
Integrating Statistical Shape Models
into a Graph Cut Framework for Tooth Segmentation

Johannes Keustermans1, Dirk Vandermeulen1, and Paul Suetens2

1 KU Leuven, Faculty of Engineering, ESAT - PSI, Leuven, Belgium
2 IBBT-KU Leuven Future Health department, Leuven, Belgium

johannes.keustermans@esat.kuleuven.be

Abstract. The segmentation of teeth is of great importance for the computer aided
planning of dental implants, orthodontic treatment, and orthognathic surgery. How-
ever, it is hampered by metallic streak artifacts present in Computed Tomography
(CT) images in general, and the lack of contrast between the teeth and bone in
Cone-Beam CT (CBCT) images particularly. Therefore, we propose a novel graph
cut based algorithm that effectively integrates a statistical shape model based on a
probabilistic shape representation. The statistical shape model is obtained from a
set of training samples and imposes a Gaussian distribution on the shape space. The
presented algorithm minimises an energy function that is formulated according to
a maximum a posteriori criterion and consists of three terms: an image likelihood
term, a segmentation likelihood term integrating the shape model into the graph cut
framework, and a shape model term favoring shapes that are more likely according
to the statistical shape model.

1 Introduction

Recently, three-dimensional orthognathic surgery and dental implant planning software
systems became available, enabling visualization, quantification, non-invasive diagno-
sis, treatment planning, and evaluation of treatment outcome in an unprecedented way.
The introduction of Cone-Beam Computed Tomography (CBCT) has instigated a break-
through towards the routine use of these three-dimensional treatment planning software
systems, due to the low radiation dose, unique accessibility and low cost. The segmen-
tation of teeth from CBCT images is of particular interest for these software systems
as it may significantly broaden or help their applicability, e.g. virtual tooth extraction,
dental implant planning, and orthodontic treatment planning and evaluation. Yet, the
segmentation of teeth from CBCT images is challenging problem, as it is hampered
by various factors. First, the presence of metal streak artifacts in the CBCT images,
caused by orthodontic braces or dental fillings. Next, since the teeth are anchored in
the jaw bone there is only little contrast between the bone and the teeth, predominantly
at the level of the apex. Subsequently, the signal to noise ratio of CBCT images is in
general lower compared to CT images. Finally, the shape of teeth shows a significant
variability over individuals. In the literature a number of methods for the segmentation
of teeth have been proposed [1,2]. To our knowledge, however, none of these methods
are capable of coping with the mentioned problems.
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Since a manual segmentation is very time-consuming and subjective, hindered even
more by the dimensionality and size of the CBCT images, as well as the number of
teeth, there is a strong need for an automated or semi-automated approach. In the last
decades the computer vision community has produced a large variety of image seg-
mentation algorithms. Earlier approaches to the segmentation problem are based on
heuristic rules. Despite being not robust, these methods are still widely known and used
in practice due to their simplicity, predictability, and speed. More recently, optimization
methods have become established as being more powerful and mathematically sound.
These algorithms minimize an appropriate energy function, leading to an optimal image
segmentation in some sense. The Bayesian formulation of the energy function allows to
introduce prior shape knowledge into the image segmentation framework. To make the
algorithm as generic as possible, a statistical learning approach can be used, in which
the prior shape knowledge can be obtained from training data.

This paper presents an algorithm that integrates a statistical shape model into the
graph cut framework. The graph cut algorithm defines a graph G = {V , E} consisting of
a set of nodesV , representing image voxels, and a set of edges E connecting neighboring
nodes. Two extra terminal nodes s (source) and t (sink) are added, representing the
object and background label. All edges e ∈ E are assigned some non-negative weight
we. The goal of the graph cut algorithm is the optimal separation of source and sink by
slicing a set of edges that no remaining path exists between the source and the sink. The
cost of a cut C is defined by the sum of the weights of the edges sliced by the cut. This
cut can be computed efficiently in low order polynomial time using the max-flow/min-
cut algorithm [3].

