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Abstract. We report on differential and linear analysis of the full 8.5-
round WIDEA-n ciphers for n ∈ {4, 8}, under weak-key assumptions.
The novelty in our attacks include the use of differential and linear rela-
tion patterns that allow to bypass the diffusion provided by MDS codes
altogether. Therefore, we can attack only a single IDEA instance out of
n copies, effectively using a narrow trail for the propagation of differ-
ences and masks across WIDEA-n. In fact, the higher the value of n, the
better the attacks become. Our analyses apply both to particular MDS
matrices, such as the one used in AES, as well as general MDS matrices.
Our attacks exploit fixed points of MDS matrices. We also observed a
curious interaction between certain differential/linear patterns and the
coefficients of MDS matrices for non-trivial fixed points. This interac-
tion may serve as an instructive design criterion for block cipher designs
such as WIDEA-n. The authors of WIDEA-n suggested a compression
function construction using WIDEA-8 in Davies-Meyer mode. In this
setting, the weaknesses identified in this paper can lead to free-start col-
lisions and even actual collisions depending on the output transformation
of the hash function.

Keywords: wide-block cipher, cryptanalysis, WIDEA-n, free-start
collisions.

1 Introduction

In [6], Junod and Macchetti presented a Wide-block version of IDEA cipher [7]
called WIDEA-n, combining n instances of the 8.5-round IDEA cipher joined by
an n×n matrix derived from a Maximum Distance Separable (MDS) code. Their
approach not only led to improved performance, due to the bit-slicing technique
allowing parallel instances of IDEA to be evaluated altogether, but also showed
wide-block cipher variants operating on bit strings whose size is a multiple of 64
bits (the original block size of IDEA).

The contributions of this paper include

– the first differential and linear distinguishers of the full 8.5-round WIDEA-n,
for n ∈ {4, 8}, under weak-key assumptions. Actually, our attacks would hold
even if n was allowed to be much larger than 8. Weak-key assumptions
mean that user keys in our attacks lead, through the key schedule,
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to round subkeys which are either 0 or 1 in specific positions along
differential or linear trails [2]. In this way, both the user key and some
subkeys are weak. For this reason, we refer equally to weak-key and weak-
subkeys assumptions.

– differential and linear distinguishers that apply both in a secret-key and
in a hash/compression function settings, assuming WIDEA-n becomes the
compression function in Davies-Meyer (DM) mode [8].

– we show how to bypass the MDS matrices using trivial and non-trivial fixed
points. This procedure is possible due to carefully chosen differences and
linear masks that lead to trivial differences and masks at the input to the
MA/MAD-boxes. Therefore, avoiding these diffusion components in every
round of WIDEA-n, for any n, means that we restrict the propagation of
differences and masks to one single IDEA instance, out of n. The larger n is,
the better the attacks become. Previous analyses using fixed points include
[1,3,11], but the latter worked on fixed points for an entire block. As far as
we aware of, this paper presents the first use of fixed points (in differential
and linear settings) that bypass MDS codes in block cipher designs such as
WIDEA-n.

– we show how and why some matrices from MDS codes can rather help the
cryptanalysis of WIDEA-n, depending on where they are placed in a block
cipher design such as WIDEA-n, and even depending on the exclusive-or
sum of its coefficients. See Sect. 4.2.

This paper is organized as follows: Sect. 2 briefly details WIDEA-n; Sect. 3 de-
scribes the key schedule algorithms of WIDEA-n; Sect. 4 describes differential
attacks on WIDEA-n; Sect. 5 details linear attacks on WIDEA-n. Sect. 6 de-
scribes attacks on WIDEA-n used in compression function constructions. Sect. 7
discusses weak keys. We conclude in Sect. 8.

2 The WIDEA-n Block Ciphers

WIDEA-n, n ∈ {4, 8}, stands for two Wide-block variants of the IDEA cipher
[7] operating on 64n-bit blocks. The rationale is to join n instances of the IDEA
cipher using an n×n matrix derived from an MDS code, placed inside the MA-
box (Multiplication-Addition) in each round of each IDEA instance (see Fig. 1).
Thus, the original MA-box in IDEA becomes a so called MAD-box (Multiply-
Add-Diffuse) [6] in WIDEA-n. The key size is 128n bits and WIDEA-n iterates
8.5 rounds. Fig. 1 depicts one round of WIDEA-4 cipher. For WIDEA-8, there
are eight copies of IDEA side-by-side, connected by an 8×8 MDS matrix (Fig. 2).
The MDS matrix in WIDEA-4 is the one used in the AES cipher [4]:

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ . (1)
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In WIDEA-4, the matrix (1) is multiplied on the right by a 4×1 vector (a, b, c, d)t

containing part of the internal state of four IDEA instances, where t denotes
vector transpose. This matrix product operation will be denoted MDS(a, b, c, d)t.

