSS3 at CRMH. The estimated parameters and their
respective standard errors for transformed variables of price of RSS3 are presented
in Table 5. The estimates of lagged dependent variables in the equations (4)–(9) are
supported by the empirical findings and most of the estimated coefficients in mean
and variance equation are statistically significant.

The estimates of the AR(1)-GARCH(1, 1) model for the logarithm of price of
RSS3 are positive and statistically significant at the 1% level of significance. The
estimated coefficients symbolically, α = 0.170 (short run shock) and α+β = 0.992
(long run shock) reveals that there is high long run persistence of shock or price
volatility at CRMH for latex type RSS3. Moreover, when one takes account of asym-
metric behavior by considering similar magnitudes of the positive or negative shock
on the bid price of RSS3, the asymmetry coefficient, γ , for the GARCH-GJR model
is found to be positive. The contribution of the shock to both short run (α+ 1

2 γ) and
long run persistence (α +β + 1

2 γ) are 0.166 and 0.988, respectively. The positive
value of the γ coefficient implies that decreases in the bid price of rubber latex type
RSS3 increases its price volatility. The EGARCH model, based on the standardized
residuals, yields statistically significant estimated coefficients, except that for the
constant in the mean equation. The second moment condition i.e. (α +β < 1) for
both GARCH (1, 1) and GARCH-GJR models are satisfied with value of 0.992 and
0.988 respectively. The regularity condition,(|β |< 1), for EGARCH is satisfied with
an estimated coefficient of 0.956. Therefore, the estimated QMLE are statistically
consistent and asymptotically normal.

Uniformly, the estimated parameters for the GARCH, GARCH-GJR and
EGARCH models for logarithm differences in the daily bid price of rubber latex
type RSS3 are also statistically significant (Table 5). The estimates of GARCH (1,
1) and GARCH-GJR reveal that the short run persistence of shock or risk (α or
α + γ) are 0.201 and 0.203 correspondingly, while the long run persistent of the
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Table 5 Estimated parameters and their respective standard errors from conditional mean
and volatility models

Notes: Values with ( *, ** and ***) denotes the coefficients are significant at 1, 5 and 10
percent level of significance respectively. The values in parentheses are standard errors. The
numbers in brackets are p-values for the Lagrange multiplier (LM) test and Jarque-Bera di-
agnostic tests for ARCH (1) residuals, respectively.

risk i.e. (α+β ) and (α+β + 1
2 γ) are 0.798 and 0.813, respectively. Moreover, the

GARCH-GJR (1, 1) estimates express the asymmetry behavior of the positive or
negative shocks of the bid price of the rubber latex type RSS3 under the assumption
of similar patterns or magnitudes of the positive or negative shocks. The positive
estimated coefficients for GJR (1, 1) reveal that decreases in the bid price of RSS3
increase price volatility. However, the estimated parameter i.e. γ is not statistically
significant. The second moment condition for regularity and asymptotic normality
is also satisfied for both GARCH and GARCH-GJR models, i.e. α +β < 1 and α
+ β+ 1

2 γ < 1, and the estimated coefficients are positive. Therefore, the estimated
QMLE are asymptotically normal for both models.

The EGARCH estimates are treated as the logarithm of the volatility; and the
coefficient α represents the magnitude (size effect). The estimated coefficient α
for the EGARCH model is positive and statistically significant at the 1% level of
significance. The estimated coefficient of the lagged dependent variable |β | is 0.956
and statistically significant for a logarithm differenced variable. This suggests that
the statistical properties of the QMLE for EGARCH(1,1) will be consistent and
asymptotically normal.
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7 Conclusion

The demand for natural rubber is growing rapidly around the world along with the
economic advancement and improvements in standard of living. Synthetic rubber
is a purely petroleum product and highly subject to price volatility. The price of
natural latex is quite volatile as in SR and price volatility can cause havoc with
profitability and workers income. Uncertainties in the prices of NR adversely affect
financing in NR based industries and the livelihoods of rubber growers. Hence, the
volatility in the price of NR products plays a decisive role in both the export market
and in the livelihood of millions of small rubber growing households and tappers.
Since 1991, Thailand is the one of largest NR growing area in the world, accounting
for more than 31% of total production and 34% of exports of the world market in
2010. The economic contribution of the NR industry in Thailand in terms of ex-
port receipts has increased significantly, Thai Bhat 74.61 billion in 2002 to reach
Thai Bhat 249.26 billion in 2010 with 16.27 % of average annual growth. The daily
bid price of rubber latex type RSS3 at CRMH, Songkhla is modeled by adopting
symmetric and asymmetric conditional volatility models. Most of the coefficients
are statistically significant. The GARCH (1, 1) model for logarithm of latex price
showed there is high long run persistence of shock or price volatility α = 0.172 and
((α+β ) = 0.992). The estimated coefficient, γ for GARCH-GJR is positive which
indicates decrease in bid price of rubber latex type RSS3 increases the price volatil-
ity. But, estimated parameter, γ is not statistically significant. The short and long
run persistence of shock are, 0.166 and 0.988 respectively. Likewise, the GARCH
(1, 1) estimates for logarithm difference variable are, β = 0.201 and α+β = 0.999.
These empirical results indicate that there is long run persistence of price volatil-
ity. Coefficient |β | for EGARCH model for both variables (log Y and Δ log Y) is
less than unity, i.e. β = 0.950 for logarithm of price and β = 0.956 for logarithm
difference variable.

The second moment condition for GARCH (1, 1) and GJR (1, 1); and |β | < 1
in the case of EGARCH (1, 1) are satisfied for all cases. Therefore, the estimated
QMLE are asymptotically normal. Hence, the volatility can be inferred as risk as-
sociated with the bid price of latex rubber type RSS3 in CRMH, Songkhla. This
cannot be overlooked to ensure the benefits for smallholders and harness greater
benefits from natural rubber export through the imposition of effective policy mea-
sures. Stainability of the natural rubber industry is crucial for the provincial econ-
omy of Songkhla to overcome rural poverty by generating jobs at the local level and
foreign receipts earnings from the natural rubber trade. Thus, volatile rubber price
in the CRMH may have implications for both economic and environmental poli-
cies. So that future policies could address the uncertainties behind the household
level income of most of the small holding rubber grower due to price volatility in
Songkhla province and towards the rubber price stabilization in the local market as
well as in the international market to harness the huge export potential of natural
rubber and rubber articles. This baseline study has modeled volatility for the recent
historical period (2004-2011). Future research on volatility, as well as the extension
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of modeling for cointegration of price considering spatial destination, could further
explore the long-run relationships among the underlying variables and refine the
policy implications of this paper.
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Trade Liberalisation, Labour Productivity
Growth and Skilled Labour Complement:
Evidence from the Thai Manufacturing Sector

Piyapong Sangkaew and Kankesu Jayanthakumaran

Abstract. Trade liberalisation in Thailand raised two wider questions regarding the
labour market–one with regards to the link with labour productivity and the other
the link with skilled workers. This outcome provides a link between (1) trade liber-
alisation and labour productivity growth, and, (2) skilled employment and labour
productivity growth. Trade liberalisation is also correlated with skilled employ-
ment. This type of evidence matches conventional explanations for the beneficial
allocation of trade liberalisation and demanding skills training for potential future
industrial growth.

1 Introduction

Trade liberalisation policy has been implemented by countries to stimulate eco-
nomic and employment growth. However, there have been longstanding concerns
about the possible job displacement effects of trade liberalisation and other mea-
sures introduced to lift productivity.

Beaudry and Collard [2], for example, explain that reducing controls on trade
causes a drastic technological change, and makes human capital the factor for de-
termining the growth in labour productivity while also raising the demand for more
skilled workers. Davis and Harrigan [5] explained that trade liberalisation and pro-
ductivity have been found to be biased toward skilled workers. Thailand accelerated
trade liberalisation in the early 1990s such that simple average tariff rates on indus-
trial products decreased from 43.5 per cent in 1991 to 14.6 per cent in 1999 [15],
and the next stage of reforms started in 1999 after a brief setback during the Asian
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crisis in 1997/98. This paper intends to study the link between trade liberalisation,
labour productivity, and skilled employment. The next section shows trade liberali-
sation and labour productivity in Thailand, the third section shows the method and
data used in this study, the fourth section shows the empirical results, and the fifth
section provides the conclusion.

2 Trade Liberalization and Labour Productivity

The first round of tariff restructuring began in the early 1990s and was completed
in 1997. Subsequently, the structure of Thailand’s tariff was reduced from 39 tariff
rate categories to only six in this period. It has restructured customs tariff on nine
product categories covering a total of 2,990 items, or 39.52 per cent of all customs
tariff items. The second round of tariff restructuring was in 1999 and was imple-
mented immediately after the Asian crisis (Appendix 1). Tariffs on capital goods,
raw materials, and other products, including more than 630 items, were either re-
duced or exempted on a permanent basis, for example (i) the 10 per cent import
duty surcharge was removed, (ii) tariffs on machinery and mechanical appliances
and parts were reduced, and (iii) tariffs on electrical machinery and equipment parts
were reduced from 5 and 20 per cent to 3 per cent for 326 items.

A visual inspection of Figure 1 shows that the labour productivity of the manu-
facturing sector has, in general, been increasing since 2001, although the fall in 2009
and 2011 may be associated with a fall in output due to the global crisis. Labour pro-
ductivity in 1999 was almost two times higher than in 1991 [12]. Phan [15] found
that trade liberalisation had increased both the labour and total factor productivity
growth.

However, gains in labour productivity (higher output per worker) resulting from
labour saving technologies may lead to job destruction ([3], [7], [11]) because
competitive pressures can drive investment, innovation, skills upgrading, and other
factors in the overall development process. Even higher productivity spurs eco-
nomic growth and expands employment overall, although labour saving technolog-
ical changes and the relative growth and decline of specific sectors results in job
losses in some places and some industries, for actual workers, enterprises, and com-
munities.

Upon careful examination of Figure 2, even though the percentage of employ-
ment between 1997 and 2000 had increased, employment in the manufacturing sec-
tor gradually decreased from 15.37 per cent to 14.06 per cent respectively, between
2000 and 2007. This trend had changed from the percentage of manufacturing GDP
to overall GDP, which had increased over the same period from 1991 to 2010. The
percentage of employment in the Thai manufacturing sector had not kept up with an
increase in the share of manufacturing GDP. Thus, employment-productivity trade-
off problems should be taken into account mainly because the policy of stimulating
trade and productivity might decrease employment in this sector.
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Fig. 1 Labour Productivity Per Employed Person between 2001 and 2010

Fig. 2 Labour Productivity Per Employed Person between 2001 and 2010

Table 1 shows the correlation of variables; skilled-total employment, labour pro-
ductivity (LP) and tariffs in the Thai manufacturing sector. There are negative cor-
relations between (i) tariff and labour productivity, and (ii) tariff and productivity,
which are - 0.131 and -0.057 respectively. This value implies that a decreasing tariff
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Table 1 Correlation between Manufacturing Tariffs and Labour Productivity between 1991
and 2007

Skilled-Total Employment Ratio LP Tariff
Skilled-Total Employment Ratio 1.000
Real LP* 0.178 1.000
Tariff** -0.057 -0.131 1.000

Source: Calculated by the author from the Industrial Surveys [20]. *: The value used in a
natural log form. ** Tariff data is provided in Appendix 1.

correlates to an increase in the LP and skilled-total employment ratio in the manu-
facturing sector. This should basically support the idea that trade liberalisation in-
creases manufacturing labour productivity and changes the structure of employment
by raising the demand for skilled labour in the manufacturing sector.

3 Method and Data

Labour productivity (lp) can be defined as value-added per worker. The dependent
variable is the growth of labour productivity ( ˙l p) during the period 1991, 1994,
1997, 2000, 2003 and 2007. Independent variables have been chosen to reflect trade
policy, employment, and structural and technological changes. The labour produc-
tivity growth model can be constructed as follow:1

˙l p = α0 +α1k̇it +α2( ˙skillit)+α3( ˙empit)+α4(xit) (1)

+α5(i imit)+α6(FDIit)+α7(Dit)+ εit

Three trade policy variables–tariffs, intermediate tariffs, and exports–have been used
to capture the effect of trade liberalisation on ˙l p. The reductions in tariffs reflects
the response by local firms, and local firms tend to match a new set of relative prices
that are closer to international prices and which stimulate resources in line with
comparative advantages. The reduction in tariffs, therefore, are expected to have
a negative effect on ˙l p . Firms target greater technical change in an open trading
environment in order to achieve sustainable long term rates of growth. As a result,
intermediate-input import per worker is expected to have a positive effect on labour
productivity growth.

Exports per worker are normally used as a proxy variable of trade liberalisation
in empirical studies to explain productivity. Exports are found to stimulate firms
or industrial labour productivity. Jonsson and Subrmanian [9] and Sjoholm [19]
explain that export firms tend towards new technology and produce higher quality
products. Moreover, exporting firms have a higher price margin than non-exporting

1 The expected signs of k̇it , ˙skillit , ˙empit , xit , i imit, FDIit are +,+,−,+,+,+,+/−,
respectively.
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firms, which raises an export firms’ labour productivity. Therefore, export growth
is expected to have a positive effect on industrial labour productivities in this study
[13]. If there are expected signs and significant associations between one or more
of the trade variables and ˙l p then there will be support for a positive impact of
liberalisation on the performance of labour.

Two employment variables, share of skilled employment and overall employ-
ment, have been used to reflect the effect of the labour market on ˙l p . Skilled em-
ployment growth is expected to have a positive effect on ˙l p . Generally, skilled
workers refers to workers who spend more years in school, so they tend to have high
human capital accumulation, and as a result they are more productive than unskilled
labour. An increase in the number of skilled workers will raise firms’ productivity
and efficiency [21]. The share of manufacturer employment to the total manufac-
turing employment is expected to be negatively associated with labour productivity
growth due to the effect of “the law of diminishing marginal return”. An increase
in the number of workers will increase total output diminishingly [22], and as such,
increases in a number of workers will cause a decrease in labour productivity.

Two variables, output growth and FDI have been chosen to reflect the structural
changes. Output growth is expected to stimulate growth in labour productivity be-
cause industry will benefit from an economy of scale [23]. The share FDI per worker
reflects an increase of FDI over time. FDI can stimulate growth in labour productiv-
ity in many ways, such as (i) providing better knowledge, (ii) giving firms more op-
portunity to export. One would expect a positive association between output growth
and ˙l p, and FDI per worker and ˙l p.

The capital growth variable represents technological change and is expected to
stimulate growth in labour productivity. Capital growth per worker is expected to
have a positive effect on the growth of industrial labour productivity.

The data used in this study is from (i) Manufacturing Industrial Survey con-
ducted by the National Statistical Office (NSO), Thailand, and (ii) World Integrated
Trade Solution (WITS) which is an organisation under the World Bank. The scope
of the manufacturing surveys are firms primarily engaged in manufacturing indus-
tries which are classified according to the International Standard Industrial Classi-
fication ( ISIC), have 10 or more persons engaged in the business, and cover the
whole country. The criticism of Thai manufacturing data by Ramstetter [17], and
Ramstetter and Sjoholm [18], have been taken into account such that the following
observations have been used; for the years 1991, 1994, 1997, 2000, 2003 and 2007,
the observations are 970, 969, 2,558, 2,285 3,765, 18,620 respectively2.

2 Overall there are 29,167 firms left that are useful for this study (22.86 per cent); (i) 10,
268 firms which did not report the number of workers, (ii) one firm which did not report
working hours and days, (iii) 23, 129 firms which did not report wage bills, (iv) 18,831
firms which did not report their income, (vi) two firms which did not have ISIC code,
(vii) 1,432 firms which did not report their fixed assets, (viii) 13, 266 firms which did not
report their fixed assets (machines), (ix) 5488 firms which have a negative value added, (x)
26, 784 firms which have no skilled workers, and (xi) 223 firms which did not report the
number of unskilled workers.
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In this study the Thai manufacturing labour productivities (LP) were calculated
from Thai industrial surveys in the selected years 1991, 1994, 1997, 2000, 2003,
and 2007. After the labour productivity growth ( ˙l p) for each industry and for all the
years have been obtained, they become a manufacturing panel data. Overall there
were 138 observations of Thai manufacturing labour productivities (23 industries
in 6 years). Because the calculated growth in the rate of labour productivity caused
this study to lose a year of data (23 observations), the actual observations are 115.

There are inconsistencies in the availability of data on intermediate-input import,
export, and FDI in Thai industrial surveys. To overcome this problem, this study
will incorporate the effect of intermediate-input import on ˙l p between 1994-2007,
while the effect of export and FDI on ˙l p will cover between 1997 to 2007.

4 Empirical Results

To detect multi–collinearity problems, the correlation metrics between independent
variables have been checked (Appendix 1). The correlation is low in all cases ex-
cept for (i) intermediate input import (i im), and export (x) and (ii) capital per
worker growth (k̇) and per cent change in tariff (tariff), which are 0.6542 and -
0.3179, respectively. As the high correlation among the variables could lead to
multi-collinearity problems, this study applies the variance-inflating factor (VIF)
to examine whether this would be a critical problem [6] . The calculated VIF is
6.20 which is less than ten per cent, which implies that even though there are multi-
collinearity problems, they are acceptable [6].

Table 2 provides empirical results from this study. There are six models which
begin with the simple ordinary least squared (OLS) shown in the first column. This is
to compare the results and to examine the consistency of the coefficient of variables.
Then the fixed effected (FE) and random effected (RE) are shown in columns 2 and
3, respectively [6]. After that, new variables will continually be added into the model
to examine whether they are significant in emplaning labour productivity growth
( ˙l p) in the Thai manufacturing sector. The best model will be selected based on
econometric reasons.

The model 1 in the first column is the OLS pooling the data over the period
1991 to 2007 without industrial effects. The result shows that ẏ, ˙tari f f , and ˙emp
significantly affect ˙l p at one, ten and one per cent significance level, respectively.
ẏ has a positive effect on ˙l p while ˙emp and ˙tari f f have a negative effect on ˙l p .
According to this study, ẏ is found to play an important role in contributing to ˙l p
since a one per cent increases in ẏ will increase ˙l p around 0.5195 per cent.

A proxy variable of trade liberalisation ˙tari f f has a correct and negative sign
and is significant at the 10 per cent level. A one per cent decrease in the tariff
will increase ˙l p in the Thai manufacturing sector around 0.2348 per cent. There-
fore, it can be said that trade liberalisation increases the Thai manufacturing labour
productivity.
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Table 2 Regression Results for the Thai Manufacturing Sector

Variables OLS FE RE RE2INPUT RE3EXPORT RE4FDI
(1) (2) (3) (4) (5) (6)

k̇ 0.0351 -0.07783 0.0351 -0.3622 0.1323 0.2844**
-0.0779 -0.0958 -0.0779 -0.0778 -0.0946 -0.1262

ẏ 0.5195*** 0.5062*** 0.5195*** 0.5142*** 0.4898*** 0.3436***
-0.0418 -0.0462 -0.0418 -0.042 -0.0483 -0.0802

˙tariff -0.2348* -0.3584** -0.2349* -0.2608** -0.0528 0.0909
-0.1318 -0.1512 -0.1318 -0.1338 -0.1725 -0.1891

˙skill 0.1717 0.2421** 0.1717* 0.1850** 0.2222* 0.1924
-0.1037 -0.1184 -0.1037 -0.1043 -0.1174 -0.1495

˙emp -0.1353*** -0.1129*** -0.1354*** -0.1333*** -0.0935** -0.0918*
-0.0322 -0.0356 -0.0322 -0.0322 -0.0392 -0.0498

i im -0.0463 -0.1066 0.0931
-0.0426 -0.0734 -0.0879

x -0.0012 -0.0374
-0.0812 -0.1608

FDI 0.0489**
-0.0179

constant -0.0827 -0.1009 -0.0827 -0.5158 1.4517 -1.3337
-0.0671 -0.0709 -0.0671 -0.5554 -0.8953 -1.0564

Ind.effect. NO YES YES YES YES YES
N 85 85 85 85 66 51
F-test 38.4971 30.4081 . . . .
R-squared 0.709 0.7238 0.7149 0.7123 0.7879 0.8387
AIC 147.816 126.983 . . . .

Source: Calculated by the author. Note: Dependent variable: Growth of labour productivity.
∗,∗∗,∗∗∗; Estimate coefficient is significant at the 10, 5 and 1 percent level, respectively.

Employment ( ˙emp) is found to have a negative effect on ˙l p and a one per cent
increase in ˙emp will decrease ˙l p by 0.1353 per cent. The negative effect of this vari-
able on ˙l p would be a diminishing return or an employment-productivity trade-off,
where more employment would reduce the productivity of labour in manufacturing.
If other variable constants are held, expanding employment will decrease the labour
productivity growth in the Thai manufacturing sector.

Because manufacturers are in various businesses and use different technologies,
this may cause them to have different labour productivity growth. This study applied
the fixed (FE) and random effect (RE) techniques to control the industry effect, but
if the constant value in the model is not systematically changed, the fixed effect is
more suitable. However, if it is the random effect becomes more reliable [6]. To
examine whether FE or RE is better, the Hausman test is applied and used to answer
this question [6]. The result from the calculated Hausman test shows prob > 0.171
so a null hypothesis is accepted [8], and therefore the RE model provides a better
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explanation than the fixed effect model. For this reason the following models will
be based on the random effect model to explain how trade liberalisation effects the
labour productivity growth in the Thai manufacturing sector.

The RE model 3 shows that ẏ, ˙emp and ˙tari f f are still significant and have
almost the same coefficients as the OLS model. In model 4, i im is added into the
model, which means that all the explanatory variables remain almost the same. The
new variable has an expected sign but it is not significant.

In model 5 the export variable is added into the model and yields a better result.
Compared with model 2, r-squared in e model 5 is higher, increasing from 0.72 in
model 2 to 0.78 in model 4. However, the new variable added into this model is not
significant so in this model, only ẏ, ˙skill and ˙emp remain significant but have lower
coefficients.

In model 6, FDI is added into the model. The result shows that FDI is positively
significant in giving an explanation for in the Thai manufacturing sector. In this
model the r-squared increases significantly from around 78 per cent in the model 5
to 83 per cent in model 6. This result shows that an increase in FDI of one per cent
will increase the ˙l p by around 0.0489 per cent. After putting FDI in the model, the
coefficient of k̇ becomes positive and significant, although ẏ remains and ˙emp has
the same correct sign, it is a little bit smaller.

In the labour productivity growth model, it is important to consider that output
may have endogenous problems [10]. According to this study, output might be af-
fected by the world economy and the level of competition among producers [24].
Therefore, this study uses a dummy variable to capture the effect of the world eco-
nomic down turn [4] which began in the year 2000. After testing for endogenous
problems, the Hausman test does not reject the null hypothesis that variables are
exogenous . The result is that a null hypothesis has not been rejected, which is con-
sistent with the study of Quandt and Rosen [16] who mentioned that the exogenous3

variable can produce results that are just as good as those generated by the more
theoretical assumption of endogeneity.

5 Conclusion

Since the early 1990s, Thailand has consistently reduced tariffs and non-tariff bar-
riers and lifted restrictions on FDI. A temporary setback occurred during the Asian
crisis in 1997/98, but it was corrected afterwards. Statistics in general show that (1)
the labour productivity of the manufacturing sector has been increasing over time,
(2) there are widespread mismatches among the share of manufacturing growth and
the share of manufacturing employment, indicating a possible expansion of skilled
employment.

Trade liberalisation in Thailand raised two wider questions regarding the labour
market, one with regard to the link with labour productivity and the other the link

3 Ho: Variables are exogenous. The test of endogeneity shows that (i) Durbin (score) Chi2
(1) = 0.141861 (p= 0.7064) and (ii) Wu-Hausman F (1, 45) = 0.125521 (p = 0.7248) and
the null hypothesis is not rejected.
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with skilled workers. Regarding the first question, the results tend to show that
there is some indication of a link between trade liberalisation and labour produc-
tivity growth. With respect to the second question, a positive correlation has been
recorded in (1) trade liberalisation and skilled employment (Table 1), and (2) skilled
employment and labour productivity growth. The growth in skilled employment is
a contributor to labour productivity growth (Table 2) in the Thai manufacturing sec-
tor while the overall growth in manufacturing employment has a negative effect on
labour productivity. This type of evidence matches with conventional explanations
for the beneficial allocation of trade liberalisation and demanding skills training for
potential future industrial growth. However, the models linking trade liberalisation,
skilled employment, and labour productivity growth at a micro level would give
more concrete results.

Appendix

Table 3 Appendix 1: Manufacturing Average Tariff Rate from 1991 to 2007

Industrial 1991 1994 1997 2000 2003 2007
15 Food and beverage 43.33 42.5 41.6 39.7 32.78 31.15
16 Tobacco products NA 60 51.4 60 60 60
17 Textiles 60 53.33 30.1 20.2 24.35 20.32
18 Wearing apparel 75 65 41.3 46.9 36.79 27.4
19 Dressing of leather 100 70 28 19.4 21.1 18.33
20 Wood and products of wood and cork 15 40 17.9 16.1 15.2 9.3
21 Paper and paper products 10 10 18.4 15.2 12.66 5.06
22 Publishing, printing and reproduction of recorded media NA 17.5 20 17.1 15.02 3.66
23 Coke refined petroleum products and nuclear fuel 30 27.5 NA 5.7 3.44 5.13
24 Chemicals and chemical products 30 57.5 15.9 10.1 6.49 4.15
25 Rubber and plastics products 30 55 33.7 25.3 23.53 8.6
26 Other non-metallic mineral products 20 20 24.4 17.2 14.75 9.98
27 Basic metals 30 18 10.8 9 9.66 2.68
28 Fabricated metal products, except machinery and equipment 30 32.5 22.9 18.7 NA 11.74
29 Machinery and equipment n.e.c. 41.67 47.33 10 8.5 NA 5.13
30 Office, accounting and computing machinery 30 30 NA NA 7.72 2.15
31 Electrical machinery and apparatus n.e.c 40 40 16.5 13 NA 6.59
32 Radio, television and communication equipment and apparatus 45 45 NA NA NA 6.68
33 Medical, precision and optical instruments, watches and clocks 40 35 NA NA NA 4.65
34 Motor vehicles, trailers and semi-trailers 21.67 31.67 NA NA 43.44 30.24
35 Other transport equipment 32.5 32.5 26.3 25.6 16.45 13.25
36 Furniture 70 60 40 20 NA 15.17
37 Recycling NA NA NA NA NA NA

Source: World Integrated Trade Solution (WITS, 2001)
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Table 4 Appendix 2: Correlation Matrix of Explanatory Variables

Variables k̇ ẏ ˙tariff ˙skill ˙emp i im x FDI
k̇ 1
ẏ -0.1149 1

˙tariff -0.3179 0.174 1
˙skill -0.0219 0.1367 -0.0123 1
˙emp 0.0186 0.2205 0.1167 -0.1605 1

i im 0.2467 -0.1544 -0.2681 0.0091 0.0903 1
x 0.0477 0.0517 -0.2266 0.0857 0.1565 0.6542 1
FDI -0.2433 0.6415 -0.1037 0.1394 0.0311 0.0421 0.2173 1

Source: Calculated by the author
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Modeling Dependence Dynamics of Air
Pollution: Time Series Analysis Using a Copula
Based GARCH Type Model

He Zhanqiong, Songsak Sriboonchitta, and Dai Jing

Abstract. This paper investigates the dependence structure between the Air Pollu-
tion Index (API) of Shenzhen and corresponding regional, national levels based on
copula based GARCH models. In particular, time varying normal copula and time
varying SJC copula are compared and employed to model the dependence structure.
Comparison with the results of DCC-GARCH model is made. We find that there
exists significant asymmetric upper and lower tail dependence between Shenzhen
and regional, national levels; tail dependence captures the change in dependence
better; dependence structure change across time. Our findings have implications for
environmental management.