Integrating statistical shape models into the graph cut framework is not straightfor-
ward. Malcolm et al. [4] present an interactive graph cut framework employing sta-
tistical shape models based on an implicit shape representation. Freedman et al. [5]
integrate a deformable template based on an implicit representation into the interactive
graph cut framework. Although not based on graph cuts, Schoenemann et al. [6] present
a model-based segmentation algorithm providing global minima. First, however, only a
deformable template is used compared to the statistical shape models used in this work.
Second, the algorithm is inherently two dimensional, so extending the method to higher
dimensions is not straightforward.

Compared to previous work we have chosen to integrate a statistical shape model
based on a probabilistic shape representation reflecting the probability of a point to be-
long to the object boundary, originally presented by Hufnagel et al. [7], into the graph
cut framework. As such, we retain advantages of both explicit and implicit shape rep-
resentations combined with an effective optimization algorithm. The segmentation al-
gorithm presented in this paper is applied to the segmentation of teeth from CBCT
images. The organization of this paper is as follows. Section 2 presents the statistical
shape model. Section 3 further details the segmentation algorithm itself. Subsequently,
section 4 discusses some experiments and results. Finally, section 5 formulates a con-
clusion and some ideas for future work.
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2 Statistical Model Building

This section presents the procedure for constructing the statistical shape models. This
procedure was originally presented by Hufnagel et al. [7], and is extended here. A
clear distinction is made between the observation parameters and the model parame-
ters. Since the proposed statistical shape model imposes a Gaussian distribution on the
shape space, the set of model parameters Θ consists of the mean shape M̄ = {m̄j}Nm

j=1,

the eigenmodes vp = {vpj}Nm

j=1, the eigenvalues λp and the number of eigenmodes n.
The observation parameters Q = {Qk}Nk=1 are the bandwidth parameters σk, the rigid
transformations Tk = {Rk, tk}, and the deformation coefficients Wk = {wkp}np=1

with respect to the eigenmodes that fit the statistical shape model to each of the training
samples Sk = {ski}Nk

i=1. Unlike Hufnagel et al., the bandwidth parameters are training
sample specific, and included with the observation parameters. As such, their values
are estimated in an optimal and automated manner. In order to optimize both model and
observation parameters a maximum a posteriori criterion is formulated

p (Q,Θ|S) = p (Θ)
N∏

k=1

p (Sk|Qk, Θ) p (Qk|Θ)

p (Sk)
. (1)

The term p (Qk|Θ) can be further expressed according to the Gaussian shape model
and by assuming a constant prior for the rigid transformations. Furthermore, the term
p (Sk|Qk, Θ) can be further expressed by imposing the probabilistic object representa-
tion based on a kernel density estimator with Gaussian kernels

p (Sk|Qk, Θ) =

Nk∏

i=1

p (ski|Qk, Θ) =

Nk∏

i=1

Nm+1∑

j=1

p (j) p (ski|j,Qk, Θ) , (2)

where p (j) are equal membership probabilities, and p (x |Nm + 1, Qk, Θ) = 1
Nm

is a
uniform (pseudo) outlier distribution. Unlike Hufnagel et al., an outlier distribution is
added to improve the robustness against outliers. The term p (x |Qk, Θ) can be further
expanded as,

p (x |Qk, Θ) =
1− ω

Nm

Nm∑

j=1

exp
(
− ‖ski−Rkmkj−tk‖2

2σ2
k

)

(2πσ2
k)

d/2
+

ω

Nm
, (3)

where 0 ≤ ω ≤ 1 is parameter balancing the relative importance of the (pseudo) outlier
distribution. Furthermore,mkj can be expanded as a linear combination of the principal
components and the mean, mkj = m̄j +

∑n
p=1 wkpvpj .

