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Abstract. GOST, the Russian encryption standard, is a block cipher of
64-bit block and 256-bit key size and consists of 32 rounds. In this work,
we show that the probability that the GOST permutations produced
through random keys have at least one fixed point and exactly two fixed
points of special type are twice and five times more than those of random
permutations respectively. We utilize this property of GOST to mount a
new reflection attack on full GOST.

The reflection property on GOST was defined and exploited to mount
an attack on the full cipher by Kara [7] which was successful only for one
out of 232 keys. This property has been further studied by Courtois [1],
Dinur et al. [5] and Isobe [6]. Isobe mounted an attack that works for
any key with a time complexity of 2225 [6]. Isobe’s attack was improved
by Dinur et al. reducing the time complexity to 2192 using the whole
codebook [5]. They introduce a new version of the meet-in-the-middle
technique which they call "2-dimensional meet in the middle (2DMITM)"
attack. Their attack is based on applying 2DMITM attack on 8-round
GOST 264 times. In this work, we mount an attack with time complexity
of 2129 using 232 chosen plaintexts instead of the whole codebook utilizing
the 2DMITM attack. The main advantages of our attack is that we mount
the 2DMITM attack on 8-round GOST only twice. On the other hand,
our attack works only for the weak key set of 2192 keys, which indicates
that the security level of full GOST is equivalent to 129 bits for these
keys. In addition, we have computed the success rates of Kara attack in
[7] and our attack. We have verified our calculations experimentally.

Keywords: block cipher, self similarity, reflection attack, GOST, fixed
point, Feistel network.

1 Introduction

GOST, the Russian encryption standard, is a Feistel network of 64-bit block and
256-bit key size and the number of rounds is 32 [8]. It has a relatively simple key
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schedule. The key is divided into 8 parts and each part is used as a subkey, first 3
times in a direct order and then in a reversed order. This leads to a self-similarity
property of the cipher which we exploit to mount a reflection attack.

Several attacks have been published recently on full GOST. The first reflection
attack on full GOST exploits extending the special fixed points of the first 8
rounds that occur only for a subset of the key space, to the whole cipher [7]. The
extension of these fixed points comes from the extremely simple key schedule of
GOST. This attack works for 2224 keys with a complexity of 2192 encryptions
by using 232 chosen plaintexts. The biased distribution of fixed points through
the rounds was examined in the attack which was simply called "the reflection
property". The reflection property has been further exploited to mount several
other attacks on GOST [1,5,6].

Recently, Isobe mounts an attack on the full cipher which works for the whole
key space using the reflection property [6]. The complexity and data requirements
of the attack are 2225 and 232 respectively. Then Dinur et al. proposed an attack
on the full cipher with a complexity of 2192 and a need of 264 data [5]. In
their attack, two input/output pairs for 8-round GOST are guessed using the
whole codebook since each guess is correct with a probability of 2−64.These two
input/output pairs allow them to eliminate the possible keys to 2128 candidates
with a cost of 2128 GOST encryptions with 236 memory by mounting a meet
in the middle type attack which they call "2-dimensional meet in the middle
(2DMITM)" attack. Then, they use other pairs to check their guesses. Thus,
the total time complexity of their attack is 2192 since the 2DMITM attack is
performed 264 times. The 2DMITM technique has been further improved and
generalized by Zhu and Gong [9].

Courtois has proposed many different attacks on full GOST including some
attacks with Misztal [4,3,2,1]. Most of his attacks are collected in [1] where he
mounted several reflection and other self-similarity attacks on full GOST, some
of them works on weak keys. Courtois and Misztal mounted differential attack
on full GOST with a complexity of 2226 GOST encryptions using the whole
codebook [2]. Then, Courtois himself has further improved the time complexity
of a differential attack on GOST to 2178 [3].

In this work, we show that the probabilities of having at least one fixed point
and exactly two fixed points of a special type (whose left and right parts are
equal) for GOST are twice and five times more than the corresponding proba-
bilities of random permutations respectively. Moreover, we mount an attack on
full GOST with a complexity of 2129 encryptions using two input/output pairs
for 8 rounds obtained by exploiting this non-randomness property.