1 Introduction

Air pollution in china is attracting the focus of not only the Chinese government and
people but also researchers worldwide. There are disputes about the reliability of the
Air Pollution Index (API) the government released and the pollutant detected and
included to get the API. Despite of the disputes, since the composite and method of
computing the integrated air pollution APIs stay unchanged during our observation,
exploring spatial dependence dynamic through examining the conditional depen-
dences of urban API and regional, national levels are feasible and meaningful.

Some previous studies examined spatial contagion of air pollution. But they
mostly focus on some pollutants and dust (Yongxin Zhang et al. 2010; Tracey Hol-
loway et al. 2008; Lee et al. 2010; Chung-MingLiu et al. 2006; F. Cousin et al. 2005),
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studies concerning about API, an integrated index are not noticed. And for geo-
graphical scale, most previous studies examined contagion between regions within
one county, or between countries (Feng Xiao et al. 2006; Guor-Cheng Fang et al.
2010; Paul J. Miller et al. 1998; Suhejla Hoti et al. 2005), spatial contagion between
city, regional and national API is yet to be carried out.

In our previous studies, based on the DCC-GARCH model (Engle, 2002), we
investigated the dynamic correlation of Air Pollution Indices (APIs) between 42
Chinese sample cities and their corresponding regional and national levels for a
duration of 10 years. Some meaningful findings were drawn which were shared by
most sample cities, for example, the correlations of local APIs between regional and
national levels are time varying; most cities exhibit positive conditional corre-lations
with both regional and national APIs, and the conditional correlations of most cities
with regional and national APIs are only slightly different and are mostly stable.
Whats interesting is that, the behavior of Shenzhen and Zhuhai, two cities with only
128km, the shortest distance among the subjected cities, exhi-bit unique character-
istic between each other: a decrease of dynamic correlation with both regional and
national levels after spring 2001, and then increase again after autumn 2004. Its
not surprising that Shenzhen and Zhuhai behave similarly. Since they are so close
to each other geometrically, with 56.4 kilometers of direct distance, and according
to our integrating method of city related regional and national APIs, they are ex-
pected to have similar regional and national APIs. To further explore the dynamic
spatial contagion feature of theses too cities, we focus on Shenzhen in this study.
Shenzhen lies in Pearl River Delta, one of the three key regions required to carry
out inter-region cooperation to cut and improve air quality. The reason why we
choose Shenzhen is that Shenzhen has higher population density, higher GDP per
capita (18 thousand USD for Shenzhen while 14 thousand for Zhuhai in 2011), and
experiences higher API.

DCC-GARCH model, as a conventional linear-based correlation method is some-
what restrictive due to its requirements of normality for the joint distribution and of
linear relationships among variables. More flexible copula-based models have be-
come a common practice to cope with dependence between random variables but
was mostly used to study the financial market. But this method has not been used in
the API dependence study. To assess the changing dependence structures over time,
following our previous research, this paper attempts to investigate time varying air
pollution dependence between Shenzhen and its corresponding regional, national
levels. Comparison between the DCC-GARCH model based result and copula based
result will be made.

This study contribute to the existing literature not only by focusing on the de-
pendence structure of urban and regional, national air pollution, but also by trying
to apply the copula based GARCH type models to air pollution co-movement study.

The rest of the paper is set up in the following manner. Section 2 presents the
econometric model. Section 3 contains the description of the data. The empirical
results are in Section 4, followed by conclusion in the last section.
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2 Model

2.1 DCC-GARCH Model

Time varying correlations are often estimated with multivariate generalized auto-
regressive conditional heteroskedasticity (MGARCH) models. DCC models pro-
posed by Engle which can be estimated very simply with univariate or two step
methods based on the likelihood function, is an important one. In this paper, we
employed the DCC model, after Engle (2002) to examine the existence of volatili-ty
in each series and the dynamic correlations between urban APIs, regional APIs and
national API.

Let us consider the APIs Yt = (Y1t , . . . ,Ykt)
′, for t = 1,2, . . . ,T . The following

mean equation was estimated for each series given as:

Yit = μi +Yit−1 + εit , where εit ∼ N(0,Ht) (1)

where Yit is API in series i at time t, i is either city, regional or national API, εit is the
error term for the API i at time t. All estimated series exhibited evidence of ARCH
effects. DCC (Engle 2002) parameterization of conditional covariance metrics is
given as:

H(t) = DtRtDt (2)

where Dt is the k× k diagonal matrix of time varying standard deviations from
univariate GARCH models with

√
hit on the i th diagonal, and Rt is the time varying

correlation matrix. The elements of Dt is
√

hit . For simplicity,hit can be expressed
for the univariate form as:

hit = ωi +
pi

∑
p=1

αiprit−p
2 +

qi

∑
q=1

βiqhit−q (3)

for i = 1,2, . . . ,k with the usual GARCH restrictions for non-negativity and station-
arity being imposed, such as non-negativity of variances and ∑pi

p=1αip +∑qi
q=1βiq <

1. To investigate the seasonal effect of mean and variance, and the effect on the dy-
namic correlation between local API, regional API and national API, we set three
seasonal dummy in both mean and variance equations, so that equation (1) now
becomes:

Yit = μi + S2D2 + S3D3 + S4D4 +αYit−1 + εit (4)

Equation (3) becomes:

hit = ωi + S′2D2 + S′3D3 + S′4D4 ++
pi

∑
p=1

αiprit−p
2 +

qi

∑
q=1

βiqhit−q (5)

So that D is seasonal effect vector where D2, D3, D4 equals 1 when t is in summer,
autumn, or winter respectively, other equations same. Spring includes March, April
and May; summer includes June, July and August; autumn includes September,
October and November; winter includes December, January and February.
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2.2 Copula Concept

Copulas are functions that join or couple multivariate distribution functions to their
uniform one-dimensional marginal distribution functions (Roger B. Nelsen, 2006).
Sklar(1959) showed that a joint distribution can be factored into the margins and a
dependence function called a copula. For bivariate case, let X and Y be two con-
tinuous random variables with margins F(x) and G(y) and with a joint distribution
function H(x,y), Sklar’s theorem states that the standard representation for the joint
distribution H is:

H(x,y) =C
(

F(x),G(x)
)

(6)

where C(u,v), u = F(x) and v = G(y) is the copula that captures the dependence
structure between X and Y. If the margins are continuous, then C is uniquely deter-
mined, otherwise, the copula C is uniquely determined on Ran(F)×Ran(G). Thus,
copulas can be used to link margins to a multivariate distribution function, which,
in turn, can be decomposed into its univariate marginal distributions and a copula
capturing the dependence structure between the two variables. Patton (2006) ex-
tended Sklar’s theorem for conditional distributions. By extending Sklar’s theorem,
the conditional copula function can be written as:

H(x,y|w) =C(F(x|w),G(y|w)|w) (7)

where W is the conditioning variable, F(x|w) is the conditional distribution of X |W =
w, G(y|w) is the conditional distribution of Y |W = w and H(x,y|w) is the joint con-
ditional distribution of (X ,Y )|W = w. Given the condition that F and G are differ-
entiable, H and C are twice differentiable, the unconditional and conditional joint
densities are given by:

f (x,y) = f (x) ·g(y) · c(u,v) (8)

f (x,y|w) = f (x) ·g(y) · c(u,v|w) (9)

2.3 The Models for the Marginal Distributions

APIs series in this study exhibit volatility clustering feature. To capture the most
important features of air pollution index, such as fat tails or leverage effects, and
seasonality of the first and the second moments, the marginal models of the APIs are
estimated by three most widely used models and then choose which one outperforms
other two: In this paper, volatility models to be estimated are associated with a
stationary AR (1) conditional means given by:

Yt = μ+θYt−1 + εt , where |θ |< 1 (10)

where, Yt is Air Pollution Index, εt is shock to API. Conditional variance covari-
ance equations we examines in this study are Generalised autoregressive conditional
heterocedasticity (GARCH) model (Bollerslev, 1986), GJR-GARCH, the threshold
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GARCH (TGARCH) (Glosten, Jaganathan and Runkle, 1993) which is a simple
extension of the GARCH scheme with extra term(s) added to account for possible
asymmetries and EGARCH model of Nelson(1991) which can also accommodate
asymmetry and species the conditional variance in a different way. To capture the
seasonal effect in our data, we include seasonal dummy D in both mean equations
and variance equations so that D is seasonal effect vector where D2, D3, D4 equal 1
when t is in summer, autumn, or winter respectively, other things equal.

2.4 Copula Models

Copula methods have advantages over linear correlation in that the copula-based
GARCH models allow for better exibility in joint distributions than bivariate nor-
mal or Student-t distributions. In this study, we are interesting in the time varying
dependence of air pollution, especially time varying dependence of the propensity of
air pollution to improve or deteriorate. So we focus on the conditional Symmetrized
Joe-Clayton copula and conditional Gaussian copula of Patton (2006). The condi-
tional Gaussian copula function is the density of the joint standard uniform variables
(ut ,vt), as the random variables are bivariate normal with a time-varying correlation,
βt . Moreover, let xt =Θ−1(ut) and ytΘ−1(vt), where Θ−1() denotes the inverse of
the cumulative density function of the standard normal distribution. The density of
the time-varying Gaussian copula is then:

cGau
t (ut ,vt |ρt) =

1√
1−ρt

exp{2ρtxtyt− x2
t − y2

t )

2(1−ρ2
t )

+
x2

t + y2
t

2
} (11)

The dependent process of the time varying Gaussian copula has the follow-ing form:

ρt =Λ1
(
ω+βΛ−1

1 (ρt−1)+α
1
m

m

∑
i=1

φ−1(U1,t−1)φ−1(U2,t−1)
)

(12)

Λ1(x) =
1− exp(−x)
1+ exp(−x)

(13)

whereΛ1() is a transformation function which holds the correlation parameter ρt in
the interval (−1,1), φ()is the standard normal cdf and m is an arbitrary window
length. The upper and lower-tail dependences of the conditional SJC copula is as:

TU =∏(β SJC
U TU

t−1 +ωSJC
U + γSJC

U
1
10

+
10

∑
i=1
|ut−1− vt−1| (14)

T L =∏(β SJC
U T L

t−1 +ωSJC
L + γSJC

L
1

10
+

10

∑
i=1
|ut−1− vt−1| (15)

where ∏ is the logistic transformation to keep TU and T L within the (0,1) interval.



220 H. Zhanqiong, S. Sriboonchitta, and D. Jing

3 Data Description

The data series for this study comprises of 3 series of daily average Air Pollu-
tion Index (APIs) during the period from June 5th, 2000 to March 04th, 2010:
API of Shenzhen; API of region to which Shenzhen belongs and national API
with 3560 observations each series. Data on Shenzhen API comes from the data
base of Ministry of Environmental Protection of the Peoples Republic of China
(http://www.zhb.gov.cn//) (MEPPRC). The data of regional and national levels are
integrated from APIs of the other cities within the region and nation respectively, by
calculating inverse distance weighted average of city APIs for all other cities in the
region and in the nation. The plot of APIs for Shenzhen and corresponding regional,
national levels show that. Obvious volatility clustering feature can be noticed in all
the three series. JB test shows that normality hypothesis is significantly rejected.
Both the ADF unit root tests and PP test show that all the series are statistically
significant. Rejecting the hypothesis that there exists unit root.

4 Results

Table 1 reports the estimation result of the two-step DCC model based on the un-
ivariate GJR-GARCH (1, 1) for each series, with the error skewed-t distribution
assumption in all cases(We estimated with normal and student-t distribution as-
sumption, skewed-t distribution outperform the other two). Results indicate that the
assumption of constant conditional correlation for all shocks to APIs is not sup-
ported empirically. Both the condition mean and variance of spring are significantly
lower than summer, but are higher than that of winter. The autumn is special, higher
in mean but lower in variance compare with spring.

Table 2 reports the model specification for marginal distributions. Based on the
log-likelihood value and Akaike, Schwarz information criteria, AR(1)-EGARCH
model for Shenzhen and AR(1)-GJR-GARCH model for regional and national series
outperform other models. So an AR-skewed-t-EGARCH model was employed for
the marginal distributions of Shenzhen API and an AR-skewed-t-GARCH model
employed for regional and national APIs. ARCH effect tests of residual didnt reject
the null hypothesis of no serial correlation in the squared standardized residuals at
1% level, suggesting that the models listed capture the time varying volatility in the
data very well.

Table 5 reports the univariate estimation result for each series chosen in pre-
vious step. Except several seasonal dummies, other estimates are significant at 1%
level. The asymmetric effects in three series are all significant. The parameter of
the conditional volatility equation in GJR-GARCH model is negative and highly
significant, implying that negative shocks(good news) exert smaller impact on re-
gional and national air pollution volatility than positive shocks (bad news) of the
same magnitude. Similarly, in EGARCH model in Shenzhen API is positive and
highly significant, implying that positive shock(bad news) exert bigger impact on
Shenzhen air pollution.
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Table 1 DCC estimation results

API
Shenzhen Regional National

coefficient t-ratios coefficient t-ratios coefficient t-ratios
c 53.44∗∗∗ -38.13 49.43∗∗∗ -40.67 50.89∗∗∗ -41.9
S2 -11.27∗∗∗ -6.44 -10.70∗∗∗ -7.24 -10.68∗∗∗ -7.25
S3 6.75∗∗∗ -3.44 1.891 -1.16 1.47 -0.91
S4 10.28∗∗∗ -4.96 9.70∗∗∗ -5.82 9.15∗∗∗ -5.52
AR 0.68∗∗∗ -49.15 0.72∗∗∗ -54.55 0.73∗∗∗ -56.6
ω 80.90∗∗∗ -3.86 62.66∗∗∗ -4.78 52.31∗∗∗ -4.71
S’2 -28.84∗∗∗ -2.90 -26.84∗∗∗ -3.57 -23.44∗∗∗ -3.65
S’3 -7.98 -0.99 -10.53 -1.60 -10.12∗ -1.84
S’4 35.91∗∗∗ -2.86 5.23 -0.76 4.5 -0.77
ARCH(α) 0.26∗∗∗ -4.91 0.33∗∗∗ -6.1 0.33∗∗∗ -6.09
GARCH(β ) 0.50∗∗∗ -4.33 0.24∗ -1.86 0.27∗∗ -2.19
GJR(Gamma) -0.31∗∗∗ -5.88 -0.28∗∗∗ -4.91 -0.28∗∗∗ -4.97
Θ1 0.99∗∗∗ -358.8
Θ2 0.01∗∗∗ -4.7
Q(5) 3.06∗∗∗ 12.32∗∗∗ 5.65∗∗∗
Q(10) 12.32∗∗∗ 26.71 33.84

Notes: This table reports the estimation results of DCC-GARCH models for the city APIs
against regional and national APIs. The Q(5) and Q(10) are, respectively, the LjungBox au-
tocorrelations test (1978) of five and lags in the standardized squared residuals from the re-
gression. ***, **, * denote statistical significance at 1%, 5% and 10% level respectively.

From Table 4, we notice that the log-likelihood of time varying normal copula is
higher than that of time varying SJC copula for both Shenzhen-regional estimation
and Shenzhen-national estimation. But we hope to examine whether the feature of
linear dependence also exists in tail dependence, so we focus on time varying con-
ditional SJC copula, and compare the dependence behaviors implied by DCC, time
varying normal copula and time varying SJC copula.

Figure 1 presents the plot of time varying dependence implied by DCC-GARCH
model. We notice decline of dependence both between Shenzhen and regional,
Shenzhen and national air pollution from the end May, 2001 and reach a bottom
in October 2004 and then gradually increase to a high level, over 0.7.

In figure 2, we present plots of conditional dependence based on the time varying
normal copula. Compare with figure 1, the time varying dependence implied by time
varying normal copula exhibits a lower dependence during June 2001 to November
2004, but is not that significant as in figure 1.

Figure 3 is the plot of conditional tail dependence implied by the time vary-
ing SJC copula model. The dynamics of conditional upper and lower tail depen-
dence were confirmed. Further, we notice that both upper and lower tail depen-dence
exhibit a decline of dependence in late spring 2001, and then increase again autumn
2004, which is in conform to what we notice from the dependence implied by DCC-
GARCH. This feature is not such clear for the dependence from the time varying
normal copula.
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Table 2 Model specification for the marginal distributions

AR(1)- AR(1)- AR(1) AR(1) AR(1) AR(1)-
Garch(1,1) Garch(1,1) -Egarch Egarch(1,1) -JGR(1,1) JGR(1,1)
Skew T - T Skew T t Skew T T

Shenzhen
Log-likelihood -14359.15 -14374.31 -14301.84 -14326.9 -14312.31 -14338.17
Akaike 8.07 8.08 8.04 8.06 8.05 8.06
Schwarz 8.1 8.1 8.07 8.08 8.07 8.09
ARCH 1-2 test 0.43[0.64] 0.88[0.41] 0.46[0.63] - 1.57[0.20] 1.16[0.31]
ARCH 1-5 test 1.20[0.30] 2.18[0.05] 0.38[0.86] - 1.24[0.28] 1.14[0.33]
ARCH 1-10 test 1.40[0.17] 1.63[0.08] 1.03[0.40] - 1.23[0.26] 1.21[0.27]
Regional
Log-likelihood -12937.2 -12951.75 - - -12907.44 -12930.25
Akaike 7.28 7.28 - - 7.26 7.27
Schwarz 7.3 7.3 - - 7.28 7.29
ARCH 1-2 test 0.12[0.88] 0.089[0.9] - - 0.47[0.620] 0.47[0.621]
ARCH 1-5 test 0.26[0.93] 0.28[0.92] - - 0.37[0.865] 0.34[0.888]
ARCH 1-10 test 1.42[0.16] 1.38[0.17] - - 1.81[0.053] 1.73[0.068]
National
Log-likelihood -12700.72 -12712.35 -12664.63 - -12670.05 -12688.92
Akaike 7.14 7.15 7.12 - 7.13 7.14
Schwarz 7.17 7.17 7.15 - 7.15 7.16
ARCH 1-2 test 0.06[0.93] 0.04[0.95] 0.10[0.90] - 0.35[0.70] 0.35[0.70]
ARCH 1-5 test 0.27[0.92] 0.30[0.91] 0.33[0.89] - 0.35[0.87] 0.31[0.90]
ARCH 1-10 test 1.35[0.19] 1.34[0.20] 1.45[0.15] - 1.82[0.05] 1.76[0.06]

Note: - no convergence. Standard errors are indicated in bracket.

Table 3 Results for the marginal distributions

Parameters Shenzhen Regional National
Cst(M) 49.46∗∗∗(1.18) 50.79∗∗∗ (1.20) 52.96∗∗∗(1.37)
d2(M) -11.72∗∗∗(1.35) -11.55∗∗∗(1.36) -11.58∗∗∗(1.69)
d3(M) 2.028(1.69) 1.72(1.70) 7.97∗∗∗(2.10)
d4(M) 10.61∗∗∗(1.61) 10.10∗∗∗(1.67) 11.60∗∗∗(2.07)
AR(1) 0.73∗∗∗(0.01) 0.75∗∗∗(0.01) 0.69∗∗∗(0.01)
Cst(V) 57.51∗∗∗(9.07) 48.51∗∗∗(7.94) 5.35∗∗∗(0.08)
d2(V) -30.38∗∗∗(6.23) -26.08∗∗∗(5.37) -0.48∗∗∗(0.11)
d3(V) -6.77(5.53) -6.86(4.63) -0.02(0.10)
d4(V) 8.92(6.25) 7.79(5.31) 0.48∗∗∗(0.09)
ARCH(Alpha1) 0.43∗∗∗(0.06) 0.42∗∗∗(0.06) 0.13(0.19)
GARCH(Beta1) 0.27∗∗∗(0.09) 0.30∗∗∗ (0.09) 0.56∗∗∗ (0.14)
GJR(Gamma) -0.40∗∗∗(0.06) -0.39∗∗∗ (0.06)
EGARCH(Gamma) 0.40∗∗∗ (0.03)

Notes: Standard errors for the estimators are included in parentheses. ***indicate signicant
at the 1% level.
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Table 4 Copula estimation results

Shenzhen-Regional Shenzhen-National
Time-varying normal copula
Constant 0.0244 0.0205
α 0.2681 0.2638
β 1.9531 1.9756
LL -595.0485 -624.5461
Time-varying SJC copula
ConstantU 1.2044 1.1301
αU -11.1693 -11.2216
βU 0.3192 0.4682
ConstantL -1.6446 -1.7493
αL -1.4649 -1.0727
βL 3.7598 3.8549
LL -657.3164 -697.9039

Fig. 1 Dynamic correlation estimated from DCC-GARCH model. Note: Red line displays
the implied time paths of the conditional dependence between Shenzhen API and national
API, blue line between Shenzhen API and regional API.

Fig. 2 Conditional dependence implied by time varying normal copula. Note: Red line dis-
plays the implied time paths of the conditional dependence between Shenzhen and regional,
blue line between Shenzhen and national.
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(a) Conditional dependence in lower tail implied by time varying SJC copula

(b) Conditional dependence in upper tail implied by time varying SJC copula

Fig. 3 Conditional dependence implied by time varying SJC copula

(a) Conditional dependence between Shenzhen and regional API

(b) Conditional dependence between Shenzhen and national API

Fig. 4 Conditional dependence estimate from the copula models
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5 Conclusions

In this study, we examine time varying dependence between air pollution of Shen-
zhen and corresponding regional, national levels by modeling the conditional de-
pendence structure via copula time varying SJC copula. The Engle DCC and time
varying normal copula are estimated as comparison. Univariate estimations reveal
that in all three seasons, seasonal effect exists in both mean and variance equations,
with lower mean and variance in summer and higher in winter. The asymmetric ef-
fects are all significant, bad news exert bigger impact on air pollution of Shenzhen,
regional and national levels. The change in dependence during the time period from
end May 2001 to October 2004 we found in DCC model also takes place in depen-
dence implied by time varying normal copula and time varying SJC copula. This
feature is not very obvious in time varying normal copula, but it is very clear in
both upper and lower tail dependence implied by time varying SJC copula. This
may imply that the change come mostly from extreme value. Further, the existence
of asymmetry is confirmed. We notice that lower tails are higher than upper tails
in both Shenzhen-regional and Shenzhen-national relationships, indicating Shen-
zhen will benefit from the improved regional and national air quality; the decline of
regional and national air quality will affect the contemporaneous air quality of Shen-
zhen, but with lower impact. Asymmetry increase after October 2004 and increasing
with the level of dependence, suggesting the change of dependence structure over
time. DCC, time varying copula and time varying SJC copula all reveal that the con-
ditional dependence between Shenzhen and national is slightly higher than that of
Shenzhen and regional.

These results have strong policy implications. When capturing the regional and
inter-region relationship, seasonal variation should be taken into consideration.
Spring and Winter exhibit higher volatility, which means higher uncertainty; re-
gional or single city settlement in air pollution control is important but not enough,
inter-region cooperation and national decision are important; The cooperation mech-
anism should be able to respond the time varying nature of conditional correlation;
regional heterogeneity should be considered in cooperation policy decision, cooper-
ation among regions with higher correlation and similar correlation feature is better.
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Estimating Time-Varying Systematic Risk
by Using Multivariate GARCH

Muttalath Kridsadarat

Abstract. The purpose of this study is aim to estimate the time-varying systematic
risk or beta by using multivariate GARCH models. Since there are several researches
found that estimating systematic risk by market model using traditional regression
approach violated classical assumptions in both stationary assumption and inde-
pendent identically distributed of the innovations. Then, the study focuses on using
multivariate GARCH to improve the beta estimation since GARCH model is the
popular model used in volatility clustering data. There are three type of Multivariate
GARCH used in this study to compare the forcasting ability of each model of Multi-
variate GARCH. The results show from the plots of beta that Multivariate GARCH
model can catch up volatility of risk quicker and better than Ordinary Least Square
model and from model performance evaluation, vech model Multivariate GARCH
confirms the superiority in capturing Time-Varying Systematic risk among the other
Multivariate GARCH.

1 Introduction

Since the recent economic recession in 2008 has drawn attention in the fragile of
financial market to both investors and financial market participants. Therefore, un-
derstanding the market risk precisely is the advantage for all of them to coup with
the volatility of the market and prompts for the investment opportunity. One of the
most important risks of financial market is systematic risk which means risk that
associate with market returns. Systematic risk is the market risk that investor can-
not avoid by diversification (Maginn, Tuttle, McLeavey and Pinto (2007)). From
the view of modern theory of finance, systematic risk is an extremely essential risk
because it is the only one type of risk that should be rewarded (for example, Sharp
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(1964); Black (1972); Lintner (1965) and Mossin (1966)). Therefore, the proper
model that can estimate the systematic risk is the essential financial instrument for
investors and market participants. The commonly used of systematic risk estimation
is market model under ordinary least squares which provides the simplicity of esti-
mation. Ordinary Least Square Regression is widely known in the term of simplic-
ity. However, it violated stationary assumption. The nonstationarity in parameters,
nonstationary of error terms and the intertemporal dependences in the number of
outliers are founded in the ordinary least square regression model (e.g., Bey and
Pinches, 1980)

These imply that the model is non-Gaussian. However, there is an alternative
hypothesis that allows the systematic risk varying through time (Bos and Newbold
(1984); Fabozzi and Francis (1978)) There are various new different econometric
methods that have been used to estimate time-varying beta and one of the most
famous method is multivariate GARCH.