The MDS matrix in WIDEA-8 comes from the W cipher in the Whirlpool
hash function [5], and the semantics for matrix multiplication is the same as
explained for (1): ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 4 1 8 5 2 9
9 1 1 4 1 8 5 2
2 9 1 1 4 1 8 5
5 2 9 1 1 4 1 8
8 5 2 9 1 1 4 1
1 8 5 2 9 1 1 4
4 1 8 5 2 9 1 1
1 4 1 8 5 2 9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

In both (1) and (2), matrix coefficients and operations are performed over
GF(216) = GF(2)[x]/(p(x)), where p(x) = x16 + x5 + x3 + x2 + 1 is an irre-
ducible polynomial over GF(2).

We briefly describe an MA-box (Fig. 1): let the input to the i-th MA-box of the
i-th IDEA instance, for 1 ≤ i ≤ n, be denoted (pi, qi), its output be (ri, si) and
(Z5,i−1, Z6,i−1) be the round subkeys in it. We ignore the superscripts since they
are irrelevant in this setting. The three group operations in IDEA and WIDEA-n
are: ⊕ denote bitwise exclusive-or, � denote addition modulo 216 and � denote
multiplication in GF(216+1), with 0 ≡ 216. Then, si = (pi�Z5,i−1�qi)�Z6,i−1

and ri = pi � Z5,i−1 � si, where � has higher precedence than �.
Now, for the MAD-box (Fig. 2): the MDS matrix in WIDEA-n is placed inside

the original MA-box of IDEA after pi �Z5,i−1 � qi. This way, a single MAD-box
of WIDEA-n has output (r′, s′) such that

– s′ = MDS(pi�Z5,i−1�qi)�Z6,i−1, and r′ = pi�Z5,i−1�s′, where 1 ≤ i ≤ n
and MDS(pi �Z5,i−1 � qi) stands for the multiplication of an MDS matrix
(1) or (2) by an n × 1 vector containing the n values pi � Z5,i−1 � qi, for
1 ≤ i ≤ n.

– every single output tuple (r′, s′) depends on all (pi, qi, Z5,i−1), for 1 ≤ i ≤ n,
but not on Z6,i−1.

– the placement of the MDS matrix also implies that its dependence on (pi,
qi, Z5,i−1), for 1 ≤ i ≤ n, is spread to both (r′, s′) in all n IDEA instances
in every round.

– the MDS matrix is preceded by � and followed by �, while inside the matrix
computation there is a combination of xor and multiplication in GF(216).
Except for the repeated xor in the matrix product, no other operation is
repeated twice in a row in the MAD-box.

– since the half-round containing the MAD-box is an involution there is no
need to compute the inverse MDS matrix for decryption.

To allow a compact representation for analysis, and taking into account the 3-
dimensional structure of WIDEA-4, we denote the internal state of WIDEA-4
by the 4× 4 matrix:
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⎛
⎜⎜⎝

a12 a13 a14 a15
a8 a9 a10 a11
a4 a5 a6 a7
a0 a1 a2 a3

⎞
⎟⎟⎠ , (3)

where each ai, for 0 ≤ i ≤ 15, is a 16-bit word and the numbering follows from
Fig. 1, where (a4(j−1), a4(j−1)+1, a4(j−1)+2, a4(j−1)+3) represent the state of the
j-th IDEA instance for 1 ≤ j ≤ 4. The MAD-boxes of the four IDEA instances
are connected to each other via the 4 × 4 MDS matrix (1). Analogously, we
denote the internal state of WIDEA-8 by the 8× 4 matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a28 a29 a30 a31
a24 a25 a26 a27
a20 a21 a22 a23
a16 a17 a18 a19
a12 a13 a14 a15
a8 a9 a10 a11
a4 a5 a6 a7
a0 a1 a2 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where each ai, for 0 ≤ i ≤ 31, is a 16-bit word. Word numbering follows Fig. 2
where (a4(j−1), a4(j−1)+1, a4(j−1)+2, a4(j−1)+3) represents the state of the j-th
IDEA instance, 1 ≤ j ≤ 8. The MAD-boxes of the eight IDEA instances are
connected by a single 8× 8 MDS matrix (2) in every round.

3 The Key Schedule of WIDEA-n

Let Zi, for 0 ≤ i ≤ 51, denote the round subkeys used in 8.5-round WIDEA-n,
n ∈ {4, 8}. The key schedule algorithm of WIDEA-4 is as follows [6]: due to
the 4-way parallelism, each subkey has 64 bits. Thus, each subkey Zi can be
split into four slices Zi,0, . . . , Zi,3 (see Fig. 1). Let Ki, for 0 ≤ i ≤ 7, denote the
eight 64-bit words representing the user key. The round subkeys are computed
as follows:

– Zi = Ki, for 0 ≤ i ≤ 7.

– Zi = ((((Zi−1 ⊕ Zi−8)
16

� Zi−5)
16
≪ 5) ≪ 24) ⊕ Ci/8−1, for 8 ≤ i ≤ 51,

i ≡ 0 mod 8.

– Zi = ((((Zi−1 ⊕ Zi−8)
16

� Zi−5)
16
≪ 5) ≪ 24), for 8 ≤ i ≤ 51, i �≡ 0 mod 8.

where operations superscripted with ’16’ indicate that the operation is actually
carried out over 16-bit slices of Zi. Othewise, the operation is carried out across
64-bit words, such as the bitwise left-rotation ≪ 24. Following [6], C0, . . . , C5

are constants inserted every eight rounds. This design using nonlinear feedback
shift registers was inspired on the key schedule of MESH ciphers [9].