In our improved attack, we make use of only 232 chosen plaintext/ciphertext
pairs instead of the whole codebook to construct the two pairs. If there are
two fixed points having equal halves then we mount the key recovery attack.
One important advantage of our attack is that two input/output pairs of 8-
round GOST are known to cryptanalyst with very high probability. Therefore, we
perform the 2DMITM attack typically not more than twice. However, the attack
works for only 2192 keys. As a result, we have shown that GOST provides only 129
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bit security for the weak keys. In addition, the 2DMITM attack is not performed
if there isn’t a pair of suitable fixed points. The complexity of the attack is only
to examine the 232 texts in this case. Therefore our attack gives nice results in
the following realistic scenario proposed in [1]: Assume there are many distinct
keys used and the attacker tries to recover some of them. Then the complexity
of our attack to recover one key is 2.5 · 2129 + (264 − 2.5)232 ≈ 2130.3. Because,
among 264 keys, there is roughly one weak key and the attack is performed
about 2.5 times. On the other hand, if a random number generator providing
keys to GOST, produces weak keys deliberately then the security margin of
GOST declines dramatically.

We have calculated the success rate of the Kara attack on full GOST which is
left out in [7] and the success rate of our attack. We prove that the probability of
having two fixed points with equal halves is around 5·2−65 and we can recover the
key with a probability of 40% if such two fixed points occur. We have validated
these calculations by computer simulations.

The paper is organized as follows. We give a short description of GOST and
the first reflection attack on it given in [7] in Section 2. The improved attack is
stated in Section 3. Then, the success rates of both the first reflection attack and
the improved attack are computed in Section 4 and the experimental results are
depicted in Section 5. We conclude the paper in the last section with an open
question.

2 A Brief Description of GOST and the First Reflection
Attack

GOST, the Russian encryption standard [8], is a 32-round Feistel network with
64-bit block and 256-bit key length. It has a simple key schedule: 256 bit key is
divided into eight 32 bit words k0, ..., k7 and the sequence of round keys is given
as k0, ..., k7, k0, ..., k7, k0, ..., k7, k7, k6, ..., k1, k0. We do not consider details of the
round function. We only assume that it is bijective. Denote the first eight rounds
of GOST as FK [1, 8]. Note that FK [1, 8] ends with a swap operation. Then, the
GOST encryption function is given as EK(x) = FK [8, 1] ◦ S ◦ F 3

K [1, 8](x) where
S is the swap operation of the Feistel network and FK [8, 1] is the inverse of
FK [1, 8].

The first attempt to propose a key recovery attack on full GOST was the reflec-
tion attack [7]. We briefly describe this attack in this section. Assume there exists
(x, x) for x ∈ GF (2)32 such that (x, x) is a fixed point FK [1, 8]. Note that (x, x) is
also a fixed point of the swap operation S. Then, (x, x) will be a fixed point of the
encryption function EK . This observation leads to the following attack. Encrypt
all 232 plaintexts whose left and right halves are equal and collect the fixed points
in a set, say UE . If UE is empty, then the attack is not applicable. Otherwise,
for any (x, x) in UE solve the equation FK [1, 8](x, x) = (x, x) for K. Guess-
ing k0, k1, ..., k5, one can construct a two-round Feistel network with unknown
keys k6 and k7 and an input/output pair given as (FK [1, 6](x, x), (x, x)). Then,
solving the system for k6 and k7 is straightforward since the round functions
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Fk6 and Fk7 are bijective and their outputs are known. By taking the inverses
of Fk6 and Fk7 , obtain the inputs and then k6 and k7. Consequently, obtain
2192 candidates for the key by solving FK [1, 8](x, x) = (x, x). Then one can
recover the correct key by searching over all the candidates by roughly 2192

encryptions. However, it is most likely that UE is empty if there exists no fixed
point of FK [1, 8] with the equal halves. On the other hand, the expected number
of fixed points is one and the probability that any arbitrary value is a fixed
point of S is 2−32. Hence, the number of keys satisfying that ∃ x such that
FK [1, 8](x, x) = (x, x) is roughly 2224.

3 Improved Attack on Full GOST

We improve the Kara attack on full GOST given in [7] by exploiting the ad-
ditional fixed points and using the attack idea given by Dinur et al. in [5].
Dinur et al. showed that for a given two input/output pairs for 8 rounds, the
key space is diminished to 2128 with 2128 GOST encryptions using 236 memory
and the right key can be recovered by searching these 2128 by using some other
plaintext/ciphertext pairs for full GOST. The total complexity is 2192 since the
probability of finding two correct input/output pairs for the 8-round GOST is
2−64. One input/output pair produces just one guess for two pairs of 8-round
GOST and hence they use the whole codebook to produce a right pair overall.
We give our observation finding the two pairs in Theorem 1 with much less data
complexity.