Assuming p (Θ) to be uniform and taking the negative logarithm yields the energy
function to be minimized. Unlike Hufnagel et al., the energy function is optimized us-
ing the EM algorithm [8]. In the E-step an optimal upper bound to the energy function
is formulated, by applying Jensen’s inequality and introducing specific probability dis-
tributions qk (i, j), representing probabilistic correspondences. The probabilistic corre-
spondences qk (i, j) are determined as to optimize the upper bound that it touches the
energy function using the current model Θt and observation parameters Qt and adding
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the constraints
∑Nk

i=1 qk (i, j) = 1 and
∑Nm+1

j=1 qk (i, j) = 1. As such, the E-step con-
sists of iterating the following equations until convergence

q̂
t+ 1

2

k (i, j) =
q̂tk (i, j)

∑Nm

j=1 q̂
t
k (i, j) +

ω(2πσ2
k)

d/2

1−ω

and q̂t+1
k (i, j) =

q̂
t+ 1

2

k (i, j)
∑Nm

j=1 q̂
t+ 1

2

k (i, j)
,

(4)

where q̂0k (i, j) = exp
(
− ‖ski−mkj‖2

2σ2
k

)
. This approach is similar to the softassign ap-

proach of Chui et al. [9], and leads to more accurate probabilistic correspondences com-
pared to Hufnagel et al. [7]. In the M-step the obtained upper bound is minimized with
respect to the observation parameters Q and the model parameters Θ while keeping,
respectively, Θ and Q fixed. This upper bound can be formulated as

CM
k (Qk, Θ) � 1

2σ2
k

Nk∑

i=1

Nm∑

j=1

qk (i, j) ‖ ski −Rkmkj − tk ‖2 +

Nqkd

2
log

(
σ2
k

)
+

n∑

p=1

(
log (λp) +

w2
kp

2λ2
p

)
, (5)

where Nqk =
∑Nk

i=1

∑Nm

j=1 qk (i, j). Closed-form solutions for almost all parameters
can be obtained. For the rotation matrix Rk and translation vector tk, the expressions
are similar to the rigid coherent point drift algorithm [10]. For the bandwidth parameter
σk the following expression can be derived

σk =

√√√√ 1

Nqkd

Nk∑

i=1

Nm∑

j=1

qki (j) ‖ ski −mkj ‖2 . (6)

For the deformation coefficients, as well as all model parameters we refer to Hufnagel
et al. [7], since similar expressions are obtained, differing only in the probabilistic cor-
respondences qk (i, j).

3 Image Segmentation

This section will provide details of the energy function and the optimization thereof.
In the following paragraphs we will formulate this energy function and derive expres-
sions for the edge weights in the graph cut framework. The objective of the presented
algorithm is the optimal segmentation of teeth from CBCT images according to some
criterion. This criterion is formulated through a maximum a posteriori probability for-
mulation of the segmentation φ : Ω �→ {0, 1} and the observation parameters Q given
the image I : Ω �→ R and the shape model Θ. The segmentation φ is evolved such
that p (φ,Q|I, Θ) is maximal which, according to the rule of Bayes, can be stated as
follows:

argmax
φ,Q

p (I|φ,Q,Θ) p (φ|Q,Θ) p (Q|Θ)

p (I) . (7)
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Since the observation parameters Q and the shape model Θ do not add any information
when the segmentation φ is known, I is conditionally independent with respect to Q
and Θ. Therefore, and since p (I) is constant, p (φ,Q|I, Θ) can be expressed as

p (φ,Q|I, Θ) ∝ p (I|φ) p (φ|Q,Θ) p (Q|Θ) . (8)

Maximization of the probability is converted to energy minimization by taking the neg-
ative logarithm of equation 8. The following paragraphs formulate expressions for the
different terms of this energy function.