The key schedule algorithm of WIDEA-8 [6] follows an 8-way parallelism.
Each 128-bit subkey Zi can be split into eight slices Zi,0, . . . , Zi,7 (see Fig. 2).
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Let Ki, for 0 ≤ i ≤ 7, denote the eight 128-bit words representing the user
key. The round subkeys are computed exactly as for WIDEA-4, except that the
subkeys and constants Ci/8−1 are 128 bits long.

4 Differential Cryptanalysis of WIDEA-n

For a differential analysis, we start with Table 2 (in the appendix) that lists
exhaustively all one-round characteristics of IDEA [2] using wordwise difference
δ = 8000x. The subscript x indicates hexadecimal value. This difference propa-
gates across ⊕ and � with certainty and for any subkey value because the only
active difference is in the most significant bit position. The arrows indicate differ-
ence propagation across one-round or across an MA/MAD-box in the encryption
direction, depending on the context. All these characteristics hold with proba-
bility 1 under weak-key assumptions. Thus, the main purpose of weak keys is
that they cause weak subkeys in specific positions inside WIDEA-n which allow
straightforward propagation of differences (and bit masks). The third column in
Table 2 shows the difference propagation inside the MA-box and consequently,
if the MA-box is differentially active or not. An MA/MAD-box is differentially
active if its input difference is nonzero. It is passive, otherwise.

We choose characteristics based on two criteria: (i) minimize the number of
weak-key assumptions per round, and (ii) choose iterative difference patterns.
Under these two conditions, the best choices include the 3-round characteristic

(0, 0, δ, δ) → (0, δ, δ, 0) → (0, δ, 0, δ) → (0, 0, δ, δ), (5)

with four weak-subkey assumptions1: Z6(j−1)+3, Z6(j−1)+4, Z6j+4, Z6(j+1)+3

starting from round j, for j ≥ 1. All rotations of (5), for instance, starting
from (0, δ, δ, 0) instead of (0, 0, δ, δ), result in equivalent characteristics.

Another relevant choice is the 1-round iterative characteristic

(δ, δ, δ, δ) → (δ, δ, δ, δ), (6)

with two weak-subkey assumptions: Z6(j−1), Z6(j−1)+3 starting from round j.
We next describe attacks on WIDEA-n that bypass all the MDS matrices

across 8.5-round WIDEA-n.

4.1 Differential Attack on One IDEA Instance Only

We use (6), a 1-round iterative characteristic whose differential trail does not
include any MA-box, that is, all MA-boxes are passive. See Table 2. Extending
it to WIDEA-4, one IDEA instance will follow the differential pattern (6), while

1 We adapted the original terminology Z
(j)
i that represents the i-subkey of the j-

th round in [7] to the notation Zl in WIDEA-n as described in Sect. 3, where
l = 6(j − 1) + i− 1, since there are six subkeys per round in IDEA.
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the other three IDEA instances will have zero input difference. This means that
all MAD-boxes will be passive. In other words, we exploit the (trivial) fixed point

MDS(0, 0, 0, 0)t = (0, 0, 0, 0)t,

where the superscript t denotes the transpose operation. In other words, if all
weak-subkey assumption are satisfied, then the differential trail (6) concatenated
with itself will propagate across a single 8.5-round IDEA instance in WIDEA-
n, instead of (nonzero) differences spreading to all n IDEA instances, effectively
bypassing the MDS diffusion layer in every round. This attack holds independent
of which MDS matrix is used. Note that our attack does not contradict the
branch number of the MDS matrix [4], but rather exploit a (trivial) fixed point.

Thus, we have the following 1-round iterative characteristic, using (6) in only
a single IDEA instance in WIDEA-4:

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
δ δ δ δ

⎞
⎟⎟⎠ , (7)

following the state representation (3). Without loss of generality, we picked the
last row of the state as the active IDEA instance. The same reasoning applies
if we had picked any of the other IDEA instances (but the weak key would
not be the same). Thus, the fifteen most significant bits (MSB) of the following
eighteen subkeys should be zero across 8.5 rounds of one IDEA instance: Z6(j−1),
Z6(j−1)+3, for 1 ≤ j ≤ 9. Under these conditions, the output difference pattern
in (7) will appear as ciphertext difference with certainty. If the key schedule of
WIDEA-4 behaves as a random mapping and the weak-subkey conditions hold
independently, then in WIDEA-4’s key space of 2512 keys, the weak subkeys
would represent a class of about 2512−15·18 = 2242 keys. The reasoning is that
each 16-bit weak subkey can be either 0 or 1, and we need eighteen of them to
be weak. For WIDEA-8, the same reasoning applies, but the weak-key class size
is estimated at 21024−15·18 = 2754.

In order to avoid this distinguishing attack using (7), more than 512/15 = 34
weak-subkey conditions would be required, since each weak subkey implies the
fifteen MSBs to be zero. This means WIDEA-4 would need more than 34/2 = 17
rounds, which means more than double the original number of rounds, since each
round requires two weak subkeys. But, the resulting performance would hardly
be acceptable.