By using multivariate GARCH model, the model allows forecasting variance of
return to vary systematically along the periods that is consistent with this alterna-
tive hypothesis. Therefore, systematic risk of the market can be estimated more
precisely by using multivariate GARCH model. The market participants will un-
derstand more on beta that represent the characteristics of the firms and industries.
Koutmos and Knif (2002) did the research about Estimating systematic risk using
time varying distributions. The research has used the vector GARCH model pre-
sented by Bollerslev, Engle and Wooldridge (1988) to estimate the time varying
beta. The data used in their study are collected from the daily closed prices of five
sector portfolios and market index of the stock market in four countries which are
Germany, Japan , UK and USA. They found that estimating beta by traditional re-
gression violated the assumpmion of the Ordinary Least Squared method and they
estimated the single beta model by using bivariate GARCH model. The results has
shown that all portfolios present time varying variance. However, there are several
forms of multivariate GARCH model. Choudhry Taufiq and Wu Hao (2009) has
studied about time-varying beta forecasting ability by using data from UK Com-
panies. They estimated time-varying beta and compared the ability to forecast of
three types of GARCH models and Kalman filter method. Another article that sup-
ports the proof of time-varying beta is the study of Mergner and Bulla (2008). This
paper investigated the time varying behavior of systematic risk for eighteen pan-
European sectors. The paper has contributed an investigation of time-varying be-
tas for pan-European industry portfolios.. And they also compared the forecasting
accuracy of these three GARCH models which are the bivartate GARCH, BEKK
GARCH, and GARCH-GJR. They evaluated the performance of the model by cal-
culating the mean squared error (MSE) and mean absolute error (MAE). Among the
GARCH models, the GARCH-GJR model appears to be more accurate forecasts
than the bivariate GARCH and the BEKK models, followed by bivariate GARCH.

From the Literature reviews that are mentioned above, since the ordinary least
squared need many assumption and most of ths studies found that the beta from
market model estimated by ordinary least square violate these assumption. This dif-
ficulty becomes the motivation of this study. This study will contribute the time
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varying systematic risk of each industry index in Thailand Stock Market by us-
ing the proper model which is Multivariate GARCH model. However, this study
thus focuses on three type of multivariate GARCH which are vech model Multi-
variate GARCH, BEKK model Multivariate GARCH, and CCC model Multivariate
GARCH. This study will compare both advantages and disadvantages of three po-
tential GARCH models in calculating more precise time-varying beta. In addition
the GARCH model that concern of asymmetric effect should be considered in this
paper as well.

2 Methodology and Data

The step of studies in this paper separated into five steps. Firstly, the study pro-
vides the evidence that betas follow time-varying by estimating the market model
using standard regression approach to show the problem of this model. Secondly,
the model was changed to the multivariate GARCH in three models which are vech
model, BEKK model and CCC model. The forms of them will be mentioned in this
following section. The results are expected to see the time-varying in variance. The
coefficients that link current variance to its own past history as well as past inno-
vations should be statistically significant. Next, the study investigates asymmetries
in covariance by examining the statistically significant of δi,m in vech model. The
results are expected to illustrate the negative coefficient to explain that there exist
asymmetric pattern in covariance. Next, the study plots the beta that is estimated by
these various methods to see the pattern and trend of systematic risk in each industry
and to see how each model capture the change in systematic risk. Finally, the per-
formance of multivariate GARCH and the ordinary least square are compared. The
study will calculate the Root Mean Square Error (RMSE) and the Mean Absolute
Error (MAE) to examine it.

The scope of this study focuses on Thailand Stock Exchange systematic risk.
Therefore, the data used are collected from closed prices of the industry index of
Thailand Stock Exchange and Market Index (SET). There are eight industries In-
dex separated by Thailand Stock Market which are Agriculture Product and Food
Industry, Consumer Products, Financials, Industrials, Property and Construction,
Resource, Services and Technology. The frequency of data collected is daily and
the period of data started from January 2008 to June 2012. Therefore, there are 953
Observations provided for the test. This paper uses closed price of each industry to
compute the return of each industry and uses the closed price of SET to compute
the market portfolio return. This follows market or single index model. And the re-
turn of industry index (i) and Market are calculated by continuous compound return
method. Then the daily returns are computed by this following formula

Ri = 100 ∗ log(Pi,t/Pi,t−1)

Ri is the compound return of industry i and Pi,t and Pl,t−1 stand for the closed price
of industry index i at time t and time t-1 respectively. The first model used in this
study is vech model Multivariate GARCH modell followed Bollerslev (1990). The
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diagonal vech model or vech model specification has an important advantage on
captures the contemporaneous correlation between the various error terms. Then
the coefficients that are estimated by this extended multivariate GARCH model will
be more efficient than using a set of single equation estimations. The vech model
diagonalizes the system by let the variance and covariance equations contain only
lags of itself and the cross product of residuals (εi,t , ε j,t ).

The vech model used in this study is modified to capture asymmetric in covari-
ance can be shown by these following set of equations.

Ri,t = μ i,t + σ i,tZi,t (1)
Rm,t = μm,t + σm,tZm,t (2)
σ2

i,t = α i,0 + α i,1ε2
i,t−1 + α i,2σ2

i,t−1 + ε i Si,t−1δ 2
i,t−1 (3)

σ2
m,t = αm,0 + αm,1ε2

m,t−1 + αm,2σ2
m,t−1 + δm Sm,t−1ε2

m,t−1 (4)
σ i,m,t = λ 0 + λ 1ε i,t−1εm,t−1 + λ 2,σ i,m,t + δ i,mSm,t−1εm,t−1 (5)

Ri,tand Rm,t are the continuous compound return of industry i and market respec-
tively. μ i,t and μm,tare the conditional means. σ2

i,t and σ2
m,t are conditional vari-

ances and σ i,m,t is the conditional covariance. ε i,t and εm,t are the error terms or
innovations and Zi,t and Zm,t are the standardized innovations which can be calcu-
lated be Zi,t = ε i,t / σ i,t and Zm,t = εm,t / σm,t. However, there is the different thing
on normal form of vech model multivariate GARCH on the term Si,t−1 and Sm,t−1

that is designed to capture potential asymmetry in conditional variance.

Where S j,t−1 = 1 ; if ε j,t−1 < 0
And S j,t−1 = 0 ; otherwise

The next Multivariate GARCH model used is BEKK model which is popularized
by Engle and Kronos (1995). The model ensures that the conditional variances are
always positive by putting the model in quadratic forms. Therefore, the conditional
variances and conditional covariance equation depend on the square of residual or
innovation and cross product of residuals. However, the drawback of BEKK model
is the complicated of the model since there are large number of coefficients need
to be estimated. So, this study put the restriction that all of the matrixes need to be
diagonal matrix to reduce the number of coefficient and make the form of model
simplify. So the model can be illustrated as shown and the explanation of the vari-
ables is the same as vech model.

Ri,t = μ i,t + σ i,tZi,t (6)
Rm,t = μm,t + σm,tZm,t (7)
σ2

i,t = γ2
i,i+ α2

i,1ε2
i,t−1 + α2

i,2σ2
i,t−1 (8)

σ2
m,t = γ2

m,m+ α2
m,1ε2

m,t−1+ α2
m,2σ2

m,t−1 (9)
σ i,m,t = α i,1αm,1ε i,t−1 εm,t−1+ α i,1αm,1ε i,t−1εm,t−1+ α i,2αm,2 (10)

The last one of Multivariate GARCH model in this study is constant conditional
correlation model or CCC model. The model requires correlation coefficient to be
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constant. This formulation is a special case of the more general Multivariate GARCH
model. And the same as BEKK model, CCC model need to estimate many parame-
ters. Therefore, this study restricts the coefficient to be scalar and the formations of
the model are shown below and the explanation of the variables is the same as vech
momel.

Ri,t = μ i,t + σ i,tZi,t (11)
Rm,t = μm,t + σm,tZm,t (12)
σ2

i,t = γ i,i+ α i,1ε2
i,t−1 + α i,2σ2

i,t−1 (13)
σ2

m,t = γm,m+ αm,1ε2
m,t−1+ αm,2σ2

m,t−1 (14)
σ i,m,t = γ i,mσ i,tσm,t (15)

The equation Eqs. 1, 2, 6, 7, 11, and 12 are the mean equations of each form of
models and the equation Eqs. 3, 4, 8, 9, 13 and 14 are the set of variance equations.
Moreover, since this study uses multivariate GARCH, then the set of equation in
each type of model requires the covariance equation which are on equation Eqs. 5,
10 and 15. The specification of the model used in this study follow Bollerslev et al.
(1988) exception that it allows for testing on asymmetric responses to up and down
trend of the market which represent by S j,t−1 in vech model.

3 Results

Firstly, the study tests the ordinary least square estimation of beta from the market
model. All of the betas are significantly different from zero in all industries group
at 99 percent confident interval which means that the systematic risk or market risk
is significantly effect on industry return. Next, the study tests Q2-stat ( Ljung-Box
Statistic) ) to examine the ARCH effect in the estimation to investigate that whether
estimating GARCH is proper or not. The results of estimation are shown in Fig. 1
below.

The results show that most of Ljung-Box Statistic for all five, ten and twenty
lags show significance in estimation except Consumer Product Industry. Therefore,
most of industries present ARCH effect or conditional heteroskedasticity except the
Consumer Product Industry. Overall, estimating GARCH(1,1) in these equations
can be used to improve precise of beta estimations by using Multivariate GARCH
models.

Next, the study estimates vech model Multivariate GARCH. The results from
this estimation are shown in Fig. 2.The results show that not surprisingly, all in-
dexes show time varying variance. You can see fiom the significant of αi,2 that hap-
pen in all industries group. The coefficient that link current variance and its own
past variance are all significantly different from zero. For the evidence that show
whether past innovation can influence on current variance, the results show that all
of the cases are true. The coefficient αi,1 of every industry is significantly different
from zero.

Moreover, for the results of asymmetries, if the sign of most coefficients δi,m is
negative and the coefficients δi,m are significant, it follows asymmetric responses
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Fig. 1 Results of traditional regression approach estimation

Fig. 2 Result from multivariate GARCH estimation

of the market which specify that covariance will be higher during market decline.
However, the results show that the coefficient δi,m of all industries are significantly
different from zero but all of coefficients are positive. Consequently, from the results
above, the study cannot conclude about the pattern of asymmetric of beta in this
model.

Next, the study estimates multivariate GARCH in the form of BEKK model. The
results show that all of industry coefficient αi,2 are significantly different from zero
which means that all indexes show time varying variance. The finding of BEKK
model is consistent with vech model. As same as vech model, the study examines
the effect of past innovation to current variance and found that all industries provide
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Fig. 3 Result from multivariate GARCH estimation (BEKK model)

significant coefficient α1,1. Consequently, the results explain that past innovation
can influence current variance.

Finally, the study estimate by using CCC model. All of industries present Time-
Varying variance since the result table shows that all industries coefficientα i,2 are
significantly different from zero. Therefore, the results from CCC model are con-
sistent with the result from vech model and BEKK model. Moreover, the study
also observes that past innovation can influence on current variance by using CCC
model. The results found that most of industry indexes show the pattern that past
innovation has an effect on current variance except Technology industry which its
coefficient α i,1is not significantly different from zero.

Next, the study will compare the beta in each industry by plotting the beta by
five methods of calculating. The first method is Ordinary least square. The returns
of each industry index and return of the market from January 2008 to June 2012 are
used to calculate the beta. Therefore, this method will provide one value of beta and
the graph will be the horizontal line along the period. The second method is OLS
rolling estimate that improved from OLS. In this method, data will be separated into
small period or window that each window contains 60 observations of data. In each
window, one value of beta will be generated by OLS and roll the window along the
period. Therefore, by this method beta plotting is not the horizontal line as OLS but
it will change all the time. The rest methods are Multivariate GARCH with various
models that are vech model, BEKK model and CCC model. The Time-Varying beta
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Fig. 4 Result from multivariate GARCH estimation (CCC model)

from these three models of Multivariate GARCH can be calculated by this method
as formula shown below.

βi,t = σi,m,t/σ2
m,t

The time-varying market variance and covariance with the industry i are estimated
by the conditional covariance equations divided by the conditional variance equation
of the market in each model. The beta calculated by multivariate GARCH method
will move up and down along the period and is expected that it wlll move along the
beta calculated by OLS.

From the plots, they show that three series of beta from these three Multivariate
GARCH models and the beta from rolling OLS move up and down along OLS beta.
However, by using Multivariate GARCH and rolling OLS, the trend of beta can be
observed the clearly. The obvious one is Industrial Industry, the betas from Multi-
variate GARCH and rolling OLS provide the increasing trend. By OLS, the beta of
Industrial is 0.97 that is very close to market index. When considering the Time-
Varying beta calculated by OLS Rolling estimate and Multivariate GARCH the
study found that Time-Varying Beta of both methods has large fluctuation and can
observe increasing trend better. They fluctuate from around 0.6 to 1.9 and present
the increasing trend as you can observe from graph and using OLS beta estimation
cannot observe it. This is the advantage of Portfolio adjustment for market partici-
pants by using the precise model. It can show the rapid move of systematic risk and
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Fig. 5 Beta Plotted of AGRO, CONSUMP, FINANC and INDUS

trend of the particular industry. Moreover, Multivariate GARCH can also catch up
the volatility quicker than rolling OLS as you can see from the graphs that the three
models of Multivariate GARCH show the spike of the beta along the period while
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Fig. 6 Beta Plotted of PROPCON, RESOURCE, SERVICE and TECH

rolling OLS beta does not present large move of beta. In addition, from the plots,
CCC model tend to provide highest volatile beta.

Finally, this study evaluates the performance of the models by calculating root
mean square error and mean absolute error. The root mean square error is a square
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root of total quadratic error divided by the number of observation and mean square
error or MAE is sum the absolute value of error divided by the number of observa-
tion. This study calculates RMSE and MAE of Ordinary Least Square, vech model
Multivariate GARCH, BEKK model Multivariate GARCH and CCC model Multi-
variate GARCH and the results table can be illustrated as shown.

Fig. 7 Comparing RMSE and MAE of the models

From the table, in most industries, vech model provide least value of both RMSE
and MAE which mean that this model is superior in Time-Varying betas. However,
for CCC model and BEKK model, they provide the RMSE and MAE similar to
RMSE and MAE of OLS that means they do not perform better than OLS. This
may come from the restriction in this study that reduces the number of parameters
that need to estimate in these two models. Then the ability of precisely forecast may
drop.

4 Conclusion

The results prove that simple ordinary least square estimation exhibits heteroskedas-
ticity problem. Therefore, the model that can handle with heteroskedasticity is
GARCH model. The results of multivariate GARCH estimation in all three models
that are vech model, BEKK model and CCC model show the pattern of time-varying
in beta in all industry indexes. The results in all cases explain that one factor that
influence in the current variance is its own variance in the past period. Moreover, the
past period of the innovation or error terms also influence the conditional variance
of the returns. Moreover, the study plotted the pattern of beta by these model com-
pare to beta from Ordinary Least Square regression and rolling window OLS. The
pattern of beta from these models of Multivariate GARCH in all industries moves
up and down along the beta from OLS. In addition, using Multivariate GARCH
models can capture the increasing or decreasing trend of systematic risk that oc-
curs in some industries while OLS cannot. Multivariate GARCH model can capture
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the change in systematic risk quicker and better than rolling OLS and among these
three models, CCC model present the most rapid move of beta. For asymmetries in
covariance, we can observe from only vech model, the study expects to see nega-
tive and significant in coefficient δ i,m that represent that covariance would be higher
if both industry index and market index returns are negative compared to the case
when they both are positive. However, even the results present that all cases coeffi-
cients are significant, but all coefficient show positive sign of δ i,m. Therefore, this
study can conclude that there is no clear pattern of asymmetries in covariance of
returns in these eight industries index. From the model evaluation, vech model per-
forms the best since it provides lowest value of RMSE and MAE. Therefore, the
vech model of Multivariate GARCH is the good choice for Time-Varying system-
atic risk estimation. Overall, the study found that by using Multivariate GARCH in
estimating Time-Varying Systematic risk provide understanding in systematic risk
precisely that is useful both academic and stock market investment and enhanced
knowledge of Thailand Stock market. The further study objective can be scope of
the data expanding since the establishment of ASEAN Trading Link. Therefore, the
scope of data in further study can be ASEAN Stock market industry index, estimat-
ing the industry indexes in each country precisely can develop the opportunity in
investment for market participants and improved knowledge in Thailand academic.
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Forecasting Using Nonlinear Long Memory
Models with Artificial Neural Network
Expansion

Chaleampong Kongcharoen�

Abstract. We compare a number of models for obtaining h-step ahead minimum
mean square error forecasts for nonlinear long memory processes. The forecasts
from a proposed approximate nonlinear long memory, Fractionally Integrated Arti-
ficial Neural Network (FI-ANN) model, are compared to pure long memory models,
e.g., ARFIMA(1,d,0) and Local Whittle, pure nonlinear, i.e., Artificial Neural Net-
work (ANN), and high order autoregressive model. Consider several nonlinear spec-
ifications in nonlinear long memory processes, the one- or two-step ahead forecasts
of FI-ANN model generally perform better than ANN and other alternative models
in the Monte Carlo simulation. The model is used to forecast series of inflation.

Keywords: Evaluating forecasts, Long memory time series, Neural networks,
Nonlinear time series, Simulation.

1 Introduction

This paper considers prediction from a model that combines both long memory and
nonlinear feature. The aim of the paper is to examine the forecast performance of
Fractionally Integrated Artificial Neural Network (FI-ANN) model which incorpo-
rates both long memory and pure nonlinear characteristics approximated by Artifi-
cial Neural Network (ANN). In particular, we compare prediction performance from
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FI-ANN model, in term of Mean Square Errors (MSEs) with ones from pure long
memory models, pure nonlinear model, and autoregressive model.

The long memory behavior is associated with hyperbolically decaying autocor-
relations and impulse response weights. Empirical evidence on long memory was
found in many economic and financial time series, see the reference in [4], and [24].
However, theoretical and simulation works, such as, [17] and [28], have addressed
the problem that a linear process with structural break can mimic long memory pro-
cess. On one hand, researchers, e.g., [33], develop a test to distinguish a true long
memory process from a spurious one. On the other hand, researchers, e.g., [37] and
[6] propose a model that can capture both long memory and structural break phe-
nomena and found that many economic time series have both characteristics.

Few studies, e.g., [26], [14], [16], and [29], have considered forecasting perfor-
mance from a model with both long memory and nonlinear features using actual
time series data. Literature on forecasting with a combined model focuses on the
parametric nonlinear model, such as, a Smooth Transition Autoregressive (STAR)
model. However, as suggested in literature, the true specification of nonlinear part in
a process is rarely unknown. The ANN model is widely used to approximate various
nonlinear processes, see [18] for Monte Carlo simulation of the usefulness of ANN
approximation in various nonlinear Data Generating Process (DGP). Recently, sev-
eral works, e.g. [8] and [3] propose the flexible form for level of series to capture
nonlinear part.1.

This paper proposes a model that combines the long memory feature with an
ANN expansion and investigates the usefulness of the model in term of long mem-
ory parameter estimation and forecasting a long memory process with nonlinear
specification, such as, STAR, Self-Exciting Threshold Autoregressive (SETAR), and
Markov-Switching (MSW ). The main question is how well prediction from FI-ANN
perform comparing to alternative models, such as, autoregressive, pure long memory
(both parametric and semiparametric) and pure nonlinear (approximated by ANN)
models.

From Monte Carlo simulation, we found that FI-ANN model generally provides
lower biases of long memory parameter than semiparametric estimations especially
with SETAR and STAR specification in the nonlinear part. Further, for one- and two-
step head forecast, we found that FI-ANN model performs better than ANN model,
pure long memory model and autoregressive model. There is also detailed examples
of the methodology applied to monthly CPI inflation series.

2 Model and Method

2.1 Nonlinear-Long Memory Models

Long memory, or fractionally integrated processes were proposed by [20], and [25]
to capture the slow hyperbolic rates of decay in an impulse response weight and

1 There are also works that focus on the nonlinear in variance of series, e.g. [10]
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autocorrelation of a series. A univariate process with fractional integration in its
conditional mean is represented by

(1−L)dyt = ut , t = 1, ...,T, (1)

where L is the lag operator and ut is a short-memory, I(0) process. Note that polyno-
mial (1−L)d can be expressed in terms of its Binomial expansion, i.e., (1−L)d =

∑∞
j=0

(
d
j

)
= 1− dL+ d(d−1)L2

2! + .... Then, yt is said to be a fractionally integrated

process of order d, I(d). The degree of “long memory”, or persistence is represented
by the d parameter. The process is stationary if d < 0.5 and invertible if d >−0.5.
Moreover, if d > 0 the process is associated with long memory. If the short memory
is represented by a white noise process, then (1) becomes the fractional white noise
model,

(1−L)dyt = εt , t = 1, ...,T, (2)

where E(εt) = 0,E(ε2
t ) = σ2, and E(εtεs) = 0,s �= t. If uT t is ARMA(p,q), i.e.

φ(L)ut = θ (L)εt , yt becomes ARFIMA(p,d,q). The infinite-order moving average
representation is given by

yt =
∞

∑
i=0

ψi(d)εt−i, (3)

where ψ(L) = 1+∑∞
j=1ψ jL j = (1−L)dθ (L)−1φ(L) and the infinite-order autore-

gressive representation is given by

yt =
∞

∑
i=1

πi(d)yt−i + εt , (4)

where π(L) = 1−∑∞
j=1π jL j = θ (L)−1φ(L)(1−L)d . For large i, the moving average

and autoregressive coefficients decay at very slow hyperbolic rate, ψk ≈ c1kd−1 and
πk ≈ c2k−d−1 where c1 and c2 are constant ( [4]).

The nonlinear process, such as, MSW and Threshold Autoregressive (TAR), can
be mistaken for a long memory process [17, 28]. Some researchers try to propose
the tests to distinguish the real long memory from the spurious one. See [34] and [9]
for reviews about spurious long memory. Using Monte Carlo simulation, [11] con-
clude that, even a structural break process behaves similar to long memory process,
it is dangerous to forecast the structural break series with the long memory model.
However, this paper focuses on the other route supported by [6]’s results that many
economic and financial time series have both nonlinear and long memory compo-
nents. The useful model should combine both phenomena. Following Baillie and
Kapetanios’ strategy, this paper considers a nonlinear process as a short memory
part in long memory model. The general nonlinear process is defined as

ut = F(ut−1, ...,ut−p)+ εt . (5)
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The nonlinear part can be a parametric nonlinear model, such as, the STAR model in
[37] and [7]. The joint estimation between the long memory parameter and nonlin-
ear parameters is advocated by appealing Monte Carlo and empirical results in [7].
However, the true form of nonlinear part is hardly known. The flexible functional
form of nonlinear model by the ANN expansion is widely used in the literature and
should be suitable in the joint estimation of long memory parameter and nonlin-
ear part. The modeling of nonlinear part by nonparametric specification is proposed
by [6].

[6] shows that the MLE of the FI-ANN model produces T 1/2-consistent and
asymptotic normal for d parameter. In literature, the ANN model is usually used as
the approximated model for nonlinear process, such as, smooth transition, Markov
switching, or bilinear models. The estimation of the ANN model is based on mis-
specification models. The model and method of estimating FI-ANN model are dis-
cussed in following section. We conjecture that a long memory parameter from
FI-ANN model have a nice asymptotic result. The usefulness of this model can be
investigated by Monte Carlo simulation in following section. However, the formal
proof of asymptotical result is beyond the scope of this paper.

2.2 Time Domain MLE

In this section we focus on the nonlinear part approximated by the ANN model. The
ANN model is obtained by assuming that the conditional mean of ut depends on the
value of a linear combination of p lagged values ut−1, ...,ut−p. Moreover, in order
to adequately capture the nonlinear relationship between ut and lagged values, a
hidden unit, G(·), is included up to q. Hence, the ANN(p,q) part of the joint model
is represented as

ut = α0 +
p

∑
j=1

α jut− j +
q

∑
j=1

β jG

(
γ0 j +

p

∑
i=1

γi jut−i

)
+ εt . (6)

This equation also includes the linear part, which is common in econometric ap-
plication. The nonlinear part of Equation (6) can approximate any function to any
degree of accuracy, provided that the number of nonlinear components q is suf-
ficiently large ([18], p.208 and reference herein). We call the joint estimation of
Equations (1) and (6) FI-ANN. By assuming that the white noise process εt is
Gaussian, the θ = [d,α0,α j,β j,γ0 j,γi j ],where i = 1, ..., p, j = 1, ...,q parameters
can be estimated by minimizing the conditional sum of squared residuals (CSS)
∑T

t=1 ε̃t
2, where ε̃t = ũt(d)−α0+∑p

j=1α j ũt− j(d)+∑q
j=1β jG

(
γ0 j +∑p

i=1 γi j ũt−i(d)
)

and ũt(d) = yt−∑t−k
l=0πl(d)yt−i ≈ (1−L)dyt . Note that k is the truncation lag. In var-

ious settings, CSS is asymptotically equivalent to the approximate time domain ML
estimation and easy to compute (See [15]).

The ANN model, generally, is considered as an approximate model for nonlinear
processes, such as, TAR, STAR, or MSW , not the true DGP. Hence, we consider
SETAR, STAR, and MSW as nonlinear part in our nonlinear long memory DGP.
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As we mentioned, FI-ANN estimation from these DGP is inherently misspecified.
However, according to [18], the properties of CSS estimation in misspecified model
is well developed. We expect consistent estimates from the CSS estimation of the FI-
ANN model. The small sample properties of the FI-ANN model will be investigated
in following section.

Generally, the performance of the FI-ANN model depends heavily on selections
of the function G(·), the number of hidden unit, q, and the number of lags, p. The lo-
gistic function is used almost invariably in applied literature. The appropriate choice
of p and q is determined by a model selection criterion, such as, the Schwarz infor-
mation criterion (SIC), where p∈ {1,2, ..., p∗} and q∈ {1,2, ...,q∗}. An alternative
strategy can be found in [30].

2.3 Semiparametric Estimations

The semiparametric estimation of the long memory parameter is one of growing
literature, many estimation procedures are proposed and refined. See [31] for an
overview about long memory estimations. [7] suggest the possibility of two-step
estimation procedure for process with both long memory and break. Firstly, a semi-
parametric estimator for d parameter is estimated. Then, the nonlinear model is
fitted to the fractional filtered series, ut = yt−∑t−p

t=1 πl(d̂)yt−l . However, an accuracy
of second-step estimation relies heavily on the semiparametric estimate in first-step
estimation. There is a wide variety of semiparametric methods for the estimation
d and this study uses Local Whittle, which is know to have a desirable properties;
see [32]. The Local Whittle semiparametric estimator for d is obtained by maximiz-

ing the objective function, ln
[

1
m ∑m

j=1λ 2d
j I(λ j)

]
− 2d

m ∑m
j=1 ln(λ j). with respect to d,

where I(λ j) is the periodogram given by I(λ j) =
1

2πT |∑T
j=1 yteiλ jt |2. The estimator

depends on the choice of bandwidth, m. The discussion of optimal bandwidth or
bias reduction which is beyond scope of this paper can be found in [2], [23], and
[1]. For all simulation study in this study, the bandwidth is chosen as m = �T 0.5	 ,
where �x	 denotes the integer part of x.