Theorem 1. Assume that ∃(x, x) and (y, y) such that FK [1, 8](x, x) = (y, y)
and FK [1, 8](y, y) = (x, x) where x and y are 32-bit values. Then EK(x, x) =
(x, x) and EK(y, y) = (y, y).

Proof. Remember that EK(x, x) = FK [8, 1]◦S ◦F 3
K[1, 8](x, x). Then EK(x, x) =

FK [8, 1] ◦ S ◦ F 2
K [1, 8](y, y) = FK [8, 1] ◦ S ◦ FK [1, 8](x, x) = FK [8, 1] ◦ S(y, y) =

FK [8, 1](y, y) = (x, x). The proof for the equality EK(y, y) = (y, y) is similar.

Let us note that a more generalized property than the property given in Theorem
1 has been studied in [1] to obtain four input/output pairs for 8-round GOST.
The idea is based on forming two points of order two where one is the output
of the other for 8-round GOST. The probability that a given pair satisfies this
property is 2−127. Hence, it is expected to have one such pair among all the pairs
produced from the whole codebook. The nice property that these points provide
is that the required pair gives two more input/output pairs for 8-round GOST.
These pairs are formed by the completion of two points with their corresponding
ciphertexts. The main difference which gives us an advantage in reducing the
complexity of our attack is that four input/output pairs are not known to the
attacker in [1]. She has to try each pair as a candidate. However, in the case given
in Theorem 1, the attacker most probably knows which plaintext/ciphertext
pairs give two input/output pairs for 8-round GOST. We give these pairs a
special name since we use it through the paper.
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Definition 1. Let us call that a given pair ((x, x), (y, y)) satisfies Event-1 if
FK [1, 8](x, x) = (y, y) and FK [1, 8](y, y) = (x, x); and similarly ((x, x), (y, y))
satisfies Event-2 if the points (x, x) and (y, y) are fixed points of FK [1, 8].

Let us recall that similar to Theorem 1, we can state that a fixed point (x, x)
of FK is also a fixed point for EK . This is because (x, x) is also a fixed point of
both F−1

K and the swap operation.
The probability of Event-1 for a pair ((x, x), (y, y)) where x �= y is 1

264(264−1) .
For a fixed key, the probability that there exists one pair satisfying Event-1 is
roughly 2−65 since there are approximately 263 such pairs. Thus, only about
2256−65 = 2191 keys will produce pairs satisfying Event-1 that means we can
find two pairs for 8 rounds for 2191 keys. We expect roughly 2191 more keys that
satisfy Event-2 (none of them do not satisfy Event-1 most probably). So, there
are approximately 2192 weak keys in total.

The attack works as follows. Get the encryptions of 232 possible (x, x)’s check-
ing fix points. If there are two fixed points then these are most probably caused
due to either Event-1 or Event-2. Each event provides two input/output pairs
for 8-round GOST. The attacker checks if full GOST has two fixed points of
form (x, x) and (y, y), and if so, he applies the 2DMITM attack by Dinur et
al. for the resulting input/output pairs for 8 rounds which are ((x, x), (y, y))
and ((y, y), (x, x)) with time 2128 and 236 of memory. This produces 2128 candi-
dates for the key which are then filtered by checking with 2-3 additional plain-
text/ciphertext pairs for full GOST. If this is not successful then one needs
to run the 2DMITM attack once more this time with the input/output pairs
((x, x), (x, x)) and ((y, y), (y, y)) for 8-round GOST. Thus the number of keys
which subject to this attack and the time complexity of the attack will be 2192

and 2129 respectively.
The probability that full GOST has two fixed points of the form (x, x) is

approximately 5 · 2−65 whereas the probability that a random permutation of
64-bit block length has two fixed points of the form (x, x) is approximately 2−65.
The detailed calculations are given in Section 4.