3.1 Image Likelihood Term

The term p (I|φ) of equation 8 is the image likelihood. Since the main contribution of
this paper lies in the integration of statistical shape models into the graph cut framework,
we restrict ourselves to a simple term. Therefore we exploit the knowledge that object
boundaries typically coincide with edges in the image and is based on an edge detector
function g (|∇I|).

E (I, φ) =

∫

∂Ω

g (|∇I|) dx , (9)

where ∂Ω denotes the segmentation boundary. To translate this image likelihood term
into edge weights for the n-links we can use the geo-cut method of Boykov et al. [11]. It
should be noted that the image likelihood supports a variety of different energy terms,
such as regional ones. This is application specific and can greatly improve the segmen-
tation outcome.

3.2 Segmentation Likelihood Term

The second term p (φ|Q,Θ) of equation 8 is the segmentation likelihood, and connects
the segmentation and the statistical shape model. Due to the probabilistic shape repre-
sentation reflecting the probability of a point to belong to the object boundary, the shape
model nicely integrates in the graph cut framework. As such we can formulate

p (φ|Q,Θ) =
∏

e∈Cn

p (e|Q,Θ) , (10)

where Cn is the subset of n-links belonging to the cut corresponding to segmentation φ
and p (e|Q,Θ) is the probability of cutting edge e ∈ E given the observation parameters
Q and the shape model Θ. This probability is given by the sum of the probabilities for
each point along the edge to belong to the object boundary.

p (e|Q,Θ) =

∫ 1

0

p (u (he − te) + te|Q,Θ) du . (11)

where u is the parametrization variable and te and he, respectively, are the tail and head
node of edge e. This can be further expressed as

p (e|Q,Θ) =

Nm∑

j=1

|ae|e
(
− |ae×b

j
e|2

σ2

)

Nm2πσ2

(
erf

( |ae|2 + ae · bj
e

σ

)
− erf

(
ae · bj

e

σ

))
,

(12)
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where ae = he − te, bj
e = te −mj , σe =

√
2σ|ae|, |x| is the norm of vector x, x · y

is the dot product and x× y is the cross product between vectors x and y.
Taking the negative logarithm of equation 10 converts the probability of a cut given

the observation and model parameters into the energy of the cut. From this energy func-
tion, the weights assigned to the n-links e can be defined in a straighforward manner as
we = − log (p (e|Q,Θ)). As such, an effective means for the integration of a statistical
shape model into the graph cut framework is achieved. However, a bias is introduced fa-
voring shorter object contours, as can be seen from equation (10). This is also reflected
in the work of Hufnagel et al. [12], as can be seen from the curvature term in equation 7.

3.3 Shape Model Prior Term

The term p (Q|Θ) favors objects that are more probable according to the statistical
shape model. Again assuming a constant prior for transformations leads to the following
equation

log (p (Q|Θ)) �
n∑

p=1

(
log (λp) +

w2
p

2λ2
p

)
, (13)

with Q = {T,W} and W = {wp}np=1, being the observation parameters. This term
does not influence the edge weights of the graph.

3.4 Optimization

The statistical shape model term in the energy function enforces an iterative optimiza-
tion procedure. In each iteration, starting from an initial segmentation, alternatively the
observation parameters Q and the segmentation φ are optimized while keeping, respec-
tively, φ and Q fixed. The observation parameters are optimized in a similar manner
as explained in section 2. Optimization of the segmentation is performed by the max-
flow/min-cut algorithm [3]. Although the graph cut algorithm provides global minima,
since an iterative optimization is pursued, depending upon the initialization, only local
minima can be proven to be obtained.

The statistical shape model in this framework causes the next segmentation bound-
ary after a complete iteration to be located close to the current segmentation boundary.
Therefore, computing the edge weights throughout the entire graph and applying the
max-flow/min-cut algorithm to the full graph is not needed. In order to enforce a sig-
nificant speedup of the algorithm, a narrow-band approach is pursued.