A key-recovery attack on the full 8.5-round WIDEA-4, using (7), can obtain
the subkeys Z48,0 and Z51,0 of the last half-round. In this case, only sixteen
subkeys need be weak, which imply a weak-key class of about 2512−15·16 = 2272

keys. The output difference after eight rounds, restricted to one IDEA instance,
is (δ, δ, δ, δ). For the additive subkeys, the δ difference propagates across to the
ciphertext, but not for Z48,0 and Z51,0. This means a 16-bit condition for each
16-bit subkey piece. Thus, one chosen pair of texts is enough. Decrypting two
multiplications in a half-round in one IDEA instance is equivalent to 1

17·2·4 of
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a full WIDEA-4, that is, the cost becomes 232

17·8 ≈ 225 WIDEA-4 encryptions.
There are 17 half-rounds in 8.5-round IDEA. Memory cost is negligible. Time
complexity for WIDEA-8 becomes 224 encryptions since WIDEA-8 contains eight
copies of IDEA. Moreover, the weak-key class size becomes 21024−15·16 = 2784.
Recovering subkeys from the other IDEA instances is not possible because of
the zero differences in (7). If we shift the (δ, δ, δ, δ) pattern to another row of
the state in (7), then we would need another key that has weak subkeys in that
same part of the state. We leave the issue of a full key-recovery attack as an
open problem.

4.2 Differential Attack on All IDEA Instances

Let us analyse WIDEA-4. If we use the 3-round iterative linear relation (5), then
there are active MAD-boxes along the differential trail. See Table 2. This means
we need to exploit another fixed point of the AES MDS matrix (1):

MDS(δ, δ, δ, δ)t = (δ, δ, δ, δ)t.

When a MAD-box is active, we have to attack all four copies in WIDEA-4 at
once so that the same value δ appears inside each MAD-box. This means that
the input to the active MDS matrices is (δ, δ, δ, δ). Applying it to the matrix in
(1) results in 2 · δ⊕ 3 · δ⊕ δ⊕ δ = (2⊕ 3⊕ 1⊕ 1) · δ = δ in all four rows since the
MDS matrix in AES is circulant. In other words, this fixed point exploits the fact
that the exclusive-or of the coefficients in a line (or column) of the AES MDS
matrix xor to 1. This is a new and surprising interaction between the differential
pattern (δ, δ, δ, δ) and the coefficients of the AES MDS matrix.

This attack does not contradict the branch number of the MDS matrix [4],
but rather exploit a non-trivial fixed point. Note that this property does not
hold for the 8 × 8 MDS matrix in (2) since in the latter, the exclusive-or sum
of the coefficients in a line or column is 3. A consequence of this finding is an
additional criterion for block cipher designs that employ matrices from MDS
codes in the way they are used in WIDEA-4: carefully select the coefficients in
these matrices in order to avoid fixed-point (differences).

We arrive at the following 3-round iterative characteristic:
⎛
⎜⎜⎝

0 δ 0 δ
0 δ 0 δ
0 δ 0 δ
0 δ 0 δ

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

0 0 δ δ
0 0 δ δ
0 0 δ δ
0 0 δ δ

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

0 δ δ 0
0 δ δ 0
0 δ δ 0
0 δ δ 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

0 δ 0 δ
0 δ 0 δ
0 δ 0 δ
0 δ 0 δ

⎞
⎟⎟⎠ . (8)

Thus, we exploit a combined symmetry in the AES MDS matrix, the differential
pattern and the four identical copies of IDEA in WIDEA-4. Across 8.5 rounds,
we need the following eleven 64-bit subkeys to be weak: Z3, Z9, Z10, Z16, Z21,
Z27, Z28, Z34, Z39, Z45 and Z46, across all four IDEA instances. These weak
subkeys imply conditions on 11 · 4 · 15 = 660 > 512 bits. In a key space of 2512

keys we do not expect any weak-key class to satify all these conditions. It is a
negative result, though. Analogous conclusions hold for WIDEA-8.
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5 Linear Cryptanalysis of WIDEA-n

For a linear analysis, we listed exhaustively all one-round linear relations of IDEA
[2] in Table 3 (in the appendix). All these linear relations hold with maximum
bias 2−1 under weak-subkey assumptions.

The linear relations with the best profile for an attack on WIDEA-n have the
same patterns as the characteristics used in Sect. 4, with γ instead of δ. From
Table 3 we choose linear relations that: (i) minimize the number of weak-subkey
assumptions per round, and (ii) are iterative. Under these two conditions, the
best choices include the 3-round relation

(0, γ, γ, 0) → (γ, 0, γ, 0) → (γ, γ, 0, 0) → (0, γ, γ, 0), (9)

with only four weak-subkey assumptions: Z6(j−1)+4, Z6j , Z6(j+1), Z6(j+1)+4 start-
ing from round j. All rotations of (9), for instance, starting from (γ, 0, γ, 0)
instead of (0, γ, γ, 0), also fulfill the same criteria.

Another relevant choice is the 1-round iterative characteristic

(γ, γ, γ, γ) → (γ, γ, γ, γ), (10)

with only two weak-subkey assumptions per round: Z6(j−1), Z6(j−1)+3 starting
from round j.