3 Simulation Study

In this section we investigate the finite sample performance of FI-ANN, FI− TA,
GPH, and LW . In particular, the objective is to compare the biases and mean square
errors of long memory parameter from FI-ANN and semiparametric estimations
under the nonlinear long memory process.

3.1 Monte Carlo Setup

For each DGP we generate nonlinear process, ut , then, we impose long memory
characteristic by using moving average representation, yt = ∑t−l

l=0ψl(d)ul . In order
to obtain the sample size of 200, we generated 400 observations and dropped first
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200 observations. Number of replication is 1,000. For long memory parameters, we
investigate two main categories: (1) a pure structural break process (d = 0), and (2) a
process with both structural break and long memory property (d = 0.2 and d = 0.4).

We consider three well-known nonlinear specifications which are SETAR, STAR,
and MSW . The shifts between regimes in SETAR and STAR are observable and en-
dogenous. However, the regime switching in SETAR relies on discontinuous func-
tion, while one in STAR is governed by continuous functions, e.g. exponential or
logistic functions. On the contrary, the changes in MSW are created by unobserv-
able variable. The detail and parameter values are outlined in following section.

3.1.1 Self-Exciting Threshold Autoregressive (SETAR) Process

We consider a simple SETAR with two regimes and AR(1) in each regime, following
[18], which is defined as

ut =

{
ν0,1 +ν1,1ut−1 + εt if ut−1 ≤ c,

ν0,2 +ν1,2ut−1 + εt if ut−1 > c,
(7)

where εt is assumed to be i.i.d. white noise sequence conditional upon the history
of the time series, i.e. E(εt |Ωt−1) = 0, E(ε2

t |Ωt−1) = σ2, and Ωt−1 = yt−1,yt−2, ....
The delay parameter is set to be one. All simulations in this study, the error term, εt ,
is set as N(0,1).

The stationary conditions of SETAR process are derived by [12] and [13]. In our
simulation, we consider (1) the case that both regimes are stationary (experiment
1.1), and (2) the case that one regime is nonstationary (experiments 1.2 - 1.4). The
parameter values are shown in Table 1.

3.1.2 Exponential Smooth Transition Autoregressive (ESTAR) Process

The STAR process with exponential transition function, following [6], is given by

ut = α0 +α1ut−1 +β1
[
1− exp(−γ1(ut−1− γ0)

2)
]

ut−1 + εt , (8)

where γ0 and γ1 are threshold and smoothness parameters, respectively. The param-
eter values is presented in Table 2.

3.1.3 Markov Switching Process

We consider a simple two-state Markov switching process. The time varying pa-
rameters are governed by an unobservable random variable, st . Following [21], the
Markov switching process with an AR(1) process in each regime are defined as

ut =

{
ν0,1 +ν1,1ut−1 + εt if st = 1,

ν0,2 +ν1,2ut−1 + εt if st = 2.
(9)
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The process st is a Markov chain with a transition probability P given by the
following matrix,

P =

(
p11 1− p11

1− p22 p22

)
. (10)

A sufficient condition for geometric ergodicity of Markov switching autoregressive
models is given by [38]. In our simulation, we set the parameter ν0,1 = 0.5 and ν0,2 =
−0.5. We consider both low persistence, p11 = p22 = 0.1 (Experiments 3.1 and 3.2),
and high persistence, p11 = p22 = 0.9 (Experiment 3.3 and 3.4) with moderate and
high autoregressive parameters.

3.2 Long Memory Parameter Estimations

The performance of four estimations are presented in Tables 1 through 3 and eval-
uated by the average and Root Mean Square Errors (RMSEs) over the replications.
For FI-ANN , optimal orders of p and q are determined by SIC. A selection of the
simulations that were performed are reported in the text, and the results reported are
typical of the general findings. Full details are available from the authors on request.

For the FI-SETAR DGP, the estimated d from FI-ANN are close to the true d
parameter. There are substantial biases in the estimators from LW estimators. Please
see Table 1. The bias of LW estimation in the FI− SETAR DGP Experiment posi-
tively varies with degree of persistence in DGP process. Moreover, both semipara-
metric estimations perform unsatisfactorily in term of the RMSEs.

In the FI-ESTAR case, the estimated d from FI-ANN models are less bias than
ones from semi parametric estimations in Experiments 2.3 and 2.4. In general, there
are substantial biases for the estimators from the LW and GPH for the process with
both structural break and long memory, i.e., d > 0. Please see Table 2.

In the case of FI −MSW , FI-ANN model performs slightly different. FI-ANN
models do not suggest long memory in pure short memory DGP in Experiments 3.1
and 3.2 but LW model does. FI-ANN performs well only the case of high persistence
process (Experiments 3.3. and 3.4). This result is consistent with the literature that
ANN does not capture MSW process well, (see [37], p.242). The LW always give
the positive and substantial biases for FI-MSW DGP. Please see Table 3.

We conclude from the results in Tables (1) (2) and (3) that applying the popular
semiparametric estimations in the possibility of a structural break can provide an
adverse result and misleading conclusion. On the contrary, the approximations both
Taylor approximation and ANN expansion seems to be appealing in practice for
long memory series with break and pure structural break especially the break that is
induced by endogenous variables.
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3.3 Forecasting

This subsection considers the prediction from FI-ANN model. From equation (1),
(1−L)dyt = ut , we can rewrite yt as yt = ψ(L)ut = (1−L)−dut = ∑∞

j=0 ut− j. Note
that ut = F(ut−1,ut−2, ...,ut−p) + εt . The optimal h-step-ahead forecast of yt+h at
time t is given by

ŷt+h|t = E(yt+h|Ωt), (11)

where Ωt is the information up to and including time t. The optimal one-step-ahead
forecast is easily obtained as

ŷt+1|t = F(ut , ...,ut+1−p)+ψ1ut +ψ2ut−1 + .... (12)

As mentioned in literature, e.g., [37], [35], the derivation of optimal forecasts for
period longer than one are more complicated. For example, two-step-ahead forecast
can be derived as

ŷt+2|t = E(F(F(ut , ...,ut+1−p)+εt+1,ut ,ut−1, ...,ut+2−p)|Ωt)+ψ1F(ut )+ψ2ut + .... (13)

The conditional expectation can be exactly calculated by numerical integration.
However, this method is time consuming (see [37], p.119-120). An alternative ap-
proach is to use Monte Carlo or Bootstrap method to approximate conditional ex-
pectation. Following [37], the two-step-ahead Monte Carlo forecast is given by

ŷmc
t+2|t =

1
k

k

∑
i=1

F(F(ut , ...,ut+1−p)+ εi,ut ,ut−1, ...,ut+2−p)+ψ1F(ut)+ψ2ut + .... (14)

where k is large number and εi is drawn from assumed distribution of εt+1. Similarly,
the two-step-ahead bootstrap forecast is obtained by

ŷb
t+2|t =

1
k

k

∑
i=1

F(F(ut , ...,ut+1−p)+ ε̂i,ut ,ut−1, ...,ut+2−p)+ψ1F(ut)+ψ2ut + .... (15)

where ε̂i is drawn from residuals in the estimated model. A practical method for cal-
culating h-steps-ahead when h ≥ 2 is outlined in [35]. The ‘naive’ forecasts, where
εt+h are set at 0, are considered in our Monte Carlo simulation. In practice, predic-
tors are calculated from T observations.

In Monte Carlo simulation, we compare performance of nonlinear long memory
(FI-ANN) with pure long memory, pure nonlinear (ANN), higher order Autoregres-
sive model, and ARFIMA(1,d,0). For each iteration we simulate a series of 205
observations. The first 200 observations are used to estimate FI-ANN and alterna-
tive models.

The results for the mean square forecast errors (MSFEs) of the nonliear long
memory process are reported in Table 4. For FI-SETAR DGP, the one- and two-
step ahead forecasts from the FI-ANN model are generally better than ANN model
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and other alternatives. For the FI-ESTAR DGP, the forecasts from FI-ANN model
perform better than ones from ANN model in short-period ahead predictions. For
FI−MSW , the FI-ANN model gives the best forecasting among alternative models
for high long memory parameter. The FI-ANN models perform worse than ANN
models for the case of low long memory parameter and a pure MSW . However, the
MSFE from FI-ANN and ANN models are close.

4 Empirical Application

Inflation in many countries appear to be characterized by long memory with prob-
able nonlinearity due to regime switching (e.g., [22], [5], and [8]. In this section,
we focus on the inflation of G-7 countries, i.e. the U.S., Canada, the U.K, France,
Germany, Japan, and Italy. The monthly inflation series are calculated from Con-
sumer Price Index (CPI) obtained from the OECD statistical website. [8] suggested
that there is an evidence that inflation for the U.S., Japan, and the U.K. have long
memory and nonlinearity.

We separate data into estimation period and forecasting period. We employ the
rolling forecast technique where the sample size is kept at 600 months and we repeat
this procedure for 80 times. The one- to five-period ahead forecasts are compared
to the actual data and the mean square errors from each estimation model are com-
puted. The result is presented in Table 5. We find that the forecasts from FI-ANN
perform close to ARFIMA and better than ANN for Canada, France, Germany, Japan
and the U.K.. Thus, in case of G7 inflation, combining nonlinear in long memory
model does not improve the forecasting performance. Moreover, the pure nonlinear
model provide the inferior result. One striking result is the high order autoregres-
sive model provides the superior performance for all countries except Canada and
the U.S.

5 Conclusion

The prediction from FI-ANN models has been considered by comparing mean square
forecast errors with ANN models and other alternative models. Using Monte Carlo
simulation and several nonlinear specifications for nonlinear long memory process,
we found that FI-ANN models generally work well and better than ANN models
especially one- or two-step ahead forecasts. This result provides a useful sugges-
tion for practitioners when they facing the series that may have both long memory
and nonlinear structure. The performance of FI-ANN model is close to ARFIMA
and suggested that nonlinear part does not help improving inflation forecasts for G7
countries.
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Appendix

Table 1 Properties of the estimated long memory parameter for FI-SETAR Data Generating
Process, d = 0.4

Experiment Parameter values Average of Estimated d RMSE of estimated d
ν0,1 ν0,2 ν1,1 ν1,2 FI-ANN LW FI-ANN LW

1.1 -0.3 0.1 -0.5 0.5 0.324 0.525 0.218 0.224
1.2 -0.5 0 1 0.1 0.407 0.876 0.268 0.552
1.3 -0.9 0 1 0.1 0.379 0.846 0.236 0.477
1.4 0.5 -0.5 1 1 0.474 1.096 0.413 0.707

Note: Number of observations is 200. Number of replications is 1,000.

Table 2 Properties of the estimated long memory parameter for FI-ESTAR Data Generating
Process, d = 0.4

Experiment Parameter values Average of Estimated d RMSE of estimated d
α1 β1 γ1 FI-ANN LW FI-ANN LW

2.1 0.8 -1.0 0.01 0.172 0.602 0.446 0.290
2.2 0.8 -1.0 0.05 0.092 0.496 0.506 0.224
2.3 1.3 -1.0 0.01 0.356 1.101 0.405 0.702
2.4 1.3 -1.0 0.05 0.361 1.068 0.238 0.687

Note: See Table 1.

Table 3 Properties of the estimated long memory parameter for FI-MSW Data Generating
Process, d = 0.4

Experiment Parameter values Average of Estimated d RMSE of estimated d
ν0,1 =−ν0,2 π11 = π22 FI-ANN LW FI-ANN LW

3.1 0.5 0.01 0.222 0.667 0.283 0.311
3.2 0.9 0.05 0.330 0.707 0.167 0.343
3.3 0.5 0.01 0.266 0.684 0.436 0.339
3.4 0.9 0.05 0.426 0.826 0.230 0.473

Note: See Table 1.
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Table 5 MSEs of different forecast horizons, G7 CPI inflation

Country Forecast AR ARFIMA LW FI-ANN ANN
Horizon(s)

Canada 1 0.159 0.163 0.220 0.164 0.160
2 0.160 0.165 0.227 0.166 0.168
3 0.160 0.172 0.259 0.174 0.180
4 0.168 0.181 0.300 0.184 0.195
5 0.161 0.177 0.314 0.180 0.194

France 1 0.071 0.097 0.154 0.101 0.113
2 0.074 0.097 0.147 0.099 0.118
3 0.072 0.092 0.150 0.094 0.118
4 0.073 0.093 0.152 0.096 0.129
5 0.076 0.096 0.189 0.100 0.140

Germany 1 0.091 0.127 0.254 0.128 0.139
2 0.087 0.108 0.148 0.108 0.115
3 0.088 0.110 0.168 0.111 0.118
4 0.085 0.111 0.148 0.110 0.116
5 0.086 0.116 0.155 0.115 0.121

Italy 1 0.032 0.033 0.050 0.034 0.040
2 0.035 0.036 0.054 0.036 0.049
3 0.041 0.040 0.061 0.042 0.064
4 0.045 0.044 0.078 0.046 0.080
5 0.045 0.045 0.089 0.048 0.092

Japan 1 0.086 0.090 0.115 0.103 0.138
2 0.089 0.093 0.124 0.104 0.162
3 0.089 0.097 0.131 0.107 0.178
4 0.089 0.095 0.119 0.120 0.180
5 0.089 0.095 0.109 0.854 0.180

U.K. 1 0.088 0.151 0.224 0.151 0.164
2 0.092 0.141 0.178 0.140 0.154
3 0.095 0.145 0.203 0.145 0.167
4 0.094 0.139 0.172 0.137 0.165
5 0.098 0.148 0.206 0.148 0.181

U.S. 1 0.209 0.203 0.199 0.204 0.199
2 0.280 0.273 0.324 0.274 0.276
3 0.295 0.287 0.370 0.289 0.287
4 0.296 0.285 0.381 0.288 0.285
5 0.295 0.282 0.396 0.285 0.278
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Modeling Dependency of Crude oil Price and
Agricultural Commodity Prices: A Pairwise
Copulas Approach

Phattanan Boonyanuphong, Songsak Sriboonchitta, and Chukiat Chaiboonsri

Abstract. This study examines the dependency between the return of crude oil fu-
ture prices and the agricultural commodity future prices as well as provides flexible
models for dependency and the conditional volatility GARCH. Therefore, this pa-
per used copula-based GARCH models, which consists in estimating the marginal
distributions of the return of the crude oil price and agricultural commodity prices
and then estimates the copula parameters by static and time-varying copula models.
The results revealed that the co-movement between crude oil price and agricultural
commodity prices are generally strong and there exists symmetric tail dependence
between crude oil and agricultural commodity prices in all pairs. However, its tail
dependence is relatively weak. The dependence parameters are very volatile over
time and deviate from their constant levels. Our findings have important implica-
tions for policy makers, producers and traders, which could be used to implement a
better policy to optimize and stabilize the markets or their portfolio management in
the agricultural commodity markets.

1 Introduction

In recent years, the oscillation of agricultural commodity prices in the international
market has created a widespread debate. The increase in agricultural commodity
prices started sharply in 2007; the price had grown to its highest level in thirty
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years by June 2008. The main agricultural commodity prices such as corn, soy-
beans, wheat and rice rose up to 75 percent, 116 percent, 78 percent and 166 percent,
respectively. After that, commodity prices fell sharply in the next six months. How-
ever, the prices of agricultural commodities are still above their historic levels [1, 2].
In 2010, the prices began rising again and peaked in early 2011. In the meantime, the
prices of commodity energy experienced a high level of fluctuations which has been
unprecedented in recent history. For instance, the crude oil prices began increasing
in 2004 and reached their highest price in 2008 and then fell steadily in late 2008.
However, these prices are still higher than the price levels in 2004 [3]. And they
increased steeply again to nearly 100 dollars per barrel in 2010.

The co-movement between agricultural commodity prices and crude oil price has
attracted the interest of many researchers to investigate what factors drive this co-
movement. There are several ways to examine the transmission from the crude oil
price to agricultural commodity prices. First, the energy-agriculture linkage; the rise
in oil prices causes an increase in agricultural commodity prices by driving costs of
production through its impact on chemicals, fertilizers, and other inputs. Hanson [4]
showed that soaring crude oil prices drive higher costs of production which in turn
cause agricultural commodity prices to increase. Also, Baffes [5] found evidence
that the fertilizer index has strongly impacted the pass-through from the energy
prices to non-energy prices as followed by agriculture. Moreover, the close linkage
between energy and agricultural markets, which is the result of the production of
biofuels that has surged since 2006, has altered prices also. Ethanol and biodiesel
are substitutes for gasoline and diesel, thereby creating a higher demand for agricul-
tural commodities in the biofuels’ industry in combination with the high oil prices.
Tang and Xiong [6] reveal that the increase in the biofuels industry has probably
caused prices of grains and oil seeds such as corn, soybeans and wheat to co-move
with oil prices. Chen et al. [7] investigated the interaction between the prices of
corn, soybean and wheat and the crude oil price. They argue that the demanding
growth of grain production based on biofuels is significantly due to higher crude oil
prices. Second, the indirect effect of energy price on agricultural commodity prices
through the depreciation/appreciation of the exchange rate results in an increase in
agricultural prices [8].

Most empirical studies focus on investigating the relationship between the crude
oil price and agricultural commodity prices. Chang and Su [9] point out that the
substitutive effect can be represented in the period of the high crude oil price due
to the increasing use of biofuels. Chen, et al. [7] confirm that the increase in the
crude oil price has significantly affected world agricultural grain production and
its prices. Also, Nazlioglu and Soytas [8] examined the dynamic relationship be-
tween world oil prices and twenty four world agricultural commodity prices by em-
ploying panel co-integration and Granger causality methods. The empirical results
revealed that changes in world oil prices significantly resulted in the prices of sev-
eral agricultural commodities. In contrast, Yu, Bessler and Fuller [10] analyzed the
long-run interdependence between the crude oil price and four major traded edible
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oil prices including soybean, sunflower, rapeseed and palm oils and could not detect
an influence of crude oil price on edible oils prices over the period from January
1999 to March 2006. More recently, Gilbert [11] and Saban [2] found that the crude
oil prices and the agricultural commodity prices did not affect each other by lin-
ear causality. In addition, they argue that macroeconomic and financial factors were
seen as the main determinants of changes in overall agricultural prices. Therefore,
the discussion above shows that the analysiss of the relationship between oil price
and agricultural commodity prices are widely differing and complex in their empir-
ical evidence.

There are numerous methods that have been used to explore the co-movement
between random variables. For example, the Johansen cointegration and Vector Er-
ror Correction Models which was employed by Natanelov et al. [12] Cifarellli and
Paladino [13] used a multivariate CCC-GARCH-M model. Modeling time-varying
volatility such as multivariate GARCH models were used by Chang et al. [14] How-
ever, this model which is based on some strong assumptions was often used in order
to obtain a desirable variance-covariance matrix. Furthermore, the VAR model and
multivariate GARCH models were assumed to have a linear relationship with multi-
variate normal distribution or student-t [15]. These assumptions may be considered
as strong assumptions in empirical studies. In several data sets it was found that the
data were skewed, fat-tailed and leptokurtic with dissimilar marginal distribution,
as well as the distributions had degrees of freedom need that were not the same
for each marginal distribution. In addition, previous empirical research involving
the issue of co-movement between crude oil prices and the agricultural commodity
prices mostly used the co-integration theory, the Granger causality test, the vector
autoregressive model and the vector error correction.

In this research, we attempt to fill the gaps and handle the drawbacks of the
traditional models by the Copula-based GARCH model. This model provides for
better flexibility in joint distributions as well as transformation invariant correla-
tions; hence, it does not need to assume linear correlation. More specifically, we
try to answer three questions: What is the dependence structure between crude oil
price and agricultural commodity prices? Is the dependence symmetric or asymmet-
ric? Is there existence extreme tail dependence between crude oil and agricultural
commodity markets? By answering these questions, we hope to enhance the under-
standing of the dependence structure between the crude oil price and agricultural
commodity prices.

The rest of the paper is structured as follows. In Section 2 we provide a brief
review of the copula model, marginal model and the estimation method used for
this paper. In Section 3 we describe the data and in Section 4 and 5 we discuss
our results and include the discussion about the co-movement between crude oil
price and agricultural commodity prices, and to be finally followed by conclusions
in Section 6.
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2 Econometrics Models

2.1 Copula Models

Here we consider both static copulas and time varying copulas models to describe
the different tail dependence structure. Static copulas models used in our work in-
clude Gaussian copula, Student-t copula, Frank copula, Clayton copula and Gumbel
copula.

The bivariate Gaussian copula is given by CGaus(u,v;ρ) =Φρ (Φ−1(u),Φ−1(v)),
where the variables u and v are CDFs or ECDFs of the standardized residuals from
the marginal models, and 0 ≤ u,v≤ 1 and where Φ−1(u) and Φ−1(v) are standard
normal quantile functions. Gaussian copula cannot capture tail dependence. Simi-
larly, the Student-t copula is defined by CT (u,v;ρ ,ν) = Tν,ρ(t−1

ν (u), t−1
ν (v)), where

Tν,ρ is the bivariate student-t distribution with degrees of freedom ν and the linear
correlation coefficient ρ and t−1

ν (u) and t−1
ν (v) are the quantile function of student-t

distribution. The Student-t copula provides symmetric structures non-zero tail de-
pendence with the same probability of occurrence, λU , λL > 0 both positive and
negative side. Moreover, we also choose non-elliptical copulas such as Frank, Clay-
ton, and Gumbel which consider negative dependence and upper (lower) tail depen-
dence. The Frank copula is defined by CF(u,v;θ ) = −1

θ ln(1+((e−θu− 1)(e−θv−
1))/(e−θ − 1)), where θ ∈ (−∞,+∞). The Frank copula permits negative depen-
dence between the marginal distributions. Similar to elliptical copulas, dependence
is symmetric in both tails and also it is most appropriate for data that exhibit weak
tail dependence. The Clayton copula is defined as follows CCL(u,v;θ ) = (u−θ +
v−θ − 1)−1/θ , where θ ∈ (0,∞). The Clayton copula exhibits strong lower tail de-
pendence. On the contrary, the Gumbel copula can catch upper tail dependence. The
Gumbel is defined by CG(u,v;θ ) = exp(−((− ln(u))1/θ +(− ln(v))1/θ )θ ), where
θ ∈ [1,∞).

In case of time varying dependence, the alternative way to capture time variation
is to use a regime switching copula function. In Patton [16], they proposed the upper
and lower tail dependence parameters to follow ARMA(p,q) process. The following
are some time varying copula candidates. By following Patton [16], the time varying
Gaussian copula can be defined as:

ρt =Λ(ψ0 +ψ1ρt−1 + · · ·+ψnρt−p + γ0
1
q
Σq

j=1Φ
−1(ut− j)Φ−1(vt− j)) (1)

where Λ = (1− e−x)(1+ e−x)−1 is a logistic transformation which is to keep the
correlation coefficient, ρt , belonging to (-1,1) at all times. For the Student-t copula
with time varying, Φ−1(x) is replaced by t−1

ν (x).
Time varying Clayton copula and Time varying Gumbel copula also assumed

the tail dependence parameters to follow ARMA(p,q) process. We propose the time
varying Clayton and Gumbel copulas are as following:
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τt =Λ(ψC +ψC1τt−1 + · · ·+ψCnτt−p + γC
1
q
Σq

j=1|ut− j− vt− j|), (2)

δt =Λ(ψG +ψG1δt−1 + · · ·+ψGnδt−p + γG
1
q
Σq

j=1|ut− j− vt− j|) (3)

where Λ is the logistic transformation to ensure that τt and δt within the (0,1)
interval.

2.2 Marginal Models

The first step in estimating the parameters of the copula model is to estimate the
marginal models. In this study, the model used for the marginal distribution is
ARMA (p,q)-GARCH(1,1) and standardized residuals satisfying student-t distribu-
tion. The ARMA (p,q)-GARCH(1,1) model is a common approach to model time
series with the fat-tail and conditional heteroskedastic errors. The models employed
for the marginal distributions are followed from Ling [17]and we will denote the
log-difference of the crude oil future price or the agricultural commodity future
prices as the variable rt . Thus, the marginal model for the crude oil future prices or
the agricultural commodity future prices, rt , can be formed as:

rt = ω+Σ p
i=1φirt−1 +Σq

i=1ψiεt−i + εt , (4)

εt = ηt

√
ht and ht = α0 +Σ r

i=1αiε2
t−i +α0 +Σq

i=1βiht−i, (5)

whereα0 > 0,αi≥ 0, βi≥ 0 and Σ k
i=1αi+Σ l

i=1βi < 1. ηt is the standardized residual,
which can be assumed for any distribution. In general, we assume that it is Gaus-
sian, student-t or skewed-t distribution. For example, the Student-t innovation was
focused by Bollerslev and Wooldridge [18], while Hansen [19] modeled skewed
Student-t distribution.

The correctness and usefulness of the joint copula model is important. If the
marginal distributions are an invalid specification, then the copula will also be in-
valid in the joint copula model. For performance with misspecification, we used the
Lagrange multiplier tests and the Kolmogorov-Smirnov test to confirm the empirical
adequacy of the marginal models. (Discuss in detail in section 4.1)

2.3 Estimation Method

The set of unknown parameters of the copula function can be estimated by the
full maximum likelihood (FML), the inference function for margins (IFM) and the
canonical maximum likelihood method (CML). The FML and IFM are two para-
metric estimation methods. They might have shortcomings in estimating θ is that
they are likely to be inconsistent if they misspecified the assumption of marginal
distribution. The CML is semiparametric method, which marginal distributions are
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estimated without specifying the marginal, and then use a parametric model for es-
timating the parameter of the copula. We use two steps of CML for estimating the
parameterθ of a copula (see Cherubini, Luciano and Vecchiato [20]). In the first
step, estimating the marginals ûtand v̂t using the empirical distributions of X̂t and
Ŷt . Then, estimate via MLE estimators the copula parameters θ

θ̂ = argmaxΣN
t=1 lnc(û, v̂;θ ) (6)

To evaluate the best fit of the different copula models are the following ways: (1)
using the Akaike Information Criterion (AIC) and Bayesian information criteria
(BIC) are followed from Brechmann [21] to measure the goodness of fit and the
copula would be selected with smallest AIC and/or BIC; and (2) using the test
based the empirical copula to perform the goodness of fit of the copulas, which
calculates the Cramer-von Mises statistics as well as the according p-values using
bootstrapping [22]. The goodness-of-fit tests based the empirical copula process are
comparing a “distance” between Cn and an estimation Cθn of C under null hypoth-
esis, H0 : C ∈ {Cθ} The formulas are following as: Cn =

√
n(Cn−Cθn) where Cn

is the distribution of empirical copula function, and Cθn is the distribution of copula
function Cθ .