3.5 Initialization

As stated above, the outcome of the optimization is highly dependent upon the initial-
ization. Therefore the initialization procedure is an important aspect of the algorithm.
Different approaches can be used in order to provide a fast, yet accurate initial seg-
mentation. Here we used the interactive graph cut segmentation algorithm of Boykov
et al. [3]. Hereby, based on the edge-consistency prior explained in paragraph 3.1 and
manually indicated seed points an initial segmentation is obtained. These manually in-
dicated seed points are included in the graph cut framework as hard constraints, by
setting the weights of the corresponding t-links to +∞.
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4 Experiments and Results

The segmentation algorithm presented in this paper is applied to the segmentation of
teeth from Cone-Beam Computed Tomography (CBCT) images. A training data set of
22 patients is used of which the upper and lower left incisors, canines, premolars and
molars are manually segmented. Since a manual segmentation of all left teeth is avail-
able, statistical shape models of the right teeth can be obtained as well, by a simple
mirroring operation. Training the algorithm on all except one of the training samples
and testing on the remaining data sample produces the results shown in figure 1. The
leave-one-out validation results for all left teeth are provided in table 1. Here the Dice
coefficient is used to measure the overlap between the ground truth (manual) segmen-
tation and the segmentation provided by the algorithm. The results for the lower teeth
are slightly worse compared to the upper teeth. The main reason for this is the lower
contrast between the bone and teeth in the lower jaw compared to the upper jaw. Com-
parison to the results reported by Gao et al. [1] reveals a seemingly inferior perfor-
mance of the algorithm presented in this paper. However, comparison of the results is
not straightforward. At first, the algorithm presented in this paper is validated on a dif-
ferent data set. Second, the data set used by Gao et al. [1] does not contain orthodontic
braces. Third, no range of results is reported by Gao et al. Fourth, a more advanced
image likelihood term will most likely further improve the results, but was not the main
scope of this paper.

Fig. 1. Segmentation of teeth in a
CBCT image. A single slice is shown
with a different color for each tooth.
The metallic streak artefacts caused by
the othodontic braces are visible.

Table 1. Validation results for the algorithm pre-
sented in this paper obtained from a leave-one-
out approach applied to the training data. For
each tooth the Dice coefficient is given as a
measure of overlap between the ground truth
(manual) segmentation and the segmentation
provided by the algorithm.

Tooth Root number Dice coefficient
incisor 1 (lower) 1 0.8535 ± 0.0302
incisor 2 (lower) 1 0.8047 ± 0.1057
canine (lower) 1 0.8625 ± 0.1004
premolar (lower) 1 0.8369 ± 0.2164
molar (lower) 2 0.8522 ± 0.0766
incisor 1 (upper) 1 0.8820 ± 0.0332
incisor 2 (upper) 1 0.8734 ± 0.0641
canine (upper) 1 0.8882 ± 0.0431
premolar (upper) 1 or 2 0.8780 ± 0.0331
molar (upper) 2 or 3 0.8517 ± 0.0588

5 Discussion

In this paper a novel graph cut based segmentation algorithm is presented for the seg-
mentation of teeth from CBCT images. Using a probabilistic shape representation a
statistical shape model is constructed that integrates into the graph cut framework. The
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algorithm optimizes an energy function, formulated according to a maximum a posteri-
ori criterion. This energy function consists of three components: an image likelihood, a
shape model term, and a segmentation likelihood term efficiently integrating the shape
model into the graph cut framework. The energy function is optimized in an iterative
manner. In future work we would like to extend this framework. At first, the linear shape
model is not perfectly suited to segment objects that arise from a complex underlying
distribution. We therefore would like to extend the probabilistic object representation
framework to nonlinear shape models. Next, the image likelihood term is very general
and can easily be replaced by a variant more tailored to a specific application. Finally,
since the segmentation likelihood term introduces a shrinking bias, favoring objects
with shorter contours, we would like to circumvent this. However, care must be taken
in order to ensure that the derived metric is graph-representable.
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