If we use linear relation (10) in a single IDEA instance in WIDEA-4, we arrive
at the following 3-round iterative linear relation:

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠ . (11)

Similar to (7), there are no active MAD-boxes along (11) because all approxi-
mations at the input to the MAD-boxes are trivial: (0, 0, 0, 0). Thus, once again,
we exploit the fixed-point relation MDS(0, 0, 0, 0)t = (0, 0, 0, 0)t. Concatenating
(11) with itself across 8.5 rounds, this linear relation holds with maximum bias
2−1 as long as the following eighteen subkeys are weak: Z6(j−1), Z6(j−1)+3 for
0 ≤ j ≤ 9. The weak-key class for this linear relation has size 2512−15·18 = 2242

keys. Using relation (9) instead of (10) would require all IDEA instance to be at-
tacked at once. This means using the fixed point MDS(γ, γ, γ, γ)t = (γ, γ, γ, γ)t,
which leads to the same problem as in Sect. 4.2: there are too many weak-subkey
conditions because some MAD-boxes become active.

The linear relation (11) can be translated into P · Γ = EK(P ) · Γ , where
Γ = (γ, γ, γ, γ). This linear relation can be used to distinguish the full WIDEA-
4 from a random permutation. A equally interesting consequence would be its
implications in a hash function context. We discuss it in Sect. 6.

Applying (11) to WIDEA-8 gives even better results, since the later has key
size of 1024 bits, and the same weak-subkey conditions lead to an estimated
weak-key class of 21024−15·18 = 2754 keys.
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A (partial) key-recovery attack on the full 8.5-round WIDEA-4, using (11),
can recover subkeys Z48,0 and Z51,0. In this case, we attack the last half-round
and only sixteen subkeys need be weak: Z6(j−1), Z6(j−1)+3 for 0 ≤ j ≤ 8, which
implies a weak key class of about 2512−15·16 = 2272 keys. Using Matsui’s estima-
tion for a high-success rate attack, 8(2−1)−2 = 32 known plaintexts are enough.
The effort is equivalent to 232 multiplications per subkey, which is equivalent to
fraction of 1

17·2·4 of a full WIDEA-4 computation, or 232/(17·2·4) ≈ 225 WIDEA-
4 encryptions. The memory needed is 32 counters. Recovery of the remaining
subkeys has the same problems as in the key-recovery attack in Sect. 4.1. The
time complexity for WIDEA-8 becomes 224 WIDEA-8 encryptions since there
are eight IDEA instances, Also, the weak-key class size is 21024−15·16 = 2784.

6 WIDEA-n in Davies-Meyer Mode

In [6], the authors suggested to use WIDEA-n as a compression function in
Davies-Meyer (DM) mode, since the key size is double the block size2. The hash
digest could range from 224 bits up to 512 bits, as in the SHA-2 hash function
family [10] by truncation of the last chaining variable. The DM mode for a
compression function construction is as follows [8]: the i-th chaining value is

Hi = Hi−1 ⊕ Emi(Hi−1), (12)

where H0 = IV is the initial value, mi is the i-th message block and Ex(y) is a
block cipher with key x and plaintext y. In particular, E is WIDEA-n, |mi| is
128n bits, |Hi| is 64n bits.

The issue of weak subkeys in WIDEA-n is even more relevant in a hash func-
tion setting. In this case, the message to be hashed becomes the key input and
can be chosen by the adversary.

We point to the following consequences from the results in the previous sec-
tions when WIDEA-n is used in DM mode:

– semi free-start collision: suppose we can set Hi−1 with difference (7) for
WIDEA-4. If mi is a weak key that leads to weak subkeys as required in
Sect. 4.1, then Hi−1 = Emi(Hi−1), that is, Hi contains only zero word dif-
ferences according to (12). It is a semi free-start collision because only the
chaining variable has nonzero difference [8]. The same reasoning applies to
WIDEA-8, using the same difference (7), but extended to a 1024-bit state.
Note that this attack is independent of the MDS matrix used.

– truncation: suppose the output transformation in a (hypothetical) hash func-
tion using WIDEA-n in the compression function simply truncates the
output to the least significant 192 bits for WIDEA-4 (3), or to the least
significant 448 bits for WIDEA-8 (4). In both cases, we assume that at least
64 bits are cut off from the last chaining variable. Alternatively, more bits

2 The number of rounds was increased from 8.5 to 10.5 to provide some security
margin.
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can be dropped, but 64 bits is enough for our attack. Suppose we have a
differential trail like (7) in Hi−1 but with weak subkeys up to the 8th round.
These trails reduce the number of required weak subkeys to sixteen instead
of eighteen (increasing the weak-key class size), but the input and output
difference patterns are not the same. This fact implies that in DM mode,
the exclusive-or between Hi−1 and Emi(Hi−1) will not vanish. But, on the
other hand, the nonzero difference words are isolated in a single 64-bit piece
of the state. If that 64-bit piece is in the most significant part of the state, it
will be truncated and we have a collision since the rest of the state has only
zero word difference. In this way, we use the output transformation of the
hash function to an attacker’s advantage, if we can control the difference to
remain in the part of the state that is going to be truncated3.