3 Data

We used daily data from February 28, 2008 to December 15, 2011 from three energy
crops future prices: corn, soybean oil, and palm oil. And for crude oil prices we
employed the Brent future prices as a proxy for the world oil prices. We chose data
from February 28, 2008 to December 15, 2011 because their joint swings had greater
intensity than in the previous period. The data for the agricultural commodity and
crude oil future prices are compiled from the EcoWin database.

Table 1 Descriptive statistics for daily oil price and agricultural commodity returns

Mean Max Min Std.Dev. Skewness Kurtosis Jarque-
Bera

Prob

Brent -7.0e-06 0.1271 -0.1095 0.026 -0.1428 5.8766 340.8683 0.0000
Corn 4.1e-05 0.1276 -0.1041 0.0237 -0.0292 4.7367 123.1705 0.0000
Soybean
oil

-0.0003 0.0740 -0.0777 0.0187 -0.0813 5.099 180.8011 0.0000

Palm oil -0.0003 0.0976 -0.1104 0.0208 -0.2486 6.7960 597.8861 0.0000

The descriptive statistics for crude oil and agricultural commodity daily futures
returns are reported in Tables 2. The skewness statistics show that most return se-
ries are obviously skewed. With respect to the excess kurtosis statistics, data reveals
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that all return series are highly leptokurtic with respect to the normal distribution.
Similarly, the Jarque-Bera statistics are significant, implying that the distributions
are both leptokurtic and fat tails.

4 Empirical Results

4.1 Results for the Marginal Models

Table 2 presents the marginal distribution of crude oil return and agricultural com-
modity returns corn, soybean oil and palm oil. We found that the ARMA(0,2)-
GARCH(1,1) specification is the best model for corn, soybean oil and palm oil,
respectively. For crude oil return, however, the proper marginal distribution is the
ARMA(0,4)-GARCH(1,1). The empirical evidence presented in Table 2 shows that
all parameters for variance equation are highly significant. The GARCH term, β
is strong as it is in the range of 0.92 to 0.94. Moreover, it satisfies the assumption
of convergence, which appears that, α +β is close to one for all of the series. The
degrees of freedom of the Student-t distribution were significant and ranging from
6.65 to 9.38, implying that the error terms are not normal. In addition, there are no
ARCH effects in the residuals.

Table 2 Parameter estimates for the marginal distribution models

ma1 ma2 ω α β ϑ LL ARLM

Brent -0.0633 -0.016 1.0e-05 0.0570 0.9343 9.3867 2340.03290.8477
(0.001) (9.1e-04) (1.3e-11) (3.6e-04) (5.1e-04) (6.961)

Corn 0.0231 -0.0097 1.0e-05 0.0537 0.9204 6.6567 2325.87480.9598
(9.7e-04) (6.5e-04) (1.8e-10) (4.3e-04) (0.001) (1.894)

Soybean
oil

0.0081 0.0156 2.0e-06 0.0488 0.9440 8.6841 2626.05940.7818

(0.001) (0.001) (1.7e-12) (1.8e-04) (2.2e-04) (6.632)
palm oil -0.0114 0.0920 2.0e-06 0.0602 0.9336 7.7032 2602.79550.5853

(0.001) (0.001) (1.7e-12) (2.2e-04) (2.3e-04) (3.179)

Note: The numbers in parentheses are standard deviations.

The correct specifications of marginal distributions are crucially important to the
estimation in the copula model. Diebold, Gunther and Tay [23] argued that if the
marginal distributions are correctly specified, then the probability transformations
should be i.i.d. uniform (0,1). If we use incorrect marginal distribution models, then
their probability transformation will not i.i.d. uniform (0,1) and the copula will auto-
matically be misspecified. We followed Patton [16] by using two steps; the Lagrange
Multiplier (LM) test for serial independence of the probability integral transforma-
tions and the Kolmogorov-Simirnov (K-S) test of density specification to evaluate
the marginal distribution assumption. First, we used the LM test to examine the in-
dependence of the first four moments of variables ut and vt . We regress (ût − ū)k
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and (v̂t − v̄)k on 20 lags of both variable for k = 1,2,3,4. The LM test statistic is
(T − 20)R2 for each regression and is asymptotically distributed as χ2

20 under the
null no serial correlation. Second, we test the null hypothesis whether the transfor-
mation of variables ût and v̂t are uniform (0,1) using the K-S test.

Table 3 Goodness-of-fit test for marginal distributions

First mo-
ment

Second mo-
ment

Third mo-
ment

Fourth mo-
ment

K-S test

Brent 0.46 0.97 0.74 0.99 1.00
Corn 0.41 0.73 0.43 0.67 1.00
Soybean
oil

0.55 0.77 0.45 0.78 1.00

Palm oil 0.93 0.18 0.82 0.17 1.00

Note: This table presents the p-values from LM tests and K-S tests, respectively.

The ρ values presented in Table 3 suggested that the null hypothesis of no se-
rial correlation could not be rejected at the 5% significance level for all series
and also the p-values from K-S tests show that all marginal distribution series can
pass at the 5% significance level. The results represented above imply that the
marginal distribution models were the correct specification. Therefore, the copula
could be capturing the dependence structure between crude oil price and agricultural
commodity prices in the right way.

4.2 Results for Copula Models

The results presented in Table 4 are the parameter estimates of constant depen-
dence copulas. All parameters of elliptical copula family, Gaussian and Student-t
copula, the correlation coefficient ρ are strong positive and strongly significant. The
correlation coefficient is ranging from 0.245 to 0.571. The degrees of freedom of
the Student-t copula are ranging from 13.18 to 18.45, indicating temperate extreme
co-movements and tail dependence for all pairs.

However, all tail dependence values of the Student-t copula are generally small;
tail dependence between crude oil and corn, soybean oil and palm oil is 0.012, 0.069
and 0.003 respectively. The results also show that all parameters for Frank copula are
of relatively strong dependence between crude oil price and agricultural commodity
prices.

For the asymmetric tail dependence cases, the parameter estimates for Clayton
and Gumbel copulas were significant. The lower tail dependence parameters for the
Clayton copula are strongly significant, where lower tail dependence value for pair
of Brent-soybean oil, Brent-corn and Brent-palm oil are 0.467, 0.259 and 0.098,
respectively. Likewise, the upper tail dependence parameters for the Gumbel copula
are significant and the upper tail dependence value for pairs of Brent-soybean oil,
Brent-corn and Brent-palm oil are 0.434, 0.286 and 0.179, respectively. The result



Modeling Dependency of Crude oil Price and Agricultural Commodity Prices 263

Table 4 Static Copula estimates of crude oil price-agricultural commodity prices

parameter Gaussian Student t Frank Clayton Gumbel

corn ρ 0.3786 0.3865 2.4720 0.5136 1.2859
(0.0006) (0.0008) (0.0065) (0.0016) (0.0009)

ϑ 16.6045
(0.3148)

LL -75.8978 -77.5329 -74.6675 -65.6629 -61.8003
AIC -151.7935 -155.0618 -149.3329 -131.3237 -123.5987
BIC -151.7885 -155.0518 -149.3279 -131.3187 -123.5937

soybean
oil

ρ 0.5647 0.5719 4.0513 0.9091 1.5462

(0.0004) (0.0005) (0.0070) (0.0019) (0.0012)
ϑ 13.1843

(0.1855)
LL -188.3787 -191.3463 -179.4465 -158.8212 -164.7097
AIC -376.7553 -382.6886 -358.8909 -317.6404 -329.4174
BIC -376.7503 -382.6787 -358.8859 -317.6354 -329.4124

palm oil ρ 0.2448 0.2529 1.5659 0.2989 1.1567
(0.0005) (0.0009) (0.0063) (0.0015) (0.0008)

ϑ 18.4591
(0.3461)

LL -30.3079 -31.9540 -31.8995 -26.3560 -23.8692
AIC -60.6139 -63.9039 -63.7969 -52.7099 -47.7364
BIC -60.6089 -63.8940 -63.7919 -52.7049 -47.7314

Note: Numbers in parentheses are standard errors.

of tail dependence implies that the crude oil price and each of agricultural prices can
be crashing (booming) together at the same time.

Moreover, the goodness of fit of copula models is presented in Table 5 according
to the empirical copula process (see Genest, Rémillard, and Beaudoin [22]). The
result also showed that Student-t copula is accepted which is consistent with the
best choice among the static copulas. As a result, we could not reject the null hy-
pothesis that all static copulas above are suitable among the constant copula models.
In addition, from the table 6, the time-varying of dependence parameters are more

Table 5 The Goodness of fit of Cramer-von Mises statistic

Gaussian Student-t Frank Clayton Gumbel

Corn 0.233 0.391 0.064 0.005 0.005
Soybean
oil

0.094 0.312 0.005 0.004 0.005

Palm oil 0.114 0.094 0.252 0.004 0.005

Note: This table shows the p-value of Cramer-von Mises statistic.
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suitable than the constant copula model for all the couples of crude oil and agricul-
tural commodity prices, which is consistence with the AIC and BIC, respectively.

Consequently, the results from the sample period can be concluded as follows:
(1) the dependence between crude oil and agricultural commodity prices are strong,
and (2) in the dependence structure between crude oil and agricultural commodity
prices, there exists extreme dependence for pair of Brent-corn, Brent-soybean oil
and Brent-palm oil. The best performing dependence models for all pairs are time-
varying Student-t copula. However, the tail dependence for all pairs is generally
weak.

5 Discussion

Our empirical results in the sample period show that the crude oil price co-movement
with agricultural commodity prices is consistent with the situation of high world oil
prices and a response to the high demand for biofuels. The dependence between
crude oil price and agricultural price is evident in the relatively high prices of corn,
soybean oil and palm oil because these are the main crops used in the production
of biofuels (see Reboredo [24]). The subsidies in the biofuels industry affect the
demand and prices of agricultural commodities as well as changes in fundamentals
or policy actions in the energy crop market will be transmitted to the non-energy
crops market. These results suggested that the energy policies, which subsidize the
biofuels industry, may indeed have an impact on agricultural prices. Therefore, the
energy crop prices are an important determinant in agricultural fundamentals allo-
cation, which is affected by the supply of non-energy crops.

Moreover, there exists extreme tail dependence between the crude oil price and
agricultural commodity prices. The tail dependence symmetry generally implies that
crude oil and agricultural commodity prices are likely to move together during boom
and bust markets. Policy makers should consider this behavior and its extreme effect
of oil price on agricultural prices. The higher agricultural prices lead to more gain
and benefit in the net agricultural exporting countries, but it will be a loss for net
food importing countries, especially the poorer countries which may be negatively
affected. Agricultural policies, food subsidies or trade policies should be designed
and implemented to reduce the effect of extreme fluctuation in crude oil prices (see
(Nazlioglu ans Soytas [8]; Reboredo [24]). Finally, our findings could give investors
the ability to obtain a greater and more accurate assessment of the linkage between
crude oil and agricultural commodity markets, which can protect their portfolio from
loss during extreme market events. The symmetrical tail dependence implies that the
alternative of using agricultural commodity markets for risk diversification purposes
should be taken into account by investors when crude oil and agricultural markets
are exhibit extreme tail dependence.



Modeling Dependency of Crude oil Price and Agricultural Commodity Prices 265

Table 6 Copula-Time Varying estimates of crude oil price-agricultural commodity prices

parameter Gaussian Student t Clayton Gumbel

corn ψ0 0.0812 0.0660 -1.3572 2.1335
(0.0048) (0.0046) (0.2742) (0.0033)

ψ1 0.1133 0.0941 -1.3683 -0.8604
(0.0033) (0.0025) (0.3945) (0.0017)

γ 1.7953 1.8481 -0.7264 -1.8828
(0.0157) (0.0142) (0.1143) (0.0017)

LL -79.0902 -80.5135 -72.2729 -68.8519
AIC -158.1744 -161.0208 -144.5451 -137.6977
BIC -158.1594 -161.0059 -144.5435 -137.6828

soybean
oil

ψ0 -0.1313 -0.1491 0.1176 -0.3556

(0.0041) (0.0044) (0.0003) (0.0231)
ψ1 0.1054 0.0836 -0.8479 -0.3044

(0.0020) (0.0018) (0.0019) (0.0133)
γ 2.4159 2.4572 0.7946 0.4061

(0.0088) (0.0095) (0.0006) (0.0144)
LL -192.4536 -194.7249 -164.2613 -166.1149
AIC -384.9011 -389.4437 -328.5165 -332.2236
BIC -384.8861 -389.4287 -328.5015 -332.2086

palm oil ψ0 0.3909 0.4109 -0.5003 0.9525
(0.0164) (0.0292) (0.0031) (0.0073)

ψ1 0.1055 0.0425 -0.6807 -0.4829
(0.0062) (0.0051) (0.0038) (0.0019)

γ 0.3691 0.3833 0.5557 0.0309
(0.0680) (0.1154) (0.0019) (0.0225)

LL -30.5481 -31.9987 -27.2014 -23.8804
AIC -61.0900 -63.9913 -54.3967 -47.7546
BIC -61.0751 -63.9763 -54.3818 -47.7396

Note: Numbers in parentheses are standard errors.

6 Conclusion

In this paper, we examine the co-movement between the crude oil futures and
agricultural commodity futures, including corn, soybean oil and palm oil by using
copula models with time invariant and time varying. We found evidence that the co-
movement between crude oil price and agricultural commodity prices in the sample
period is well performed by the Student-t copula with time varying for all pairs. Fur-
thermore, we generally found that there was symmetrical tail dependence between
crude oil prices and agricultural commodity prices; however, the tail dependence is
relatively low for all pairs. And the structure of the time varying copula shows that
the dependence parameters are very volatile over time and frequently deviate from
their constant levels.
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ization ( GPP/capita ) and proximity to a major highway. We employed dataset
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1 The Real-World Problem

Thailand has achieved many of the U.N.’s Millennium Development Goals ( MDGs
), including the poverty and hunger targets at the national level. As a result, it has
gone on to set the MDG plus goal of reducing the proportion of households be-
low the poverty line in the northeast and three southernmost provinces to less than
4 percent by 2009. In addition to government and Non-government Organization
initiatives in this direction, charitable giving is a third way in which the populace
themselves may voluntarily close that gap. Charity is a virtually universal human
behavior that originated in the fundamental principles and expressions of religious
faith but has been extended to embrace more general human beliefs, social val-
ues and motives, particularly where the gift does not remain anonymous. But does
charitable giving of all types increase or decrease as a share of expenditures with
rising income? Do proximity to highways and modernization/poverty alleviation (
as reflected in GPP/capita ) stimulate or depress charitable giving? And what is the
relationship between charitable giving and the consumption of gray goods such as
alcohol, which may be considered both a part of Engel’s prediction regarding food;
and a good to be shunned by the same religious households that are expected to give
more to charity. If charity increases with income and modernization, to what extent
may public poverty-alleviation programs be cut back in favour of private charity?
This paper seeks to provide answers to these three questions.

2 The Goals of the Study

To investigate in detail Northeastern Thai household consumption and giving be-
havior, the present paper therefore aims to

1) Isolate the significantly determinants of overall household expenditures on goods
( e.g. food ), bad or gray goods ( e.g. alcohol ), and charitable giving.
2) Determine whether charity is a substitute or complement to food and gray-goods.
3) Test the impacts the East-West Economic Corridor and modernization on giving.
4) Estimate how much of the poverty gap could be erased by charitable giving.
5) Make policy suggestions for efficiently stimulating and channeling charitable
giving.

3 Review of Literature

Carroll et al. [4] estimated the impacts of income, dependency, employment, edu-
cation and economic class on charitable donations in the Republic of Ireland using
both the Tobit and double hurdle models. The results implies that non economic fac-
tors can be explained by a zero observation, whereby the role of zero is not just the
standard corner solution. Showers et al. [8] estimated a charitable giving expendi-
ture model for the U.S. Their model used total household expenditures to represent
permanent income under the presumption that it provides a more accurate analysis
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of giving. The results showed that the response of religious giving was positive but
low flexible on income and that religious giving behaved as a basic necessity good.
Race, marital status, gender, age of household head, number of persons less than 18
years of age, and education level bore a significant positive relationship with giv-
ing. Specifically, black households had a higher probability and level of giving than
nonblack households; and married households gave more than single males or fe-
males to religious organizations. Brown et al. [3] also modeled charitable donations
in response to an unexpected natural disaster (tsunami). The study employed a sys-
tem Tobit model to analyze panel household data. The study revealed that donations
for the victims of a tsunami bore a positive relationship with previous donations to
other charitable cause. That means charitable donations to the victims of a tsunami
exhibit a complementary rather than a substitution effect.

4 Multivariate Tobit Model

The present paper will employ a multivariate tobit model with simultaneous maxi-
mum likelihood calculations. Previous empirical studies that have employed multi-
variate tobit include study of fluid milk purchases in the United States, multivariate
tobit examined post-wildfire reseeding on arid rangeland in a western U.S. state for
three types of plant: (1) unwanted invasive grasses, (2) seeded grasses, and (3) sage-
brush underlying the measured densities, several years after fires. The details of the
methods of data collection and analysis will be shown in later sections [5, 6].

5 The Hypotheses of the Study

The present study seeks to test four ( 4 ) empirical hypotheses:

H1. The economic variables income, household employment rate and/or highest
education significantly reduce the share of food consumption, but increase the shares
of alcohol consumption and overall charitable donations.

H2. Roads (EWEC) and/or modernization (other provinces than Mukdaharn) signif-
icantly reduce the Engel shares of food consumption and total charitable donations,
but increase the share of alcohol consumption.

H3. Females, the elderly, married people, Thais, the fully employed, the more mod-
ern, and Buddhists contribute more than their counterparts to all three types of char-
ity as a percentage of their income.

H4. All three types of donation ( Religouse institution, NGOs and Direct to
household or person ) increase with income, education, and employment rate. This
hypothesis tests to what extent the government could focus on education and
employment creation policies rather than direct poverty-relief policies.
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6 Methods of Modeling and Estimation

Both to model the determinants of household expenditure behavior that involve
many choices and to correctly treat dependent variables with-non zero observations,
this study applies multivariate Tobit models (MVTOBIT). The multivariate model
postulates that the same household may choose among many expenditure channels.
This is a reasonable assumption since the same household can simultaneously select
both which kind of goods to consume and which charitable channels to employ.

The models used in the present research were originated by Amemiya [1], who
created MVTOBIT by extending the univariate Tobit model to multivariate and
simultaneous equation models. The utility of the MVTOBIT formulation resides
chiefly in the feature that truncated dependent variables are jointly determined. The
multivariate model to be termed model 1 in the present research is designed to
explain the choice of relative expenditure shares of three types: the share of food
consumption y∗1i, the share of alcohol consumption y∗2i and the share of religious
institutional donations y∗3i. These three variables are all unobserved or latent; and
depend upon such household characteristics (Xi) as income, province, proximity to
EWEC, education, religion, nationality, marital status, gender, and employment. In
addition, the error terms ε1i, ε2i and ε3i collect unobserved characteristics that affect
expenditure behavior. The term θ indicates the a certain threshold level, it equal to
zero in this study. Further details of the model follow the reasoning of Amemiya) [1].

The multivariate Tobit model assumes that the joint density function of and be-
have as a multivariate normal distribution with zero mean, constant variances and
a constant correlation between error terms, where ε is an m-multivariate N(0,Ω)
variable and is independent of Xi. The parameters β will be estimated by maxi-
mum likelihood using mvtobit command in STATA program as coded by Barslund
(2009) [2]. The mvtobit command employs a multivariate tobit with SML (Simulta-
neous Maximum Likelihood) model.

The above variables and terms have been combined to formulate the three com-
ponents of our research model. The food share consumption equation becomes:

y∗1i = X1iβ + ε1i

y1i = y∗1i if y∗1i > θ
y1i = 0 if y∗1i ≤ θ (1)

The alcohol share consumption equation may similarly be expressed as:

y∗2i = X2iβ + ε2i

y2i = y∗2i if y∗2i > θ
y2i = 0 if y∗2i ≤ θ (2)

Meanwhile, the share of religious institutional donations is given by:
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y∗3i = X3iβ + ε3i

y3i = y∗3i if y∗3i > θ
y3i = 0 if y∗3i ≤ θ (3)

In order to capture a different question the choice among donation channels, a sec-
ond multivariate model (model 2) was also formulated. It was composed of three do-
nation equations: those through religious institutional channels y∗3i, through NGOs
institutional channels y∗4i and in the form of direct donations to households or in-
dividuals y∗5i. Again, these unobserved or latent variables depend on the household
characteristics Xi. ε3i, ε4i and ε5i and θ are as defined above. The remaining two
components are thus defined as NGOs institutional donations equation:

y∗4i = X4iβ + ε4i

y4i = y∗4i if y∗4i > θ
y4i = 0 if y∗4i ≤ θ (4)

And the direct donations equation:

y∗5i = X5iβ + ε5i

y5i = y∗5i if y∗5i > θ
y5i = 0 if y∗5i ≤ θ (5)

We may now show in plain text form the specific expected determinants of the two
sets of dependent variables:

Model 1
Food consumption/Alcohol consumption/Religious donations = f [Income, Income2,
Location (Non-Mukdaharn, proximity to EWEC), Highest Education (secondary,
university, masters), Employment (household employment rate), Other household
characteristics (Buddhist, elderly, Thai, married, female)] [1]

Model 2
Religious/NGO/Direct donations= f [Income, Income2, Location (Non-Mukdaharn
province, EWEC), Highest Education (secondary, university, masters), Employment
(household employment rate), Other household characteristics (Buddhist, elderly,
Thai, married, female)] [2].

7 Empirical Results

Table 1 reports the descriptive statistics of the sample of 11,850 household observa-
tions in Northeast Thailand. In addition to the minimum, maximum, mean, standard
deviation and the coefficient of variation ( st.dev/mean ). The results from the two
multivariate Tobit models ( Model 1 and 2 ) are shown in table 2. model 1 reports
a simultaneous multivariate Tobit model for three dependent variables: the shares
of food expenditure ( FOOD ), alcohol expenditure ( ALCOHOL ) and religious
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donations ( RELIGIOUS ). It should be noted that this multivariate model includes
one dependent variable ( food expenditure ) with non-zero observations. The result
can be run by the MVTOBIT command in STATA. However, the maximum number
of censored equations is 2 less than or equal 2: simulations are not needed. The pro-
cess continues with conventional maximum likelihood. Moreover, the only instance
of multicollinearity in the correlation matrix is between highest educted in bechelor
deegree and higher ( UNIV ) and work as professional ( PROFESS ) (Pearson r =
0.5835), however these two variables were never used in the same equation.

8 Hypothesis Testing

H1. The economic variables income, household employment rate and/or highest ed-
ucation significantly reduce the share of food consumption, but increase the shares
of alcohol consumption and overall charitable donations. Based on the results of
Table 2, we cannot reject this hypothesis. Higher income reduces the food share and
donations to religious institutions, but increases the share of both NGO and direct
donations. A higher employment rate reduces the food share, but increases alcohol
share and donations to all types of charity. Maximum secondary education reduces
food consumption and religious donations but increases alcohol consumption and
donations to NGOs and direct to others. University and Masters degrees have the
same effects, except that there is no significant change in alcohol consumption and
religious donations.
Even though food is Engel-negative and the shares of both NGO and direct dona-
tions are Engel-positive, there is a) a positive effect of income on alcohol consump-
tion and b) a negative effect on religious institutional donations. We may conclude
that food and religious donations are inferior goods while alcohol, NGO charity and
direct donations are luxury goods.

H2. Roads (EWEC) and/or modernization (other provinces than Mukdaharn) signif-
icantly reduce the Engel shares of food consumption and total charitable donations,
but increase the share of alcohol consumption. Once again, we fail to reject this
hypothesis. However, the results show that with the growing depersonalization of
the modern, connected economy, there is a significant shift among the three types
of charitable donations. People substitute religious organizations and NGOs for di-
rect donations within their overall declining share of charitable donations. Mean-
while, EWEC increases religious donations but reduces direct donations. There is
no significant effect of road on either consumption patterns or NGO donations; but
modernization does increase alcohol consumption.

H3. Females, the elderly, married people, Thais, the fully employed, the more mod-
ern, and Buddhists contribute more than their counterparts to all three types of
charity as a percentage of their income. We must also reject this hypothesis. Mar-
ried people, females, Buddhist, those able to take care of themselves, technicians
and employees actually have higher overall donation rates; while the more modern,
elderly, Thai, clerks and laborers have lower shares of total donation. This means
that a general policy of job creation and education can be contemplated by the
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government as a direct replacement to direct aid to poor households to which only
the elderly and laborers will not respond as intended. But this is consistent with
such a policy, since the elderly and adult laborers would not normally be targeted
by either new jobs or higher education.
Separating the results by charity channel, we find that females contribute more than
males to NGOs donation as a share of their income. However, there is no significant
difference between genders with respect to religious and direct donation.

When we considered household head’s age, elderly heads have few or no depen-
dents and a more sufficient life style than the new generation. The results revealed
that the elderly contribute a greater share of their income than their counterparts to
religious institutions and NGOs, but a lower share in direct donations to households
or persons. This implies a close closely relationship between the elderly and Wats
or charitable organizations.

Moreover, the results reveal that, while marital status has no significant impact
on NGO donations, married people contribute more than their counterparts to re-
ligious and direct donation as a share of their income. As if to respond to who
does contribute to NGOs, Thai language spoken in household shows a significantly
higher contribution to NGOs than non-Thais. In complementary fashion, minor-
ity groups pay respect to religious institutions by giving more to them. Economic
variables are also significant determinants of charitable giving. The fully employed
contribute more than their counterparts to all three types of charity as a percent-
age of their income. We may surmise that the labor force of such households has a
greater power to donate because of their low dependency ratio. The more modern
also contribute more than their counterparts to religious institutions and NGOs as
a percentage of their income, but give less in direct aid to households or individ-
uals. We may conclude that modernization induces households to contribute more
through formal channels and less through informal channels.

Finally, Buddhists contribute more than their counterparts only to religious in-
stitutions. However, they display no significant difference from other religions in
NGO or direct contributions. This result implies that Buddhist culture pays greater
respect to wats than their other religions do to their religions own institutions.