4 Success Rates of the Attacks

In this section we give the success rates of both the Kara attack in [7] and our
improved attack. By the success rate we mean the ratio of the number of the
successful key recoveries among all the key recovery attempts. Hence, it is the
probability that FK has a fixed point of the form (x, x) when full GOST has a
fixed point of the form (x, x) for the Kara attack and the probability of having a
pair ((x, x), (y, y)), where x �= y, satisfying Event-1 or Event-2 when (x, x) and
(y, y) are fixed points of full GOST for the improved attack.

4.1 Success Rate of the First Reflection Attack on Full GOST

The success rate of the attack on full GOST is left out in [7]. Indeed, if the
function FK [1, 8] has a fixed point of the form (x, x) where the former half of
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the input is equal to its latter half, it is definitely a fixed point of the encryption
function EK . Nevertheless, the attack makes use of the opposite direction of
the statement. That is, the attack is mounted if there is a fixed point of EK ,
assuming that it is (probably) a fixed point for also FK [1, 8]. In this section, we
examine this direction and find the probability that any fixed point of EK is
also a fixed point of FK [1, 8]. Let us remark that the attack is not successful for
those fixed points of EK which are not fixed points of FK [1, 8].

Let the set of the fixed points of the form (x, x) of FK [1, 8] be UF . Recall that
UE is the set of the fixed points of EK of the form (x, x). Then, the success rate,
Pr(S), of the attack is given as the conditional probability that UF is nonempty
given that UE is nonempty. That is, Pr(S) = Pr(UF �= ∅|UE �= ∅). The following
statement gives the success rate explicitly.

Theorem 2. Assume the encryption function EK behaves randomly when the
function FK has no fixed point of the form (x, x). Then, the probability that UF

is nonempty given that UE is nonempty is

Pr(S) = Pr(UF �= ∅|UE �= ∅) = 1

1 + (1− 2−64)232
≈ 1

2− 2−32
·

Proof. We have Pr(S) = Pr(UF �= ∅|UE �= ∅) which leads to Pr(S) = Pr(UF �=∅)
Pr(UE �=∅)

since UF is a subset of UE. On the other hand Pr(UF �= ∅) = 1 − (1 − 2−64)2
32

and Pr(UE �= ∅) is given as Pr(UF �= ∅) + Pr(UF = ∅) Pr(UE �= ∅)|UF = ∅).
Assuming that EK is a random function when FK has no fixed point of the form
(x, x), we have Pr(UE �= ∅)|UF = ∅) = 1 − (1 − 2−64)2

32

. Hence, we calculate
Pr(UE �= ∅) as 1− (1 − 2−64)2

32

+ (1− 2−64)2
32

(1 − (1− 2−64)2
32

) which yields
to the probability

Pr(S) = Pr(UF �= ∅|UE �= ∅) = 1− (1 − 2−64)2
32

(1− (1− 2−64)232)(1 + (1− 2−64)232)
·

For the Kara attack, the key recovery attempt is successful if UF is nonempty
and hence the probability given in Theorem 2 gives the success rate of the key
recovery part of the attack. Let us remark that the success rate is very close to
one half since the value (1− 2−64)2

32

is roughly 1− 2−32. One interesting result
is that assuming that the encryption permutation EK behaves randomly when
the function FK has no fixed point of the form (x, x), then EK does not behave
as a random permutation because the probability that UE is not empty is twice
as large as the probability for a random permutation. Note that the probability
that a random permutation has at least one fixed point of the form (x, x) is
1− (1− 2−64)2

32

. The following corollary states this phenomena formally.

Corollary 1.

Pr(UE �= ∅) = (1− (1− 2−64)2
32

)(1 + (1− 2−64)2
32

) ≈ 2(1− (1− 2−64)2
32

).

which is roughly 2−31.
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4.2 Success Rate of Improved Attack

Similarly, we compute the success rate of the improved attack given in Section
3. The key recovery part of the attack is performed if there exists (at least) two
symmetric fixed points for the encryption function. The attack is mounted by
assuming that the fixed points are due to the existence of (x, x) and (y, y) such
that FK [1, 8](x, x) = (y, y) and FK [1, 8](y, y) = (x, x) (Event-1) or the existence
of two fixed points of FK [1, 8] (Event-2). However, there is a probability that two
fixed points may occur by chance also. That is, EK may have two fixed points
of the symmetric form whereas neither Event-1 nor Event-2 happened. In this
case the key recovery attack will not be successful.