– a linear relation such as
⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
γ γ γ γ

⎞
⎟⎟⎠ , (13)

for WIDEA-4 = E, using relation (10), imply the linear relation Hi−1 ·Γ1 =
Emi(Hi−1) · Γ1, where Γ1 is any of the masks in a state in (13). Applying
this iterative relation to a single compression function in DM mode, leads to

Hi · Γ1 = 0, (14)

that is, the linear relation does not depend on Hi−1 due to feedforward in
the DM mode and the splitting of the Γ1 mask. Relation (14) could be used
to distinguish the compression function using WIDEA-4 in DM mode from a
random function. Note that (14) depends only on the output Hi, and could
be applied to the hash digest only if the masked bits are not truncated. This
linear relation have implications for WIDEA-n in applications such as pseu-
dorandom number generation, since the masked bit would leak information
in the output bitstream.

Similar reasoning applies for WIDEA-8 in place of WIDEA-4 since the
reasoning concerns one single IDEA instance (out of n).

Another example of collision using only two text blocks is in DES using
the complementation property: suppose two texts P and P encrypted un-
der an arbitrary key K and its bitwise complement K. The corresponding
ciphertexts are C = DESK(P ) and C = DESK(P ). In DM mode, ΔHi−1 =
ΔP = P ⊕ P = ffffffffffffffffx and ΔHi = ΔHi−1 ⊕DESK(P ) ⊕

3 This collision has to happen in the last message block hashed. If the message length
is say at most 2128 − 1 bits, then the last 128 bits are reserved for the message
length. Assume the first 64 bits are variable, so we can control the difference in it.
For WIDEA-4, the remaining 256-64-128=64 bits are padding. For WIDEA-8, the
remaining 1024-64-128=832 bits are padding. So, this is feasible, since we only need
nonzero difference in the most significant 64 bits, while the rest of the state has zero
difference.



66 J. Nakahara Jr.

DESK(P ) = ffffffffffffffffx⊕ ffffffffffffffffx = 0, which is
a free-start collision (we have nonzero difference in both the key and the
plaintext, which corresponds to message and chaining variable). This is yet
another example of how a weakness in the key schedule turns into a weak-
ness in a hash function setting, jeopardizing potential applications of a block
cipher in a hash function setting.

7 Weak Keys

An important question to address is whether weak keys exist in WIDEA-n that
can generate the weak subkeys required in the attacks in Sect. 4, 5 and 6. Re-
calling the key schedule of WIDEA-4 in Sect. 3 and taking, for instance, the
pattern (7) repeated over six rounds, requires that the most significant fifteen
bits (corresponding to the first IDEA instance in Fig. 1) of the following subkeys
to be zero: Z0, Z3, Z6, Z9, Z12, Z15, Z18, Z21, Z24, Z27, Z30 and Z33. Satisfying
Z0, Z3 and Z6 is straightforward since they are part of the user key. There are
nine subkey conditions left. Writing down the corresponding equations in the
key schedule we got the following, where the variables in boldface are either 0
or 1. So far, we did not find any contradiction. That is, even though we could
not yet find a 512-bit user key that leads to the eleven weak subkeys, we have
found no reason these nine equations (15 )–(23) cannot be satisfied.

Z9 = (((Z8 ⊕ Z1)
16

� Z4)
16
≪ 5) ≪ 24, (15)

Z12 = (((Z11 ⊕ Z4)
16
� Z7)

16
≪ 5) ≪ 24, (16)

Z15 = (((Z14 ⊕ Z7)
16

� Z10)
16
≪ 5) ≪ 24, (17)

Z18 = (((Z17 ⊕ Z10)
16

� Z13)
16
≪ 5) ≪ 24, (18)

Z21 = (((Z20 ⊕ Z13)
16
� Z16)

16
≪ 5) ≪ 24, (19)

Z24 = ((((Z23 ⊕ Z16)
16

� Z19)
16
≪ 5) ≪ 24)⊕ C2, (20)

Z27 = (((Z26 ⊕ Z19)
16
� Z22)

16
≪ 5) ≪ 24, (21)

Z30 = (((Z29 ⊕ Z22)
16

� Z25)
16
≪ 5) ≪ 24, (22)

Z33 = (((Z32 ⊕ Z25)
16

� Z28)
16
≪ 5) ≪ 24. (23)