H4. All three types of donation (to religious institutions, NGOs, and directly to
households or persons) increase with income, education, and employment rate. We
may partially accept this hypothesis in the cases of both NGO donations and di-
rect donations to individuals. In fact, NGO donation shares are higher not only
for income, employment rate, modernization, and all completed levels of educa-
tion; but also for the elderly, females and Thai households. Direct donations are
higher not only for income, employment, and all levels of education; but also for
married households whose heads are employees as opposed to common laborers.
And it is interesting that modernization leads to reduced direct donation. But we
must reject the hypothesis with respect to contributions to religious institutions. In-
deed, the increase in direct and NGO donations appears to be at the expense of re-
duced religious donations. More specifically, although religious donations increase
with the employment rate, proximity to EWEC and modernization (captured by the
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variable non-Mukdaharn) lower them through increased income and the completion
of secondary education. Since the movement toward higher income, higher educa-
tion, and fuller employment is a normal part of the process of economic develop-
ment, the government can therefore focus on employment and education programs
and gradually step aside from direct transfer payments to the poor. It will be the
people themselves who voluntarily take up the slack with contributions to NGOs
and needy individuals.

9 Conclusions and Policy Implications

Table 3 presents a policy matrix that summarizes the results of Table 2. It shows
which policies are most appropriate; and who should be responsible for implement-
ing them. The results reveal that religious institution donations are, like food, Engel-
negative with respect to income. This means they could not serve as a powerful
income distribution channel like a progressive tax. Direct donations and NGOs are
better redistribution channels. If government launches social programs to strengthen
community relationships, this should automatically lead to increased direct contri-
butions to persons and households. Moreover, efficient NGOs seem to a good chan-
nel for progressive income redistribution.

The results also indicate that Mukdahan and other provinces located in the East
West Economic Corridor have higher religious donations than otherwise. They thus
have the potential to promote Buddhist and cultural tourism campaigns to increase
religious donations. The coefficient of income on religious donations is negative,
while the coefficients of income on NGOs and direct contributions are low compared
with the coefficient of employment rate and education. Government should focus on
education and employment creation rather than direct poverty-relief policies. Given
the differences in behavior by charitable giving channel, policies to promote charity
in each channel should also differ. The value of direct donations (informal channel)
is higher than that of religious and NGOs institution donations (formal channel).
If government wishes to promote the formal charity channel it should improve its
income tax policy.

Finally, alcohol consumption is negatively correlated with age. Government is
therefore launching a campaign to reduce alcohol consumption among young peo-
ple. We may now answer the question posed at the outset: “To what extent can
poverty-reduction programs rely only on individual charitable donations?” ( Table
4 ). Under Gap 1, voluntary donations with administrative costs could close 213
percent of the poverty gap with a surplus of 123 million baht at the provincial level.
Under Gap 2 ( without administrative costs ) this rises to 428 percent with a surplus
three times greater. Moreover, giving exceeds need in each of the three areas: rural,
semi-urban and urban and for both gaps 1 and 2, with a minimum of 121 percent
in the rural areas under gap 1. These results imply that government and/or NGO
programs will not be necessary overall or in any area.

However, current direct donations alone ( gap 3 ) can eliminate only 62 percent of
poverty with a shortfall of some 41 million baht at the provincial level. This pattern
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holds true at varying levels for each of the urban, semi-urban and rural areas. Since
giving is less than need, charitable institutions and programs will still be necessary.
NGO and religious charities cannot simply disappear.
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Appendix

Table 1 Summary Statistics

Variable Mean Std. Dev. Coeff var Min Max Type
Percent

Dependent variables

NGO 0.001 0.006 849.2 0.00 0.29 Numeric
DIRECT 0.029 0.083 289.0 0.00 0.77 Numeric
ALCOHOL 0.004 0.009 243.7 0.00 0.14 Numeric
RELIGIOUS 0.016 0.019 114.5 0.00 0.63 Numeric
FOOD 0.402 0.152 37.9 0.00 0.92 Numeric

Economic variables

CLERK 0.019 0.136 718.8 0.00 1.00 Dummy
TECHN 0.026 0.160 608.1 0.00 1.00 Dummy
PROFESS 0.062 0.241 390.0 0.00 1.00 Dummy
NONMUK 0.205 0.404 197.0 0.00 1.00 Dummy
EWEC 0.263 0.440 167.3 0.00 1.00 Dummy
INCOME 16.898 25.044 148.2 0.00 922.96 Numeric
LABOURER 0.747 0.435 58.2 0.00 1.00 Dummy
EMPLRATE 0.587 0.299 51.0 0.00 1.00 Numeric
EMPLOYEE 0.924 0.265 28.6 0.00 1.00 Dummy

Education

MASTERS 0.015 0.122 809.8 0.00 1.00 Dummy
UNIV 0.109 0.311 286.5 0.00 1.00 Dummy
SECONDARY 0.992 0.090 9.0 0.00 1.00 Dummy

Socioeconomic variables

AGE 50.849 14.270 28.1 12.00 99.00 Numeric
FEMALE 0.304 0.460 151.3 0.00 1.00 Dummy
MARRIED 0.933 0.251 26.9 0.00 1.00 Dummy
THAI 0.970 0.170 17.5 0.00 1.00 Dummy
BUDD 0.991 0.093 9.4 0.00 1.00 Dummy
CARESELF 0.992 0.090 9.0 0.00 1.00 Dummy

Source : From calculation
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Table 2 Tobit Model Results

Model 1 Model 2
FOOD ALCOHOL RELIGIOUS RELIGIOUS NGO DIRECT

Economic variables

INCOME -0.0029 0.0001 -0.0001 -0.0001 0.0001 0.0021
0.000*** 0.001*** 0.000*** 0.000*** 0.000*** 0.000***

INCOME2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

NONMUK 0.0035 0.0058 0.0058 0.0084 -0.0599
0.000*** 0.032** 0.000*** 0.000*** 0.000***

EWEC 0.0028 0.0028 -0.0158
0.000*** 0.000*** 0.032**

EMPLRATE -0.0412 0.0134 0.0063 0.0063 0.0022 0.2182
0.000*** 0.000*** 0.000*** 0.000*** 0.097* 0.000***

PROFF -0.0042
0.008***

TECHN 0.0074 -0.0030 -0.0030 -0.0112 0.0226
0.000*** 0.024** 0.022** 0.000*** 0.163

CLERK -0.0032 -0.0032
0.043** 0.042**

LABOURER 0.0298 -0.0023 -0.0023 -0.0023 -0.0045 -0.0506
0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

EMPLOYEE 0.0298
0.014**

Education

SECONDARY -0.0519 0.0025 -0.0012 -0.0012 0.0042 0.0888
0.000*** 0.002*** 0.018** 0.019** 0.000*** 0.000***

UNIV -0.0902 0.0025 0.1314
0.000*** 0.096* 0.000***

MASTERS -0.0982 0.0064 0.1094
0.000*** 0.022** 0.000***

Socioeconomic
variables

AGE -0.0007 -0.0002 0.0003 0.0003 0.0001 -0.0012
0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

FEMALE -0.0194 -0.0101 0.0019
0.000*** 0.000*** 0.025**

MARRIED -0.0087 0.0036 0.0036 0.0596
0.064** 0.000*** 0.000*** 0.000***

THAI -0.0080 -0.0185 -0.0187 0.0132
0.000*** 0.000*** 0.000*** 0.000***

BUDD -0.0219 0.0063 0.0046 0.0046 0.0000 0.0000
0.090* 0.091* 0.034** 0.030**

CARESELF 0.0046 0.0045
0.033** 0.049**

Note ***sig. at 99 confidence level, ** sig. at 95 confidence level, * sig. at 90 confidence level
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Analysis of Volatility and Dependence between
the Tourist Arrivals from China to Thailand and
Singapore: A Copula-Based GARCH Approach

Jianxu Liu and Songsak Sriboonchitta

Abstract. This paper aims to estimate the dependency between the growth rates of
tourist arrivals of Thailand and Singapore from China, and also analyze their con-
ditional volatilities. Firstly, we assume that both margins are skewed-t distribution,
and then make use of ARMA-GARCH model to fit monthly time series data. Sec-
ondly, fifteen types of static copulas are used to fit static dependence between tourist
arrivals to Thailand and Singapore from China. We take the AIC, BIC and the two
tests based on Kendall’s transform as criterions for goodness of fit test. Moreover,
we apply time-varying copulas that described the dynamic Kendall’s tau process.
Results show that each growth rate of tourist arrivals has a long-run persistence of
volatility, and the time-varying Gaussian copula has the highest explanatory power
of all the dependence structures between tourist arrivals to Thailand and Singapore
from China in terms of AIC and BIC values.

1 Introduction

With the continuous development of China’s economy and the continuous improve-
ment of Chinese people’s living standards, China has become the main tourist source
market for ASEAN countries. In the past two years, the annual growth rate of the
number of outbound tourism maintains more than 20%. In 2010, the number of
mainland Chinese tourists abroad reached 57.39 million passengers, an increase of
20.4%, and the number of outbound tourists in 2011 was 70.25 million passengers,
an increase of 22.4%. Thus, the market size of the outbound tourism continues to
expand, and the study of outbound tourism should be a great interest to the relevant
government departments and tourism enterprises.
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Travel to Southeast Asia has long been favored by Chinese tourists. Thailand,
Singapore and Malaysia are the top destinations for travel. According to statistical
results of the number of tourists in 2006-2010, the rank of Thailand and Singapore
has always been maintained at second or third in Southeast Asia, and there are many
tour routes that are designed for traveling to these two countries. We found that not
only to maintain a trend of increase of the tourist arrivals to these two countries,
Thailand and Singapore, but also there is a positive linear correlation between them.
From the raw data, it is roughly seen to have the correlation between the two coun-
tries significantly higher than other countries. So it is interesting to investigate the
rank and linear correlations econometrically of Chinese outbound to Thailand and
Singapore, which is one of the problems of this study. In addition, the growth rates
of outbound tourism have obvious volatility. It is then interesting to analyze the per-
sistence of volatility and short-term shocks in the volatility of the Chinese tourist
arrivals to Thailand and Singapore.

There are very few papers studying the travel-related volatility, linear correlation
and rank correlation in tourism field. Zhenzhen Liu [16] studied the linear corre-
lation of tourist flows and trade flows; Fengbo Wang [8] studied the volatility of
international inbound tourism demand in China using ARIMA and GARCH model;
Felix Chan [7], John T. Coshall [11], Johann du Preez [10] also used ARIMA and
CCC-GARCH, as well as GJR models, to analyze volatilities and forecast demand.
Recently, the copula based GARCH model has been very popular in financial field,
as it can be used to analyze volatilities and dependence structure. Patton [1] used this
model to analyze the dynamic dependence between exchange rates of Yen-USD and
DM-USD. Chih-Chiang Wu [5] also researched the economic value of co-movement
between oil prices and exchange rates using copula-based GARCH models. Kehluh
Wang [12] studied the dynamic dependence between the Chinese market and other
international stock markets using time-varying copula approach. We can see that the
copula based GARCH model has reached maturity. Therefore, we apply this model
to analyze the dependence structure and volatility in tourism field, which could be
beneficial to relevant stakeholders in tourism industry.

The contributions in this paper are threefold: first, we bring the copula based
GARCH model into tourism field. Second, the kinds of dynamic copulas are expand-
ing. i.e, the dynamic copulas of BBX and Joe are invented. Last, for the marginal
distribution in this paper, we use the skewed student-t distribution that is different
from the one Hansen provided in 1994.

The remainder of this paper is organized as follows. In section 2, the econo-
metrics model is reviewed, which contains skewed-t distribution, ARMA-GARCH
model and copulas. In Section 3, the empirical study is described and results are
presented. Section 4 proposes the policy implication aim at the development of tour
industries in Thailand and Singapore. Section 5 offers our conclusions.
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2 Econometrics Model

Copula approach is a useful tool for modeling joint distribution. It was proposed by
Sklar [15], and Nelsen [12] extensively discussed the characteristics and theorem of
copula. In this part, we introduce the skewed student-t distribution, ARMA-GARCH
model and copulas.

2.1 Skewed Student-t Distribution

Carmen Fernandez and Mark F.J. Steel [3] generate a skewed student-t distribution,
which displays both flexible tails and possible skewness, each entirely controlled by
a separate scalar parameter. The formula of skewed-t distribution is shown as

P(xi | v,γ) = 2
(γ+ 1/γ)

{ fv(xi/γ)I[0,∞](xi)+ fv(γ xi)I[∞,0](xi)} (1)

where fv(.) is the density function of student t distribution. The parameter v repre-
sents the degree of freedom, and γ is the skewness parameter that is defined from 0
to ∞; I denotes the indicator function.

2.2 ARMA-GARCH Model

To investigate the volatility and co-movement of the Tourist Arrivals from China to
Thailand and Singapore, we proposed copula based ARMA-GARCH model, which
is defined that each variable is a process of an ARMA-GARCH for the marginal
distribution and the standardized innovations submit to skewed student-t distribu-
tion, and one copula for the joint distribution. In the following, the ARMA-GARCH
model is shown as:

rt = c+
p

∑
i=1

φirt−i +
q

∑
i=1

ψiεt−i + εi (2)

εt = htηt (3)

h2
t = ω+

k

∑
i=1

αiε2
t−i +

l

∑
i=1

βih
2
t−i (4)

where ∑p
i=1 φi < 1,ω > 0,αi >= 0,βi >= 0, and ∑k

i=1αi +∑l
i=1βi < 1. ηt is the

standardized residual, which can be assumed for any distribution. Here, we assume
that it is skewed student-t distribution. Specially, skewed student-t distribution can
capture characteristics of heavy tail and asymmetry anyway, and symmetric heavy
tail for student-t distribution.
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2.3 Copulas

It is necessary to understand the copula family and the characteristics of each cop-
ula. The copula family used in our work that includes Gaussian copula, T copula,
Clayton copula, Gumbel copula, Frank copula, BB1, BB7, BB8 and rotate copulas.
Different copulas have different characteristics. To accurately capture the depen-
dency, we apply copulas as much as possible.

(1) Gaussian copula

The Gaussian copula takes the following form:

CGa(u1,u2 | ρ) =
∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞
1

2π
√

1−ρ2
exp{−x2

1− 2ρx1x2 + x2
2

2(1−ρ2)
}dx1 dx2.

(5)
where the ρ is the Pearson correlation, both u1 and u2 are submitted to uniform
distribution, which are the CDFs of the standardized residuals from the marginal
models. The Gaussian copula can reflect the positive and negative correlation, and
the Pearson correlation ρ can be transformed to kendalltau that equals to 2/arcsin(ρ).

(2) T copula

T copula is the same with Gaussian copula that belongs to elliptical copula, but T
copula can capture the tail dependency, and it is symmetric extreme dependence.
The T copula is defined as

CT (u1,u2 | ρ ,υ)=
∫ T−1(u1)

−∞
dx1

∫ T−1(u2)

−∞
dx2

1

2π
√

1−ρ2
{1+ x2

1− 2ρx1x2 + x2
2

υ(1−ρ2)
}λ .
(6)

where the λ = −(υ + 2)/2.The ρ is the Pearson correlation that is the same with
Gaussian copula, and the υ is the degree of freedom that is related to the symmetric
heavy tail. When the υ is large enough, for example, equals to 100 that means the T
copula would be the same with Gaussian copula.

(3) Archimedean copulas

Archimedean copulas are nonelliptical copulas that include Clayton, Frank, Gum-
bel, Joe, BBX etc.Different copulas have different properties. Clayton copula can
reflect the lower tail dependence. Frank copula has symmetric tail dependence, and
can describe the positive and negative dependence. Gumbel copula is an asymmetric
copula of the Archimedean family, which allows for upper tail dependence. Joe cop-
ula can help us capture the upper tail dependence.BBX copulas are two-parameter
copula, and BB8 can capture the upper tail dependence. But both BB1 and BB7
copulas can reflect the upper tail and lower tail dependence.

(4) Time-varying copulas

Patton [1] proposed that it is very difficult to know what might influence the param-
eters to change in copula model, thus, he assumed that the parameters in Gaussian
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and SJC copula follows an ARMA (1,10) type process. Hans Manner [9] and Chih-
Chiang Wu [5], Carlos Almeida [2], et al., further research time varying copulas. In
our study, on one hand, we go on use time varying copulas that have been proposed
by predecessors; on the other hand, we also present new time varying copulas for
two parameters copula, namely, BB1, BB7 and BB8.

1. Time varying Gaussian copula

ρt = Λ̃ (ω+β1ρt−1 + · · ·+βpρt−p +α
1
q

q

∑
j=1

φ−1(u1,t− j)φ−1(u2,t− j)) (7)

Λ̃ is a logistic transformation which is defined as follows:

Λ̃ = (1− e−x)(1+ e−x)−1 (8)

the purpose of using this logistic transformation is to keep the correlation coefficient
ρ belonging to (-1, 1).

2. Time varying T copula

ρt = Λ̃(ω+β1ρt−1 + · · ·+βpρt−p +α
1
q

q

∑
j=1

φ−1(u1,t− j;υ)φ−1(u2,t− j;υ)) (9)

T copula has two parameters that are Pearson correlation and degree of freedom
υ . Obviously, assume that fixed the degree of freedom, just let the correlation be
change with time.

3. Time varying (rotate) Gumbel copula

τt =Λ(ω+β1τt−1 + · · ·+βpτt−p +α
1
q

q

∑
j=1

∣∣u1,t− j− u2,t− j
∣∣) (10)

whereΛ = (1+ e−x)−1. This guarantees that the Kendall’s tau will be between -1
and 1, and the time varying Joe copula employ the same form as it.

4. Time varying (rotate) Clayton copula

τt =Λ(ω+β1τt−1 + · · ·+βpτt−p +α
∣∣u1,t− j− u2,t− j

∣∣) (11)

5. Time varying BBX copulas

BB1, BB7 and BB8 are two parameters copulas, and we assume that two parameters
in each copula are changeable with time, and the time varying form of BB1, BB7
and BB8 employ the time varying Gumbel one, which follows an ARMA (p, q) type
process, specially, our case is an ARMA (1, 20) type process that is better fit than
ARMA (1, 10) proposed by Patton [1].



288 J. Liu and S. Sriboonchitta

θt = H(ω+β1θt−1 + · · ·+βpθt−p +α
1
q

q

∑
j=1

∣∣u1,t− j− u2,t− j
∣∣) (12)

δt = H(ω+β1δt−1 + · · ·+βpδt−p +α
1
q

q

∑
j=1

∣∣u1,t− j− u2,t− j
∣∣) (13)

where the H is a logistic transformation, which is the same with Λ in time varying
Gumbel copula, when the formulas of two parameters focus on time varying BB1
and BB7 copula. In time varying BB8 copula, the H in each parameter conveys the
different logistic transformation. The H in function of the parameter δ is the same
with time varying BB1 and BB7 copula, but the H equals to Λ̃ in the function of the
parameter θ .

3 Data and Empirical Results

In this part, we successively exhibit the results of ARMA-GARCH model, KS test,
Box-Ljung Test, static copula, goodness of fit for static copulas and time-varying
copulas.

3.1 The Data

To analyze the volatility and dependence of Chinese tourists’ arrivals to Thailand
and Singapore we selected the monthly log growth rate of Chinese tourists’ arrivals
to Thailand and Singapore from 01/1997 to 12/2011. Table 1 provides the sum-
mary statistics for each rate of growth. As previously found in other studies, both
growth rates demonstrate excess kurtosis and negative skewness. In addition, from
the results of J-B test, we may find that they do not exhibit Gaussian distribution.

Table 1 Data description and statistics

Thai Singapore

Mean -0.000826 0.008495
Median 0.019730 0.043021
Maximum 0.897066 0.923611
Minimum -1.281747 -1.750788
Std. Dev. 0.343906 0.315213
Skewness -0.761786 -0.944484
Kurtosis 4.480269 8.013719
Jarque-Bera 33.46747 212.8997
Probability 0.000000 0.000000
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3.2 Results for ARMA-GARCH Model

To appropriate analyze the volatility and find the marginal distribution, as mentioned
earlier, ARMA (2, 0)-GARCH model and ARMA (5, 0)-GARCH model are applied
for tourist arrivals to Thailand and tourist arrivals to Singapore, respectively. More-
over, we assume that the margins are skewed-t distribution, the parameters of which
are all significant that are shown in table 2 and table 3. The asymmetry parameters,
γ , are significant and less than 1, exhibiting that the growth rates of tourist arrivals
from China to Thailand and Singapore are skewed to the left. The α +β = 0.822
in the table 2 and the α+β = 0.78 in the table 3 that illustrate each growth rate of
tourist arrivals has a long-run persistence of volatility, and the impact of unexpected
shock to volatility lasts longer in the one to Thailand. For the values of α equal 0.21
and 0.23 whose size decides the short-run effect of unexpected factors, we can see
that they are nearly the same, and have a large impaction for volatility.

Table 2 The results of tourism from China to Thai using ARMA (2, 0)-GARCH (1, 1) model

parameters std error T statistics P value

ar1 -0.23078 0.08753 -2.637 0.00837 ***
ar2 -0.2345 0.07372 -3.181 0.00147 ***
ω 0.02412 0.01324 1.822 0.06848*
α 0.21016 0.11636 1.806 0.07089*
β 0.61215 0.15289 4.004 6.23e-05 ***
γ 0.74744 0.07863 9.505 <2e-16 ***
υ 4.86494 2.04899 2.374 0.01758 **

a Log likelihood: -38.55479

Table 3 The results of tourism from China to Singapore using ARMA (5, 0)-GARCH (1, 1)
model

parameters std error T statistics P value

ar1 -0.435762 0.08301 -5.25 1.53e-07 ***
ar2 -0.51074 0.089365 -5.715 1.10e-08 ***
ar3 -0.184694 0.090175 -2.048 0.040544 **
ar4 -0.27211 0.075867 -3.587 0.000335 ***
ar5 -0.232279 0.068239 -3.404 0.000664 ***
ω 0.017024 0.006959 2.446 0.014432 **
α 0.236912 0.130727 1.812 0.069945*
β 0.543044 0.16991 3.196 0.001393 ***
γ 0.786549 0.097996 8.026 1.11e-15 ***
υ 6.656059 3.652893 1.822 0.068435*

a Log likelihood: 5.1938
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3.3 Results for KS and Box-Ljung Test

There exists a precondition for using any copula, which is the marginal distribution
that must be uniform (0, 1), if not, the misspecified model for the marginal dis-
tribution may cause incorrect fit copulas. Further details are shown in Patton [1].
Thus, testing for marginal distribution model misspecification is a critical step in
constructing multivariate distribution models using copulas. Therefore, we present
the Box-Ljung tests for serial independence of the probability integral transforms,
u1 and u2, and the Kolmogorov-Smirnov (K-S) tests of the density specification. The
results of KS test and Box-Ljung Test are shown in table 4. It is very clear that each
series accepts null hypothesis, which means both margins are uniform distribution.
The second part of table 4 shows the Box-Ljung Test that tests serial independence
of the first four moments, and all of them accept the null hypothesis at the 0.10 level.
Therefore, the margins that we assumed are satisfied the two preconditions, uniform
and serial independence.

Table 4 KS Test for Uniform and Box-Ljung Test for Autocorrelation

KS Test
Statistic P value Hypothesis

Margins 1 (from China to Thai) 0.0056 1 0 (acceptance)
Margins 2 (from China to Singa-
pore)

0.014 1 0 (acceptance)

Box-Ljung Test
Moments X-squared P-value

Margins 1 First moment 14.1482 0.1663
Second moment 6.4853 0.773
Third moment 10.63 0.3871
Fourth moment 8.4774 0.5823

Margins 2 First moment 14.1975 0.1642
Second moment 12.9168 0.2284
Third moment 10.5897 0.3904
Fourth moment 13.7387 0.1852

3.4 Results for Static Copulas and Goodness of Fit Test

Just as mentioned in section 2.3, we use Gaussian copula, T copula, Clayton copula,
Gumbel copula, Frank copula, BB1, BB7, BB8 and rotate copulas to fit the tourism
data, and the methods we select as a criterion to appraise which copula is the best
fitness are AIC and BIC. The table 5 and 6 show the estimated values of one param-
eter copula and two parameters copula, respectively, and the two tables provide the
Kendall’s tau, AIC and BIC as well. Those tables show that all parameters in copulas
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are significant, in term of AIC and BIC, and the Gaussian dependence structure ex-
hibits better explanatory ability than other dependence structures. The parameter of
the Gaussian copula is Pearson correlation that equals 0.7841, explaining that there
is a strong linear correlation between them. In addition, the nonlinear correlation
coefficient, Kendall’s tau, is also very high that equals 0.5737 in Gaussian copula.
Furthermore, the BB1 copula is also fit very well, although the Gaussian copula is
the best one. BB1 copula may capture lower tail and upper tail whose values are
0.46 and 0.51, respectively. So, it illustrates that there exists tailed correlation, and
upper tail correlation is higher than lower tail correlation. The difference between
the correlation coefficient of upper tail and lower tail is not so large, meaning that
Thailand arrivals and Singapore arrivals from China have a big probability appear-
ing extreme value at the same time, which means Thailand and Singapore have the
same peak tourist season and tourist off-season.

Although we selected a copula of the best fitness to describe the dependence
structure, one crucial problem for copulas is to determining whether the copula
we selected using AIC and BIC appropriately models the dependency structure.
Therefore, a kind of goodness of fit is needed. In this study, the two tests based on
Kendall’s transform are applied, which contain Cramer-von Mises and Kolmogorov
Smirnov test. More details is shown in Genest and Rivest [4], Wang and Wells [17]
and Genest and Quessy [6]. Table 7 shows the testing results of goodness of fit by
providing the probabilities of CvM and KS. It is not difficult find that half of copu-
las have not rejected the null hypothesis, which means they can appropriately model
the dependency structure, except for Clayton, Gumbel, R-Clayton 180◦, R-Gumbel
180◦, BB7, BB8 and R-BB8 180◦, which all reject the null hypothesis at the 5%
level. Therefore, on the one hand, we guarantee the Gaussian copula is the optimal
choice. On the other hand, it appropriately models the dependency structure as well.