Recall that we simple call the success rate of the attack as the ratio of the
attempts where the keys are recovered over all the attempts. Hence, it is the
ratio of the probability of having a pair ((x, x), (y, y)) which satisfies Event-1 or
Event-2 over the probability of having two fixed points of the form (x, x) for the
encryption function EK . Because we attempt to recover the key when there are
two symmetric fixed points for full GOST and we get exactly two input/output
pairs for 8-round GOST when these fixed points satisfy Event-1 or Event-2. We
derive this ratio in the following statements. We also show that the probability of
having two symmetric fixed points for EK is five times more then the probability
of having two symmetric fixed points for a random permutation of the same size.

Lemma 1. The probability that a given pair ((x, x), (y, y)), where x �= y, satis-
fies Event-1 or Event-2 is

1

263(264 − 1)
·

Proof. Let us recall that Event-1 is the event that FK [1, 8](x, x) = (y, y) and
FK [1, 8](y, y) = (x, x). The probability that a given pair (x, x), (y, y) satisfies
Event-1 where x �= y is

1

264(264 − 1)

since the probability that FK [1, 8](x, x) = (y, y) is 2−64 and the probability
that FK [1, 8](y, y) = (x, x) provided that FK [1, 8](x, x) = (y, y) is (264 − 1)−1.
Similarly, the probability that the pair (x, x), (y, y) satisfies Event-2 is

1

264(264 − 1)
.

On the other hand the pair ((x, x), (y, y)) cannot satisfy both Event-1 and Event-
2 simultaneously since x �= y. Hence, the probability that ((x, x), (y, y)) satisfies
Event-1 or Event-2 is

2 · 1

264(264 − 1)
=

1

263(264 − 1)
·

The following lemma gives the probability that any given two symmetric points
are the fixed points for full GOST. This probability is about five times more
than the probability for the random case.
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Lemma 2. For a given pair ((x, x), (y, y)) where x �= y, the probability that
EK(x, x) = (x, x) and EK(y, y) = (y, y) is given as

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2
·

Proof. The probability that EK(x, x) = (x, x) and EK(y, y) = (y, y) can be eval-
uated when ((x, x), (y, y)) satisfies Event-1 or Event-2 and when ((x, x), (y, y))
satisfies neither Event-1 nor Event-2. Hence the probability is given as

1 · 1

263(264 − 1)
+

2(1− 2−64) + (1 − 2−64)2

264(264 − 1)
· (1− 1

263(264 − 1)
)

since both (x, x) and (y, y) are the fixed points of EK when ((x, x), (y, y)) satisfies
Event-1 or Event-2 and the probability that both (x, x) and (y, y) are the fixed
points of EK is

2(1− 2−64) + (1− 2−64)2

264(264 − 1)

otherwise. Let us recall that if neither Event-1 nor Event-2 happened then we
have either (x, x) is a fixed point of FK and (y, y) is not a fixed point of FK or
vice versa ((x, x) is not a fixed point of FK and (y, y) is a fixed point of FK) or
none of them are fixed points of FK . The probability that they both are fixed
points of EK in all three cases is

1− 2−64

264(264 − 1)
+

1− 2−64

264(264 − 1)
+

(1− 2−64)2

264(264 − 1)
=

2(1− 2−64) + (1− 2−64)2

264(264 − 1)
·

The probability of satisfying Event-1 or Event-2 is taken from Lemma 1. Then,
if we add all the probabilities we obtain the probability that both the points are
the fixed points of EK as

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2
·

The following theorem is the main statement of this section. It shows the nonran-
dom selection process of GOST permutations in terms of having two symmetric
fixed points and gives the success rate of the improved attack.

Theorem 3. For a randomly chosen key K, the encryption function EK of
GOST has the following properties:

– The probability that EK has two fixed points of the form (x, x) is given as

231(232 − 1) ·
(
2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2

)
·

(
1− 2 + 2(1− 2−64) + (1 − 2−64)2

264(264 − 1)
+

2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2

)231(232−1)−1

which is approximately 5 · 2−65.
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– Assume there are two fixed points of EK of the form (x, x) for some K. Then
the probability that these fixed points satisfy either Event-1 or Event-2 is

(
1 +

264 − 1

264
+

(1 − 2−64)2

2
− 1

2127
− (1− 2−64)2

2128

)−1

≈ 0.40.