Assuming that the key schedule behaves as a random mapping, generating (ap-
proximately) uniformly distributed subkeys, we expect each subkey to have
equal chance to assume a value in the range [0, . . . , 264 − 1] for WIDEA-4, or
[0, . . . , 2128− 1] for WIDEA-8. Therefore, we assume each 16-bit subkey for each
IDEA instance to have approximately the same chance to have values in the
range [0, . . . , 216 − 1]. For the particular values 0 and 1 the chance is 2−16 for
each. Under these assumptions, we estimated the weak-key classes in Sect. 4, 5
and 6.
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In order to have some experimental evidence of the presence of weak subkeys,
we searched for them in mini-versions of the WIDEA-4 key schedule. Recall that
in WIDEA-4, the subkeys are 64-bit wide since each one of them has to key four
IDEA instances at once. As such, the search effort is too big even though we
are looking for a weak subkey value in a 16-bit piece of the 64-bit WIDEA-4
subkey. Taking into account that the key schedule operates wordwise, we shrank
the word size from 16 to 4 bits. So, for instance, equations such as (15) would

be modified to Z9 = (((Z8 ⊕Z1)
4

� Z4)
4
≪ 1) ≪ 6, where the rotation amounts

1 and 6 were chosen to match the reduced word sizes. Attack simulations on
such reduced scale equations shows weak 4-bit weak subkey values to appear for
the first IDEA instance, as expected for the attacks in Sect. 4, 5 and 6. The
same behavior was observed when the word size was reduced to 5 bits, leading

to equations such as Z9 = (((Z8 ⊕ Z1)
5

� Z4)
5
≪ 2) ≪ 7. These experiments

provide evidence that weak subkey values can and do appear in critical places
in differential and linear trails, which gives some evidence for the propagation
of differential and linear patterns.

8 Conclusions

This paper described the first differential and linear analyses of the full WIDEA-
n ciphers [6], for n ∈ {4, 8} under weak-key assumptions, both in the block cipher
and in the hash function settings. Table 1 summarizes our attack complexities
for WIDEA-n.

We exploited iterative differential characteristics and iterative linear relations
that bypassed the MDS matrices in WIDEA-n by carefully choosing trails that
input trivial differences or relations, such as (0, 0, 0, 0)t, or symmetric ones such
as (δ, δ, δ, δ)t to the MAD-boxes. The rationale is to exploit fixed points for the
MDS matrix for these particular differences and masks. This effectively means
that we found and exploited narrow differential and linear trails. This
phenomenon was observed for the AES MDS matrix, for which MDS(δ, δ, δ, δ)t

= (δ, δ, δ, δ)t. This simple observation allowed us to bypass all diffusion layers
connecting the four IDEA instances in WIDEA-4 because the exclusive-or sum of
the coefficients in the MDS matrix of AES equals one. This result does not hold
for the MDS matrix used in WIDEA-8. Our attacks exploit structural weaknesses
due to the way MDS matrices are placed inside WIDEA-n to connect n IDEA
instances. These attacks do not appply to the AES cipher [4].

Other attacks, that hold for any MDS matrix in WIDEA-n, exploit iterative
differential (and linear) patterns that avoid the MAD-boxes altogether in ev-
ery round. Such patterns cause zero input differences or zero input masks into
each MAD-box, and thus, exploit the all-zero fixed point: MDS(0, 0, 0, 0)t =
(0, 0, 0, 0)t. This approach is much more effective than the previous one because:
(i) there are many fewer weak-subkey restrictions, (ii) it applies to any MDS
matrix, (iii) we only attack one IDEA instance instead of n, which reduces con-
siderably the attack complexity and increases the weak-key class size for the
attack. The larger the value of n, the better the attacks become.
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The implications of weak differential and linear attacks are not restricted to
the block cipher setting. In [6], the authors suggested to use WIDEA-n in a
compression function in Davies-Meyer mode. Our attacks lead to semi free-start
collisions (depending on truncation of the final hash digest) or distinguishing
attacks on the compression function using WIDEA-n in Davies-Meyer mode.

Even though the weak-key classes correspond to a small fraction of the key
space, their existence implies that WIDEA-n are not ideal ciphers, and as such
cannot be used in cryptographic constructions that require tight security, in the
same way as IDEA [12].

Table 1. Attack complexities for the full 8.5-round WIDEA-n with n ∈ {4, 8}

cipher attack type complexity # weak keys comment
data time memory (‡)

WIDEA-4 DC (distinguishing) 2 CP 2 negl. 2242 see (7)
DC (key recovery)* 2 CP 225 negl. 2272 see (7)
LC (distinguishing) 32 KP 32 negl. 2242 see (11)
LC (key recovery)* 32 KP 225 negl. 2272 see (11)

WIDEA-8 DC (distinguishing) 2 CP 2 negl. 2754 see (7)
DC (key recovery)* 2 CP 224 negl. 2784 see (7)
LC (distinguishing) 32 KP 32 negl. 2754 see (11)
LC (key recovery)* 32 KP 224 negl. 2784 see (11)

CP: chosen plaintext; CC: chosen ciphertext; KP: known plaintext; *: partial key re-
covery; ‡: estimated

Open problems include: (i) how to recover the full (512- or 1024-bit) key of
WIDEA-n; (ii) find weak keys that through the key schedule algorithms lead
to weak round subkeys fitting in the requirements of our differential and linear
distinguishers.