Table 5 The estimated results of one parameter copulas

Copulas parameters std error Kendall’tau AIC BIC

Gaussian 0.7840656 0.0227466 0.5737149 -166.817 -163.635
Clayton 1.653462 0.1835102 0.452574 -126.358 -123.177
Gumbel 2.133061 0.128922 0.5311901 -148.228 -145.046
Frank 6.992071 0.6211994 0.5619072 -149.538 -146.357
Joe 2.436203 0.1809137 0.4384843 -114.715 -111.533
R-Clayton 180 1.600283 0.1819629 0.4444882 -120.221 -117.039
R-Gumbel 180 2.145593 0.1293038 0.5339283 -151.418 -148.236
R-Joe 180 2.479488 0.1826424 0.4455462 -120.473 -117.291
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Table 6 The estimated results of two parameters copulas

Copulas parameters estimated std error Kendall’tau AIC BIC

T ρ 0.7816263 0.024029 0.571219 -163.905 -157.542
DoF 30 NA

BB1 θ 0.5262624 0.1777935 0.546033 -157.673 -151.31
δ 1.743922 0.1583411

BB7 θ 1.930817 0.2025542 0.515444 -151.916 -145.553
δ 1.234913 0.2190782

BB8 θ 6 1.790987 0.538269 -143.088 -136.725
δ 0.717612 0.122668

R-BB1 180 θ 0.4293901 0.16759 0.546686 -157.517 -151.154
δ 1.816074 0.1613621

R-BB7 180 θ 2.024321 0.2022186 0.515509 -151.499 -145.136
δ 1.124618 0.2172944

R-BB8 180 θ 6 1.923104 0.54279 -145.216 -138.853
δ 0.7236699 0.1323331

Table 7 The estimated results of one parameter copulas

Copulas CvM KS Copulas CvM KS

Gaussian 0.72 0.56 T 0.55 0.62
Clayton 0.01 0.01 BB1 0.25 0.11
Gumbel 0 0.02 BB7 0.07 0.01
Frank 0.1 0.11 BB8 0.01 0.01
Joe 1 1 R-BB1 180 0.64 0.62
R-Clayton 180 0 0 R-BB7 180 0.12 0.14
R-Gumbel 180 0.03 0.16 R-BB8 180 0.01 0
R-Joe 180 1 1

3.5 Results for Time-Varying Copulas

We still select the AIC and BIC as the criterion for choosing the best time-varying
copulas. Table 8 shows the results of time-varying copulas, and it displays the pa-
rameters’ value of time-varying copulas, standard error, AIC and BIC. Firstly, all
parameters of time-varying copulas are significant, and the time-varying Gaussian
copula is the best fitted since the lowest AIC and BIC. Secondly, we can see the au-
toregressive parameter β in time-varying Gaussian copula equals to 0.36, implying
a low degree of persistence pertaining to the dependence structure between Thailand
arrivals and Singapore arrivals from China.
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Table 8 The estimated results of dynamic copulas

Dynamic copulas parameters ω α β AIC BIC

Gaussian ρ 1.9527106 -0.12643 0.360156 -167.707 -164.612
standard error 0.0477424 0.0603176 0.028947

BB1 θ -1.650144 1.0221166 4.263453 -154.595 -151.413
standard error 0.0500146 0.0156214 0.269174
δ -0.195336 -0.337295 -0.28646
standard error 0.0811855 0.0498284 0.098308

R-BB1 180 θ 1.0544764 -0.751023 -1.6388 -149.285 -142.921
standard error 0.0979645 0.0528295 0.486668
δ 0.2258694 0.2717021 0.353206
standard error 0.0946822 0.0581762 0.110524

Joe θ 0.4837019 0.3181147 -0.39841 -115.122 -111.94
standard error 0.0291362 0.0099199 0.055507

R-Joe 180 θ 0.1575325 0.6898117 0.380169 -132.488 -129.306
standard error 1.04E-06 6.02E-06 2.43E-08

4 Policy Implication

There exist strong linear and nonlinear correlation between Thailand arrivals and
Singapore arrivals from China, which implies that policymakers should strengthen
communication and cooperation of tourism industry and encourage a series of fa-
vorable policies or classical tour routes, etc. During tourist off-seasons, the two
countries further should enhance cooperation, getting rid of the stale and bringing
forth the fresh, thereby, promoting the development of tourism.

Unexpected shocks have a long run impaction for Thailand and Singaporepar-
ticularly for Thailand. The two governments should be aware that no matter which
country was affected by the negative impact, it will cause the damage of tourism for
the other country as well, which is a loss for both sides. Therefore, the two countries
should depend on and help each other. The package tour promotion between these
two countries must be implemented immediately to help reduce the negative impact
from the crises. This could be a win-win strategy.

5 Conclusions

In this paper, for the analysis of volatility, ARMA-GARCH models were used by as-
suming that standardized innovation was skewed-t distribution. Meanwhile, we dis-
cuss how traditional tests for marginal distribution, using the Kolmogorov-Smirnov
and Box-Ljung tests, can be implemented to see if the underlying assumptions are
satisfied. In addition, fifteen kinds of static copulas were used to analyze dependence
between tourist arrivals to Thailand and Singapore from China. Another point is that
we applied time-varying copulas that described the dynamic Kendalls tau. Overall,
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our empirical results show that the time-varying Gaussian copula has the highest ex-
planatory power of all the dependence structures between tourist arrivals to Thailand
and Singapore from China in terms of AIC and BIC values.
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A Quantile Regression Analysis of Price
Transmission in Thai Rice Markets

Aree Wiboonpongse, Yaovarate Chaovanapoonphol, and George E. Battese

Abstract. We analyze the price efficiency by investigating the backward and for-
ward transmissions of prices from the wholesale markets for white rice to and from
the farm level. We compare the price transmissions at different price levels. This
study utilizes monthly price data at farm and wholesale markets of white rice during
1997 to 2012. The effect of the structural change due to the price insurance program
is considered. The quantile cointegration regression model is used in the empirical
analysis. The findings reveal the existence of asymmetry in most aspects of the price
transmission of farm-white rice markets. In the backward transmission (from whole-
sale to farm), asymmetric adjustment did occur but at only low prices and it was in
favor of farmers. Asymmetry persists in the price transmission in the forward di-
rection (farm to wholesale markets) at all price levels. The price insurance program
had statistically significant effects on elasticities of transmission at almost all price
levels but their effects were numerically very small. As backward transmission is in
favor of farmers, an appropriate credit program is strongly recommended to manage
timely sale of paddy.

1 Introduction

Rice is both the staple food and a major export-earning crop of Thailand. As be-
ing the top rice export country, Thailand shares approximately 22% of the world
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rice market in 2011/2012, and serves countries in Asia and Africa [1]. Together
with other economic crops, livestock and fishery, agriculture has enabled Thailand
to become a world-leading exporter in many food products. As a consequence, Thai
governments under various administrations have determined to promote the coun-
try as the ”Kitchen of the World”. Although Thailand has so far performed well in
agricultural exports, Thai farming households incurred greater average debt from
43,415 baht in 2001/02 to 63,901 baht in 2004/05 [2]. without a corresponding in-
crease in productive assets. The deepening indebtedness was caused primarily by
the price instability and low realized prices that left no profit margins for the farm-
ers. Beside farmers, non-government organizations and policy makers dealing with
farm income and farm indebtedness highlight the unsatisfactory patterns of farm
prices, marketing margins and the price transmission along the supply chain. Regu-
lar protests by farmers (rice, maize, cassava and other farmers) have occurred when-
ever farm prices drop to unacceptable levels. Consequently, the Thai government has
implemented price support policies and mortgage programs to assist farmers. The
recent measures for rice are the paddy mortgage and the price insurance programs.

Theoretically, prices of commodities play a major role in resource allocation and
output distribution. Misallocation due to asymmetric price transmission therefore
has impact on welfare and, thus, has policy implications. With asymmetric price
transmission, buyers are not benefited from a price reduction or sellers are not re-
ceiving benefits from a price increase. It leads to a different distribution of wel-
fare due to changes in the timing and the size of welfare associated with the price
changes [3]. Peltzman (2000) [4] reported that of 282 products, including 120 agri-
cultural and food products, asymmetric price transmission was the rule. However,
other economists [5, 6]. caution that the findings could be due to method used that
lead to excessive rejection of symmetry of price transmission. Because asymmetric
price transmission reflects market failure (price inefficiency) due to risk, collusion
or market intervention, several studies have been carried out on this matter. For ex-
ample, the European Parliament [7]. commissioned a study at the European level.
Reports of the FAO and the OECD cover a wide range of studies related to price
transmission in various countries. Meyer and Cramon-Taubadel (2004) indicate two
dominant causes of asymmetric price transmission, namely, the existence of non-
competitive markets and adjustment costs. Other possible causes include policies
interventions, asymmetric information and inventory management.

Our study concentrates on price transmission for paddy and wholesale white rice
in the Thai economy. We address two questions: (1) is the rice market efficient such
that symmetric price transmission prevails? And (2) has the rice price insurance
program affected the farm price of paddy? To answer the former, we investigate how
local farm prices of paddy influence the wholesale prices of white rice (forward price
transmission) at the same magnitude as the backward transmission (from wholesale
to farm prices).



A Quantile Regression Analysis of Price Transmission in Thai Rice Markets 297

2 Rice Sector in Thailand

Rice is of primary economic importance for Thailand as a staple food, major agri-
cultural income source (66% of farming households grow rice) and a predominant
export item (40-45% of domestically produced rice is exported), Thailand being the
world’s largest exporter of rice since 1981. However, problems in the Thai rice sec-
tor have increased over the more than 30 years of efforts by the state to assist farmers
through intervention in the rice market. The overly high floor prices for the loan or
rice mortgaging program since 2000, particularly in 2004/5 when the floor prices
were 20-30% above market levels, have led to the problem of non-redemption of
the collaterized rice [8]. The accumulated problems in the quite lengthy time span
have rendered the state a heavy burden to shoulder in terms of capital for running the
rice mortgaging. Rice was used as collateral in the loan program during 1986–1996
to reduce effective supply but this was not followed by increases in the market price
because, at the same time, the traders delayed their purchase schedules [9]. The
Siam Intelligence Unit (2009) [10]. cited that the Thailand Development Research
Institute found that about 40% of the benefit of the rice collateral credit policy was
received by farmers, especially those better-off cultivators in the irrigated areas.
Among middle agents, the exporters enjoyed the highest benefit, being about 24%,
while rice millers and warehouse owners received about 14% and 4%, respectively.

Although the rice mortgaging scheme is a government measure intended for deal-
ing with rice price fluctuations and increasing farm incomes, it has been regarded
as market price intervention and action that distorts the market mechanism, so that
farm prices do not reflect the actual functioning of the market. These policy actions
are designed to ensure more reasonable prices for farmers. In international trade,
the gap between the rice export price for Thailand and Vietnam in the last couple
of years widened from US$10-20 to US$100-200 per ton. Furthermore, the com-
pliance with the WTO agreements to open markets for free trade in rice in 2010
is a factor for Thailand to revise its rice market intervention measure because the
high domestic price from the rice mortgaging program has invited enormous rice
movements from its neighboring countries. The Thai government had to increase
its budget substantially to meet the demand for rice mortgaging. The undesirable
outcomes led to a major policy change when the cabinet passed a resolution in its
meeting on 21 July 2009 to replace the rice mortgaging program with a Price In-
surance Program that existed during July – October 2009 and August 2010 to July
2011. The underlying principles that the National Rice Policy Board has established
to aid farmers by this price support measure are that farmers will be assured the
minimum price or target price and they will be compensated for the difference be-
tween the market price and the target price when the former is lower. Along with
the price insurance program, the government encourages trading in the agricultural
futures exchange to promote competition and efficient pricing signals. However, the
rice mortgage program replaced price insurance program after only two years of
operation.

To enable a better understanding of the price system, marketing channels from the
levels of local paddy (rice grain) procurers to rice millers, retailers and exporters are
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described. The two subsectors of paddy and rice markets are closely integrated. Lo-
cal traders serve as assemblers as well as brokers (acting on behalf of millers). Prior
to the rice mortgage scheme, both types of assemblers handled approximately 80%
of paddy before delivery to rice mills. (Most rice millers are located in producing ar-
eas but large rice millers usually operate on a regional scale while some rice milling
businesses also export their rice products.) The flow of paddy changed substantially
after implementation of the mortgage scheme. For example, in 2009, 33.7% was
mortgaged to the Bank of Agriculture and Agricultural Cooperatives [11]. Most
paddy then was stored by millers under contracts with the government. Before the
new harvest, the government opened an auction for the stored paddy. Rice millers,
exporters and large traders were involved in the auction for the paddy. Apparently,
the final auction prices were far below desired levels. The prices were determined by
prevailing market conditions and the price expectations of traders. Once the mort-
gaged paddy was sold, it was milled mostly by large millers. In the milled rice sub-
system, commission agents have an important role in matching supply from millers
to the demands of wholesalers and exporters whereas the international brokers con-
ducted the same function for exporters and overseas importers. At the final stage
in the marketing system, approximately 55% of the rice was stored and consumed
domestically, and 45% was for export [12, 13]. As described, the rice marketing sys-
tem in Thailand is quite complex, the private sector having a key role in both export
and domestic markets. The pricing system was inevitably influenced by export and
wholesale markets. With the different price support measures, it is questionable how
pricing systems transmit price changes from one section to another and how fast the
price adjustment takes place.

3 Literature Review

Efficiency of the marketing of agricultural products has always been an issue of
interest on the presumption that middle agents are primarily responsible for any
inefficient market practice and depressed farm prices in a country due to their mar-
ket power. One way to prove the concentration of market power is by analysis of
the efficiency of the market system addressing market integration and price trans-
mission among various sub-markets. Study of market integration is, therefore, use-
ful for forecasting prices at different market levels; for example, for estimating the
magnitude of the effect of urban market price movements on the rural market price
patterns [14, 15].

Furthermore, an efficient market can help prevent problems in arbitrage trade
from business losses. Knowledge about the state of integration in the domestic mar-
ket can also help middle agents in their selection of markets by arbitrage measures to
reduce business risk [16]. Market integration is fundamental for economic growth by
enabling efficient resource allocation [15]. and leading to specialization in produc-
tion because of the principle of comparative advantage and, eventually, to produc-
tion expansion, economies of scale, market competitiveness, and market efficiency.
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Price transmission is an important area of research in agricultural economics.
Unexpected price movements affect welfare of producers and consumers which is a
concern for policy makers. Inadequate market information may cause market distor-
tion, inefficient pricing and, thus, welfare distribution. A large body of research on
price transmission has recently been undertaken, especially in agricultural and food
markets (e.g. [3]; [17]; [18]). Most of these studies focus on existence of asymmetric
transmission. Meyer and Cramon-Taubadel (2004) report that, for 48% of cases, the
hypothesis of symmetry of price transmission have been rejected using different an-
alytical methods. The nature of price transmission seems to depend on the particular
products and local circumstances.

Frey and Manera (2007) state that “asymmetry is very likely to occur in a wide
range of situations and econometric models. Most research in this area did not ex-
plore causes of transmission performance”. Bakucs, Falkowski and Fertö (2012),
in their study on the agro-food sector, concluded that market power variables (entry
barriers, size, regulation) farmers’ bargaining power and manufacturing turnover are
significant causes of asymmetry.

4 Data and Methodology

This study uses farm price of paddy rice (5% broken) and wholesale prices of white
rice (5% broken) in Bangkok. Data are obtained from the Office of Agricultural Eco-
nomics. Monthly data are available from January 1997 to June 2012. In our study,
we estimated both error correction and quantile regression models to investigate
the nature of the price transmission between the two rice markets. We suspect that
our rice price data may contain some extreme values and exhibit non-normal distri-
bution, so that the quantile regression model is particularly relevant for our study.
Because we use time-series data, we adopt the quantile cointegration regression
(QCR) model, proposed by Xiaov (2009) [19].1 For backward price transmission,
we estimate the QCR model that is defined by

p f ,t (τ| Ft) = α (τ)+βt (τ) pw,t +λt (τ)G× pw,t +
K

∑
j=−K

π j,t (τ)Δ pw +

K

∑
j=−K

γ j,t (τ)Δ pw,t− j + εt

where p f is the logarithm of the farm price of paddy; τ denotes the quantile value
(where 0 < τ ≤1); pw is the logarithm of the wholesale price of white rice (5%); G is

1 In our study, we estimated both error correction and quantile regression models but only
the quantile Regression results are presented in this paper. The working paper, Wiboon-
pongse, Chaovanapoonphol and Battese (2012), presents and compares the results for both
econometric models.
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a dummy variable representing the period of the price insurance program2; K (=2 in
our study) is the number of years for leads and lags to absorb endogeneity; and εt is
the normal random error having mean zero and constant variance. For investigating
forward price transmission, the two price variables, p f and pw, are reversed so that
pw is the dependent variable and p f is the independent variable.

5 Empirical Results

Summary statistics for the data used in our analysis are presented in Table 1. These
indicate that the mean of the paddy rice is almost half that for wholesale white
rice but the variability is considerably less than for white rice. The skewness and
kurtosis measures obtained indicate departure from normality. Using the Shapiro-
Wilkstatistic, we the null hypothesis of normality would be rejected for both price
series at the 5% level of significance.

These prices move in concert during the period of the study, although the whole-
sale prices are more variable during periods of higher prices. Increases in the prices
are associated with rice export. For example the domestic price spike in 2008 fol-
lowed sharp rise in the world price due to global rice crisis. Price margins are much
higher in some periods than in others which indicate variation in price transmission
or different regimes (due to market intervention).

Table 1 Net present value of all scenarios for the duration of 30 years.

Price Variable Mean Std.Dev Min Max Skewness Kurtosis Shapiro-
Wilk

Paddy rice
(baht/100kg)

681.46 201.15 438.40 1,325.90 1.02 3.26 0.888

Wholesale
white rice 5%
(baht/100kg)

1,288.64 351.31 855.00 2,794.61 1.46 5.79 0.877

The empirical results for the QCR model, obtained using EViews 6, [20]. are re-
ported in Table 2 for the paddy and wholesale white rice prices. For the backward
and forward relationships between the farm prices of paddy rice and the wholesale
white rice prices, we are particularly interested in whether there is equality of the
slopes for the different quantiles and the directional effects of the price insurance
program. On average, the farm price responds to the wholesale price with elastic-
ity of 0.995 (coefficient of the OLS estimate of pw in the first column of Table 2),
which is not significantly different from one. From the quantile regression results,

2 During July2009, the Thai government replaced the rice mortgage program with the price
guarantee program. The dummy variable, G, is used to capture the effect of this structural
change on the transmission.
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Table 2 Quantile cointegration regression results for paddy and wholesale white rice prices

Variable OLS τ=0.10 τ=0.25 τ=0.50 τ=0.75 τ=0.90

Backward trans-
mission
Constant -0.62** 1.8 -0.72** -0.87** -0.82*** -1.45***

(0.26) (1.20) (0.33) (0.33) (0.27) (0.31)
pw 0.995*** 0.63*** 1.005*** 1.032*** 1.032*** 1.129***

(0.037) (0.17) (0.047) (0.048) (0.038) (0.044)
G× pw 0.000080∗∗∗

(0.000020)
0.000170∗∗∗
(0.000040)

0.000090∗∗∗
(0.000010)

0.000060∗∗∗
(0.000020)

0.000040∗∗
(0.00001)

0.000030
(0.000020)

Δ pw, t−1 0.00002
(0.00017)

0.00048
(0.00043)

-0.00002
(0.00011)

0.00007
(0.00040)

-0.00015
(0.00030)

-0.00007
(0.00040)

Δ pw, t−2 0.00002
(0.00011)

-0.00004
(0.00017)

0.000010
(0.000060)

-0.00004
(0.00014)

0.00018
(0.00022)

0.00002
(0.00025)

Δ pw, t−1 0.00013
(0.00017)

-0.00028
(0.00074)

0.00002
(0.00010)

0.00012
(0.00017)

0.00027
(0.00021)

0.00024
(0.00040)

Δ pw, t−2 -0.00008
(0.00010)

-0.00007
(0.00039)

0.000040
(0.000050)

-0.00008
(0.00034)

-0.00022∗
(0.00013)

-0.00012
(0.00021)

Pseudo R2 0.876 0.449 0.604 0.691 0.744 0.740
Wald Test - 40.71806**

Forward trans-
mission
Constant 1.90∗∗∗

(0.18)
1.65∗∗∗
(0.26)

1.60∗∗∗
(0.21)

1.47∗∗∗
(0.20)

2.03∗∗∗
(0.28)

2.67∗∗∗
(0.35)

p f 0.802∗∗∗
(0.028)

0.828∗∗∗
(0.043)

0.841∗∗∗
(0.033)

0.868∗∗∗
(0.031)

0.789∗∗∗
(0.043)

0.693∗∗∗
(0.054)

G× p f 0.00008∗∗∗
(0.00003)

-0.00002
(0.00002)

-0.00004∗
(0.00002)

-
0.00008∗∗∗
(0.00002)

-
0.00009∗∗∗
(0.00003)

-0.00007
(0.00005)

Δ p f , t−1 0.00065∗∗
(0.00030)

0.00016
(0.00093)

0.00052
(0.00051)

0.00007
(0.00037)

0.00078∗
(0.00043)

0.0018
(0.0033)

Δ p f , t−2 0.00019
(0.00017)

0.00026
(0.00049)

0.00002
(0.00034)

0.00031∗
(0.00018)

0.00038∗
(0.00018)

0.0006
(0.0016)

Δ p f , t−1 -0.00072
(0.00047)

-0.00027
(0.00078)

-0.00075
(0.00065)

-0.00026
(0.00051)

-0.00060
(0.00066)

-0.0013
(0.0021)

Δ p f , t−2 -0.00004
(0.00033)

-0.00007
(0.00073)

0.00006
(0.00046)

-0.00022
(0.00035)

-0.00017
(0.00039)

-0.00066
(0.00082)

Pseudo R2 0.884 0.655 0.664 0.689 0.680 0.667
Wald Test - 37.69440*

Notes: Coefficients that are significant at the 1%, 5% and 19% levels are denoted by ***, **
and *, respectively.
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the Wald test statistic to test the null hypothesis of common slope parameters for
the different quantiles is rejected at the 5% level of significance. The quantile slopes
increase from 0.63 (for τ=0.10) to 1.13 (for τ=0.90), but both coefficients are sig-
nificantly different from one. For quantile values between τ=0.25 and τ=0.75, the
coefficients are not significantly different from one. Displayed equations or formu-
las are centered and set on a separate line (with an extra line or halfline space above
and below). Displayed expressions should be numbered for reference. The numbers
should be consecutive within each section or within the contribution, with numbers
enclosed in parentheses and set on the right margin.

These results can be interpreted that changes in the wholesale white rice price
at low prices result in less than proportional price changes for paddy rice, but, at
higher prices, the changes in paddy prices to farmers are expected to be greater. The
positive coefficients of the product of the dummy variable for the price insurance
program and the wholesale price of white rice are generally significantly greater
than zero but their numeric values are quite small. These results indicate that the
price changes for paddy rice to changes in the wholesale white rice price are quite
small during the period of the rice price insurance program.

On the forward transmission from the farm to the wholesale white rice market,
the average transmission, estimated by OLS is 0.80, while the quantile regression
estimates first increase from 0.83 (for τ=0.10) to 0.87 (for τ=0.50) and then decrease
to 0.69 (for τ=0.90). The null hypothesis of common slope coefficients for the dif-
ferent quantile regressions in the forward transmission is rejected at the 10% level
of significance using the Wald test statistic. The negative coefficients of the product
term the dummy variable for the price insurance program and the farm price indi-
cate significant effects of the program in lowering the prices for wholesalers, except
when τ=0.10 and τ=0.90. Although these effects are statistically significantly they
are quite small numerically for all quantile values. When the farm price increases,
wholesale price adjusts to increases wholesale price less than 1% (0.83 to 0.87).

6 Conclusions

The QCR model indicates that there are mostly symmetric responses in the back-
ward transmission (wholesale to farm prices) but there are significant asymmet-
ric responses in forward transmission (farm to wholesale prices). Hence, we assert
that wholesalers in the white rice market are more sensitive to price increases than
price decreases. At only very low price levels (τ= 0.10) farm prices are inelastic
to changes in the price of wholesale white rice. This means that when prices are
too low (say, 4,834 baht/ton, as in 2000/01) local buyers were reluctant to alter their
buying price from farmers but they were more willing to adjust prices at higher price
levels.

We conclude from the results of the QCR model to conclude that at very low
price, farm price adjusts only 63% to changes in the wholesale white rice market,
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regardless of upward or downward price changes, in order to maintain price stabil-
ity. But 100% to 113% adjustments occur at higher prices. This means that the farm
price would be more volatile than wholesale price since elasticities in the forward
direction only 69% to 87%. At the highest price level, wholesalers of white rice be-
come least responsive to farm price changes. This means that they try to maintain
price stability in the wholesale market as expected that retailers are normally reluc-
tant to increase retail price to the very high level. This does imply that wholesalers
do not earn the highest margins when there are opportunities to do so. They acted
to maintain more stable margins while local buyers (at farm level) take the riskier
option (in backward direction with high elasticity). Comparing the price guarantee
program to the rice mortgage program, the farmers enhance (wholesalers discour-
age) higher elasticity of transmission in the backward direction (forward direction)
of the farm-white rice market. This means, farmers react stronger than wholesalers
to price changes. However, the effects of the program are very small despite being
statistically significant in almost all cases.

The results about the forward price transmission (farm to wholesale market of
white rice) are important for policy planning. As local demand and supply have
much effect on the price at the other end, storage of paddy to sell with good tim-
ing is needed for raising farm prices of paddy. Financial assistance through credit
programs ought to be redesigned to replace existing programs that are apparently
unsuccessful. This research supports the notion of perfect price transmission from
the wholesale white rice market in favor of farmers. But there is no guarantee of ab-
solute exploitation when prices are above 4,834.05 baht per ton. According to Dawe
et al. (2008), marketing margins in the Thai rice market (central Thailand) were low
due to marketing innovations. Under free trade, world prices and domestic prices
are identical (adjusted to the same point in the marketing chain). This left zero re-
turn to management (of marketing agents in Thailand in 2003) when gross margin
equals marketing cost. [21]. On the other hand, the latest statistics show that, on
average, Thai farmers earned negative profits two out of three years during 2009/10
to 2011/12. The cost per ton rose from 8,349 to 9,359 and 10,399 baht. The corre-
sponding prices were 9,029 baht 8,600 and 10,289 baht. [22]. This certainly requires
updated marketing margins to ensure no excess profits in the Thai rice marketing
system. If so, coupled with perfect price transmission aforementioned, a policy to
lift technical efficiency in rice production is clearly of high priority. Allocative ef-
ficiency is also relevant for Thai farmers so as to adjust the use of fertilizer to the
appropriate rate because the prices of fertilizer in Thailand are usually higher than
most countries in ASEAN.