Proof. We prove the statements as we have itemized them.

– The probability that a given pair ((x, x), (y, y)) forms two fixed points of EK

where x �= y is given by Lemma 2 as

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1 − 2−64)2

2127(264 − 1)2
·

On the other hand, for a fixed key, there are
((2322 )

1

)
= 231(232 − 1) pairs

((x, x), (y, y)) that can be produced from the symmetric points. We expect
just one pair to satisfy the fixed point condition. Hence the probability is
derived.

For the approximation, we have 231(232 − 1) ≈ 263,

2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1− 2−64)2

2127(264 − 1)2
≈ 5

2128

and

(1 − 2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
+

2(1− 2−64) + (1 − 2−64)2

2127(264 − 1)2
)2

31(232−1)−1

≈ (1 − 5

2128
)2

63 ≈ exp(−5/265) ≈ 1− 5

265
≈ 1

and hence if we combine all these approximations we have the probability
approximately 5 · 2−65.

– The probability that a given pair ((x, x), (y, y)) satisfies Event-1 or Event-2
given that the pair ((x, x), (y, y)) forms two fixed points for EK is given as
the ratio of the probability that a given pair ((x, x), (y, y)) satisfies Event-1
or Event-2 over the probability that the pair forms two fixed points of EK

since if the pair ((x, x), (y, y)) satisfies Event-1 or Event-2 then both (x, x)
and (y, y) are the fixed points of EK . On the other hand, the ratio is given
as the inverse of the ratio

263(264 − 1)

(
2 + 2(1− 2−64) + (1− 2−64)2

264(264 − 1)
− 2(1− 2−64) + (1 − 2−64)2

2127(264 − 1)2

)

which is equal to

1 +
264 − 1

264
+

(1− 2−64)2

2
− 1

2127
− (1 − 2−64)2

2128
·

Let us remark that this ratio is close to 2.5 since 264−1
264 ≈ 1, (1−2−64)2

2 ≈ 0.5

and 1
2127 + (1−2−64)2

2128 ≈ 0. Hence the probability is approximately 0.40.
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Let us remark that the probability that two symmetric fixed points of EK

satisfy Event-1 or Event-2 is equivalent to success rate of the key recovery part
of the improved attack. Hence the success rate of the improved attack is approx-
imately 40%. Also remark that the probability that EK has two fixed points
of the form (x, x) is roughly 5 · 2−65 which is 5 times more then that of ran-
dom permutations. Note that the probability that a random permutation has
two fixed points among 232 points of the form (x, x) is approximately 2−65 (see
Appendix). Hence we derive a distinguisher for the selection process of random
permutations through the GOST encryption by random keys.

5 Experimental Results

In this section we show the experimental results for both the Kara attack and
the improved attack.

We have computed the success rates and the probabilities of having symmetric
fixed points for minimized versions of GOST with block sizes of 16, 20, 24 and
28-bit lengths for the Kara attack and 12, 16, and 20-bit lengths for the improved
attack. The number of rounds is fixed to 32 for any block length and we use n×8-
bit key for the n-bit block length. The key is divided into 8 equal parts k0, ..., k7
and incorporated into the round function as for the original GOST function. The
experimental results verify our statements in Theorem 2 and Theorem 3.

Table 1. The expected # of fixed points and weak keys are 3200 and 1600 respectively

Block length # of keys # of keys with symmetric # of weak keys Success rate
fixed points of GOST

16 bits 100× 212 3153 1556 0.493
20 bits 100× 214 3255 1618 0.497
24 bits 100× 216 3193 1598 0.501
28 bits 100× 218 3229 1588 0.492

The expected number of fixed points of the form (x, x) for the encryption is
fixed to 3200 and the expected number of weak keys is fixed to 1600 for the first
experiment. The experimental results verify our statements for the Kara attack
as depicted in Table 1. We have seen that the probability of having at least one
symmetric fixed point for full GOST is roughly 21−n/2 (the third column divided
by the second column) and the probability that it is caused by having fixed point
in 8-round GOST is around 50% where n is the block length.