References

1. Courtois, N.: Algebraic complexity reduction and cryptanalysis of GOST, IACR
ePrint archive 2011/626 (2011)

2. Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

3. Dinur, I., Dunkelman, O., Shamir, A.: Improved attacks on full GOST, IACR
ePrint archive, 2011/558 (2011)

4. FIPS197: Advanced Encryption Standard (AES), FIPS PUB 197 Federal Informa-
tion Processing Standard Publication 197, U.S. Department of Commerce (2001)

5. ISO: Information Technology – Security Techniques – Hash functions – Part 3:
Dedicated hash functions. ISO/IEC 10118-3:2004, International Organization for
Standardization (2004)

6. Junod, P., Macchetti, M.: Revisiting the IDEA Philosophy. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 277–295. Springer, Heidelberg (2009)



Differential and Linear Attacks on the Full WIDEA-n Block Ciphers 69

7. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

8. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1997)

9. Nakahara Jr., J., Rijmen, V., Preneel, B., Vandewalle, J.: The MESH Block Ci-
phers. In: Chae, K., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 458–473.
Springer, Heidelberg (2004)

10. SHS: Secure Hash Standard, Federal Information Processing Standards, FIPS PUB
180-3 (October 2008)

11. Vaudenay, S.: Related-key attack against triple encryption based on fixed points.
In: SECRYPT 2011, pp. 59–67. SciTPress (2011)

12. Wei, L., Peyrin, T., Sokolowski, P., Ling, S., Pieprzyk, J., Wang, H.: On the
(in)security of IDEA in various hashing modes. IACR ePrint archive, 2012/264
(2012)

A Appendix

Table 2. One-round characteristics of IDEA using xor differences and δ = 8000x

1-round characteristics weak subkeys j-th round diff. in MA-box

(0, 0, 0, δ) → (δ, δ, δ, 0) Z6(j−1)+3, Z6(j−1)+5 (0, δ) → (δ, δ)
(0, 0, δ, 0) → (δ, 0, 0, 0) Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(0, 0, δ, δ) → (0, δ, δ, 0) Z6(j−1)+3, Z6(j−1)+4 (δ, δ) → (δ, 0)
(0, δ, 0, 0) → (δ, δ, 0, δ) Z6(j−1)+5 (0, δ) → (δ, δ)
(0, δ, 0, δ) → (0, 0, δ, δ) Z6(j−1)+3 (0,0)→(0,0)
(0, δ, δ, 0) → (0, δ, 0, δ) Z6(j−1)+4 (δ, δ) → (δ, 0)
(0, δ, δ, δ) → (δ, 0, δ, δ) Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(δ, 0, 0, 0) → (0, δ, 0, 0) Z6(j−1), Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(δ, 0, 0, δ) → (δ, 0, δ, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4 (δ, δ) → (δ, 0)
(δ, 0, δ, 0) → (δ, δ, 0, 0) Z6(j−1) (0,0)→(0,0)
(δ, 0, δ, δ) → (0, 0, δ, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+5 (0, δ) → (δ, δ)
(δ, δ, 0, 0) → (δ, 0, 0, δ) Z6(j−1), Z6(j−1)+4 (δ, δ) → (δ, 0)
(δ, δ, 0, δ) → (0, δ, δ, δ) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (δ, 0) → (0, δ)
(δ, δ, δ, 0) → (0, 0, 0, δ) Z6(j−1), Z6(j−1)+5 (0, δ) → (δ, δ)
(δ, δ, δ, δ) → (δ, δ, δ, δ) Z6(j−1), Z6(j−1)+3 (0,0)→(0,0)
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Table 3. One-round linear relations of IDEA with γ = 1

1-round linear relations weak subkeys j-th round masks in MA-box

(0, 0, 0, γ) → (0, 0, γ, 0) Z6(j−1)+3, Z6(j−1)+5 (0, γ) → (γ, 0)
(0, 0, γ, 0) → (γ, 0, γ, γ) Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(0, 0, γ, γ) → (γ, 0, 0, γ) Z6(j−1)+3, Z6(j−1)+4 (γ, 0) → (γ, γ)
(0, γ, 0, 0) → (0, 0, 0, γ) Z6(j−1)+5 (0, γ) → (γ, 1)
(0, γ, 0, γ) → (0, 0, γ, γ) Z6(j−1)+3 (0,0)→(0,0)
(0, γ, γ, 0) → (γ, 0, γ, 0) Z6(j−1)+4 (γ, 0) → (γ, γ)
(0, γ, γ, γ) → (γ, 0, 0, 0) Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(γ, 0, 0, 0) → (0, γ, γ, γ) Z6(j−1), Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(γ, 0, 0, γ) → (0, γ, 0, γ) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4 (γ, 0) → (γ, γ)
(γ, 0, γ, 0) → (γ, γ, 0, 0) Z6(j−1) (0,0)→(0,0)
(γ, 0, γ, γ) → (γ, γ, γ, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+5 (0, γ) → (γ, 0)
(γ, γ, 0, 0) → (0, γ, γ, 0) Z6(j−1), Z6(j−1)+4 (γ, 0) → (γ, γ)
(γ, γ, 0, γ) → (0, γ, 0, 0) Z6(j−1), Z6(j−1)+3, Z6(j−1)+4, Z6(j−1)+5 (γ, γ) → (0, γ)
(γ, γ, γ, 0) → (γ, γ, 0, γ) Z6(j−1), Z6(j−1)+5 (0, γ) → (γ, 0)
(γ, γ, γ, γ) → (γ, γ, γ, γ) Z6(j−1), Z6(j−1)+3 (0,0)→(0,0)
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