Acknowledgments. The project is jointly supported by the Thailand Research Fund and
Chiang Mai University.
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Analyzing Dependence Structure of Obesity
and High Blood Pressure: A Copula Approach

Jing Dai, Cheng Zi, Songsak Sriboonchitta, and Zhanqiong He

Abstract. China’s economy has experienced remarkable growth in past 20 years.
With rapid economic growth, Chinese people have enjoyed significant nutritional
improvements. Meanwhile, with the changes in lifestyle, dietary behavior and other
aspects, the prevalence of obesity and high blood pressure has also increased quickly.
The relationship between obesity, high blood pressure and risk of chronic non-
communicable diseases is continuous and consistent. The higher BMI and blood
pressure, the greater the chance of heart attack, stroke, kidney disease and etc. The
objective of this paper is to analyze how socio-demographic and socioeconomic
factors affect the prevelance of obesity and high blood pressure, and find the de-
pendence structure between obesity and high blood pressure (HBP) with the help
of copula functions. Computational results were obtained by R programme, and the
results show that Frank copula model provides a better estimation than others. The
empirical findings of this paper provide useful insights which can be expected to be
of interest to public health sectors and local government in the formulation of health
management policies especially on obesity, high blood pressure, and related chronic
non-communicable disease.
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1 Introduction

China is currently undergoing a rapid economic development and demographic
transformation. Since the reform and opening up in 1978, average living standards
have experienced a sustained and rapid growth [11]. The quick increase in produc-
tivity has resulted in higher incomes and an ample food supply, and Chinese people
have enjoyed significant nutritional improvements [3]. However, at the same time,
some worrying trends have been detected. The prevalence of overweight, obesity
and related chronic and non-communicable diseases has increased at an alarming
rate in past 20 years [17, 18].

Many kinds of chronic non-communicable disease have close relations with obe-
sity and high blood pressure, such heart disease, diabetes and stroke ect. According
to WHO report, it is estimated that about 18.3 million people die every year from
cardiovascular disease, for which obesity and high blood pressure are ranked as top
two leading risky factors [19]. Obesity and high blood pressure burdens the health
care system, strains economic resources, and has far reaching social consequences
[7, 8]. Therefore, obesity and high blood pressure should be paid much more at-
tention. It is urgent to identify those influencing factors related to obesity and high
blood pressure, take some measures and make corresponding policies to control the
prevalence of obesity and high blood pressure.

After reviewing literatures, we found that there are many papers concerned about
obesity and HBP. He and Griffins investigated the influencing factors of obesity and
HBP [8, 14], however, their studies tended to be qualitative and conceptual. Some of
researchers analysed HBP and obesity only from the perspectives of medicine, and
overlooked the influences from individual social demographic and socio-economic
aspects [5]. In addition, there are some studies explored the relationship between
obesity and HBP by using traditional regression method. For example, Wildman et
al. examined the association of changes in hypertension diagnoses with changes in
BMI among older Chinese adults by using logitic regression model [18]. However,
we found there were few studies investigate dependence structure between HBP and
obesity by copula approach. Therefore, more comprehensive studies should be con-
ducted, and then much more useful information could be provided to policy maker
to make effective intervention measures to prevent the prevalence of obesity and
HBP, thus to reduce the possibility of the occurrence of chronic non-communicable
diseases.

There are two objectives of this study, the first is to analyse how social demo-
graphic and socio-economic factors affect the prevalence of obesity and high blood
pressure, and the second is to find the dependence structure between obesity and
high blood pressure (HBP). Dependence models are constructed with the help of
copula functions to explain the relationship between BMI and HBP.

The remainder of the paper is organized as follows. Section 2 describe the
Archimedean copulas which are used in this study, and explained the model formu-
lation in detail. Section 3 describes the data set we used. The estimation results are
presented and discussed in Section 4. Finally, some concluding remarks are given
in the last section.
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2 Methods

Since statistical procedures based on normal distribution of the error terms can pro-
duce biased estimates when the normality assumption is violated. To conquer this
problem, copula method is adopted in this study. Copula approach allows flexible
marginal distribution, and separates the marginal distributions from the dependence
structure, so the dependence structure is unaffected by the marginal distribution
[10].

In 1959, the word ‘copula’ was first employed in a mathematical by Abe Sklar in
describing the functions that ’join together’ one-dimensional distribution functions
to form multivariate distribution functions [9]. Any joint distribution function has a
copula representation in which dependence and marginals are separately specified.

Copula approach derives from Sklar’s theorem. Based on Sklar’s (1973) theorem
[15], when F is a joint distribution function with marginal distribution functions Fx

and Fy, where exists a bivariate coupla C, that is:

FXY (x,y) = C(Fx (x) ,Fy (y)) (1)

If Fx and Fy are continuous, then C is unique. Otherwise, C is uniquely determined
on RanFx×RanFy. Conversely, if C is a copula and Fx and Fy are the cumulative
distribution function, then the function Fxy defined by above equation is a joint dis-
tribution function with margins Fx and Fy . From Sklar’s theorem, it can be seen that
a join distribution Fxy can be divided into its univariate marginal distribution Fx and
Fy, and a copula C, which captures the dependence structure between the variables
X and Y [12]. Therefore, copula models allow us to model the marginal distributions
and the dependence structure of multivariate random variable separately.

There are many copula functions. In this study, Archimedean copulas are pre-
ferred because they are closed-form copulas that can be used to obtain the joint
bivariate cumulative distribution function, and copulas in Archimedean copula fam-
ily allows testing a variety of radially symmetric and asymmetric joint distributions.
In addition, the closed-form nature of Archimedean copula family make itself easy
to the implementation of a computationally straightforward maximum likelihood
procedure for parameter estimation [16].

2.1 Archmedean Copulas and Their Properties

Archimedean copulas are a particular class of copula that includes several popular
families. These copulas find a wide range of applications for a number of reasons.
Firstly, the ease with which they can be constructed. Secondly, the great variety of
families of copulas belongs to this class. Finally, the members of this class posses
many nice properties.

Archimedean copulas are copulas whose form, in n dimensions, can be reduced
to a single function, called a generator. The generator function is a strictly decreas-
ing, convex and continuous function ϕ from [0,1]→ [0−∞] in a set [0,1], where
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ϕ (0) =∞,ϕ (1) = 0 and with inverse ϕ−1:[0,∞]→ [0,1],ϕ−1 (0) = 1 and ϕ−1 (∞) =
0.Then we can generate bivariate Archimedean copulas as:

C (u,v,θ) = ϕ−1(ϕ (u)+ϕ (v)) (2)

Where the dependence parameter θ is embedded within the generator function. In
Archemedean copulas families, different copulas are identified based on different
forms of the generator function ϕ . In this paper, we will consider three types of
Archimedean copulas which are Gumbel copula, Clayton copula and Frank copula.

Clayton copula was proposed by Clayton in 1978. It has the generator function

ϕ (t) = t−θc−1
θc

,θc > 0 , then the form of Clayton Copula function is given by [2]:

C (u,v,θ) =
{

u−θ + v−θ − 1
}−1/θ

(3)

Where θ is the dependence parameter and 0 < θ <∞. This copula is best suited for
strong left tail dependence and weak right tail dependence. That is, it is best suited
when HBP and BMI show strong tendencies to have low values but not high values
together.

Gumbel copula is suited not only to random variables that are positively corre-
lated, but to those in which right tail of each are more strongly correlated than left
tail . It has a generator function given by ϕθ (t) = (−lnt)θ . The form of the Gumbel
copula is given by [6]:

C (u,v;θ ) = exp

[
−
[
(−lnu)θ +(−lnv)θ

] 1
θ
]

(4)

Gumbel copula is well suited for the case when there is strong right tail or upper tail
dependence. Thus, this copula would be applicable when individuals BMI and HBP
show strong tendencies to have high values together.

The Frank copula is symmetric in its dependence structure [4]. The generator
function is given by :

ϕθ (t) = ln

[
exp(−θ t)− 1

exp(θ )− 1

]
(5)

and the corresponding coupla function is given by (Frank, 1979):

C (u,v;θ ) =− 1
θ

ln

(
1+

(
e−θu− 1

)(
e−θv− 1

)
e−θ − 1

)
(6)

Where the dependence parameter θ ∈ (−∞,∞). Franc copula is suitable for equal
levels of dependency in the left and right tails, that is, when HBP and BMI show
tendencies at both lower values and high values together.

The extent of concordance between HBP and BMI can be measured by Kendall’s
tau. According to Nelsen [12], let (X1,Y1) and (X2,Y2) be independent vectors
of continuous random variables with joint distribution functions H1 and H2, with
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common margins F and G. Let C1 and C2 denote the copulas of (X1,Y1) and
(X2,Y2). So that H1 (x,y) =C1 (F (x) ,G(y)) and H2 (x,y) =C2 (F (x) ,G(y)), then
let tau denote the difference which is defined as the probability of concordence mi-
nus the probability of discordence:

τ = τX ,Y = P [(X1−X2) (Y1−Y2)> 0]−P [(X1−X2) (Y1−Y2)< 0] (7)

Then we have (the derivation procedure refer to (Nelsen, 2006):

τ = 4E (C (U,V ))− 1 (8)

If X and Y be random variables with an Archimedean copula C generated by ϕ .
The population version τc of Kendalls tau for X and Y is given by:

τc = 1+ 4
1
∫
0

ϕ(t)
ϕ ′ (t)

dt (9)

Then substitute sepcific generator function ϕ (·) of the different copula in
Archimedean family, we can get the results of tau to measure the dependence
between HBP and BMI.

2.2 Model Formulation

Since in this study, we only consider those who suffer from obesity and HBP. Then
if BMI or blood pressure are over than normal range, they will be denoted as their
true value, otherwise will be denoted as zero. Therefore, we see there are many zero
values in health outcome. To model this kind of data, tobit model of Amemiya [1]
will be applied.

Consider a set of latent dependent variables (y∗1, . . . ,y
∗
n) with means

(x′β1, . . . ,x′βn), covariance matrix Σ , and probability density function (pdf)
f (y∗1, . . . ,y

∗
n), where x is a vector of conditioning variables, and β1, . . . ,βn are pa-

rameters. Then Tobit model for observed dependent variables yi is as follows:

yi =

{
y∗i if y∗i > 0

0 if y∗i ≤ 0, i = 1,2, . . . ,n
(10)

The likelihood function for a sample observation with outcome
(
0, . . . ,0,y∗m+1, . . . ,y

∗
n

)
,

where the first m goods are zeros (1≤ m≤ n)), is shown as follows:

Lc =

0∫
−∞
· · ·

0∫
−∞

f (y∗1, . . . ,y
∗
m,ym+1, . . . ,yn)

m

∏
j=1

dy∗j (11)

The likelihood function above is maximized by using conventional maximum like-
lihood procedures approach. To accommodate non-Gaussian error distributions, the
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bivariate distribution of
(

y∗i ,y∗j
)

is specified as a copula function which links the

two corresponding marginal cumulative distribution functions (cdfs).
According to some literatures, for this type of data in my study, Burr distributions

can be assumed [20]. Therefore, each variable y∗i is assumed to follow the general-
ized log-Burr distribution with scale σi and location parameterized as x′βi, with pdf
as follows:

f (y∗i ;κi) = σ−1
i ezi

(
1+ ezi/

κi

)−κi−1
,−∞< y∗i < ∞ (12)

Where zi = (y∗i − x′βi)/σi and κi is the skewness parameter. Variable y∗j is also fol-
low the same distribution with skewness parameter κi. However, these two variables(

y∗i ,y∗j
)

need not have the same distribution and any continuous univariate distribu-

tion can be specified for the margins.
Next, we apply the copula approach to model the dependence among BMI and

blood pressure. Let us denote the marginal distribution of two random variables
(y∗1,y

∗
2) as F1 (y∗1) = Pr(Y ∗1 ≤ y∗1) and F2 (y∗2) = Pr(Y ∗2 ≤ y∗2) and their joint cdf as

F (y∗1,y
∗
2) = Pr(Y ∗1 ≤ y∗1,Y

∗
2 ≤ y∗2). Then, the joint cdf has the copula representation

is as follows:
H (y∗1,y

∗
2) =C [F1 (y

∗
1) ,F2 (y

∗
2) ;θ12] (13)

The dependence between y∗i and y∗j is described as follows:

C
[
Fi (y

∗
i ) ,Fj

(
y∗j
)

;θi j
]
=C
[
Fi (y

∗
i |x;βi) ,Fj

(
y∗j |x;β j

)
;θi j
]

(14)

Then the copula density function is:

ci j
[
Fi (y

∗
i ) ,Fj

(
y∗j
)

;θi j
]
=

∂ 2

∂y∗i ∂y∗j
C
[
Fi (y

∗
i |x;βi) ,Fj

(
y∗j |x;β j

)
;θi j
]

= C
[
Fi (y

∗
i ) ,Fj

(
y∗j
)

;θi j
]

fi (y
∗
i ) f j
(
y∗j
)

(15)

Where fi (y∗i ) = ∂Fi (y∗i )/∂y∗i , and f j

(
y∗j
)
= ∂Fj

(
y∗j
)
/∂y∗j .

Then we denote Fi (yi) = F [(yi− x′βi)/σi],Fi (0) = Fi [(0− x′βi)/σi], Fj (y j) =
Fj [(y j− x′β j)/σ j] and Fj (0) = Fj [(0− x′β j)/σ j] and define dichotomous indica-
tor 1 which takes the value 1 if event holds and 0 otherwise. Then the likelihood
function for the bivariate Tobit for y∗i and y∗j is:

Li j =
{

C [Fi (0) ,Fj (0) ;θi j ]
}1(yi=0)1(y j=0)

×{C[Fi (yi) ,Fj (y j) ;θij
]

fi (yi) f j (y j)
}1(yi>0)1(y j>0)

×{C[Fi (yi) ,Fj (0) ;θij
]

fi (yi)
}1(yi>0)1(y j=0)

×{C[Fi (0) ,Fj (y j) ;θij
]

f j (y j)
}1(yi=0)1(y j>0) (16)

The specification is complete with the choice of copula functions. In this study, we
consider three forms of Archimedean copula which are Gumbel copula, Clayton
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copula, and Frank copula, with two different univariate distribution assumptions
(normal and Log-Burr distribution) for the random error term. Thus a total of six
copula-based models were estimated: (1) Clayton-Normal, (2) Gumbel-Normal, (3)
Frank-Normal, (4) Clayton- LogBurr, (5) Gumbel-LogBurr, and (6) Frank-LogBurr.

3 Data

The data we used is from China Health and Nutrition Survey (CHNS). This survey
collected detailed information on individual and household nutritional status, health
status, lifestyle habits including dietary and physical activities, socio-demographic,
and physical examination results. The main objective of the survey is to see how the
social and economic transformation of Chinese society in recent 20 years affect the
health and nutritional status of population.

CHNS is a longitudinal survey which includes nine provinces: Henan, Jiangsu,
Hubei, Liaoning, Shandong, Guizhou, Hunan and Guangxi Zhuang Autonomous
Region. All provinces vary substantially in geography, economic development, pub-
lic resources, and health indicators.

A multi-stage, random cluster process was used to draw the samples surveyed
in each of the province. Counties in these nine provinces were stratified by income
(low, middle, and high), and a weighted sampling scheme was used to randomly se-
lect four counties in each province. Villages and townships within the counties and
urban/suburban neighborhoods within the cities were selected randomly. In 2009,
there were 216 primary sampling units: 36 urban neighbourhoods, 36 suburban
neighborhoods, 36 towns, and 108 villages.

In this study, we only use the data drawn from CHNS 2009. This dataset cov-
ers 6490 households and 94812 individuals. In our sample, we restricted the people
whose age are from 30 to 65 years old, leaving a final sample of 5469
respondents from 9 provinces, of these 671 from Liaoning province, 604 from
Heilongjiang province, 695 from Jiangsu province, 605 from Shandong province,
537 from Henan province, 614 from Hubei province, 522 from Hunan province,
642 from Guangxi province, and 579 Guizhou.

The dependent variables are BMI value, diastolic blood pressure and systolic
blood pressure. Since in this study, we only consider those whose BMI value and
blood value greater than normal standard. Then if BMI and blood pressure are over
than normal range, they will be denoted as their true value, otherwise will be denoted
as zero.

BMI was calculated from the respondents weight (in kilograms) divided by their
height in square meters. There are two standards for BMI cutoff points, one is pro-
posed by WHO which defines obesity if BMI is greater than 30, and another is
recommended by Chinese center of disease control and prevention which defines
obesity if BMI is over 28. In this paper, we will follow Chinese standard.

Blood pressure is the force of the blood pushing against the walls of the arteries.
The normal range of systolic and diastolic blood pressure are less than 140mmHg
and 90mmHg respectively. When either systolic value is greater than 140 mmHg or
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Table 1 Diagnostic standard for High Blood Pressure

Category Systolic Diastolic
Normal Less than 120 and Less than 80
Prehypertention 120-139 or 80-89

High Blood Pressure
Stage 1 140-159 or 90-99
Stage 2 160 or higher or 100 or higher

diastolic value is more than 90 mmHg, or both value beyond the critical value, the
high blood pressure can be diagnosed (see Table.1).

The explanatory variables include age, number of cigarettes per day, quantity
of liquors per week, gender, and dummy variables indicating education level, in-
dividual income level and nine provincial dummies. The definition and descriptive
statistics of all variables are shown in Table 2.

4 Estimation Results

For the consideration of space, we only provide the data fit results for the best cop-
ula model. Among all coupla models, our results indicate that the Frank copula
model provides the best data fit. Then the results of Frank copula with two marginal
distributions (Normal margins and generalized log-Burr margins) are presented in
following Table.3. For the rest of paper we focus on comparing the results from
these two models.

Table 3 presented estimation results for Frank copula models with both normal
margins and log-Burr margins. For Frank-Burr model, it can be seen that the esti-
mates for all three skewness parameters are significant at the 1% level. For diastolic
blood pressure, the skewness parameter estimates are 3.29 which makes the estima-
tion results produced with the normal margins are doubtful.

In addition, we find there are some notable differences in the parameter estimates
between Frank-Normal and Frank-Burr models. For example, Frank-Normal model
shows that number of cigarettes per day, amount of liquor per week, education level,
and residence are statistical insignificant. However, all of these variables are signif-
icant in Frank-Burr model. These differences demonstrate how a misspecified error
distribution can obscure the effects of explanatory variables on the dependent vari-
ables and highlight the importance of accommodating skewed error distributions
in censored equation systems. For the dependence structure, in both models, two
of the error correlation (diastolic-systolic and BMI-diastolic) estimates are positive
and significant at the 1% level, and one (BMI and systolic) is significant at 5% level.

Focusing on the results of the preferred Frank-Burr model, number of cigarettes
per day has positive effects on both diastolic and systolic blood pressure and slight
negative effects on body mass index, this means that smoking may lead to the in-
crease of blood pressure. It is also can be seen that more amount of liquor drinks per
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Table 2 Variables Definition and Sample Statistics

Variable Definition Mean
Dependent Variables
BMI Body Mass Index 23.64(3.37)
DBP Diastolic blood pressure 83.46(8.14)
SBP Systolic blood pressure 128.18(14.58)
Continuous independent variables
Age Calculated age in years to 2 decimal points 56.13(10.63)
Cigarettesperday Number of cigarettes smokes per day 17.15(10.1)
Liquorperwk Liquor: Number of Liang(50gms) drinks per week 9.11(12.68)
Binary independent variables (1=Yes; 0=no)
Gender
Male Male 0.51
Education Level
<primary Education years are less than 9 years 0.46
Middle-school Graduated from Middle School 0.32
High-school Graduated from high School 0.19
>college Education years are more than 15 years 0.05
Household Income Level
Level-1 Annual individual income: < 14000 RMB 0.22
Level-2 Annual individual income: 14000 28000 RMB 0.25
Level-3 Annual individual income: 28000 53000 RMB 0.39
Level-4 Annual individual income: >53000 RMB 0.14
Province
Liaoning Resides in Liaoning 0.12
Heilongjiang Resides in Heilongjiang 0.11
Jiangsu Resides in Jiangsu 0.13
Shandong Resides in Shandong 0.11
Henan Resides in Henan 0.10
Hubei Resides in Hubei 0.11
Hunan Resides in Hunan 0.09
Guangxi Resides in Guangxi 0.12
Guizhou Resides in Guizhou 0.11
Residence
Urban Resides in central city 0.39
Note. standard deviations are in parentheses

week, the higher value of diastolic, systolic blood pressure and BMI. We also find
that household income has some impacts on blood pressure, the people with house-
hold income between 28000–53000RMB has higher risk in suffering high blood
pressure. People residing in urban areas are more likely to suffer from high blood
pressure and obesity. Provincial factors are also affect blood pressure. Compared
with other provinces, Liaoning and Jiangsu has higher prevalence of high blood
pressure.
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Table 3 Estimation Results: Frank copula with two margins

Frank (Normal margins) Frank (Generalized Log-Burr)
Diastolic Systolic BMI Diastolic Systolic BMI

Constant 17.28*** 24.38*** 3.06*** 15.17*** 21.16*** 2.92***
(13.49) (13.18) (8.721) (2.51) (12.48) (7.74)

Age 12.91 29.37 0.52 12.69 29.37 0.51
(1.92) (1.12) (0.32) (1.98) (1.76) (0.31)

Age2 -1.151 -1.849 -0.0764 -1.152 -1.872 -0.0762
(-0.22) (-1.42) (-0.54) (-0.11) (-1.30) (-0.51)

Cigarettesperday 0.172 0.252 -0.0141 0.212** 0.263** -0.012
(-1.67) (-1.68) (-0.01) (-3.64) (-3.62) (-0.01)

Liquorperwk 0.104* 0.156 0.00347 0.189** 0.356** 0.00647
(2.23) (1.63) (-0.36) (6.71) (2.38) (-0.49)

Household income
14000-28000RMB -1.235*** -2.64*** 0.177 -1.975*** 2.57*** 0.177

(-3.44) (-3.43) (0.42) (-3.42) (-3.51) (0.43)
28000-53000RMB 1.037* 1.94** 0.517 1.017* 2.04*** 1.17*

(2.17) (2.60) (0.12) (2.36) (3.65) (1.91)
>53000RMB -2.10* -2.968* 0.52 -3.10*** -3.968** 0.42**

(-2.28) (-2.13) (1.13) (-4.03) (-2.18) (2.12)
Education Level
middle school 1.199 -6.793 0.742 1.099 -5.793 0.742

(0.41) (-1.53) (1.81) (0.39) (-1.23) (1.79)
High school 0.899 -3.793 0.942 2.109** -2.793 0.632

(0.41) (-1.53) (1.81) (2.39) (-1.23) (1.79)
>College 1.276 2.713 0.792 2.099*** 3.793** 0.912**

(0.41) (1.53) (1.81) (3.39) (2.23) (2.39)
Province
Heilongjiang -5.79 -5.312 -0.108 -6.71** -7.31** -0.168*

(1.12) (1.47) (-0.19) (2.33) (2.45) (-1.91)
Jiangsu 2.655** 5.838** -0.169 4.655 7.512*** -0.214

(2.07) (2.37) (-0.3) (-0.45) (5.91) 1.31
Shandong -4.391 -7.979 1.732** -5.161** -8.172** 1.032**

(-1.29) (-1.58) 2.09 (-2.22) (-2.26) 2.32
Henan -2.79 -1.07** 1.147 -3.79 -1.87** 1.217**

(-1.30) (-2.07) 1.28 (-1.24) (-2.88) 2.26
Hubei -3.415* -2.294 -0.665 -3.615 -2.04* -0.635

(-2.02) (-1.21) (-1.21) (-1.96) (-1.91) (-1.13)
Hunan -4.929 -9.76* -0.784 -5.227 -10.76*** -0.924*

(-1.37) (-2.10) (-1.43) (-1.25) (-6.97) (-1.91)
Guangxi -7.640* -12.04* -0.752 -7.64 -12.04* -0.552

(-2.06) (-2.07) (-1.25) (-1.92) (-2.09) (-1.17)
Guizhou -7.991* -11.06* -1.215* -8.291** -11.76*** -1.432*

(-2.20) (-2.38) (-2.16) (-2.31) (-4.35) (-2.27)
urban 2.071 5.096 0.38* 4.003*** 6.096** 0.678**

1.86 1.74 (1.21) (4.17) (2.51) (2.21)
σi 4.72*** 31.28*** 12.06*** 2.67*** 29.12*** 2.97***

(11.23) (28.17) (15.27) (12.76) (5.92) (11.96)
κ∗i 3.29*** 0.419*** 3.13***

(9.45) (3.12) (9.17)
Concordance(θi j)
Systolic BP 4.13*** 3.97***

(6.17) (6.07)
BMI 2.36*** 2.63** 2.06*** 2.21*

(6.92) (2.01) (6.12) (1.95)
Kendall’s tau
Systolic BP 0.41*** 0.46***

(8.21) (7.21)
BMI 0.24*** 0.26** 0.28*** 0.24**

(18.49) (2.27) (14.91) (2.06)
Log Likelihood -1176.39 -997.29
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5 Concluding Remarks

Such quick increase in the prevalence of obesity and high blood pressure has grad-
ually drawn much attentions from many aspects in recent years. If the increase in
BMI and blood pressure could be diminished, much of corresponding chronic non-
communicable disease, such as diabetes, cardiovascular, kidney disease, and stroke
could be reduced.

In this study, since for the dependent variables HBP and obesity contain zeros in
some items, this data feature must be accommodated to obtain consistent empirical
estimates. Many modelling approaches are based on the assumption of normality, if
violated, the estimates results may inconsistent. To conquer this problem, we use
censored equation system and draw on recent developments in copula methods.
The copula approach allows the use of more flexible error distributions than nor-
mal distribution, and can also overcome the computational difficulty with multiple
probability integrals in larger systems.

In this paper, we considered three forms of Archimedean copula (Gumbel cop-
ula, Clayton coupla, and Frank copula) with two different univariate distribution
assumptions (normal and Log-Burr distribution) for the random error term. Thus a
total of six copula-based models were estimated: (1) Clayton-Normal, (2) Gumbel-
Normal, (3) Frank-Normal, (4) Clayton- LogBurr, (5) Gumbel-LogBurr, and (6)
Frank-LogBurr. Through comparing log-likeligood and BIC, we found, among all
copula models, Frank copula with Log-Burr marginal distribution model provides
the best data fit.

This study provides a detailed econometric analysis of the role of socio-economic
factors in the prevalence of obesity and HBP in China. In addition, this analysis also
provide more messages to policy maker in making effective policies and take useful
intervention measures for reducing the prevalence of HBP and obesity.

This study represents one of the attempts at economically determine the socio-
demographic and social-economic factors affecting body mass index and blood pres-
sure among Chinese people. With several rounds data of CHNS, future studies will
be conducted by applying longitudinal approaches.
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