We perform another set of experiments for the improved attack. The results
are depicted in Table 2 which go along with the theoretical statements. We scan
221, 225 and 228 keys randomly for 12, 16 and 20-bit block lengths respectively.
We count the number of keys which produce two fixed points of the form (x, x)
for the encryption function EK and keys which produce pairs ((x, x), (y, y))
satisfying Event-1 or Event-2 which give weak keys. We have seen that the
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Table 2. The expected number of keys which have two fixed points

Block length # of keys # of keys with two symmetric # of weak keys Success rate
fixed points of GOST

12-bit 221 1228 526 0.428 %
16-bit 225 1312 533 0.406 %
20-bit 228 675 267 0.395 %

probability that GOST has two symmetric fixed points is around 5 · 21−n (the
third column divided by the second column) and the success rate is roughly 40%.

6 Conclusion

We show that the probabilities that a randomly chosen GOST permutation has
a fixed point and two fixed points of special type are twice and five times more
than those of a random permutation respectively. This allowed us to propose a
new attack in which the reflection property introduced by Kara occurs twice.
Our attack has a time complexity of 2129 encryptions and requires only 232

chosen plaintexts in order to break GOST for a subset of the key space of size
approximately 2192. Let us remark that 232 data is used to identify if the key
is weak. One can note that given 232 of data we can see if the key is weak very
efficiently.

The open question is how to efficiently enumerate the set of weak keys. If
it is possible to produce weak keys by a polynomial time algorithm then an
intentionally weak protocol having a random number generator which provides
weak keys to GOST can decrease the security margin of GOST to 129 bits even
though the key length is 256 bits. In addition, we have calculated the success
probabilities of the attacks given in [7] and our attack. We have validated these
calculations by computer simulations.

Acknowledgments. We would like to thank the anonymous reviewers for their
invaluable comments. In particular, we greatly appreciate the interest shown by
Nicolas Courtois in our work. The quality of the presentation of the work has
been improved by his detailed comments.

This work is supported by the project COGSA.

References

1. Courtois, N.T.: Algebraic Complexity Reduction and Cryptanalysis of GOST. IACR
Cryptology ePrint Archive, 2011:626 (2011)

2. Courtois, N.T., Misztal, M.: Differential Cryptanalysis of GOST. IACR Cryptology
ePrint Archive, 2011:312 (2011)

3. Courtois, N.T.: A Differential Attack on Full GOST. IACR Cryptology ePrint
Archive, 2012:138 (2012)



Fixed Points of Special Type and Cryptanalysis of Full GOST 97

4. Courtois, N.T.: Security Evaluation of GOST 28147-89 in View of International
Standardisation. Cryptologia 36(1), 2–13 (2012)

5. Dinur, I., Dunkelman, O., Shamir, A.: Improved Attacks on Full GOST. In: Can-
teaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 9–28. Springer, Heidelberg (2012)

6. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011)

7. Kara, O.: Reflection Cryptanalysis of Some Ciphers. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer,
Heidelberg (2008)

8. Zabotin, I.A., Glazkov, G.P., Isaeva, V.B.: Cryptographic Protection for Informa-
tion Processing Systems. Cryptographic Transformation Algorithm. Government
Standard of the USSR, GOST 28147-89 (1989)

9. Zhu, B., Gong, G.: Multidimensional Meet-in-the-Middle Attack and Its Applica-
tions to GOST, KTANTAN and Hummingbird-2. Cryptology ePrint Archive, Report
2011/619 (2011), http://eprint.iacr.org/

A The Probability of Having Two Symmetric Fixed
Points of Random Permutations

In this section we show the probability that a random permutation of 64-bit
block length has two fixed points.

Theorem 4. The probability that a random permutation of 64-bit block length
has two fixed points of the form (x, x) is given as

231(232 − 1) ·
(

1

264(264 − 1)

)(
1− 1

264(264 − 1)

)231(232−1)−1

which is approximately 2−65.

Proof. For a random permutation of 64-bit block length, the probability that
given two distinct symmetric points are fixed points is given as

1

264(264 − 1)

and hence among 231(232 − 1) pairs, the probability that just one pair forms
fixed points is

231(232 − 1) ·
(

1

264(264 − 1)

)(
1− 1

264(264 − 1)

)231(232−1)−1

.

For the approximation we can deduce similarly that 1
264(264−1) ≈ 2−128 and

(1− 1

264(264 − 1)
)2

31(232−1)−1 ≈ exp(−2−65) ≈ 1− 1

265
≈ 1

and hence the probability will be approximately 2−65.

http://eprint.iacr.org/
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